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ABSTRACT 

 

Snow, another precipitation form besides rain, affects the Earth’s climate distinctly by 

modifying hydrological and radiative processes. The radiative properties of nonspherical 

snowflakes are much more complicated than their spherical counterparts, raindrops. Snowflakes 

with different structures tend to have different scattering properties. Thus it is important for us to 

enhance the knowledge in falling snow. However, only a few sensors have been available so far 

that can provide global snowfall measurements including those onboard he Global Precipitation 

Measurement (GPM) core observatory and the CloudSat satellites. The GPM satellite carries two 

important instruments for studying snow precipitations, i.e., the Dual–frequency Precipitation 

Radar (DPR) and the GPM Microwave Imager (GMI). By combining the GPM instruments with 

another active sensor onboard the CloudSat satellite, the Cloud Profiling Radar (CPR), an 

unprecedented opportunity arises for understanding the microphysics of snowflakes and the 

physical processes of snow precipitation. Seizing this opportunity, in this study, we firstly 

investigate the microphysical properties of snow particles by analyzing their backscattered 

signatures at different frequencies. Then, the accuracy of simulating passive microwave 

brightness temperatures at high frequencies is examined under snowfall conditions using the 

CPR derived snow water content profiles as radiative transfer model inputs. Lastly, a passive 

microwave snowfall retrieval method is developed in which the a priori database is optimized by 

tuning snow water content profiles to be consistent with the GMI observations. 

To understand the microphysical properties of snow clouds, the triple-frequency radar 

signatures derived from the DPR and CPR collocated measurements are analyzed. It is noticed 

that there is a clear difference in triple-frequency radar signatures between stratiform and 

convective clouds. Through modeling experiments, it is found that the triple-frequency radar 
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signatures are closely related to the size and bulk density of snow particles. The observed 

difference in triple-frequency radar signatures are mainly attributed to the difference in prevalent 

particle modes between stratiform and convective clouds, i.e., stratiform snow clouds contain 

abundant large unrimed particles with low density, while dense small rimed particles are 

prevalent in convective clouds. 

To assess the accuracy of radiative transfer simulation for passive microwave high 

frequency channels under snowfall conditions, we evaluate the biases between observed and 

simulated brightness temperatures for GMI channels at 166 and 183 GHz. A radiative transfer 

model is used, which is capable to handle the scattering properties of nonspherical snowflakes. 

As inputs to the radiative transfer model, the snow water content profiles are derived from the 

CPR measurements. The results indicate that the overall biases of observed minus simulated 

brightness temperatures are generally smaller than 1 K except for the 166 GHz horizontal 

polarization (166H) channel. Large biases for GMI channels are found under scenes of low 

brightness temperatures. Further investigations indicate that the remaining biases for GMI 

channels are associated with specific cloud types. In shallow clouds, errors in cloud liquid water 

profiles are likely responsible for the large positive bias at the 166H channel. In deep convective 

clouds, strong attenuation in CPR radar reflectivities and possible sampling bias both contribute 

to the GMI remaining negative biases. 

A snowfall retrieval algorithm is then developed for GMI observations. The data 

sources and processing methods are adopted from the above study of GMI bias characterization. 

First,  an a priori database is created which contains the snow water content profiles and their 

corresponding brightness temperatures simulated for GMI channels. A one–dimensional 

variational (1D–Var) method is employed to optimize the CPR derived snow water content 
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profiles. The so developed a priori database is applied in a Bayesian retrieval algorithm. The 

retrieval results show that the 1D–Var optimization can improve the vertical structure of 

retrieved snow water content. Additionally, this method can bring the global mean distribution of 

GMI retrieved surface snow water closer to the CPR estimates. 

This research explores the application of spaceborne microwave measurements to 

snowfall studies by combining CloudSat and GPM instruments. It provides new knowledge on 

snowflake microphysics and applicable methods in retrieving three–dimensional snow water 

distribution from passive high frequency microwave measurements. 
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CHAPTER 1 

INTRODUCTION AND BACKGROUND 

 

Snow is a dominant precipitation form at high latitudes during winter seasons 

[Levizzani et al., 2011]. It has a distinctive impact on hydrological and climatological cycles 

[Liu, 2008a]. Falling snow over ocean can affect the deep–water formation by the complex 

interaction with ocean surface [Curry et al., 1996; Liu and Curry, 1997]. The modulation of 

surface albedo by snow cover affects the energy budget [Trenberth et al., 2007]. Therefore, 

studying snow precipitation allows us to better manage water resource and understand the global 

energy balance [Hou et al., 2014]. Historically, ground-based instruments have provided most of 

the hitherto snowfall information. However, the scarcity of these instruments over ocean and 

unpopulated areas prevents a comprehensive measurement of global snowfall events [Heymsfield 

et al., 2017]. To study snow precipitation globally, satellite instruments are clearly in demand 

[Kidd and Levizzani, 2011].  

Unlike satellite rainfall studies that have a long history of development [Adler et al., 

2001; Kummerow et al., 2001], satellite snowfall studies are still in an early stage. Not many 

sensors are suitable for detecting falling snow. Early studies mainly utilized passive microwave 

instruments with channels at 85 GHz and higher frequencies to detect global snowfall events [Liu 

and Curry, 1997; Skofronick-Jackson et al., 2004; Noh et al., 2006] until the launch of CloudSat 

satellite in 2006 that carried the first spaceborne active sensor at 94 GHz, the Cloud Profiling 

Radar (CPR) [Stephens et al., 2002]. Liu [2008a] firstly derived the global snow cloud 

characteristics from the CPR radar reflectivities. Subsequently, several snowfall studies utilized 

the CPR measurements to retrieve global snowfall information and demonstrated that the CPR is 

able to detect the snow scattering signatures in light snowfall events [Hiley et al., 2011; 
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Skofronick-Jackson et al., 2013; Wood et al., 2014]. Although the CPR is more sensitive to 

precipitating particles than passive microwave instruments, it suffers from significant attenuation 

in deep convective clouds [Cao et al., 2014]. It was also mentioned by Liu and Seo [2013] that 

the CPR only observes a strip of 1.5 km width on the ground for each satellite orbit, since it is 

not a scanning instrument. These drawbacks largely limit the application of CPR measurements 

on snowfall studies. 

In 2014, the Global Precipitation Measurement (GPM) core satellite [Hou et al., 2014] 

was successfully launched by National Aeronautics and Space Administration (NASA) and 

Japan Aerospace Exploration Agency (JAXA). The carried Dual–frequency Precipitation Radar 

(DPR) is a first spaceborne radar that consists of Ku and Ka bands. While its main goal is to 

improve the global rainfall estimations [Hou et al., 2014], the radar measurements at Ku and Ka 

bands will provide the essential information of heavy snowfall events, since the impact of 

attenuation on Ku and Ka bands is relatively small [Kneifel et al., 2011]. The combination of Ku 

and Ka bands also allows the quantification of precipitation particle size distribution. The carried 

GPM Microwave Imager (GMI), as a successor of the Tropical Rainfall Measuring Mission 

(TRMM) Microwave Imager (TMI), provides the global microwave radiance measurements with 

unprecedentedly high spatial resolution. At 89 GHz and higher frequencies, the spatial 

resolutions of GMI channels (~ 6 km) are one order higher than other microwave instruments 

sharing similar channels, such as the Special Sensor Microwave Imager/Sounder (SSMIS) 

[Kunkee et al., 2008] onboard the Defense Meteorological Satellite Program (DMSP) satellites 

and the Advanced Technology Microwave Sounder (ATMS) [Weng et al., 2012] onboard the 

Suomi National Polar–orbiting Partnership (NPP) satellite. Utilizing the DPR and GMI 
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measurements is greatly beneficial for understanding the microphysics of snowflakes and the 

snow precipitation process.  

While applying the DPR and GMI measurements has a great potential in improving 

snowfall studies, we need to pay attention to their limitations. As shown by Hamada and 

Takayabu [2015], the post–launch DPR Ku band sensitivity is about 12 dBZ and 13 dBZ over 

ocean and land, respectively. Kubota et al. [2016] also discussed the sidelobe clutter effect of 

DPR which further impedes the use of DPR radar reflectivity, since DPR is a scanning 

instrument. As a result, the DPR tends to miss most light and moderate snowfall events [Casella 

et al., 2017]. On the other hand, while the GMI provides the precious radiance measurements at 

166 and 183 GHz, it is challenging to simulate brightness temperatures at those channels by 

radiative transfer models, which have been included as a part of many recent snowfall retrieval 

algorithms [Kummerow et al., 2015; Meng et al., 2017]. 

As discussed above, any single spaceborne instrument has its specific limitation. It is 

desirable to find an approach to maximize the capabilities in detecting snow scattering signatures 

by combining measurements from multiple sensors onboard different satellites, since the 

particular limitation of a single sensor can be alleviated by simultaneously using other sensors. 

Recently, several studies employing radar measurements at three frequencies have demonstrated 

that the triple-frequency radar signatures are closely related to the microphysics of snowflakes 

[Kneifel et al., 2011; Leinonen et al., 2012; Stein et al., 2014]. In addition, several previous 

studies explored the joint use of spaceborne active and passive microwave instruments for 

snowfall retrievals [Liu and Seo, 2013; Seo et al., 2016; Rysman et al., 2018]. Their encouraging 

results have indicated that the combination of active and passive microwave sensors can reduce 

the uncertainty in snowfall retrievals. Inspired by those studies, we will explore the methods to 
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make the full use of satellite microwave measurements for snowfall studies. Specifically, we will 

examine the spaceborne triple-frequency radar signatures by combining the DPR and CPR radar 

reflectivities. In addition, we will use the GMI brightness temperature and CPR radar reflectivity 

measurements to develop a snowfall retrieval algorithm that includes the model simulations of 

GMI high frequency channels.  

The remainder of this dissertation is organized as follows. Chapter 2 provides the 

theoretical basis for active and passive microwave snowfall detection. In chapter 3, the primary 

instrument characteristics and the coincident dataset of GPM and CloudSat are introduced. 

Chapter 4 gives the triple-frequency radar signature analysis. Chapter 5 provides the assessment 

of GPM high frequency measurements with radiative transfer simulations under snowfall 

conditions. Chapter 6 introduces a snowfall retrieval algorithm for GMI. In chapter 7, the 

summary and discussions are presented.  

The ultimate goal of this study is to enhance the knowledge of snowflake structure and 

three–dimensional distribution of falling snow. By analyzing the triple-frequency radar 

signatures from DPR and CPR measurements, we are able to better understand the microphysical 

properties of different snow particles. The snowfall retrieval algorithm developed for GMI high 

frequency channels is beneficial for studying the global snow precipitation process by improving 

the estimation of three–dimensional snow water distribution. 

 

 

 

 

 



5 

 

CHAPTER 2 

THEORETICAL BASIS FOR SNOWFALL REMOTE SENSING 

 

In this chapter, we will introduce the basic radiative properties of snow clouds in 

section 2.1. In section 2.2, the physics behind active and passive microwave remote sensing will 

be discussed. 

2.1 Radiative Properties of Snow Clouds 

Since this dissertation focuses on snow clouds, the interference by raindrops is 

negligible. In snow clouds, we mainly consider the absorption and scattering by cloud liquid 

droplets and snow particles. 

In snow clouds, the size of liquid droplets usually ranges from 5 to 50 µm 

[Vivekanandan et al., 2001]. Spaceborne microwave sensors generally operate in a frequency 

range from 10 to 200 GHz, corresponding to a wavelength range from 1500 to 30000 µm. We 

use the nondimensional size parameter as 

                                                              
2πr

x=
λ

,                                                          (2.1) 

where λ is the wavelength, and r is the spherical particle radius. When the particle size is 

sufficiently small compared to the wavelength (x ≪ 1), the scattering by particles is considered 

as Rayleigh scattering [Strutt, 1871]. In this condition, the sufficiently small particle experiences 

the approximately uniform external electric field. An electric dipole moment is then induced in 

the particle. The particle is now an electric dipole and generates its own electric filed as the 

outward radiation. Therefore, the scattering by cloud liquid droplets for a microwave wavelength 

( λ 1> mm) is usually Rayleight scattering [Stephens, 1994]. As shown by Petty [2006], for 

Rayleight scattering, the scattering (Qs) and absorption (Qa) efficiencies can be expressed as 
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2
2

4

s 2

8 m 1
Q x

3 m 2

−
=

+
                                                     (2.2) 

and 

                                                    
2

a 2

m 1
Q 4x Im{ }

m 2

−
=

+
,                                                 (2.3) 

where m is the complex refractive index of particle. Im{} represents the imaginary part of {}.  It 

is seen that Qs is proportional to x4, while Qa is proportional to x. Since m for liquid water has a 

nonzero imaginary part (recall x<<1 for Rayleugh scattering), we can get 

                                                            Qa ≫ Qs.                                                           (2.4) 

Consequently, the scattering by cloud liquid droplets for microwave wavelengths is negligible 

relative to the absorption by liquid droplets. 

To investigate the radiative effect of snow particles in clouds, we examine the 

imaginary part of complex refractive index (ni). It is proportional to the absorption rate of 

material. Fig. 2.1 shows the imaginary part of the index of refraction of water and ice for a 

wavelength range from 0.1 to 100 mm. The imaginary part of refractive index of water (ni,water) 

was calculated by Segelstein [1981]. It is implemental to the study of Hale and Querry [1973] by 

extending the wavelength range. The imaginary index of refraction of ice (ni,ice) was provided by 

Warren and Brandt [2008]. It is seen that for λ 1> mm, the magnitudes of ni,ice is about two or 

three orders smaller than the magnitudes of ni,water. As a result, the absorption by snow particles 

for microwave wavelengths is negligible. Additionally, the snow particles are usually much 

larger than liquid cloud droplets with maximum dimensions ranging from 0.1 to 10 mm [Liu, 

2008b; Kneifel et al., 2011]. The Rayleigh scattering assumption is no longer valid for those 

large snow particles at some microwave wavelengths. Therefore, the scattering by snow particles 

for microwave wavelengths is often significant. 
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2.2 Active and Passive Microwave Remote Sensing 

Active microwave sensors, or radars, have been widely used in monitoring global 

precipitation events [Kummerow et al., 2000; Liu, 2008a; Hou et al., 2014]. The radar transmitter 

emits a series of microwave radiation, then the radar receiver measures the backscattered 

radiation from the target. The time delay between transmitted and backscattered radiation can be 

used to determine the distance between radar and target. Hence, radars are able to provide the 

information of vertical distribution of specific objects. The effective radar reflectivity factor (Ze) 

in logarithmic scale (dBZ) at each vertical bin is typically recorded by radars. Ze can be 

expressed as 

                                             
max

min

D4

e bsc5 2

D

λ
Z = N(D)σ (D)dD

π |K| ∫ ,                                         (2.5) 

where Dmin and Dmax are the lower and upper limits of  the snowflake size, N(D) is the particle 

size distribution, λ is the wavelength, K is a function of the refractive index of water, and σbsc(D)
 

is the backscatter cross section of the snowflake. When the Rayleigh scattering is valid, σbsc(D)
 
is 

proportional to λ−4. The wavelength dependence of Ze is canceled out. Under this condition, Ze 

varies little with wavelength or frequency. 

Fig. 2.2 shows the normalized backscatter cross sections at 13.6 GHz (~22 mm), 35.5 

GHz (~8.4 mm) and 94 GHz (~3.2 mm) for rosettes, sectors and dendrites as a function of size 

parameter. re
 is the effective radius of snow particle. σbsc is computed by the discrete dipole 

approximation (DDA) method [Draine and Flatau, 1994] and adopted from the database of 

scattering properties of nonspherical snow particles developed by Liu [2008b]. The particle 

maximum dimension range for selected snow particles is from 0.05 to 10 mm. It is seen that at 

13.6 GHz, the scattering is always Rayleigh even for large snow particles ( x 1� ). The σbsc/ πre
2 
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increases sharply with size parameter, indicating that larger particles are more effective in 

scattering radiation. At 35.5 GHz, when the snow particle effective radius is large, the Rayleigh 

scattering assumption is partly deviated (x~1). At 94 GHz, the scattering is no longer Rayleigh 

for large snow particles as the size parameter exceeds one, where σbsc/ πre
2 increases gradually 

with size parameter. Consequently, when the snow particle effective radius is large, Ze varies 

evidently with frequency, which provides the theoretical basis for triple-frequency radar 

signature analysis. 

Passive microwave sensors typically measure the bulk emission from the Earth’s 

surface and atmosphere system, which is different from radars. The often–used quantity by 

passive microwave sensors is brightness temperature. In the microwave band, the Rayleigh–

Jeans approximation is valid. A simple relationship between brightness temperature and 

temperature is introduced as 

                                                            bT =εT ,                                                              (2.6) 

where ε  is the emissivity of material. Polarization is usually not neglected in the microwave 

band. In particular, it can affect ocean surface emissivity strongly. Passive microwave sensors 

generally employ a set of channels at different frequencies and polarizations to detect solid 

precipitating particles in clouds. The study by Bennartz and Bauer [2003] has shown that the 

scattering signatures from snow particles are only evident at 85 GHz and higher frequencies. In 

the following, we will carry a radiative transfer modeling experiment to examine the sensitivity 

of high microwave frequencies to snow scattering signatures. 

