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ABSTRACT 

The determination of the structure of macro-molecules is one of the first steps in better 

understanding their functionality. This in turn is useful for understanding how the basic 

building blocks of life come together to create so many different life forms on this 

wonderful planet. It also helps us to understand the inner workings of infection causing 

bacteria and viruses that reek havoc on human civilization without the invention of drugs 

that can effectively fight the diseases caused by them. Electron microscopy is one of the 

most effective tools in elucidating and understanding the structure of biological macro-

molecules. Through the use of single particle electron microscopy and electron tomography, 

homogeneous and heterogeneous macro-molecular assemblies have been imaged and 

studied respectively. In spite of the advances in the implementation of these techniques, still 

there are problems that are either not well understood or that beg for more automation. This 

dissertation studies two such problems: one in the realm of tomography and the other in 

single particle electron microscopy. More precisely, we study the problem of automatic 

segmentation of heterogeneous macro-molecular structures in 3D volumes obtained from 

electron tomography. We describe a new learning based method, segmentation by 

classification that we developed and implemented to address this problem. We report the 

results of using this algorithm for segmenting the HIV/SIV envelop spikes. For single 

particle electron microscopy, we study the problem of structure determination of filaments 

with helical symmetry using filamentous actin in complex with the smooth muscle myosin 

motor domain, otherwise known as acto-MD. The acto-MD structure provides deeper 

insights into how muscles work in general and has the potential to impact treatment of 

hypertension in human physiology. 
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                                                       CHAPTER 1 

                                                 INTRODUCTION 

One of the goals of biology is to be able to understand the structure and interaction of 

macromolecules, to be able to better understand life at a macromolecular level. One of the most 

important inventions that revolutionized the study of macromolecular structures is that of the 

electron microscope [1]. Electron microscopes are used for studying three-dimensional (3D) 

structures of macromolecular assemblies using two-dimensional (2D) and 3D geometry. The 

underlying principle of 3D reconstruction from 2D projections is well understood and forms the 

basis of electron microscopy [2]. Electron microscopy can broadly be categorized as electron 

tomography and single particle electron microscopy depending on the type of structure under 

investigation. Electron tomography is method for reconstructing the interior of an object from its 

projections [3] and is used in those cases where the structures are heterogeneous. In case that 

they are homogeneous, single particle electron microscopy is used. Single particle electron 

microscopy has the ability to provide 3D structural information of biological molecules and 

assemblies by imaging non-crystalline specimens (single particles) [4]. Whatever be the 

underlying source of the data, tomography or single particle, they involve significant amounts of 

computational analysis of the images. Many of these problems have been studied in other 

branches of computer science, like in computer vision and machine learning. However, until very 

recently, there has not been a significant exchange of ideas between these two disparate 

communities. This proposal is a step in that direction. We study two problems: the first related to 

the well-studied problem of segmentation but in the context of electron tomography. The second 

involves study of a macromolecular structure, the actin-myosin interaction, using single particle 

3D reconstruction from electron microscope images. We hope that this effort would be the 
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beginning of a formal interaction between the two fields with the potential to enrich each other 

tremendously. 

The first problem that we study in this dissertation, is that of the well-studied problem of 

segmentation in 3D volumes. Segmentation is generally known as the process of feature 

extraction from a contextual image.  However, instead of applying it to point clouds, as is often 

done in the world of Computer Science [5], we apply it to the volume reconstructed using 

cryoelectron tomography (cryoET). More precisely, we study the problem of segmentation of 

Human Immuno Deficiency Virus (HIV)/ Simian Immuno Deficiency Virus (SIV) envelope 

spikes from electron tomograms of frozen-hydrated virion suspensions. We start with describing 

the importance of the problem and then briefly describe our proposed approach. Finally, we 

conclude with a list of items that we will discuss in the final dissertation. 

The second problem that we discuss relates to determination of the structure of actin-myosin in 

in what is known as the nucleotide-free state, also known as the rigor state, using proteins 

derived from vertebrate smooth muscle. This study involves 3D image reconstruction from 

electron micrograph of frozen-hydrated filaments using what are broadly known as single 

particle reconstruction methods followed by analysis of the resulting 3D volume to understand 

the underlying macromolecular assembly more accurately. As before we first discuss the 

importance of the problem and then give a description of our approach. We also identify ways in 

which the process might be improved so that conformational heterogeneity can be satisfactorily 

dealt with.  
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1.1 3D Segmentation of Volumetric Data 

AIDS, caused by Human Immuno Deficiency Virus (HIV) infection is one of the biggest killers 

in the history of human civilization [6]. Currently there are no vaccines for this deadly virus. The 

primary reason for this, is the lack of understanding of the 3D structure of the Human/Simian 

Immuno Deficiency Virus (HIV/SIV) envelope spikes (Env) and how it is able to escape the 

bodies ability to generate antibodies. Env is the only virus protein that presents antigens to the 

human immune response and is thus the key target for neutralization by antibodies that can bind 

and prevent its entry into target cells. So, understanding the structure of the spikes may 

eventually help create a vaccine against AIDS. Envelope spikes therefore have been the subject 

of intense research activity. The structure of a typical virus consists of an inner nucleic acid core 

surrounded by a protein membrane called the envelope. Env is a glycoprotein, which facilitates 

entry into the cell via the cell surface receptors CD4 and the chemokine receptors, CCR5 and 

CXCR4 [7] HIV-1 receptors and cell tropism [8]. CD4 is other-wise known as the cell surface 

marker for differentiating a class of lymphocytes known as “Helper T-cells”.  

In HIV/SIV, the Env spikes comprise two glycoproteins gp120 and gp40, which are cleavage 

products of a larger protein called gp160. In order to study and ultimately unravel the detailed 

structure of these spikes, scientists have resorted to cryoET. One of the major problems after 

creating the tomogram is the segmentation of the Env spikes for further analysis. In this case, 

segmentation is confined to selecting the Env spikes from the viral membrane for further study. 

All cryoET volumes, including the HIV/SIV data under study, have very low signal-to-noise 

ratio (SNR). Moreover, the envelope spikes are distributed across the virus envelope with some 

tendency to cluster [9]. Therefore, identification of each individual spike manually, needs a great 
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deal of human intervention and is prone to errors. This work aims to alleviate this problem by 

proposing a semi-automatic 3D segmentation mechanism using statistical tools. 

1.2 Tomography 

cryoET has become a powerful tool for revealing 3D structures of macromolecular assemblies. 

Tomography is a method for reconstructing the interior of a 3D object from its projections. In 

cryoET, a Transmission Electron Microscope (TEM) is used to collect the 2D projection images 

in various orientations of a biological specimen frozen in vitrified ice. The specimen is usually 

rotated about one single axis, called the tilt axis, which is perpendicular to the optical axis of the 

microscope. In case of dual-axis tomography, the specimen is rotated around two different axes 

perpendicular to each other. A series of projection images, called the tilt series, are collected for 

each and every different orientation of the specimen. The whole angular range of the rotation is 

generally limited to ± 70° and the angular increment for rotation is usually 1°-5°. The projection 

images are then aligned using one of the two widely used alignment techniques based on either 

localizing fiducial markers or pattern matching with cross-correlation. Finally, a volume 

reconstruction is computed from the aligned images using the weighted back projection method 

[10].  

1.2.1 Challenges in Tomography 

Despite being the most efficient method of providing a 3-8 nm resolution image of complex 

biological specimens, cryoET has several inherent challenges. The fundamental reason for the 

hardships of the cryoET reconstruction results from the fact that most specimens can only 

tolerate a limited amount of electron dose. This limited electron dose is spread over the entire tilt 

series, resulting in low SNR in each member of the tilt series, which in turn has a negative effect 
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on reconstruction quality. The very high radiation sensitivity of the specimen enforces the use of 

very low electron exposure while recording images, greatly increasing the stochastic noise.  

Apart from the problem of poor SNR, there are many other facts that make the interpretation of 

electron tomograms extremely challenging. The contrast in cryo-tomograms is often low and 

non-uniform along membranes and fibers, creating vague contours that are difficult to interpret. 

Moreover, the presence of well-defined point-like objects with strong uniform contrast along 

with the sample preparation artifacts makes the interpretation of the tomogram even more 

difficult.   

Another most important challenge is data loss due to the “missing wedge”. As the angular range 

of tilting is limited to ± 70°, a significant part of the potential specimen views is not accessible, 

leaving a missing wedge in the collected data {probably needs a reference}. This problem is 

most prominent in single-axis tilt series. Because of the missing wedge problem, some parts of 

the image may have significantly lower contrast than others. Dual-axis tilting can reduce the 

missing wedge to a missing pyramid, but if the total exposure is limited by radiation damage, the 

angular increment between views must be increased. Some elaborate tilt angle schemes have 

been proposed to optimize the dual axis tilting range while minimizing the number of projections 

needed for a complete reconstruction [11]. 

