Effects Of Interface Area Density And Solid Solution On The Microhardness Of Cu-nb Microcomposite Wires

Liping Deng, Zhifeng Liu, Bingshu Wang, Ke Han and Hongliang Xiang

The publisher's version of record is available at https://doi.org/10.1016/j.matchar.2019.02.002
Effects of interface area density and solid solution on the microhardness of Cu-Nb microcomposite wires

Liping Deng1* Zhifeng Liu1 Bingshu Wang2 Ke Han3 Hongliang Xiang1*

1School of Mechanical Engineering and Automation, Fuzhou University, Fuzhou 350116, China
2College of Materials Science and Engineering, Fuzhou University, Fuzhou 350116, China
3National High Magnetic Field Laboratory, Tallahassee, FL 32310 USA

Abstract

Cu-Nb microcomposite wires drawn to different strain values were studied by scanning electron microscopy and transmission electron microscopy. The interface shows a typical Kurdjumov-Sachs relationship with a deviation angle of 12°. This deviation accommodates the internal stresses and slip discontinuity between Cu and Nb. The dislocations mainly stored around the interface nearby the Cu matrix. Lattice distortion occurred nearby the interfaces where Nb is believed to mix into Cu matrix. Both the interface area density as well as the the lattice distortion induced by solid solution and strains effect the microhardness.

Key Words: Cu-Nb microcomposite wires, interface, solid solution, microhardness

1. Introduction

Cu alloys and composites with high electrical conductivity and high mechanical strength has shown wide promise in many fields [1-4]. The Cu-Nb composite is a special system which shows a good combination of high electrical, high thermal conductivity and high strength as well as limited grain growth at high temperatures [5, 6]. These characters allow the composites to be applied in many fields, such as
defense and military, magnets building and aerospace industry. The accumulative
drawing and bundling (ADB) process [3, 7], which has been proposed for decades and
can subjected to more strain, introduces a more linear, continuous and uniform
distribution of Nb ribbons, and correspondingly a higher conductivity and strength as
compared to those in in situ Cu-Nb composite wires. Either in the in situ wires or
non-in situ wires, the interface has been proved to be of great importance on the
properties including mechanical, electrical and magnetic properties [1, 8-11]. The
high interface area density obtained after severe plastic deformation leads to
enormous hardening far beyond the values estimated by Hall-Petch relationship, and
the effect of the interface area density on the hardness has been given quantitatively [5,
12].

Based on the Cu-Nb binary phase diagram, the mutual solubility between Cu and
Nb is negligible (<0.1 at.%) [13, 14]. This should be true not only for in situ wires,
but also for ADB wires. However, for mechanical alloyed Cu-Nb, which can be
treated as in situ composites, ball milling process has been proved to allow immiscible
elements to form supersaturated solid solution. The solid solubility can be up to 10
at.% Nb dissolved into the Cu matrix, inducing strengthening to the composites
[15-17]. Kapoor et al. reported that Nb solid content can contribute up to 50% of the
strength in mechanical alloyed Cu-Nb [18], where lattice distortion can be observed
due to the differences in the radii of component atoms [12, 19]. Jia et al. [20-23]
stated that the strength of Cu-Nb composite wires is mainly related to the sizes of the
phases, the grain orientation and the Cu-Nb interface structure. The limited solid
solution was mainly found to occur around the Cu-Nb interfaces and has not been observed obviously or widely in these non-in situ Cu-Nb systems. For Cu-Nb composites fabricated by processes other than mechanical alloying, such as accumulative drawing/rolling and bundling (ADB/ARB) Cu-Nb composites, many works have focused on the strength or hardness, and the interface is considered as a vital factor on the properties [1, 24, 25]. Theoretically, the supersaturation of Nb into Cu could induce solid solution hardening as well as the lattice stresses, and the strength or hardness increases up to a level higher than that in the systems without solid solution. Since the solid solution is often neglected in most work due to the limited thermodynamics driving force, and thus, the solid solution has been so little coverage of the reports in ADB/ARB Cu-Nb composites. The effects of the solid solution on the microstructure, properties and the mechanism are still not understood well.

In the present paper, the interface density and the solid solution induced by the severe plastic deformation were examined and it will be shown how solid solution occurs during the deformation and affects the microhardness.