In this experiment, we will simulate the brightness temperatures from 80 to 200 GHz 

for clear–sky and cloudy conditions. Cloud liquid water is assumed as a constant of 0.05 g m-3 in 

the lowest 2 km layer. Snow water is assumed as a constant of 0.2 g m-3 in the layer between 0.5 
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and 3.5 km. The sensor’s Earth incidence angle is set to zero for nadir viewing. Brightness 

temperatures are simulated by a radiative transfer model developed by Liu [1998]. The radiative 

transfer modeling results are presented in Fig. 2.3. It is seen that the effect of liquid water is 

generally to increase the brightness temperature through its emission (green curve). On the other 

hand, the snow water tends to decrease the brightness temperature, but this effect is not 

significant at low frequencies (orange curve). When the liquid and snow water coexist in snow 

clouds, their effects compete with each other. It is found that the effect of snow water only 

dominates over the effect of liquid water at 140 GHz and higher frequencies (red curve). In the 

later chapters, high frequency microwave channels are used to retrieve snow–related quantities. 

 

 

Fig. 2.1. Imaginary part of refractive index of water and ice for a microwave wavelength range 

from 0.1 to 100 mm. 
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Fig. 2.2. Normalized backscatter cross sections at 13.6 GHz (left panel), 35.5 GHz (middle panel) 

and 94 GHz (right panel) for selected snow particles. 

 

 

Fig. 2.3. Simulated brightness temperatures from 80 to 200 GHz at nadir for different weather 

conditions. 
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CHAPTER 3 

INSTRUMENT CHARACTERISTICS AND COINCIDENT DATASET 

 

In this chapter, we will introduce the characteristics of primary satellite instruments for 

this study in section 3.1. The CloudSat–GPM coincident dataset is then described in section 3.2. 

3.1 Satellite Instrument Characteristics 

The CPR is the first spaceborne radar that measures the backscattered power from 

cloud and precipitation systems at 94 GHz (W band). It has been operating since June 2, 2006 

after the launch of CloudSat on April 28, 2006. During 2006 to 2017, the CloudSat flies as part 

of the Afternoon Constellation of satellites (A–Train) with two other NASA satellites, AQUA 

and CALIPSO, enabling the combination of CPR and other instruments such as Moderate–

resolution Imaging Spectro–radiometer (MODIS) onboard AQUA and Cloud–Aerosol Lidar 

with Orthogonal Polarisation (CALIOP) onboard CALIPSO. The CloudSat has exited the A–

Train since February 22, 2018. As a nadir–looking radar, the CPR provides the global 

information of cloud vertical structures with a vertical resolution of about 485 m. A single radar 

reflectivity profile contains 150 bins with a vertical bin size of about 240 m. The footprint size of 

CPR is about 1.4 km across the track and 2.3 km along the track. Its minimum detectable 

reflectivity factor is about –30 dBZ, allowing the CPR to capture most light frozen precipitations.  

The DPR onboard the GPM core satellite is an inheritor from the Precipitation Radar 

(PR) onboard the TRMM satellite. The DPR consists of Ku (13.6 GHz) and Ka bands (35.5 

GHz). Its Ku band channel is similar to that of PR. The adding of Ka band on DPR is a major 

breakthrough compared to PR. The joint use of Ku and Ka bands can provide the information on 

raindrop particle size distribution which is thought to be the major uncertainty source in rainfall 

retrievals. Additionally, the Ka band channel can improve the estimation of freezing level height, 
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an important parameter in both rainfall and snowfall retrievals. Finally, Ka band has a higher 

sensitivity to light rain and snow compared with Ku band and therefore expands the observing 

range of DPR. The DPR is a cross–track instrument. A single scan has 49 footprints for Ku and 

Ka bands with a footprint size of about 5 km at nadir. The Ka band operates in two modes, match 

scan (MS) and high sensitivity scan (HS). In the MS mode, the 25 Ka MS band footprints are 

exactly matched to the Ku normal scan (NS) band footprints (index from 13 to 37). In the HS 

mode, the 24 Ka HS band footprints are interlaced within the Ka MS band footprints. This mode 

is mainly employed for light rain and snow. The vertical resolution of Ku NS and Ka MS bands 

is about 250 m, while the vertical resolution of Ka HS band is about 500 m. 

The GPM GMI represents a new generation of conical–scanning microwave imager. It 

carries channels from 10 to 89 GHz similar to those carried by TRMM TMI with additional four 

channels at 166 and 183 GHz. The use of these frequencies extends its capability in measuring 

snow precipitations. Compared with TMI, the spatial resolutions of GMI channels are greatly 

improved with an antenna diameter of 1.2 m. Its earth incidence angle is 52.8° for channels 

between 10 and 89 GHz, identical to that of TRMM TMI. For channels at 166 and 183 GHz, the 

GMI earth incidence angle is slightly different at 49.2°.The swath of GMI is about 900 km on the 

ground, much broader than that of DPR Ku band (245 km). Therefore, the DPR Ku NS band 

swath only overlaps the central part of GMI swath. Only GMI channels at 89 GHz and higher 

frequencies are employed in this study, the detailed specifications of these channels are presented 

in Table 3.1. At 89 GHz and higher frequencies, the spatial resolutions of GMI channels are 

about 6 km. 
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3.2 CloudSat–GPM Coincidence Dataset 

The coincident dataset between CloudSat and GPM satellites [Turk, 2017] are 

employed for this study. It mainly combines CPR radar reflectivity, DPR radar reflectivity and 

GMI brightness temperature. When the ground tracks of GPM and CloudSat satellites are 

coincident within 15 minutes, a DPR footprint is matched to the nearest CPR footprint. For a 

single CPR bin, the first DPR bin lying above this CPR bin is searched from the bottom, and this 

DPR bin is matched to this CPR bin. In the vertical direction, the CPR bin size is about 240 m, 

while the DPR Ku NS/Ka MS band bin size is about 125 m. Therefore, only every other Ku 

NS/Ka MS bin is matched to a CPR bin. For DPR Ka HS band, all bins are matched due to its 

vertical bin size of about 250 m. The procedure in matching CRP and GMI measurements is 

similar. Since the GMI first nine channels (10 to 89 GHz) are located slightly different from 

other four channels at 166 and 183 GHz, the footprint of GMI first nine channels are firstly 

matched to a nearest CPR footprint, then the nearest footprint of other four channels is searched 

to match this footprint of GMI first nine channels within 5 km. While the CPR footprint size is 

much smaller than those of DPR and GMI, no pixel averaging or resampling is implemented in 

this dataset. Fig. 3.1 shows an example of collocation among CPR, DPR and GMI (166 GHz) 

footprints on June 07, 2014. It is seen that five CPR footprints can generally cross one DPR or 

GMI footprint. Using the matching method above, some GMI footprints are not overlapped by 

any CPR footprint. It is necessary to remove those GMI footprints when we use the collocated 

GMI and CPR measurements.  

Fig. 3.2 shows the vertical cross sections of CPR and DPR radar reflectivities as well 

as the GMI brightness temperatures at high frequencies for a deep convection case. The strong 

attenuation in CPR radar reflectivity is obvious in this case, since some surface radar reflectivity 

echoes are almost gone. The DPR Ka band radar reflectivity also experience the moderate 
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attenuation. The surface clutter effect is evident for DPR Ku band, especially on the two sides of 

swath. The low brightness temperatures at 89 GHz and higher frequencies generally correspond 

to the most intense convections around 25°S. In the following chapters, we will further refine 

this coincident dataset by considering the respective characteristics of CloudSat and GPM 

instruments. 

Table 3.1. Specifications of GMI channels at 89 GHz and higher frequencies. 

Central freq 

(GHz) 

Polarization Beam width 

(deg) 

Footprint  

(km) 

NEDT 

(K) 

89.00 V 0.390 7.2×4.4 0.57 

89.00 H 0.390 7.2×4.4 0.57 

166.00 V 0.396 6.3×4.1 1.50 

166.00 H 0.396 6.3×4.1 1.50 

183.31±3 V 0.361 5.8×3.8 1.50 

183.31±7 V 0.361 5.8×3.8 1.50 

 

 

Fig. 3.1. An example of collocation among CPR, DPR and GMI (166 GHz) footprints on June 07, 

2014. 
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Fig. 3.2. Vertical cross sections of (a) CPR, (b) DPR Ku NS, (c) Ka MS and (d) Ka HS radar 

reflectivities (unit: dB) as well as (e) GMI brightness temperatures at 89 GHz and 

higher frequencies for a single case on March 09, 2014. 
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CHAPTER 4 

TRIPLE FREQUENCY RADAR SIGNATURE ANALYSIS 

 

This chapter is organized as follows. Section 4.1 provides the brief introduction to 

triple-frequency radar signatures. Section 4.2 describes the data sources and methods. Section 4.3 

discusses the observed difference in triple-frequency radar signatures between stratiform and 

convective clouds. Section 4.4 provides the conclusions for this chapter. 

4.1 Introduction 

Snow is a dominant form of precipitation at high latitudes. Since the scattering 

properties of snowflakes are sensitive to their structures in the non-Rayleigh regime [Kulie et al., 

2001; Liu, 2004], any progress in inferring snowflake structures can potentially reduce the 

uncertainty in snowfall retrievals. A modeling study by Kneifel et al. [2011] explored the joint 

use of two dual-frequency ratios (DFRs) at Ku, Ka and W bands. They suggested that different 

snowflake habits possess distinctive triple-frequency signatures, which allows a possible 

identification of snowflake habits. Subsequent investigations by Leinonen et al. [2012] and Kulie 

et al. [2013] employed radar measurements to verify this approach. They both found that most 

observed triple-frequency signatures can be explained by aggregate particle models. Stein et al. 

[2014] also utilized triple-frequency radar measurements to retrieve the fractal dimension of 

snow aggregates in stratiform ice clouds. The results indicated that the fractal snowflake model 

rather than spherical and spheroidal models describe the observed snow aggregates better. The 

modeling experiments by Leinonen and Moisseev [2015], Leinonen and Szyrmer [2015] as well 

as Tyynelä and Chandrasekar [2014] examined the triple-frequency behaviors of unrimed and 

rimed aggregates. The triple-frequency signatures of rimed aggregates approach those for 

spheroidal snowflakes but still deviate from spheroids. A recent study using triple-frequency 
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Doppler radar spectral [Kneifel et al., 2016] also demonstrated that the scattering properties of 

spheroids do not fit the observed rimed aggregates. Although those studies implied the possible 

utilities of triple-frequency signatures, there is still a need in using this approach to understand 

cloud microphysical properties and assist developing snowfall retrieval algorithms. 

In this chapter, a combined dataset of CloudSat CPR [Stephens et al., 2002] and GPM 

DPR [Iguchi et al., 2002] is utilized to provide observed triple-frequency signatures over ocean. 

As shown in Section 4.3, a distinct difference is found in the observed triple-frequency 

signatures between snow particles in stratiform and convective clouds. The main goal is to find 

the possible cause of the observed difference so that this information could be used in future 

cloud physics and remote sensing studies. 

4.2 Data Sources and Methods 

4.2.1 Satellite and Analysis Data 

The primary data used in this study is the coincident dataset, 2B–CSATGPM, 

available from NASA data center at: https://storm.pps.eosdis.nasa.gov/storm/, which combines 

GPM DPR and CloudSat CPR radar reflectivities, as well as GMI brightness temperatures and 

several geophysical variables from European Centre for Medium-range Weather Forecasts 

(ECMWF) analysis. The CPR is a nadir-looking radar that measures the backscattered power 

from cloud systems at 94 GHz (W band). The DPR has 13.6 GHz (Ku band) and 35.5 GHz (Ka 

band) channels. In this collocated dataset, each CPR profile is matched with a nearest DPR 

profile when their satellite tracks coincide within 15 minutes. The data duration for this study is 

from March 2014 to April 2016. Since the focus of this study is on triple-frequency signatures of 

snowflakes over ocean, we will analyze radar bins that are above freezing level heights with CPR 

surface type classified as ocean. In deep convections, strong updrafts may carry raindrops above 
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freezing levels. To minimize this possible contamination, we only select cases that have freezing 

level heights lower than 3 km. This criterion helps remove those deep convective cases, i.e., deep 

convective clouds in the tropics and those in mid latitudes during summer where the freezing 

level height is about 5 km and strong updrafts usually exist. For the remaining cases at mid and 

high latitudes, deep convections (or strong updrafts) are less likely to form, so it is expected that 

raindrops are less likely to be lifted to high altitudes above freezing level. The use of 3 km 

freezing level height to select cases is based on the balance of limiting raindrop contamination 

and preserving a reasonable sample size. Using a stricter criterion (e.g., selecting data only from 

profiles with near-surface air temperature lower than freezing point) will largely reduce the 

sample number, which leads to unstable statistics. To better match CPR and DPR data, we only 

retain those radar bins within DPR scan angle range of ±2.8°. Additionally, radar bins in the 

lowest 1 km are discarded to avoid surface contamination. It should be cautioned that the 

coincident CPR and DPR data cannot be matched exactly to make the measurements at three 

frequencies from the same volume, because CPR and DPR are onboard different satellites and 

have different spatial resolutions. The vertical bin size of CPR is about 240 m, and DPR Ku and 

Ka bands are reported at a vertical bin size of about 125 m. For a single CPR bin, the matched 

DPR Ku/Ka bin is the nearest one that lies above this CPR bin, so approximately every other 

DPR Ku/Ka bin is matched to a CPR bin. It is worth mentioning that there are still some 

mismatching errors between CPR and DPR due to their different vertical resolutions and 

platforms. However, this matching method might be the best one that can be used now. The 

footprint size of CPR is about 1.4 km across the track and 2.3 km along the track. The footprint 

of DPR has a size of about 5.2 km at nadir. The horizontal resolutions between CPR and DPR 

are quite different. To account for the impact of this spatial mismatch, all CPR profiles that are 



19 

 

originally matched with the same DPR profile are averaged to obtain a mean CPR profile to 

match the corresponding DPR profile. To evaluate the impact of temporal mismatch, the 

distributions of observed triple-frequency signatures are calculated separately from data with 

time differences shorter than 7.5 minutes and longer than 7.5 minutes. The results are presented 

in the next section and do not show a systematic difference. 

4.2.2 Attenuation Correction on Radar Reflectivity 

For snowfall conditions, attenuation due to snow itself is negligible for Ku and Ka 

bands but can be significant for W band. As shown by Matrosov [2007], the total attenuation at 

W band can exceed 1 dB for thick snow layers, while the attenuation at Ka band is about one 

order magnitude smaller than that at W band. A first-order correction method is adopted from 

Kulie et al. [2013] to account for the attenuation at W band caused by snow. An averaged linear 

relationship using both of dendrite [Liu, 2004] and oblate rosette aggregate [Honeyager et al., 

2016] is developed between W band specific attenuation (dB km-1) and Ku band radar 

reflectivity (mm6 m-3). An exponential particle size distribution is employed: 

                                                     N(D)=N0exp(–ΛD)                                                    (4.1) 

where N0 is the intercept parameter, is the slope parameter, and D is the maximum dimension 

of snowflake. The use of the exponential form of particle size distribution is based on previous 

experimental and modeling studies such as Braham [1990] and Senn and Barthazy [2014]. It has 

been used in other triple-frequency radar signature studies. Forty-nine (49) pairs of N0 and are 

taken from Braham [1990] to calculate W band specific attenuation and Ku band radar 

reflectivity. Cloud liquid water is another important factor that contributes to the attenuation. 

Assuming a liquid water content of 0.5 g m-3, the specific attenuation at Ku band is smaller than 

0.2 dB km-1, while the specific attenuations at Ka and W bands can reach about 1 dB km-1 and 4 

Λ

Λ
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dB km-1, respectively [Kneifel et al., 2011]. Cloud liquid water profiles are obtained from GPM 

combined radar-radiometer product [Olson and Masunaga, 2011]. This product applied a 

Bayesian method and a priori database that connects environmental parameters and simulated 

GMI brightness temperatures to retrieve cloud liquid water profiles. Currently, the a priori 

database only supports estimates of cloud liquid water profiles over ocean. Therefore, only triple 

frequency data over ocean is selected in this analysis. This product may contain some retrieval 

errors, but it is still a good data source for correcting cloud liquid water attenuation. The specific 

attenuation due to cloud liquid water at Ka and W bands can be estimated using cloud liquid 

water content, frequency and complex dielectric permittivity [Salonen and Uppala, 1991]. The 

complex dielectric permittivity as a function of frequency and temperature is calculated by a 

double-Debye model [Manabe et al., 1987]. Additionally, the attenuation due to atmospheric 

gases including water vapor at W band is corrected based on values obtained directly from 

CloudSat CPR product 2B–GEOPROF. 

4.2.3 Data Selection 

A minimum detection threshold of 13 dB is used for DPR Ku band reflectivity 

according to the evaluation results of Toyoshima et al. [2015], which approximately corresponds 

to 11 dB for Ka MS and 2 dB for W band reflectivities in their scatterplots versus Ku band 

reflectivity. In the following analysis, we only use data with reflectivities greater than 13, 11 and 

2 dB for Ku, Ka and W bands, respectively. 

