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ABSTRACT

Earth’s atmosphere-ocean system is distinguished by its variability over a wide range of time scales.

The non-linear interactions between these time scales are complex and are further complicated by

the large number of subsystems and modes in the atmosphere-ocean system. Here, we explore a

stochastic model developed by Sardeshmukh and Sura which uses correlated additive and multi-

plicative (CAM) noise and relies on a state-dependent (multiplicative) noise forcing to represent the

multi-scale interactions between weather and climate.

An important problem in climate variability is the statistical representation of extreme weather

and climate events. While a description of the tails of a probability density function (pdf) is

essential for modeling extreme events, an understanding of the full pdf is required to capture the

full dynamics of the atmosphere-ocean system. On daily scales, the statistics of the large-scale

atmospheric circulation are non-Gaussian. A one-dimensional pdf produced by the CAM noise

model, or stochastically generated skewed (SGS) distribution, attempts to probabilistically represent

the non-Gaussian statistics of atmospheric climate anomalies.

This study evaluates the ability of the SGS distribution to represent the non-Gaussian statistics

of several atmospheric variables using NOAA-CIRES-DOE Twentieth Century Reanalysis Project

version 2c (20CRv2c) dataset. A method of moments SGS parameter estimation technique described

Sardeshmukh et al (2015) is implemented in a Julia software package and applied to global gridded

time series of reanalysis data. Goodness-of-fit tests show the SGS distribution performs well in

regions of near-zero and positive kurtosis, but produces statistically implausible with time series

with negative sample kurtosis. However, the SGS distribution is found to outperform the standard

normal (Gaussian) distribution at nearly all gridded locations, even where the SGS fit is poor. The

SGS distributions of two 67 year 20CRv2c periods are also compared, where few significant changes

in the shape of the SGS distribution are found.
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CHAPTER 1

INTRODUCTION

The stochastically generated skewed (SGS) distribution is a dynamically consistent stochastic cli-

mate model that describes the non-Gaussian statistics of daily atmospheric data.

1.1 Extreme events

Extreme events (such as major hurricanes or severe earthquakes) typically impose a dispropor-

tionately large impact on lives and infrastructure, despite their infrequent occurrence. Extreme

events are found within nature, technology and society and their incidence can be subject to a mea-

sure of subjectivity (Albeverio et al. (2006)). In order to properly study the occurrence and impact

of extreme weather and climate events, about which this research is concerned, a more rigorous

definition is needed.

Extreme events may be thought of as difficult-to-predict phenomena outside of normal expec-

tations, where normal corresponds to the Gaussian distribution. One may also visualize the tails

of a probability distribution function (pdf) as the statistical regions where extreme events occur.

If an extreme event is beyond normal expectations, then the event will fall outside the tails of the

Gaussian pdf i.e., the extreme event will be non-Gaussian (AghaKouchak et al. (2012)).

As such, understanding extreme weather and climate events requires the probabilistic represen-

tation of the tails of a non-Gaussian pdf. This statistical representation is crucial in the development

of sophisticated and efficient risk and disaster management systems, especially within strategies to

adapt to changes in the frequency and magnitude of extreme weather associated with anthropogenic

climate change. It is important to note that understanding of the tails of the pdf is only part of

the overall goal in the analysis of extreme events – understanding of the full pdf is to statistically

encapsulate the full dynamics of the system. This knowledge correspondingly stimulates a deeper

understanding of climate variability as a whole.
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1.2 A non-Gaussian atmosphere

The statistics of many daily atmospheric variables (such as air temperature, geopotential height,

zonal and meridional wind) are non-Gaussian, which has major implications for the understanding

of climate statistics and the study of extreme events.1 To relate the notion of Gaussianity with a

probability distribution, the statistical moments used to describe the shape of a pdf first must be

defined. If X is a random variable with an expected value of µ = E[X], the nth central moment,

〈xn〉, may be written as

〈xn〉 = E [(x− µ)n] . (1.1)

Using Equation (1.1), the first two central moments – mean and variance – may be written as

〈x1〉 = µ = E [(x− µ)]

〈x2〉 = σ2 = E
[
(x− µ)2

]
.

(1.2)

Skewness and kurtosis are defined as the third and fourth standardized moments, which normalize

the third and fourth central moments by σn:

〈x3〉 = skew =
E
[
(x− µ)3

]
σ3

〈x4〉 = kurt =
E
[
(x− µ)4

]
σ4

.

(1.3)

For reference, a standard normal (Gaussian) distribution has zero mean, unit variance and a skew-

ness and excess kurtosis of zero. As the kurtosis of a univariate normal distribution is equal to 3,

the excess kurtosis is defined as the kurtosis minus 3. However, for brevity the excess kurtosis will

be referred to hereafter simply as “kurtosis.”

The non-Gaussianity of the atmosphere can be demonstrated by composing maps of skewness

and kurtosis from daily atmospheric data sets2 of standardized anomalies. Figure 1.1 shows the

skewness and kurtosis of the standardized anomalies of the 500 hPa geopotential height field from

the NOAA-CIRES-DOE Twentieth Century Reanalysis Project version 2c dataset (Compo et al.

(2011)).3 If the atmosphere were Gaussian, the skewness and kurtosis in Figure 1.1 would be zero.

1Most observations obtained from nature are typically non-Gaussian in some fashion, unless they are excessively
averaged and become subjected to the central limit theorem (AghaKouchak et al. (2012)).

2More detailed discussion on the dataset used in this work is found in Chapter 2. For now, the reanalysis data
here is being used to highlight the non-Gaussian statistics of daily atmospheric data.

3For a more extensive analysis of the climatology of non-Gaussianity, see Perron and Sura (2013).
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Figure 1.1: Maps of skewness and kurtosis of standardized DJF 500 hPa geopotential height
anomalies from the NOAA-CIRES-DOE Twentieth Century Reanalysis Project version 2c
dataset, 1851-2014.
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Standardized anomalies are often used as the variable of study in climate statistics, as they

provide a normalized, dimensionless unit of measurement that can be compared across different

climate variables and probability distributions. Here, when calculating the standardized anomalies

from a field such as a daily-averaged reanalysis dataset, one first calculates the mean annual cycle

for each day of the calendar year at each grid point. The annual cycle is then subtracted from

the field to produce the anomalies for each day of the year at each location. The anomalies are

then divided by the standard deviation of each location, which yields a time series of standardized

anomalies at each grid location. Further processing may be done when seasonal (DJF, MAM, JJA,

SON) or geographical selection of data is desired.

The global skewness and kurtosis patterns for the DJF 500 hPa geopotential height anomalies

in Figure 1.1 shows a banding structure with respect to latitude. Both the polar and equatorial

regions are positively skewed, while the mid-latitudes of both hemispheres are negatively skewed.

The skewness minima and maxima are located over the oceans, with the area of largest magnitude

positioned over the North Atlantic. The skewness map also appears to show the Aleutian Low, a

large scale circulation pattern that typically forms in the northern Pacific Ocean, as a region of

positive skewness. There also seems to a be a tilt of larger skewness values toward the Northern

Hemisphere, which may be expected due to the winter months being more synoptically active

(Perron and Sura (2013)).

The kurtosis map only partly resembles the distribution of skewness values, as the Northern

Hemisphere polar regions, save the western coast of Greenland, have negative kurtosis. The banding

structure in the Southern Hemisphere is more prevalent, with alternating regions of positive and

negative kurtosis extending from the equator to the pole.

The patterns of non-Gaussianity in geopotential height fields such as Figure 1.1 have been

studied previously by White (1980), Trenberth and Mo (1985) and Nakamura and Wallace (1991),

which relate the spatial structure in geopotential height skewness and kurtosis to the locations of

storm tracks and seasonal variations of troughs and ridges. Rennert and Wallace (2009) found that

the cross-frequency coupling of the low (< 30 days−1) and medium (6 − 30 days−1) frequencies of

the variability of 500 hPa geopotential height field contributes significantly to the observed skewness

for the northern Atlantic and Pacific. Luxford and Woollings (2012) have demonstrated that the

skewness of geopotential height and zonal wind fields are linked with the locations of jet streams.
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While the non-Gaussianity of the climate variables used in this study are discussed in Chapter 2,

further discussion of the physical mechanisms linked to extreme events and non-Gaussian statistics

is provided by Hoskins and Woollings (2015).

A few studies on the non-Gaussianity of reanalysis data sets have been produced. Perron and

Sura (2013) provide a thorough climatology for several variables of daily atmospheric data from the

NCEP/NCAR Reanalysis 1 dataset4, including vertical cross-sections of zonally averaged variables

that also show significant non-Gaussianity signatures. Petoukhov et al. (2008) found a significant

deviation from Gaussianity of the skewness and mixed third-order moments for several atmospheric

variables obtained from ERA-40 reanalysis data.5

The relationship of non-Gaussian extreme events with anthropogenic climate change (ACC) has

also been investigated. Sardeshmukh et al. (2015) show that some extreme climate variability can

be accounted for by simply considering pdfs in a non-Gaussian framework, where deviations from

Gaussianity in the pdf tail can result in a modification of extreme event probabilities by an order

of magnitude or more. This result has implications for estimating any change in the frequency

of extreme events that may be attributed to ACC – models that assume a Gaussian pdf shape

risk misattribution of extreme events to changes in the mean or higher moments rather than the

(potentially) heavier tails of a non-Gaussian pdf. Indeed, Lopez et al. (2018) finds that the future

emergence of regional heat waves attributed to anthropogenic forcing in the western and Great

Lakes regions of the United States are witnessed in changes in the higher moments, not just the

mean surface temperature. Conversely, the emergence of regional heat waves in the Great Plains

attributed to ACC are found to be primarily driven by enhanced internal variability, not a change

in the asymmetry of the pdf or heaviness of the pdf tails.

The physical basis underlying the dynamics of the non-Gaussian shape of the pdf and the

observed extreme events is complex and still not well understood. However, models motivated by

stochastic climate theory have been put forward as a means to reproduce and gain insight into the

non-Gaussian statistics of daily climate data.
4See Kalnay et al. (1996) for more information on the NCEP/NCAR Reanalysis 1 dataset.
5For more on the ERA-40 dataset, see Uppala et al. (2005).
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1.3 Stochastic models of climate extremes

The use of stochastic models to study climate variability and extreme events arose out of the

idea to represent the natural variability of physical timescales as a coupling of slowly changing

systems to rapidly varying physical processes (Sura and Sardeshmukh (2008)). In this sense, weather

and climate may be defined as the manifestation of rapid and gradual variations in geophysical

phenomena, respectively. Though weather and climate can be defined as systems spanning fast-slow

time scales, it is also possible to analytically calculate the length of time scales in order to compare

their natural variability e.g., Lovejoy (2013). In either case the underlying timescale separation is a

simplification of the atmospheric system that enables a stochastic model to represent the dynamics

of the timescale with noise.

Hasselmann (1976) was the first to invoke stochastic differential equations to approximate cli-

mate as a slowly decorrelating process and weather as a rapidly decorrelating phenomena, where

climate is randomly “forced” by fluctuations in the weather approximated by white noise. While

Hasselmann’s model produces the familiar red-noise climate spectrum, it is unable to reproduce the

non-Gaussian statistics featured in observations and linked to extreme climate events (Sura (2011)).

To account for the presence of observed non-Gaussian statistics in atmosphere-ocean data, Sura

and Sardeshmukh (2008) and Sardeshmukh and Sura (2009) introduced a stochastic climate model

featuring correlated additive and multiplicative (CAM) noise that reproduces observed non-Gaussian

skewness and kurtosis patterns while retaining the red climate spectrum of Hasselmann (1976).

Sura and Sardeshmukh (2008) show that solving for kurtosis as a function of skewness results in a

parabolic relationship that persists throughout many atmospheric-oceanic systems. Additionally, a

solution of the CAM noise stochastic model described by Sardeshmukh and Sura (2009) indicates

that the pdf tails of observed anomalies follow power law distributions. This behavior was first

examined using log-log plots of observed and model-derived geopotential height and vorticity data

in Sardeshmukh and Sura (2009) and Sura and Perron (2010) as well as in situ SST data in Sura

(2010) and daily-averaged reanalysis data in West (2012). More on the Hasselmann and CAM noise

stochastic models will be presented later in Chapter 3 and Chapter 4.

A major result obtained by Sardeshmukh and Sura (2009) is that the full pdf of the stochastic

CAM noise model may be found analytically in the one-dimensional system. This pdf was called the

stochastically generated skewed (SGS) distribution by Sardeshmukh and Sura (2009). Sardeshmukh
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et al. (2015) further introduces a method of moments to estimate the parameters of the SGS pdf

from the statistics of empirical climate data. Moreover, a Markov process model is derived by

Sardeshmukh and Sura (2009), which has great utility for generating time series of statistically

equivalent SGS distributions. This capability of the SGS distribution is a useful tool for sampling

the tail of the non-Gaussian pdf, where large samples of extreme events can be generated with low

computational expense.

A more thorough review of the history and scope of stochastic climate theory is found in Franzke

et al. (2015) and Sura and Hannachi (2015). Further background on stochastic climate theory and

the relationship with non-Gaussian statistics is also developed in Chapter 3.

1.4 Roadmap

Proceedings from the Large-Scale Atmospheric Controls of Extreme Weather Events and Novel

Predictability Pathways workshop hosted at Stockholm University in October 2017 (summarized by

Messori et al. (2018)) focused on the development of techniques to analyze extreme events and their

relationship to large-scale atmospheric flows. Specifically, the problem of sampling large numbers

of extreme events was discussed in the context of studying extreme heat waves from climate model

output. This discussion highlighted a need for long integrations that encapsulate a large sample of

extreme events (whatever they may be) so that the dynamics of the system that creates the extreme

events may be examined.

To begin addressing such a requirement, this research will evaluate how well the SGS distribution

is able to represent the non-Gaussian climate statistics of daily-averaged reanalysis data, specifi-

cally those of the NOAA-CIRES-DOE Twentieth Century Reanalysis Project version 2c (20CRv2c)

dataset (Compo et al. (2011)) discussed in Chapter 2. Chapter 3 discusses stochastic climate

theory in more detail including the origins of non-Gaussian climate theory via Hasselmann (1976)

and the properties of the CAM noise stochastic model developed by Sura and Sardeshmukh (2008)

and Sardeshmukh and Sura (2009). Chapter 4 focuses on the form and characteristics of the SGS

distribution, including the distribution moments, parameters and the methodology to fit an SGS

distribution to a time series of data.
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To evaluate the SGS distribution with respect to reanalysis data, numerical routines to create,

extend and evaluate SGS distributions have been developed and organized as a Julia6 module.

Described in Chapter 5, this module, SGSDist.jl, facilitates the:

• Creation of an SGS distribution by fitting distribution parameters from time series data
• Calculation of the SGS pdf, CDF and other statistical quantities
• Drawing of random numbers from an SGS distribution
• Creation of synthetic time series using a Markov process with the time series statistics informed

from a specified SGS distribution

In Chapter 6, the SGS distribution is estimated at two locations, which serve as two case studies

for describing the statistical evaluation methodology. Chapter 7 expands the evaluation of the SGS

distribution to a global scale by testing the ability of the distribution to reproduce the persistent

wintertime statistics of several atmospheric variables from the 20CRv2c dataset over years 1947-

2014. Statistical comparisons to the Gaussian distribution are also made using a model selection

test. Chapter 8 compares the statistical results of the 1947-2014 era to the early 20CRv2c record

(1880-1947) and investigates changes in the shape of the SGS distribution, which has consequences

for some underlying assumptions used in the CAM noise model. Discussion and conclusions drawn

from these results are presented in Chapter 9.

6The Julia language, created in 2012, is a dynamically-typed language similar to Python with the performance of
Fortran or C. It was developed for use as a scientific programming language, in the mode of MATLAB or Mathematica.
More information on Julia can be found in Bezanson et al. (2017) or at the project’s documentation page, https:
//docs.julialang.org/.
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CHAPTER 2

DATA

The following chapter outlines the reanalysis dataset that will be used for the fitting and evaluating

of SGS distributions. The specific variables and levels chosen for analysis are identified, along with

a brief discussion of their large-scale non-Gaussian statistics.

2.1 NOAA-CIRES-DOE Twentieth Century Reanalysis version 2c

This research uses the NOAA-CIRES-DOE Twentieth Century Reanalysis Project version 2c

(hereafter 20CRv2c) dataset for daily observations of several atmospheric variables. The 20CRv2c

dataset is an updated release of the NOAA-CIRES-DOE 20th Century Reanalysis (20CRv2) dataset

(see Compo et al. (2011)), which first provided global reanalyses using only surface observations.

The Twentieth Century Reanalysis project itself is an attempt to provide an observational reanalysis

dataset spanning the twentieth century (and prior) to validate climate model output and provide

a large sample from which to calculate of daily climate statistics. The model schemes and param-

eterizations used in the initial release of 20CRv2 are discussed in greater detail in Compo et al.

(2011).

The 20CRv2c reanalysis dataset spans years 1851-2014 at six-hourly as well as daily and monthly-

averaged intervals. The global grid has a two-degree spatial resolution, providing 91 latitude and 180

longitude grid points at 24 pressure levels ranging from 1000 to 10 hPa. The data is freely available

for download at the NOAA-CIRES Twentieth Century Reanalysis Version 2c project webpage,

located at https://www.esrl.noaa.gov/psd/data/gridded/data.20thC_ReanV2c.html.

As outlined in Slivinski et al. (2019), the 20CRv2c project produces gridded reanalysis fields by

first iterating a coupled weather model against sea surface temperature and sea ice concentration

boundary conditions described in Giese et al. (2016) and Hirahara et al. (2014). Next, an Ensemble

Kalman Filter technique assimilates pressure observations from the International Surface Pressure

Databank (see Cram et al. (2015)) into the model derived fields, producing an adjusted analysis

field. As such, four-dimensional fields of atmospheric variables such as air temperature, geopotential
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height, vertical velocity, relative humidity, specific humidity and both meridional and zonal wind

are produced, all by assimilating only surface pressure values into the model output. More informa-

tion on the configuration and parameterization schemes used in producing the 20CRv2c reanalysis

dataset is found in Appendix A of Slivinski et al. (2019) and at the Twentieth Century Reanalysis

Version 2c webpage link above.

While the length of and variables provided by the 20CRv2c dataset provides an extensive basis

from which to undertake a statistical study of daily climate data, it is not without problems. In

particular, Slivinski et al. (2019) points out two major issues. First, sea-level pressure anomalies

before 1870 are too low due to biased ship observations making their way into the surface pressure

data assimilation. In addition, a “spectral ringing” artifact was introduced into the precipitation rate

field as well as the meridional and zonal wind fields due to an error in downscaling the resolution of

the orography used to that of the native model resolution. Despite these limitations, the extensive

length and amount of observations contained within the 20CRv2c dataset provide an attractive

platform from which to study non-Gaussian climate statistics.

Several atmospheric variables are available for study in the 20CRv2c dataset. From the variables

provided, the daily-averaged fields of air temperature (T ), geopotential height (Φ′), zonal and

meridional wind (u, v) and vertical velocity (ω) were chosen for analysis. Additionally, the relative

vorticity (ζ) may be derived from the available variables and will also be investigated. Specifically

for this study, the following variables and vertical levels will be analyzed:

• 500 hPa geopotential height
• 950 hPa air temperature
• 300 hPa relative vorticity
• 950 hPa zonal and meridional winds
• 500 hPa vertical velocity

Before the statistical analysis of the 20CRv2c dataset can take place, the time series within the three-

dimensional atmospheric fields must first be standardized. In this work, daily averaged 20CRv2c

data is used as it omits diurnal cycles. The mean value for each day of the calendar year at each

grid point is then calculated. This yields the mean annual cycle, which is subtracted from the

daily climate data to produce anomalies for each day of each year at each grid location. The

anomalies are then divided by the standard deviation of each location, which yields a time series

of standardized anomalies at each grid location. Further processing may be done when seasonal
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(DJF, MAM, JJA, SON) or geographical selection of data is desired. This study will look primarily

at the persistent wintertime (DJF) statistics of the 20CRv2c dataset, chosen to exclude seasonal

cycles as well as to capture the most pronounced synoptic baroclinicity. For the initial evaluation

of the SGS distribution, 67 years (6137 days) of persistent wintertime (DJF) 20CRv2c data from

1947-2014 will be analyzed. These results will be used in a comparison to 67 years DJF data from

1880-1947 (6136 days).

The 20CRv2c variables used in this study are now discussed. A more in-depth climatology of

the skewness and kurtosis of several atmospheric variables, including the variables analyzed in this

work, have been undertaken previously by Sura and Perron (2010), Petoukhov et al. (2008) and

most extensively by Perron and Sura (2013).

2.2 500 hPa geopotential height

500 hPa geopotential height is the atmospheric variable that has been studied the most with

respect to non-Gaussian statistics. The 500 hPa geopotential height level is by many definitions

the level of tropospheric non-divergence, which has implications for forecasting synoptic weather

systems and cyclogenesis. The skewness and kurtosis of the 500 hPa geopotential height anomalies

was previously discussed in Chapter 1 as an example of large-scale non-Gaussianity, where Figure

1.1 shows the skewness and kurtosis of the 500 hPa DJF 1851-2014 geopotential height anomalies

from the 20CRv2c dataset.