1.3 The General Segmentation Problem 

Interpretation in cryoET requires segregation of the different features of interest in the 

tomograms, which includes structures like membranes, filaments, and point-like objects present 

in the tomogram under study. This process is known as segmentation.  
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In cryoET, tomographic segmentation is a difficult problem because of the low SNR and the 

missing wedge. The 3D nature of the data complicates the process further. Commonly used 

segmentation approaches in medical image processing cannot be applied directly for 

segmentation in ET because of the SNR issue. Such approaches include the well-known energy 

minimization based techniques such as active shapes and active contours [12] [13]. The currently 

available methods for ET segmentation include a variation of the level set method [12] [13] and 

the immersion-based watershed algorithm [12] [13], which are region-based approaches for 

segmentation.  

In spite of the wide success of these methods, there are some serious limitations. The major 

limitation of the energy based approaches stems from the fact that the objective functions being 

optimized are highly non-convex, and hence the segmentation algorithms tend to get stuck at 

local optima [14]. Moreover, any of the currently available region based segmentation methods 

involve a significant amount of human intervention at different stages throughout the 

segmentation process [15].  

1.3.1 Segmentation in Electron Tomography 

However, the challenges in cryoET data interpretation can be alleviated using an effective 

segmentation approach. Presence of high amount of white noise suppresses the signal in the 

tomographic data [16].  Segmentation algorithms should be used in conjunction with a de-

noising algorithm such as median filtering [12]. The poor contrast in the cellular tomograms 

along the membranes and filaments causes a problem for the segmentation algorithms that focus 

on local intensity properties in images. A common problem when segmenting membranes is the 

presence of well-defined point-like objects such as ribosome in the tomogram. These have a 
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strong uniform contrast. Segmentation methods for membrane extraction should use some 

feature for distinguishing such point-like structures and line-like objects. In addition to all such 

problems, the low contrast that may result from the missing wedge, can be treated using a proper 

segmentation algorithm. The goal of my research is to develop a semi-automatic 3D 

segmentation mechanism that will alleviate the problem of manual segmentation as well as the 

problem caused by the local optima in some energy based approaches. In general, if the energy 

function is non-convex, then there will be multiple local minima and any gradient-based 

algorithm for minimizing this function may get stuck at one of these local minima [17] [12]. Our 

segmentation approach does not face this problem of multiple local optima using the idea of 

classification. As mentioned before, high noise and low resolution are two inherent problems in 

ET. In order to increase the SNR and hence to improve the resolution, the segmented motifs must 

be well aligned and classified into self-similar groups before averaged. This is an iterative 

process. In each iteration, the resolution of the class averages and of course the global average 

improves. In this work, we utilize the idea of “segmentation by classification [18] and have 

applied the idea to the problem of segmenting HIV/SIV envelope spikes from the ET. SIV/HIV 

envelope (Env) spikes are the main structure facilitating entry of the virion into the host cell and 

have been the subject of intense research activity [19] [20] [9]. The spikes are to a first 

approximation randomly distributed across the virus envelope with some tendency to cluster [9]. 

Thus, tomographic studies tend to identify envelope spikes manually, a tedious process at best, 

and one in which human error may bias the selection. 

An automatic spike selection method would greatly accelerate research in this area. This problem 

of automated segmentation is inherently difficult because of all the challenges. Moreover, the 

molecular structures of the spikes under study are structurally highly heterogeneous [9]. In this 
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work, we have generated a set of uniformly distributed points that cover the entire surface of the 

virion at about the radial position of the spike heads. Subvolumes were cut from the tomogram of 

the virion at the automatically generated positions, aligned translationally, and subjected to 

Multivariate Data Analysis and classification. Subvolumes that contain spikes near their center 

were identified using multivariate data analysis.  

In the initial cycle of the segmentation process, without any alignment, many class averages lack 

any spikes because of the poor alignment. After an initial alignment using just translation, 

against a simplified reference, class averages showing spikes began to appear. After multiple 

cycles (precisely 8-10 cycles) of a procedure called “alignment by classification” [20], in which 

only class averages are aligned, spike definition improved and class averages showing only 

membrane became better defined. Finally, the original set of uniformly distributed data points 

shows concentration at spike coordinates. The clusters showing pure membranes are separated, 

and the clusters showing spikes in the average are segmented out for the further study of 

structure analysis. In essence, our contribution is a semi-automatic approach for 3D segmentation 

using classification. This method has the possibility of being applied not only for segmenting 

viral Env spikes, but also segmenting out specific structures from within a cell, for example 

ribosomes, which is hard to achieve using a manual segmentation approach. 
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CHAPTER 2 

 PROCESSING PIPELINES OF ELECTRON TOMOGRAPHY AND SINGLE 

PARTICLE ELECTRON MICROSCOPY 

2.1 Electron Tomography 

CcryoET is a technique for revealing the molecular architecture of complex macromolecular 

structures like viruses, proteins, organelles and cells at a very high resolution of a few 

nanometers.  In cyoET, biological samples are imaged with an electron microscope (EM) and a 

series of projection images of the 3D specimen are collected at different angles. Before imaging, 

the biological samples are prepared specially to withstand the conditions inside the EM. Next, 

the projection images are aligned and combined to yield the 3D reconstruction of the specimen. 

The 3D image produced after alignment and reconstruction, is known as a tomogram. Many 

computational steps are involved afterwards to achieve the successful interpretation of the 

tomogram as well as the structure under study.  

In EM, electrons are produced from an electron gun, placed at the top of the microscope and are 

accelerated by an electrical potential of 100-300 keV. The electron beam travels from gun, 

through the specimen and to the recording medium at the bottom through a column (the optical 

path) held at a very high vacuum to minimize the scattering of electrons by residual air. At 

different positions along the microscope column, electromagnetic lenses are placed to deflect the 

path of the electrons, which brings them to focus at different positions along the optical path. 

From the top, the first lens system is called the condenser lens system. This lens system has a set 

of deflectors, two condenser lenses, called C1 and C2, which control the illumination of the 

sample, stigmators and an aperture. The purpose of the condenser lens is to take the electron 
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coming out of the gun and focus and direct them onto the sample. The sample resides within the 

next lens system, called the objective lens system.  The objective lens system has a pair of 

deflectors, the lens, stigmators and an aperture. The objective lens system produces the 

magnified image of the sample. This lens is the most important, because it combines the 

scattered and non-scattered electrons that give the contrast in the image. The magnified image is 

further magnified by the third lens system, which is called the projector lens system. This lens 

system has deflectors and several intermediate lenses and at the end a projector lens and 

stigmators and an aperture. The intermediate lenses are utilized to change the magnification from 

50 times to as high as 400,000 times. Finally, the magnified image is sent through a final pair of 

deflectors on to detectors. Images are then observed in real time on a florescent screen or 

recorded on a scintillator based CCD camera and viewed in real time on a computer screen and 

are recorded for further data processing either on a photographic film or a high quality digital 

camera which can be either a CCD camera coupled to a scintillator or more recently to a direct 

electron detector (DED) where electrons themselves are detected rather than photons generated 

by an intervening scintillator. 

2.1.1 Electron-sample Interaction and Image Formation 

In Transmission Electron Microscopy (TEM), electrons have very high energy, about 100-300 

keV, accelerating them to relativistic velocities. While interacting with the sample, electrons 

undergo a change in direction either because of collisions with atomic nuclei of the specimen or 

because of electrostatic interactions with the electrons in the electron shells surrounding the 

nuclei. The following four situations can happen when the electron beam interacts with the 

sample: 
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• Elastic scattering: Elastic scattering originates when an electron passing closer to the 

nucleus is more strongly attracted by the positive charge and is therefore deflected 

through a larger angle (~10-2 radians), which is directly proportional to the atomic 

number of the specimen atom. In this scattering, electrons do not lose their energy, but 

only change their direction. Elastic scattering generates the high-resolution detail in the 

image. 

• In-elastic scattering: Electrostatic interactions and collisions between the beam 

electrons and the electrons surrounding the atomic nucleus, give rise to inelastic 

scattering. The deflected electrons are likely to undergo a loss of energy and are deflected 

through very small angles (~10-4 radians), causing almost all of them to pass through the 

objective aperture.  These in-elastically scattered electrons, only contribute in adding 

noise to the image and also damaging the sample in the process. 