The CloudSat CPR product 2B-CLDCLASS [Sassen and Wang, 2008] is utilized to 

determine cloud type, i.e., stratiform versus convective. A case is considered as stratiform when 

at least 94% of qualified radar bins were classified as nimbostratus. Similarly, in convective 

cases, at least 94% of qualified radar bins were classified as cumulus or cumulonimbus. We 
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require that a nimbostratus or cumulonimbus case has to contain at least 20 qualified radar bins 

to avoid random error, while no restriction is made for cumulus cases due to their smaller 

dimensions. All selected cases are located 35° latitude poleward. A total of 65 stratiform cases 

(4164 qualified radar bins) and 23 convective cases (907 qualified radar bins) are finally selected. 

About 40 % of qualified radar bins in convective cases have freezing levels below 1 km and are 

likely associated with convective snow showers. 

4.3 Discussion on Triple-frequency Radar Signatures 

4.3.1 Observed Difference between Stratiform and Convective Cases 

Fig. 4.1 and 4.2 show the normalized occurrence frequencies of observed triple-

frequency signatures (shading) for stratiform and convective cases in 1 dB × 1 dB boxes for data 

with time differences between CPR and DPR smaller than 7.5 minutes (top panels) and larger 

than 7.5 minutes (bottom panels). The DFR is defined as the logarithmic difference of equivalent 

radar reflectivity factors at two frequencies. We use DFR X/Y to denote the DFR between X and 

Y bands. Some negative DFR values mainly for DFR Ku/Ka are found associated with small 

DPR Ku radar reflectivities. Since large negative DFR values are physically meaningless and 

primarily caused by observation uncertainties, DFR values smaller than –0.5 dBZ have been 

excluded in the data selection procedure. It is worth noting that even large snow particles at Ku 

band are usually Rayleigh scatterers, which makes Ku band a good Rayleigh reference. DFR 

Ku/Ka thus is an indicator of large particles, because large particles would become non-Rayleigh 

scatterers at Ka band. At W band, the deviation from Rayleigh scattering depends on both 

particle size and density. A small but dense snow particle can become a non-Rayleigh scatterer at 

W band. Hence, DFR Ku/W or DFR Ka/W is sensitive to particle size and density. Two sets of 
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DFRs are used as x-axis. In addition to use DFR Ka/W as x-axis (Fig. 4.1) as done in previous 

triple-frequency studies, DFR Ku/W is also employed (Fig. 4.2). 

 When using DFR Ka/W as x-axis, it is found that data points in stratiform cases are 

confined by 14 dB along x-axis but can extend to 9.5 dB along y-axis, while data points in 

convective cases can exceed 15 dB along x-axis but can only reach about 8 dB along y-axis. 

Similarly, when using DFR Ku/W as x-axis, data points in stratiform cases rarely exceed 16 dB 

along x-axis, while data points in convective cases can reach about 19 dB along x-axis. In 

general, the observed triple-frequency signatures of stratiform cases are distributed more in the 

DFR Ku/Ka direction, while those of convective cases are distributed more in the DFR Ku/W or 

Ka/W directions. The distributions of triple-frequency signatures in stratiform cases are mainly 

monomodal, while the ones in convective cases show certain bimodality. This bimodal feature of 

convective cases seems to be clearer using DFR Ka/W, because the effects of particle size and 

density on triple-frequency signatures separate themselves more in the DFR Ka/W–Ku/Ka 

diagram. This general feature is the same for both data groups with DPR-CPR observation time 

difference 0–7.5 minutes and 7.5–15 minutes. In other words, within the maximum 15-minute 

time difference limit, the data selection by restricting them to a shorter time difference does not 

seem to alter our general conclusions. To preserve a large enough sample size, in the following, 

all data within 15-minute time difference are analyzed together without further dividing them 

into multiple groups.  

The occurrence frequency distributions indicate a distinct difference between 

stratiform and convective cases. Since DFR values are directly related to scattering properties of 

concerned snowflakes, this distinction between stratiform and convective cases is expected to 

convey information about snow particle structures in their respective environments. 
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4.3.2 Modeled Triple-frequency Signatures 

In order to understand the observed difference between stratiform and convective 

cases, calculations of the backscattering properties for several snow particle models are 

conducted. Specifically, 3–, 4–, 5– and 6–bullet rosettes (R3–R6), sectors (S) and dendrites (D) 

[Liu, 2004] are selected to represent pristine crystals. Rounded rosette aggregates (Ar) [Nowell et 

al., 2013] and oblate rosette aggregates (Ao) [Honeyager et al., 2016] are used to represent snow 

aggregates. One type of unrimed dendrite aggregates (Lu), five types of rimed dendrite 

aggregates from model A and five types of rimed dendrite aggregates from model B of Leinonen 

and Szyrmer [2015] are also employed to represent snow aggregates. In the Leinonen and 

Szyrmer models, a parameter, called effective liquid water path (ELWP), controls the riming 

extent. Lightly rimed aggregates (i.e., ELWP = 0.1, 0.2 and 0.5 kg m-2) still maintain dendrite 

features well, while heavily rimed aggregates (i.e., ELWP = 1.0 and 2.0 kg m-2) are almost 

shapeless. We denote the former “La” and the latter “Lb” in the following discussions. Finally, 

three oblate spheroids with volume fractions of 0.1, 0.2 and 0.3 (S1–S3) [Honeyager et al., 2016] 

are also investigated using the T-matrix method [Barber and Yeh, 1975]. The aspect ratio of 

these spheroids is fixed at 0.6 based on observations from Matrosov [2015]. 

Using size distribution (4.1), modeled triple-frequency signatures for large particles 

(Λ= 1 cm-1) and small particles (Λ = 7 cm-1) are presented in Fig. 4.3. DFR values are 

independent of N0. The maximum particle sizes for rosettes, sectors and dendrites [1] are 

truncated at 5 mm [Kulie et al., 2013; Kneifel et al., 2015]. Rounded rosette aggregates [Nowell 

et al., 2013] have the maximum particle sizes up to 12 mm, oblate rosette aggregates [Honeyager 

et al., 2016] have the maximum particle sizes up to 11 mm, and dendrite aggregates [Leinonen 
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and Szyrmer, 2015] have the maximum particle sizes up to 22 mm. DFR Ku/Ka values (y-axis) 

in top and bottom figures are the same.  

For small particles (blue), DFR Ku/Ka values for rosettes, sectors and dendrites are 

similarly small at about 1–3 dB, while aggregates have DFR Ku/Ka values in a range of 3–8 dB. 

For large particles (red), rosettes, sectors and dendrites still produce small DFR Ku/Ka values of 

about 1–3 dB. Rosette aggregates produce DFR Ku/Ka values around 6–7 dB, and dendrite 

aggregates have DFR Ku/Ka values of about 10–13 dB.  When using DFR Ka/W for small 

particles (top panel, blue), rosettes, sectors and dendrites have values at about 2–6 dB. Unrimed 

dendrite aggregates and lightly rimed dendrite aggregates have larger values at about 6–9 dB. 

The largest values occur for rosette aggregates and heavily rimed dendrite aggregates at about 

11–14 dB. Similarly, for DFR Ku/W values of small particles (bottom panel, red), rosettes, 

sectors and dendrites have the smallest values (4–8 dB), while rosette aggregates and heavily 

rimed dendrite aggregates have the largest values (15–20 dB). Unrimed dendrite aggregates and 

lightly rimed dendrite aggregates have moderate values about 9–13 dB. When particle size 

increases (i.e., from blue to red), the increases in DFR Ka/W values of nonspherical snowflakes 

are small, for some rosettes and heavily rimed dendrite aggregates, there are even decreased 

values because large particles become non-Rayleigh at both Ka and W bands. In contrast, DFR 

Ku/W values of nonspherical snowflakes increase significantly. Spheroids are distinctive from 

other nonspherical snowflakes with particularly large DFR Ku/Ka values. For large particles, 

although not shown in this figure, their DFR Ku/Ka values can reach about 15–17 dB.  

A novel study on relations between snowflake microphysical properties and triple-

frequency signatures has been done by Kneifel et al. [2015], in which triple-frequency 

observations were combined with ground-based in situ snow particles measurements. Through 
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three case studies, it was found that when large aggregates (> 5 mm) are present in the in situ 

measurements, there is a bending (in the DFR Ka/W–Ku/Ka diagram) of observed triple-

frequency signatures away from the averaged spheroidal line, and rimed particles are connected 

to horizontal distributions of observed triple-frequency signatures. To be specific, large DFR 

Ku/Ka values can be assigned to large aggregates, and a combination of small DFR Ku/Ka and 

large DFR Ka/W values is connected to dense rimed particles. In the region with small DFR 

values at both frequency combinations, it is difficult to infer snowflake structures due to their 

similar DFR values.  From this present work, it is seen that higher DFR Ku/Ka values are 

associated with larger particle sizes. Dendrite aggregates have the largest DFR Ku/Ka values, 

because their maximum particle sizes are the largest. On the other hand, even increasing particle 

sizes, DFR Ku/W or Ka/W values do not show significant variations. It seems that large DFR 

Ku/W or Ka/W values are connected to those heavily aggregated (Ar and Ao) or rimed particles 

(Lb). For those simple crystals with the smallest maximum particle sizes (R3–R6, S and D), their 

DFR values are similarly small at all frequency combinations. Generally, the finding from this 

modeling experiment is consistent with the one from Kneifel et al. [2015]. This work also 

implies that if unrimed aggregates (Ar and Ao) are dense enough [Nowell et al., 2013; 

Honeyager et al., 2016], they can produce similar DFR Ku/W or Ka/W values to those heavily 

rimed particles (Lb). Based on this finding and those results from Kneifel et al. [2015], three 

types (or modes) of nonspherical snow particles are classified. Type A contains a wide range of 

small particles (i.e., R3–R6, S and D) with similar triple-frequency signatures. Type B contains 

unrimed or lightly rimed particles (Lu and La). Type C contains heavily aggregated and/or rimed 

particles (Ar, Ao and Lb) that represent very dense snowflakes. This grouping of different 

snowflake types, while somewhat arbitrary, reflect their common characteristics in a simple way.  
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Fig. 4.4 shows modeled triple-frequency signatures and normalized occurrence 

frequencies of observed triple-frequency signatures. The average of modeled triple-frequency 

signatures from R3–R6, S and D is used to represent type A particles. Similarly, the average of 

triple-frequency signatures from Lu and La is used to represent type B particles, and type C 

particles are represented by the average of triple-frequency signatures from Ar, Ao and Lb 

except two rimed dendrite aggregates with ELWP = 2.0 kg m-2.  The minimum particle sizes for 

these two aggregates are 2.9 mm, which makes their modeled lines separated far from those for 

other particle types in a triple-frequency space when Λ is very small (see Fig. 3.5 in Leinonen 

and Szyrmer [2015]). The maximum particles sizes for all rosettes, sectors and dendrites are still 

truncated at 5 mm. Λ in the particle size distribution of Eq. (1) is varied from 1 to 45 cm-1 to 

produce black curves in Fig. 4.4. This range of Λ is similar to that used in Leinonen and 

Moisseev [2015] (1 to 50 cm-1). Commonly, type A particles can only explain a small portion of 

observed triple-frequency signatures where their DFR values are relatively small. Type B 

particles seem to be more appropriate for those observed signatures with large DFR Ku/Ka 

values in stratiform cases. Type C particles explain those observed signatures with large DFR 

Ka/W or Ku/W values and small DFR Ku/Ka values in convective cases better. When using DFR 

Ka/W as x-axis (top panels in Fig. 4.4), a typical hook feature of observed triple-frequency 

signatures is found for stratiform cases, and observed triple-frequency signatures follow 

horizontal curves for convective cases. It is suggested that more snowflakes in stratiform cases 

have large particle sizes, and convective cases contain more dense snow particles that are heavily 

aggregated and/or rimed. In order to further explore the relation between observed triple-

frequency signatures and snowflake structures, a snowflake classification is conducted as follows. 

For a bin of radar observation, the particle type it represents is determined by the nearest 
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modeled line in Fig. 4.4. The statistics of classified snowflake types for stratiform and 

convective cases are shown in Fig. 4.5. It is seen that set 1 (using DFR Ka/W as x-axis) and set 2 

(using DFR Ku/W as x-axis) produce similar results. For stratiform cases, type B particles are 

more prevalent than other two particle types. Type A particles take up the smallest portion. For 

convective cases, type A and C particles are more abundant than in stratiform cases. When using 

set 2, type C particles seem to have the largest proportion. Since this grouping of modeled 

snowflake types is somewhat arbitrary, instead of claiming which snowflake type is the best fit 

for stratiform or convective cases, it is more important to notice that the percentage of type B 

particles in stratiform cases is greater than that in convective cases, while type C particles take 

up a larger percentage in convective cases than in stratiform cases. It is plausible that a 

significant portion of snow particles are unrimed particles or aggregates with large particle sizes 

(type B) in stratiform cases, while heavily aggregated and/or rimed particles (type C) with 

relatively small particle sizes are prevalent in convective cases. It is worth mentioning that an 

increasing percentage of very small particles (type A) in convective cases also contribute to the 

horizontal distributions of observed triple-frequency signatures, as they are usually associated 

with small DFR Ku/Ka values. Hence, the difference in triple-frequency signatures between 

stratiform and convective cases can be attributed to their different snowflake modes. As 

mentioned in Kneifel et al. [2015], when the DFR values for both frequency combinations are 

very small, it is difficult to distinguish detailed structures of snow particles from their similarly 

weak triple-frequency signatures. It is admitted that type A particles in stratiform cases might 

differ from those in convective cases, as type A include various small crystals or aggregates. 
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4.3.3 Statistics of Particle Type versus Temperature 

Upon knowing that the triple-frequency signatures carry the information of snowflake 

structures, an interesting question may arise: how are the three snowflake types defined above 

distributed in natural clouds? In the following, we investigate their distribution with temperature 

using all selected cases.  

The relative frequency distributions of snowflake types (as determined by method 

described in previous section) over temperature range of 255 to 273 K for stratiform and 

convective cases are shown in Fig. 4.6. When using set 1 (DFR Ku/Ka and Ka/W), for stratiform 

cases, the relative frequencies of type A particles are less than 20 %. The relative frequencies of 

type B particles generally increase with temperature and become the highest above 265 K. The 

relative frequencies of type C particles tend to decrease with temperature, but remain above 30 % 

over a broad temperature range from 255 to 270 K. For convective cases, the relative frequencies 

of type A particles can exceed 30 % below 259 K. Type B particles take up a larger percentage 

over warmer temperatures. The relative frequencies of type C particles can dominate a wide 

temperature range and remain above 40 % below 265 K. Similar distributions of relative 

frequencies are found using set 2 (DFR Ku/Ka and Ku/w) with some differences as described 

below. In stratiform cases, the relative frequencies of type A particles are only about 10 % near 

273 K. The relative frequencies of type B particles become the highest above a colder 

temperature 258 K. Similarly, in convective cases, less type A particles are found near 273 K, 

while the relative frequencies of type B particles seem to become higher.  

In summary, in stratiform clouds, type A particles are relatively rare, type B particles 

are dominant at warm temperatures, and type C particles take up a large portion at cold 

temperatures. In convective clouds, type A particles are primary at very cold temperatures, type 

B particles are popular at warm temperatures, and type C particles dominate over a wide 
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temperature range. The results suggest that stratiform cases contain a lot of unrimed snow 

particles with large particle sizes (type B), while a large percentage of small dense snowflakes 

that are heavily aggregated and/or rimed (type C) exist in convective cases. 

4.4 Conclusions for Triple-frequency Radar Signature Analysis 

A clear difference of observed triple-frequency signatures between snowflakes in 

stratiform and convective cases over ocean is discovered from combined CloudSat CPR and 

GPM DPR observations. Modeling experiment of various snow particles and previous relevant 

studies indicates that this difference is likely caused by the difference in prevailing particle 

modes between stratiform and convective snow clouds. A simple classification of snowflake 

types is developed, based on which the fraction of three defined particle types and their 

dependence on temperatures are investigated. The statistics indicate a large fraction of large 

unrimed snow particles over warm temperatures in stratiform clouds and abundant heavily 

aggregated and/or rimed particles with relatively small particle sizes in convective clouds. 

Several useful implications can be gained from this work. First, for modeling 

scattering properties of snowflakes in different types of clouds, our study suggests that large 

unrimed snow particles might be more appropriate for stratiform clouds, while small dense 

particles that are heavily aggregated and/or rimed are probably better for convective clouds. 

Additionally, both of these two particles modes are popular in snow clouds over ocean.  

However, since the distinction among various snow crystals or aggregates is not obvious from 

their DFR values when snow particles are small, a further study that utilizes higher radar 

frequencies is needed [Battaglia et al., 2014].  Second, it seems that DFR Ku/Ka is highly related 

to snow particle sizes, and DFR Ku/W or Ka/W is closely associated with snowflake density or 

internal mass in a triple-frequency space. Finally, the useful particle mode information shown in 
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this study suggests that spaceborne triple-frequency radar observations are beneficial in future 

snowfall retrievals. It is also noted that the results of this study are still partly subject to the 

impact of spatial and temporal mismatches between CPR and DPR even after several data 

processing steps are performed, which further emphasizes the necessity of spaceborne radar that 

makes observations at three different frequencies from the same satellite platform. 