2.3 950 hPa air temperature

The 950 hPa air temperature is a level of near-surface solar insolation that warms the land

and ocean surfaces. This insolation is generally responsible for the global atmospheric circulation,

which when paired with the ocean heat transport comprises the large-scale equator-to-pole energy

transport (Perron and Sura (2013)). The skewness and kurtosis of the 950 hPa air temperature

anomalies from 1851-2014 are given in Figure 2.1.

The skewness pattern for the near-surface 950 hPa DJF temperature anomalies show a land-

ocean relationship, where negatively skewed or near-zero values are found in continental regions

and positively skewed values are more concentrated in the ocean basins. Notably, leptokurtic1 areas
1Comparisons of excess kurtosis are typically made to the Gaussian distribution, which has a value of zero excess

kurtosis. A distribution with zero excess kurtosis may also be called mesokurtic. Any distribution with positive
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Figure 2.1: Maps of skewness and kurtosis of standardized DJF 950 hPa air temperature
anomalies from the 20CRv2c dataset, 1851-2014.

12



are collocated with large magnitudes of both positive and negative skewness. This relationship is

indicative of high and low temperature extremes influencing the statistics of the pdf. Previously,

Ruff and Neelin (2012) have shown that non-Gaussian pdf tails exist in station observations of

air temperature data while Swanson and Pierrehumbert (1997) found significant skewness in the

temperature and meridional velocity fields (and by extension the heat flux) located in the lower

troposphere of the Pacific storm track.

2.4 300 hPa relative vorticity

The vorticity is a measure of the rotation in a fluid. The vertical component of the relative

vorticity, or ζ = k · (∇×U), is associated with storm tracks and locations of cyclonic and anticy-

clonic flows. In the northern (southern) hemisphere, regions of positive (negative) relative vorticity

are coupled with cyclonic weather systems and regions of negative (positive) relative vorticity are

associated with anticyclonic weather systems. This makes relative vorticity a useful diagnostic vari-

able (Holton (2004)). Here, the 300 hPa relative vorticity anomalies are investigated as it is the

general location of the jet stream. Figure 2.2 gives the skewness and kurtosis of the 20CRv2c 300

hPa 1851-2014 DJF relative vorticity anomalies.

The skewness of the 300 hPa relative vorticity anomalies show a banded latitudinal structure,

with sign changes at the equator and at the location of the mean storm track. The kurtosis of the

relative vorticity is generally strongly positive, with the exception of bands of negative kurtosis that

correspond to the both the mean northern (southern) hemisphere storm track location.

2.5 950 hPa zonal and meridional wind

The near-surface 950 hPa horizontal (zonal and meridional) winds are also investigated in this

study. The near-surface wind is an important component to the atmosphere-surface energy exchange

e.g., wind-driven ocean currents.

Global skewness and kurtosis patterns for the 950 hPa DJF zonal wind anomalies do not display

the same latitudinal banding structure as that of the geopotential height anomalies, save for a single

band spanning the Southern Ocean. The skewness map appears to show some features attributed to

excess kurtosis is leptokurtic, meaning that the tails of the distribution are fatter. Distributions with thinner tails
are termed platykurtic, where the excess kurtosis is negative.
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Figure 2.2: Maps of skewness and kurtosis of standardized DJF 300 hPa relative vorticity
anomalies from the 20CRv2c dataset, 1851-2014.
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synoptic scale weather patterns, but the kurtosis map is much less structured. As the map in Figure

2.3 is of the near-surface zonal wind, it makes sense that natural geographical features have an effect

on the spatial distribution of the higher moments. For example, the topography of the Himalayan

mountain system appears to perturb both the skewness and kurtosis fields. Positive skewness values

near the equator are in a region dominated by the Hadley cell, a major tropospheric feature of the

general atmospheric circulation, where the zonal wind is typically easterly. Finally, the magnitude

of the skewness appears larger over the ocean than land.

Given by Figure 2.4, the skewness of the 950 hPa meridional wind is highly dependent on the

hemisphere. In boreal winter (DJF), the northern hemisphere typically shows positively skewed

values, while the southern hemisphere indicates generally negative values. This corresponds with

the general equator-to-pole circulation. The kurtosis is generally positive near the equator, but

becomes less positive towards the poles save for pockets of positive kurtosis over Antarctica. Perron

and Sura (2013) suggests that such a pattern of 950 hPa meridional wind skewness and kurtosis

may be indicative of a non-Gaussian poleward energy transport.

2.6 500 hPa vertical velocity

The vertical component of the wind velocity is investigated here in pressure coordinates. The

vertical component of the wind describes the upward and downward motion of the wind, which is

related to convection, instability and orographic lift. The vertical velocity at 500 hPa is chosen as

it is the level of non-divergence, where the vertical velocity is typically at a maximum (Perron and

Sura (2013)).

In Figure 2.5, a much different picture of non-Gaussianity emerges compared to the prior vari-

ables. The near-zero or negative skewness located over most of the globe is seemingly indicative of

a general instability of the atmosphere. Few regions outside of Antarctica and the polar northern

hemisphere feature positive kurtosis. Meanwhile, the kurtosis of the vertical velocity is positive

everywhere, with more neutral values present in regions of storm tracks and a small equatorial

band. Perron and Sura (2013) explains the skewness and kurtosis patterns of the vertical velocity

by suggesting that vertical motion is typically restricted to either a “common stable mode” with

stable, slowly descending air and a “rarer unstable mode” where air trapped in a convective burst

is propelled up in the atmosphere at faster speed.
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Figure 2.3: Maps of skewness and kurtosis of standardized DJF 950 hPa zonal wind anoma-
lies from the 20CRv2c dataset, 1851-2014.
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Figure 2.4: Maps of skewness and kurtosis of standardized DJF 950 hPa meridional wind
anomalies from the 20CRv2c dataset, 1851-2014.
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Figure 2.5: Maps of skewness and kurtosis of standardized DJF 500 hPa vertical velocity
anomalies from the 20CRv2c dataset, 1851-2014.
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CHAPTER 3

SOME STOCHASTIC CLIMATE THEORY

Motivated by Hasselmann’s climate model, the correlated additive and multiplicative (CAM) noise

stochastic climate model produces both the red climate spectrum and non-Gaussian statistics seen

in daily atmospheric data sets.

3.1 Physical motivation

Stochastic modeling of the climate system is based on the assumption that distinct physical

processes are represented by distinct spatiotemporal scales. However, the intrinsic non-linearity of

the climate system is due to the spatiotemporal interactions of each scale with other scales – any

strict separation of time scales is physically impossible. Franzke et al. (2015) highlights the wave

tank experiment of Williams et al. (2003), which shows that a two-layer stratified fluid in a rotating

annulus can experience Rossby wave regime transitions by the influence of inertia-gravity waves.

Subsequent numerical modeling by Williams et al. (2004) showed that the large scale wave regime

transitions in an quasi-geostrophic numerical model were only achieved when the inertia-gravity

waves were included as a stochastic forcing.

Franzke et al. (2015) points out that for many applications, predictable phenomena of practical

interest are confined to a few larger scales1, while the small scale processes (including but not

limited to turbulence) often remain unpredictable. This seems an appropriate characterization

whether considering the problem of resolving turbulence in numerical models or the evolution of

inertial-gravity waves in a rotating annulus. As such, representation of small scale processes in

models typically involves some kind of parameterization. Ultimately, the time scale separation

employed in stochastic climate models is a useful approximation to the non-linear interactions of

the true climate system.
1Generally, the larger and slower scales, such as the climate or regime behavior, are more easily resolved and

evolved in models. Franzke et al. (2015) points out that numerical models spend a majority of their computational
time resolving the faster, smaller scales.
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Before moving to discuss particular stochastic climate models and their statistics, some mathe-

matical preliminaries of the stochastic dynamics are discussed.

3.2 The stochastic differential equation

The stochastic dynamics of any scalar value, x, may be described by the stochastic differential

equation (SDE)
dx

dt
= A(x) +B(x) η(t) , (3.1)

whereA(x) represents a slow, deterministic process and the product ofB(x) and η(t) is the stochastic

approximation to a fast phenomenon2. η(t) is defined as the delta-correlated white noise for all time,

t. For the independent, Gaussian process η(t),

〈η(t)〉 = 0

〈η(t)η(t′)〉 = δ(t− t′) ,

where the time average is denoted as 〈...〉 and δ is the Dirac delta-function. As η(t) is not a con-

tinuous function, Equation (3.1) cannot be differentiated. To evaluate Equation (3.1) continuously,

one must first integrate.

x(t)− x(t0) =

∫ t

t0

A[x(t′)] dt′ +

∫ t

t0

B[x(t′)]η(t′) dt′ . (3.2)

However, η(t) is still a discontinuous function, even though the white noise is defined at each time

step. To help with the integration, η(t) can be replaced by a continuous integral by invoking the

Wiener process: the time derivative of the white noise (Evans (2013)). Doing so gives

x(t)− x(t0) =

∫ t

t0

A[x(t′)] dt′ +

∫ t

t0

B[x(t′)] dW (t′) , (3.3)

where the Wiener process is defined as

W (t) =

∫ t

0
η(t′) dt′ , (3.4)

or, defined only in the integral itself

dW (t) = η(t) dt . (3.5)
2See Sornette (2006), Sura and Sardeshmukh (2008), Sardeshmukh and Sura (2009), Sura (2011) for a similar

development.
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To distinguish between stochastic and deterministic calculus, the scaling of the time increment,

dt, is compared with the Wiener process. By substituting Equation (3.4) and simplifying, the

incrementation of the Wiener process may be written as

dW (t) = W (t+ dt)−W (t)

=

∫ t+dt

t
η(t′) dt′ .

(3.6)

Here, Sura (2011) advocates that using the definition of dW (t) can be used to find the auto-

covariance of two time values, t and s, over a time step, dt. Using Equation (3.6), the auto-covariance

of the Wiener process, given as 〈dW (t)dW (s)〉, may be expressed as

〈dW (t)dW (s)〉 = 〈
∫ t+dt

t

∫ s+dt

s
η(t′) η(s′) dt′ ds′〉

=

∫ t+dt

t

∫ s+dt

s
〈η(t′) η(s′)〉 dt′ ds′

=

∫ t+dt

t

∫ s+dt

s
δ(t′ − s′) dt′ ds′

= dt δt,s .

(3.7)

δt,s is defined here as the Kronecker delta, where δt,s = 0 when t 6= s and δt,s = 1 if t = s. In the

instance that δt,s = 1, Equation (3.7) simplifies to

〈dW (t)2〉 = dt . (3.8)

This expression states that the standard deviation of the Wiener process (the white noise term of the

stochastic approximation to fast phenomena) scales with
√
dt. This scaling is a crucial difference

from deterministic calculus, which scales by dt. Furthermore, a calculation by Gardiner (2009)

shows that Equation (3.8) is valid even without the ensemble average. This means that

dW (t)2 = dt , (3.9)

which is an expression that will be used in subsequent calculations.

As the properties of the stochastic differential equation of a scalar value, x, have been considered,

let us now consider the stochastic differential equation of a function of x, such as f(x). Following

Gardiner (2009), one may use a Taylor expansion in dW (t) to express the derivative of f(x),

assuming that f(x) is twice differentiable (Øksendal (2007)). This yields

df(x) = f(x+ dx)− f(x)

= f ′(x) dx+
1

2
f ′′(x)dx2 + ...+

1

n
fn(x)dxn .
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Taking the stochastic differential equation seen in Equation (3.1) and substituting the definition of

the Wiener process used in Equation (3.5) gives

dx = A(x) dt+B(x) dW (t) . (3.10)

Substitution of this expression into Equation (3.2) for dx creates

df(x) = f ′(x) [A(x) dt+B(x) dW (t)] +
1

2
f ′′(x)B(x)2 dW (t)2 , (3.11)

where dW (t)2 = dt and the terms of order two or greater are neglected. As the scaling of the Wiener

process is equivalent to the scaling of the deterministic calculus (see Equation (3.8)), Equation

((3.11) may be rearranged to obtain Itô’s formula, written as

df(x) =

[
f ′(x)A(x) +

1

2
f ′′(x)B(x)2

]
dt+ f ′(x)B(x) dW (t) , (3.12)

which illustrates that changing variables in stochastic calculus is not the same as doing so in deter-

ministic calculus (Gardiner (2009)).

3.3 The Fokker-Planck equation

After analyzing the stochastic differential equation of an arbitrary function, f(x), and achieving

Itô’s formula, the ultimate goal is to obtain an expression that is able to describe the evolution of

the function f(x) with time. This expression is called the Fokker-Planck equation, which describes

the time evolution of the probability density function of a stochastic variable under deterministic

(non-random) and diffusive effects (Risken (1996), Øksendal (2007), Gardiner (2009)).

To invoke the Fokker-Planck equation, consider the evolution in time of an arbitrary function,

denoted as 〈df(x)〉dt , where 〈...〉 represents the ensemble average. Gardiner (2009) suggests substituting

Itô’s formula in place of the time derivative of f(x) so that the time evolution of a stochastic function

may be represented as

〈df(x)〉
dt

=
d

dt
〈f(x)〉

= 〈∂f(x)

∂x
A(x) +

1

2

∂2f(x)

∂x2
B(x)2〉 .

(3.13)

Upon the realization that the scalar value x has a probability density function, p(x), Equation (3.13)

may be re-written as
d

dt
〈f(x)〉 =

∫ ∞
−∞

∂p(x)

∂t
f(x) dx , (3.14)
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since the expected value (mean) of an arbitrary variable may be defined as

〈x〉 =

∫ ∞
−∞

x p(x) dx . (3.15)

Substituting in the value of f(x) from Equation (3.13) into Equation (3.14) results in∫ ∞
−∞

∂p(x)

∂t
f(x) dx =

∫ ∞
−∞

[
∂f(x)

∂x
A(x) +

1

2

∂2f(x)

∂x2
B(x)2

]
p(x) dx . (3.16)

After integrating by parts, omitting surface terms and removing the arbitrary function f(x)

from both sides of the equation (see Gardiner (2009) for more details), the one-dimensional Itô

Fokker-Planck equation is achieved:

∂p(x, t)

∂t
= − ∂

∂x
A(x) p(x, t) +

1

2

∂2

∂x
B(x)2 p(x, t) . (3.17)

More generally, Sardeshmukh and Sura (2009) write that the n-dimensional Fokker-Planck equation

of a stochastic variable, ~x(t), is

∂p(~x, t)

∂t
= −

∑
i

∂

∂xi

Ai + α̂
∑
j,k

(
∂

∂xj
Bik

)
Bjk

 p(~x, t)
+

1

2

∑
i,j

∂2

∂xi∂xj

(
BBT

)
ij
p(~x, t) ,

(3.18)

where p(~x, t) is the probability density function.

Gardiner (2009) writes that the phenomena described by the Fokker-Planck equation may be

thought of as a kind of “diffusion process,” as the equation itself is composed of drift and diffusion

terms. In the general sense, Ai represents the deterministic term, also referred to as the deterministic

drift, while the second term in the square brackets is designated as the noise-induced drift. The

last term in Equation (3.18) is the contribution of noise to the diffusion of the probability density

(Sura (2011)). However, the most important distinction to be made in the Fokker-Planck equation

is that the value of α̂ determines the appropriate application of the Fokker-Planck equation to a

given physical system. Though there are different values that α̂ may take, two are valued for their

ability to approximate different kinds of physical systems3. These two α̂ values also correspond to

different types of stochastic calculus that are suited for use in either discrete or continuous cases.
3Øksendal (2007) provides a thorough discussion of the two “useful” types of stochastic calculus.
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In the case that α̂ = 1
2 , the calculus is Stratonovich, while if α̂ = 0, Itô calculus is used and

the noise-induced drift is zero. Stratonovich calculus is suited for use in continuous systems (such

as the atmosphere-ocean) where variables with small time correlations may be approximated as

Gaussian white noise. Systems that are approximated from discrete data will instead benefit from

Itô calculus, where the total drift is the combination of the deterministic and the noise-diffusive drift

terms (Sura (2011)). For example, Itô calculus is used in Equation (3.17), where A(x) is defined

as the combination of the deterministic and noise-diffusive drift terms, also known as the effective

drift.

3.4 Stochastic dynamics of climate variability

After briefly reviewing some principles of stochastic calculus and dynamics, the task is now to

assemble equations that describe the stochastic approach to climate variability. Here, an assumption

is made that climate dynamics may be divided into two different time scales. As such, the slow,

deterministic process (climate) and the stochastic approximation of the fast phenomena (weather)

may be described with a stochastic differential equation. The fast term is approximated using

Gaussian white noise, used to ensure that the fast process decorrelates more rapidly than the slow

process. The mathematical framework of the time scale decomposition was previously formulated

in Equation (3.1), written again following Sura (2011) as

d~x

dt
= ~A(~x, t) + B(~x, t) ~η(t) , (3.19)

where vector ~A(~x) represents a slow, deterministic process and the product of the matrix B(~x) and

~η(t) is the stochastic approximation to a fast phenomenon. In the following equations, the stochastic

approximation of the fast phenomena will be represented as B(~x), per the notation used by Sura

(2011) and the definition B(~x) = B(~x) ~η(t) where the time dependencies of ~A and B will be implied.

As such, performing a Reynolds decomposition of ~x into its mean, 〈~x 〉, and anomaly, ~x ′, permits a

Taylor’s expansion in linearizing Equation (3.19) about the mean. Doing so yields

d(〈~x 〉+ ~x ′)

dt
= ~A(〈~x 〉) +

∂ ~A(〈~x 〉)
∂〈~x 〉

∣∣∣
~x=〈~x 〉

(~x− 〈~x 〉) + B(〈~x 〉) +
∂B(〈~x 〉)
∂〈~x 〉

∣∣∣
~x=〈~x 〉

(~x− 〈~x 〉) +R (3.20)

where a residual, R, is included to account for omitted terms, specifically the non-linear terms of

the Taylor expansion. In Equation (3.20), the respective first-order partial derivatives of ~A and B
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are Jacobian matrices, which will be written as J ~A and JB. Simplifying Equation (3.20) yields the

time tendency of the anomaly, ~x ′, written as

d(~x ′)

dt
= J ~A(〈~x 〉)(~x ′) + B(〈~x 〉) + JB(〈~x 〉)(~x ′) +R . (3.21)

In this instance, it is assumed that the time tendency and the deterministic process effectively

cancel at the mean. Moreover, the partial derivative of the multiplicative noise term with respect

to the mean, JB(〈~x 〉), is not guaranteed to be zero (Sura (2011)). This is due to the linearization,

where the non-linear higher-order terms were neglected. Therefore, an additional term representing

a corrective mean forcing is needed to ensure that the mean of the anomaly is zero, which results in

d(~x ′)

dt
= J ~A(〈~x 〉)(~x ′) + B(〈~x 〉) + JB(〈~x 〉)(~x ′)− 〈JB(〈~x 〉)(~x ′)〉+R . (3.22)

Finally, Equation (3.22) is rewritten into the notation used by Sura (2011), which makes use of

Einstein’s summation convention while combining terms into tensors and omitting the prime nota-

tion. This type of notation is used in the quantitative stochastic models put forth by Hasselmann

(1976) and Sardeshmukh and Sura (2009), both of which are described in the following sections.

This rewriting yields
dxi
dt

= Aijxj + (Gip + Eijpxj) ηp −Di + ri . (3.23)

The first term on the right hand side of Equation (3.23) is the representation of the linear, deter-

ministic Jacobian matrix of Equation (3.22), while Gipηp and Eijpxjηp denote the additive noise

and multiplicative noise terms, respectively. Di is the corrective mean noise forcing vector inserted

into Equation (3.22), shown by Sardeshmukh and Sura (2009) to be equal to −1
2EijpGjp. As writ-

ten, Equation (3.23) is a foundation for the application of stochastic climate models. Note that

from this equation, both Gaussian and non-Gaussian statistics can be represented. In the case that

the multiplicative noise is equal to zero (Eijp = 0), only the additive noise terms survive. Such a

model would only be able to capture the Gaussian statistics of a climate system (Gardiner (2009),

Sura (2011)). This type of approach is seen in Hasselmann’s quantitative model. Conversely, the

system where the multiplicative noise is not zero (Eijp 6= 0) will feature non-Gaussian statistics

(Sardeshmukh and Sura (2009), Sura (2011)). As such, Hasselmann’s quantitative model will be

examined first before describing the multiplicative noise system in detail. Though Hasselmann’s

model is only able to produce Gaussian statistics, it is nonetheless the foundation for achieving and

understanding the multiplicative noise model.
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3.5 Hasselmann’s climate model

The major threads of current stochastic climate research may be traced back to Hasselmann

(1976), where the dynamics of the climate system are expressed as contributions from both a rapidly

decorrelating process and a slowly decorrelating process. Consider the reduction of Equation (3.23)

to that of a one-dimensional expression where the multiplicative noise term, Eijp, is equal to 0, only

the additive noise term persists. Further, after removing the tensor notation and residuals from

Equation (3.23), the result is Hasselmann’s quantitative model for climate variability

dx

dt
= −λx+ ση , (3.24)

where, using the notation of Sura (2011), a positive damping coefficient, λ, has been substituted

for Aij and the constant amplitude of the Gaussian white noise, σ, is exchanged for Gip. η is the

Gaussian white noise that represents rapidly varying weather fluctuations. The time average of the

Gaussian white noise is denoted by 〈. . . 〉 and is equal to zero while 〈η(t)η(t′)〉 = δ(t − t′) for time

t and lag t′. This first-order autoregression model has been used to describe characteristics of SST

variability4 and it is also the familiar expression that describes Brownian motion5.

