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Abstract

Free energy path sampling plays an essential role in computational understanding of chemical 

reactions, particularly those occurring in enzymatic environments. Among a variety of molecular 

dynamics simulation approaches, the generalized ensemble sampling strategy is uniquely attractive 

for the fact that it not only can enhance the sampling of rare chemical events but also can naturally 

ensure consistent exploration of environmental degrees of freedom. In this review, we plan to 

provide a tutorial-like tour on an emerging topic: generalized ensemble sampling of enzyme 

reaction free energy path. The discussion is largely focused on our own studies, particularly ones 

based on the metadynamics free energy sampling method and the on-the-path random walk path 

sampling method. We hope that this mini presentation will provide interested practitioners some 

meaningful guidance for future algorithm formulation and application study.
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Introduction

Powered by thermal reservoir, chemical reaction systems aimlessly fluctuate in their 

surrounding media. Through molecular interactions, energy is channeled to the reaction 

center and ultimately leads to large amplitude of fluctuations that cause chemical bond 

breaking and formation. Because the overall probability for a system to be adequately 

activated and successfully form reactive configurations is low, a chemical reaction is usually 

orders of magnitudes slower than the elementary vibration that is directly responsible for the 

reactive event. Based on the transition state theory (TST)1,2, among all the possible regions, 

from which the system can barrierlessly proceed to the product basin, there is a 
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characteristic transition state (TS) region, the reaching of which from the reactant basin 

requires the least activation input, and therefore the TS region is expected to attract a 

majority of reaction fluxes to pass through. Based on such a simplified picture, 

understanding the mechanism of a chemical reaction largely means (a) elucidating how a 

chemical system proceeds along the most probable pathway, in particular from its reactant 

basin to the transition state region and (b) quantifying the free energy change along such a 

pathway. Correspondingly, free energy path calculation constitutes a major task in 

computational analysis of chemical reaction mechanisms, such as those occurring in 

enzymatic environment.

Enzyme reaction represents a special class of chemical reactions, the rates of which are 

usually significantly higher than their counterparts in aqueous solution; for instance 

enzymatic rate enhancement3 can be as high as ~1017. Applying molecular dynamics (MD) 

simulation methods to elucidate enzyme reaction mechanisms and understand the 

corresponding catalytic strategies has been a classical topic in computational chemistry and 

biophysics4–9. In the recent years, method development efforts for this topic, in particular 

towards quantitative depiction of free energy pathways, have been reviving, partly due to 

ever-increasing interest in enzyme designs and partly due to an increasing demand of 

predicting atomistic level details that can serve as meaningful hypothesis for experimental 

test. Generally speaking, the quality of an enzyme reaction free energy path calculation 

relies on both potential energy function accuracy and sampling adequacy. Constrained by 

ever limited computing power, tremendous algorithm developments have focused on (a) how 

to reduce energy and force evaluation cost while maintaining minimum accuracy loss and 

(b) how to more efficiently perform reaction free energy path sampling. Development efforts 

in the former aspect have been widely acknowledged, for instance as represented by the 

combined quantum mechanical and molecular mechanical (QM/MM) scheme10–11 and 

recent multi-scale reactive force field models12–14. In contrast, advancing sampling methods 

for free energy path calculation only became flourishing about a decade ago. Notably, recent 

advancements have been mainly catalyzed by the development of generalized ensemble 

sampling techniques15–17 and path optimization algorithms18–25. In this review, we focus 

our discussion on an emerging topic: generalized ensemble sampling of enzyme reaction 

free energy path. Our review is largely based on our earlier and recent studies; these studies 

respectively represent early applications of the metadynamics free energy sampling 

method26 and the on-the-path random walk path sampling method24,27 on enzyme reaction 

systems. We hope that our presentation will provide interested practitioners some 

meaningful guidance for future algorithm formulation and application study.