 

 

 

Fig. 4.1. Normalized occurrence frequencies of observed triple-frequency signatures (shading) 

for stratiform and convective cases in 1 dB × 1 dB boxes with time differences between 

CPR and DPR smaller than 7.5 minutes (top panels) and larger than 7.5 minutes 

(bottom panels). 
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Fig. 4.2. Same as Fig. 4.1 except that x-axis is DFR Ku/W. 
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Fig. 4.3. Modeled triple-frequency signatures for large particles (Λ= 1 cm-1) and small particles 

(Λ = 7 cm-1). 
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Fig. 4.4. Model triple-frequency signatures (black lines) and normalized occurrence frequencies 

of observed triple-frequency signatures (shading) in 1 dB × 1 dB boxes for stratiform 

and convective cases. 
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Fig. 4.5. Relative frequencies of classified snowflake types for stratiform and convective cases 

using set 1 (DFR Ku/Ka and Ka/W) and set 2(DFR Ku/Ka and Ku/W). 
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Fig. 4.6. Relative frequency distributions of classified snowflake types over temperature intervals 

for stratiform and convective cases using set 1 (top panels) and set 2 (bottom panels). 
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CHAPTER 5 

ASSESSMENT OF GPM HIGH FREQUENCY MICROWAVE 

MEASUREMENTS 

 

Before applying GMI high frequency measurements to snowfall predictions and 

retrievals, it is important to assess them with model simulations. This chapter is organized as 

follows. Section 5.1 introduces the background of bias characterization of microwave high 

frequency measurements. Section 5.2 provides the data sources and experiment setups. Section 

5.3 presents the bias characteristics of the observed minus simulated brightness temperatures. 

Section 5.4 analyzes the remaining biases under snowfall conditions. Section 5.5 gives the 

conclusion for this chapter. 

5.1. Introduction   

Passive microwave measurements play an important role in retrieving atmospheric 

parameters and predicting the evolution of weather systems. The use of passive microwave 

observations in retrieval algorithms and data assimilation systems has been extended from clear–

sky condition to cloudy and precipitating conditions in the last decades [Geer et al., 2018]. For 

example, Viltard et al. [2006] retrieved rain rates from the TRMM TMI brightness temperature 

measurements using a database based on the TRMM PR. Bauer et al. [2010] and Geer et al. 

[2010] directly assimilated the radiance measurements from the Special Sensor Microwave 

Imager (SSM/I) and the Advanced Microwave Scanning Radiometer for Earth Observing System 

(AMSR–E) into the ECMWF operational data assimilation system. Kummerow et al. [2015] 

developed a precipitation algorithm for GPM GMI using a database built on combined 

radiometer and radar observations. Recently, Seo et al. [2016] developed a cloud–radiation 

database optimized by a one–dimensional variational approach for retrieving hydrometeor 
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profiles from the TMI brightness temperature measurements over ocean. Nevertheless, the 

applications of passive microwave observations to snowfall retrievals and predictions are still 

under development [Noh et al., 2006; Liu and Seo, 2013]. Only a few spaceborne microwave 

sensors have suitable channels for detecting snow signatures.  

In 2014, the GPM core satellite [Hou et al., 2014] was launched. Its microwave 

radiometer, GMI, provides the global microwave radiance measurements of high spatial 

resolution. Compared to its predecessor TMI, GMI has nine similar channels ranging from 10 to 

89 GHz and four additional channels at 166 and 183 GHz. As shown by Bennartz and Bauer 

[2003], a channel around 150 GHz is essential for detecting snow scattering signatures. The 

sensitivity of water vapor channel at 183 GHz to snow particle scattering is weaker but still 

significant for the dry atmosphere. Compared to its predecessor TMI, the addition of the 166 and 

183 GHz channels allows GMI to measure precipitation across a wide intensity range from heavy 

rainfall in the tropics to snowfall at high latitudes. A preliminary sensitivity test indicated that the 

166 and 183 GHz channels contain the primary information on snow scattering among all the 

GMI channels. Inclusion of radiance measurements at these channels is necessary for snowfall 

retrievals and predictions. 

To effectively use the 166 and 183 GHz measurements under all weather conditions 

for numerical weather applications, it is important to characterize the biases1 for those channels 

by comparing measurements with radiative transfer simulations [Auligné et al., 2007; Lu et al., 

2011; Islam et al., 2016]. Moreover, the causes of the biases need to be understood, as they can 

originate from diverse sources including observations, radiative transfer model and input 

atmospheric fields. So far, bias characterization for microwave instruments has been rarely made 

                                                 
1 Throughout this chapter, biases are defined as the mean difference between observed and 

simulated brightness temperatures, rather than instrument inaccuracy. 
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for snowfall conditions. The first reason is that the scattering properties of snow particles are 

complicated. Kulie et al. [2010] has demonstrated that the spherical particle models produce 

unrealistic simulations compared to microwave observations at 89 GHz and higher frequencies. 

As shown by Geer and Baordo [2014], the Mie theory that simply assumes snow particles being 

spheres as adopted in many radiative transfer models produces too little scattering at high 

frequencies (150–183 GHz). A method such as the DDA [Draine and Flatau, 1994] that can 

calculate the scattering properties of realistic nonspherical snow particles is required in 

simulating the microwave brightness temperatures in snow–containing clouds [Liu, 2004; Kulie, 

et al., 2010; Geer and Baordo, 2014]. Second, the radiative model input of precipitation profiles 

from numerical weather models are heavily dependent on the employed microphysical schemes 

and therefore not always reliable [Panegrossi et al., 1998; Kim et al., 2013]. To alleviate this 

issue, combining passive and active microwave measurements is considered to be a good choice, 

since the radar measurements are directly related to the snow particle scattering and have been 

widely used to infer the snow particle properties [Liu, 2008a; Hiley et al., 2011; Heymsfield et al., 

2016]. Seo et al. [2016] and Yin and Liu [2017] both utilized radar observations to constrain 

precipitation profiles as input to radiative transfer models. Their results suggested that radar 

observations generally lead to the radiative transfer simulations close to the observed brightness 

temperatures.  

The purpose of this study is to assess the biases of observed minus simulated 

brightness temperatures for GMI channels at 166 and 183 GHz over ocean under snowfall 

conditions and understand the causes of these biases. A radiative transfer model that includes the 

scattering properties of nonspherical snow particles [Liu, 2004] is used to simulate the brightness 

temperatures at the high microwave frequencies. The input snow water content profiles are 
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derived from the CloudSat CPR measurements [Stephens et al., 2002] rather than the GPM DPR. 

Since the minimum detectable reflectivity of DPR is about 12 dBZ over ocean [Hamada and 

Takayabu, 2015], the DPR tends to miss light and moderate snowfall events substantially 

[Casella et al., 2017]. The biases under clear–sky conditions are also evaluated for comparison.  

5.2 Data and Methods 

The atmospheric hydrometeors that actively interact with upwelling microwave 

radiation under snowfall conditions are snow particles and cloud liquid drops. The former 

reduces upwelling radiation by scattering, while the latter enhances it by emission. To input 

snow water content into the radiative transfer model, we introduce the collocated CloudSat CPR 

measurements. For cloud liquid water, the GMI retrievals are used. In this section, the data 

sources are firstly introduced, followed by discussions on data processing such as pixel 

averaging and selecting data points under snowfall conditions. The derivation of hydrometeor 

profiles as input to the radiative transfer model is given in section 4.2.3. The radiative transfer 

model employed for simulating brightness temperature is finally described. 

5.2.1 Data Sources 

The primary datasets used in this study are brightness temperature and radar 

reflectivity measurements from the GPM GMI and CloudSat CPR. ECMWF analysis data are 

also used as the input atmospheric fields to the radiative transfer model.  

The GMI has a total of 13 channels with central frequencies between 10 and 183 GHz. 

Its horizontal spatial resolution becomes finer at higher frequencies. The channels at 166 and 183 

GHz have a spatial resolution of about 6 km. The nominal earth incidence angle for channels at 

166 and 183 GHz is 49.2°, while the channels between 10 and 89 GHz have a nominal earth 

incidence angle of 52.8°. In the following, the channels at 166 and 183 GHz are referred to as 
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166V, 166H, 183±3V, and 183±7V channels, where the V/H represents the vertical/horizontal 

polarization.  

The Jacobians of GMI channels at 166 and 183 GHz with respect to snow water 

content are presented in Fig. 5.1, in which the snow water content is assumed to be a constant of 

0.2 g m-3 in the lowest 5 km layer. The Jacobians (gradients) of brightness temperatures with 

respect to snow water content are derived explicitly by adding a small perturbation to each layer 

of snow water content. It is seen that the 166V channel is sensitive to the column scattering, 

while the 183±7V channel mainly detects the scattering signatures at higher altitudes. The 

183±3V channel is less sensitive to ice scattering than the other channels in the lower and middle 

troposphere. 

The CPR is a nadir–looking radar that measures the backscattered power from cloud 

and precipitation at 94 GHz. Its minimum detectable reflectivity is about –30 dBZ. The 

horizontal spatial resolution is about 1.4 km across the track and 2.3 km along the track. A single 

CPR radar reflectivity profile contains a total of 150 bins with a vertical bin size of about 240 m. 

A coincident dataset, 2B–CSATGPM [Turk, 2017], is employed in this study, which 

provides the collocated GMI brightness temperatures and CPR radar reflectivities, as well as 

ECMWF ancillary atmospheric fields interpolated to the CPR bin locations. In this dataset, a 

CPR radar reflectivity profile is matched to a nearest GMI pixel when two satellite tracks 

coincide within 15 minutes. Several other parameters distributed from the CloudSat and GPM 

products are also used, such as the CPR cloud masks and snow water contents as well as the 

retrieved GMI cloud ice and liquid water paths. The spatial coverage of datasets is from 65°S to 

65°N. The period covers from March 2014 to December 2016. 
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5.2.2 Data Processing 

Since the horizontal spatial resolution of CPR measurements (~2 km) is smaller than 

that of GMI measurements at 166 and 183 GHz (~6 km), all the CPR pixels within a searching 

radius of 4 km around the center of GMI pixel are averaged to match a GMI pixel. Since CPR 

pixels cannot fill a whole GMI pixel due to its nadir looking design, it is assumed that cloud 

properties are generally homogenous in the CPR cross track direction within a GMI pixel. The 

averaged CPR radar reflectivity (Ze,avg) at each bin matched to a single GMI pixel is expressed as 
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where Ze,i represents the radar reflectivity in linear scale at each bin for the ith CPR pixel in a 

GMI pixel, ri is the distance between the center of the GMI pixel and the ith CPR pixel, and n is 

the total number of CPR pixels within the searching radius. wi  is the inverse distance weighting 

factor for the ith CPR pixel and is proportional to the square of ri. Similarly, a clear fraction (Favg) 

for a GMI pixel is determined using the CloudSat cloud mask. A clear flag (Fi) for a CPR pixel is 

firstly defined as 

     
1,  CPR cloud mask = 0 above surface clutter layer
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i


= 
 ，

.                      (5.3) 

The clear flag for area covering the GMI pixel is then expressed as 
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A GMI pixel is considered as clear–sky when its clear fraction is larger than 90% with the GMI 

cloud liquid and ice water paths less than 50 g m-2. Otherwise, this GMI pixel is considered 

cloudy. A cloudy pixel with the matched CPR radar profile failing to pass the precipitation 

threshold (–15 dBZ) is considered as cloudy without precipitation conditions. 

To select those GMI pixels associated with the snowfall near the surface, a 

parameterization of snowfall probability [Sims and Liu, 2015] is employed. Different from 

previous studies on snow–rain separation [Liu, 2008a; Kienzle, 2008], this parametrization 

accounts for the low–level temperature lapse rate, because the temperature inversion strongly 

affects a precipitation phase and is commonly observed near the polar regions [Curry et al., 1996; 

Connolley, 1996]. Surface air wet–bulb temperature and temperature lapse rate in the lowest 0.5 

km calculated from ECMWF ancillary atmospheric fields for CloudSat are utilized to calculate 

the snowfall probability. A cloudy GMI pixel with the calculated snowfall probability larger than 

50% and the matched CPR radar profile passing the precipitation threshold (–15 dBZ) is 

considered as snowfall conditions even there is no frozen precipitation near the ground.  

After the above data processing, we finally have about 80000 clear–sky, 110000 

cloudy without precipitation and 24000 snowfall data points, and their geolocations are displayed 

in Fig. 5.2. The longitudinal distributions of clear–sky, cloudy without precipitation and snowfall 

data points are more homogeneous in the southern hemisphere. Most of snowfall data points are 

distributed poleward of 50° latitude. Additionally, about 86000 data points do not fall into the 

above three conditions and belong to rainfall conditions. 

5.2.3 Input Hydrometeor Profiles 

The cloud liquid water profiles are based on the retrieved GMI cloud liquid water 

paths provided by the GMI level 2 product (Passive Microwave Algorithm Team Facility, 2017). 
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The cloud liquid water in the vertical atmospheric column is evenly distributed in a 1 km layer. 

The layer location is determined by the highest relative humidity between 0.5 and 3 km. Using 

the vertical distribution of cloud liquid water from the collocated ECMWF analysis yields the 

similar simulation results. 

The snow water content profiles are generated from the CPR radar reflectivity 

profiles. The radar reflectivities in the surface clutter layer (0 to ~1 km) are assumed to be the 

same as the first bin above the clutter layer. Since the CPR operates at W band, its radar 

reflectivity may experience measurable attenuation due to atmospheric gas, cloud liquid water 

and snow [Matrosov, 2007; Kneifel et al., 2011]. Attenuation correction has been performed for 

atmospheric gases and cloud liquid water. The gaseous attenuation is given by the CloudSat 2B–

GEOPROF product. The attenuation due to cloud liquid water is corrected using the derived 

cloud liquid water profiles [Salonen and Uppala, 1991]. The attenuation due to snow is not 

accounted for, because we lack the reference radar at Ku band [Kulie et al., 2014]. Under heavy 

snowfall conditions, this type of attenuation may have been partially compensated by the 

multiple scattering [Matrosov and Battaglia, 2009].  

The Ze–SWC relation is developed to covert radar reflectivity to snow water content. 

Three snow particle types are chosen in deriving this relation: sectors, dendrites [Liu, 2008b] and 

oblate aggregates [Honeyager et al., 2016]. The backscatter cross sections of the three snow 

particle types are calculated using the DDA method [Draine and Flatau, 1994]. Specifically, the 

radar reflectivity factor (Ze) is expressed in (2.5), and the snow water content can be expressed as 

                                               
max

min

D

D

SWC N(D)m(D)dD= ∫ ,                                              (5.5)                                                                            

where Dmin and Dmax are lower and upper limits of  the snowflake size, N(D) is the particle size 

distribution, m(D) is the mass of the particle with maximum dimension D. Based on previous 
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experimental and modeling studies focusing on snowfall events at high latitudes [Braham, 1990; 

Senn and Barthazy, 2004], the exponential particle size distribution in (4.1) is assumed. The 

values of N0 and Λ are taken from the field experiments conducted by Braham [1990]. The Ze–

SWC relation is derived using least squares fitting of all data points for three snow particle types 

and can be expressed as 

                                                                  
0.75

eSWC=0.024Z .                                                    (5.6) 

Our comparison results indicate that the bias characteristics shown in later sections 

using this Ze–SWC relation are very similar to those using snow water content profiles from 

CloudSat 2C–SNOW–PROFILE product [Wood et al., 2014] that utilizes a variational method to 

retrieve snow–related quantities from CPR radar reflectivities, which suggests that the 

uncertainty in Ze–SWC relation only has a secondary impact on bias characteristics. 

The distance–height cross section of CPR derived snow water content and the GMI 

brightness temperature depressions at 166 and 183 GHz are presented in Fig. 5.3 for a case on 

April 11, 2015. The brightness temperature depression is calculated as the brightness temperature 

difference between a snowfall GMI pixel and a nearest clear–sky GMI pixel. There are five 

individual snow cells with snow water content values larger than 0.2 g m-3. For the snow cell 

near 57.5°S, the brightness temperature depressions can even reach about –40 K at 166V and 

166H channels, while the brightness temperature depression at 183±3V channel is only about –

10 K. It is also seen that the brightness temperature depression at 166H channel is positive for 

the snow cell near 60.5°S possibly due to the existence of cloud liquid water. From this case, the 

GMI brightness temperature depressions at 166 and 183 GHz correspond to those snow cells 

well, indicating their capability of detecting snow scattering signatures. 
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5.2.4 Radiative Transfer Model 

The radiative transfer model for calculating the GMI brightness temperatures was 

developed by Liu [1998]. It used a 4–stream discrete ordinate method to solve the radiative 

transfer equation. One of the radiative transfer model’s  unique features is that the single 

scattering properties of nonspherical snow particles are based on the results of DDA modeling 

[Liu, 2004]. The available snow particle types in the model have been extended from simple 

crystals (i.e., rosette, sector and dendrite) [Liu, 2008b] to complex aggregates [Nowell et al., 

2013]. In this study, the results using dendrite snow particles are mainly presented, since this 

snow particle type leads to the smallest departures between observed and simulated brightness 

temperatures. The exponential particle size distribution in (4.1) is employed in the radiative 

transfer model.   