There are two particularly interesting results that may be obtained from Hasselmann’s climate

model. First, by calculating the autocorrelation function ρ(t′) for lag t′, one achieves

ρ(t′) =
〈x(t)x(t+ t′)〉

σ2
= e−λt , (3.25)

which reveals a red-noise (Brownian-noise) frequency spectrum, where lower frequencies have in-

creasingly larger intensities. In the climate system, this red-noise spectrum is analogous to the

damping of high frequency events by the low frequency components, which in turn creates the

slowly decorrelating response often seen in climate data (Sura (2011)).

Second, the stationary probability density function of Equation (3.24), p(x), is found by invoking

the Fokker-Planck equation, written as

d

dx
λxp(x) +

1

2

d2

dx2
σ2p(x) = 0 . (3.26)

By integrating away one derivative and assuming a solution of the form

p(x) = N exp (f(x))

4See Reynolds (1978) for an example.
5Gardiner (2009) contains an interesting history on the development of Brownian motion.
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where N is a constant, the solution of the second order ordinary differential equation is

p(x) =
1√

2π (σ2/2λ)
exp

[
− x2

2 (σ2/2λ)

]
, (3.27)

i.e., a probability density function of a Gaussian distribution, centered at zero with variance 〈x2〉 =

σ2/2λ (Sura (2011)). This Gaussian pdf, however, is at odds with the statistics observed in non-

Gaussian climate data (see Figure 1.1, Chapter 2 and Perron and Sura (2013)). Therefore, while

Hasselmann’s model is able to produce the now familiar red-noise climate spectrum, it is unable to

reconstruct the non-Gaussian statistics that are seen in climate variability. In addition, Sura (2011)

demonstrates that modifying the additive stochastic forcing to be non-Gaussian is not enough to

induce a non-Gaussian pdf response. To account for the non-Gaussian statistics that are seen in

observations, one must introduce multiplicative noise into the stochastic model.

3.6 Correlated additive and multiplicative noise model

To reproduce the non-Gaussian climate statistics observed in daily climate observations, Sura

and Sardeshmukh (2008) and Sardeshmukh and Sura (2009) supplemented the stochastic climate

model of Hasselmann (1976) with multiplicative noise. This process has been outlined previously

in Section 3.46, culminating in the formulation of Equation (3.23).

3.6.1 The CAM noise pdf

Consider again the one-dimensional case where the residual terms are neglected, (3.23) can be

expressed as a Stratonovich SDE7 given by

dx

dt
= Ax+ bη1 + (Ex+ g) η2 −

1

2
Eg . (3.28)

Here, the Stratonovich stochastic forcing is contained within the additive noise forcing terms, bη1

and gη2, and the multiplicative noise term, Exη2, where Sardeshmukh et al. (2015) remark that the

(Ex+ g) η2 is the CAM noise described in Sardeshmukh and Sura (2009). As before, the Gaussian

white-noise terms η1 and η2 are δ-correlated with a time average of zero.
6The derivation of the CAM noise model is described at length in the works of Sura and Sardeshmukh (2008),

Sardeshmukh and Sura (2009) and provided additional context in Sura (2011).
7Here the notation of Sardeshmukh and Sura (2009) and Sardeshmukh et al. (2015) is again used.
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Analogous to Hasselmann’s quantitative model, the multiplicative noise non-Gaussian SDE given

by Equation (3.28) also yields a red frequency spectrum and the stationary probability density

function, p(x), may again be achieved by invoking the Fokker-Planck equation:

p(x) =
1

N

[
(Ex+ g)2 + b2

]−(1+(1/E2))
exp

[
2g

E2b
arctan

(
Ex+ g

b

)]
. (3.29)

This pdf is designated the stochastically generated skewed (SGS) distribution. The notation in

Equation (3.29) is of Sardeshmukh et al. (2015), where the normalization constant, N , is provided

such that the pdf will integrate to one and is defined as

N =
2πν1/2 (2b)−(2ν+1) Γ(2ν + 1)

Γ(ν + 1− iq/2) Γ(ν + 1 + iq/2)
. (3.30)

For convenience, ν = 1/E2 and q = 2gν/b and Γ is the special gamma function which accepts a

complex argument.

3.6.2 Statistical moments

Statistical moments characterize the location, shape and symmetry of a probability density

function. Defined previously in Equation (1.2), the mean, or the first central moment, 〈x1〉, is

standardized here to be zero. The second central moment, 〈x2〉, or variance, is a measure of the

spread of the probability distribution around the mean. Though variance is not a property of

Gaussianity per se, it is useful in providing a picture of the range of data. The standard deviation,

σ, is the square root of the variance.

Skewness, or the third moment, 〈x3〉, describes the symmetry of the probability distribution.

Negative skewness corresponds to a larger left tail of the probability distribution than a pdf with

the same mean and variance, while positive skewness coincides with a larger tail on the right side

of the pdf, compared to a pdf with the same mean and variance. The fourth moment, 〈x4〉, is

called kurtosis and is a measure of the “peakedness” of the pdf or the amount of the probability

distribution located in the tails. Positive kurtosis corresponds to a “taller” peak of the pdf around

the mean as well as a larger amount of data in the tails of the pdf. Conversely, negative kurtosis is

seen in pdfs that have less data in the tails and a “broader” cluster of the probability distribution

located about the mean. Negative and positive kurtosis can also be defined in relation to the

Gaussian (mesokurtic) distribution. The “broader” pdf exhibited by negative kurtosis may be called

platykurtic, where less data is found in the tails and near the mean. Likewise, the taller pdf obtained
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Figure 3.1: Example SGS pdf (red) with variance and skewness of one, kurtosis of five.
The standard normal distribution (gray) is provided for reference.

via positive kurtosis may be defined as leptokurtic, where the data is clustered around both the

mean and tails. Note that in order to compare values of skewness and kurtosis from different pdfs,

the moment’s value is normalized as described in Equation (1.3).

An example SGS distribution is shown in Figure 3.1, where the variance and skewness are unity

and the kurtosis is five. The SGS pdf in red is contrasted with the standard normal pdf in grey.

Here, the positive kurtosis of the SGS distribution is evident from the peakedness and heavy tails.

The positive skewness is also shown by the slight negative shift of the pdf peak along with the

elongated positive tail.

To produce an expression for the nth moment of the CAM noise model, one first obtains the

Fokker-Planck equation associated with the SDE given by Equation (3.28), then multiplies by xn−1

and integrates the resulting equation by parts over x (Sura and Sardeshmukh (2008), Sardeshmukh
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and Sura (2009)). Doing so yields the first four moments:

〈x〉 = µ = 0

〈x2〉 = σ2 =
g2 + b2

2− E2

〈x3〉 = skew =
2Eg

σ (1− E2)

〈x4〉 = kurt =
3

2

[
1− E2

1− (3/2)E2

]
skew2 +

[
3E2

1− (3/2)E2

]
.

(3.31)

From these higher moments, Sura and Sardeshmukh (2008) show that a unique link exists between

skewness and kurtosis. By solving for kurtosis as a function of skewness, a parabolic relationship is

obtained, given by the expression

kurt ≥
(

3

2

)
skew2 . (3.32)

In practice, an empirically estimated vertical offset must generally be applied to the right side of

Equation (3.32), giving

kurt ≥
(

3

2

)
skew2 − r . (3.33)

where r is a non-negative constant. This vertical offset is required to reconcile the small negative

bias that exists when the skewness-kurtosis relationship is applied to empirical observations. So far,

a general physical explanation for the skewness-kurtosis relationship and the slight negative bias

remains elusive.

Figure 3.2 shows the parabolic skewness-kurtosis relationship for daily wintertime (DJF) stan-

dardized 950 hPa zonal wind anomalies taken from the 20CRv2c dataset from 1947-2014. This

relationship is demonstrated as a two-dimensional histogram of skewness as a function of kurtosis,

where the bins represent the sum of the calculated skewness and kurtosis for the time series at

each of the 10512 grid points. The skewness-kurtosis constraint given in Equation (3.33) is shown

with the black parabola, where r = 0.972. The light gray parabolic curve represents the threshold

kurt = skew2−2, below which the kurtosis does not exist. This kurt = skew2−2 constraint is valid

for sample data drawn from any pdf (Wilkins (1944)).

It is apparent from Figure 3.2 that a well-defined bound of non-Gaussianity exists in the zonal

wind anomalies taken from the reanalysis data, as nearly all the points are contained within

the parabola described by Equation (3.32). Similar parabolic relationships also exist for other

atmospheric-oceanic quantities (see Sura and Sardeshmukh (2008), Sardeshmukh and Sura (2009),
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Figure 3.2: Scatterplot of kurtosis versus skewness showing standardized 950 hPa air
temperature anomalies (T ′) for wintertime (DJF) 20CRv2c data (1947-2014). The dark
solid parabola indicates the skewness-kurtosis relationship kurt ≥

(
3
2

)
skew2, where the

light solid parabola is kurt ≥
(
3
2

)
skew2 − 0.972. The dotted line represents the less

stringent kurt = skew2 − 2 constraint.
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Sura and Perron (2010) for more examples). Moreover, the addition of multiplicative noise to Has-

selmann’s stochastic climate model provided by Sura and Sardeshmukh (2008) appears to closely

represent the non-Gaussian statistics of atmosphere-ocean phenomena. Note that the vertical offset

r in Figure 3.2 has been determined empirically from the data.

Additionally, Sardeshmukh and Sura (2009) demonstrated that a stochastic climate model fea-

turing multiplicative noise will produce power law distributions in the tails of the pdf. Because of

this result, power law tails (and thus the probability of occurrence of extreme events) have been

hypothesized to have a relationship with non-Gaussian statistics.

3.6.3 Power law tails

The process of obtaining power-law tails from a stochastic climate model with multiplicative

noise was first formulated by Sardeshmukh and Sura (2009) and later outlined by Sura and Perron

(2010) and Sura (2011). One may assume that for a sufficiently large x and small noise amplitude,

the Fokker-Planck equation given in Sardeshmukh and Sura (2009) may be simplified to give, in the

notation of Sardeshmukh et al. (2015),

p±(x) ≈ 1

N
[Ex+ g]−2[1+(1/E2)] exp

(
± πg

E2b

)
, (3.34)

where the +/− sign corresponds to the respective positive/negative tail of the pdf.

From here, Sura (2011) shows that if one allows the probability density function, p(x), to assume

a power law distribution i.e., p(x) ∝ |x|−α, then the power law decay (as named by Sardeshmukh

et al. (2015)) requires

α = 2

[
1 +

(
1

E2

)]
. (3.35)

where α is the power law exponent.

Similarly, Sardeshmukh and Sura (2009) show that power law tails exist in the full solution of

the Fokker-Planck equation, where a solution to the stationary pdf is achieved by approximating

the probability density function as a power law. It should be noted that this analytical solution

provides the same value of α for both the negative and positive power law tails i.e., the slope of

the power law tails are symmetric about the full pdf. Symmetric power law slopes are not typically

seen in observations (West (2012)).
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From Equation (3.35), one would expect to see stronger power law tails when the multiplicative

noise forcing is weaker (and vice versa). In other words, pdfs with stronger power law tails corre-

spond to smaller values of α. Sura (2011) notes that the multiplicative noise is unable to approach

zero, as it violates the assumption that x must be large. Instead, when the multiplicative noise

approaches zero, the pdf simply becomes Gaussian.
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CHAPTER 4

THE STOCHASTICALLY GENERATED SKEWED
DISTRIBUTION

The one-dimensional pdf produced by the CAM noise stochastic model of the form given by Equation

(3.29) was first written as the stochastically generated skewed (SGS) distribution by Sardeshmukh

and Sura (2009). The work of Sardeshmukh et al. (2015) focused on the form and constraints of the

SGS distribution given in Equation (3.29) and provided a methodology to estimate SGS parameters.

4.1 Properties of the SGS distribution

For clarity, the SGS probability distribution function of Equation (3.29), obtained from the

CAM noise model of Sardeshmukh and Sura (2009) in the notation of Sardeshmukh et al. (2015),

may be written as

p(x) =
1

N

[
(Ex+ g)2 + b2

]−(1+(1/E2))
exp

[
2g

E2b
arctan

(
Ex+ g

b

)]
, (4.1)

where the normalization constant, N , was given previously in Equation (3.30) as

N =
2πν1/2 (2b)−(2ν+1) Γ(2ν + 1)

Γ(ν + 1− iq/2) Γ(ν + 1 + iq/2)
. (4.2)

Here ν = 1/E2, q = 2gν/b and Γ is the special gamma function. The SGS distribution parameters b

and g have units that correspond to the standardized anomaly x, while E is unitless (Sardeshmukh

et al. (2015)). Sardeshmukh et al. (2015) denotes the (Ex+ g) η2 as the CAM noise described in

Sardeshmukh and Sura (2009), where bη1 is the additive noise term.

The notation of Sardeshmukh et al. (2015) omits the damping term, λ, from the pdf which is

included in some previous formulations of the SGS distribution, namely by Sardeshmukh and Sura

(2009). The omission of the damping term does not affect the stationary SGS pdf, but it must be

reintroduced later in computing the SGS Markov process as it constrains the temporal evolution of

the time series. In practice, its omission merely reduces the number of SGS distribution parameters
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to three. Sardeshmukh and Sura (2009) and Sardeshmukh et al. (2015) also note that the SGS pdf

has a unique maximum at

xmax = − Eg

(1 + E2)
. (4.3)

The moments of the SGS distribution obtained in Equation (3.31) are given again here as

〈x〉 = µ = 0

〈x2〉 = σ2 =
g2 + b2

2− E2

〈x3〉 = skew =
2Eg

σ (1− E2)

〈x4〉 = kurt =
3

2

[
1− E2

1− (3/2)E2

]
skew2 +

[
3E2

1− (3/2)E2

]
.

(4.4)

The Gaussian distribution itself is a member of the SGS class in the limit where E → 0, which

corresponds to a skewness and kurtosis of zero. Sardeshmukh et al. (2015) provides an analytical

approximation of the SGS pdf in this “small-E” limit, which may be written as

p(x) =
1√
2π

exp

[
−x2

2
+
Sx

6

(
x2 − 3

)
+O

(
E2
)]

. (4.5)

Sardeshmukh et al. (2015) also point out that, in order for the kurtosis to exist, the parameter E

must be constrained as

E <

√
2

n− 1
=
√

2/3 , (4.6)

where n = 4 repesents the fourth moment. Sardeshmukh et al. (2015) also point out that E and b

are positive, while g can be either positive or negative, such that the sign of g is the same as that

of the skewness.

The power law behavior in the pdf tails described by Sardeshmukh and Sura (2009) may again

be examined when |Ex + g| � b (when the CAM noise is large), where again via Sardeshmukh et

al. (2015) the pdfs for the positive (p+) and negative (p−) tails can be expressed respectively as

p+(x) ≈ 1

N
exp
( πg
E2b

)
[Ex+ g]−2[1+(1/E2)]

p−(x) ≈ 1

N
exp

(
−πg
E2b

)
[Ex+ g]−2[1+(1/E2)] .

(4.7)

Here, the slope of the power law distribution, 2
[
1 +

(
1/E2

)]
, is symmetric with respect to the

positive and negative tails. Notably, Sardeshmukh et al. (2015) state that even after very long

integrations of a Markov model, the power law decay begins tailward of ten standard deviations.

The existence and symmetry of power law distributions in daily atmospheric data sets is a topic of

current research.
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4.2 Estimation of SGS parameters

The most straightforward means for calculating the parameters of the SGS distribution given the

explicit forms of the SGS moments in Equation (4.4) is a method of moments. Indeed, Sardeshmukh

et al. (2015) use a method of moments to estimate the parameters of the SGS distribution by

rearranging the variance, skewness and kurtosis equations of Equation (4.4) and solving for E, b

and g respectively. Parameter E is calculated first using values of skewness and kurtosis obtained

from a sample population. Parameters b and g may then be computed using E and the sample

variance and skewness:

E =

√
2

3

[
K − (3/2)S2

K − S2 + 2

]

b =

√√√√2σ2

[
1− E2

2
− (1− E2)2

8E2
S2

]

g = Sσ

(
1− E2

2E

)
.

(4.8)

The method of moments is a simple and computationally inexpensive means of estimating the

parameters of the SGS distribution. However, the E, b and g parameters of SGS distribution are

not the moments themselves e.g., like that of the Gaussian distribution. Using the method of

moments to estimate model parameters themselves derived from the moments can lead to biases

(Wilks (2006)). A more robust approach to estimating the parameters of the SGS distriburtion

would be to use maximum likelihood estimation, though the implementation of this method is left

to future research.

While it is straightforward to solve for the SGS parameters using the sample variance, skewness

and kurtosis, values of the sample moments do not always meet the skewness-kurtosis inequality of

Equation (3.32). Rewriting the skewness-kurtosis inequality in terms of Equation (4.4) gives

kurt =
3

2

[
1− E2

1− (3/2)E2

]
skew2 +

[
3E2

1− (3/2)E2

]
>

3

2
skew2 . (4.9)

Sura and Sardeshmukh (2008), Sardeshmukh and Sura (2009), Sardeshmukh et al. (2015) and

others typically admit a small vertical offset (r, see Section 3.6.2 for discussion) when representing

the skewness-kurtosis relationship in practice, but the method of moments has no such tolerance

built in. As both terms in brackets left of the inequality cannot be less than zero, some observations

tend to fall outside the inequality threshold. Most acutely, time series with negative kurtosis (of
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which there are a significant amount in time series of daily averaged atmospheric data) are not

able to be fit by the method of moments directly to an SGS distribution without violating the

skewness-kurtosis relationship.

Sardeshmukh et al. (2015) also state that in order for E and g to be positive, another constraint

must be applied to the estimate of E such that

E >

√
ε− 1

ε
, (4.10)

where ε =
√

1 + (S2/4). Combining this constraint on E with Equation (4.6) yields√
ε− 1

ε
< E <

√
2/3 . (4.11)

Equation (4.11) may be used to find the maximum magnitude of the skewness that can be repre-

sented by the SGS distribution while the kurtosis exists. In setting the lower and upper domain

constraints of E equal to each other and solving for the skewness, the maximum magnitude of the

skewness, Smax, is found to be
√

32 ≈ 5.65685. Note that, similar to the skewness-kurtosis con-

straint of Equation (4.9), the skewness magnitude calculated from daily reanalysis data does not

always fall below this bound.

To satisfy the model constraints imposed on fitting an SGS distribution to sample time series,

Sardeshmukh et al. (2015) recommend that if the calculated value of E fails to meet the ε-constraint

of Equation (4.10), the value of kurtosis should be increased and then used to recalculate E in

Equation (4.8). This correction applied to the value of sample kurtosis is repeated until E satisfies

Equation (4.10), at which point b and g may also be computed. Adjusting the kurtosis in this fashion

deteriorates the fit of the SGS distribution with respect to the observations, but small changes in

fourth moment have the smallest impact on the overall shape of the distribution.

As such, there are three ways that the SGS model constraints may be violated (and the calcu-

lation of parameter E is affected) when using the method of moments to fit an SGS distribution

from sample data:

1. The magnitude of the sample skewness is greater than
√

32, i.e., |skew| >
√

32

2. E < 0, such that the ε-constraint is unmet
3. E >

√
2/3, such that the kurtosis does not exist
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However, rather than modifying the values of the skewness or increasing kurtosis for the purposes

of calculating the SGS parameters as in Sardeshmukh et al. (2015), a value of E is instead assigned

directly and equivalently that meets the above constraints. Namely:

• If the sample skewness is larger than
√

32, E is set equal to
√

2/3, the maximum model value
of E allowed when the kurtosis exists
• If E < 0, the value of E is then set to the minimum value allowed by the ε-constraint of

Equation (4.10), itself a function of the sample skewness
• If the value of E calculated is larger than

√
2/3, E is simply set to

√
2/3

The task of Chapter 6 is to show that the SGS parameters estimated by the method of moments

ultimately produce a satisfactory SGS distribution, in spite of some constraint violations, that is

representative of daily-averaged atmospheric reanalysis data.

4.3 The SGS Markov process

Sardeshmukh et al. (2015) write the CAM noise Markov process model, first introduced by

Sardeshmukh and Sura (2009), capable of creating synthetic time series of SGS distributions, as

dx = −
[(

1 +
1

2
E2

)
x+

1

2
Eg

]
λ dt+ [bη1 + (Ex+ g) η2]

√
λ dt . (4.12)

New time series values may be obtained by iterating the model x(t) by an increment dx. Again,

η1 and η2 are delta correlated Gaussian white-noise terms with zero mean and unit variance. λ is

equal to 1/τc where τc is the decorrelation timescale1, calculated by estimating the autocorrelation

function of the observations which informed the SGS distribution at increasing lag times, which

serves as a time damping and standardization.

By estimating SGS parameters E, b and g, one can numerically integrate Equation (4.12) using

a stochastic solver. This process is undertaken by the SGSDist.jl Julia package and described in

Chapter 5.

1The decorrelation timescale is the time lag at which the time series is no longer correlated with itself, where the
autocorrelation function ρ(τ) = e−λτ .
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CHAPTER 5

THE SGSDIST.JL PACKAGE

A Julia package, SGSDist.jl, has been developed to make the creation, estimation and evaluation

of SGS distributions efficient and effective to use. A package such as SGSDist.jl is needed in order

to satisfy, with computational efficiency:

• Estimation of distribution parameters E, b and g
• Calculation of the SGS pdf, CDF and other statistical quantities for arrays of random variables
• Drawing of random numbers from an SGS distribution
• Creation of synthetic time series with statistics informed from a particular SGS distribution

This package is fundamental to the results of Chapter 6, where it is used extensively to evaluate

the non-Gaussianity of 20CRv2c atmospheric variables and construct statistical significance tests.

