Florida State University Libraries

2021

Effectiveness of Two Methods for Teaching Critical Thinking to Communication Science and Disorders Undergraduates

Richard J. Morris, Alexandra Brockner and Sarah Coleman

This is the accepted manuscript, and the publisher's version of record can be found at https://cjslpa.ca/files/2019_CJSLPA_Vol_43/No_1/CJSLPA_Vol_43_No_1_2019_MS_1145.pdf

EFFECTIVENESS OF TWO METHODS FOR TEACHING CRITICAL THINKING TO COMMUNICATION SCIENCE AND DISORDERS UNDERGRADUATES

Richard J. Morris

Alexandra Brockner

Sarah Coleman

Florida State University

Author Note

Richard Morris, School of Communication Science and Disorders, Florida State University, 201 West Bloxham, Tallahassee, FL 32306-1200. 850-644-3352, richard.morris@cci.fsu.edu Alexandra Brockner, Roxelyn and Richard Pepper Department of Communication Sciences and Disorders, Northwestern University, 847-491-4541, aebrockner@gmail.com Sarah Coleman, School of Communication Science and Disorders, Florida State University, 201 West Bloxham, Tallahassee, FL 32306-1200. 850-644-3352, sec14j@my.fsu.edu

Correspondence concerning this article should be addressed to Richard Morris, School of Communication Science and Disorders, 201 West Bloxham, Tallahassee, FL 32306-1200. Contact: richard.morris@cci.fsu.edu

Abstract

The purpose of this study was to evaluate the effectiveness of two methods for teaching critical thinking (CT) skills to communication sciences and disorders students. It was hypothesized that a short course of critical thinking training would result in improved student scores on CT assessments. Also, it was hypothesized that students taught using a mixed instruction method would exhibit more improvement in their CT skills. The research involved a pre- and post-test comparison of students who completed 10 weeks of critical thinking instruction. The students had either a mix of direct instruction of CT concepts with problem-based learning communication sciences and disorders (CSD) examples or infused problem-based learning CT instruction. With CSD based problems. The pre- and post-tests consisted of a general and a content specific CT assessment. All of the students exhibited improved scores on both CT measures. In addition, the students who had the mixed instruction exhibited greater improvements. The greatest improvements for all students occurred for the trained CT skills. These results indicate that both mixed and infused instruction can be effective in teaching students CT skills, however, the mixed instruction was more effective.

KEY WORDS: critical thinking, teaching methods, Communication Sciences and Disorders

Effectiveness of Two Methods for Teaching Critical Thinking to Communication Science and Disorders Undergraduates

An emphasis on evidence-based practice in the teaching and practice of communication sciences and disorders (CSD) in recent years has brought increased focus on the critical thinking (CT) skills of CSD students and professionals. For example, Finn, Brundage, and DiLollo (2016) stated that CT knowledge and skills provide a framework for quality decision making and can be considered a core competency for implementing interprofessional practice. These authors also reported that the American Speech-Language-Hearing Association recognizes that CT knowledge and skills are essential for effective clinical education. Similarly, Gunter and LeJeune (2015) explained that CSD clinicians need CT knowledge and skills in order to develop and maintain ethical practices such as the commitment to maintain and enhance professional competence, accurate representation of information, and accountability for professional standards.

Kamhi (2011) compared researchers in the scientific community with CSD clinicians. He said that researchers are aware of the fallibility of scientific knowledge and the role of the scientific community in determining the reliability, validity, and importance of research findings. In contrast, he stated that most clinicians operate individually when diagnosing and treating clients, so they seldom need to answer questions about their methods or results. Kamhi (2011) indicated that the lack of inquiry within the clinician community lends itself to the development of overconfidence in one's own ability and practices and a lack of recognition for the fallibility of such practices. Thus, clinicians need to be trained to question their clinical practices and to skeptically evaluate new practices that develop. They should develop a consistent, hierarchical, data driven approach to clinical decision making (Kamhi, 1984). Kamhi (2011) suggested that clinicians use Dollaghan's (2007) version of evidence-based practice by incorporating practice-based evidence as a means for skepticism toward their own practices and new ones. Such assessment of evidence and subsequent problem solving is a form of CT.

CT occurs when a person engages in the intentional application of rational and self-regulatory judgement to evaluate information (Abrami, Bernard, Borokhovski, Wade, Surkes, Tamim, & Zhang, 2008; Finn et al., 2016; Gunter & LeJeune, 2015). These cognitive operations require a degree of skepticism, self-discipline and awareness of thinking errors (Abrami et al., 2008). The critical thinker seeks to understand all components of a problem or idea, determines the quality of evidence presented, and creatively explores alternative explanations (Finn et al., 2016; Gunter & LeJeune, 2015). Facione (1990) said that a good critical thinker possesses both the cognitive skills to think critically and the disposition to use these skills in all situations as a means of arriving to an answer. According to Facione's definition, CT requires the acquisition of individual thinking strategies which should then generalize to become one's predisposition.

Finn (2011) discussed the importance of CT to the development of clinical skills in CSD students. He listed interpretation, evaluation, and metacognition as the core CT skills needed among CSD students for more effective thinking about clinical practices. These skills are similar to the abilities reported as essential to CT in other disciplines: analysis, evaluation, self-regulation, the ability to distinguish relevant from irrelevant information, and the ability to pose

questions whose answers will help to broaden and focus ones understanding of an issue (Uba, 2008; Yang & Chou, 2008). This purposeful analysis requires the previously stated skepticism, self-discipline, and awareness of thinking errors (Abrami et al., 2008).