5.3. GMI Bias Characteristics at 166 and 183 GHz 

In this section, the bias characteristics of observed minus simulated brightness 

temperatures for GMI channels at 166 and 183 GHz under clear–sky and snowfall conditions are 

presented. Hereafter, O and B denote observed and simulated brightness temperatures, 

respectively. The biases and standard deviations of O–B for GMI channels at 166 and 183 GHz 

under clear–sky and snowfall conditions using all collocated CloudSat and GMI pixels are 

shown in Table 1. Under clear–sky conditions, the biases at all channels are smaller than 1 K. 

The 183±3V channel has the largest bias of about 0.9 K, while the biases at other three channels 

are smaller than 0.3 K. Since the 183±3V channel is highly sensitive to water vapor, its larger 

bias is possibly caused by the biases in the model water vapor profiles. Under snowfall 

conditions, the 166H channel has the largest bias of about 2.9 K, while other channels have 

biases smaller than 1 K. The largest standard deviation is observed at 166H channel under clear–
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sky and snowfall conditions due to its larger dynamic range; it can be as large as 6.5 K under 

snowfall conditions. Comparing results between clear–sky and snowfall conditions, it is found 

that the biases and standard deviations for 166V/H and 183±7V channels are larger under 

snowfall conditions than under clear-sky conditions. The differences in bias and standard 

deviation for 183±3V channel between clear–sky and snowfall conditions are minimal, since this 

channel is less sensitive to ice scattering.  

The biases and standard deviations of O–B for GMI channels at 166 and 183 GHz are 

also calculated under cloudy without precipitation conditions (Fig. 5.4), in which only data 

points with latitudes above 40° are included. It is found that the biases for 166V, 183±3V and 

183±7V channels are of similar values under clear–sky and cloudy conditions, while the bias for 

166H channel under cloudy conditions is much larger than that under clear–sky conditions. From 

cloudy to snowfall conditions, the increments in biases for 166V and 166H channels and the 

decrements in biases for 183±3V and 183±7V channels are smaller than 1 K. Assuming a 

constant liquid water content value of 0.1 g m-3 in the lowest 2.5 km layer, the Jacobian near the 

surface for 166V channel with respect to liquid water content is about 5 K g-1 m3, while it for 

166H channel can reach about 15 K g-1 m3 near the surface. In other words, the 166H channel is 

more sensitive to liquid water emission than the 166V channel. On the other hand, the 166V 

channel is more sensitive to ice scattering than the 166H channel as seen in Fig. 5.1. Therefore, 

the large bias for 166H channel under cloudy and snowfall conditions is likely attributed to the 

biases in cloud liquid water profiles. The biases in snow water profiles and model scattering 

calculations only contribute a small portion to the total bias of O–B for that channel. Otherwise a 

large bias should have been observed for 166V channel as well. The standard deviations under 
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the nonprecipitating condition (clear–sky and cloudy) are relatively stable, while the standard 

deviations for 166V/H and 183±7V channels are much larger under snowfall conditions. 

Fig. 5.5 shows the relation between O–B and B under clear–sky  and snowfall 

conditions. It is seen that the observed brightness temperatures are generally consistent with the 

simulated ones under clear–sky conditions. On the other hand, it is found that the spread of O–B 

becomes larger as the simulated brightness temperatures get lower (more intense snowfall) under 

snowfall conditions, i.e., increasing the inconsistency between observed and simulated brightness 

temperatures. It is also noticed that the distribution of O–B for 166H channel migrates upward 

along y axis as simulated brightness temperature decreases under the snowfall condition, 

corresponding to the largest bias for this channel as seen in Fig. 5.4. As mentioned above, this 

migration of O–B for 166H channel is likely caused by errors in cloud liquid water profiles. The 

root cause of these remaining biases under snowfall conditions will be investigated later. 

Sensitivity test is conducted by changing snow particle types in the radiative transfer 

model. In Fig. 5.6, we show the biases of O–B for 166 and 183 GHz channels under snowfall 

conditions assuming snow particle types as rosette, sector, dendrite and aggregate in the radiative 

transfer model. The scattering properties of aggregate were calculated by Nowell et al. [2013], 

while those for other snow particle types are developed by Liu [2008b]. Data points are divided 

into three groups according to their snow water paths (SWPs) calculated from CPR derived snow 

water contents. In group 1 (SWP < 50 g m-2), the biases are of similar values when using 

different snow particle types. In group 2 (50 ≤ SWP < 200 g m-2), the biases are the largest when 

using rosette and the smallest when using dendrites. In the group 3 (SWP ≥ 200 g m-2), it is seen 

that the biases are much larger when using rosette than those using other snow particle types, 

implying that using rosette significantly overestimates ice scattering. The GMI 166V, 183±3V 
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and 183±7V channels have the smallest biases when using dendrites, while the GMI 166H 

channel has the smallest bias when using aggregate. It is worth mentioning that in group 3, the 

biases for GMI 166V/H and 183±7V channels are negative when using dendrites and positive 

when using other snow particle types. Fig. 5.7 is the same as Fig. 5.6 except for standard 

deviations. It is seen that the standard deviations are similar when using different snow particle 

types in the group 1, while they are much larger when using rosette than using other snow 

particle types in the group 3. From this sensitivity test, it seems that dendrites work reasonably 

well overall, especially when snow water path is moderately low. On the other hand, rosette type 

only works comparably well at very low values of snow water path. At high snow water paths, 

aggregates outperform for the 166H channel. 

5.4. Analysis of GMI Remaining Biases at 166 and 183 GHz 

From previous results, it is seen that the large biases of O–B occur for the GMI 

166V/H and 183±7V channels under snowfall conditions when brightness temperatures are 

relatively low. For instance, some data points are associated with biases of magnitudes larger 

than 10 K when the brightness temperatures at 166V channel are around 240 K (see Fig. 5.5). In 

this section, we analyze the possible causes of the remaining biases for the GMI channels at 166 

and 183 GHz under snowfall conditions.  

The dependence of O–B on ice water path for these GMI channels under snowfall 

conditions is shown in Fig. 5.8. The ice water path comes from the 2A–GPROF–GMI product 

[Passive Microwave Algorithm Team Facility, 2017]. It is noted that the GMI retrieved ice water 

path is not independent of brightness temperatures at GMI high frequency channels. Here this 

variable is only used as an indicator of the presence of ice in the GMI observations. It is seen that 

the values of O–B are more concentrated along the line of zero value with the increase of ice 
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water path. Some values of O–B are large and positive for 166V/H and 183±7V channels when 

ice water path is smaller than 20 g m-2. In addition, it is observed that there are some data points 

associated with large negative values of O–B for 166H channel when ice water path is larger 

than 80 g m-2. Fig. 5.9 is the same as Fig. 5.8 except for O–B dependence on CPR derived snow 

water path. It is found that the values of O–B spread broadly when snow water path is large. 

Some values of O–B are large and negative for the 166V/H and 183±7V channels when snow 

water path is larger than 600 g m-2. The large positive values of O–B are only observed for the 

166H channel when snow water path is smaller than 100 g m-2. Since the GMI ice water path and 

the CPR snow water path are both intended to represent the amount of ice, it is expected that the 

dependence of O–B on the two variables should be similar, which is not seen in Figs. 5.9 and 

5.10. One obvious reason is that the two variables are derived from two different instruments, 

which leads to the discrepancy. 

The biases of O–B in two–dimensional space of the aforementioned ice and snow 

water paths under snowfall conditions are shown in Fig. 5.10. Large negative biases are found at 

166V/H and 183±7V channels on the upper right corner where the ice and snow water paths are 

both large. In this region it is likely that snowfall is intense and the CPR radar reflectivity 

experiences significant attenuation. Since the snow water content profiles used in the simulations 

are derived from CPR radar reflectivity, the attenuation in CPR radar reflectivity leads to 

positive biases in simulated brightness temperatures and therefore large negative biases in O–B. 

Some positive biases are found for 166V/H and 183±7V channels on the bottom right corner 

where snow water path is large, but the ice water path is small. In this region, the CPR measures 

obvious ice scattering signatures, while the GMI only detects weak ice scattering. This 

discrepancy is likely caused by spatial and/or temporal mismatches between two instruments. It 



50 

 

is worth mentioning that since we selected data points based on the CPR precipitation threshold 

in this study, it is likely that some matched GMI pixels contain more or less precipitating ice 

particles due to this sampling method, which can partly contribute to the large biases observed 

under high snow water paths. This sampling bias has been explored by Geer and Bauer [2011] in 

the context of numerical weather forecast simulations. It is also noticed that large positive biases 

are found for the 166H channel when snow water path is smaller than 100 g m-2. This region may 

be divided into two parts: one is associated with light precipitation where ice and snow water 

paths are both small, and the other is with large ice water path but small snow water path. In the 

second part, the GMI measures strong ice scattering, while the CPR misses much of ice 

scattering signature. As discussed later in this section, it appears that this part is associated with 

shallow snow cells where the CPR is not able to fully observe them due to surface clutter. The 

positive biases in the two parts are both likely caused by the negative biases in cloud liquid water 

profiles.  

The relation between the biases of O–B and snow cloud geometric properties is also 

investigated. The dependence of biases of O–B on snow top height and snow layer depth is 

shown in Figs. 5.11 and 5.12, respectively. Snow top height is defined as the height of the 

highest level with CPR radar reflectivity lager than –15 dBZ. The snow layer depth is defined as 

the distance between bottom and top snow levels. Larger positive biases are observed for the 

166H channel when snow top height is lower than 3 km. Similarly, positive biases for the 166H 

channel are found when the snow layer depth is smaller than 3 km. As mentioned earlier, the 

positive biases for this channel are likely caused by the negative biases in GMI cloud liquid 

water profiles, since the emission from liquid water in shallow snow clouds can contribute 

significantly to the observed brightness temperature. It is seen that  negative biases for 166V/H 
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and 183±7V channels occur when snow top height is higher than 8 km. Similarly, large negative 

biases for those channels are observed when snow layer depth is larger than 8 km. In other words, 

negative biases for 166V/H and 183±7V channels are associated with deep snow clouds where 

the strong attenuation in CPR radar reflectivities and the possible sampling bias cause negative 

biases of O–B. Additionally, snow cloud properties in two regions in Fig. 5.10 are examined. 

Region 1 is for ice water path > 120 g m-2 and snow water path > 700 g m-2, and region 2 is for 

ice water path > 80 g m-2 and snow water path < 60 g m-2. In region 1, mean snow top height and 

layer depth are about 8.2 km, while in region 2, mean snow top height and layer depth are about 

4.1 km, consistent with the discussions given above. 

Finally, a case for shallow snow cells and a case for deeply convective clouds are 

presented in Fig. 5.13. In the first case, the individual shallow snow cells near 51°S and 53°S are 

associated with positive biases of O–B for 166H channel (> 5 K) due to negative biases in cloud 

liquid water profiles.  In the second case, the deep convective clouds near 52°N and 53°N are 

associated with negative biases of O–B for 166V/H channels (< –14 K) due to the attenuation in 

radar reflectivities and the possible sampling bias. 

5.5. Conclusions for Assessment of Microwave High Frequency Measurements 

The GMI provides nearly global measurements of high spatial resolution microwave 

radiances at 166 and 183 GHz. It is valuable to apply data at these channels to snowfall retrievals 

and predictions. To do so, it is useful to firstly understand the bias characteristics of observed 

minus simulated brightness temperatures at these channels under snowfall conditions. For this 

purpose, a radiative transfer model that includes single scattering properties of nonspherical 

snow particles based on DDA calculations is used to simulate brightness temperatures at 166 and 
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183 GHz. The input snow water content profiles are derived from CloudSat CPR measurements 

rather than outputs of numerical weather prediction models.  

Results show that the biases of O–B averaged over more than 2 years of coincident 

CloudSat and GMI pixels under snowfall conditions are smaller than 1 K except for the 166H 

channel that has the largest bias of about 3 K. At the 166H channel, it also has the largest 

standard deviation of about 6.5 K, while at other GMI channels, the standard deviations are 

smaller than 4 K.  

By analyzing the results, we have identified two major possible causes for the 

discrepancy between simulated and observed brightness temperatures. All of them are related to 

the inputs for radiative transfer simulations, and each of them occurs under specific cloud 

conditions and affects individual channels differently. One is due to errors in cloud liquid water 

profiles for which we chose to use GMI retrievals as radiative transfer model input. This problem 

impacts the most on the 166 H channel and occurs for shallow snow cells with or without 

substantial snowfall. Based on the study of Kulie et al. [2016], there are abundant shallow snow 

cloud cells globally and they can be associated with strong convection and heavy snowfall. In 

shallow snow cells, cloud liquid water may be rich and contributes substantially to the observed 

brightness temperatures. Wang et al. [2013] has shown that the warming by liquid water 

emission has a similar magnitude to the cooling by ice scattering on microwave brightness 

temperatures with frequencies higher than 80 GHz. The biases in cloud liquid water profiles lead 

to the large biases in simulated microwave brightness temperatures for those channels sensitive 

to surface emission. Therefore, it is important to improve the cloud liquid water retrieval 

algorithms in the future. The second cause for the large biases of O–B occurs when the clouds 

are deep and with heavy snowfall. Under this condition, CloudSat CPR experiences substantial 
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attenuation and GMI observations may contain some negative biases due to the sampling 

method, which leads to higher simulated brightness temperatures and negative biases of O–B. 

This problem impacts the 166 channels the most, followed by the 183±7V channel. 

In addition, a sensitivity test is conducted by varying snow particle types in the 

radiative transfer model. The results indicate that dendrites work well for low and moderate 

snow water paths. On the other hand, rosettes only work comparably well at very low values of 

snow water path. When snow water path is high, aggregates outperform for the 166V channel. In 

this study, it is not our intention to claim that dendrites are prevalent in studied snow clouds, 

since they grow in a narrow temperature range. Instead, our finding indicates that snow 

aggregates [Petty and Huang, 2010; Leinonen and Szyrmer, 2015] with similar scattering 

properties to dendrites developed by Liu [2008b] work well in simulating microwave high 

frequency brightness temperatures. Snow aggregates have been shown to grow in a broad 

temperature range from 273 to 213 K [Pruppacher and Klett, 1997; Nowell et al., 2013]. As 

mentioned by Kulie et al. [2010], the uncertainty in snow particle types is still quite large, it is 

important to further examine the realism of various snow particle types under different cloud 

conditions. 

 While other uncertainties may still exist, this study provides useful configurations for 

simulating GMI brightness temperatures at 166 and 183 GHz and the physical understandings for 

the remaining biases of O–B for these channels under snowfall conditions. 
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Table. 5.1. Biases and standard deviations of O–B for GMI channels at 166 and 183 GHz under 

clear–sky and snowfall conditions. 

 
bias (K) 

clear–sky           snowfall 

std (K) 

 clear–sky              snowfall 

166V  -0.28                      0.85    1.42                         3.58 

166H   0.23                      2.86    2.80                         6.49 

183±3V   0.86                      0.82    1.34                         1.52 

183±7V  -0.03                     -0.32    1.08                         2.40 

 

 

 

Fig. 5.1. Jacobians of GMI channels at 166V/H, 183.31±3V, and 183.31±7V GHz with respect 

to snow water content. 
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Fig. 5.2. Number of clear–sky (top panels), cloudy without precipitation (middle panels) and 

snowfall (bottom panels) data points within 5°×5° boxes. 
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Fig. 5.3. Vertical cross section of CPR derived snow water content (unit: g m-3) for a single case 

on April 11, 2015 (top panel) and GMI brightness temperature depressions at 166 and 

183 GHz (bottom panel). 
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Fig. 5.4. Biases (top panel) and standard deviations (bottom panel) of observed minus simulated 

brightness temperature (O–B) for GMI channels at 166 and 183 GHz under clear–sky, 

cloudy without precipitation and snowfall conditions. Only data points with latitudes 

poleward of 40° are included. 
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Fig. 5.5. Relation between observed minus simulated brightness temperature (O–B) and 

simulated brightness temperatures (B) for GMI channels at 166 and 183 GHz under 

clear–sky (left panels) and snowfall (right panels) conditions. Shading represents the 

occurrence frequency (unit: %). 
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Fig. 5.6. Biases of observed minus simulated brightness temperature (O–B) for GMI channels at 

166 and 183 GHz under the snowfall condition assuming different snow particle types 

in the radiative transfer model . 
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Fig. 5.7. Same as Fig. 5.6 except for standard deviations. 
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Fig. 5.8. Dependence of observed minus simulated brightness temperature (O–B) on ice water 

path (IWP) for GMI channels at 166 and 183 GHz under snowfall conditions. Shading 

represents the occurrence frequency (unit: %). 

 

 

Fig. 5.9. Same as Fig. 5.8 except for dependence on snow water path (SWP). 
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Fig. 5.10. Biases of observed minus simulated brightness temperature (O–B, unit: K) in two–

dimensional space of ice and snow water paths for GMI channels at 166 and 183 GHz 

under snowfall conditions 
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Fig. 5.11. Dependence of biases of observed minus simulated brightness temperature (O–B) on 

snow top height for GMI channels at 166 and 183 GHz under snowfall conditions. The 

length of the bar represents the twofold of standard deviations of observed minus 

simulated brightness temperature (O–B). 
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Fig. 5.12. Dependence of biases of observed minus simulated brightness temperature (O–B) on 

snow layer depth for GMI channels at 166 and 183 GHz under snowfall conditions. 