SGSDist.jl has been publicly released under the MIT license. The source code can be viewed

at the package GitHub page at https://github.com/brwst/SGSDist.jl. More discussion and

examples on the functionality of the SGSDist.jlmodule may be found in the package documentation

located at https://brwst.github.io/SGSDist.jl.

5.1 Installation

The Julia programming language is a dynamically-typed language with similar syntax to Python

with the performance of Fortran or C. It is developed for use as a scientific programming language,

aiming to become an open-source alternative to MATLAB or Mathematica. More information on

Julia, including how to download and run it, can be found in Bezanson et al. (2017) and at the

project’s documentation page, https://docs.julialang.org/.

Assuming a working Julia installation, one may install the SGSDist.jl package by issuing the

following at the Julia REPL1 prompt:

julia> using Pkg; Pkg.add("SGSDist.jl")

1The Julia read-eval-print-loop interactive environment.
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or, with the Julia package manager,

(v1.3) pkg> add SGSDist.jl

One may then load the SGSDist.jl package with:

julia> using SGSDist

The rest of the chapter is devoted to describing a basic analysis workflow using the SGSDist.jl

package. For brevity, REPL spacing is condensed and command output is sometimes truncated and

replaced with ellipsis.

5.2 Creating an SGS distribution

After installing SGSDist.jl, using the package is straightforward. Here, as an example, one

may create an SGS distribution with the same parameters as the ideal SGS distribution discussed

in Sardeshmukh et al. (2015). This distribution is fit using the method of moments fit() function

with parameters of unit variance and skewness but a kurtosis of 5.

julia> using SGSDist

julia> d = fit(SGS, 1.0, 1.0, 5.0)

SGS{Float64}(E=0.6236095644623235, b=1.1709106481844573, g=0.48997894350611143)

Here, d is the SGS distribution that has been fitted to the moments specified with parameters E,

g and b. As mentioned in Section 4.2, the method of moments sometimes requires the value of

parameter E to be artificially set in order to satisfy the SGS model constraints. If this occurs, a

warning will be displayed indicating the specific constraint violation and action taken.

5.3 Fitting an SGS distribution from data

An SGS distribution may be also be fit from an array of data. For example, one may use the

method of moments described in Section 4.2 to fit a sample reanalysis time series of standardized

temperature anomalies, provided by the function air(), to an SGS distribution by issuing:

julia> d = fit(SGS, air())

SGS{Float64}(E=0.36623331624359673, b=0.7133796999284913, g=-1.1648873051087967)
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In this fashion, a multidimensional array of SGS distributions can be produced by applying the

method of moments to time series of global reanalysis datasets.

The first four moments of the SGS distribution, written in Equation (4.4), may be calculated

from a prescribed SGS distribution.

julia> mean(d)

0.0

julia> var(d)

0.9999999312924792

julia> skewness(d)

-0.9854112036580926

julia> kurtosis(d)

2.082561683550699

This output serves as a reminder that any input time series to be fitted to an SGS distribution must

be composed of standardized anomalies i.e., mean of zero and unit variance.

5.4 Calculating the SGS pdf

One may calculate the SGS pdf of the form specified in Equation (3.29) for a single variable

or an array of variables. Using the SGS distribution d that was fit from the sample temperature

anomalies above, one may compute the pdf by issuing:

julia> pdf(d, 0.4)

0.45253005501315047

By loading the StatsPlots.jl package, one may plot the estimated SGS pdf and compare it to a

step histogram of the observations. This output is shown in Figure 5.1.

julia> using StatsPlots

julia> x = collect(-5.0:0.1:5.0);

julia> plot(x, pdf.(d, x), label="SGS pdf of air()", xlabel="T", ylabel="p(T)")

julia> stephist!(air(), norm=:pdf, label="air()")
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Figure 5.1: Plot of the example air temperature SGS pdf, showing the SGS pdf (σ2 = 1,
skew = 1, kurt = 5) (blue) in comparison with the step histogram of the sample air
temperature data (red).

Note that the SGS pdf() function will compute the “small E” pdf approximation for E < 0.08.

This value of was chosen based on results from testing the stability of the pdf at low-E values. As

such, the convergence of the SGS pdf to the Gaussian distribution when E → 0 is reflected in Figure

5.2, which may be produced via:

julia> using Distributions # needed for Normal()

julia> d = SGS(0.05, 0.9, -1.11) # a "small-E" SGS distribution

SGS{Float64}(E=0.05, b=0.9, g=-1.11)

julia> x = collect(-5.0:0.1:5.0)

julia> plot(x, pdf.(d, x), label="SGS", xlabel="x", ylabel="p(x)")

julia> plot!(x, pdf.(Normal(), x), label="Std. Norm.")

5.5 Calculating the SGS CDF

While an analytical form of the SGS cumulative distribution function (CDF) has not yet been

derived, the CDF of a particular SGS distribution may be approximated by numerical integration.
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Figure 5.2: Plot of the "small E" SGS pdf, showing the SGS pdf (blue) in comparison with
the standard normal pdf (red) when E → 0.

Here, an adaptive one-dimensional Gaussian quadrature scheme is implemented using the Julia

QuadGK package2, where the SGS pdf is integrated from -30 standard deviations to the desired upper

bound, x. While the QuadGK package has support for integrating over the domain (−∞,∞), a lower

bound of -Inf occasionally produced numerical instabilities in some near-Gaussian distributions.

The CDF of the example SGS distribution d is shown in Figure 5.3 and can be computed by

simply issuing cdf(d, x):

julia> x = collect(-5.0:0.1:5.0);

julia> plot(x, cdf.(d, x), label="CDF of air()", xlabel="T", ylabel="F(T)")

5.6 Random number generation

A random number or an array of random numbers may be drawn from an SGS distribution d

by invoking rand().
2The source code and links to the documentation for the QuadGK package are located at https://github.com/

JuliaMath/QuadGK.jl.
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Figure 5.3: Plot of the SGS CDF (blue) obtained by estimating the SGS distribution from
example air temperature data.

julia> rand(d, 3)

3-element Array{Float64,1}:

-0.6658576564565255

-1.8058720924121987

0.08814146377788976

This is achieved through a inverse transform sampling method, which maps uniform random number

generation to a non-uniform random number. Essentially, this method relies on the fact that the

CDF of the non-uniform distribution (here the SGS distribution) is always uniform and bounded on

[0, 1]. Conveniently, this is also the domain of the uniform random number generator. Therefore, by

inverting the CDF of the SGS distribution and applying a random variate generated by the uniform

random number generator, one obtains an SGS random variate that is distributed with respect

to the CDF of the SGS distribution. See Wilks (2006) for more discussion on inverse transform

sampling.
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Figure 5.4: Plot of the CAM1D Markov process time series with default arguments (dt=1/24,
lambda=1), where the statistics of the time series are informed from an SGS distribution
with σ2 = 1, skew = 1, kurt = 5.

5.7 Markov processes

One may create a time series via Markov process that represents the statistics of a given SGS

distribution. To do so, one must first specify the candidate SGS distribution. Here, a sample SGS

distribution is again created with a variance and skewness of 1 and a kurtosis of 5:

julia> d = fit(SGS, 1, 1, 5)

SGS{Float64}(E=0.6236095644623235, b=1.1709106481844573, g=0.48997894350611143)

The one-dimensional correlated additive and multiplicative (CAM) noise model described in Sardesh-

mukh and Sura (2009) and written in Equation (4.12) can be used to produce a Markov process

time series with the statistics of the SGS distribution d by invoking the CAM1D() function.

julia> n = 100000; # length of time series

julia> plot(CAM1D(d, n), label="T", ylabel="T")

45



0 2000 4000 6000 8000

-7.5

-5.0

-2.5

0.0

2.5

t

T
'

T'

Figure 5.5: Plot of the CAM1D Markov process time series with dt=1/12, lambda=0.5 and
a seed provided to the random number generator. The statistics of the time series are
informed from an SGS distribution with σ2 = 1, skew = 1, kurt = 5.

The Markov process detailed in Equation (4.12) is implemented by numerically iterating a stochastic

differential equation solver using Heun’s method.3 By default, the CAM1D() function assumes an

hourly timestep argument (dt=1/24) and a damping factor of 1.0.

One may specify a different value for the time step or damping term. Moreover, a seed may be

assigned in order to reproduce a time series over subsequent runs.

julia> plot(CAM1D(d, n, dt=1/12, lambda=0.5, seed=42), label="T", ylabel="T")

Plotting a step histogram of the generated time series in conjunction with the fitted SGS pdf (here

in Figure 5.6) allows an assessment of the Markov process solver with respect to the distribution

statistics.

julia> sol = CAM1D(d, n, dt=1/12, lambda=0.5, seed=42);

julia> T = collect(map(x -> x[1], sol.u));

3This is achieved by the SGSDist.jl package in two ways. By default, the EulerHeun() algorithm is invoked from
the DifferentialEquations Julia package, but a fourth-order Runge-Kutta method has also been implemented for
testing purposes.
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Figure 5.6: Step histogram (blue) of the previous CAM1D Markov process time series with
dt=1/12, lambda=0.5 along with the pdf (red) of the SGS distribution used to produce
the Markov process time series.

julia> plot(x, pdf.(d, x), label="SGS pdf", legend=:topleft, xlabel="T", ylabel="p(T)")

julia> stephist!(T, norm=:pdf, label="Markov")

In addition to the CAM noise model, it is also possible to create a Markov process time series

using the Hasselmann climate model, discussed in 3.5 and described in Hasselmann (1976). The

Hasselmann Markov process is an AR(1) process which produces a time series that is normally

distributed.

julia> n = 1000; # length of time series

julia> plot(Hasselmann1D(n))

As in the case of the CAM noise model, one may also specify the time step, damping terms and the

seed used for the random number generation.
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Figure 5.7: Plot of the Hasselmann1D Markov process time series with default arguments
(dt=1/24, lambda=1), where the statistics of the time series are informed from a standard
normal distribution.
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CHAPTER 6

STATISTICAL EVALUATION OF THE SGS
DISTRIBUTION

This chapter assesses whether the SGS distribution can plausibly represent the empirical distribu-

tions of atmospheric variables from the 20CRv2c dataset. Here, persistent wintertime (DJF) stan-

dardized anomalies from 1947-2014, referred to here as the “modern era” of the 20CRv2c dataset,

are examined to establish the statistical test methodology and to provide a baseline for further

comparisons in Chapter 7. Chapter 8 will investigate DJF standardized anomalies from 1880-1947

(the “historical era”) and draw comparisons with the modern era.

6.1 Fitting an SGS distribution to a time series

The methodology for evaluating the validity of the SGS distribution using reanalysis data is

demonstrated first in the one-dimensional case by selecting two time series of 20CRv2c 950 hPa air

temperature anomalies, one located in a region of significant near-Gaussianity, the other in a region

of non-Gaussianity. Figure 6.1 provides a global view of 1947-2014 DJF skewness and kurtosis

obtained from the 20CRv2c air temperature anomalies, from which the two points are selected.

Point A, located east of Hawaii (referred to hereafter as East Hawaii) at 20◦N, 138◦W, is in

a region of near-Gaussianity due to the near-zero magnitudes of skewness and kurtosis. Point B,

located near Vancouver, British Columbia (referred to hereafter as Vancouver), is a non-Gaussian

time series, located at 50◦N, 124◦W in a region of negative skewness and positive kurtosis. An SGS

distribution is fitted to both standardized time series by using the method of moments described

in Section 4.2 and the procedure outlined in Section 5.2. Table 6.1 describes the point locations,

statistics and fitted SGS distribution parameters of the two locations being tested. Note that East

Hawaii has a small value of E, which corresponds closely to the Gaussian distribution as discussed

in Section 4.1 where E → 0 as the SGS pdf converges to the Gaussian distribution. East Hawaii

also has a negative value of g, corresponding to the negative value of skewness at that location.
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Figure 6.1: Maps of skewness and kurtosis of standardized DJF 950 hPa 20CRv2c air
temperature anomalies, 1947-2014. Point A (East Hawaii, 20◦N, 138◦W) and point B
(Vancouver, 50◦N, 124◦W) are delineated on the map.
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Similarly, E is larger at the more non-Gaussian Vancouver location and has a positive value of g

corresponding to the positive kurtosis at that grid point.

Table 6.1: Locations, higher moments and SGS parame-
ters E, b and g of near-Gaussian (East Hawaii) and non-
Gaussian (Vancouver) 1947-2014 DJF 950 hPa air tempera-
ture anomaly time series.

Point Location Skewness Kurtosis E b g

A East Hawaii 0.268 -0.187 0.104 0.607 1.273
B Vancouver -1.416 2.968 0.439 0.331 -1.303

The two resultant SGS pdfs are shown in Figure 6.2, calculated using Equation (3.29), where the

red curve denotes the fitted SGS distribution, while the blue curve represents the stepwise histogram

of the air temperature anomalies. For reference, the standard normal distribution is included in

gray.

While the numerical tools described in Section 5.2 can fit an SGS distribution to the time series

and provide an estimate for the SGS parameters E, b and g, they do not tell us if the estimated

SGS fit is representative of the data. In other words, given a time series of standardized anomalies,

one may always fit an SGS distribution to the data whether it is a good fit or not.

However, there are also an infinite number of pdfs that may be constructed that fit the empirical

data “better” than that of the SGS distribution. A “perfect” theoretical representation of the obser-

vations will still be subject to errors from the statistical fluctuations inherent in the observations.

As such, the goal is to quantitatively test the SGS distribution against variables in the 20CRv2c

dataset to establish 1) whether the SGS distribution is a plausible fit to the data and 2) that the

SGS distribution is a better representation of the data than the Gaussian distribution.

6.2 Visual comparison with Q-Q plots

For a start, this comparison may be done visually using a quantile-quantile (Q-Q) plot, which

is useful for graphically comparing the empirical distribution of observations with a reference dis-

tribution. The observations of a random variable x are plotted against the quantile function of the

distribution of interest, producing a scatter plot of values. A Q-Q plot with a distribution that fits

the data perfectly would have all points align on the y = x diagonal (Wilks (2006)).
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Figure 6.2: SGS pdfs (red) and stepwise histograms (blue) of the DJF 950 hPa 20CRv2c
air temperature anomalies (1947-2014) located at near-Gaussian East Hawaii (top, 20◦N,
138◦W) and at non-Gaussian Vancouver (bottom, 50◦N, 124◦W). The standard normal
distribution (gray) is provided for reference.
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Figure 6.3 shows Q-Q plots of the 950 hPa air temperature anomalies (T ′) at East Hawaii against

both the standard normal and estimated SGS distribution, while Figure 6.4 shows the Q-Q plots of

Vancouver with respect to the same two distributions.

From Figure 6.3, the distribution of near-Gaussian air temperature anomalies at East Hawaii

seem to generally agree with both the standard normal distribution and the estimated SGS distri-

bution. However, it appears that the SGS distribution fits the data slightly better in the tails of

the air temperature anomalies, though this difference is marginal. Figure 6.4 details the Q-Q plots

obtained from the non-Gaussian air temperature anomalies at Vancouver, with more conclusive

results. It is evident that the estimated SGS fit does a better job in representing the data in the

center and positive tail of the distribution, as the air temperature anomaly quantiles there follow

the y = x line closely. However, the estimated SGS negative tail is still too strong with respect to

the observations. The comparison with the standard normal distribution at Vancouver shows that

a standard normal distribution predicts tails that are too weak and underestimates the peakedness

of the data. Moreover, the arcing shown in the standard normal quantile Q-Q plot demonstrates

the negative skewness of the air temperature anomalies and that the observations at Vancouver are

incompatible with a standard normal distribution.

While Q-Q plots lend themselves to useful graphical analysis, a hypothesis testing methodology

must be more than just visual inspection or other qualitative measures. Specifically, it is important

to distinguish between the natural statistical fluctuations intrinsic to atmospheric data and that

of data poorly distributed with respect to an SGS distribution. To address this, a bootstrapping

goodness-of-fit test is implemented which produces a quantitative value of the plausibility of the

distribution fit.

6.3 A goodness-of-fit test using the Kolmogorov-Smirnov statistic

After obtaining a time series of standardized anomalies and an SGS distribution fitted from the

same anomalies, it is imperative to test whether the estimated SGS distribution is plausible given

the data from which it was fit. To undertake this task, a goodness-of-fit methodology described

by Clauset et al. (2009), who tests the fit of power law distributions to empirical data using a

bootstrapping method and the Kolmogorov-Smirnov statistic, is implemented.
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Figure 6.3: Q-Q plots of the DJF 950 hPa 20CRv2c air temperature anomaly (1947-
2014) quantiles (blue dots) located at near-Gaussian East Hawaii (20◦N, 138◦W) com-
pared against the quantiles of the standard normal distribution (top) and estimated SGS
distribution (bottom). If the two distributions are similar, the air temperature quantiles
will lie on the red y = x line.
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Figure 6.4: Q-Q plots of the DJF 950 hPa 20CRv2c air temperature anomaly (1947-2014)
quantiles (blue dots) located at non-Gaussian Vancouver (50◦N, 124◦W) compared against
the quantiles of the standard normal distribution (top) and estimated SGS distribution
(bottom). If the two distributions are similar, the air temperature quantiles will lie on the
red y = x line.
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Figure 6.5: Two example cumulative distribution functions (CDF or F (x)): an empirical
cumulative distribution function (ECDF, blue) assembled from the example time series
x and the estimated SGS cumulative distribution function (red) obtained by fitting an
SGS distribution to x. The Kolmogorov-Smirnov statistic, D, is the maximum difference
between the two CDFs, shown by the black arrow.

The Kolmogorov-Smirnov statistic1 is a statistical distance that is computed between the em-

pirical cumulative distribution function (ECDF) of the data and the CDF of the estimated SGS

distribution. The KS statistic may be written as

D = max
x
|F (x)− P (x)| , (6.1)

which computes the maximum distance, D, between the corresponding points of ECDF (F (x)) and

the CDF of the estimated SGS distribution (P (x)). A graphical example of this distance difference

is shown in Figure 6.5.

The bootstrapping methodology may be summarized in a few steps. First, the Kolmogorov-

Smirnov statistic is computed for the estimated SGS distribution, relative to the ECDF constructed
1Also referred to as the K-S or KS statistic. In practice, another statistical test, such as the Anderson-Darling

test, could be substituted here for the Kolmogorov-Smirnov statistic.
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from the observations. Then, many pseudorandom datasets drawn from the estimated SGS distribu-

tion are produced, then fit themselves to an SGS distribution. The new SGS distribution obtained

from the pseudorandom data is then used to compute a new KS statistic. The KS statistic compar-

ing each pseudorandom SGS distribution with the pseudorandom data is tabulated and compared

to the KS statistic of the original SGS fit to the original data.

When comparing the KS statistics of the pseudorandom data against the original dataset, one

may say that if the original data has a larger KS statistic than the pseudorandom KS statistic, then

the original SGS distribution is a worse fit than random statistical fluctuations and is not a plausible

fit to the observations. However, if the original data has a smaller KS statistic than that of the

pseudorandom data, then the fit of the original SGS distribution is plausible. Of course, it is possible

that a good fit may sometimes lose out to statistical fluctuations. Clauset et al. (2009) remind us

however that as the length of the observations used in the initial fit increases, the chance that a

non-SGS derived pseudorandom dataset will produce an SGS distribution decreases.2 Performing

many bootstrap iterations produces a fraction of instances where the pseudorandom KS statistic is

larger than the KS statistic derived from the original data and fit. This fraction yields a p-value,

which can be used to quantify the plausibility of the original SGS fit.

Sometimes p-value thresholds are set to delineate “significant” and “insignificant” statistical fits.

This practice, though common, can lead to pitfalls when interpreting the results. Often a p-value

significance threshold of 0.1 (or a less stringent 0.05) is used to distinguish between a significant and

insignificant statistical model. In other words, if the p-value falls below the threshold the statistical

model under study is deemed an insignificant fit, but if the p-value sits above the threshold then

the model is a plausible fit to the data. However, this introduces arbitrary significance cutoffs that

may or may not be stringent enough to filter out weakly plausible distributions. Moreover, the

presence of an arbitrary threshold gives the impression of a binary significance-insignificance choice,

when in fact the magnitude of the p-value is sometimes ambiguous and itself subject to statistical

fluctuations and therefore should be taken with caution. For these reasons, an arbitrary p-value

cutoff is not introduced for the purposes of assigning significance. Instead, following Clauset et al.

(2009), if the p-value is large (at least greater than 0.1) and approaches 1, then the estimated fit

will be deemed plausible and differences between the observations and the fit may be attributed
2Clauset et al. (2009) notes that this is the reason why large sample time series are desired in the first place.
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to statistical fluctuations. If the p-value is close to zero, then the estimated fit is unlikely to

be representative of the observations. At times it may be convenient to introduce an arbitrary

threshold, such as a p-value of 0.1, to serve as a benchmark of comparison or plausibility. However,

this threshold will not be used to assign a level of significance.

The bootstrapping method of Clauset et al. (2009) is the preferred “goodness-of-fit” test for

autocorrelated data, like that of the time series of variables obtained from the 20CRv2c dataset.