Collective Variable and Reaction Order Parameter

Although enzymes reaction rates are accelerated, in comparison with timescales commonly 

accessible to MD simulations, these processes are still far too slow. Estimated based on the 

diffusion limit, commonly, enzyme reaction free energy barriers are higher than 11–12 

kcal/mol28. Together with the fact that costly electronic calculation has to be included for 

chemical transformation treatment, there has never been a hope that a reactive trajectory can 

be obtained by a canonical ensemble QM/MM molecular dynamics simulation. Therefore, 

activation biases need to be introduced in order to sufficiently sample high free energy 
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regions, particularly regions that are > 2 kT above the reactant basin; for instance, a simplest 

way to realize such activation is to restrain the system around to-be-activated regions. 

Following this requirement, a key technical question arises: which degrees of freedom need 

to be chosen for sampling enhancement.

In correspondence, often the first step in an enzyme reaction simulation study is to choose a 

set of essential collective variables (CVs) (commonly geometric variables) that is hopefully 

sufficient to describe the target reaction. In the context of free energy path sampling, being 

an “essential” collective variable indicates that free energy flattening along this CV can lead 

to random walk dynamics in certain portions of the reaction pathway, which is otherwise 

unachievable along another candidate CV. In an application study, collective variable 

selection is commonly dictated by chemical intuition, e.g. simulators’ educated guess or 

priori knowledge of the reaction mechanism. In practice, simulators often choose “reaction 

bond order parameters” (RBOP), which can distinguish the reactant basin, the product basin, 

and plausible metastable intermediates, as candidate CVs. Here is an example. Inosine 

monophosphate dehydrogenase (IMPDH) catalyzes two sequential chemical 

transformations: (1) a dehydrogenase reaction between IMP and NAD+ that produces a 

Cys319-linked intermediate E-XMP* and NADH, and (2) a hydrolysis reaction that releases 

XMP. Before our study29 on the hydrolysis step catalyzed by the IMPDH Arg418Gln 

variant, it was known that Tyr419 needs to be deprotonated; and thereby it can act as a 

general base to activate a water molecule so that it can become a better nucleophile to 

replace Cys319 on the XMP ring (Figure 1 A). Two reaction processes, proton transfer 

between water and Tyr419 and nucleophilic substitution between the activated water (if 

completely activated, a hydroxyl group) and Cys319, may occur either sequentially or 

concertedly; even within each chemical process, two sub-events, for instance proton de-

attachment from water and protonation of Tyr419 during proton transfer, may also occur 

either sequentially or concertedly. Thus four pairs of distances, corresponding to four 

chemical bonds [O(water)-H(water), O(Tyr419)-H(water), O(water)-C(XMP), and 

S(Cys319)-C(XMP)] that form either in the reactant basin, the product basin, or at possible 

metastable intermediate states, were initially chosen as candidate CVs for this study. It 

should be noted that by definition, “order parameters” are defined to distinguish stable 

basins. As is generally known, order parameters are often insufficient to describe protein 

conformational changes, because between two conformational basins, slow re-organization 

changes are likely to occur along orthogonal degrees of freedom. In contrast, enzyme active 

sites are generally pre-organized for chemical steps and reactive events usually closely 

follow high-frequency fluctuations that directly involve chemical bond vibrations. Therefore 

unless chemical transformation occurs through a conformation that differs from that of the 

starting structure or the reaction involves slow conformational changes, the RBOP based CV 

identification strategy is generally effective; considering possibly complex electronic 

structural effects involved in enzyme reactions, sometimes bond formation/breaking angles 

can be essential CVs24.

Traditional Importance Sampling versus Generalized Ensemble Sampling

Upon the identification of CV candidates, the next question is how to use them to sample 

enzyme reaction free energy pathways. Till about a decade ago, most related studies had 
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been carried out based on the traditional importance sampling methods: either the umbrella 

sampling method30 or the blue-moon-ensemble method31, where independent MD 

simulations are performed with the CV either restrained around or constrained at a series of 

values that can cover the entire reaction span. Due to the computing power limitation, a 

majority of these sampling efforts were along a single CV. Despite that these studies had 

played a significant role in advancing the field of computational enzymology and deepening 

our understanding of enzymatic catalysis, their sampling deficiency is obvious. When a 

single CV is employed, it is very likely that it cannot sufficiently describe the whole reaction 