Critical Thinking Instruction

Thus, student and clinician success within and beyond the classroom depends on the teaching and development of CT skills and dispositions (Semerci, 2005; Uba, 2008; Yang & Chou, 2008). However, different concepts of CT instruction result in varying curricular designs and educational approaches within and across disciplines (Thomas & Lok, 2015). In general, two approaches to CT instruction prevail. Some consider these skills as generic abilities that apply across different content areas as a frame of mind (Davies, 2013; Ennis, 1989; Paul, 1985). Proponents of this educational approach state that these skills and dispositions can be taught in stand-alone courses without concern as to the content used to develop them (Royalty, 1995; Sá, Stanovich, & West, 1999). Whereas others state that all thinking is about a specific topic and these thinking skills are used in the context of the specific content (Beyer, 1987; McPeck, 1981). Proponents of this educational approach say that these skills are subject or content dependent and that critical thinking skills are best learned as a component of courses centered on content pertinent to the students' academic interests (Halliday, 2000; Smith, 2002). They believe that learning CT skills and dispositions requires thinking about a topic that the student already understands. A meta-analysis revealed greater effectiveness for teaching CT in a content dependent context (Abrami, Bernard, Borokhovski, Waddington, Wade, & Persson, 2015).

Those who hold a generic skills perspective on CT tend to support explicitly teaching the underlying skills and dispositions. In contrast, those who hold a content based perspective tend to support embedding the CT skills into course content and providing implicit instruction of CT skills. In an implicit setting, developing CT skills is a desired by-product of learning the main course content (Abrami et al, 2008). From these two educational approaches come four instruction techniques: general, infused, immersed, and mixed (Abrami et al. 2008; Ennis, 1985). The general technique involves teaching CT abilities separately from any other subject matter. When using the infused technique, the instructor uses familiar subject matter as the foundation for teaching CT in the context of the material and CT goals are explicitly taught. The immersion technique includes the same teaching structure as the infused method except that the CT goals are not explicitly taught. Finally, when using the mixed technique, the instructor combines the general technique with either the immersion or infused technique (Abrami et al., 2008). Abrami et al. (2008) indicate that the general method of critical thinking instruction occurs in stand-alone classes. In contrast, the immersed, infused, and mixed techniques have aspects that incorporate material from other subjects, so that CT instruction is content dependent. A meta-analysis completed by these authors indicated that the mixed instruction technique worked most effectively (Abrami et al., 2008). Assessment of the effectiveness of CT instruction techniques with CSD students is needed.

An understanding of the teaching techniques can help instructors determine how they might teach CT, but they need to appreciate some of the challenges in this instruction. For example, Thomas and Lok (2015) said that CT skill and knowledge acquisition are necessary but not sufficient for students to use evaluative reasoning and metacognition; the disposition to

utilize CT knowledge and skills consistently is required. Developing these thinking skills and dispositions can appear to be a daunting task for instructors. Therefore, instructors should be aware that defining, assessing, and teaching CT skills and dispositions should be undertaken with the understanding that they will need to be program goals over multiple courses (Wendland, Robinson, & Williams, 2015). Wendland and colleagues (2015) said that when students are developing and utilizing CT skills and strategies they need multiple opportunities to question the information and skills they are taught as well as being encouraged to find alternative perspectives. CSD students need to recognize that a skeptical, inquiring approach to knowledge and situations will help them make better clinical decisions (Apel, 2011: Finn, 2011; Kamhi, 2011).

Suggestions for teaching CT skills and dispositions within a mixed, infused, or immersion technique include pedagogical methods such as problem-based learning (PBL), teambased learning, case presentations, and a variety of mapping activities (Day & Williams, 2000; Dochy, Segers, Johnstone & Otis, 2006; Leahy, Dodd, Walsh, & Murphy, 2006; Mok, Whitehill & Dodd, 2008; Tiwari et al. 2006; Van den Bossche, & Gijbels, 2003; West, Pomeroy, Park, Gerstenberger, & Sandoval, 2000). In addition, using content relevant situation problems and examples promotes development of CT skills (Abrami et al., 2015). Meta-analyses comparing health care student outcomes from PBL and traditional classrooms indicate that PBL is more effective than didactic presentations in the development of psycho-motor, affective, and cognitive skills as well as better learning of clinical skills (Prosser & Sze, 2014; Shin & Kim, 2013). Although the authors of several studies have suggested the aforementioned pedagogical methods to help students develop CT, few data exist that indicate student thinking changes as a result of these techniques. Thus, a need exists to empirically evaluate the effectiveness of these techniques.

However, PBL may be a more effective pedagogical method for instructing advanced students. For example, Shin and Kim (2013) found that graduate nursing students exhibited greater development of CT skills after completing courses using PBL than did undergraduate students who completed similar courses. Likewise, Elliott & Hennessey (2001) described differences in learning styles exhibited by students at the beginning and end of communication disorders study that appear to reflect development of CT skills. Thus, a foundation of both content specific knowledge and CT skills may be needed for PBL activities to be most effective. Also, the purpose and goals of PBL need to be made clear to students. Prosser and Sze (2014) found that their group of students exhibited difficulty grasping the purpose of PBL activities. Thus, the pedagogical method used for CT instruction may need to evolve as the students mature.

Objectives

As previously stated, instructors across academia and in CSD have increased interest in the teaching of CT skills and dispositions. However, few data are available concerning the effectiveness of teaching CT skills in CSD programs. In addition, opinions differ on the best educational approach, instruction technique, and pedagogical method for teaching these skills.

Data on the effectiveness of teaching CT skills in CSD programs are needed. In addition, a comparison of classroom instructional techniques may help guide CSD instructors so that they

can effectively teach CT skills. Thus, this study had two purposes. The first purpose was to determine the effectiveness of a short CT course in improving the CT skills of CSD undergraduate students. It was hypothesized that CT instruction would positively affect the thinking skills of the CSD students. The second purpose was to compare mixed CT instruction with infused CT instruction in a group of undergraduate CSD students. Both of these instruction techniques use the content dependent approach reported to be more effective for teaching CT (Abrami et al., 2015). Based on the findings of evolving thinking skills among students (Elliott & Hennessey, 2001; Shin & Kim, 2014) and the reported need for foundation CT knowledge to develop applied CT skills and dispositions (Davies, 2013), it was hypothesized that the undergraduate students taught via the mixed instruction method would exhibit greater improvement in CT skills.

Methods

The Florida State University Human Subjects Committee approved the study design and the consent form on the 24th of August 2015 with approval number HSC # 2015.15827. The study was completed using the approved design.