The length of the bar represents the twofold of standard deviations of observed minus 

simulated brightness temperature (O–B). 
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Fig. 5.13. A case for shallow snow clouds on June 12, 2015 (top panel) and a case for deep 

convective snow clouds on March 11, 2015 (bottom panel). The shading represents 

snow water content (unit: g m-3). 
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CHAPTER 6 

SNOWFALL RETRIEVAL ALGORITHM FOR GPM MICROWAVE 

IMAGER 

 

After exploring the bias characteristics for GMI high frequency channels, it is practical 

to develop a snowfall retrieval algorithm for GMI. This chapter is organized as follows. The 

introduction to passive microwave snowfall retrieval is provided in section 6.1. Section 6.2 

describes the data sources and methods used. Section 6.3 presents the results from 1D–Var 

optimization, including the statistics of the constructed a priori database. Section 6.4 applies this 

a priori database to retrieve snow water content profiles and evaluates its performance. 

Conclusions are given in section 6.5. 

6.1 Introduction  

In the past decades, global precipitation retrievals have been greatly advanced due to 

observations from passive microwave instruments onboard satellites. Early studies [Ebert et al., 

1996; Ebert and Manton, 1998] have demonstrated that microwave signatures are more sensitive 

to the amount of raindrops or ice particles in the atmosphere than their infrared counterparts. The 

success of TRMM [Kummerow et al., 2000] further advanced the precipitation retrievals from 

passive microwave observations. Nevertheless, very few passive microwave retrieval methods 

focused on snowfall, although it is a major form of precipitation at high latitudes and has a 

distinct impact on global climate [Liu, 2008a]. Several reasons impede the development of 

passive microwave snowfall retrievals. First, the scattering properties of nonspherical snowflakes 

are not well understood, but clearly different from those of spherical particles [Liu, 2004; 

Matrosov et al., 2005]. The scattering properties of snowflakes are very sensitive to their shapes 

and sizes [Liu, 2008b; Kneifel et al., 2011]. Second, the snow signatures in passive microwave 
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observations are weak and only evident at high microwave frequencies. A sensitivity study 

conducted by Bennartz and Bauer [2003] showed that the scattering signatures in passive 

microwave radiances due to precipitating ice particles are not strong even at 85 GHz. Only at a 

frequency higher than 150 GHz do they become strong enough to retrieve snow–related 

quantities at middle and high latitudes. Consequently, only a few satellite sensors have been so 

far suitable for the purpose of snowfall retrievals. Finally, the emission by cloud liquid water can 

increase microwave brightness temperatures, which has a masking effect on the snow scattering 

signatures [Liu and Seo, 2013], thus further increases the difficulty of snowfall retrievals. 

Toward developing a snowfall retrieval algorithm, progresses have been made in 

understanding the scattering properties of nonspherical ice particles and analyzing passive 

microwave measurements. For example, Liu [2004] presented two approximations for single 

scattering properties of various nonspherical snowflakes based on results of DDA [Draine and 

Flatau, 1994] calculations. Several databases of microwave scattering properties for 

nonspherical snowflakes have been developed, covering from simple pristine crystals [Liu, 

2008b] to complex snow aggregates [Petty and Huang, 2010; Honeyager et al., 2016]. Those 

studies provided the basis for simulating microwave brightness temperatures in radiative transfer 

models under snowfall conditions. In addition, Liu and Curry [1999] developed an over–ocean 

ice water path algorithm using the Special Sensor Microwave Water Vapor Sounder data. Noh 

and Liu [2006] presented a method to retrieve snow precipitation in the Wakasa Bay and 

surrounding areas by utilizing high microwave frequency channels from the Advanced 

Microwave Sounding Unit (AMSU). Liu and Seo [2013] proposed a statistical method to detect 

snowfall over land using passive microwave measurements from the Microwave Humidity 

Sounder (MHS). The encouraging results from these studies have demonstrated the values of 
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passive microwave measurements on global snowfall retrievals. With the recent launch of the 

GPM core satellite [Hou et al., 2014], the onboard GMI provides the measurements with 

unprecedented high spatial resolution at high microwave frequencies ranging from 89 to 183 

GHz and is a powerful tool for studying snow precipitation. Applying GMI measurements to 

snowfall retrievals is of great benefit to cloud and precipitation process studies. 

The Bayesian technique [Olson et al., 1996; Evans et al., 2002] is an inversion method 

that has been widely used in the precipitation retrievals. It requires an a priori database that 

contains a large set of hydrometeor profiles and their corresponding brightness temperatures for 

a specific sensor. The construction of such a priori databases can be accomplished by utilizing 

results of cloud–resolving models [Mugnai et al., 1993; Marzano et al. 1999; Kummerow et al., 

2001] or radar observations [Seo and Liu, 2005; Noh et al., 2006; Aonashi et al., 2009; 

Kummerow et al., 2011]. One key step in developing a realistic a priori database is to ensure the 

physical consistency between geophysical parameters and observed sensor brightness 

temperatures. For this purpose, a one–dimensional variational (1D–Var) method is introduced 

here. 

The 1D–Var approach iteratively finds a solution of geophysical parameters to best fit 

the observed sensor brightness temperatures, balancing with the prior information of geophysical 

parameters. It employs a radiative transfer model to translate the information of geophysical 

parameters to brightness temperatures. Moreau et al. [2003] applied this variational method to 

retrieve rain profiles from TMI over ocean, in which they utilized model–generated rain profiles 

as first guess and solved the analyzed rain profiles through iterations to find the best match 

between initial rain profiles and TMI observations. Seo et al. [2016] developed an optimized a 

priori database that connects hydrometeor profiles and TMI brightness temperatures over ocean 



69 

 

using 1D–Var approach. In their method, radar observations from TRMM precipitation radar (PR) 

were also included in the minimization of the cost function to further constrain the hydrometeor 

profiles generated from a cloud–resolving model. Recently, Meng et al. [2017] developed an 

overland snowfall rate retrieval algorithm for AMSU/MHS and ATMS sensors, in which a 1D–

Var approach is used to derive ice water path first, and then the ice water path is converted to 

snowfall rate using an observation–based ice particle terminal velocity relation. It is worth 

mentioning that the three studies assumed some parameters as knowns. For Moreau et al. [2003] 

and Seo et al. [2016], all parameters except hydrometeor profiles are assumed to be known, 

while for Meng et al. [2017], land emissivity and surface temperature are also optimized, since 

the uncertainty in these two parameters is relatively large over land. Their positive results have 

demonstrated the benefits of utilizing 1D–Var approach to develop the a priori database for 

passive microwave precipitation retrievals. 

This study aims to develop a physically optimized a priori database for GMI global 

snow water retrievals over ocean. The 1D–Var approach is employed to seek the optimal match 

between background snow water content profiles and GMI observations at high microwave 

frequencies. The first–guess snow water content profiles are based on CPR observations 

[Stephens et al., 2002]. The flowchart for developing the a priori database is shown in Fig. 6.1. 

The first step includes selecting GMI pixels associated with solid precipitations and converting 

CPR radar reflectivities to initial snow water content profiles. Then, the 1D–Var optimization is 

performed on all snow water content profiles using collocated GMI measurements. A final step 

shows the application of the database for Bayesian snow water retrievals.  

6.2 Data Sources and Method 

In this section, the data sources and processing methods are mainly adopted from 
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chapter 5 with some modifications. The primary data sources are the collocated CPR radar 

reflectivities and GMI brightness temperatures. The atmospheric fields provides by ECMWF 

analysis are used as input to radiative transfer model. The time period of datasets covers from 

March 2014 to June 2016. 

6.2.1 Data Sources and Processing 

The creation of the a priori database starts with a coincident dataset, 2B–CSATGPM 

[Turk, 2017], which includes, among other variables, GMI brightness temperatures, CPR radar 

reflectivities, and ECMWF ancillary geophysical parameters collocated with CloudSat 

observations. Other parameters, such as CPR cloud mask, GMI retrieved cloud liquid and ice 

water paths, and GMI surface type index distributed from the CloudSat radar and GPM 

precipitation products, are also used in the study.  

In this study, only the six GMI channels at 89 GHz and higher frequencies are 

employed to detect snow water signatures. Hereafter, these channels are referred to as 89V, 89H, 

166V, 166H, 183±3V, and 183±7V channels, where the numbers denote the frequency in GHz, 

and the tailing letters indicate the polarization (H for horizontal and V for vertical polarizations). 

Due to the discrepancy in spatial resolution between CPR and GMI pixels, we average 

all CPR pixels within a single GMI pixel. Additionally, we classify GMI pixels into clear–sky 

and cloudy conditions. A snow–rain separation scheme from Sims and Liu [2015] is also used to 

calculate the snowfall probability. Only GMI cloudy pixels with more than 50% snowfall 

probability as determined by the Sims and Liu [2015] scheme and passing the CPR precipitation 

threshold (–15 dBZ) are selected for creating the a priori database. The above processing 

methods are exactly adopted from the study of assessing GMI high frequency microwave 

channels in chapter 5. 
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6.2.2 Initial Hydrometeor Profiles 

The initial snow water content profiles are derived from CPR radar reflectivities. The 

snow water content in the clutter layer (the lowest 1 km) is assumed to be the same as that in the 

first bin above the clutter layer. In this study, no attenuation correction is applied to CPR radar 

reflectivities. Instead, we will include this type of uncertainty in the background error covariance 

matrix for 1D–Var optimization. 

The Ze–SWC relation developed in chapter 5 is employed to convert radar reflectivity 

at 94 GHz to snow water content. In Fig. 6.2, we show this Ze–SWC relation in blue line. The 

blue line is obtained by least-square fitting of all data points and can be expressed by 

                                                        0.75

eSWC=0.024Z ,                                                 (6.1) 

where SWC is in g m-3, and Ze is in mm6 m-3.  Other two Ze–SWC relations are also shown in 

Fig. 6.2. The green line is computed for rosettes, sectors, and dendrites ( 0.76

eSWC=0.021Z , (6.2)). 

The red line is computed for sectors and oblate aggregates ( 0.98

eSWC=0.015Z , (6.3)). Liu [2008a] 

developed one Ze–S relation (S: snowfall rate in mm h-1) at 94 GHz using the same snowflake 

types and assumptions for green line and derived long–term snow cloud characteristics from 

CPR measurements using this relation. The results indicated that this Ze–S relation generally 

gives similar ranges of the snowfall rates to those derived from in situ measurements [Heymsfield 

et al., 2016, 2017]. It is seen that two Ze–SWC relations as shown by blue and green lines are 

very similar, which suggests that the Ze–SWC relation in (6.1) is reasonable. As stated in Meng 

et al. [2017], larger snow rates will be produced when using dendrites than the other snowflake 

types. By comparing the two Ze–SWC relations as shown by blue and red lines, it is seen that the 

assumption made for snowflake types will contribute some uncertainty in Ze–SWC relation. 

Cloud liquid water content profiles used in this study are derived from GMI retrieved 
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cloud liquid water path. The column total cloud liquid water is distributed evenly over a 1 km 

layer that has the highest relative humidity from 0.5 to 3 km. Different layer depths (0.5 to 1.5 

km) have been tested. The impact of layer depths on the simulated brightness temperatures and 

the analyzed snow water content profiles is small. 

6.2.3 Radiative Transfer Model 

Brightness temperatures at GMI channel frequencies are calculated by the same 

radiative transfer model in chapter 5. In this model, the scattering cross sections of nonspherical 

snow particles are based on a look–up table of DDA modeling results [Liu, 2004]. This feature is 

critical in accurately simulating microwave brightness temperatures and their gradients with 

respect to frozen hydrometeors. The particle size distribution as shown in (4.1) is used in the 

radiative transfer model, in which the slope parameter (Λ) is calculated from snow water content 

(SWC) by the following two relations. The first relation is based on Rutledge and Hobbs [1983] 

and is expressed as 

                                                  12 0.25(π 1.6 10 / SWC)Λ = × × .                                       (6.4) 

The second relation is derived using measurements of Braham [1990] as 

                                               
0.12821122.242 SWC−Λ = × .                                            (6.5) 

For both relations, Λ is in m-1, and SWC is in g m-3. Hereafter, (6.4) and (6.5) will be referred to 

as Rutledge and Hobbs relation and Braham relation, respectively. N0 is derived from Λ and 

SWC. 

6.3. Developing Database Using 1D-Var Optimization 

6.3.1 1D–Var Optimization Method 

The core components of 1D–Var method include a radiative transfer model that 
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computes brightness temperatures and their gradients with respect to background geophysical 

parameters and a minimization module that solves a best estimate of state variables to optimally 

match background state variables and observed brightness temperatures. Assuming that 

background and observation errors are Gaussian, unbiased and uncorrelated, the departure 

between background state vector (x0) and observed brightness temperature vector (y0) is 

represented by a cost function: 

                   1 1

0 0 0 0( ) ( ) ( ) ( ( )) ( ( ))T TJ H H− −= − − + − −x x x B x x y x R y x ,                     (6.6) 

where x is the control vector of state variables, H(x) is the simulated brightness temperature 

vector based on state variables x, B is the error covariance associated with x0, R is the error 

covariance associated with y0, and H represents the radiative transfer model. Besides the vertical 

profile of snow water content, x also includes the vertical profile of cloud liquid water, as 

radiation at GMI channels is partly affected by the emission and absorption of cloud liquid water. 

In our study, y0 contains observed brightness temperatures from six GMI channels at 89 GHz and 

higher frequencies. It is noted that x only includes the lowest 12.5 km (50 layers) of hydrometer 

profiles to reduce the dimension of x, since neither snow nor liquid water exists above 12.5 km 

in our collected hydrometer profiles. All zero values in hydrometer profiles are replaced with a 

value of 10-5 g m-3 to avoid the zero derivatives of brightness temperatures as mentioned by 

Moreau et al. [2003]. The base ten logarithms of snow and liquid water contents are employed 

instead of themselves to avoid negative values during the minimization. 

The solution xn+1 to the minimization of (6.6) at n+1th iteration is given by Rogers 

[1976] 

                    1

1 0 0 0( ) [ ( ) ( )]T T

n n n n n n nH−

+ = + + − − −x x BH H BH R y x Η x x                      (6.7) 

where Hn is the Jacobian matrix of observation vector. This form of solution is efficient when the 
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dimension of B is larger than that of R and therefore suitable for this study. The convergence 

criterion is adopted from the Satellite Application Facility for Numerical Weather Prediction 

(NWP SAF) 1D–Var package, i.e., the convergence is realized when the change in the cost 

function between two successive iterations is less than 1%. Detailed information about NWP 

SAF 1D–Var package can be found at: https://nwpsaf.eu/site/software/1d-var/documentation/. 

The determination of background error covariance matrix B is described as follows. 

For snow water content, the uncertainty mainly comes from Ze–SWC relation and CPR radar 

reflectivity. The uncertainty in Ze–SWC relation is computed in this study as the standard 

deviation of log10SWCavg minus log10SWCmodel when varying particle shapes, yielding an 

uncertainty of about 0.2 in log10SWC. log10SWCavg is the logarithmic snow water content 

calculated by (6.1), and log10SWCmodel is the logarithmic snow water content calculated by (5.6). 

It is noticed that the radar reflectivity at 94 GHz may experience both the attenuation due to 

hydrometers and the multiple scattering in snow clouds [Matrosov and Battaglia, 2009]. The 

representativeness of CPR derived snow water content profile also yields an uncertainty (i.e., 

mismatch and discrepancy between two instruments). The uncertainty in CPR radar reflectivity 

from these sources is therefore assumed to be large and set to 1.5 dBZ for this study, which 

corresponds to an uncertainty of about 0.1 in log10SWC. For cloud liquid water content, the 

uncertainty is mainly associated with the vertical placement of liquid water, assuming that the 

GMI–retrieved cloud liquid water path is relatively accurate. Due to the lack of reliable dataset 

for quantifying the uncertainty in cloud liquid water content [Duncan and Kummerow, 2016], a 

constant uncertainty of 0.2 is assigned to the logarithmic cloud liquid water content, allowing 

less flexibility in the 1D–Var optimization. Only diagonal terms in the background error 

covariance matrix are used, assuming no correlation between different layers of hydrometeors 
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[Liu, 2005]. 