pathway. As shown in Figure 2, due to the missing of certain essential CVs, the hidden CV 

issue may lead the sampling CV to proceed traversely along the physical reaction path. Due 

to the restriction or the loss of dynamics along the sampling CV, accurately exploring the 

traverse region can be forbiddingly challenging to the umbrella sampling and the blue-

moon-ensemble methods; for instance under the restraint treatment, transitions between A 

and B or between B and C (Figure 2) have to be through a region kinetically inaccessible to 

the physical process. It should be specially noted that unless missing essential CVs can be 

specifically guessed, the hidden CV issue is practically undetectable from such simulations 

themselves because there is no phase space connectivity information on samples obtained 

from independently restrained/constrained windows.

Different from the traditional importance sampling strategy, generalized ensemble (GE) 

methods15–17 do not require any restriction of dynamics along the sampling CV. Instead, 

activation along the sampling CVs is enabled through the modification of the Hamiltonian, 

as follows:

(1)

where Ho represented the original Hamiltonian and fm[θ⃗(X)] stands for the biasing potential 

along the pre-chosen CV set θ⃗(X). Commonly, the target function of fm[θ⃗(X)] is set to be 

−Go[θ⃗(X)], the negative of the free energy surface (FES) mapped along θ⃗(X). Go[θ⃗(X)] is 

the sampling target, which is unknown a priori. To adaptively obtain Go[θ⃗(X)], three major 

recursion approaches have been developed, including the adaptive umbrella sampling 

method32, in which free energy estimations are based on probability distributions, the 

adaptive biasing force (ABF) method33, in which free energy estimations are based on the 

thermodynamic integration (TI) formula34–35, and the metadynamics26/local elevation36 

method, which is realized through continuous deposition of repulsive basis functions. 

Through GE sampling, target free energy surfaces are explored through single continuous 

trajectories. It allows moderate hidden CV problems to be possibly bypassed and severe 

hidden CV problems to be detectable. In addition, through random walks following a single 

trajectory, the remaining environment degrees of freedom that are not subject to biased 

activation can be consistently sampled along the reaction pathway.

Among the above recursion methods, metadynamics has attracted the most attention. In the 

past years, tremendous efforts have been made to improve its robustness and convergence 
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behavior. The original metadynamics is as simple as generating fm[θ⃗(X)] by continuously 

depositing Gaussian functions:

(2)

where θi stands for the ith collective variable and  stands for the value of the ith collective 

variable at the scheduled time t; h is the height of the basis Gaussian function; and wi is the 

width of the ith component of the basis Gaussian function. Realizing the fact that the error of 

free energy estimation [ ] strongly depends on the 

size of the basis Gaussian function, our group introduced the first systematic improvement37 

for metadynamics by strategically reducing its size through the Wang-Landau flat-histogram 

procedure. Since this beginning, there have been several ingenious and rigorous 

improvements, such as well-tempered metadynamics38,39, transition-tempered 

metadynamics40, and recently very promising meta-basin metadynamics41 etc., formulated. 

Among them, well-tempered metadynamics has become a widely applied method. As one 

can expect, the recent more elegant metadynamics methods40,41 will soon prove their unique 

advantages for sampling enzyme reaction free energy paths.

Dimensionality Limit

In theory, reaction free energy sampling can be performed in any number of dimensions. In 

practice, it is challenging to simultaneously sample more than three CVs. Such 

dimensionality limit is commonly considered being the result of the sampling manifold 

issue. As discussed earlier, an essential CV should play its sampling role in certain portions 

of the reaction pathway; in the other portions of the pathway, ideally it shouldn’t be activated 

so as to confine sampling within a one-dimension reaction channel. In high-dimension GE 

sampling, CVs are unselectively activated even when they are not around their individual 

working regions. Therefore the sampling manifold is much larger than the size of the 

reaction channel. With the increase of the sampling dimensionality, the diffusion time in 

regions unrelated to the physical process is expected to grow drastically.

