Some of the material in is restricted to members of the community. By logging in, you may be able to gain additional access to certain collections or items. If you have questions about access or logging in, please use the form on the Contact Page.
Some of the material in is restricted to members of the community. By logging in, you may be able to gain additional access to certain collections or items. If you have questions about access or logging in, please use the form on the Contact Page.
The mammalian molecular circadian clock in the suprachiasmatic nuclei (SCN) regulates locomotor activity rhythms as well as clocks in peripheral tissues (Reppert and Weaver, 2002; Ko and Takahashi, 2006). Constant light (LL) can induce...
Robustness in biology is the stability of phenotype under diverse genetic and/or environmental perturbations. The circadian clock has remarkable stability of period and phase that-unlike other biological oscillators-is maintained over a...
Circadian clock-gated cell division cycles are observed from cyanobacteria to mammals via intracellular molecular connections between these two oscillators. Here we demonstrate WNT-mediated intercellular coupling between the cell cycle...
The circadian clock coordinates physiology and metabolism. mTOR (mammalian/mechanistic target of rapamycin) is a major intracellular sensor that integrates nutrient and energy status to regulate protein synthesis, metabolism, and cell...
The circadian (∼24 h) clock is continuously entrained (reset) by ambient light so that endogenous rhythms are synchronized with daily changes in the environment. Light-induced gene expression is thought to be the molecular mechanism...
Mounting evidence suggests that PERIOD (PER) proteins play a central role in setting the speed (period) and phase of the circadian clock. Pharmacological and genetic studies have shown that changes in PER phosphorylation kinetics are...
Circadian clocks coordinate an organism's activities and regulate metabolic homeostasis in relation to daily environmental changes, most notably light/dark cycles. As in other organisms, the timekeeping mechanism in mammals depends on a...
Circadian rhythms in mammals are generated by a negative transcriptional feedback loop in which PERIOD (PER) is rate-limiting for feedback inhibition. Casein kinases Idelta and Iepsilon (CKIdelta/epsilon) can regulate temporal abundance...
We previously created two PER2::LUCIFERASE (PER2::LUC) circadian reporter knockin mice that differ only in the 3'-UTR region:, which retains the endogenous 3'-UTR and, where the endogenous 3'-UTR was replaced by an SV40 late poly(A)...
The circadian clock coordinates physiology and metabolism. mTOR (mammalianmechanistic target of rapamycin) is a major intracellular sensor that integrates nutrient and energy status to regulate protein synthesis, metabolism, and cell...
Self-sustaining oscillations are essential for diverse physiological functions such as the cell cycle, insulin secretion and circadian rhythms. Synthetic oscillators using biochemical feedback circuits have been generated in cell culture...
Circadian rhythms in mammals are generated by a transcriptional negative feedback loop that is driven primarily by oscillations of PER and CRY, which inhibit their own transcriptional activators, CLOCK and BMAL1. Current models posit...
The mammalian circadian oscillator is primarily driven by an essential negative feedback loop comprising a positive component, the CLOCK-BMAL1 complex, and a negative component, the PER-CRY complex. Numerous studies suggest that feedback...
Chronic jet lag induces spontaneous hepatocellular carcinoma (HCC) in wild-type mice following a mechanism very similar to that observed in obese humans. The process initiates with non-alcoholic fatty liver disease (NAFLD) that...
Some of the material in is restricted to members of the community. By logging in, you may be able to gain additional access to certain collections or items. If you have questions about access or logging in, please use the form on the Contact Page.