Participants

Sixty-seven (1 male, 66 female) undergraduate students aged 18-22 years who were enrolled in a CSD course served as the participants for this study. The students who participated were 67 of the 85 who had applied to and been admitted to a limited access upper division CSD program that required at least a 3.3 grade point average for admission. The other 18 students opted to not participate in the study. The participating students were enrolled in four laboratory sections of a single course. The students enrolled in the sections without knowledge of the study. No attempt was made to control which students enrolled in any of the sections. Therefore, they assigned themselves to the specific sections based on their own personal criteria and the timing of when the sections reached maximum enrollment. This course is taught during the fall semester of the junior year, so the students were in their first semester of CSD undergraduate course work. Only the 85 students enrolled in the course were eligible to participate in the study. At the beginning of the semester each participant signed the approved informed consent form.

Procedures

Figure 1 shows the sequence of procedures to complete the study. As can be seen the students selected a course section, the sections were assigned an instruction method, the pretesting was completed, the CT instruction occurred, and then the post-testing was completed.

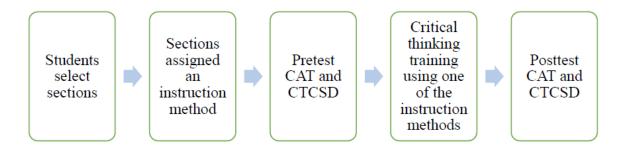


Figure 1. Flow diagram of procedures. The pre- and post-tests were the Critical-thinking Assessment Test (CAT) and the Critical Thinking in Communication Sciences and Disorders (CTCSD).

Instruction techniques and materials. Groups were created by designating two of the sections to engage in a mixed direct and infused instruction technique and two of the sections to engage in an infused instruction technique. A PBL pedagogical method was the infused instruction technique used for both groups. The determination of the instruction approach to use in each course section was made without any knowledge of the enrolled students. Demographic data on the students in the two instruction groups are shown in Table 1. In order to determine if the participants in the two instruction groups were academically equivalent, their grade point averages (GPA) were compared using a t-test. The t-test indicated that the two groups did not differ significantly (t(31)=0.153, p>.05). Thus, for the purpose of this study the students in the two instruction groups were considered to be academically equivalent.

Table 1. Demographic Data of Student Participants for Age, Gender, and Grade Point Average

Instruction Group	Age in Years	Gender	GPA M(SD)	GPA Range
Problem-based learning	g 18–21	31 women	3.73	3.44-4.00
		1 man	(0.15)	
Mixed instruction	19–22	35 women	3.79	3.53-4.00
			(0.18)	

Note. GPA = Grade Point Average.

A designated instructor, author AB, taught the mixed instruction sections. Another instructor, author SC, taught the infused instruction sections. Both instructors were trained by the first author on the pedagogical techniques to use. The CT instruction occurred during ten 50-minute sessions, an introductory session and nine training sessions. The material and clinical cases used during the instruction were unique from those in the tests used to assess the students' CT knowledge and skills.

The topics of CT explicitly addressed during the instruction for this study included logical fallacies and thinking errors, problem-solving, and evaluating causal claims. According to Facione (2015), these instructional topics fall into three of six categorical skills of critical

thinking: evaluation, inferencing, and self-regulation. Examples of evaluation include analyzing the credibility of claims and the facts which support them (Facione, 2015). Examples of inferencing, according to Facione (2015) include drawing conclusions from given information, ruling out conclusions from given information, and considering alternatives. The examples provided for self-regulation include assessing one's own methodology before committing to an answer (Facione, 2015).

The mixed instruction included presentations by the instructor and small group discussions on each of the topics during three 50-minute class sessions. Student evaluations included a set of short answer responses concerning the thinking skills and two concept maps. The concept maps depicted the student thinking on two case studies, one focused on problem solving and the other based on decision making skills.

For example, the training on effective problem solving began instruction on creating a concept map with examples and simple practice problems. Then AB presented a clinical case issue about the IEP of a school-aged child. The students were directed to individually write their solution to the problems in the case; then they were directed to write the thinking procedures they used to solve the problems. After that, they formed groups of two or three students and compared the strategies that they used. Next came a full class discussion of the strengths and weaknesses of the various strategies. Then AB presented an organization for thinking about problem solving based on the writing of Beyer (1987). The students returned to their small groups and compared their strategies to Beyer's. Then a second case was presented that involved an older person with a hearing loss. Again they wrote out how they would solve the problem followed by writing out the thinking process used in developing the solution. They discussed the second case in their small groups. Then AB answered questions that they had about the problem solving strategies and how they could develop a concept map of their problem solving for this case. Then a third case study about a post-cardiac surgery patient with a swallowing problem was presented and the students wrote out their solution to the presented problem. Each student then created a concept map of her problem solving strategy that was submitted for a grade.

The infused instruction included three clinical cases created by the first author. The first clinical case included thinking errors by a parent and clinician for the students to explore. The students were encouraged to develop a problem solving strategy for structuring an evaluation of the communication problem in the second clinical case. Finally, the third clinical case included a variety of professionals discussing the cause of a communication problem. The discussions of the cases were structured with times for dyad, small group, and large group discussion of the cases. The instructor was trained to reflectively respond to the students and to minimize her input to the students' developing CT skills and dispositions. At the end of each section, the groups of students submitted concept maps to represent how they conceptualized the situation. In addition, the students were encouraged to ask questions and to complete independent research to understand each clinical case.

For example, the second clinical case involved a young woman who was having difficulties singing as well as she previously had. The case background included information about vocal demands in her work environment, her singing, and her personal life. During the first session the students read the clinical case and wrote a list of questions/issues. They were then

directed to discuss their questions/issues with two or three other students in the section. The groups of students then provided questions for SC to answer for all of the students in the section. As noted above SC would respond in a manner to help them focus on the problem solving strategies they used, such as, "What was the focus of your thinking when you developed that question? Might there be another way to think about the material that could lead you to a different question?" or "Since that point might not be relevant to solving the issue, how might you approach the case to develop more relevant ideas?" In the next session the focus tended to be on the research students had done on the topic to help them determine appropriate and relevant problem solving strategies. In the third session the students brought their individually concept maps of how they structured the known information, what they still needed to know, and what evaluation tools and methods they would use. They share their concept maps in small groups and discussed their similarities and differences. After SC answered the students' questions and discussed problem solving with them, the students recreated their individual concept maps and submitted them.