Indeed, the origin of dimensionality limit can be physical. For instance, gas phase reactions 

can be readily studied via three-dimensional metadynamics42. On contrary, based on our 

observation and experience, for enzyme reactions, it is likely that two dimensions are a 

common practical limit, while with a careful choice of CVs, higher-dimension GE sampling 

might be marginally possible. When multiple CVs are applied for GE sampling, lower-

frequency collective motions inaccessible to the physical process are likely to be promoted. 

As one can imagine, a boost of 11–12 kcal/mol or above on these lower-frequency motions, 

which involve collective interplays of these sampling CVs, can be detrimental to the overall 

structural integrity and the system stability.
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One of the First Metadynamics-Based Enzyme Reaction Studies

In 2008, we reported one of the first metadynamics-based enzyme reaction studies29, which 

is on the IMPDH-catalyzed hydrolysis step. As discussed earlier, for the reaction catalyzed 

by the IMPDH Arg418Gln variant, we initially identified four candidate distance CVs [d1: 

O(water)-H(water); d2: O(Tyr419)-H(water); d3: O(water)-C(XMP); and d4: S(Cys319)-

C(XMP)]. To reduce the CV dimensionality at least to two, we re-defined d4-d3 as CV1 (θ1) 

to sample the nucleophilic substitution process and d2-d1 as CV2 (θ2) to sample the proton 

transfer process. It is noted that taking CV difference is a common means to reduce CV 

dimensionality; however it should be applied with caution because possible high degeneracy 

may introduce large diffusion sampling overhead.

As shown in Figure 1B, the Wang-Landau metadynamics (flat-histogram metadynamics) 

simulation led to a detailed and nicely-converged free energy surface, on which besides the 

reactant and product basins, there is a metastable intermediate occurring between the proton 

transfer step and the nucleophilic substitution step. From the free energy surface, we could 

generate a string of CV(θ)-space points to describe the minimum free energy path (MFEP) 

between the centers of the reactant and product basins. These points satisfy the following 

string condition20: , in which  stands for the free energy gradient 

vector and ⊥ denotes the projection perpendicular to the minimum free energy curve. Along 

the MFEP, the two chemical events proceed in a stepwise manner. The free energy barrier of 

the second step is higher (about 17 kcal/mol); therefore the nucleophilic substitution process 

is the rate-limiting step. Taking into the account the free energy penalty for Tyr 

deprotonation, the overall free energy barrier is about 21–22 kcal/mol, which is in good 

accord with the barrier observed for the reactions of the IMPDH Arg418Gln and Arg418Ala 

variants (about 20–21 kcal/mol). The location of the transition state reveal that both the 

proton transfer step and the nucleophilic displacement step are concerted. As shown in 

Figure 3c, at the transition state of the rate-limiting step, the S(Cys319)-C(XMP) bond 

partially breaks and the O(water)-C(XMP) bond partially forms.

Back in 2008, obtaining an enzyme reaction free energy surface with the above quality was 

rare; it was impossible without our own implementation of the metadynamics method in the 

CHARMM program43. Interestingly, this early implementation has many worth-noting 

features. For instance, Gaussian functions are deposited to grids with their heights 

determined by the second-order spline function; in addition, we introduced a mechanism to 

uniformly delete Gaussian functions to prevent Gaussian functions from flooding outside 

pre-defined boundaries.

For this review, we did a careful literature search and found that one metadynamics-based 

enzyme reaction study44 was published before our above study; in this work, reported by the 

Houk group in 2007, 1-D metadynamics sampling was employed to exam the direct 

decarboxylation mechanism catalyzed by the most proficient enzyme: Orotidine-5′-
monophosphate Decarboxylase (ODCase). Since then, there have been only ~30 

metadynamics-based enzyme reaction studies reported. Considering the popularity of 

metadynamics, this small number likely reflects the practical challenge in applying 
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metadynamics to explore enzyme reaction pathways. As mentioned earlier, recent 

advancement of the metadynamics method39–41 will certainly lead to more successful 

applications. Nevertheless dimensionality limit still requires simulators’ to creatively design 

low-dimension CVs15 and often apply them in a trial-and-error manner.