• No interaction: Beam of electrons, which pass outside the range of the electrostatic field 

of atomic nuclei and atomic electrons, are not scattered and just go through the molecule 

without interacting with the specimen. These electrons do not directly contribute to image 

formation. Rather they interfere with the elastically scattered electrons to produce contrast. 

• Absorption: To be absorbed, an electron must lose all its energy to the specimen. The 

portion of the electron being absorbed depends on the overall thickness of the specimen. 

In TEM, for specimens of normal thickness (<100-200 nm), the portion of the beam 

absorbed in the specimen is negligible. However, if the electron loses enough energy it is 

likely to hit one of the fixed apertures further along the optical path, thereby removing it 

from the other electrons that have passed through the specimen.  
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The proportions of elastic and in-elastic collisions depend on the accelerating voltage and the 

nature of the specimen. 

2.1.2 Contrast and Image Formation in EM  

 Contrast in the electron image can arise from both “amplitude” and “phase” effects. 

1) Amplitude contrast:  Amplitude contrast is produced by the loss of amplitude (i.e. 

electrons) from the beam.  It is also called scattering contrast. We can remove the 

elastically scattered electrons by means of the aperture. The aperture is placed after the 

objective lens in its back focal plane. The objective aperture allows the un-scattered 

electrons and electrons scattered up to the radius of the objective aperture to go through 

but it blocks elastically scattered electrons scattered at high angle and that process 

generates contrast in the image. Electron opaque object points produce scattering through 

relatively large angles. Therefore, electrons incident on these points are excluded by the 

lens aperture and the intensity of images at these points becomes correspondingly low. 

Conversely, electron transparent regions in the object produces little scattering beyond 

the lens aperture. The intensity of images of these regions is correspondingly high. 

Amplitude contrast does not usually provide high-resolution information on proteins or 

macromolecular complexes because the aperture may block that information.  

2) Phase contrast:  Phase contrast originates from shifts in the relative phases of the portion 

of the beam that interacts with the sample. Phase contrast in the image arises from 

differences in phase between scattered and un-scattered rays in different parts of the 

image and interference between these rays. In this case the contrast transfer function of 

the objective lens of the microscope is utilized to make the elastically scattered and un-
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scattered electrons interfere, generating contrast. Phase contrast provides the high-

resolution information.  

2.1.3 Resolution and Radiation Damage 

A TEM can take images with atomic detail. State of the art TEM, can reach a resolution beyond 

a single angstrom (0.8 Å) [16]. A very high resolution is achievable if the sample is not radiation 

sensitive. Unfortunately, biological samples are extremely sensitive to radiation [16]. Biological 

samples have several other limitations when placed directly into a TEM. Most biological samples 

live in aqueous solution and as a result, cannot withstand the high vacuum of the microscope. 

Biological atoms are made of carbon, oxygen and nitrogen and all of them have almost same 

scattering power, causing very low intrinsic contrast in the sample. The quality of the cryo-

tomographic reconstruction is highly correlated with the electron dose accumulated by those tilt 

series images used to compute the tomogram. As the biological samples are highly radiation 

sensitive, a total dose of 120 e- /Å2 is spread over the whole data set which could consist of more 

than 120 images. As a result, the dose available for single image is below 1 e- /Å2, which 

produces a high stochastic noise level in individual images. Therefore, a poor SNR (~0.01) is 

expected for cryo-tomograms [14]. 

2.1.4 Cryo Specimen 

When in-elastic scattering occurs, the sample gets ionized, generating free radicals that move 

around the sample breaking the bonds in the molecular assemblies and as a consequence the 

sample becomes vulnerable enough to “explode” [21]. Because of these issues, biological 

specimens must be specially prepared prior to imaging. The specimen preparation technique, that 

ensures the optimal structural preservation relies on rapid freezing of samples, producing what 
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are called unstained, frozen-hydrated samples. Relatively thin samples (<500 nm), embedded in 

aqueous solution, are quickly plunged into liquid ethane or liquid propane at temperatures close 

to that of liquid nitrogen (-196 °C), so that the water molecules in the specimen do not have time 

to re-organize into a crystal, keeping the ice in vitrified state. Those samples can be examined 

directly in EM by maintaining the temperature below -170 °C [21]. In this case the sample is 

hydrated but in a “glassy” state, and can withstand the high vacuum inside the EM.  

2.2 Electron Tomography Workflow 

Electron tomographic workflow consists of three major steps- 1) tilt series acquisition or 

collecting 2D projection images of the 3D sample at different viewing directions, 2) Tilt series 

alignment or registering the 2D projection images to a common coordinate system, 3) 

                                               

Figure 2.1: Tomographic work flow. Tomographic work flow consists of three major steps – the 
collection of the projection images from different angles or the tilt series generation, aligning the 
projection images or the tilt series alignment and reconstruction of the original 3D specimen from the 
aligned 2D projection images.  
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Reconstruction of the original 3D sample from the aligned 2D projection images. Several other 

steps of the workflow include noise reduction, segmentation, detection and mapping of 

macromolecular assemblies, 3D subvolume alignment and clustering the subvolumes to reveal 

the heterogeneous macromolecular structures under study, averaging and validation of the result 

[14]. Each stage of the workflow involves significant amounts of computation and in reality, 

most of the steps are computationally challenging because of the low SNR and limited resolution 

of the tomogram. Each of the major steps will be described in detail below. 

2.2.1 Automated Image Acquisition 

In essence, ET is the method of 3D reconstruction of a specimen from a series of projection 

images. In ET, a sample is introduced in the electron microscope and a series of projection 

images, called the tilt-series, are recorded in a digital camera (Figure 2.2A), by tilting the sample 

in different angles around a single fixed axis perpendicular to the electron beam. Theoretically, 

though the angular range for the rotation is ±90°, but in practice, because of some technical 

limitations of microscope and specimen, a typical acquisition session generates a tilt series of the 

whole angular range of ±60° or at the most ±70° (Figure 2.3A) at angular increments of 1° - 5°. 

The image collection is computer automated and the recorded image size is typically 2048 x 

2048, 4096 x 4096 or even 8192 x 8192 pixels. Leginon [22], SerialEM [23], TOM [24], and 

UCSF Tomography [25] are the widely used tilt-series collection softwares 

The data acquisition follows a 3D geometry, called tilt geometry (Fig. 2.2). The image 

coordinate system (x,y,z) is fixed with respect to the microscope, with z as the optical axis for all 

the images in the tilt series and x,y determined by the recording medium.  The electron beam is 
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2.2.2 Tilt Geometry 

 parallel to the z axis, interacts with the sample and after traversing a series of lenses the 

digitized image is recorded in the x-y plane defined as A (Fig. 2.2). The tilt axis t is assumed to 

be perpendicular to the optical axis z. Hence, the direction of the tilt axis t is defined as the 

azimuthal angle ψ with respect to the x-axis. The tilt axis for each member in the tilt series is 

aligned with the tilt axis of the reference image by an in-plane rotation about the optical axis z. 

The specimen holder or the EM grid is represented by plane B and is related to the image plane 

A by a rotation θ about the tilt axis t. The orientation of the specimen with respect to the 

specimen holder is captured by an additional rotation in the 3D space. Hence, plane C (x’-y’ 

plane) is related to plane B with three Euler angles (ψ’,θ’,ϕ’). These Euler angles define the 

departure of the axis of the specimen plane normal from the z-axis. In essence, for a single axis 

tilt series with n projection images, the required parameters are one tilt azimuth angle ψ, n in-

                         

Figure 2.2: Tilt geometry.  (x,y,z): coordinate system fixed with respect to the microscope, z is the 
optical axis, A (the x-y plane) is the image plane. (x’,y’,z’): coordinate system fixed with respect to the 
specimen. The transformation from (x,y,z) to (x’,y’,z’) consists of a tilt about the axis t and angle θ, 
and an additional rotation (ψ’,θ’,ϕ’) which defines the orientation of the specimen (C) with respect to 
the specimen holder (B). [26] 
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plane rotations about the optical axis z, n tilt angles θ1,……..,θn about t, and three Euler angles 

(ψ’,θ’,ϕ’) for the  additional 3D rotation from plane B to plane C [26].  

 

2.2.3 Tilt Series Alignment 

The term “tilt series alignment” means correction of relative shifts and rotations between the 

projection images of the tilt series i.e. registering the projection images in the tilt series (Figure 

2.3B). The projections are representing the same object from different angles. Hence the 

projections are similar but not identical having some amount of foreshortening.  Moreover, 

during data acquisition, the imperfection of the mechanical tilt system and the electron optics 

produce shifts, rotations, magnification changes and other distortion in the image [27]. A large 

portion of these distortions is compensated during the automated data collection procedure but a 

more accurate alignment of the tilt series is needed for further processing.  