Critical thinking assessments. Baseline measurements of the students' CT skills were taken during the first week of class. These same assessments were repeated at the beginning of the following semester to collect post-treatment data. A 60-minute period was allotted for completing each of the CT assessments. The students finished the assessments in 45 to 60 minutes.

Measurements were taken using a general CT assessment, the Critical Thinking Assessment Test (CAT) (Center for Assessment and Improvement of Learning (CAIL), Tennessee Technological University, www.CriticalThinkingTest.org), and a content specific CT assessment, the Critical Thinking in Communication Science and Disorders (CTCSD) (Morris, Gorham-Rowan, Costin, & Scholz, 2014). The CAT contains 15 items, 14 of the items are prompts for short essay responses and 1 is a prompt for mathematical calculation. The 16 items assess four CT skills: evaluating and interpreting information (8 items), problem solving (8 items), creative thinking (6 items), and effective communication (9 items). Four of the items assess evaluating and interpreting information only, one item assesses problem solving only, five of the items assess two of the CT skills, and the remaining six assess three of the CT skills. Performance on the CAT has been shown to be significantly correlated with performance on other tests of critical thinking, the California Critical Thinking Skills Test (CCTST) (r=0.65) and the Critical Think Module of the CAAP (r=0.69) (Stein & Haynes, 2011) indicating the content validity of the CAT. Higher education faculty members from a broad range of disciplines who score the CAT have agreed that the items on the CAT assess CT skills with a range of 80% to 100% agreement for each of the items; thus indicating the face validity of the assessment (Stein & Haynes, 2011). These trained faculty members have a high inter-judge reliability of r=.92 (Stein, Haynes, & Redding, 2007). The items on the CAT exhibited high internal consistency with a Cronbach alpha score of α =0.82 (Stein et al., 2007).

The CTCSD consists of 14 prompts for short answer responses and 2 prompts for mathematical calculations. Table 2 displays the target CT skills for the items in the CAT and CTCSD. Student performance on the CTCSD has been highly correlated with performance on the CAT (r=0.793, p<.01) and on the Ennis-Weir Critical Thinking Essay Test (Ennis & Weir,

1985) (r=0.629, p<.01) indicating the content validity of the CTCSD (Morris et al., 2014). The scorers of the CTCSD had a high inter-judge reliability of r=.95.

Table 2. Skills Targeted by Each Critical-Thinking Assessment Test and Critical Thinking in Communication Sciences and Disorders Assessment Item

CAT Item	CTCSD Item	Target Skill
1	10	Summarize the pattern of results in a graph without making inappropriate inferences
2	1	Evaluate how strongly correlational-type data supports a hypothesis
3	2, 12	Provide alternative explanations for a pattern of results that has many possible causes
4,7	4	Identify additional information needed to evaluate a hypothesis
5	8	Evaluate whether spurious information strongly supports a hypothesis
6	9	Provide alternative explanations for spurious associations
8	11	Determine whether an invited inference is supported by specific information
9	3, 7	Provide relevant alternative interpretations for a specific set of results
10	14	Separate relevant from irrelevant information when solving a real-world problem
11	13	Use and apply relevant information to evaluate a problem
12	6a, 6b	Use basic mathematical skills to help solve a real-world problem
13	5	Identify suitable solutions for a real-world problem using relevant information
14	9	Identify and explain the best solution for a real-world problem using relevant information
15	15	Explain how changes in a real-world problem situation might affect the solution

Note. CAT = Critical-thinking Assessment Test; CTCSD = Critical Thinking in Communication Sciences and Disorders.

The two tests have similar prompt styles and scoring systems. An example of a prompt from the CTCSD is:

In the late 1990s a new modality of treatment for oropharyngeal dysphagia was approved by the FDA. This treatment involves electrical stimulation of the neck muscles via surface electrodes (NMES). Speech language pathologists (SLPs) working in acute care hospitals and rehabilitation facilities have observed that 85% of their patients who received NMES as part of their post-stroke treatment exhibited improved swallow. These SLPs say that NMES is an effective tool for improving swallow function among post-stroke people with dysphagia.

Provide two alternative explanations that might explain the improvements in swallow behavior among these patients.

These prompts were scored on the quality of the explanations and reason underlying the explanations. The scoring on the individual prompts ranged from a two-point 0-1 range for yes/no questions and mathematical calculations to three- and four-point 0-2 and 0-3 ranges for questions like the one above that had a range of 0-3.

Analysis

Once the CT pre- and post-tests were completed, the participants' responses were scored for both assessment tools. The people scoring the two assessments underwent training to develop inter- and intra-judge reliability. For a score to be counted, two scorers had to agree on the points awarded for the written response. If agreement was not reached between the first two scorers, the third scorer read and scored the test item, with the students' scores always requiring that two scorers agree on the score for every item. The faculty members who scored the CAT were trained by instructors from CAIL, who also rescored the test for reliability. The faculty members completing the scoring only knew that the assessments were completed by CSD students and were not aware of this study. For the CTCSD, the first author trained the other two authors until they could consistently score items and report their criteria for the scoring of the responses. When necessary, the first author also served as the third scorer.

Because the scoring of the CAT was done at the university level, the sections of the course could not be separated. Thus, the CAT scores provided information on the CT skills exhibited pre- and post-training, but separate scores were not available for the students who participated in the mixed or infused instruction sections. The CTCSD responses were identified by a participant number only so that the scorers would not know whose responses they were reading. After scores were assigned to all of the completed CTCSDs, the scores were separated between the mixed and infused instruction sections based on a digit in the participant numbers.

To determine any changes in the students' scores Pillai's Trace MANOVA was used. Pillai's Trace was selected because it is regarded as the most powerful and robust of the four MANOVA test statistics (Pillai, 2004). This statistic was completed as part of the SPSS repeated measure ANOVA routine (IBM SPSS Statistics 23, 2015). The between-subjects effect of the repeated measures ANOVA was used to determine any instruction group effect.