2. Experimental

The studied Cu-16%Nb (vol. percentage) microcomposite wires were fabricated by accumulative drawing and bundling (ADB) process. The first stage is inserting a high pure Nb rod into an oxygen free high conductivity Cu tube, followed by series of hot extrusion, cold drawing and bundling cycles repeated 4 times. The processing details can be found in previous work [26, 27]. The wires were subjected to
accumulate strains (n) of 24.8, 26.0 and 26.4 respectively. The microstructure examination was carried out at a Zeiss Supra 55 scanning electron microscope (SEM) at an accelerating voltage of 15 kV. The SEM samples were etched in a solution of 20% nitric acid in 80% deionized water. The interface area density was determined from several cross sectional SEM images and the method has been illustrated in our previous work [12] and is also given in Appendix I. Meanwhile, the longitudinal section microstructure was examined by a JEM 2011 transmission electron microscope (TEM) operating at 200 kV. The TEM sample was prepared mechanical polishing followed by ion milling. X-ray diffraction (XRD) measurements were conducted on the longitudinal sections between 30° and 65° at room temperature by an X’pert3 diffractometer with a Cu target. 12 Vickers microhardness values were obtained for each sample on a THV-MDTe hardness machine with a 100 g load and a 10 s holding time. The averages were used for analyses.

3. Results and discussion

In both cross sectional and longitudinal sectional images (Fig. 1), the bright areas refer to Nb ribbons and the dark ones present Cu matrix which has been removed during acid etching. It can be seen that both the longitudinal and cross sectional morphology show little changes as the strain rises. From the longitudinal view, all the Nb ribbons in the three samples remain straight and parallel to the axis direction (or wire axis, AD). In cross sectional view images, they remain curling morphology and there are very little changes in curling level which would have gone unnoticed. On one hand, this curling morphology is reported to be related to not only the
deformation mechanism of Nb but also the present of Cu-Nb interfaces [27]. On the other hand, the average thickness of Nb ribbons are measured to decrease from 210 nm to 59 nm and then 39 nm for the wires with accumulative strains of 24.8, 26.0 and 26.4, respectively. This decrement could be accompanied by more severely curling and internal stress. This curling with small radii of curvature manifests the presence of large elastic stresses [28].

Fig. 1 Longitudinal section ((a)–(c)) and cross section ((d)–(f)) images: (a) and (d), $\eta = 24.8$; (b) and (e), $\eta = 26.0$; (c) and (f), $\eta = 26.4$. AD refers to axis direction. Some of the Nb ribbons were broken off due to the ultrasonic vibration during sample cleaning, leaving behind Nb tips.

The interface area density, which plays a critical role on the mechanical properties and can be defined to characterize the change of the curling of Nb ribbons [12, 29, 30], goes up with the strain increasing and Nb size decreasing (Fig. 2). Here, the Nb size refers to the average widths of Nb ribbons. The hardness evolution at different strains shows a similar tendency as that of interface area density (Fig. 2). This indicates a
link between hardness and interface area density. The interface area density increases sharply when the strain goes up above 17.7, and so is the hardness. It is believed that the materials with nanocrystals are significantly stronger than conventional grain size materials [31]. In previous work [27], it is found that the interface area density increases markedly when the Nb size is reduced to submicro or nano range. It has also been stated that for the case of most nanostructured materials produced by severe plastic deformation where the microstructure size decreased to a few hundred nanometers, the typical Frank-Read dislocation source may no longer exist [4]. In other words, the submicro or nano sized Nb is probably not large enough for dislocations [32, 33]. Thus, this induces the sharp growth in HV values and nearly no dislocation accumulation should be observed inside the Nb ribbons.

Fig. 2 Development of interface area density (Sv) and hardness (HV) at different strains. The data for samples with strains below 24.8 were obtained from our previous work [34].

As stated above, the hardness in the present work changes significantly as the strain/Sv rises or the Nb size decreases. Our previous work indicated that the hardness of the Cu-Nb composite wires is significantly dependent on and can be expresses by the Cu-Nb interface area density as well as the Nb size [12]. A model concerning
interface density as the variable for modifying the H-P formula was proposed to evaluate the effect of microstructure dimensions on the microhardness. It is stated that the mirohardness increased with the interface density increasing. As far as this study is concerned, the model is effective although with allowed errors. Thus, with both the size effect and the interface area density being taken into consideration, the estimated hardness can be obtained for our wires, as the red curve displayed in Fig. 3. The black open diamond curve presents the experimental data. As can be seen that the estimated values show little change as the strain increases. While, the tested data display obvious changes, especially at strains over 17.7. For the samples below 17.7, the sizes of both Cu matrix and Nb ribbons are quite beyond nano range (above 3.8 μm [34]); the Cu-Nb interface density is expected to rise slowly as the strains increases [12]. For those beyond 17.7, the sizes reach nanoscale where size effect becomes significant; on the other hand, the interface density grow quickly with increasing strains, and the interface-dislocation reactions, pinning of dislocation at interfaces as well as single dislocation propagation for interface distance dominate, resulting the noticeably increment of mirohardness [35]. It is to be noted that the estimated values don’t match well with the tested values, especially for those at strains above 10. For these wires, the tested values are higher than the estimated ones, and the higher the strains, the more the deviation. It’s also worth noting that the estimation is only reasonable for the wires with low strains where the strengthening effect mainly consists of work hardening and size-effect hardening. While, in the present work, the wires underwent strains up to 24.8, which is much higher than those in the Ref [12]. This differences
are so striking that other strengthening mechanism, such as solid solution effect, is suggested to be taken into account.