    
 

Figure 2.3: Processing pipeline of tomography. Left:  Radon transform of a 2D function taken at the 
projection angle of ∅. Right: A) Transmission electron microscope sample holder rotations.  B) 
Projection of a 3D function, C) Back-projection of 2D Radon transform of a 3D function [124], [125] 
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The alignment procedure addresses two different questions: the determination of the direction of 

the tilt axis and the determination of the x-y positions of the projections relative to a common 

origin. In other word, the goal of the alignment is to mutually set the images to a common 

coordinate system correcting the shifts, rotations and other distortions.  

Two most widely used alignment techniques are: 

1) Least-squares method of alignment using fiducial markers  

2) Alignment by cross-correlation. 

Marker Based Alignment Technique: In the marker based alignment technique, colloidal gold 

particles are added to the biological samples and are used as electron-dense fiducial markers. 

Because of their high contrast, the markers can be easily tracked in the images.  The 

determination of the tilt axis should be done from two or more micrographs, separated by a large 

tilt angle. Enlargement of these micrographs are made and at least two points are selected which 

are common to all the micrographs and are as far apart from each other as possible. These points 

are used for a triangulation [28] and a least square fitting procedure can be used to improve the 

accuracy. The markers need not be identified in each member of the tilt series if the fitting 

algorithm can deal with incomplete sets of markers. After the tilt axis has been determined from 

the two selected micrographs, it can be transferred to the other images of the series, by 

identifying a line parallel to this axis joining two easily identifiable features. A variant of the 

marker-based alignment uses specimen features as markers in cases where artificial markers are 

undesirable. One drawback of the colloidal particles is that they create artifacts that occlude the 

biological features nearby in the 3D reconstruction due to their extremely high contrast. 
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Although the positions of the fiducials give information on the origin of the images, it is 

normally not sufficient for determination of the common origin of a projection series. The 

problem is that, the origin is relative to the fiducials, which may not be identical to the origin of 

the specimen itself. Fiducials may move during data acquisition. It is necessary to use 

information intrinsic to the specimen for alignment, with means of cross correlation function. 

Cross Correlation Based Alignment Technique: The cross-correlation techniques are widely 

used for pattern matching in the electron micrographs to locate common features in the 

presence of high noise. In the case of electron tomography, projected images represent 

different views of the 3D structure under study. Any two adjacent projection images are similar 

but not identical, having different amount of foreshortening and hence cannot be cross 

correlated directly.  To compare two images at different tilt angles, the collected images, which 

are the orthogonal projections, are stretched in the direction perpendicular to the tilt axis by a 

factor of 1/cosine (tilt angle), to generate inclined projections [29]. Cross correlation based 

image alignment process involves the following steps in general: 

1) Take two projections p1 and p2 from the tilt series 

2) Stretch the projection images along the direction orthogonal to the tilt axis by the 

stretching factor 1/cos (tilt angle) 

3) Compute Fourier transform of the stretched input projections 

P1=F{p1} 

P2=F{p2} 

4) The Fourier transforms of the input images are now high-pass and low-pass filtered. 
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5) Compute the cross-correlation function (CCF) of the stretched and filtered input 

image relative to the stretched reference image by multiplying P1 and complex 

conjugate of P2 and then compute inverse transform of the product i.e. 

CCF=F-1{F{p1} * F*-1{p2}} 

6) Compute the CCF peak search iteratively and store the x and y coordinates of the 

highest cross correlation peak. 

7) Calculate the desired shift by un-stretching the x and y coordinates (i.e. by 

multiplying the y coordinate by cos (tilt angle) assuming x-axis as the tilt axis) 

8) The input image is shifted in its frame by the negative of the shift vector. 

9) The process continues until all the images in the tilt series are aligned. 

Alignment by Cross-correlation in PROTOMO: In PROTOMO, the CCF based alignment is 

performed in two steps - an initial coarse alignment is followed by area matching using cross-

correlation [26].  Area matching is an iterative refinement process in which each iteration 

includes a refinement of the geometric parameters.  

The CCFs are computed according to the algorithm described above. The alignment is based on 

the fact that, the particle projections separated by a small angular increment are similar to one 

another. For any two aligned projections, the similarity can be expressed by the size of their 

correlation coefficient and the factors that contribute to how well the two images will correlate, 

are specimen thickness and tilt increment. 

In the initial coarse alignment, a reference image (usually the 0° tilt image) is selected to define 

the reference coordinate system and a rectangular region of interest is chosen for area matching. 

The goal is to find out the identical area in the other images in the tilt series, and to estimate the 
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required shifts and rotations to achieve the best match. The coordinates of other tilted images in 

the series are adjusted to fit with this reference coordinate system using translational and 

rotational shifts. Each image is aligned to its preceding image in the tilt series using cross 

correlation. The low tilt image is always used as the reference. The alignment is carried out from 

0° to the maximum negative tilt (-ϑmax) and then from 0° to the maximum positive tilt (ϑmax). 

More precisely, first the selected area in the reference image is padded to the same size of the 

reference image. The Fourier transform of this new image is computed. Next, the Fourier 

transform of the image to be aligned is computed.  Importantly, the image to be aligned must be 

stretched and rotated in the proper direction before computing the transform.  The complex 

conjugate of the second transform is computed and the transform of the reference image is 

multiplied with it. Thereby, the cross correlation is computed in the Fourier domain. Next, an 

inverse Fourier transform is applied to the computed product, which gives the cross correlation 

in the real domain. A grid search algorithm is performed to find the highest correlation peak. The 

shifts are calculated accordingly. 

The next step is area matching using cross correlation, which can simply be described as an 

iterative refinement process. In this step, PROTOMO incorporates a more general approach by 

introducing a 2D linear transformation matrix, called the distortion matrix to resample the 

images to the reference coordinate system. This is analogous to the cosine-stretching for a simple 

conventional cross correlation alignment. The 2D affine transformation for matching the 

equivalent image areas of two projection images are captured by six parameters, a 2x2 

transformation matrix and two origin coordinates. The best match is determined by maximizing 

the cross-correlation coefficient.  A simple grid search algorithm can be used to determine the 

highest cross correlation peak but it turns out to be computationally very expensive. Hence, a 
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nonlinear optimization algorithm, namely modified Nelder-Mead algorithm [30] is used to find 

out the highest CCF peak. The nonlinear peak search algorithm outputs both, the modified 

transformation matrix and the coordinate of the highest CCF peak, which are the desired shifts. 

In PROTOMO, the area-matching step does not use a single image from the tilt series as 

reference. Instead, the reference image is constructed from the already aligned images. After an 

image is area matched with the reference image, the aligned images are back projected into a 

volume using weighted back projection method [31] and then re-projected in the direction of the 

next image to be aligned. The re-projected image is now used as the new reference image for the 

next alignment.  This process continues until all the images in the tilt series are area matched. 

Finally, the geometric parameters are simultaneously refined during the iterative process. 

2.2.4 Tomographic Reconstruction 

The last major step in the Tomography processing pipeline is the 3D reconstruction of the 

specimen from the set of aligned 2D projection images of the tilt series (Figure 2.3C). The 

mathematical principle of the tomographic reconstruction is based upon the central slice theorem 

or the projection theorem which states that the Fourier Transform of a 2D projection of a 3D 

object is a central section of the 3D Fourier Transform of the object. Therefore, theoretically 

the 3D Fourier Transform of the specimen can be computed by combining the 2D Fourier 

transforms from the tilt series and the 3D structure of the specimen can be obtained by an inverse 

Fourier Transform. This approach is not useful in practice because of the fact that the problem of 

this approach is related to the non-trivial interpolation of Fourier space. 

Traditionally, 3D reconstruction methods have been classified intro two major groups, Fourier 

Reconstruction methods and Real-space methods. In Fourier reconstruction methods, the 3D 
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Fourier Transform of the specimen is reconstructed from the experimental sample points and the 

real space distribution of the object is obtained by inverse Fourier transformation. In contrast, 

direct method demands all calculations in real space. Real-space methods include the 

convolution back-projection algorithm and iterative algorithms such as Algebraic Reconstruction 

Technique (ART) [32], Simultaneous Iterative Reconstruction Technique (SIRT) [33], and 

Iterative Least-squares Technique (ILST) [34]. 

The standard method for tomographic reconstruction is Weighted back projection (WBP), which 

can be described as the Fourier approach but working in real space [31].  

Back Projection Quantity: The back-projection method assumes that the projection images 

represent the amount of mass density encountered by imaging rays. In case of single axis 

tomography, the reconstruction of the 3D volume from 2D projections can be thought of as a 

series of Nx independent reconstructions of 2D slices from Ny equivalent strips of the projections. 