Results

The results of the student performance on the CAT provided by CAIL indicated that the students in both instruction groups exhibited significant overall CT skill improvement on the post-test (See Figure 2). The mean total score improved from 16.55 to 19.28 with a p<.001 and an effect size of .62. In addition, CAIL reported improvement on three of the fifteen assessment items (2, 4, and 14), two of which relate to problem solving and one that related to evaluating and interpreting information. The average of the student scores improved from 0.59 to 0.99 with a p<.01 and an effect size of .38 for item 4 and improved from 2.08 to 2.61 with a p<.05 and an effect size of .29 for item 14. For item 2 the average of the students' scores improved from 1.03 to 1.75 with a p<.001 and an effect size of .72. The average student scores for 11 of the other 12 CAT items improved, but not significantly (See Figure 2).

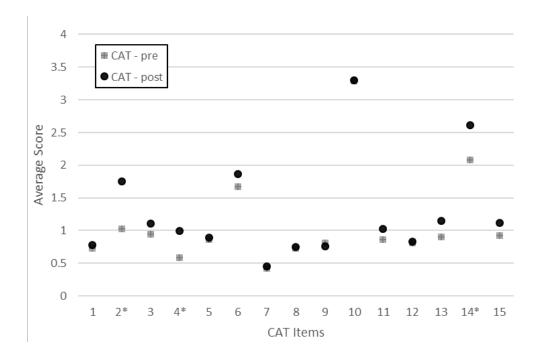


Figure 2. Average Critical-thinking Assessment Test scores from assessments of the participants before and after the training sessions. Item with * significantly improved ($p \le .05$). CTCSD = Critical Thinking in Communication Sciences and Disorders;

Similarly, the students in both instruction groups exhibited an overall improvement on the post-test of the CTCSD in comparison to the pre-test. As shown in Figure 3, the average post-test scores for all but one of the CTCSD prompts (8), was higher than the matched pre-test score. In addition, the average score of the students in the infused instruction group did not change between the pre-test and post-test for one prompt (4). The average post-test scores on the CTCSD were significantly higher than the average pre-test scores as indicated by the Pillai's Trace MANOVA (F(1,63)=199.729, p<.01, η_p^2 =.760). Similar to results for the CAT, the student scores varied among the CTCSD questions, as shown by the Pillai's Trace MANOVA comparison across the assessment items (F(15,49)=86.019, p<.01, η_p^2 =.963) (See Figure 3). The students exhibited the greatest improvements on the CTCSD prompts that were associated with the content of the instruction. This finding indicates an association between participant responses to certain prompts on the CTCSD and the average score differences between the pre- and posttests (F(15,49)=11.959, p<.01, η_p^2 =.785). CTCSD item 6b evaluated the students' mathematical skills. The mean on this item improved from 0.83 to 1.71 among the students in the mixed instruction group and from 0.87 to 1.39 among the students in the infused instruction group with an overall p<.001. Item 12 evaluated their ability to provide alternative explanations for a pattern of results. The mean on this item improved from 1.59 to 2.38 among the students in the mixed instruction group and from 0.84 to 1.97 among the students in the infused instruction group with an overall p<.002. Finally, item 15 evaluated their ability to explain how changes in a problem might affect the solution. The mean on this item improved from 1.11 to 2.53 among the students in the mixed instruction group and from 0.35 to 1.81 among the students in the infused instruction group with an overall p<.001.

Although the specific focus of the items with significant improvement on the CAT and CTCSD differed, the items assessed the students' ability to evaluate and interpret information. The exception was the improvement in mathematical skill on the CTCSD. In general, the greatest student improvements occurred for similar CT skills on both assessments.

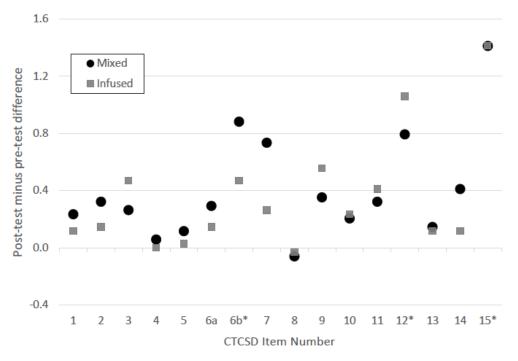


Figure 3. Differences in average Critical Thinking in Communication Sciences and Disorders scores between the assessments of the participants before and after the training sessions for the students who had the mixed instruction and those who had the problem-based learning instruction. Item with * significantly improved (p < .05). CAT = Critical-thinking Assessment Test.

Although the mean scores for both instruction groups improved on the CTCSD post-test, a between-group ANOVA comparison of the two instruction groups revealed that the average of the students' scores in the mixed instruction group exhibited more improvements than those of the students in the infused instruction group (F(1,63)=13.131, p<.01, η_p^2 =.172). The average pre-test to post-test change for the two teaching styles can be seen in Figure 3. The students in the mixed instruction group exhibited greater average pre-test to post-test improvement for nine of the CTCSD prompts (1, 2, 4, 5, 6a, 6b, 7, 13, and 14) the change was the same for one prompt (15), and the students in the infused instruction group exhibited greater average improvements for six of the prompts (3, 8, 9, 10, 11, and 12). In addition, to exhibiting greater improvement for more of the prompts, the students' average scores in the mixed instruction group also showed greater improvement for their individual CTCSD prompt scores (\bar{x} =0.41) than the students in the infused instruction group (\bar{x} =0.35).

The effect sizes for both the main effects as well as the interaction effect were in the high range (Cohen, 1988). This finding indicates that all of the statistical effects explain a high proportion of the observed variability in the data.

Discussion

Effectiveness of Critical Thinking Training

The findings from this study indicate that a ten week course utilizing either a mixed or infused instruction technique can be effective in improving CT skills in CSD students. These results are consistent with the findings from other higher education disciplines of statistically significant CT improvements after instruction using a PBL pedagogical method (Butchart et al., 2009, Casotti, Rieser-Danner & Knabb, 2008, Lombard, 2008, Reynolds et al., 2010).