Fig. 3: Hardness evolution as a function of strains. The major figure shows the evolution with a broken HV range from 90 to 220, and the inset shows a full curve of the evolution. The black open diamonds are data from the experimental values and the red solid circles are data from calculations.

Fig. 4 shows the XRD patterns of the samples with different strains. Both Cu and Nb peaks can be observed and the three patterns show clear differences. In Fig. 4(a) the Cu peaks shift toward lower diffraction angle as the strain goes up while the Nb peaks toward higher angles. This peak shifts to lower angle correspond to an increase of the lattice parameter of Cu matrix and that to higher angle corresponds to a decrease of the lattice parameter of Nb ribbons. This changes in lattice parameters of both Cu and Nb are also shown in Fig. 4(b) where the lattice constant of Cu increases with the increment of strains and that of Nb decreases. Besides, it is shown in Fig. 4(a) that the deformation broadens the XRD peaks due to the refinement of the grains and the introduction of lattice strain [36]. These two factors induce the lattice constants to deviate from the standard ones, and the deviations are mainly attributed to the severe
plastic deformation, the solid solution [37, 38] and lattice distortion (Han, 2004 #7764). The more the deformation, the more the lattice distortion and then the more the peak shifts. In addition, the solid solution hardening and the lattice distortion are suggested to associate with the supersaturation of Nb into Cu matrix, and this is believed to contribute the high strength of Cu-Nb [36].

Fig. 4 XRD data. (a) XRD patterns of the wires with different levels of strain at 24.8, 26.0 and 26.4; (b) development of lattice constants of Cu matrix and Nb ribbons under different strains.

For better observation of the lattice distortion and solid solution, TEM as well as high resolution transmission electron microscopy (HRTEM) technologies were applied on the sample with a strain of 24.8, and the results are shown in Fig. 5. Low magnification TEM image (Fig. 5(a)) shows Nb ribbons and Cu matrix in ribbon shapes with a width of about 50-150 nm in alternant arrangement. The inset is the selected area electron diffraction pattern showing a quite parallel relationship of \(<011>\)Nb and \(<111>\)Cu. Fig. 5(b) shows one HRTEM image resolving the atomic structure between Cu and Nb grains as well as the interface. The corresponding fast Fourier transform (FFT) patterns are inserted, in which (111) and (002) type reflections for the [110]Cu incident beam and (011) type reflection for the [111]Nb
incident beam were observed. This implies a typical Kurdjumov-Sachs relationship of \{110\}<111>Nb//\{111\}<110>Cu. Fig. 5(c) is an inverse fast Fourier transformation (IFFT) image showing the structure of the rectangle region in Fig. 5(b) and resolving the Cu-Nb interface microstructure. It can be seen that the interface (shown by the dashed lines in Fig. 5(c)) is somewhat disordered region in ~2-3 nm wide, separating the Cu matrix and Nb ribbons with a typical Kurdjumov-Sachs relationship of \{110\}<111>Nb//\{111\}<110>Cu at the interface as well. While, the angle deviation (about 12°) between the planes of (111)Cu and (011)Nb (or the directions of <111>Cu and <011>Nb) is much higher than that (about 1.8°) in Fig. 5(a), which is so large that it would induce a significant distortion of lattice around the interface in order to accommodate or relief the internal stress. This has been confirmed by the peak shifts and lattice changes in Fig. 4. Meanwhile, in the IFFT image in Fig. 5(c), the spacing between (111) planes in Cu is 0.2168 nm, and that for (011) in Nb is 0.2447 nm. The latter is about 1.13 times the former. While, for an ideal structure, the ratio of the interplanar spacing of (011)Nb over (111)Cu is 1.12. This discrepancy indicates that, in [111]Cu, the internal stresses are in tension and in [011]Nb the internal stresses are in compression. In some region of the interface, e.g. in the white ellipse in Fig. 5(c), Cu and Nb lattices seem to be overlapped because of the inclined interface with respect to the beam. It seems that the defect storage occurs at the interface and the co-deformation between Cu and Nb may induce distortion between these two phases. After severe plastic deformation, the Cu-Nb interfaces are expected to be semi-coherent with a few misfit dislocations [7]. In our sample, several misfit
dislocations (∐ symbols) near Cu side can be observed, as shown in Fig. 5(c). While, in Nb ribbons, there is no dislocation observed. This is mainly due to the slip discontinuity and the lattice misfit between Cu and Nb, and the small size of Nb ribbons in the samples. These cause the dislocation transmission across the Cu-Nb interfaces to be particularly difficult [4, 32, 33]. Meanwhile, the glide of dislocations in Cu towards the interface is more energetically favorable than that for the case of the dislocations in Nb, and dislocation transmission from Cu to Nb has not been found even at a high enough strain [32]. Thus, more dislocations pile up in the interfaces nearby the Cu matrix.