Here each strip is narrow enough to be represented by a one-dimensional set of measurements, 

and the resulting slice is thought of as a single layer of voxels i.e. without density changes along 

the direction of slicing. Each micrograph can be thought of as being composed of strips 

perpendicular to the tilt axis. Each strip is the projection of a slice. Hence the 3D reconstruction 

problem is reduced to the problem of 2D reconstruction of the density distribution over a slice 

from a set of 1D strips containing the measured projected densities. 

The experimental measurements pi,ϑ on a  given projection under an angle ϑ, is interpreted in 

terms of summation of voxels θj , of the object lying within the projection “ray” ri,ϑ . This ray is a 

narrow strip whose width corresponds to the size of the projection pixels or a multiple of this. 

The projection equation, pi,ϑ = ∑  jϵ ri,ϑ θj i.e. sum over all voxels lying within the ray, must hold  
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Figure 2.4: Projection geometry relating to a single-axis tilting experiment 
 

                           

Figure 2.5: Relationship between experimental projection (relating to projection angle θ) and the 
slice of the reconstructed object. 
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for all voxels of the projection strip, and for all of the tilt angles ϑ used in the experiment. 

The real-space methods are based on the concept of back projection: in essence, a value p’
i,ϑ 

associated with the projection pixel pi,ϑ is “smeared out” along the corresponding ray so that each 

of the voxels falling within the i-th ray receives an equal share. For the iterative techniques, the 

back-projection quantity is 

        p’
i,ϑ = pi,ϑ -  ∑  jϵ ri,ϑ θj           ( 1)  

 i.e. the difference between the experimental measurement pi,ϑ and the current ray sum. In each 

iteration the correction amount i.e. p’
i,ϑ decreases and a distribution of voxels approximating the 

original object is seen to emerge. For different iterative methods, the remaining error and the 

way in which the corrections are applied to the 3D density distribution are different. 

The convolution back-projection method has higher computational efficiency where the back-

projection quantity is 

        p’
i,ϑ = pi,ϑ ο fi            ( 2) 

      

where, ο is the convolution operation and fi is the modifying function that has the property of 

enhancing high-resolution features in the projection. The steps in convolution back-projection 

method are: 

• Convolve each projection with ramp filter 

• Compute back-projections 

• Compute summation of the back-projection bodies 
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Simple Back-projection Method: A simple reconstruction method is the simple back-projection 

method or summation technique shown in Fig: 2.6. In this technique, different projections of an 

object are smeared out or back projected to form ‘back-projection bodies’ onto a volume called 

the back-projection volume. Consequently, back-projection rays from different projection images 

intersect and reinforce each other at the point where mass is found in the original structure. In 

other words, to reconstruct the object, all back-projection bodies are summed. Obviously, the 

reconstruction is better when more projections are used. 

 

In practice, the object reconstructed using this technique, is strongly blurred. It can be shown that 

a simple back projection technique reconstructs the object with a point spread function that 

overweights the low spatial frequency components. 

Drawback of Simple Back-projection: The drawback of the simple back-projection method is 

the incorrect weighting of the data, i.e. the low spatial frequency domain receives an unduly 

large share of the sample points. As a result, the back-projection involves an implicit low pass 

filtering that makes the reconstructed object strongly blurred.  

  

 

 

Figure 2.6: Principle of simple back projection method. Back projection bodies are created from 
five projection P at angles ϑ1, ϑ2, ϑ3, ϑ4 and ϑ5 and the object is reconstructed by addition these back 
projection bodies [31] . 
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From the given picture(Fig.2.7), it is understandable that Fourier components are concentrated 

around the center i.e. low frequency components have a higher concentration and the high 

frequency components are sparsely populated. The only possible way to get the high frequency 

components, is interpolation of the experimentally sampled Fourier transform onto a Cartesian 

grid and subsequent inverse Fourier transformation. Unfortunately, the Fourier domain 

interpolation is non-trivial, since according to the Whittaker-Shannon sampling theorem [35], 

each of the samples in Fourier space contributes to every point of the Fourier grid [36]. Hence a 

simple bilinear interpolation will not be sufficient for this purpose. 

Significantly, a weighting function can compensate this imbalance. The weighting function acts 

like a high pass filter in the sense that weights down the low frequency Fourier terms to bring 

them back into balance with the high frequency terms. In PROTOMO, the weighting function is 

applied to the Fourier transform of the projection images themselves rather than the back-

projection body, otherwise referred to as the tomogram. The reason for this comes from the fact 

that during alignment, references are computed from a back projection of previously aligned 

images and by weighting the images ahead of time, speeds up the calculation. This reweighing is 

necessary to restore the correct balance in the reconstruction across all spatial frequencies. 

R-weighted Back-projection: To discuss about the R-weighted back-projection method, the 

concept of point-speared function and transfer function is needed. The point-spread function of 

an imaging system describes the image of a single point as it results after using a perfect point as 

the input to the system. If the system is shift-invariant, a property also called isoplanatic in 

optics, then the system response is independent of the absolute coordinates and depends only on 

the difference vector (x − ξξξξ , y − ηηηη ). The point-spread function then can be written as, 
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h(x, y;ξξξξ, ηηηη) = h(x − ξξξξ, y − ηηηη) [31]. 

Let f (x,y,z) be a 3D distribution, which is projected under the angles ��  , ��  to form a series of 

projections �� (�� , 
�). Let �� = (�� , 
�, ��) be the coordinates in the coordinate system of the 

projection ��  which forms the  (��, 
�). plane. The geometrical relationship between the object 

coordinates r = (x,y,z) and �� = (�� , 
� , ��) can be described using the rotation matrices ��� , ���. 

        ��  =  ���·���·   r           ( 3) 

                                    

 

Figure 2.7: Relationship between the polar and Cartesian grid on which Fourier samples are 
obtained with the Cartesian grid on which data are required for Fourier inversion [3]. 
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Now, the rotation matrix about the y-axis by angle ��  is given by 

��� =
����� 0 −�����

0 1 0
����� 0 �����

 

And the rottaion matrix about the �′axis by �� is  

                                                              ��� =
����� ����� 0

−����� ����� 0
0 0 1

 

A projection along the direction �� with angles ��  , �� can be written as 

         �� = � �� 
���          ( 4) 

Now a back-projection body is formed by convolution of �� in the (�� , 
�) plane with the 3D 

point spread function  

            �� = �(��, 
�) . �����             ( 5) 

  

            with   ����� = �1   �� − ! ≤ �� ≤ !
0               �#ℎ%�&��%         ( 6) 

The convolution conditions for an isoplanatic system are fulfilled within a sphere of diameter a if 

2 · a is at least twice the object diameter and the projections and the reconstruction volume are 

sufficiently large to include all back-projection rays. 

            '()���, 
�, ��� = ∬ '( ���, 
��. ,(-( − -′(, .( − .′(, ��)d-′(d.′(     ( 7) 

                       =∭ 0 (-′(, .′(, �′�) d1′( ,(-( − -′(, .( − .′(, ��) d-′(d.′(     ( 8) 

where the j’s are the orientation angles. 

The back-projection algorithm becomes  
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            2(�, 
, �) = ∑  '()���, 
�, ����           ( 9)  

The point-spread function is found by analyzing how the back-projection algorithm affects a single point 
in 3D represented by the function 

           q = δ (x, y, z).         ( 10) 

To find the weighting function for a weighted back-projection for arbitrary geometry, we must 

first analyze the point-spread function of a simple back-projection in more detail. 

The projection of q at angles  ��  , ��  is 

          '( ���, 
��  = �(��, 
�).           ( 11) 

The back-projection body, using equation (5) and (8), becomes 

         '()���, 
�, ���= �(��, 
�) . �����          ( 12) 

and the point back-projected in 3D is found by summation over ��  , ��    as 

        2(�, 
, �) = ∑ �(�� , 
�)�(��)�          ( 13) 

Thus, b(x,y,z ) is the point-spread function of a back-projection calculated from a set of 

projections taken with arbitrary angles ��  , ��. 