The responses by the students in both instruction groups indicated a modest improvement in selected CT skills from the instruction. A modest improvement in CT skills corresponds with previous reports of a moderate improvement in CT skills after instruction (Abrami et al., 2015). These results were found in the outcomes of both the general knowledge CAT and the content specific CTCSD. The students exhibited improvements for the assessment items that evaluated the CT skills that were trained during the semester. In contrast, their post-test scores for the other items on both tests improved slightly, but were similar to the pre-test scores. Since the training in both groups targeted similar CT skills, the other items could be regarded as control items. Improvements in the targeted skill items may indicate the effectiveness of the training methods in teaching CT skills to these students. In addition, the contrast between the trained and untrained assessment items reveals that the higher scores were more content specific than general learning or experience would explain. However, the possibility exists that the improvements reflected the acquisition of skills for responding to specific prompts. Thus, the improvements may not indicate a change in generic thinking skills, but specific content knowledge.

As noted previously, the topics of CT explicitly addressed during the instruction for this study included logical fallacies and thinking errors, problem-solving, and evaluating causal claims. These topics are included in three of the six categorical CT skills listed by Facione (2015): evaluation, inferencing, and self-regulation. These CT skills align with the target skills associated with the CTCSD prompts with the greatest post-test improvement: 6b- use basic mathematical skills to help solve a real-world problem (self-regulation), 7- Provide relevant alternative interpretations for a specific set of results (inferencing), 12- provide alternative explanations for a pattern of results that has many possible causes (inferencing, evaluation), 15-explain how changes in a real-world problem situation might affect the solution (inferencing). These findings suggest that the CT instruction was associated with improvements in these students' CT assessment scores. This finding concurs with previous research on the effectiveness of teaching CT skills (Abrami et al., 2008; 2015; Glaser, 1941).

The exception to this pattern was the improvement in mathematical skills exhibited by the students on the CTCSD post-test. This difference may have been a result of increased student comfort with the assessment and reduced test related anxiety.

Effectiveness of Instruction Technique

The results of the instruction technique comparison in this study agree with the previous reports (Abrami et al., 2008; 2015) that the mixed method of instruction is an effective method for initial teaching of CT skills. These findings are similar to those of Stoiber (1991) who found that direct instruction in the use of reflective thinking for solving discipline specific problems

resulted in improved evaluation of information and problem solving skills. These results also indicate that the explicit CT instruction in this study appears to be more effective in teaching these undergraduate CSD students CT skills than the implicit instruction method used with CSD students in the Grillo, et al. study (2015). These authors reported limited improvements in CT skills after PBL instruction. In contrast to Grillo et al.'s (2015) findings, results from other clinical fields also indicate that short-term PBL instruction is associated with improved CT skills (Choi, Lindquist, & Song, 2014; Coker, 2010; Macpherson & Owen, 2010; Oja, 2011). More research is needed on the effectiveness of all CT pedagogical methods when teaching CSD students. Future studies can use the examples of undergraduate and graduate CSD courses provided by Finn and colleagues (2016). These authors also reported a variety of pedagogical methods designed for CSD students to improve CT skills (Finn et al., 2016).

As previously noted, an infused or immersed technique of PBL instruction without direct CT instruction may not be the best method when teaching new content (Butchart et al., 2009, Casotti et al., 2008, Lombard, 2008, Reynolds et al., 2010). Participants in this study, like those in other studies that successfully used PBL (Butchart et al., 2009), expressed concern about their difficulties in determining what was expected of them and the lack of confidence they felt when completing the concept maps.

Limitations

The participants in this study may have been influenced by outside factors, such as the CSD content in other courses. At the beginning of the study they had no formal CSD training and may have only known of CSD treatments through family members or generally available internet/media information. This particular effect may be seen in the improvement of CTCSD item 15 whose target skill was to explain how changes in a real world problem might affect the solution. Item 15 centered on hearing loss and amplification, and at the time of post-test administration the participants were enrolled in an Introduction to Audiology course. The content that the students learned in the other course may have informed their answers more than the CT instruction. A time-series type of study with a sequence of CT skills taught over a series of semesters could be a way to more thoroughly evaluate the effectiveness of teaching CT skills.

Another possible issue with this study could be the competence of the instructors. The improvements on the prompts that addressed inferencing skills with little change for the prompts that addressed interpretation and analysis could imply that the instruction was varied in quality as a result of the instructor's own CT strengths or weaknesses. Although the instructors were trained on the methodology used for this study, no assessment was given to gauge their skills. Previous work indicates that instructor quality affects CT instruction effectiveness (Abrami et al., 2008).

A third limitation of the study was that AB and SC were both instructors and scorers of the CTCSD. Although the CTCSD responses were identified only by a participant number, AB and SC knew the numbering scheme and could identify the participant's section. However, as reported above, AB and SC exhibited high inter-judge reliability. Thus, they did not exhibit a tendency to score the participants from their sections higher than they scored the other participants. In the future it will be better to have scorers who have no other involvement with the study and do not know the training group of the participant.

Finally, since the CAT and CTCSD have a similar structure they may assess the same aspects of CT skills. Pairing these assessments with one that has a different structure, such as the CCTST might improve the validity of the findings. Also, future studies involving CT assessment of CSD students should include a qualitative analysis of student opinions concerning the CT training and assessment.

Critical Thinking and Communication Sciences and Disorders Training

Further research is required to demonstrate the effectiveness of CT instruction in CSD programs and to more clearly define the relationship between specific methods of CT instruction and improved CT skills among CSD students. Such studies could include a longer course of training and use of other pedagogical techniques.

Critical thinking skills are vital to speech-language pathologists and audiologists as they provide a quality thinking structure to assist in the decision making and problem solving involved in the evaluation and treatment of clients through the identification and evaluation of relevant information. As Orlikoff, Schiavetti, and Metz (2015) stated, critical thinking is a fundamental aspect of clinical practice in communication disorders. By working to improve these thinking skills and dispositions through targeted classroom activities, the students can hone their ability to reevaluate their thought processes and pieces of relevant information in order to solve a clinical problem. By doing so, they can be better prepared to make accurate diagnoses and create appropriate treatment plans. The improvement of these skills should help these students become clinicians who recognize the need to be current in their understanding of communication disorders as well as the evaluation and treatment of the disorders. With these thinking skills and attributes they should be willing and able to work and re-work complex clinical problems until they find the most functional solutions for their clients.