Around the interface, some regions with disordered crystallographic lattice structure can be observed. Examples are shown by the white rectangle and the circle in Fig. 5(c). This is suggested to be the regions where Nb atoms dissolved into Cu matrix during the severe plastic deformation. Near this region, small area with atoms arranging differently can be observed, as marked by the red tetragon I in the top-left corner. This distorted region extends to distances larger than those regions (red tetragon areas II and III) expected from a local distortion caused by a single misfit dislocation [39]. It stands a good chance that the solved Nb into Cu may induce this distortion after the severe plastic deformation. Distortion, on the other hand, can also results in dissolution of Nb in Cu. Goog et al. [40] and Raabe et al. [41] have reported that the solution between Cu and Nb took place when the phases underwent deformation-induced mixing although with the absence of thermodynamics driving force, and the solubility was found to be far beyond the equilibrium. They also
proposed the trans-phase dislocation-shuffling mechanism for the mixing of Cu and Nb phases. During severe plastic flow the lattice dislocations penetrate the interfaces nearby Cu phase, promoting certain atoms into the neighboring phase and misfit dislocations into the interface, leaving the chemical mixing as well as the disordered and distorted regions as the red tetragon area I shown in Fig. 5(c). Attributed to the disordered interface developed by plastic deformation and the fact that the dislocation movement occurs on essentially every lattice plane, those dislocations deriving from Cu would store predominantly around or at the interface rather than penetrate the interface to Nb ribbons [32, 42-44]. On the other hand, the slip discontinuity introduces dislocation transmission particularly difficult [32] and results in dislocations storing around the interface as well as more atoms pushed into the interfaces, leaving the disordered, wide and blurred interface. Both the interfaces, and these disordered and distorted regions induced by solid solution are believed to be able to effectively hinder the dislocation slip, making a contribution to the microhardness.

Fig. 5 TEM and HRTEM images of Cu-Nb microcomposites at a strain of 24.8. (a) bright field image with the selected area electron diffraction pattern; (b) HTREM image with corresponding
FFT patterns of both Cu matrix and Nb ribbons; (c) inverse fast Fourier transformation (IFFT) image corresponding to the rectangle region in Fig. 5(b); the approximate interface positions are indicated by white broken lines.

Conclusions

Both the microstructure and the microhardness of the ADB Cu-Nb wires show changes as a function of the strains. The interface area density as well as the solid solution effect were suggested to account for the changing of microhardness. The main results can be drawn as follows:

(1) The interface area density and the microhardness increase with almost the same trend as the strain increases. While, the estimated microhardness values show much lower than the tested ones when the samples subjected to high strains. Solid solution effect is suggested for the discrepancy.

(2) The XRD results imply lattice distortion in all the samples and the higher the strain the more the distortion. The solid solution hardening and the lattice distortion are suggested to associate with the penetration of Nb into Cu matrix.

(3) In regions nearby the Cu-Nb interface, both penetration of Nb into Cu matrix and local distortion were observed. The solid solution as well as the high interface density essentially induce the high microhardness and the great deviation in angle between the planes of (111)Cu and (011)Nb at the interfaces.

Acknowledgement

This research was funded by the National Natural Science Foundation of China (No. 51601039), the Natural Science Foundation of Fujian Province of China (No.
2016J05119), and Major special project of Fujian science and technology program (No. 2017HZ0001-2). A portion of this work was also supported by the National High Magnetic Field Laboratory through US National Science Foundation Cooperative Agreement (No. DMR-1157490) and Fujian Provincial Collaborative Innovation Center for High-end Equipment Manufacturing.

Data availability

The raw/processed data required to reproduce these findings cannot be shared at this time due to technical or time limitations.

References

[26] L. Ming, Study on fabrication and properties of CuNb(Sn) materials for high field magnet, Northwestern Polytechnical University, 2010.