The observation error covariance matrix R is defined as a diagonal matrix, assuming 

no correlation between channels. The observation uncertainty is the sum of forward modeling 

error and instrument noise. The values of diagonal terms are mainly based on the standard 

deviations of observed minus simulated brightness temperatures at GMI channels under a 

snowfall condition. The standard deviations of brightness temperature departures represent an 

upper bound of observation uncertainty, since they also include the contribution from uncertainty 

in geophysical parameters, particularly hydrometeor profiles. A sensitivity test on brightness 

temperatures at GMI 89 GHz and higher frequencies to hydrometeor profiles is conducted. The 

89 GHz channel shows the highest sensitivity among GMI channels to the variation in liquid 

water at low altitudes. On the other hand, GMI channels at 166 GHz are more sensitive to the 

variation in snow water than other channels. GMI channel at 183±3V GHz is weakly sensitive to 

the variation either in liquid or in snow water. GMI channel at 183±7V is sensitive to the 

variation in snow water at high altitudes, but merely detects the variation in liquid water at low 

altitudes. According to sensitivity test, the standard deviation of brightness temperature 

departures at each GMI channel under a snowfall condition is tuned to a smaller value to 

eliminate the contribution from uncertainty in geophysical parameters as done by Boukabara et 

al. [2011]. The uncertainty for GMI 89V, 89H, 166V, 166H, 183±3V and 183±7V channels 

represented by the tuned standard deviation of brightness temperature departures is 2.8 K, 7.4 K, 

3.9 K, 5.0 K, 1.5 K and 2.6 K, respectively. In the future, the error correlations should be 

included to better represent the observation error covariance matrix, since the errors at 166 and 

183±7 GHz are highly correlated. Assuming no correlation between channels will give too much 

weight to any solution that matches these channels at 166 and 183±7 GHz. 
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6.3.2 Case Studies  

The 1D–Var method is first applied to four cases with distinctively different vertical 

distributions of snow water content. Fig. 6.3 illustrates how Ze–SWC relations will affect the 

analyzed snow water content profiles. It is seen that the difference in snow water content 

between the two Ze–SWC relations (6.1) and (6.3) is decreased, but still exists after 1D–Var 

optimization, implying that the uncertainty in Ze–SWC relation will lead to some biases in the 

analyzed snow water content profiles. In the following, only (6.1) is used to convert Ze to SWC. 

In Fig. 6.4, we show the four snow water content profiles from CPR initial estimate and analyses 

(1D–Var optimized estimates) using Λ–SWC relations of Braham and Rutledge and Hobbs. In 

order to assess the impact of 166 GHz channels on 1D–Var optimization, a channel subset 

excluding 166 GHz is also used. For the two cases shown in top panels, the values of snow water 

content in the lower and middle troposphere are decreased after the 1D–Var optimization. The 

optimized snow water content profiles are similar using the two different Λ–SWC relations. The 

decrements in snow water content through 1D–Var optimization are only slightly smaller using 

the subset of channels. For the two cases shown in bottom panels, the values of snow water 

content throughout the troposphere below 6 km are increased after the 1D–Var optimization. The 

increments in snow water content using the Braham relation is somewhat more pronounced than 

that using the Rutledge and Hobbs relation. Without 166 GHz channels, the increments in snow 

water content are much smaller in the middle troposphere. It is seen that the adjustments on snow 

water content through the 1D–Var optimization are quite substantial, especially for the cases 

shown in bottom panels. For the case in the bottom left panel, the snow water content near 4 km 

is only about 0.2 g m-3 before the 1D–Var optimization, but it reaches above 0.3 g m-3 after the 

1D–Var optimization, representing an increase of more than 50 % from the original value. 
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Next, we show a snow precipitation case on March 11, 2015. The vertical cross 

sections of snow water content from CPR initial estimate and analyses using Braham and 

Rutledge and Hobbs relations are displayed in Fig. 6.5. Similarly, the results using a channel 

subset excluding 166 GHz are also presented. From the CPR estimate, two adjacent cells near 

52°N are found in the lower troposphere, extending from the ground to an altitude of about 3 km. 

Some small cells are also found in the middle troposphere at about 4 km, i.e., a cell near 53°N. 

The values of snow water content reach about 0.2 g m-3 inside the two snow cells near 52°N and 

about 0.25 g m-3 for the cell near 53°N. After applying the 1D–Var optimization, the values of 

snow water content for two adjacent cells near the ground are increased to about 0.35 g m-3 using 

Braham relation and 0.3 g m-3 using Rutledge and Hobbs relation. The values of snow water 

content inside the cell in the middle troposphere near 53°N are increased substantially and can be 

as large as 0.45 g m-3 using either Λ–SWC relation. Another noticeable feature is that the 

intensities for the two small snow cells at about 4 km near 51.5°N and 54.5°N are largely 

reduced, while the intensity of a snow cell at 5 km near 50.5°N is enhanced with snow water 

content values reaching larger than 0.25 g m-3. Comparing (b) and (d) in Fig. 6.5, it is seen that 

the snow water content adjustments near 52°N and 53°N are less pronounced without 166 GHz 

channels, implying that 166 GHz channels provide further information on columnar snow water. 

Brightness temperatures at different GMI frequencies are sensitive to snow signals 

coming from different atmospheric volumes. Brightness temperatures at 166 GHz are the most 

sensitive to snow water in the atmospheric column. Large differences between observed and 

simulated GMI brightness temperatures at 166 GHz are found when the adjustments are 

substantial on snow water content in the vertical column through the 1D–Var optimization as 

occurred for two snow cells near 52°N. Greater adjustments on snow water content at altitudes 



78 

 

higher than 3 km are usually associated with the larger differences between observed and 

simulated GMI brightness temperatures at 183±7 GHz, since this channel is sensitive to snow 

particle scattering at high altitudes. The GMI brightness temperature difference at 183±3 GHz is 

usually smaller than that at 183±7 GHz, as this channel is more sensitive to water vapor, but less 

sensitive to snow water. Brightness temperatures at 89 GHz contain less snow signatures and are 

more sensitive to surface emission compared to those at higher frequencies. Nevertheless, the 89 

GHz GMI channels provide necessary physical constraints on liquid water and surface emission.  

6.3.3 Statistics of the Constructed a priori Database 

To create the a priori database, the 1D–Var method is applied to all qualified GMI 

pixels and their associated hydrometeor profiles as described in Section 2. Since two Λ–SWC 

relations produce similar results, only Braham relation is discussed hereafter. After the 1D–Var 

optimization, the simulated brightness temperatures are expected to be more consistent with 

those observed ones. In Fig. 6.6, we compare the observed and simulated brightness 

temperatures for GMI channels at 89 GHz and higher frequencies with snow water content 

profiles of CPR initial estimate and analysis as input to radiative transfer model. It is seen that 

the observed brightness temperatures are generally consistent with the simulated ones even 

before the 1D–Var optimization. A cold bias (observations minus simulations) is found for 89V 

channel before the 1D–Var optimization. This cold bias is partly reduced after the 1D–Var 

optimization, mainly for those observed brightness temperatures lower than 220 K. The 

adjustment to 89H GHz channel through the 1D–Var optimization is small, because this channel 

is less sensitive to the variation in snow water and easily affected by the variation in surface 

emissivity. A warm bias for the observed brightness temperatures below 260 K is found at 166V 

channel before the 1D–Var optimization. This warm bias is effectively removed after the 1D–
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Var optimization, indicating a good agreement between observed and simulated brightness 

temperatures. The scatter of 166H brightness temperatures is also decreased by adjusting the 

biased brightness temperatures through the 1D–Var optimization. A similar warm bias appears at 

183±3V and 183±7V channels before the 1D–Var optimization, which is removed by the 1D–

Var optimization. The large adjustment on 183±7V channel indicates its high sensitivity to the 

variation in snow water compared to 183 ± 3V channel. It is worth mentioning that GMI 

brightness temperatures are expected to adjust those CPR snow water content profiles originally 

generated by attenuated radar reflectivities in the 1D–Var optimization. Some simulated 

brightness temperatures are associated with a cold bias at 166V and 183±7V channels before the 

1D–Var optimization. Those simulated brightness temperatures are likely calculated from snow 

water content profiles with attenuated radar reflectivities. A cold bias for those simulated 

brightness temperatures at 166V and 183 ± 7V channels is then removed by the 1D–Var 

optimization, implying that the optimization using the GMI brightness temperatures partly 

offsets the impact of attenuation to the CPR radar reflectivities. Conversely, a warm bias 

observed at 166 or 183 GHz manifests physical mismatch between brightness temperatures and 

hydrometeor profiles due to reasons other than attenuation. As explained in chapter 4, this warm 

bias is associated with shallow cells where the cloud liquid water may contribute significantly to 

the observed brightness temperatures. The errors in cloud liquid water profiles lead to the large 

biases in simulated brightness temperatures for those channels sensitive to surface emission. The 

optimization procedure acts to bring a physical consistency between the hydrometeor profiles 

and the observed brightness temperatures in the GMI pixel–covered volume.   

The standard deviations of the difference between the observed and simulated 

brightness temperatures can be employed to examine the convergence of the 1D–Var 
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optimization. In Fig. 6.7, we show the standard deviations of observed minus simulated 

brightness temperatures for GMI channels at 89 GHz and higher frequencies, grouped for data 

with 
166V

bT∆ > 1 K and 
166V

bT∆ < 1 K, with snow water content profiles of CPR initial estimate 

and analysis as input to radiative transfer model. 
166V

bT∆  is the brightness temperature difference 

with and without including snow water in the radiative transfer model. This quantity reflects the 

effect of column snow water, i.e., a greater 
166V

bT∆ responding to a larger column snow water 

amount. It is found that the decrease of the standard deviations at 166 and 183 GHz after 1D–Var 

optimization are significant for the group with 
166V

bT∆ > 1 K and negligible for the group with 

166V

bT∆ < 1 K, implying that the large adjustments on snow water through 1D–Var optimization 

occur for those profiles with large column snow water.  For both groups, it is seen that the 

standard deviations of the brightness temperature difference are decreased to a similar magnitude 

of the observation uncertainty defined in the observation error covariance matrix R, indicating 

that the variational optimization is effective. 

This constructed database includes snow water content profiles and corresponding 

simulated brightness temperatures at GMI channels, together with several other geophysical 

parameters (cloud liquid water profiles, total precipitable water, and 2–m air temperature). The 

number of converged snow water content profiles is 18340. Less than 0.5 % of the collected 

snow water content profiles failed to pass the convergence test. These profiles are mostly for 

very light snowfall conditions. 

Since two parameters, total precipitable water and 2–m air temperature, are closely 

related to snow formation, we present the frequency distributions of these profiles in terms of 

total precipitable water and 2–m air temperature in Fig. 6.8. More than 50 % the profiles are 
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associated with total precipitable water in the range from 4 to 8 kg m-2. More than 70 % of the 

profiles are associated with 2–m air temperature in the range from 271 to 275 K.  

The geolocations of snow water content profiles in this database are shown in Fig. 6.9, 

in which the number of analyzed snow water content profiles within 5°×5° boxes is displayed. 

The majority of the snow water content profiles are distributed above 50° latitude. In the 

northern hemisphere, snow water content profiles are concentrated within longitude ranges from 

30°W to 60°W and 150°E to 180°E. In the southern hemisphere, the longitudinal distribution of 

snow water content profiles is relatively homogenous compared to the northern hemisphere. The 

distribution pattern of profiles in this figure is consistent with the global map of snowfall 

frequency shown by Liu [2008a], suggesting that this optimized database has a good 

representativeness of snowfall occurrence. Additionally, the contoured frequency by altitude 

diagrams for the analyzed snow water content profiles is shown in Fig. 6.10. It is found that 

snow water is generally located below 10 km. Most snow water content values are smaller than 

0.1 g m-3 and generally decrease with altitudes. 

6.4. Applying Database to Bayesian Retrieval 

After creating this a priori database, it is necessary to assess the benefits of this 

optimized database on snow water retrievals. The retrieval results from this database are 

compared to those from another a priori database that consists of initial snow water content 

profiles and simulated GMI brightness temperatures without 1D–Var optimization. 

6.4.1 Bayesian Retrieval Method 

This retrieval method based on Bayes’ theorem has been described in detail by Olson 

et al. [1996] and Evans et al. [2002]. It uses a database that consists of precalculated brightness 

temperatures and associated geophysical parameters. Given a vector of observed brightness 
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temperature y0, the retrieved state vector xrt can be expressed as: 

                                           
2 2

rt exp[ 0.5 ] / exp[ 0.5 ]i i i

i i

χ χ= − −∑ ∑x x                                 (6.8) 

                                           
2 1

0 0( ( )) ( ( ))
T

i i iH Hχ −= − −y x R y x                                   (6.9) 

where xi is the ith state vector in an a priori database, and  measures the difference between 

observed and simulated brightness temperature vectors. The weighting factor for xi increases 

with the decrease of . It is seen that  is equivalent to the second term on the right-hand 

side of cost function J(x) in (6.6). The observation error covariance matrix R here is defined in 

the same way as in J(x), assuming no correlation between channels. After constructing the a 

priori database for GMI snow water retrievals over ocean, the Bayesian retrieval method is 

utilized to test the performance of this constructed database on retrieving snow water content 

profiles from GMI brightness temperatures. 

One issue in using this a priori database is that it does not contain the correct 

information on the ratio of precipitating versus non–precipitating profiles, since this a priori 

database only contain snowfall cases. This issue has also been described by other studies 

employing Bayesian retrieval method [Kummerow et al., 2011, 2015]. Without non–precipitating 

cases in the database, the Bayesian retrieval method always has a tendency to force the retrieved 

geophysical parameters towards a snowfall condition and thus introduces a positive retrieval 

bias. One solution is to distinguish precipitating scenes from non–precipitating scenes using an 

empirical screening algorithm and only perform retrievals to precipitating scenes. An alternative 

approach is employed in this study and described as follows. A GMI pixel is firstly determined 

whether it is a “cold” sample or not using a snowfall probability parameterization [Sims and Liu, 

2015] described in section 2.2. A cold sample is defined as an atmospheric condition that has a 

2

iχ

2

iχ 2

iχ
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snowfall probability larger than 50% by the Sims and Liu algorithm. The Bayesian retrieval 

method is then applied to a cold sample using an extended a priori database. This extended a 

priori database includes all analyzed snowfall profiles and all “cold” non–precipitating profiles 

that failed to pass the CPR precipitation threshold. The non–precipitating profiles can further 

classified into clear–sky and cloudy profiles. The total number of snowfall and non–precipitating 

profiles is 38749. 

The occurrence frequency distributions of analyzed surface snow water content, 

retrieved surface snow water content using all profiles, retrieved surface snow water content 

using clear–sky and snowfall profiles, and retrieved surface snow water content only using 

snowfall profiles are presented in Fig. 6.11. All analyzed snowfall profiles in the database are 

included for this figure. It is seen that the distribution of occurrence frequency is shifted towards 

larger snow water content values if the a priori database only includes snowfall profiles. After 

including clear–sky profiles in the database, this shift of occurrence frequency distribution is 

alleviated with a lower peak of occurrence frequency. When using the extended database that 

contains all snowfall and non–precipitating profiles, the occurrence frequency distribution of 

snow water content is similar to that of analyzed snow water content, indicating the success of 

this approach for solving the incompleteness issue in the a priori database. 

6.4.2 Retrieval Results 

The Bayesian retrieval method is first applied to two cases. Two parameters, total 

precipitable water and 2–m air temperature, are used to add physical constraints on selecting 

profiles in the database. The extended database is split into two subsets according to a threshold, 

which is 5.5 kg m-2 for total precipitable water and 273 K for 2–m air temperature. The 

thresholds are based on the relative frequency distributions of total precipitable water and 2–m 
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air temperature in Fig. 6.8 so that two subsets contain nearly equal number of snow water 

profiles. The retrieval method only employs one subset for a GMI pixel based on its associated 

values of total precipitable water or 2–m air temperature. Hereafter, we use “moisture constraint” 

to refer to total precipitable water constraint, and “temperature constraint” to refer to 2–m air 

temperature constraint. Fig. 6.12 shows the vertical cross sections of (a) analyzed snow water 

content, retrieved snow water content using (b) full database, (c) subsets of the database with 

moisture constraint, (d) subsets of the database with temperature constraint, (e) CPR initial snow 

water content, and (f) retrieved snow water content using CPR initial estimate as database for a 

case on March 11, 2015. It is seen that a snow cell at about 4 km near 53.2°N observed in the 

analyzed snow water content profiles is well captured by the retrieved snow water content 

profiles using the 1D–Var optimized database. The width of this cell from the GMI retrieved 

snow water content with moisture constraint seems to be closer to that from CPR analyzed snow 

water content profiles. Another observed snow cell at about 2 km near 53.5°N is also retrieved 

from the GMI measurements using the 1D–Var optimized database. In contrast, a snow cell with 

snow water content less than 0.25 g m-3 at about 4 km near 53.2°N is found in CPR initial snow 

water content profiles, while a snow cell with snow water content larger than 0.35 g m-3 at about 

2 km for this same location is observed in the retrieved snow water content profiles using 

database without the 1D–Var optimization, suggesting an inconsistency between the initial and 

the retrieved snow water content profiles.  

Fig. 6.13 shows another case on December 05, 2014. It is seen that a snow cell with 

snow water content larger than 0.3 g m-3 at about 3.5 km near 64.5°N is observed in the analyzed 

and the retrieved snow water content profiles using the 1D–Var optimized database. The GMI 

retrieved snow water content with moisture constraint gives the best cell structure with respect to 
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that from the CPR analyzed snow water content profiles. On the other hand, a surface snow cell 

near 64.2°N captured by the analyzed snow water content profiles is missed by the retrieved 

snow water content profiles regardless database used in the retrieval. The retrieved snow water 

content profiles using database without 1D–Var optimization missed the two snow cells near 

64.2°N and 64.7°N, but produced a snow cell near 64.5°N at a lower altitude with much larger 

snow water content than those in the initial snow water content profiles. It is clear that without 

maximizing the physical consistency between the CPR snow water content profiles and the GMI 

observed brightness temperatures through 1D–Var optimization, the discrepancy between the 

initial and the retrieved snow water content profiles are much more severe than in the case with 

1D–Var optimization. After adding the moisture constraint, the retrieved snow water content 

profiles using 1D–Var optimized database are closer to the analyzed snow water content profiles, 

indicating the benefits of physical constraints on snow water retrievals. 