The transfer function is the Fourier transform of the point spread function b(x,y,z ) and is defined 

as, 

           4(5, 6, 7) = 892(�, 
, �): 
                             = 8{∑ �(�� , 
�)�(��)� } 

                                =∑ 89�(�� , 
�)�(��):�          ( 14) 

and 

          89���� , 
�������: = � ∬ �(�� , 
�)�(��)%;<=>(?@A@BC@D@BE@F@)BG
;G ) d��d
�d�� 

                                         =1� %;<=>E@F@BH
;H d�� 
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                                         =
IJK (<=HF@)

=F@  

                                             =2! ����(2!M7�)        ( 15) 

where sinc(x) =  sin(x)/x 

Given the rotation matrices, 7� can be expressed in the coordinate system (X,Y,Z ) of the object: 

            7�= Xsin�� cos��   + Ysin�������   + Zcos��       ( 16) 

 and the transfer function becomes 

           4(5, 6, 7) = ∑ 2!����92!M(5���������� + 6���������� + 7�����:�     ( 17) 
Hence, the corresponding weighting function for arbitrary geometry is 

          OH(5, 6, 7) = P
Q(A,D,F)           ( 18) 

                              ={∑ 2!����92!M(5���������� + 6���������� + 7�����:� };P   ( 19) 
Equation (19) is only valid for H≠ 0. The original 3D distribution �(�, 
, �) can be recovered 

from the back-projection 2(�, 
, �) by multiplying of its Fourier transform U(5, 6, 7) by the 

weighting function OH(5, 6, 7), followed by an inverse Fourier transform: 

�(�, 
, �) = 8;P9V(5, 6, 7): = 8;P9U(5, 6, 7)OH(5, 6, 7): 

  
Rebalancing the Fourier coefficients is done with a weighting function, W(k), where k is the 

spatial frequency 

           OH(5, 6, 7) = 1/4(5, 6, 7)         ( 20) 

           OH(5, 6, 7) = {∑ 2!����92M!(5����� ����� + 6���������� + 7�����:};P   ( 21) 

This is best done in cylindrical-polar coordinates where Γ is the angular coordinate, θ the tilt 

increment and Y is the tilt axis 
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           4H(X, Y, 7) = 1/X          ( 22) 

           O(X, Y, 7) = R          ( 23) 

A weighted back-projection method is a simple back-projection method followed by a 

deconvolution with the point spread function of the simple back projection algorithm. This 

deconvolution is done by a division of the Fourier transform of the back-projection by its transfer 

function, which is essentially the Fourier transform of the points spread function. For single-axis 

tilting the weighting function is proportional to the radius (R) in Fourier space perpendicular to 

the tilt axis, hence the term R-weighted back-projection. The multiplication by R can be applied 

either to the projections or directly to the 3D Fourier transform of the back-projection. 

The WBP is widely used in ET mainly because of its computational simplicity. The disadvantage 

of this method is its sensitivity to the inherent challenges of ET i.e. limited tilt angle, low SNR 

and poor contrast. 

2.2.5 The Missing Wedge 

The main challenge in ET is that the reconstruction of an object from a set of its projections. To 

compute the reconstruction, the Radon transform of the 3D function is measured. Radon 

transform is a set of parallel line integrals of a density function taken at various projection angles 

in 2D. In what follows we explain the phenomenon of missing wedge in the context of a 2D 

function and its 1D radon transform. Whatever we state here can be generalized to 3D functions. 

Suppose that we are given an object O and we are taking the projection of the object along a 

given direction (Z�,�[). When �[ is fixed we get one projection denoted by g(Z, �[), by varying 

Z over the different ‘lines’ that cut through the object ‘O’, in other words by taking the line 

integral along Z� (Fig. 2.8). 
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Given �[ , the equation of a line is given by � cos �[ + 
����[=Z.  Thus the line along Z� is 

given by 

          � cos �[ + 
����[ =  Z�          ( 24) 

Thus, the value of the projection of object ‘O’ along Z� is simply the line integral of ‘O’ along Z� 

whose value is given by equation (24). This is called “Radon transform”. 

For a 2D object, the object ‘O’ is denoted by a 2D function  (�, 
) and the Radon transform of 

 (�, 
) is given by, 

        _(Z, �[ )= � �  (�, 
)�(�����[
BG

;G
BG

;G + 
����[ −  Z)`�`
     ( 25) 

 

where � is the Dirac Delta function. 

We note that the Dirac Delta is zero at all places except the origin.  Thus, in equation (25), the 

Dirac Delta enforces the fact that the sum of the densities is taken along lines, � cos �[ +

����[ =  Z�, for different x and y values, thus giving rise to the line integral In discrete space, 

we get the Radon transform as, 

          _(Z, �[) =  ∑ ∑  (�, 
)�(�����[a;PCbcd;P?bc + 
����[ −  Z)      ( 26) 

We also note that, 

_(Z, � + 180˚) =  � �  (�, 
)�(����(� + 180˚) + 
���(BG
;G

BG
;G � + 180˚)g�g
  

= h h  (�, 
)�(−����� − 
���� − Z
BG

;G

BG

;G
)g�g
 

                                              = _(−Z, �)         ( 27) 
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.        

Hence to get the projections for � > 180˚, we just need to get projections for Z < 0 and thus 

physically we just need 0 ≤ � ≤ 180˚ for the Radon transform. Next, we state the Fourier Slice 

Theorem that relates the Fourier Transform of the object with the Fourier Transform of the 

Radon transform. 

Fourier Slice Theorem (FST): The FST relates the 1D Fourier transform of the projections 

_(Z, �) to the 2D Fourier transform of the object  (�, 
).  

                                

 

Figure 2.8: The Radon transform of an object (O). The transform is given by g(ρ, θn) where ρ is a 
vector (ρP, ρ< … … . ρn). Each point in the projection is denoted byg(ρp, θn) and is nothing but the line 
integral of the object O along the lineρp. 
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Theorem: The 1D Fourier transform of _(Z, �)is nothing but a slice through the origin (along 

����� + 
���� = Z) of the 2D Fourier transform of  (�, 
). 

Next, we attempt to establish this mathematically. 

The 1D Fourier transform of _(Z, �) is given by 

          q(r, �) =  � _(Z, �)%;�<=stBG
;G `Z        ( 28) 

We also note that, 

          q(r, � + 180˚) = q(−&, �)          ( 29) 
Equation (29) relates the Fourier Transform of the slice to the result in (27). It also gives us a 

way to compute the Fourier transform of the projection _(Z, � + 180˚). This is because by 

definition, 

q(r, � + 180˚) =  h _(Z, � + 180˚)
BG

;G
%;�<=st`Z 

 = q(−r, �) 

Now, from equation (28) we have q(r, �) =  � _(Z, �)%;�<=stBG
;G `Z  . Let us put Equation (25) 

for _(Z, �) i.e. _(Z, �)= � �  (�, 
)�(����BG
;G

BG
;G � + 
���� −  Z)`�`
 in Equation (28) and get  

          q(r, �) =  � � �  (�, 
)�(����BG
;G

BG
;G � + 
���� −  Z)BG

;G  %;�<=st `�`
`Z   ( 30) 

Now putting Z = ����� + 
���� in equation (30) we get, 

�(����� + 
���� −  Z) =  �(0) = 1 

And we can integrate out `Z.  

Hence,    

          q(r, �) = � �  (�, 
)BG
;G

BG
;G %;�<=s(?uvw�BCw>x�)`�`
       ( 31) 
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                        = 8(r����, r����)          ( 32) 

Equation (32) is the slice of 2D Fourier transform of  (�, 
) along the line ����� + 
���� = Z, 

which passes through the origin. Thus equation (32) gives the crux of the Fourier Slice Theorem 

(FST) i.e. the 1D Fourier transform of _(Z, �) is nothing but a slice through the origin (along 

����� + 
���� = Z) of the 2D Fourier transform of  (�, 
). Hence the FST is proved for 2D 

and it is essentially the same for 3D as well. 

Reconstruction (using back projection): Given the Fourier transform 8(y, z) of the 2D object 

 (�, 
), we can get the original object  (�, 
) using the inverse Fourier transform as follows: 

             (�, 
) =  � � 8(y, z)%�<=({?B|C)BG
;G `}`~BG

;G        ( 33) 

Now converting to polar coordinates, we get, } = r���� and ~ = r���� ⟹`}`~ = r`r`� 

Therefore equation (31) can be written as, 

             (�, 
) =  � � 8(r����, r����)%�<=s(?uvw�BCw>x�)G
c

<=
c r`r`�     ( 34) 

We note that to get the entire space we take 0 ≤ r ≤ ∞ and rotate � from 0 to 2M. Now by the 

FST we get, 

8(r����, r����) = q(r, �) 

            ⟹  (�, 
) =  � � q(r, �)%�<=s(?uvw�BCw>x�)G
c

<=
c r`r`�      ( 35) 

Now we also know that,  
q(r, � + 180˚) = q(−r, �) 

Using this we get, 

           (�, 
) =  � � |G
c

=
c r|q(r, �)%�<=s(?uvw�BCw>x�)`r`�      ( 36) 

= � 9� |r|q(r, �)%�<=st`r:`�G
c

=
c   
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Here Z = ����� + 
���� 

Now the term � |r|q(r, �)%�<=st`rG
c  is the 1D inverse Fourier transform of the projections 

_(Z, �). Here |r| is the 1D filtering and hence the name filtered back projection. What we have 

derived in (13) is what is called the filtered back projection algorithm for reconstruction. 