An autocorrelated time series is often not applicable with classic statistical tests that assume the

input sample data is independent and indentically distributed (i.i.d.). In fact, the Kolmogorov-

Smirnov statistic itself offers a simple way to compute a p-value based on the original model fit

to the observations, as the distribution of Kolmogorov-Smirnov distances themselves follow the

Kolmogorov distribution if the data is independently drawn from the same probability distribution.

If the sample data is independent, one can simply map the KS statistic to the appropriate quantile

of the Kolmogorov distribution to calculate a p-value. However, due to the time-dependence of the

reanalysis data (as well as determining the SGS distribution by fitting to the data), a bootstrapping

technique must be used to achieve a p-value.

6.4 Treating temporal correlations in reanalysis data

The temporal autocorrelation of the reanalysis data plays a significant role in the bootstrapping

goodness-of-fit test. When generating realizations of pseudorandom time series drawn from the

estimated SGS distribution, the length of the pseudorandom time series must be normalized by

the decorrelation time of the variable of interest. According to Storch and Zwiers (2001), the

decorrelation time is a “statistical measure that compares the information content of correlated

observations with that of uncorrelated observations.” In other words, the decorrelation time is a

scaling of the length of the original correlated time series in order to represent the same amount of

information in an uncorrelated time series. In practice, the decorrelation time is lag time where the

estimated autocorrelation of the time series of interest becomes negligible.

Scaling the uncorrelated pseudorandom time series appropriately for use in a goodness-of-fit test

requires the calculation of the decorrelation time of each reanalysis time series. This decorrelation

time, or lag time, can then be used to appropriately set the length of the pseudorandom dataset

for statistical testing. Obtaining a reasonable decorrelation time from the reanalysis time series is
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very important for the bootstrapping goodness-of-fit test. If the decorrelation time is too long, the

pseudorandom dataset will be too short. This means the CDF used to calculate the KS statistic

may be too coarse relative to the ECDF and may be subject to enhanced statistical fluctuations. If

the decorrelation time is too short, the pseudorandom dataset will be too long and the CDF used

to calculate the KS statistic may be too smooth relative to the ECDF and converge too quickly to

the “true” CDF.

In order to compute a decorrelation time (τ) from a time series of reanalysis data, the “large-lag

standard error” method described by Box et al. (1994) and Bartlett (1946) was initially used. This

method attempts to compute the time lag at which the autocorrelation of the data is practically

zero. Box et al. (1994) give the equation

var[rk] ≈
1

N

(
1 + 2

q∑
k=1

r2k

)
k > q , (6.2)

where var[rk] is the variance of the estimated autocorrelation coefficient rk for lag k. Taking the

square root of Equation (6.2) yields the large-lag standard error, which assumes that the auto-

correlations rk are nearly zero after some lag time q. The large-lag standard error provides an

approximation of the standard deviation of autocorrelations rk for lags k > q. In practice, if the

large-lag standard error is greater than the estimated autocorrelation at lag k, then the autocorre-

lations beyond lag k are assumed to be small compared with this error and k is designated as the

lag time of the time series. Box et al. (1994) note that in cases where the sample time series is

uncorrelated i.e., when q = 0 and all autocorrelations at lags k > q are taken to be zero, then the

standard error from Equation (6.2) simplifies to
√

1/N .

After obtaining the decorrelation time τ , the length of the pseudorandom dataset used in the

bootstrapping test, N ′, is equivalent to the length of the original time series scaled by the lag time.3

Storch and Zwiers (2001) terms N ′ the equivalent sample size and notes that the decorrelation

time is dimensionless as the time increment assumed in Equation (6.2) is generalized to be without

dimension. Storch and Zwiers (2001) also warns that the implementation of such a methodology

to estimate the decorrelation time, such as the large-lag standard error, is highly dependent on

the problem at hand and it is unlikely that the time scales of the underlying physical process are

altogether represented by the estimated decorrelation time.
3Storch and Zwiers (2001) state that for data that has a red noise spectrum, like that of the 20CRv2c daily

anomalies, N ′ < N and τ > 1.
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Table 6.2 gives the decorrelation time (τ) for East Hawaii and Vancouver calculated from the

large-lag standard error as well as the length of the original time series (N) and the pseudorandom

time series (N ′) to be used to compute the goodness-of-fit p-value.

Table 6.2: Locations, lengths of time series (N) and pseudo-
random time series (N ′) and lag time (τ) of near-Gaussian
(East Hawaii) and non-Gaussian (Vancouver) 1947-2014 DJF
950 hPa air temperature anomaly time series.

Point Location N N ′ τ

A East Hawaii 6137 105 59
B Vancouver 6137 341 18

Note the large decorrelation times for both points, especially the 59 days of East Hawaii. Ro-

manou et al. (2006) computed decorrelation times for many ocean surface flux variables using the

Goddard Satellite-Based Surface Turbulent Fluxes version 2 (GSSTF2) dataset4 and found that, in

the case of heat fluxes, the equatorial regions of the ocean basins contained the longest decorrelation

time scales (approximately 90 days), suggesting the variability in the equatorial oceans is intrasea-

sonal. Romanou et al. (2006) also finds the long decorrelation times consistent with persistent wind

patterns found near the ITCZ as well as time periods related to the Madden-Julian oscillation. In

the case of constructing a statistical test, the long (≈ 60 day) decorrelation time of East Hawaii

results in a short pseudorandom time series to be used in the goodness-of-fit test.

Initial goodness-of-fit tests using the large-lag standard error of Equation (6.2) to estimate

the decorrelation time were instructive on how a large lag time can influence the pseudorandom

KS statistics used to obtain p-values. In particular, a very long decorrelation time can seriously

undermine the statistical test by producing an ECDF too coarse to calculate a KS statistic relative

to the observations and estimated SGS fit. This can result in a larger pseudorandom KS statistic

and, when the KS statistics from all the bootstrap iterations are tabulated, a “significance bias.”

Figure 6.6 illustrates pseudorandom ECDFs generated from different decorrelation times at East

Hawaii and Vancouver and how a short pseudorandom time series can effect the KS statistic used

to estimate the goodness-of-fit.
4See Chou et al. (2003) for more information on the GSSTF2 dataset.
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Figure 6.6: ECDF (blue) of the DJF 950 hPa 20CRv2c air temperature anomalies (1947-
2014) and estimated SGS CDF (red) located at near-Gaussian East Hawaii (top, 20◦N,
138◦W) and Vancouver (bottom, 50◦N, 124◦W) compared against ECDFs obtained from
pseudorandom time series scaled by decorrelation times with various cutoff thresholds (1/e,
0.1, large-lag standard error or LLSE). The equivalent sample size (N ′) for each ECDF is
included.
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Figure 6.6 shows the ECDFs that result from applying three different means of obtaining the

decorrelation time scale. In purple is the 1/e autocorrelation threshold, or the lag time which the

autocorrelation of the time series drops below 1/e. The green ECDF is obtained from a pseudoran-

dom time series whose length was determined by a 0.1 autocorrelation threshold, or the time lag

at which the autocorrelation drops below 0.1. The brown ECDF is the time series scaled by the

large-lag standard error, given by Equation (6.2). The equivalent sample sizes (N ′) for each ECDF

are given in the legend. Note that as the value of N ′ decreases, the ECDF becomes less smooth

and more “stepwise,” which would result in a larger KS statistic. In contrast, ECDFs with larger

equivalent sample sizes are smoother and cluster more tightly to the estimated SGS fit. Table 6.3

gives a comparison of the decorrelation times obtained by the three methods at each point.

Table 6.3: Locations and decorrelation times computed using
the 1/e autocorrelation threshold, 0.1 autocorrelation thresh-
old and the large-lag standard error (LLSE) at near-Gaussian
(East Hawaii) and non-Gaussian (Vancouver) 1947-2014 DJF
950 hPa air temperature anomaly time series.

Point Location 1/e 0.1 LLSE

A East Hawaii 9 58 59
B Vancouver 5 12 18

While it is important to appropriately calculate the decorrelation time scale so that the pseudo-

random time series has an amount of information equivalent to the original data, it is more important

in this study to set a high bar with which to assign a statistical measure of plausibility. Though the

large-lag standard error takes care to calculate a lag time at which the autocorrelation practically

vanishes, particular locations with large decorrelation times may suffer from biased goodness-of-fit

tests due to extremely short pseudorandom time series. To mitigate this, the 1/e autocorrelation

threshold will be used as the cutoff by which to calculate the decorrelation time scale. The decorre-

lation time scale is also limited to a maximum of 90 (days) i.e., the number of days in a DJF season.

Using the 1/e autocorrelation threshold will generally produce shorter decorrelation time scales,

which provides a longer pseudorandom time series from which to calculate the goodness-of-fit tests.

In turn, this will produce a more conservative measure of statistical plausibility i.e., the KS statistic

computed from the longer pseudorandom time series will be more “competitive” in the comparison
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with the KS statistic obtained from the reanalysis data. Large p-values obtained using the more

conservative threshold will instill further confidence in the plausibility of the SGS fit.

6.5 Results of the goodness-of-fit test

The goodness-of-fit is now calculated for the time series of near-Gaussian and non-Gaussian air

temperature anomalies at points East Hawaii and Vancouver. Clauset et al. (2009) mention that

if one desires the accuracy of the computed p-values to be within ε of the true value, then 1
4ε
−2

bootstrap iterations must be made. As such, 400 bootstrap iterations are performed which give a

p-value accuracy within 0.025.

First, the KS statistic is computed between the estimated SGS distribution and time series of

anomalies at each location. Then, a pseudorandom dataset drawn from the SGS distribution is

obtained with a length determined from the decorrelation time obtained from calculating the lag

time at the 1/e autocorrelation threshold. An SGS distribution is in turn fit to the pseudorandom

dataset. The KS statistic of this pseudorandom SGS distribution is computed and saved. After

400 iterations, all pseudorandom KS statistics are compared with the original KS statistic obtained

from the SGS fit to the respective 950 hPa air temperature anomalies and a p-value is calculated.

Table 6.4 shows the results of the statistical test for both points East Hawaii and Vancouver.

Table 6.4: The KS statistic and p-value computed from the
SGS goodness-of-fit test for the near-Gaussian (East Hawaii)
and non-Gaussian (Vancouver) 1947-2014 DJF 950 hPa air
temperature anomaly time series.

Point Location KS Statistic p-value

A East Hawaii 0.01257 1.0
B Vancouver 0.02497 0.5025

Even though the time series and higher moments of the near- and non-Gaussian points East

Hawaii and Vancouver given in Table 6.1 are quite different, the SGS distributions fit to the time

series with the procedure given in Section 5.2 are both determined to be plausible.

The bootstrapping goodness-of-fit test may be repeated using a standard normal distribution

as the candidate fit in order to test how plausible the Gaussian distribution is in representing the
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two time series of air temperature anomalies. The above procedure is repeated with the standard

normal distribution substituted for the estimated SGS distribution, with the results displayed in

Table 6.5.

Table 6.5: The KS statistic and p-value computed from the
standard normal goodness-of-fit test for the near-Gaussian
(East Hawaii) and non-Gaussian (Vancouver) 1947-2014 DJF
950 hPa air temperature anomaly time series.

Point Location KS Statistic p-value

A East Hawaii 0.03 0.5425
B Vancouver 0.1017 0.0

Employing the goodness-of-fit test for the standard normal distribution against the two locations

of air temperature anomalies provides a different picture than in the SGS case. In the case of the

near-Gaussian East Hawaii, the standard normal distribution is found to be plausible with a p-value

of 0.5425. Inspection of the step histogram in Figure 6.2 as well as the Q-Q plot of Figure 6.3 indeed

illustrates how close to Gaussian East Hawaii is. Meanwhile, the Vancouver p-value of 0 signifies

that the standard normal distribution is not the correct fit to the non-Gaussian air temperature

anomalies at that location.

From Section 4.1, it is stated that the standard normal distribution is itself a member of the

SGS class of distributions. From Equation (4.5), in the limit case where the skewness is zero and

the SGS parameter E → 0, the SGS pdf converges to the standard normal distribution. Generally

speaking, this means that the SGS distribution is able to represent near-Gaussian time series at

least as well as the standard normal distribution. Given the p-value results of Tables 6.4 and 6.5,

this seems to be the case.

While the p-values in Table 6.4 are an encouraging sign for the ability of the SGS distribution

to model air temperature anomalies, Clauset et al. (2009) recommends caution in interpreting

large p-values as a license to conclude that the SGS distribution is the single, correct statistical

representation of the data. It is possible that other, untested distributions may yet be a better

fit for the data. While the bootstrapping goodness-of-fit test can provide a measure of plausibility

to an estimated SGS distribution, it cannot directly compare competing distributions against each
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other. To do so requires a test statistic that performs a model selection, such as the likelihood ratio

test statistic.

6.6 Model selection via likelihood ratio test

The likelihood ratio test is a statistical test that, as the name implies, uses a ratio of the like-

lihoods of two competing distributions to determine the relative goodness-of-fit. This test assumes

that one of the candidate distributions is nested in the other, meaning that one model can be con-

structed by imposing constraints on the other. Here, the fitted SGS distribution is compared to the

standard normal distribution as a test of non-Gaussianity. As mentioned previously, the standard

normal distribution is a member of the SGS class of distributions. This means it is nested within

the SGS distribution, as from Equation (4.5), in the limit case where the skewness is zero and the

SGS parameter E → 0, the SGS pdf converges to the standard normal distribution.

The likelihood ratio test statistic, LR, may be written in terms of the SGS and Gaussian

distributions as

LR = 2 ln

[
LSGS

LGauss

]
= 2(`SGS − `Gauss) , (6.3)

where L is the likelihood function and ` is the log-likelihood function of the respective distributions.

Here, the SGS distribution is the weakly constrained (more free parameters) distribution and the

standard normal distribution is the heavily constrained (no free parameters) model. Both the SGS

and standard normal pdfs, given in Equation (6.4) respectively as p(x), are used in specifying

log-likelihood functions, where

` (X)Gauss =

N∑
i=1

p(xi) ,

` (E, b, g | X)SGS =

N∑
i=1

p(xi, E, b, g) ,

(6.4)

where N is the length of the time series x1, x2, . . . xN and the SGS parameters E, b and g are

estimated from the time series. The nested condition of the likelihood ratio test means that the

SGS distribution is able to represent near-Gaussian time series at least as well as the standard

normal distribution. However, the likelihood ratio test aims to determine if the difference in the fit

of the two models is significant and unlikely to have resulted from statistical fluctuations (Wilks

65



(2006)). If difference is shown to be significant, then the weakly constrained model i.e., the SGS

distribution, is said to be the most plausible fit.

According to Wilks (2006), given a large enough sample size, the sampling distribution of LR in

Equation (6.3) is χ2 distributed. The degrees of freedom of the χ2 distribution is determined from

the difference in the estimated parameters. In the case of the SGS distribution and the standard

normal distribution, this difference is 3. Conveniently, a p-value for the likelihood ratio test may be

found by computing the pdf of the χ2 distribution with three degrees of freedom at the location of

the LR statistic. The pdf of the χ2 distribution with three degrees of freedom may be written as

p(x) =


x

1
2 e−

x
2

2
3
2 Γ
(
3
2

) , x > 0;

0, elsewhere.
(6.5)

Here, Γ
(
3
2

)
is the gamma function (Walpole et al. (2017)). In the SGS case, if the fit of the

SGS distribution is favorable and the difference between the SGS fit and the standard normal

distribution is not merely due to statistical fluctuations, then the p-value obtained from the χ2

pdf of Equation (6.5) will be close to zero. In instances where the SGS distribution is strongly

preferred, the p-value may be extremely small and approximately zero. In contrast to the p-value

obtained from the goodness-of-fit test, a large p-value (again at least greater than 0.1) approaching

1 is indicative of a sufficiently improbable SGS model preference. Note that in the case of where

the Gaussian distribution is preferred to the SGS distribution, LR will be negative and the pdf of

the χ2 distribution will be 0. To distinguish between p-values of the negative LR case and the large

positive LR case, the p-value in the negative LR case is assigned a value of 1.

Applying the likelihood ratio test to compare the SGS distribution fit at points East Hawaii and

Vancouver to the standard normal distribution yields the results given in Table 6.6.

Table 6.6: Likelihood ratio test statistic of the fitted SGS
distribution against the standard normal distribution for the
near-Gaussian (East Hawaii) and non-Gaussian (Vancouver)
1947-2014 DJF 950 hPa air temperature anomaly time series.

Point Location LR p-value

A East Hawaii 41.82 2.52× 10−18

B Vancouver 828.62 ≈ 0
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Note that the magnitude of LR is non-dimensional and does not have a particular significance,

other than the sign of the LR statistic signifying a preference of the data for either the SGS

(positive) or standard normal (negative) distribution. A LR magnitude much larger than zero

represents a more plausible fit, but the computation of the p-value provides the standardized metric

of comparison.

Taking into account the visual inspection of the Q-Q plots, the goodness-of-fit test and the model

comparison of the likelihood ratio test, it appears that the SGS distribution is a plausible fit for the

950 hPa air temperature anomalies at both the near-Gaussian East Hawaii and the non-Gaussian

Vancouver. In the next chapter, the statistical analysis of the SGS distribution is expanded to more

20CRv2c variables and a global spatial domain.
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CHAPTER 7

GLOBAL SGS EVALUATIONS OF 20CRV2C
VARIABLES

After outlining the statistical methodology for evaluating the fit of an estimated SGS distribution in

Chapter 6, the techniques are applied to multiple 20CRv2c variables and evaluate the plausibility of

the SGS distribution on a global scale. For reference, all variables in this chapter are persistent win-

tertime (DJF) anomalies taken from the 20CRv2c dataset from 1947-2014, standardized according

to the process described in Section 2.1.

For each variable, an SGS distribution is fit to the time series of anomalies at each grid point,

using the method of moments described in Section 4.2 and implemented in Section 5.3. An assess-

ment of the SGS model fit at each grid point is also provided, where violations of the constraints

governing the SGS distribution during the distribution fit are tabulated. The constraint violations

of the SGS distribution depicted here follow those of Section 4.2, where the model may be violated

in the following ways:

1. E2 < 0: E and g are both negative, violating the ε-constraint of Equation (4.10)
2. E > Emax, or the kurtosis does not exist.
3. b2 < 0: E is positive but b is negative, violating the ε-constraint of Equation (4.10)
4. |skew| > skewmax: the magnitude of the sample skewness is greater than

√
32, the maximum

allowable under the constraints on E

The constraint violations listed are each handled in accordance with the methodology described in

Section 4.2.

The decorrelation time scale is also computed using the 1/e autocorrelation threshold described

in Section 6.4 to provide the equivalent sample size N ′ required for the pseudorandom time series

used in the bootstrapping goodness-of-fit test. The decorrelation time scale and SGS distribution of

each grid point are then used to compute the goodness-of-fit test for the estimated SGS distribution

relative to the data, following the methodology outlined in Section 6.3. After bootstrapping 100

pseudorandom datasets and tabulating each KS statistic relative to the estimated SGS distribution,
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p-values at each grid point may be found. The goodness-of-fit test is also repeated using the Gaussian

distribution, and the p-value results from both goodness-of-fit tests are displayed as global maps.

Points that are shaded blue correspond to an implausible SGS fit, where the p-value is less than

the arbitrary cutoff of 0.1. Admittedly, according to the Clauset et al. (2009) approximation of the

p-value accuracy ε discussed in Section 6.5, 100 bootstrap iterations only provide a p-value accuracy

within 0.05. However, tests with increased numbers of bootstrap iterations become computationally

expensive and experiments have shown that the overall spatial p-value structure is unchanged when

using a larger amount of pseudorandom datasets. Nonetheless, using a larger amount of bootstrap

iterations will provide greater test confidence.

Next, a comparison of the values of skewness and kurtosis computed at each grid point is made

relative to the goodness-of-fit p-value obtained through the bootstrapping significance test. Again,

points that are shaded blue correspond to an implausible SGS fit, where the p-value was calculated

to fall below the 0.1 significance threshold. Finally, the likelihood ratio test statistic described in

Section 6.6 is used to perform a model selection test, computed at each grid point, which determines

if the estimated SGS distribution is a statistically preferred fit to the data, relative to the Gaussian

distribution. Points that are shaded blue again correspond to an implausible SGS fit, where the

SGS distribution is either not preferred or statistically distinguished from the standard normal

distribution.

Note that for both the goodness-of-fit test and likelihood ratio test statistic, p-value threshold

values near 0.1 are shaded in incrementally lighter shades of blue to convey a sliding scale of plau-

sibility rather than a particular threshold of binary significance. For reference, Table 7.1 provides a

simplified guide to the p-value plausibility thresholds and map colors used in the following analysis.

Table 7.1: Lookup table for the p-value significance thresh-
olds, plausible (“good” fit) and implausible (“bad” fit) values
and map colors for the goodness-of-fit (GOF) and the SGS-
to-Gaussian comparison of the likelihood ratio test statistic
(LRTS) statistical tests.

Test p-value threshold “good” values “good” color “bad” values “bad” color

GOF 0.1 p > 0.1 gray p < 0.1 blue
LRTS 0.1 p < 0.1 gray p > 0.1 blue
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7.1 950 hPa air temperature

Beginning with the 1947-2014 DJF 950 hPa air temperature anomalies that were investigated

in Chapter 6, fitting an SGS distribution at each grid point yields the parameters E, b and g which

are shown in Figure 7.1.