Generalized Ensemble Based String Optimization: The On-the-Path 

Random Walk Method

The above case study based on free energy surface sampling demonstrates the indirect 

reaction free energy path calculation strategy46. As an alternative, the chain-of-states (COS) 

path optimization strategy can be employed to directly obtain reaction pathways. In 

comparison with the free energy surface sampling based strategy, the path optimization 

strategy only requires one-dimension sampling and thus has no dimensionality limit issue; 

e.g. multiple candidate CVs θ(X) = (θ1(X),…, θm(X)) can be employed to represent the path 

space. Among various COS algorithms, the string (FTS) method has attracted a great deal of 

attention, in particular recently for enzyme reaction mechanism studies47–55. Based on string 

method, MFEP can be obtained according to the minimization criterion  (M is 

the diffusion tensor matrix), which, in comparison with , can more accurately 

reflect the curvilinear nature of CVs.

In common string method applications, sampling is performed on a series of non-

communicating images between two pre-chosen end points  and 

. Regarding the original string method, two sampling issues are worth 

noting: (a) because images are independently explored, the on-the-path continuity of the 

environmental degrees of freedom cannot be guaranteed; (b) the CV degrees of freedom are 

restricted from regular MD sampling and thus it is challenging for a being-optimized path 

that represents an unfavorable mechanism to be switched into the correct reaction channel. 

To overcome these issues, we developed a generalized ensemble sampling based string path 

optimization method: the on-the-path random walk (OTPRW) algorithm24,27. In OTPRW, 

the CV-space pathway is represented by a set of λ-dependent functions Z(λ) = (z1(λ),…, 

zm(λ)), in which Z(0) = ZA and Z(1) = ZB, where the progressing parameter λ is set equal to 

the percentage of the on-the-path distance of the corresponding state from the starting point 

ZA. Dynamic propagation in OTPRW is based on the following extended-dynamics 

Hamiltonian,

(4)

where λ is treated as a one-dimension dynamic particle with a mass of mλ and its 

momentum of pλ and is propagated based on Langevin dynamics; via the 
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 term, the system is restrained on the path from the latest 

optimization update. Through the biasing function fm(λ), which can be adaptively obtained 

via either the metadynamics24 or the ABF method27, the target system, instead of being 

constrained on non-communicating images, can randomly walk along the instantaneous path 

to collect samples for the following path optimization. Thereby, the structural continuity of 

the environmental degrees of freedom can be naturally ensured; notably at a joint image 

state between two pathways, the system can switch from an unfavorable pathway to a better 

reaction channel (Figure 3).

The OTPRW method has been successfully applied to the studies of the transformation 

between Chorismate and Prephenate24, where eight CVs were used, and the DNA base 

extrusion process27, where ten CVs were employed. In these studies, single-trajectory 

OTPRW simulations led to nicely converged MFEPs, which could be convincingly validated 

via the committor analysis. Interestingly in both studies, unexpected essential CVs were 

identified despite the fact that these systems had been immensely investigated. For instance, 

it was shown that besides RBOPs, bond breaking angles are intimately involved in the 

formation of the transition state between Chorismate and Prephenate24; and in the DNA base 

extrusion process, rather than commonly assumed base flipping, a base-plane-elongation 

event is responsible for the formation of the transition state and the energetic penalty at the 

transition state is mainly introduced by the stretching of the Watson-Crick base pair27.

OTPRW Study of A Substrate-Assisted Glycosylation Reaction

Recently, we applied the OTPRW method to study the substrate-assisted glycosylation 

(SAG) reaction (Figure 4A) that is catalyzed by a β-Hexosaminidase protein, OfHex1. The 

SAG reaction involves two key chemical processes: “proton transfer” between the general 

acid (GluH) and glycosidic oxygen atoms and “nucleophilic substitution” around the central 

anomeric carbon. In this study, eight distance CVs were selected to describe the reaction 

path. Four of these CVs are reaction bond order parameters, corresponding to the chemical 

bonds directly involved in the bond forming and breaking events. To accurately describe 

geometrical constraints on the proton transfer process, the distance between the proton 

transfer donor and acceptor oxygen atoms and the distance between the to-be-transferred 

proton and the non-proton-donor oxygen of GluH were included in the CV set. In addition, 

two extra distance CVs around the nucleophilic substitution center were defined to describe 

possible bond formation and breaking angle changes during the reaction.