Hence the filtered back projection is done in combination of the following steps: 

1) Given the projections _(Z, �) for each fixed � 

2) Compute q(r, �), which is the 1D Fourier transform of the projections _(Z, �) 

3) Multiply q(r, �) by the filter function |r| 
4) Compute inverse Fourier transform of the results from (3) 

5) Interchange of sum over � from 0 to M on the result from (4) 

Note that this is the ideal situation where we have slices for all 0 ≤ � ≤ M or −M/2 ≤ � ≤ M/2. 

If we have the information for the different angular slices, then the filtered back projection 

algorithm gives the perfect reconstruction. But, in general, due to the mechanical limitations of 

the microscope, we get slices from −70˚ ≤ � ≤ 70˚. Hence, in Fourier space the missing angular 

data creates a “bow-tie” pattern. This phenomenon gives rise to the problem of reconstruction 

when projections for limited tilt angles are available. This is called the problem of 

“Reconstruction for limited tilt angles”.  

We are now ready to explain the missing wedge problem for 3D functions. In the Fourier space, 

the relationship between an object and its projection is referred to as the central section theorem, 

the central slice theorem or the Fourier Slice Theorem says that, the Fourier transformation G of 

projection g of a 3D object d is the central (i.e., passing though the origin of reciprocal space) 2D 
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plane cross-section of the 3D Fourier transform of the object D and is perpendicular to the 

projection vector. This provides the insight as to why the missing wedge problem arises in ET.  

Thus, if the projections are such that, their Fourier transforms generate all possible central slices 

covering the entirety of the 3D Fourier transform of the object, then we have a perfect 

reconstruction and there is no missing data. In theory, a complete coverage in the Fourier space 

can be obtained by rotating the sample ±90° about a single axis, called the tilt axis, with equal 

angular increments. In practice, due to some mechanical limitations of the electron microscopes, 

the maximum achievable tilt range is ±60° to ±70°. In the Fourier space of the 3D reconstruction, 

the limited tilt range results in the wedge-shaped region, empty of information, called the 

“missing wedge” (Fig. 2.9 and Fig: 2.10a). The missing wedge has a significant impact on the 

resolution of the 3D reconstruction of the specimen, making the resolution of the reconstruction 

anisotropic i.e. direction dependent [27].  In real space, because of the lack of specimen views in 

the high tilt angles, the missing wedge produces artifacts in the tomograms, such as blurring the 

spatial features in the direction parallel to the electron beam and this makes some features look 

elongated in the beam direction. As a result of the anisotropic resolution, features oriented 

perpendicular to the tilt axis, tend to fade away from the view causing signification loss of 

resolution. 

The effects of the missing wedge are most clearly demonstrated when following the contours of 

cell membranes. Because of the missing wedge effect, the cell membrane from the top and the 

bottom will disappear in the tomogram while the membrane from the sides will be clearly 

visible.  
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Minimization of the volume of the missing wedge can alleviate this problem effectively. To 

minimize the volume, one possible way is to increase the tilt angles of the specimen. 

Unfortunately, this not achievable due to several factors.  Firstly, microscope limitations do not 

allow tilting more than ~70°. Fortunately, this problem can be partly solved by taking a second 

dataset after rotating the sample by 90°. The un-sampled volume in the dual axis tomography, 

called the “missing pyramid” (shown in Fig; 2.10b), is considerably smaller than the “missing 

wedge”. A ±70° tilt range involves that 22% of the information is missing and the use of double-

tilt axis acquisition geometry reduces the missing information down to 7% [27]. 

Secondly, extreme radiation sensitivity of the biological samples limits the number of images 

from unstained frozen-hydrated samples. To handle this issue, the automated image collection 

procedure records images under a significantly low electron dose by dividing the maximum 

tolerable cumulative dose (120 e-/Å2) over the total number of images.  Therefore, an individual 

image becomes extremely noisy with SNR ~0.01. 

2.3 Noise Reduction 

As seen from the previous discussion, noise is inevitable in ET and hence a cause for major 

concern. The best possible way to remove the noise would be to create a model for the noise and 

apply it to the tomogram. But the noise in a tomogram is usually generated by non-linear 

combinations of different contributing factors and hence modeling it accurately is quite difficult. 

This drawback forces researchers to use local techniques, which do not capture the noise model 

in its entirety.  

In general, the noise reduction techniques can be grouped into three categories, namely linear, 

nonlinear and anisotropic. Linear techniques are used on local averages using Gaussian like 
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Figure 2.9: Illustration of missing wedge in reconstruction of 2D functions from 1D projection. 
 

                             

Figure 2.10: a) Missing wedge, b) Missing pyramid [3] . 
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kernels. Here all the voxels are substituted by a weighted average of the voxels in a 

neighborhood where the weight functions are given by the Gaussian kernels. In linear 

techniques, the same kernel is applied for all the voxels. One major drawback of this set of 

methods is the blurring produced by the use of same kernel across all voxels.  

The nonlinear techniques overcome these drawbacks by tuning the kernel parameters to reflect 

the specific detail of the voxels to which the kernel is being applied. In this way, the filtering is 

strong in homogeneous areas whereas it is considerably week in areas with high gradient 

information, which potentially has more detail. One major drawback of this method is that the 

noise is not completely removed near the edges, which have a higher gradient.  

Anisotropic methods overcome this problem by tuning not only the strength of the kernel but 

also the direction of the filter. Thus, edges are subject to a filtering process that runs parallel to 

them in the process of cleaning and enhancing the information near the edges. 

 In the case of tomograms, the first step is usually a linear Gaussian filter, which is used as a 

preprocessing step to remove noise allowing reliable computation of gradients. Next, more 

sophisticated techniques, like anisotropic diffusion or median filtering can be used to reduce the 

noise further. Median filtering is a nonlinear method in which a voxel value is replaced by the 

median of the values of the nearby voxels. This is an iterative technique and needs to be repeated 

a number of times (usually 3) to achieve significant reduction of the noise. 

However, none of the state-of-the-art denoising techniques work well with ET. This is because 

both anisotropic diffusion and median filtering increase the contrast in the tomogram but at the 

same time blurs out the intrinsic detail if the structure under study.  As a result, the only 

remaining option for denoising in ET is through the use of sub-tomogram averaging [20].  



42 

2.4 Segmentation  

Image segmentation is the process to group pixels into subsets to create non-overlapping 

partitions in the image, which correspond to meaningful regions or objects. Every pixel in an 

image is allocated to one of a number of these regions. In a good segmentation, the partitioning 

of all image pixels is performed in a way, such that the affinity between the pixels belonging to 

the same region or subset is higher than that between pixels of different regions or subsets. The 

pixels affinity must be quantified by defining adequate measures based on pixel properties. In 

essence, 

• Pixels in the same region should be homogeneous with respect to some predefined 

similarity measure such as grayscale value, pixels proximity, texture etc. and form a 

connected region. 

• Pixels belonging to a neighboring region should be as heterogeneous as possible with 

respect to the multivariate similarity measure and two neighboring regions must be non-

overlapping. i.e. the entire image, R=Ui=1
S Ri and   Ri∩Rj = ϕ  for i≠j and each Ri is 

connected. 

One of the primary objectives of image analysis is to be able to identify and analyze objects of 

interest from a given image. Segmentation is the method by which objects of interest are 

identified automatically or semi-automatically from a given image. Hence segmentation is the 

first step that is required to achieve the goals of image analysis. Thus, it is one of the most 

important steps one encounters in any image analysis application. 
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                                                                 CHAPTER 3 

RELATED WORKS 

In this chapter, we briefly discuss previous work related to two broad aspect of this dissertation. 

The first relates to the problem of segmenting macromolecular structures from volume data 

obtained using electron tomographic techniques. The second aspect relates to the determination 

of the structure of macromolecular assemblies and filaments images using electron tomography 

and single particle electron microscopy respectively. We start with discussion on the 

segmentation techniques followed by a discussion on analysis of electron tomographic structures 

and finally concluding with analysis of helical structures from single particle electron 

microscopy. 

3.1 Segmentation of Volumetric Data  

Of all the steps involved in the analysis of electron tomograms, segmentation is particularly 

challenging partly because of the complexity of biological features and partly due to the poor 

quality of the micrographs. Some of the challenges for applying state-of-the-art segmentation 

techniques in ET are discussed below [37]: 

1) Data set variety: The complex nature of biological specimens comes not only from different 

biological structures but also from different method of specimen preparation. 