The parameter maps of Figure 7.1 are complex, but as the method of moments requires the

variance, skewness and kurtosis to compute the SGS parameters (see Equation (4.8) and Section

5.2), it is instructive to compare them to the maps of skewness and kurtosis given in Figure 6.1.

Parameter E has a larger overall magnitude in regions of greater positive kurtosis, but there is

also a tendency toward slightly higher values when kurtosis is near zero while the magnitude of

the skewness is increased. Parameter b meanwhile has large magnitudes where either the value

of E is small, the skewness is small, or a combination of both. Finally, parameter g is the only

parameter that is not positive, meaning that the sign of g determines the sign of the skewness. As

such, negative values of g correspond to negative skewness while positive values of g correspond to

positive skewness. Near-zero values of g typically indicate regions of near-Gaussianity.

Figure 7.2 depicts the types of SGS model violations that occurred during the distribution

fit, while Figure 7.3 shows the decorrelation time scales computed at all 950 hPa air temperature

anomaly grid points. The model violations in Figure 7.2 are all generally of the E2 < 0 type, save

for a few violations where parameter g was not positive. A comparison of the violations with the

air temperature skewness and kurtosis maps of Figure 6.1 indicates that the violations are typically

limited to regions of negative kurtosis (which the SGS distribution cannot fit without violating

constraints).

From Figure 7.3, it appears that while relatively short decorrelation times of approximately one

week are found in the subtropics, mid-latitudes and polar regions, the tropics have a monthly to

seasonal lag time. Caution is required, however, with the large lag times in the tropics. While

perhaps representative of the persistence statistics found near the ITCZ and involving the Madden-

Julian oscillation, large lag times may bias p-value statistics in a “distribution-plausible” way (see

discussion in Section 6.4).

Both the estimated SGS fit and the decorrelation time scale are used to produce a goodness-of-fit

test that yields p-values at each grid point. The goodness-of-fit test comparing both the fit of the
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Figure 7.1: Maps of SGS parameters E (top), b (middle) and g (bottom) estimated from
standardized DJF 950 hPa 20CRv2c air temperature anomalies, 1947-2014.
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Figure 7.2: Map of the SGS model violations encountered when fitting an SGS distribution
to time series of standardized DJF 950 hPa 20CRv2c air temperature anomalies, 1947-2014.
Violations E2 < 0 (cyan) and b2 < 0 (olive) are most prominent.

Figure 7.3: Decorrelation time scale in days computed using the 1/e autocorrelation thresh-
old for the standardized DJF 950 hPa 20CRv2c air temperature anomalies, 1947-2014.
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SGS distribution and the standard normal distributionto the air temperature anomalies are shown

in Figure 7.4.

Note that the grid points colored blue in Figure 7.4 correspond to the estimated SGS or standard

normal distribution (respectively) being a implausible fit to the data. It is important to compare

the results of the goodness-of-fit tests given in Figure 7.4 to the maps of skewness and kurtosis

given in Figure 6.1. Upon inspection, it appears that regions where the estimated SGS distribution

is ruled to be implausible generally have negative kurtosis, or are in near-zero kurtosis regions with

a non-zero magnitude of skewness. A poorer SGS fit in regions of negative kurtosis is expected, as

the skewness-kurtosis inequality given in Equation (4.9) is violated in cases of time series with a

negative sample kurtosis, meaning that the estimation of parameter E via method of moments will

not be optimal. In contrast, the standard normal distribution typically has an implausible fit to the

data in regions where the skewness and kurtosis are large. However, the implausible region of the

standard normal distribution does not seem to include the tropics, where large regions of positive

kurtosis exist.

The plausibility of the standard normal distribution in the non-Gaussian tropics is likely due

to the large decorrelation times scales of the 950 hPa air temperature anomalies in the tropical

ocean regions. For example, Figure 7.5 shows the bootstrap CDFs generated (in olive green) via

pseudorandom time series during the goodness-of-fit test which compares the standard normal

distribution to the data. The KS statistic computed from the bootstrap CDFs here is likely to

be inferior to that of the standard normal curve (as discussed in Section 6.4), as the decorrelation

time scale of 55 days translates to a pseudorandom time series length of 112. Even though the

non-Gaussianity found in the tropical oceans should favor the plausibility of the estimated SGS

distribution, the p-values obtained through the goodness-of-fit test will likely be larger due to the

long decorrelation times. As such, caution should be taken for the goodness-of-fit results located in

the tropical ocean basins.

Figure 7.6 compares the values of skewness and kurtosis computed at each grid point relative

to the goodness-of-fit p-value obtained through the bootstrapping significance test. Points that

are shaded blue correspond to an implausible estimated SGS fit. The solid black parabolic line

represents the skewness-kurtosis constraint of Equation (4.9), where the solid gray line is the same

constraint, only with a vertical offset applied to align with the data. The dashed line corresponds

73



Figure 7.4: p-values for the estimated SGS (top) and standard normal (bottom) goodness-
of-fit (GOF) test computed using 100 bootstrap iterations for all gridded time series of
standardized DJF 950 hPa 20CRv2c air temperature anomalies, 1947-2014. Gray points
correspond to a plausible SGS fit, while points gridded blue, especially those with values
less than 0.1, correspond to an implausible SGS fit.
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Figure 7.5: Bootstrap CDFs (olive) generated during the standard normal goodness-of-fit
(GOF) test for an equatorial time series of 950 hPa 20CRv2c air temperature anomalies,
1947-2014, with an equivalent sample size (N ′) of 112. The estimated SGS CDF (red) is
compared with the ECDF of the time series of anomalies (blue). The standard normal
CDF (gray) is provided for reference.
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Figure 7.6: Skewness-kurtosis scatter plot showing the goodness-of-fit (GOF) p-value
relative to the sample skewness and kurtosis computed for each time series of 950 hPa
20CRv2c air temperature anomalies, 1947-2014. The solid black parabola indicates the
skewness-kurtosis relationship kurt ≥

(
3
2

)
skew2, where the light gray solid parabola is

kurt ≥
(
3
2

)
skew2−r where r is empirically fit to the data. The dotted gray line represents

the kurt = skew2 − 2 constraint.

to the general constraint imposed on the skewness-kurtosis relationship, where K ≥ S2−2 (Wilkins

(1944), Sardeshmukh and Sura (2009)). It is plain from Figure 7.6 that the overwhelming quantity

of points that are judged to be an implausible fit to the time series of air temperature anomalies

violate the skewness-kurtosis constraint of Equation (4.9). In these cases, parameter E is modified

to bring the estimated SGS distribution back into agreement with the skewness-kurtosis constraint

at the cost of the fit’s accuracy. Generally speaking, points with values of skewness and kurtosis

that fall outside of the black parabola of Figure 7.6 are typically represented by implausible SGS

distributions, while plausible SGS distributions are typically found within the black parabola.

Neglecting the issue of small bootstrap time series for grid points in the tropical oceans, Figure
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Figure 7.7: p-values of the likelihood ratio test statistic (LRTS) comparison between the
estimated SGS and standard normal distributions for all gridded time series of standardized
DJF 950 hPa 20CRv2c air temperature anomalies, 1947-2014. Gray points correspond to
grid points where the SGS distribution is statistically preferred to the standard normal
distribution. Points gridded blue, especially those with values much greater than 0.1,
correspond to a statistically insignificant preference for the SGS fit or a preference for the
standard normal distribution.

7.4 shows that the standard normal distribution in total has a greater percentage of plausible grid

points where the p-value is greater than 0.1. However, this does not mean that the standard normal

distribution is superior in fit to the SGS distribution. To address the question of which distribution

is preferred by the data, a likelihood ratio test is computed according to Section 6.6 comparing the

likelihood of the estimated SGS distribution to the likelihood of the standard normal distribution,

with the results shown in Figure 7.7.

The p-values obtained from the likelihood ratio test in Figure 7.7 show a statistical preference

for the estimated SGS distribution at a grid point if the p-value is close to zero. To simplify

analysis, a threshold of 0.1 is used to distinguish between a plausible and implausible fit, where

values greater than 0.1 (especially much greater) are reflective of an SGS distribution that does not
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fit the data as well as the standard normal distribution. From the map, it is quite apparent that

the estimated SGS distribution far outperforms the standard normal distribution in statistically

representing the time series of air temperature anomalies at each grid point. The regions where the

SGS distribution is not preferred to the standard normal distribution are limited to regions that

share both a near zero skewness and kurtosis that is equal to or less than zero. While this is a new

result, this is also theoretically expected as the SGS distribution has more degrees of freedom than

the standard normal distribution, where the SGS distribution is able to converge to the standard

normal distribution as E → 0. It is therefore no surprise that the SGS distribution can represent

near-Gaussian distributions just as well as the standard normal distribution, provided the sample

time series does not have a skewness and a zero or negative kurtosis. Finally, as the likelihood

ratio test statistic is a direct comparison of statistical models using the log-likelihoods of the two

distributions, no bootstrapping is needed and the larger decorrelation time scales seen in the tropical

ocean basins are not a cause of statistical concern.

7.2 500 hPa geopotential height

As in the 950 hPa air temperature anomalies, the SGS distribution is fit to each time series of

500 hPa geopotential height anomalies, producing an SGS distribution at each grid point (not shown

here). A map of the model violations encountered in fitting the geopotential height anomalies is given

in Figure 7.9. Similar to the violations encountered in the fitting of the 950 hPa air temperature

anomalies, the primary regions of difficulty correspond to areas of negative kurtosis, seen in Figure

7.8.

The decorrelation time scales for all grid points are then computed producing Figure 7.10.

Like the decorrelation time scale field of the 950 hPa air temperature anomalies in Figure 7.3,

long decorrelation time scales exist in the tropics. However, unlike those of the air temperature

anomalies, the large decorrelation times are found over all tropical longitudes, not just those over

ocean basins. These large decorrelation times serve as a warning on interpreting later goodness-of-fit

results in the tropics in an overly favorable light. The p-value results of the goodness-of-fit test for

the estimated SGS distributions and the Gaussian distribution are shown in Figure 7.11.

From Figure 7.11 and inspection of the 500 hPa geopotential height skewness and kurtosis maps

of Figure 7.8, the relationship of large SGS goodness-of-fit p-values (and small standard normal
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Figure 7.8: Maps of skewness and kurtosis of standardized DJF 500 hPa geopotential
height anomalies from the 20CRv2c dataset, 1947-2014.

79



Figure 7.9: Map of the SGS model violations encountered when fitting an SGS distribution
to time series of standardized DJF 500 hPa 20CRv2c geopotential height anomalies, 1947-
2014. Violations E2 < 0 (cyan) and b2 < 0 (olive) are most prominent.

Figure 7.10: Decorrelation time scale in days computed using the 1/e autocorrelation
threshold for the standardized DJF 500 hPa 20CRv2c geopotential height anomalies, 1947-
2014.
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Figure 7.11: p-values for the estimated SGS (top) and standard normal (bottom) goodness-
of-fit (GOF) test computed using 100 bootstrap iterations for all gridded time series of
standardized DJF 500 hPa 20CRv2c geopotential height anomalies, 1947-2014. Gray points
correspond to a plausible SGS fit, while points gridded blue, especially those with values
less than 0.1, correspond to an implausible SGS fit.
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p-values) with larger magnitudes of higher moments is observed. Conversely, implausible fits of the

data to the SGS distribution are found in regions of negative kurtosis, where the fitting of SGS

parameters via the method of moments violates the constraints of the SGS distribution. Note that

in Figure 7.11 there are no implausible fits in the tropics. This might be expected in the SGS case,

as the kurtosis is nearly entirely positive there. However, no tropical regions of implausibility in

standard normal case point to a decorrelation time scale bias. Outside the tropics, the plausibility

of the estimated SGS fits (as well as those of the standard normal distribution) are widespread.

Figure 7.12 describes the relationship of skewness and kurtosis relative to the plausibility of the

SGS fit. Again, the time series that are not plausibly represented by an SGS distribution tend to

be in regions of negative kurtosis, or where the skewness-kurtosis constraint of Equation (4.9) is

strongly violated.

Finally, a likelihood ratio test is computed comparing the estimated SGS distribution to that

of the standard normal distribution, with the results shown in Figure 7.13. As in the 950 hPa air

temperature likelihood ratio test, only in regions of near-Gaussianity does the estimated SGS distri-

bution not produce a statistically plausible fit when compared to the standard normal distribution,

save a small group of large p-values associated with a pocket of very large kurtosis in the southeast

Indian Ocean. Interestingly, one can pick out the mean jet stream location in both the northern

and southern hemispheres by the mid-latitudinal band of large p-values. The mean storm track

is represented in the skewness field, where the poleward positive skewness values adjacent to the

equatorward negative skewness values produce a zero-skewness contour.

7.3 300 hPa relative vorticity

Figure 7.14 provides maps of skewness and kurtosis for the 300 hPa DJF relative vorticity

anomalies from 1947-2014. The model violations from the fitting of SGS distributions to the gridded

time series of 300 hPa relative vorticity anomalies are provided in Figure 7.15. With the same types

of model violations as the previous variables, it is evident that the SGS distribution cannot be fit to

a time series with negative sample kurtosis without violating, with some magnitude, the constraints

imposed on the SGS distribution itself.

Figure 7.16 shows the decorrelation time scales for the field of 300 hPa relative vorticity anoma-

lies. Unlike those of the 950 hPa air temperature or 500 hPa geopotential height anomalies, the
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Figure 7.12: Skewness-kurtosis scatter plot showing the goodness-of-fit (GOF) p-value
relative to the sample skewness and kurtosis computed for each time series of 500 hPa
20CRv2c geopotential height anomalies, 1947-2014. The solid black parabola indicates
the skewness-kurtosis relationship kurt ≥

(
3
2

)
skew2, where the light gray solid parabola is

kurt ≥
(
3
2

)
skew2−r where r is empirically fit to the data. The dotted gray line represents

the kurt = skew2 − 2 constraint.
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Figure 7.13: p-values of the likelihood ratio test statistic (LRTS) comparison between the
estimated SGS and standard normal distributions for all gridded time series of standardized
DJF 500 hPa 20CRv2c geopotential height anomalies, 1947-2014. Gray points correspond
to grid points where the SGS distribution is statistically preferred to the standard normal
distribution. Points gridded blue, especially those with values much greater than 0.1,
correspond to a statistically insignificant preference for the SGS fit or a preference for the
standard normal distribution.

84



Figure 7.14: Maps of skewness and kurtosis of standardized DJF 300 hPa relative vorticity
anomalies from the 20CRv2c dataset, 1947-2014.
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Figure 7.15: Map of the SGS model violations encountered when fitting an SGS distribution
to time series of standardized DJF 300 hPa 20CRv2c relative vorticity anomalies, 1947-
2014. Violations E2 < 0 (cyan) and b2 < 0 (olive) are most prominent.

decorrelation times are small (≈ < 1 week). As such, goodness-of-fit p-values of the relative vortic-

ity anomalies do not require scrutiny as in the case of the air temperature and geopotential height

anomalies. The p-value results from the goodness-of-fit tests are shown in Figure 7.17.

As the kurtosis of the 300 hPa relative vorticity anomalies (shown in Figure 7.14) is generally

positive except in the regions of the mean storm track, Figure 7.17 indicates that the estimated

SGS distribution is plausible over much of the globe. The major areas of implausibility include the

mean location of the jet stream, as these areas are associated with regions of negative kurtosis. The

goodness-of-fit test for the standard normal distribution shows similar patterns of implausibility,

but performs best in near-Gaussian regions such as the band of near-zero skewness and kurtosis at

60◦S latitude.

Figure 7.18 investigates further the relationship of skewness and kurtosis with the p-value.

Moments calculated from time series of 300 hPa relative vorticity anomalies are not tightly clustered

as the air temperature or geopotential height anomalies. There are also several points of implausible

SGS distributions dispersed throughout the center of the parabola.
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Figure 7.16: Decorrelation time scale in days computed using the 1/e autocorrelation
threshold for the standardized DJF 300 hPa 20CRv2c relative vorticity anomalies, 1947-
2014.

p-values obtained from the likelihood ratio test of the 950 hPa relative vorticity anomalies are

given in Figure 7.19. Here, the estimated SGS distribution outperforms the fit of the standard

normal distribution in all locations save those of near-zero skewness and kurtosis given in Figure

7.14. These near-Gaussian locations are the same mean storm tracks identified previously.

7.4 950 hPa zonal wind

Next, the 1947-2014 DJF global 950 hPa zonal wind anomalies are analyzed. After the SGS

distribution is estimated at each grid point, the SGS model violations are tallied and given in Figure

7.21. Figure 7.21, like the previous variables, suggests that E2 < 0 occurs in regions of negative

kurtosis (see Figure 7.20). However, Figure 7.21 provides a somewhat clearer picture with respect

to the b2 < 0 violation, in that it appears to be primarily found in regions of positive kurtosis and

a large magnitude of skewness. In other words, E is positive but not positive enough to satisfy the

ε-constraint of Equation (4.10), which if satisfied ensures that E and g are positive.
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Figure 7.17: p-values for the estimated SGS (top) and standard normal (bottom) goodness-
of-fit (GOF) test computed using 100 bootstrap iterations for all gridded time series of
standardized DJF 300 hPa 20CRv2c relative vorticity anomalies, 1947-2014. Gray points
correspond to a plausible SGS fit, while points gridded blue, especially those with values
less than 0.1, correspond to an implausible SGS fit.
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Figure 7.18: Skewness-kurtosis scatter plot showing the goodness-of-fit (GOF) p-value
relative to the sample skewness and kurtosis computed for each time series of 300 hPa
20CRv2c relative vorticity anomalies, 1947-2014. The solid black parabola indicates the
skewness-kurtosis relationship kurt ≥

(
3
2

)
skew2, where the light gray solid parabola is

kurt ≥
(
3
2

)
skew2−r where r is empirically fit to the data. The dotted gray line represents

the kurt = skew2 − 2 constraint.
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Figure 7.19: p-values of the likelihood ratio test statistic (LRTS) comparison between the
estimated SGS and standard normal distributions for all gridded time series of standardized
DJF 300 hPa 20CRv2c relative vorticity anomalies, 1947-2014. Gray points correspond
to grid points where the SGS distribution is statistically preferred to the standard normal
distribution. Points gridded blue, especially those with values much greater than 0.1,
correspond to a statistically insignificant preference for the SGS fit or a preference for the
standard normal distribution.
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Figure 7.20: Maps of skewness and kurtosis of standardized DJF 950 hPa zonal wind
anomalies from the 20CRv2c dataset, 1947-2014.
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Figure 7.21: Map of the SGS model violations encountered when fitting an SGS distribution
to time series of standardized DJF 950 hPa 20CRv2c zonal wind anomalies, 1947-2014.
Violations E2 < 0 (cyan) and b2 < 0 (olive) are most prominent.

The decorrelation time scales are again computed from the time series of anomalies at each grid

point. Figure 7.22 shows the decorrelation time scales for all 950 hPa zonal wind anomalies.

In contrast to the decorrelation time scales of both the air temperature and geopotential height

anomalies analyzed previously, there is no exceptionally long decorrelation times present for the

950 hPa zonal wind, suggesting that wind anomalies are not as persistent and typically rapidly

decorrelate. The most significant region of large decorrelation times is the western equatorial Pacific,

where lags of three weeks are found. p-value results from the goodness-of-fit tests are shown in Figure

7.23.

With smaller decorrelation times in the tropics, there is a clearer picture of the significance of

the goodness-of-fit for the estimated SGS distributions there. Overall, however, a similar narra-

tive emerges, as regions of near-Gaussianity tend to produce plausible fits to the standard normal

distribution while regions that have larger magnitudes of skewness and positive kurtosis produce

more plausible SGS fits (see Figure 7.20 for maps of skewness and kurtosis). Figure 7.24 provides

a more nuanced look at the values of skewness and kurtosis that make up the set of plausible SGS

distributions. While many implausible SGS distributions are fit to time series that violate the
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Figure 7.22: Decorrelation time scale in days computed using the 1/e autocorrelation
threshold for the standardized DJF 950 hPa 20CRv2c zonal wind anomalies, 1947-2014.

skewness-kurtosis constraint of Equation (4.9), there are several time series which have very large

values of skewness and/or kurtosis that do not result in a plausible SGS distribution. The spread of

the skewness-kurtosis scatter points in Figure 7.24 is also substantially larger than in the 950 hPa

air temperature and 500 hPa geopotential height anomalies.

The implausibility of the SGS distribution over many regions of the northern hemisphere, most

especially over the continents, is related to the negative kurtosis endemic there. However, the

implausible standard normal distributions are typically located in regions of large skewness, large

kurtosis or both.