The OTPRW simulation began with a minimum energy path (MEP), along which the two 

chemical events are largely de-synchronized. As shown in Figure 4B, along this MEP, the 

proton transfer event proceeds earlier than the nucleophilic substitution event. Using the on-

the-path ABF method27, we calculated the free energy profile along this initial-guess 

reaction path. As shown by the dotted line in Figure 4D, the “apparent” transition state 

corresponds to the state of λ = 0.371, which is right between the mid-points of the two 

chemical events (Figure 4B); and the overall free energy barrier is about 27.0 kcal/mol. 

Within 7 ns, the OTPRW simulation converged. As shown in Figure 4C, along the MFEP, 

the two chemical processes are precisely synchronous and the sub-events in each of the 
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processes are highly concerted. As shown by the solid line in Figure 4D, the transition state 

corresponds to the state of around λ = 0.49, which is also the midpoints of the two chemical 

processes. The corresponding free energy barrier is about 13.1 kcal/mol, which is in 

excellent agreement with the experimental value. This study clearly demonstrates the 

importance of the minimum free energy path sampling over the MEP calculation; obviously 

a MEP obtained based on a non-dynamic enzyme environment can be drastically different 

from the target MFEP. Based on this result, we strongly discourage any future attempt to 

perform free energy calculation along a MEP to estimate the reaction free energy barrier.

Final Remarks

Free energy path sampling plays an essential role in computational understanding of 

chemical reactions, particularly ones occurring in enzymatic environments. Among a variety 

of molecular dynamics simulation approaches, the generalized ensemble sampling strategy 

is uniquely attractive for the fact that it not only can enhance the sampling of rare chemical 

events but also can naturally ensure consistent exploration of environmental degrees of 

freedom. In this review, we plan to provide a tutorial-like tour on an emerging topic: 

generalized ensemble sampling of enzyme reaction free energy path. The discussion is 

largely focused on our own studies, particularly ones based on the metadynamics free energy 

sampling method and the on-the-path random walk path sampling method. We hope that this 

mini-presentation will provide interested practitioners some meaningful guidance for future 

algorithm formulation and application study.

We would also like to point out that the generalized ensemble sampling strategy is still far 

from being adequate. Necessary human input on the pre-selection of essential collective 

variables is still greatly hindering enzyme reaction studies from reaching the predictive 

stage. In addition, there is still scarce of convincingly successful case study on enzyme 

reactions that couple with slow conformational transitions. Currently, we are actively 

working on further enriching the orthogonal space sampling scheme56–59 to overcome these 

challenges.
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Figure 1. Wang-Landau (flat-histogram) metadynamics simulation of the hydrolysis step in the 
IMPDH Arg418Gln variant. Figure 1 was originally published in PLoS Biology (open-access, 
doi:10.1371/journal.pbio.0060206.g003)
(A) The proposed mechanism on the hydrolysis of E-XMP* with Tyr419 acting as the 

general base.

(B) The free energy landscape of the Tyr419 pathway in the Ar418Gln variant. P: product; 

R: reactant; and TS: transition state.

(C) The corresponding transition state structure.
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Figure 2. 
The schematic illustration of the hidden CV issue.
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Figure 3. 
The schematic illustration of the path switching mechanism in OTPRW.
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Figure 4. The OTPRW simulation of the substrate-assisted glycosylation reaction in OfHex1
(A) The proposed mechanism on the substrate-assisted glycosylation reaction in OfHex1.

(B) The chemical order parameters changes along the initial minimum energy path. Red: 

The CVs for the proton transfer process. Blue: The CVs for the nucleophilic substitution 

process.

(C) The chemical order parameters changes along the OTPRW optimized minimum free 

energy path. Red: The CVs for the proton transfer process. Blue: The CVs for the 

nucleophilic substitution process.

(D) The free energy changes along the initial minimum energy path (the dotted line) and 

along the OTPRW optimized minimum free energy path (the solid line).
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