The next step is to investigate the suitability of this optimized a priori database in 

global snow water retrievals. The global mean surface snow water content distribution over 

ocean for the entire year of 2015 is retrieved from CPR radar reflectivities using Ze–SWC 

relation of (8a) and from GMI brightness temperatures using the optimized a priori database, and 

shown in Figs. 6.14 and 6.15 for northern and southern hemispheres, respectively. In Fig. 6.14, 

we show the northern hemisphere mean distributions of surface (1 km above sea level) snow 

water content within 5°×5° boxes over ocean retrieved from (a) CPR radar reflectivities, and 

GMI brightness temperatures using (b) full database, (c) subsets of the database with moisture 

constraint, (d) subsets of the database with temperature constraint, and (e) CPR initial snow 

water content profiles as database. As shown in the CPR retrievals, there are two regions with 

large values of mean surface snow water content: one from 30°W to 60°W with values larger 
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than 8 mg m-3, and another from 150°E to180°E with values larger than 4 mg m-3. This feature is 

well captured by all the GMI retrieved surface snow water contents. In southern hemisphere (Fig. 

6.15), the CPR retrieved surface snow water content is evenly distributed over east longitudes, 

leading to mean surface snow water content values larger than 10 mg m-3 south of 60°S. All the 

GMI retrievals catch this asymmetric distribution and have mean surface snow water content 

values larger than 7 mg m-3 over east longitudes south of 60°S. The correlation coefficients 

between the CPR and all the GMI retrieved mean surface snow water contents within 5°×5° 

boxes are about 0.93. 

In order to quantify the accuracy of the GMI retrievals, in Figs. 6.16 and 6.17 we show 

the differences of mean surface snow water contents between those retrieved from CPR radar 

reflectivities and those retrieved from GMI brightness temperatures using (a) full database, (b) 

subsets of the database with moisture constraint, (c) subsets of the database with temperature 

constraint, and (d) CPR initial snow water content profiles as database. Differences seem to be 

large in the regions where snow water contents themselves are also large. For the northern 

hemisphere, a positive difference (CPR minus GMI retrievals) up to 4 mg m-3 are seen in the 

regions within 30°W to 60°W for all GMI retrievals. A smaller positive difference of about 2 mg 

m-3 can be seen in another region within 150°E to 180°E. For southern hemisphere, the region 

over east longitudes is mainly characterized by a positive difference, while the region from 0°W 

to 60°W is associated with a negative difference. The GMI retrievals with 1D–Var optimized full 

database resulted in a smaller positive difference over east longitudes and a slightly larger 

negative difference within 0°W to 60°W than those retrievals using the database without 1D–Var 

optimization. Additionally, the GMI retrievals using optimized database with the moisture 

constraint resulted in the smallest positive difference over east longitudes and the largest 
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negative difference within 0°W to 60°W. On the other hand, the GMI retrievals using optimized 

database with temperature constraint yields the largest positive differences over east longitudes 

and the smallest negative differences within 0°W to 60°W. In terms of global mean differences, 

the GMI retrieved surface snow water content is closer to the CPR retrievals when using the 1D–

Var optimized database compared to those retrieved from the database without 1D–Var 

optimization (0.46 vs. 0.67 mg m-3). The moisture constraint further improves the GMI retrievals 

(0.19 mg m-3), but the temperature constraint seems to have little or even negative effect on the 

GMI retrievals (0.59 gm m-3). 

6.5 Conclusions for Passive Microwave Snowfall Retrieval Algorithm 

A physically optimized a priori database is constructed which can be used in a 

Bayesian algorithm to retrieve snow water over ocean using passive microwave observations at 

89 GHz and higher frequencies. The optimization is achieved by minimizing the inconsistency 

between hydrometeor profiles and observed brightness temperatures with prior information 

constraint through a 1D–Var scheme. The initial snow water content profiles are derived from 

CPR radar observations using a Ze–SWC relation rather than results of cloud resolving models. 

The simulated brightness temperatures at GMI channels and their gradients with respect to 

hydrometeors are computed by a radiative transfer model, in which the single scattering 

properties of nonspherical snowflakes are calculated using DDA method. The 1D–Var 

optimization is firstly examined by applying to individual vertical profiles of snow water content 

and a snowfall case with several hundreds of kilometers in horizontal extent. It is shown that the 

adjustments to snow water content profiles through 1D–Var optimization are substantial. 

Two relations between slope parameter in particle size distribution and snow water 

content are employed in the radiative transfer model. The results obtained from the two different 
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relations are quite similar. Therefore, there is no attempt made in this study to investigate how 

particle size distributions impact the outcome of the database. After proper data processing, all 

snow water content profiles with collocated GMI and CloudSat CPR parameters during March 

2014 through June 2016 are optimized using the 1D–Var method. It is found that the large 

adjustments on snow water are associated with those profiles with large snow water content 

values. The standard deviations of  the observed minus simulated brightness temperatures are 

decreased to a similar magnitude of observation uncertainty as defined in observation error 

covariance matrix after the 1D–Var optimization, indicating the effectiveness of this variational 

method. In the database, most snow water content profiles are associated with total precipitable 

water in the range of 4 to 8 kg m-2 and 2–m air temperature in the range of 271 to 275 K. Snow 

water content profiles are distributed more evenly along longitudes in the southern hemisphere 

than in the northern hemisphere where snowfall cases are closely associated with storm tracks. 

The majority of snow water content values are smaller than 0.1 g m-3 and tend to decrease 

gradually with increasing altitudes.  

A Bayesian retrieval algorithm is applied to retrieve snow water content profiles from 

GMI measurements using the optimized a priori database. In order to solve the incompleteness 

issue (i.e., lack of non–precipitating profiles) in this a priori database, a simple approach of 

adding non–precipitating profiles in the database is used, and it proved to be successful. The 

impact of using precipitable water and 2-m air temperature to subset the database is also 

evaluated. From two case studies, it is shown that by improving the physical consistency 

between snow water content profiles and observed brightness temperatures through the 1D–Var 

optimization, the vertical distribution of the GMI retrieved snow water content profiles is closer 

to that of the CPR analyzed ones.  Global mean distributions of surface snow water content over 
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ocean is retrieved for one year (2015) using CPR radar reflectivities and GMI brightness 

temperatures. By comparing the CPR and the GMI retrievals, it is found that the GMI retrieved 

surface snow water contents have a smaller bias with respect to the CPR retrievals when using 

the optimized database than when using the CPR initial estimate as database. Additionally, the 

use of precipitable water to subset the database has a positive impact on the GMI retrievals, 

while the use of 2–m air temperature to subset the database produces little or negative impact on 

the GMI retrievals. 

This study demonstrated the plausibility for developing an a priori database for snow 

water retrievals using high frequency microwave observations by a variational method. The 

results also imply that using physical parameters to subset the database has a positive impact on 

snow water retrievals given that the number of datum points in the full database is sufficiently 

large. Additionally, the variational method used in this study is highly flexible and therefore can 

be applied to other precipitation retrieval algorithms. In particular, a large set of assumptions has 

been used in our variational method, such as particle size distributions and error characteristics. 

These assumptions, while requiring further examination, can be used in future variational 

retrieval algorithms. The future work includes the inter–comparison of long–term snow water 

retrievals over ocean using the optimized database and independent data sources (i.e., GPM 

combined radar–radiometer product). 
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Fig. 6.1. Flowchart for developing an a priori database for passive microwave snowfall retrievals 

over ocean using 1D–Var optimization method. SWC: snow water content. BT: 

brightness temperature. 
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Fig. 6.2. Ze–SWC relations for average 1 (sector, dendrite, and aggregate), average 2 (rosettes, 

sector, and dendrite), and average 3 (sector and aggregate). 
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Fig. 6.3.  Four vertical profiles of snow water content from CPR initial estimate using Ze–SWC 

relation in (6.1) (black solid curve), CPR initial estimate using Ze–SWC relation in (6.3) 

(black dash curve), analysis using Ze–SWC relation in (6.1) (blue curve), and analysis 

using Ze–SWC relation in (6.3) (red curve). Only Braham relation is employed. 
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Fig. 6.4.  Four vertical profiles of snow water content from CPR initial estimate (black curve), 

analysis using Braham relation (blue curve), analysis using Rutledge and Hobbs 

relation (red curve), and analysis using Braham relation with a channel subset 

excluding 166 GHz  (green curve). 
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Fig. 6.5. Vertical cross sections of snow water content (unit: g m-3) from (a) CPR initial estimate, 

(b) analysis using Braham relation, (c) analysis using Rutledge and Hobbs relation, and 

(d) analysis using Braham relation with a channel subset excluding 166 GHz  for a  

case on March 11, 2015. 
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Fig. 6.6. Relations between observed (O) and simulated (B or A) brightness temperatures for 

GMI channels at 89 GHz and higher frequencies with snow water content profiles of 

CPR initial estimate (left column) and analysis (right column) as input to radiative 

transfer model. The shading represents the occurrence frequency (unit: %). 
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Fig. 6.6. Continued 
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Fig. 6.7. Standard deviations of observed (O) minus simulated (B or A) brightness temperature 

for GMI channels at 89 GHz and higher frequencies, grouped for data with 
166V

bT∆ > 1 

K (top panel) and 
166V

bT∆ < 1 K (bottom panel), with snow water content profiles of 

CPR initial estimate (blue) and analysis (red) as input to radiative transfer model.  
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Fig. 6.8. Frequency distributions of analyzed snow water content profiles in terms of total 

precipitable water (top panel) and 2–m air temperature (bottom panel). 
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Fig. 6.9. Number of analyzed snow water content profiles within 5°×5° boxes. 

 

 

Fig. 6.10. Contoured frequency by altitude diagrams (unit: %) for analyzed snow water content 

profiles. 
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Fig. 6.11. Occurrence frequency distributions of analyzed surface snow water content (red), 

retrieved surface snow water content using all profiles (yellow), retrieved surface 

snow water content using clear–sky and snowfall profiles (green), and retrieved 

surface snow water content using snowfall profiles (blue). 
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Fig. 6.12. Vertical cross sections of (a) analyzed snow water content, retrieved snow water 

content using (b) full database, (c) subsets of the database with moisture constraint, (d) 

subsets of the database with temperature constraint, (e) CPR initial snow water 

content, and (f) retrieved snow water content using CPR initial estimate as database 

for a case on March 11, 2015 (unit: g m-3). 
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Fig. 6.12. Continued. 
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Fig. 6.13. Same as Fig. 6.12 except for a single case on December 5, 2014. 
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Fig. 6.13. Continued. 
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Fig. 6.14. Northern hemisphere mean distributions of surface snow water content (unit: mg m-3) 

within 5° × 5° boxes over ocean for year 2015 retrieved from (a) CPR radar 

reflectivities, and GMI brightness temperatures using (b) full database, (c) subsets of 

the database with moisture constraint, (d) subsets of the database with temperature 

constraint, and (e) CPR initial snow water content profiles as database. 
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Fig. 6.15. Same as Fig. 6.14 except for southern hemisphere. 
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Fig. 6.16. Differences of northern hemisphere mean surface snow water contents (unit: mg m-3) 

within 5°×5° boxes over ocean for year 2015 between those retrieved from CPR 

radar reflectivities and those retrieved from GMI brightness temperatures using (a) 

full database, (b) subsets of the database with moisture constraint, (c) subsets of the 

database with temperature constraint, and (d) CPR initial snow water content profiles 

as database. 
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Fig. 6.17. Same as Fig. 6.16 except for southern hemisphere. 
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CHAPTER 7 

SUMMARY AND DISCUSSIONS 

 

While spaceborne microwave measurements have been widely used in rainfall studies, 

the application of spaceborne microwave instruments on snowfall detection is still in an early 

stage. Not many microwave sensors have suitable channels for capturing snow scattering 

signatures. With the launch of GPM core satellite, the carried DPR and GMI provide abundant 

observational data for global snowfall estimation. By combining them with the CloudSat CPR, it 

is able to study falling snow globally and its impact on climatological and hydrological cycles in 

depth. The aim of this study is to better understand the microphysics of snowflakes and the 

process of snow precipitation using spaceborne microwave measurements from active and 

passive sensors. To achieve this goal, we analyzed the triple-frequency radar signatures from the 

collocated CPR and DPR measurements in different types of snow clouds, assessed the skills to 

simulate observations at the GMI high frequency channels by radiative transfer models under 

snowfall conditions, and developed a snow water retrieval algorithm for measurements at GMI 

high frequency channels using the variational method. 

We firstly examined the triple-frequency radar signatures by combining the DPR and 

CPR radar reflectivities. A clear difference in triple-frequency radar signatures is observed 

between stratiform and convective clouds. By analyzing the modeled backscattering properties of 

various snow particles from simple crystals to complicated aggregates, it is shown that the 

difference in triple-frequency radar signatures is likely resulted by the prevalent particle modes 

in stratiform and convection clouds. Namely, there are abundant large unrimed snow particles 

with low density in stratiform snow clouds, while convective snow clouds mainly contain dense 

small rimed snowflakes. The dependence of snowflake types on temperature is also investigated. 
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As indicated by our results, the large unrimed snow particles are dominant over warm 

temperatures, while the small rimed snow particles are popular over a wide range of temperature. 

The assessment of observations at the GMI high frequency channels of 166 and 183 

GHz with model simulations under snowfall conditions is then provided before we apply their 

data to snowfall studies. A radiative transfer model that includes the single scattering properties 

of nonspherical snowflakes based on DDA modeling results is used to simulate these channels. 

The input snow water content profiles are derived from the CPR measurements by developing a 

Ze–SWC relation. As shown by our results, the total biases of observation minus simulation 

under snowfall conditions are smaller than 1 K except for the 166H channel with a bias of about 

3 K. Further investigations show that the large biases for GMI channels at 166 and 183 GHz are 

mainly caused by the errors in radiative transfer model inputs. In shallow snow cells, cloud 

liquid water may be abundant and contribute significantly to the observed brightness 

temperatures. The biases in cloud liquid water profiles lead to the large biases in simulated 

brightness temperatures. This condition affects the 166H channel mostly, since this channel is 

more sensitive to surface emission. In deep convective snow clouds, the CPR radar reflectivities 

may experience strong attenuation and the GMI measurements are possibly prone to some 

negative sampling biases. Under this condition, the simulated brightness temperatures are 

positively biased. The 166 V/H channels are mostly affected by this problem. 

We finally propose a snowfall retrieval algorithm for GMI by utilizing its channels at 

89 GHz and higher frequencies. The experiment setups are mainly adopted from the study of the 

above assessment on the GMI high frequency channels. An optimized a priori database is 

developed for a Bayesian retrieval method. A 1D–Var optimization method is employed to 

maximize the physical consistency between snow water content profiles and observed brightness 
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temperatures. It is found that the adjustments on snow water content profiles can be substantial 

for deep convective clouds. All snow water content profiles collected from a two–year time 

period are optimized through 1D–Var method for creating the a priori database. It is seen that 

the large biases of observation minus simulation associated with shallow and deep convective 

snow clouds are effectively removed after the 1D–Var optimization. The standard deviations of 

observation minus simulation are decreased to a similar magnitude of defined observation errors 

after the 1D–Var optimization, indicating the success of this variational method. 

After developing this optimized database, a Bayesian retrieval method is applied to 

retrieve snow water from brightness temperature at GMI channels at 89 GHz and higher 

frequencies. From two case studies, it is shown that the vertical structure of retrieved snow water 

content profile can be improved by the 1D–Var optimization method. The global mean 

distributions of surface snow water content over ocean is then retrieved for one year. The results 

show that the distributions of GMI retrieved surface snow water are closer to the CPR retrievals 

after applying the 1D–Var optimization method to a priori database. In addition, it is noticed that 

using total precipitable water to subset the database can improve the GMI retrievals, while using 

2–m air temperature to subset the databases will slightly degrade the GMI retrievals. 

We have presented the applications of spaceborne microwave sensors on snowfall 

studies. The results above can improve many aspects of snowfall studies. Specifically, the 

snowflake type is thought to be a major uncertainty source in snowfall retrievals [Kulie et al., 

2010], the results in Chapter 4 provide a possible approach to reduce this type of uncertainty by 

utilizing triple-frequency radar measurements. Chapter 5 provides an applicable method in 

simulating observations at microwave high frequency channels, which is potentially beneficial 

for numerical predictions. As shown by Geer et al. [2018], the data assimilation of microwave 
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measurements has been extended from clear–sky to all weather conditions in recent years. 

Accurate radiative model simulation is crucial to successful data assimilation under snowfall 

conditions. The passive snowfall retrieval algorithm developed in Chapter 6 can be used to 

retrieve the global three–dimensional distribution of snow water over ocean. It will certainly 

enrich the data sources of global snowfall events and increase our knowledge in snow 

precipitation processes. Future work may include a study in the relationship between snowflake 

structures and environmental parameters using triple-frequency radar measurements. We also 

plan to evaluate our GMI snowfall retrieval algorithm by comparing its estimates with the 

independent data sources. 
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