The p-values of the likelihood ratio test comparing the estimated SGS distribution to the stan-

dard normal distribution are shown in Figure 7.25. The grid points where the estimated SGS

distribution compares unfavorably to the standard normal distribution are given in blue, which

upon comparison to the skewness and kurtosis maps of Figure 7.20 are all located in regions of

near-zero skewness and zero to negative kurtosis.
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Figure 7.23: p-values for the estimated SGS (top) and standard normal (bottom) goodness-
of-fit (GOF) test computed using 100 bootstrap iterations for all gridded time series of
standardized DJF 950 hPa 20CRv2c zonal wind anomalies, 1947-2014. Gray points cor-
respond to a plausible SGS fit, while points gridded blue, especially those with values less
than 0.1, correspond to an implausible SGS fit.
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Figure 7.24: Skewness-kurtosis scatter plot showing the goodness-of-fit (GOF) p-value rela-
tive to the sample skewness and kurtosis computed for each time series of 950 hPa 20CRv2c
zonal wind anomalies, 1947-2014. The solid black parabola indicates the skewness-kurtosis
relationship kurt ≥

(
3
2

)
skew2, where the light gray solid parabola is kurt ≥

(
3
2

)
skew2 − r

where r is empirically fit to the data. The dotted gray line represents the kurt = skew2−2
constraint.
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Figure 7.25: p-values of the likelihood ratio test statistic (LRTS) comparison between the
estimated SGS and standard normal distributions for all gridded time series of standard-
ized DJF 950 hPa 20CRv2c zonal wind anomalies, 1947-2014. Gray points correspond to
grid points where the SGS distribution is statistically preferred to the standard normal
distribution. Points gridded blue, especially those with values much greater than 0.1, cor-
respond to a statistically insignificant preference for the SGS fit or a preference for the
standard normal distribution.
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7.5 950 hPa meridional wind

After the SGS distribution is fit to each gridded time series of 950 hPa meridional wind anomalies,

the SGS model violations are compiled and compared with maps of skewness and kurtosis, given

in Figure 7.26. The SGS violations given in Figure 7.27 are similar to those of the 950 hPa zonal

wind anomalies, where violations of E2 < 0 are associated with regions of negative kurtosis and

violations of b2 < 0 are found in regions of positive kurtosis and larger magnitude of skewness.

Figure 7.28 shows the decorrelation time scales for all time series of 950 hPa meridional wind

anomalies. Like those of the 950 hPa zonal wind anomalies, the decorrelation times are relatively

small (≈ 1 week) except for a few isolated points in tropical Africa and a strip of the equatorial Pa-

cific Ocean. Again, while points of large decorrelation time scales should evoke a sense of caution in

interpreting large goodness-of-fit p-values as overwhelmingly plausible, the meridional wind anoma-

lies here do not suffer the large latitudinal regions of decorrelation times as the air temperature and

geopotential anomalies did.

After the decorrelation times of Figure 7.28 are computed, p-value results from the goodness-

of-fit tests are shown in Figure 7.29.

The goodness-of-fit values for the SGS distribution and the standard normal distribution tabu-

lated in Figure 7.29 are best compared with the skewness and kurtosis maps of the meridional wind

anomalies, given in Figure 7.26. Even as the sign of the 950 hPa meridional wind skewness has a

hemispherical dependency reflecting the general circulation of the atmosphere, it is the magnitude

and sign of the kurtosis that determines the goodness-of-fit for both the estimated SGS and the

standard normal cases. As expected, the standard normal fit is poor in regions of large skewness

and kurtosis, while the SGS fit struggles again in regions of negative skewness. Figure 7.30 looks

at the skewness-kurtosis relationship in more detail. Like that of the 950 hPa zonal wind anoma-

lies, the primary region of implausibility is located below the K = 3/2S2 curve, shown in black in

Figure 7.30. However, the moments calculated from the time series of anomalies are not as tightly

clustered as the air temperature or geopotential height anomalies and there are several implausible

SGS distributions dispersed throughout the parabola of points.

p-values computed from the likelihood ratio test for the 950 hPa meridional wind anomalies are

given in Figure 7.31. Again, the estimated SGS distribution outperforms the fit of the standard

normal distribution in all but the most Gaussian of points. An exception to this is found in the
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Figure 7.26: Maps of skewness and kurtosis of standardized DJF 950 hPa meridional wind
anomalies from the 20CRv2c dataset, 1947-2014.
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Figure 7.27: Map of the SGS model violations encountered when fitting an SGS distribution
to time series of standardized DJF 950 hPa 20CRv2c meridional wind anomalies, 1947-
2014. Violations E2 < 0 (cyan) and b2 < 0 (olive) are most prominent.

Figure 7.28: Decorrelation time scale in days computed using the 1/e autocorrelation
threshold for the standardized DJF 950 hPa 20CRv2c meridional wind anomalies, 1947-
2014.
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Figure 7.29: p-values for the estimated SGS (top) and standard normal (bottom) goodness-
of-fit (GOF) test computed using 100 bootstrap iterations for all gridded time series of
standardized DJF 950 hPa 20CRv2c meridional wind anomalies, 1947-2014. Gray points
correspond to a plausible SGS fit, while points gridded blue, especially those with values
less than 0.1, correspond to an implausible SGS fit.
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Figure 7.30: Skewness-kurtosis scatter plot showing the goodness-of-fit (GOF) p-value
relative to the sample skewness and kurtosis computed for each time series of 950 hPa
20CRv2c meridional wind anomalies, 1947-2014. The solid black parabola indicates the
skewness-kurtosis relationship kurt ≥

(
3
2

)
skew2, where the light gray solid parabola is

kurt ≥
(
3
2

)
skew2−r where r is empirically fit to the data. The dotted gray line represents

the kurt = skew2 − 2 constraint.
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Figure 7.31: p-values of the likelihood ratio test statistic (LRTS) comparison between the
estimated SGS and standard normal distributions for all gridded time series of standardized
DJF 950 hPa 20CRv2c meridional wind anomalies, 1947-2014. Gray points correspond to
grid points where the SGS distribution is statistically preferred to the standard normal
distribution. Points gridded blue, especially those with values much greater than 0.1,
correspond to a statistically insignificant preference for the SGS fit or a preference for the
standard normal distribution.

extreme southeast Indian Ocean, where four points located in a region of very large positive kurtosis

do not significantly favor the SGS distribution estimated there. More analysis is needed to isolate

the cause of these few highly non-Gaussian points that do not attain a significant level of plausibility.

7.6 500 hPa vertical velocity

Finally, the SGS distribution is fit to time series of 500 hPa vertical velocity anomalies. The

violations of the SGS model produced during the fit are given in Figure 7.33. As the kurtosis of the
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500 hPa vertical velocity anomalies is overwhelmingly positive, the more prevalent E2 < 0 violation

is found sparingly. However, a large portion of the equator was subjected to the b2 < 0 violation,

and a region in the southeastern Indian Ocean contains skewness values that are larger than the
√

32 bound set while the kurtosis exists.

Figure 7.34 shows the decorrelation time scales for all 500 hPa vertical velocity anomalies. The

500 hPa vertical velocity anomalies are generally devoid of any extremely long decorrelation times,

save a region in the equatorial Pacific that exhibits decorrelation times of approximately one month.

Undertaking the goodness-of-fit test for the SGS and standard normal distributions produces the

p-values given in Figure 7.35.

The maps of the goodness-of-fit p-values computed for the 500 hPa vertical velocity are signifi-

cantly different than any of the prior variables analyzed thus far. This is a reflection of the skewness

and kurtosis maps of the 500 hPa vertical velocity anomalies, given in Figure 7.32, which are highly

asymmetric. Skewness values of the vertical velocity are overwhelmingly negative, especially at the

equator and ITCZ, indicative of the vertical motion due to convection in those regions. Mean-

while, the kurtosis is positive nearly everywhere, though most strongly in ocean basins immediately

surrounding the equator. p-values of the standard normal fit in Figure 7.32 are nearly entirely

implausible, except for regions where the skewness is near-zero and the positive kurtosis is weakest.

In contrast, the estimated SGS distributions produce plausible fits in regions of moderate positive

kurtosis, but struggles in regions of severe positive kurtosis and near-zero kurtosis.

Figure 7.38 shows the skewness-kurtosis relationship alongside the p-value computed from the

goodness-of-fit test. It is clear that the overwhelmingly negative skewness and positive kurtosis of

many grid points contributes greatly to the implausibility of the SGS distribution there. However, it

is curious that skewness and kurtosis values that meet the skewness-kurtosis constraint of Equation

(4.9) produce such a poor fit. The pdf and ECDF of one of these points, located at 20◦N, 150◦W,

is shown in Figures 7.36 and 7.37, respectively. Note the large peakedness and heavy, negative tail

associated with the negative skewness and large positive kurtosis. Also, as the time series located

at 20◦N, 150◦W only has a decorrelation time of three days, the KS statistics calculated from the

bootstrapping goodness-of-fit test will be highly competitive with the KS statistic calculated from

the observations. As such, it appears that the SGS fit methodology, which uses the method-of-
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Figure 7.32: Maps of skewness and kurtosis of standardized DJF 500 hPa vertical velocity
anomalies from the 20CRv2c dataset, 1947-2014.
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Figure 7.33: Map of the SGS model violations encountered when fitting an SGS distribution
to time series of standardized DJF 500 hPa 20CRv2c vertical velocity anomalies, 1947-2014.
Violations E2 < 0 (cyan), b2 < 0 (olive) and |skew| > skewmax (purple) are prominent.

Figure 7.34: Decorrelation time scale in days computed using the 1/e autocorrelation
threshold for the standardized DJF 500 hPa 20CRv2c vertical velocity anomalies, 1947-
2014.
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Figure 7.35: p-values for the estimated SGS (top) and standard normal (bottom) goodness-
of-fit (GOF) test computed using 100 bootstrap iterations for all gridded time series of
standardized DJF 500 hPa 20CRv2c vertical velocity anomalies, 1947-2014. Gray points
correspond to a plausible SGS fit, while points gridded blue, especially those with values
less than 0.1, correspond to an implausible SGS fit.
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Figure 7.36: SGS pdf (red) and stepwise histograms (blue) of the DJF 500 hPa 20CRv2c
vertical velocity anomalies (1947-2014) located at 20◦N, 150◦W. The standard normal
distribution (gray) is provided for reference.

moments to estimate the SGS parameters, has difficulties in producing a plausible fit for vertical

velocity anomalies in regions of extreme non-Gaussianity.

Finally, the likelihood ratio test is computed comparing the estimated SGS distribution to that

of the standard normal distribution, with the results shown in Figure 7.39. There are few regions

of near-Gaussianity in the 500 hPa vertical velocity field, so the estimated SGS distribution is

overwhelmingly favored over the standard normal distribution. However, the regions in Figure 7.39

where the estimated SGS distribution is not favored are instead regions of extreme non-Gaussianity,

particularly regions of very large kurtosis. This suggests that the SGS distribution has an upper

limit on the kurtosis that it can represent, so much so that it fails to beat the standard normal

distribution in the likelihood ratio test.
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Figure 7.37: Bootstrap CDFs (olive) generated during the standard normal goodness-of-fit
(GOF) test for DJF 500 hPa 20CRv2c vertical velocity anomalies (1947-2014) located at
20◦N, 150◦W, with an equivalent sample size (N ′) of 2046. The estimated SGS CDF (red)
is compared with the ECDF of the time series of anomalies (blue). The standard normal
CDF (gray) is provided for reference.
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Figure 7.38: Skewness-kurtosis scatter plot showing the goodness-of-fit (GOF) p-value
relative to the sample skewness and kurtosis computed for each time series of 500 hPa
20CRv2c vertical velocity anomalies, 1947-2014. The solid black parabola indicates the
skewness-kurtosis relationship kurt ≥

(
3
2

)
skew2, where the light gray solid parabola is

kurt ≥
(
3
2

)
skew2−r where r is empirically fit to the data. The dotted gray line represents

the kurt = skew2 − 2 constraint.
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Figure 7.39: p-values of the likelihood ratio test statistic (LRTS) comparison between the
estimated SGS and standard normal distributions for all gridded time series of standardized
DJF 500 hPa 20CRv2c vertical velocity anomalies, 1947-2014. Gray points correspond to
grid points where the SGS distribution is statistically preferred to the standard normal
distribution. Points gridded blue, especially those with values much greater than 0.1,
correspond to a statistically insignificant preference for the SGS fit or a preference for the
standard normal distribution.
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CHAPTER 8

A COMPARISON OF REANALYSIS ERAS

The evaluation methodology described in Chapter 6 and applied globally to the 20CRv2c dataset in

Chapter 7 is used to make a comparison of the SGS fit from DJF 1947-2014 (6137 days, designated

here as the “modern” era) to that of DJF 1880-1947 (6136 days, the “historical” era) for the 950 hPa

air temperature, 500 hPa geopotential height and 300 hPa relative vorticity anomalies. Each variable

has the annual cycle removed in computing the anomalies, which are then standardized according

to the standard deviation of the era. This comparison will show whether the SGS distribution

changes significantly across the two periods, or whether the estimated SGS distribution from the

entire 1880-2014 period is sufficient to describe the atmospheric non-Gaussian statistics.

8.1 Changes in non-Gaussianity from 1880-1947 to 1947-2014

To begin the comparison of the SGS distributions fit to time series of reanalysis data between the

modern (December 1947- February 2014) and historical era (December 1880 - February 1947), the

changes in skewness and kurtosis are compared from the different eras. First, Figure 8.1 shows the

difference in the 950 hPa air temperature skewness and kurtosis between the historical and modern

eras, where the historical moment is subtracted from the modern moment. Positive locations on

the map indicate that the moment has increased in magnitude, while negative locations on the map

indicate a decrease in moment magnitude. For example, the kurtosis plotted in Figure 8.1 is the

kurtosis of DJF 1947-2014 subtracted by the kurtosis of DJF 1880-1947. Figure 8.2 and Figure 8.3

give the difference in the skewness and kurtosis from DJF 1880-1947 to 1947-2014 of the 500 hPa

geopotential height anomalies and 300 hPa relative vorticity anomalies, respectively.

Figure 8.1, Figure 8.2 and Figure 8.3 all show a general pattern of decreasing kurtosis in the

polar regions, especially near Antarctica. The changes in skewness are relatively uniform and of a

smaller magnitude than those of the kurtosis, which can be regionally large. Marked changes include

a positive shift in skewness and kurtosis off the western coast of South America in the 950 hPa air

temperature anomalies, a hemispherical increase in the magnitude of the 300 hPa relative vorticity
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Figure 8.1: Maps of the difference in skewness and kurtosis of standardized 20CRv2c DJF
950 hPa air temperature anomalies from the historical era (1880-1947) to the modern era
(1947-2014).
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Figure 8.2: Maps of the difference in skewness and kurtosis of standardized 20CRv2c DJF
500 hPa geopotential height anomalies from the historical era (1880-1947) to the modern
era (1947-2014).
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Figure 8.3: Maps of the difference in skewness and kurtosis of standardized 20CRv2c DJF
300 hPa relative vorticity anomalies from the historical era (1880-1947) to the modern era
(1947-2014).
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skewness and a complex tropical/subtropical banding structure of regional kurtosis increases found

in the 300 hPa relative vorticity differences. The 500 hPa geopotential height skewness differences

are relatively small, with pockets of substantial kurtosis increases in the tropics.

It is important to note that because the current methodology of computing the SGS distribution

is fitting SGS parameters to the sample time series via method of moments (see Section 4.2 and

Section 5.3), the changes in the skewness and kurtosis shown in Figures 8.1, 8.2 and 8.3 will drive

any changes in the SGS parameters and thus dictate the SGS pdf shape. In other words, as

the atmosphere becomes more or less non-Gaussian, the SGS pdfs will diverge more or less from

Gaussianity. However, changes in the sample moments do not necessarily directly translate to a

change in the SGS distribution. For example, historical and modern era time series with negative

sample kurtosis can both violate SGS model constraints the degree that the parameter E will be

equivalent for both SGS distributions.

8.2 Changes in the SGS distribution from 1880-1947 to 1947-2014

The two points of 950 hPa air temperature anomalies used in Chapter 6 to describe the statistical

evaluation methodology are invoked again in order to inspect how the SGS distribution evolves from

the historical era to the modern era. Point A (East Hawaii), located east of Hawaii, is in a region

of near-zero skewness and kurtosis. Point B (Vancouver) is located near Vancouver in a region of

negative skewness and positive kurtosis. Figure 8.4 shows the estimated SGS pdfs for both eras for

the two points, alongside the stepwise histogram of each respective time series of anomalies.

The near-Gaussian East Hawaii time series of anomalies shown in Figure 8.4 sees a contraction

to the standard normal distribution due to a decrease in the kurtosis and a slight increase in

negative skewness from the historical to modern eras. The non-Gaussian time series of anomalies at

Vancouver sees nearly no change, save for a very slight increase in kurtosis. Ultimately from 1880-

1947 to 1947-2014, for these two example points, the estimated SGS pdf changes very little, though

the near-Gaussian pdf converges slightly to the standard normal distribution while the non-Gaussian

pdf diverges further away from the standard normal distribution.

The estimated SGS distributions for both eras at East Hawaii and Vancouver may be compared

by computing the SGS CDF of the modern era, then performing a bootstrap goodness-of-fit test in

a similar fashion to that of Section 6.3. First, the SGS distributions of the modern and historical
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Figure 8.4: SGS pdfs (red, purple) and stepwise histograms (blue, cyan) of the 20CRv2c
DJF 950 hPa air temperature anomalies from the historical (1880-1947) and modern (1947-
2014) eras at near-Gaussian East Hawaii (top) and non-Gaussian Vancouver (bottom),
showing little change between the two time periods. The standard normal distribution
(gray) is provided for reference.
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eras are calculated. A KS statistic of the modern SGS distribution is then computed using the

CDF of the historical era as the reference distribution. Next, pseudorandom datasets drawn from

the historical SGS distribution are produced and KS statistics are calculated with respect to the

historical CDF. The KS statistics computed from the pseudorandom datasets form a confidence

envelope, against which the KS statistic of modern SGS CDF is compared.

Figure 8.5 illustrates this goodness-of-fit comparison of the modern SGS distribution with the

pseudorandom ECDFs generated from the historical SGS distribution at East Hawaii and Vancouver,

while Table 8.1 shows the results of the goodness-of-fit comparison of eras for both East Hawaii and

Vancouver from a trial of 400 pseudorandom datasets.

Table 8.1: The KS statistic and p-value computed via
goodness-of-fit test for the near-Gaussian (East Hawaii) and
non-Gaussian (Vancouver) DJF 950 hPa air temperature
anomaly time series, comparing the estimated SGS distribu-
tions of DJF 1947-2014 to that of DJF 1880-1947.

Point Location KS Statistic p-value

A East Hawaii 0.006 0.98
B Vancouver 0.004 0.99

To distinguish if the modern SGS distribution is different than the historical SGS distribution,

the modern KS statistic is compared against all 400 pseudorandom KS statistics. If the modern SGS

KS statistic is less than a KS statistic from a pseudorandom dataset, the modern SGS distribution

is assumed to be a better fit to the historical data with respect to the pseudorandom dataset. This

KS statistic comparison is performed over all the pseudorandom datasets, where the p-value is

computed. Here, the p-value is the ratio of instances where the modern KS statistic is less than the

pseudorandom KS statistic relative to the number of pseudorandom datasets. This means that as

the p-value approaches zero, the modern SGS distribution is plausibly different than the historical

SGS distribution. Otherwise, if the p-value is large and approaches one, no sufficient statistical

difference can be determined.

A caveat of applying the goodness-of-fit methodology in this way is that the KS statistic com-

puted between the modern SGS distribution and the reference historical SGS distribution is a

direct comparison between continuous distributions obtained from two theoretical CDFs, not em-
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Figure 8.5: ECDFs (blue, purple) of the DJF 950 hPa 20CRv2c air temperature anomalies
and estimated SGS CDFs (red, purple) from the historical (1880-1947) and modern (1947-
2014) eras at at near-Gaussian East Hawaii (top) and Vancouver (bottom). A confidence
envelope created with ECDFs obtained from bootstrapping 100 pseudorandom time series
is included for comparison.
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pirical CDFs. This means that the KS statistic for the modern SGS distribution may be biased

lower relative to a comparison of ECDFs. However, as the goal is to compare the shift in the shape

of the theoretical distributions, creating an ECDF from the reanalysis time series would not be

an appropriate comparison. The era comparison undertaken here is not whether the underlying

time series of data changes between eras, but whether the modern SGS distribution is statistically

different than the historical SGS distribution.

From Figure 8.5 and Table 8.1, it is clear that for the 950 hPa air temperature anomalies at

East Hawaii and Vancouver, the SGS distributions are not plausibly different from each other, as

the modern SGS distributions at both the near-Gaussian East Hawaii and non-Gaussian Vancouver

are not statistically different than the historical SGS distribution in a majority of cases. For these

two locations, the modern SGS distribution is well within the sampling uncertainty of the historical

SGS distribution.

Of course, the two 950 hPa air temperature example locations may not be indicative of the

overall change in large scale SGS distributions between the two eras. To take a global view of

shifts in the SGS distribution, we apply the goodness-of-fit methodology described above to global

reanalysis datasets of 950 hPa air temperature anomalies, 500 hPa geopotential height anomalies

and 300 hPa relative vorticity anomalies.

Figure 8.6 depicts the goodness-of-fit test comparing SGS distributions fit from 1880-1947 to that

of 1947-2014, performed globally for the 950 hPa air temperature anomalies, 500 hPa geopotential

height anomalies and 300 hPa relative vorticity anomalies. The grey areas indicate p-values less

than 0.1, following the prior p-value threshold set in Chapter 7, which indicate that the SGS

distribution of 1947-2014 has plausibly changed relative to the historical era (1880-1947). Blue

areas indicate where p-values are greater than 0.1, indicating that the modern SGS distribution was

not plausibly different than the historical SGS distribution. The maps of Figure 8.6 for all three

20CRv2c variables generally indicate that the modern SGS distribution is not statistically different

from the SGS distribution of the historical era. In line with the method of moments used to calculate

the SGS distribution (see 4.2), most locations that indicate statistically plausible changes from the

historical SGS distribution to the modern SGS distribution are found in areas where the skewness

and kurtosis changed markedly between the two eras. This is true for the 300 hPa relative vorticity

anomalies, as gray regions of plausible differences in the SGS distribution are typically confined to
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Figure 8.6: p-values obtained from the goodness-of-fit (GOF) test comparing changes in
SGS distributions in the modern era (1947-2014) with the historical (1880-1947) era. Gray
points correspond to a plausible difference in the SGS distribution between eras, while blue
points signify SGS distributions that are not statistically different across the two eras.
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locations where the kurtosis (and, at certain locations, skewness) is largely different between the

eras, demonstrated in Figure 8.3.