The pedagogical aspect of results from the current and previous studies indicate a sequence of instruction to help students develop their CT skills and dispositions (Bailin & Battersby, 2015; Byrnes & Dunbar, 2014; Shin & King, 2013; Wendland et al., 2015). These results indicate that a mixed instruction method may be the better method for an initial course in which students directly learn CT skills. Future research may reveal that the PBL pedagogical approach may be more effective in a subsequent course to help the students develop their CT skills into CT dispositions. In addition to the sequencing of CT courses for better student learning, instructors should be aware that students often have difficulty grasping the purpose of PBL activities. Therefore, the instructor needs to invest time explaining how PBL works in order to increase the effectiveness of the course (Prosser & Sze, 2014).

In conclusion, the pursuit to advance CT instruction for CSD students has achieved significant notice but needs wider implementation. The present and past studies indicate teaching strategies and techniques associated with improved CT assessment scores. As the need for these skills have been established, routine implementation of CT instruction in CSD programs is the logical next step (Finn, 2011). The current study provides evaluation of two teaching strategies for implementing Finn's suggestion. Further studies of CT teaching strategies in CSD courses should provide improved understanding of the methods to improve thinking strategies among CSD students. Improvements in thinking strategies can be a tool for the increased scientific and skeptical thinking that Kahmi (2011) suggested for improved clinical effectiveness.

References

- Abrami, P. C., Bernard, R. M., Borokhovski, E., Wade, A., Surkes, M. A., Tamim, R., & Zhang, D. (2008). Instructional interventions affecting critical thinking skills and dispositions: A stage 1 meta-analysis. Review of educational research, 78(4), 1102-1134. http://www.jstor.org/stable/40071155
- Abrami, P., Bernard, R., Borokhovski, E., Waddington, D., Wade, A., & Persson, T. (2015). Strategies for teaching students to think critically: A meta-analysis. Review of Educational Research, 85 (2), 275-314.
- Apel, K. (2011). Science is an attitude: A response to Kahmi. Language, Speech, and Hearing Services in Schools, 42, 65-68.
- Bailin, S., & Battersby, M. (2015). Teaching critical thinking as inquiry. In The Palgrave handbook of critical thinking in higher education (M. Davies & R. Barnett, Eds.). New York: Palgrave MacMillan (pp. 123-138).
- Beyer, B. K. (1987). Practical strategies for the teaching of thinking. Boston, MA: Allyn and Bacon.
- Butchart, S., Forster, D., Gold, I., Bigelow, J., Korb, K., Oppy, G., & Serrenti, A. (2009). Improving critical thinking using web based argument mapping exercises with automated feedback. Australasian Journal of Educational Technology, 25(2), 268-291.
- Byrne, J. & Dunbar, K. (2014). The nature and development of critical-analytic thinking. Educational Psychology Review, 26, 477-493. doi: 10.1007/s10648-014-9284-0.
- Casotti, G., L. Rieser-Danner, & Knabb. M.T. (2008). successful implementation of inquiry-based physiology laboratories in undergraduate major and non major courses. How We Teach, 32, 286-96.
- Choi, E., Lindquist, R., & Song, Y. (2014). Effect of problem-based learning vs traditional lecture on Korean nursing students' critical thinking, problem-solving, and self-directed learning. Nurse Education Today, 34(1), 52-56. doi: 10.1016/j.nedt.2013.02.012
- Coker, P. (2010). Effects of an experiential learning program on the clinical reasoning and critical thinking skills of occupational therapy students. Journal of Allied Health, 39(4), 280-286.
- Davies, M. (2013). Critical thinking and the disciplines reconsidered. Higher Education Research & Development, 32(4), 529-544. DOI: 10.1080/07294360.2012.697878
- Day, R. A., & Williams, B. (2000). Development of critical thinking through problem-based learning: A pilot study. Journal on Excellence in College Teaching, 11, 203–226.
- Dochy, F., Segers, M., Van den Bossche, P., & Gijbels, D. (2003). Effects of problem-based learning: A meta-analysis. Learning and Instruction, 13, 533–568.
- Dolloghan, C. A. (2007). The handbook for evidence-based practice in communication disorders. Baltimore, MD: Brookes.
- Ennis, R. H. (1989). Critical thinking and subject specificity: Clarification and needed research. Educational Researcher, 18 (3), 4-10.

- Elliott, J., & Hennessey, N. (2001). Scratching the surface: Speech and Hearing Science students and their approach to learning. In A. Herrmann, & M. M. Kulski (Eds.), Expanding horizons in teaching and learning. Proceedings of the 10th Annual Teaching and Learning Forum, 7–9 February 2001. Perth: Curtin University of Technology [Electronic version]. Retrieved August 6, 2013, http://lsn.curtin.edu.au/tlf/tlf2001/elliott.html
- Ennis, R., & Weir, E. (1985). The Ennis-Weir Critical Thinking Essay Test. Pacific Grove, CA: Midwest Publications.
- Facione, P. A. (1990). Executive summary: Critical thinking: A statement of expert consensus for purposes of educational assessment and instruction. Millbrae, CA: The California Academic Press. Electronic version retrieved January 15, 2016 from https://assessment.trinity.duke.edu/documents/Delphi_Report.pdf
- Finn, P. (2011). Critical thinking: Knowledge and skills for evidence-based practice. Language, Speech, and Hearing Services in Schools, 42, 69-72.
- Finn, P., Brundage, S., & DiLollo, A. (2016). Preparing our future helping professionals to become critical thinkers: A tutorial. Perspectives of the ASHA Special Interest Groups SIG10, 1, 43-68.
- Glaser, E. M. (1941). An experiment in critical thinking. New York, NY: Teachers College, Columbia University. Contributions to education, no. 843.
- Gunter, C. D., & LeJeune, J. B. (2015). Critical thinking in clinical practice in speech-language pathology. Dubuque, IA: Kendall Hunt Publishing Company.
- Halliday, J. (2000). Critical thinking and the academic vocational divide. The Curriculum Journal, 11, 159-175. DOI: 10.1080/09585170050045182
- IBM Corp. (2015). IBM SPSS Statistics for Windows, Version 23.0. Armonk, NY: IBM Corp.
- Kamhi, A. (1984). Problem solving in child language disorders: The clinician as clinical scientist. Language, Speech, and Hearing Services in Schools, 15, 226–234. Doi: 10.1044/0161-1461.1504.226
- Kamhi, A. (2011). Balancing certainty and uncertainty in clinical practice. Language, Speech, and Hearing Services in Schools, 42, 59-64. doi: 10.1044/0161-1461(2009/09-0034).
- Leahy, M. M., Dodd, B. J., Walsh, I. P., & Murphy, K. (2006). Education for practice in the UK and Ireland: Implementing problem-based learning. Folia Phoniatrica et Logopaedica, 58, 48–54.
- Lombard, B.J. (2008). Modelling Critical Thinking through Learning-oriented Assessment. South African Journal of Higher Education 22, 1029-1038. Print.
- Macpherson, K., & Owen, C. (2010). Assessment of critical thinking ability in medical students. Assessment & Evaluation in Higher Education, 35(1), 45-58. doi: 10.1080/02602930802475471
- McPeck, J. (1981). Critical thinking and education. New York, NY: St. Martin's Press.