Finally, the “bias” imposed by long decorrelation time scales on the KS statistic, discussed in

Chapter 7, is still relevant in interpreting the results of Figure 8.6. Long decorrelation times for

points in the tropics, especially for the 950 hPa air temperature (see Figure 7.3) and 500 hPa

geopotential height (7.10) differences, result in pseudorandom ECDFs with small equivalent sample

sizes. The shorter pseudorandom time series can produce larger KS statistic fluctuations (see Figure

6.6), which raises the KS statistic threshold that the modern SGS distribution must overcome to

be classified as different than the historical distribution.

The likelihood ratio test statistic from Section 6.6 can also be invoked to formulate a model

selection experiment, where the sum of the likelihood functions over the historical (1880-1947)

and modern (1947-2014) eras is tested against the entire reanalysis time period (1880-2014). The

likelihood ratio test statistic is written in Equation (8.1),

LR = 2((`hist + `mod)− `full) , (8.1)

where `hist corresponds to the log-likelihood of the SGS distribution from the historical era, `mod

corresponds to the log-likelihood of the SGS distribution from the modern era and `full corresponds

to the log-likelihood of the SGS distribution from the entire tested reanalysis era. As before,

LR corresponds to the likelihood ratio test statistic. Equation (8.1) will test whether the extra

parameters obtained through the two SGS distributions are required in order to better represent

the non-Gaussian statistics of the full reanalysis era. Here, the log-likelihood for each grid point is

computed individually, given by

` (E, b, g | X) =
N∑
i=1

p(xi, E, b, g) , (8.2)

where N corresponds to the number of days in the respective reanalysis era. After LR is computed,

the χ2 distribution of Equation (6.5) may again be used to compute a p-value that determines

whether the preference of the model selection is due to statistical fluctuations i.e., if the p-value is

large or if the selected distribution is strongly preferred (in which case the p-value is small).

Applying the likelihood ratio test statistic of Equation (8.1) to each of the 950 hPa air tem-

perature, 500 hPa geopotential height and 300 hPa relative vorticity anomalies and computing the
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p-value using Equation (6.5) with three degrees of freedom (the balance of the free parameters of

the combined modern and historical log-likelihoods) yields the respective maps of p-values in Figure

8.7.

The likelihood ratio test statistic of Figure 8.7 has fewer overall grid points that have plausibly

different SGS distributions between the two eras compared with Figure 8.6. However, Figure 8.7

conveys the same general message as the goodness-of-fit test, namely that the SGS distribution is

represented just as well from the entire reanalysis time period (1880-2014) as it is from adjusting

the fit from the historical to the modern SGS distributions. There are a few regions in Figure

8.7 with p-values less than 0.1, which signify an improvement in the representation of the data by

fitting an SGS distribution to two eras. However, these regions are generally limited to swaths in

the equatorial Pacific Ocean and isolated pockets weighted toward the southern hemisphere.

Figure 8.6 and Figure 8.7 suggests that, at least in the three variables tested here, there is not

an improvement to be made for the SGS distributions in the large scale by dividing the reanalysis

into two eras. While it is possible that improved results might be obtained by breaking the time

domain up into three or more eras, each subsequent division in the time series of anomalies shortens

all eras, which eventually leads to statistical results of reduced power.

The lack of evidence suggesting a plausible shift in the shape of SGS distribution for either

individual pdfs of air temperature anomalies (as in Figure 8.4) or the majority of geopotential

height, air temperature and relative vorticity grid points (given in Figures 8.6 and 8.7) implies that

is there is no significant mean shift occurring between the two eras themselves. Sardeshmukh et

al. (2015) write that, for small climate shifts, SGS parameters E and b may remain constant, but

parameter g absorbs the mean external forcing. The change in parameter g leads to changes in the

variance, skewness and kurtosis of the SGS distribution, via Equation (4.8). In other words, any

mean shift requires a change in the overall shape of the SGS distribution. Conversely, no change in

the mean implies no change in the SGS distribution (Sardeshmukh et al. (2015)). Further study

is needed to assess whether a significant change in the mean at the spatiotemporal resolution of

a reanalysis dataset like 20CRv2c can be statistically detected over (seasonal) eras spanning 67

years (or less). Likewise, empirical analysis is needed to investigate whether a detected mean shift

corresponds to a change in the shape of the SGS pdf.
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Figure 8.7: p-values obtained from the likelihood ratio test statistic (LRTS) comparing
changes in SGS distributions in the modern era (1947-2014) with the historical (1880-1947)
era. Gray points correspond to a plausible difference in the SGS distribution between eras,
while blue points signify SGS distributions that are not statistically different across the
two eras.
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CHAPTER 9

CONCLUDING DISCUSSION

9.1 Research overview and conclusions

Despite their infrequence, extreme climate events inflict a disproportionately large impact on

lives, property and infrastructure. The statistical study of extreme climate events depends on an

accurate representation of non-Gaussian pdfs, as the tails of the pdf are the regions where extreme

events occur. However, understanding of the full pdf is needed in order to statistically represent

the full climate system dynamics.

The non-Gaussian statistics of daily climate data can be illuminated by calculating statistical

moments, such as skewness and kurtosis, which describe the shape of a pdf. The non-Gaussianity of

several atmospheric variables from the NOAA-CIRES-DOE Twentieth Century Reanalysis Project

version 2c dataset (20CRv2c) was depicted in Chapter 2 with maps of skewness and kurtosis.

Unfortunately, the physical mechanisms that drive large-scale patterns of non-Gaussianity are not

yet well understood.

Discussed in Chapter 3, stochastic models have been put forward as a novel method to study

the non-Gaussian statistics of climate data. In particular, Hasselmann (1976) used stochastic differ-

ential equations to approximate climate as a slowly decorrelating process and weather as a rapidly

decorrelating process, where climate is forced by weather fluctuations approximated by white noise.

However, while Hasselmann’s model produces the familiar red-noise climate spectrum, it is unable

to reproduce the non-Gaussian statistics shown in observations. In order to account for the observed

non-Gaussian statistics in climate data, Sura and Sardeshmukh (2008) and Sardeshmukh and Sura

(2009) introduced a stochastic climate model featuring correlated additive and multiplicative noise.

This stochastic model was able to reproduce observed non-Gaussian skewness and kurtosis patterns

as well as the red climate spectrum. Chapter 4 discusses results from the CAM noise model, in-

cluding the stochastically generated skewed (SGS) distribution and a 1-D Markov process model

from which SGS-equivalent time series may be produced. Sardeshmukh et al. (2015) introduced a

methodology to estimate the parameters of the SGS distribution from sample climate data.
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This research evaluated the effectiveness of the SGS distribution in representing the daily non-

Gaussian climate statistics using several atmospheric variables from the 20CRv2c dataset. First,

a Julia software package, SGSDist.jl, was created to effectively estimate and evaluate SGS distri-

butions. Demonstrated in Chapter 5, the SGSDist.jl package is able to estimate SGS parameters

from sample time series of standardized anomalies, calculate the SGS pdf, CDF and other statistical

quantities, draw random numbers from a given SGS distribution and create a time series via Markov

process with statistics informed from a particular SGS distribution. This software package has been

publicly released under the MIT license.

Chapter 6 makes use of the SGSDist.jl package in constructing the statistical evaluation

methodology of the SGS distribution with respect to the 20CRv2c dataset. Two sample points

of DJF 1947-2014 950 hPa air temperature anomalies were used. SGS distributions were fit to both

a near-Gaussian location east of Hawaii and a location of negative skewness and positive kurtosis

near Vancouver. Visual inspection of the SGS pdfs and Q-Q plots at each point were made, but a

non-parametric test methodology using the Kolmogorov-Smirnov statistic was constructed following

Clauset et al. (2009). A likelihood ratio test statistic was also implemented as a model selection test,

where the estimated SGS distribution was compared to the standard normal distribution. Caveats

to the tests were also discussed, including care that must be taken in regions where a variable’s

decorrelation time scale is large.

These statistical testing methodologies were expanded in Chapter 7 to global gridded time series

of persistent wintertime (DJF) standardized anomalies of 500 hPa geopotential height, 950 hPa air

temperature, 300 hPa relative vorticity, 950 hPa zonal and meridional wind and 500 hPa vertical

velocity from 1947-2014. Maps of the skewness and kurtosis as well as SGS model constraint

violations encountered during the empirical fitting of the SGS distribution were provided for each

variable. The maps of SGS model violations highlighted the difficulty of the method of moments

to estimate SGS parameters from a time series with a negative sample kurtosis without violating

model constraints.

Goodness-of-fit tests applied to DJF 1947-2014 950 hPa air temperature anomalies showed sta-

tistically plausible fits covering the majority of the globe, save for midlatitude regions of negative

kurtosis. The estimated SGS distribution performed well in the tropics, but this was certainly aided

by the long decorrelation times there, which influences the effective sample size and the ECDF used
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to compute the bootstrap KS statistics. The goodness-of-fit test for the standard normal distri-

bution also performed relatively well, likely owing to the small-to-moderate skewness and kurtosis

values covering a large area outside the tropics. The likelihood ratio test statistic, however, de-

termined that the estimated SGS distribution was preferred at nearly every grid point across the

globe, save those with near-zero skewness and kurtosis.

The DJF 1947-2014 500 hPa geopotential height anomalies produced similar results, in that the

SGS model violations were typically confined to latitudinal bands of negative kurtosis. Like that

of the air temperature anomalies, the 500 hPa geopotential anomalies also featured a band of large

decorrelation times in the tropics. The goodness-of-fit test for the SGS and standard normal cases

showed, in all but a few Northern Hemisphere midlatitude locations, that the two distributions were

again plausible fits to each gridded time series of anomalies. However, during application of the

likelihood ratio test, the SGS distribution was again preferred in all global grid points but the most

near-Gaussian of locations.

While SGS model violations for DJF 1947-2014 300 hPa relative vorticity anomalies were again

associated with regions of negative kurtosis, long decorrelation times in the tropics were not found.

Like the previous two variables, regions of negative kurtosis contributed to a goodness-of-fit test

that yielded implausible SGS fits in a few subtropical and midlatitude bands. However, the larger

magnitudes of skewness and kurtosis associated with the 300 hPa relative vorticity anomalies con-

tribute to wide swaths of implausible standard normal estimated fits, especially throughout the

Southern Hemisphere. Again, the SGS distribution was preferred by the likelihood ratio test in all

global locations, save those with near-zero skewness and kurtosis.

The DJF 1947-2014 950 hPa zonal and meridional wind anomalies both featured skewness and

kurtosis maps that were noisier that previous variables, with larger regional variability. This was

reflected in the goodness-of-fit maps, where regions of positive kurtosis produced plausible SGS

fits, while locations of negative kurtosis corresponded to insignificant SGS fits. More implausibly

fit regions were found in the standard normal goodness-of-fit tests, especially in the tropics and

subtropics where large skewness and (especially) kurtosis values were located. The likelihood ratio

test preferred the SGS distribution fit over the standard normal distribution for both cases.

Finally, a goodness-of-fit analysis was undertaken on the DJF 1947-2014 500 hPa vertical velocity

anomalies. The skewness and kurtosis maps of vertical velocity are quite different than previous
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variables, with near-uniform negative kurtosis outside the poles and near-global positive kurtosis.

Also unlike the previous variables, the largest proportion of SGS model violations were confined to

the tropics, where large values of skewness and small values of the SGS parameter E contributed to

the SGS parameter violation of b2 < 0. A region in the southeastern Indian Ocean also contained

skewness values that are larger than the
√

32 bound required for the kurtosis to exist. The goodness-

of-fit results of the SGS distribution were quite mixed, with large patches of implausible SGS fits

located over subtropical and midlatitude ocean basins. The standard normal goodness-of-fit test was

poor, except for regions where the skewness is near-zero and the positive kurtosis was weakest. While

the SGS distribution is overwhelmingly favored by the likelihood ratio test, the locations where

the estimated SGS distribution is not favored are regions of extreme non-Gaussianity, particularly

regions of very large kurtosis. This suggests a possible upper limit on the kurtosis that can be

represented by the SGS distribution.

However, it is important to emphasize that the SGS distribution performs quite well over a

range of statistics and variables, despite the constraint violations that often arise e.g., difficulty in

estimating SGS parameters from time series with negative sample kurtosis. While the statistical

performance in regions of negative kurtosis is unfortunate, these locations are not the areas where

extreme events statistically occur. In other words, regions of negative kurtosis have smaller pdf tails,

which limit the occurrence of extreme events. The performance of the SGS fit is much improved

in regions of near-Gaussianity or locations with positive kurtosis. SGS pdfs with positive kurtosis

have substantially larger tails, which correspond to the increased likelihood (probability) of extreme

events. Therefore, while the SGS fit is not plausible everywhere, it performs best in regions where

extreme events are more prevalent.

Chapter 8 applies the SGS evaluation methodology described in Chapter 6 to the comparison of

the SGS fit from two different eras (DJF 1880-1947 and DJF 1947-2014) in the 20CRv2c dataset.

First, differences in skewness and kurtosis for the three variables are described, which generally

depict decreasing kurtosis in polar regions and relatively uniform skewness fluctuations. Skewness

changes from DJF 1880-1947 to 1947-2014 were typically of a smaller magnitude than those of

kurtosis, which was regionally large in areas. Comparisons between the historical and modern

SGS distributions were made between the two previous 950 hPa air temperature locations at East

Hawaii and Vancouver, where visual inspection seemed to indicate little change in the SGS shape.
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A goodness-of-fit test at both the East Hawaii and Vancouver locations indicated that the SGS

distribution did not statistically change from the historical era to the modern era. The globally

estimated SGS fits of the 950 hPa air temperature, 500 hPa geopotential height and 300 hPa

relative vorticity anomalies were then computed for each 67 year segment and compared using both

a goodness-of-fit test and a modified likelihood ratio test statistic. For all three variables examined,

the vast majority of grid points indicated that the SGS distribution was not plausibly different

in the modern era relative to the SGS distribution of historical era. Changes in the shape of the

SGS distribution between the two reanalysis eras is generally limited to areas where the kurtosis is

markedly changed between 1880-1947 and 1947-2014.

This research has shown that the SGS distribution is able to describe the non-Gaussian vari-

ability observed in several reanalysis variables. The SGS distribution is dynamically consistent and

statistically robust and should be strongly considered by future researchers when modeling the full

pdf of most daily averaged climate data.

The ability of the CAM noise model to produce time series via Markov process is useful for

the creation of ensembles with particular non-Gaussian statistics. The SGS distribution may be

estimated from a sample time series, from which many time series realizations may be drawn.

This is useful for obtaining confidence intervals for statistical significance testing or risk modeling

applications where many thousands of pdfs are typically required to examine tail probabilities. Such

an application is quite approachable, as the SGSDist.jl package has numerically implemented the

CAM noise Markov process, shown in Section 5.7.

As the CAM noise model only represents the internal variability of the climate system, statistics

obtained using the SGS distribution may be compared against climate model output that includes

external forcing. For example, SGS distributions obtained from sample reanalysis time series may be

compared against output from climate models externally forced by varying amounts of greenhouse

gas emissions to examine changes in the pdf shape under the respective emission scenarios. Research

using this thinking has been employed by Lopez et al. (2018), which used the SGS distribution to

measure shifts in summertime 2 meter temperature anomaly pdfs in climate model projections,

which in turn was used to attribute some regional extreme heat wave events to anthropogenic

climate change.
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9.2 Future work

9.2.1 Evaluating climate mean shifts in reanalysis data

While an assessment of the change in the shape of the SGS distribution over two eras was

undertaken in Chapter 8, an evaluation of a statistical climate shift is incomplete without examining

the change in the mean. As discussed at the end of Section 8.2, a statistical comparison should

be made between locations that experience a mean shift to those that experience a change in the

shape of the SGS distribution. Such an empirical comparison is required to investigate the claim

made by Sardeshmukh et al. (2015) that the shape of SGS distribution remains unchanged when no

mean climate shift occurs. More broadly, research into mean shifts in reanalysis data itself would be

welcome, as it is not clear whether a significant change in the mean at the spatiotemporal resolution

of the 20CRv2c dataset can be statistically detected over temporal eras spanning less than 70 years,

especially in data with serial dependence.

9.2.2 Maximum likelihood estimation of SGS parameters

A limitation of the SGS distribution is the difficulty the method of moments (see Section 4.2)

has in estimating SGS parameters from a time series that has a negative sample kurtosis without

violating the SGS model constraints. Maximum likelihood estimation (MLE) is another commonly

used method to estimate parameters of a distribution, where the log-likelihood of a particular

function (often times the pdf) is minimized.

A constrained non-linear MLE problem using the SGS pdf as the likelihood function serves as

a starting point. Taking the log of Equation (3.29), yields the log-likelihood function for the SGS

distribution, written in Equation (9.1) as the objective function to be maximized:

ln(L(. . . )) = l(E, b, g, x1, . . . , xn)

= − log(N)−
(

1 +
1

E2

)
log
(
(Ex+ g)2 + b2

)
+

2g

E2b
arctan

(
Ex+ g

b

)
(9.1)

Here, N is the same normalization constant as written in Equation (3.30).

Preliminary tests in estimating SGS parameters using MLE indicate unstable numerical con-

vergence of the objective function in Equation (9.1). Solving for E, b and g using the method of

moments can help serve as the “initial guess” for the MLE optimization. However, model constraints,

including those that determine if the kurtosis exists, must still be formulated.
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9.2.3 Empirical evidence of SGS power law tails

As given in Equation (4.7), when |Ex+ g| � b, the CAM noise is large and the pdf of the SGS

distribution can be written in the form of a power law. A continuous power law distribution is

characterized by a probability density p(x) of a positive quantity x written as

p(x) = Cx−α , (9.2)

where C is a normalization constant and the power law exponent, α, must be greater than zero.

Sardeshmukh et al. (2015) write the slope of the SGS power law distribution as 2
[
1 +

(
1/E2

)]
,

which is symmetric with respect to the positive and negative tails. This itself is worthy of further

investigation, as symmetric power law slopes are not typically seen in observations (West (2012)).

As the study of extreme events relies on knowledge of the tail of the pdf, opportunities for

further research include:

• Examining reanalysis or model output for evidence of power law tails
• Evaluating whether the SGS distribution can statistically represent power law tails in empirical

data

There are several techniques that attempt to fit a power law probability distribution to empirical

data. Several of these methods (and their limitations) are reviewed in greater detail by Newman

(2005) and Clauset et al. (2009). One such method described involves using linear regression

techniques after making a log-log histogram of the data. This appears at first to be a reasonable

approach, as taking the logarithm of both sides of Equation (9.3) makes it apparent that any power

law distribution will appear as a straight line on a log-log plot. However, both Clauset et al. (2009)

and Newman (2005) warn that this approach is not preferred for extracting power law distributions

as it tends to introduce noise and sampling errors in general circumstances. Clauset et al. (2009)

outlines a procedure to fit power law distributions to empirical datasets using a method of maximum

likelihood initially developed by Muniruzzaman (1957) as well as a methodology of Clauset et al.

(2009) also includes a goodness-of-fit test for evaluating the fit of the power law distribution. This

methodology served as a model in this work for the statistical evaluation of the SGS distribution.

Newman (2005) states that almost no physical probability distributions follow a power law over

the entire range of x since p(x) diverges when x approaches zero. Therefore, a lower bound on

the range of the power law distribution, xmin, is defined as the value of x where the power law
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distribution begins. This means the region of the probability distribution where x ≥ xmin will

contain the power law, if it exists. By normalizing the probability distribution of Equation (9.2) to

unity over the domain of the power law and solving for the normalization constant, the normalized

power law probability distribution may be written as

p(x) =
α− 1

xmin

(
x

xmin

)−α
. (9.3)

This expression is used to estimate power law distributions from empirical data by determining a

unique power law exponent and the domain of the power law distribution.

Currently, there are two serious limitations to the power law solution of the SGS pdf. First, the

SGS power law pdf has no cutoff limit, as the power law pdf solution extends out to infinity. This is

problematic, as the large-scale atmospheric variables represented in reanalysis or climate model data

have a finite domain. It is possible to employ an exponential cut off power law distribution that sets

physical bounds on the power law distribution, but modifications to the CAM noise theory would

be required to physically motivate such a step. Works such as Stumpf and Porter (2012) reason

that without the foundation of a dynamical model, proper statistical analysis and the support of

empirical data, the existence of a power law distribution should not be inferred. However, in the

case of the stochastic CAM noise climate model of Sura and Sardeshmukh (2008) and Sardeshmukh

and Sura (2009), a theoretical basis for the expectation of power laws in SGS pdf tails exists. As

such, an examination of the statistical evidence of power law tails using atmospheric data sets is an

important step towards understanding the frequency of extreme events.
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