- Mok, C., Whitehill, T., & Dodd, B. (2008). Problem-based learning, critical thinking and concept mapping in speech-language pathology education: A review. International Journal of Speech-Language Pathology, 10(6). 438–448.
- Morris, R. J., Gorham-Rowan, M. M., Coston, J., Scholz, K. (2014, Nov.). Evaluating and Teaching Causal Reasoning Skills to Determine Critical Thinking among CSD Students. Paper presented at the annual meeting of the American Speech-Language-Hearing Association. Orlando, FL.
- Oja, K. (2010). Using problem-based learning in the clinical setting to improve nursing students' critical thinking: An evidence review. Journal of Nursing Education, 50(3), 145-151. doi: 10.3928/014834-20201230-10
- Orlikoff, R., Schiavetti, N., & Metz, D., (2015). Evaluating research in communication disorders. Seventh edition. Boston, MA: Pearson Education, Inc.
- Paul, R. (1985). The critical thinking movement: A historical perspective. National Forum: Phi Kappa Phi Journal, 42, 2-3.
- Pillai, K. C. S. (2004). Multivariate analysis of variance. Encyclopedia of statistical science (S. Kotz, C. Read, N. Balakrishnan, & B. Vidakovic, Eds.). John Wiley & Sons. DOI: 10.1002/0471667196
- Prosser, M., & Sze, D. (2014). Problem-based learning: Student learning experiences and outcomes. Clinical Linguistics & Phonetics, 28(1–2), 112–123. doi: 10.3109/02699206.2013.820351
- Reynolds, J., & Hancock, D. (2010). Problem-based learning in a higher education environmental biotechnology course. Innovations in Education and Teaching International, 47(2), 175-186.
- Royalty, J. (1995). The generalizability of critical thinking: Paranormal beliefs versus statistical reasoning. The Journal of Genetic Psychology, 156, 477-488.
- Sá, W. C., West, R. F. & Stanovich, K. E. (1999). The domain specificity and generality of belief bias: Searching for a generalizable critical thinking skill. Journal of Educational Psychology, 91(3), 497-510. doi: 10.1037/0022-0663.91.3.497
- Semerci, N. (2005). The Effects of Problem-Based Learning on the Academic Achievement of Students in Development and Learning. International Journal of Educational Reform, 14(4), 415-423.
- Shin, I.-S., & Kim, J.-H., (2013). The effect of problem-based learning in nursing education: A meta-analysis. Advances in Health Science Education, 18, 1103–1120. doi: 10.1007/s10459-012-9436-2
- Smith, G. (2002). Are there domain specific thinking skills? Journal of Philosophy of Education, 36, 207-227.
- Stoiber, K. C. (1991). The effect of technical and reflective preservice instruction on pedagogical reasoning and problem solving Journal of Teacher Education, 42, 131-139.

- Stein, B. & Haynes, A. (2011). Engaging faculty in the assessment and improvement of students' critical thinking using the Critical Thinking Assessment Test, Change: The Magazine of Higher Learning, 43, 44-49, DOI: 10.1080/00091383.2011.550254
- Stein, B., Haynes, A., & Redding, (2007). Project CAT: Assessing critical thinking skills. In Proceedings of the National STEM Assessment Conference 2006, NSF and Drury University. (D. Deebs & B. Callen, Eds.), Washington DC, 290-299.
- Thomas, K., & Lok, B. (2015). Teaching critical thinking: An operational framework. In The Palgrave handbook of critical thinking in higher education (M. Davies & R. Barnett, Eds.). New York: Palgrave MacMillan (pp. 93-105).
- Tiwari, A., Chan, S., Wong, E., Wong, D., Chui, C., Wong, A., & Patil, N. (2006). The effect of problem-based learning on students' approaches to learning in the context of clinical nursing education. Nurse Education Today, 26, 430–438.
- Uba, L. (2008). A deconstructive pedagogy. Journal of Excellence in College Teaching, 19(1), 103-125.
- van Gelder, T. (2015). Using argument mapping to improve critical thinking skills. In The Palgrave handbook of critical thinking in higher education (M. Davies & R. Barnett, Eds.). New York: Palgrave MacMillan (pp. 183-192).
- Wendland, M., Robinson, C., & Williams, P. (2015). Thick critical thinking: Toward a new classroom pedagogy. In The Palgrave handbook of critical thinking in higher education (M. Davies & R. Barnett, Eds.). New York: Palgrave MacMillan (pp. 153-168).
- West, D. C., Pomeroy, J. R., Park, J. K., Gerstenberger, E. A., & Sandoval, J. (2000). Critical thinking in graduate medical education: a role for concept mapping assessment? Journal of American Medical Association, 284, 1105–1110.
- Yang, Y., & Chou, H. (2008). Beyond critical thinking skills: Investigating the relationship between critical thinking skills and disposition through different online instructional strategies. British Journal of Education Technology, 39(4), 666-684. doi: 10.1111/j.1467-8535.2007.00767.x

Author Notes

The authors of this manuscript have no real or potential conflicts of interest relative to the material within it.