2) Low and non-uniform contrast: The contrast in cellular tomography is often low and non-

uniform along membranes and fibers. Sometimes when the contrast is poor, the structure may be 

visible in lower magnifications. This creates problem for segmentation methods that rely on local 

intensity properties. 
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3) Low signal-to-noise ratio: To prevent radiation damage of the biological specimen during data 

collection limited amount of electron dose is used for image formation. Therefore, the electron 

tomograms tend to exhibit an extremely high stochastic noise level.  In some cases, the 

segmentation algorithm is applied after using some powerful denoising techniques on the 

tomograms. 

4) Anisotropic resolution: Due to the “missing wedge” problem, some parts of the tomogram may 

have significantly lower contrast than others and the resolution becomes direction dependent and 

contrast varies across the thickness of the tomogram. 

5) Specimen preparation artifacts: The specimen preparation method introduces a number of 

different artifacts such as lack of uniform contrast, discontinuity of membranes etc.  

6) Interfering structures: This is problem common for segmenting membranes. Some point-like 

objects, such as ribosomes with a strong uniform contrast, may interfere with the membrane and 

extend over distances larger than the width of a typical membrane or microtubule. 

Developers of segmentation tools for electron tomogram should take care of all the issues, which 

makes the process inherently challenging. 

In practice, image segmentation can broadly be classified into two major categories: The bottom-

up approach and the top-down approach. Bottom-up approaches do not consider any prior model 

of the desired object to start with. Based on the information of the local features, such as gray 

level values of the pixels, texture, color or edge, the entire image is partitioned into several non-

overlapping homogeneous regions. On the other hand, top-down approaches start with a 

predefined model of the target object and stops when the entire image is segmented into smaller 

meaningful regions that the operator is looking for. Given an image, the target object is first 
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localized in the image. After that, it is extracted under guidance of the appearance prior such as 

texture or shape.  

Both approaches, bottom-up and top-down, have some limitations. As the bottom-up approach 

relies on low-level homogeneity, it often results either in over segmentation or in under 

segmentation. On the other hand, because of the high intra class variance between the objects 

being segmented, in terms of object shape and appearance, generating accurate models for the 

objects are very difficult. Conversely, the shape and appearance of two distinct objects can be 

very similar in terms of the prior distribution imposed on the appearance.  Hence generating 

accurate models of the desired objects using the top down approaches is quite challenging. Next, 

we give a brief survey of the different methods that belong to either one of these categories.  

3.1.1 Bottom-up Approaches for Segmentation 

The bottom-up image segmentation approaches first segment the image into regions and then 

identify the image regions that correspond to a single object. This method relies mostly on the 

continuity principle by grouping pixels according to the gray level values or texture uniformity 

within image regions. In electron tomographic data, the most obvious pixel properties are gray 

level similarity and proximity.  

Several bottom-up segmentation approaches are present in literature, but there is no single 

method which can be considered good for all types of images, nor are all the techniques 

applicable for one particular image. In this chapter, different bottom-up segmentation approaches 

that are used for segmenting ET are presented in brief. Note that, multiple bottom-up techniques 

can be used in conjunction with others, to solve different segmentation problems. 
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Histogram-based Thresholding: Thresholding is the simplest and probably the most frequently 

used technique for image segmentation. In this method, the intensity of the pixels or voxels are 

compared with a user defined parameter, called the ‘threshold’ and the pixels or voxels are 

assigned to the foreground or background according to their intensity above or below the 

threshold value.  

For tomographic data, there is no objective criterion on the choice of the threshold. In single 

particle technique, where because of comparatively good resolution, a threshold can be set by 

calculation of the total volume occupied by the protein. Unlike single particle methods, the 

threshold parameter used in tomography must be set subjectively. This technique was applied to 

a tomogram of a Pyrodictium cell and a binary image was produced [38]. 

Watershed Segmentation: In grey scale mathematical morphology, the watershed transform is 

the fundamental image segmentation tool based on an idea inspired by topographic reliefs. The 

watershed transform can be classified as a region-based segmentation approach. The intuitive 

idea underlying this method comes from geography: it is that of a landscape or topographic relief 

which is flooded by water, watersheds being the divide lines of the domains of attraction of rain 

falling over the region. An alternative approach is to imagine the landscape being immersed in a 

lake, with holes pierced in local minima. Basins (also called ‘catchment basins’) will fill up with 

water starting at these local minima, and, at points where water coming from different basins 

would meet, dams are built. When the water level has reached the highest peak in the landscape, 

the process is stopped. As a result, the landscape is partitioned into regions or basins separated 

by dams, called watershed lines or simply watersheds. Precisely, the basins correspond to the 

regions of the image being segmented. The algorithm has been used to segment out different 3D 

electron tomographic volumes.  
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First the method has been used on simulated and experimental data from smooth-muscle acto-

myosin [39]. The watershed algorithm has been applied to the Foot-and-mouth disease virus [40] 

with a FAB fragment bound.). The FAB fragments are correctly separated from the virus density. 

The virus capsid is partitioned into its smaller units and the boundaries between the constant and 

the variable domains of the FAB are clearly visible. Application of this segmentation technique 

on a raw tomogram of actin cross-linked with aldolase [41] confirms that this method works well 

even for segmenting the tomograms that are difficult to interpret by eye. Finally, the watershed 

algorithm was applied to segment out the boundaries of the membrane structures of the Golgi 

region of a pancreatic beta cell [42]. 

Normalized Cuts: The idea of a cut based segmentation is to represent the image as a graph, 

with vertex set equal to the number of pixels in the image. Once this is done, edges are added 

between the vertices and for every edge a weight is assigned, such that it is proportional to the 

similarity between the vertices. Once this has been done, the resulting graph encodes the 

similarity/dissimilarity between the pixels of the image. Now a foreground-background 

segmentation is obtained by computing the minimum cut (set of edges that partitions the vertex 

set into two subsets and has the minimum total weight).  

The normalized graph cut method was applied to the 2D slice of an electron tomogram of a cell 

of the archaeon Pyrodictium abyssi with its characteristic surface layer, a group of extracellular 

vesicles, and a fragment of a cannulae [43]. The hierarchical application of this segmentation 

technique yields the completely segmented Pyrodictium abyssi cell with outer membrane, inner 

membrane, the group of vesicles and the cannulae, segmented from one another and from the ice 

matrix. This method has been extended to higher dimension and the 3D extension of the method 

is applied to segment out the complete 3D density map [43]. 
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Active Contour Models & 3D Geodesic Active Contour: A snake as described in [44] is an 

energy-minimizing spline, whose energy depends on its shape and location within the image. 

Local minima of this energy then correspond to image properties. Snakes are represented as 

parametric deformable models. This model is active in the sense that it is always minimizing its 

energy functional and therefore exhibits dynamic behavior. The basic snake model is a controlled 

continuity spline under the influence of image forces and external constraint forces. The internal 

spline forces serve to impose a piece wise smoothness constraint. The image forces push the 

snake toward salient image forces like lines, edges, and subjective contours. The external 

constraint forces are responsible for putting the snake near the desired local minimum. 

3D geodesic active contour [45] is a technique for detecting object boundaries, based on active 

contours evolving in time, according to intrinsic geometric measures of the image. The technique 

is developed based on the relation between active contours and the computation of geodesics, or 

minimal distance curves. 

In [46], a method based on 3D active geodesic contour is reported for the automated 

segmentation of membranes of HIV virions, which are then used for HIV particle detection. The 

algorithm finds the boundaries of the object of interest, as global minimal surfaces, in a metric 

space defined by image features. Then the particles of interest are found by template matching. 

The segmentation is carried out for individual objects i.e. for individual HIV virions in the 

tomogram. It must be noted that this method can be used for solving our problem of 

automatically segmenting HIV/SIV Env pikes. However, the success of this method is dependent 

upon the availability of a reliable template.   



49 

3.1.2 Top-down Approaches to Segmentation or Model-based Segmentation 

The complexity of the biological features, the crowded environment, and the inherent low signal-

to-noise ratio (SNR), present significant challenges to data-driven methods for segmentation in 

electron-tomographic reconstructions. Moreover, the subcellular structures that we want to 

segment out, pose some distinctive geometric properties such as a tubular structure or very thin 

structure of membrane boundaries. This prior shape knowledge may be obtained from biologists, 

from statistical analysis of the training shapes, or acquired from user-drawn shapes, and they 

should be fully exploited to improve the segmentation accuracy and robustness. Next, we discuss 

the important top-down segmentation methods that have been used in ET segmentation. 

Template Matching: In template matching [47] , the template is generally a structure that has 

been determined at high resolution, usually by an imaging modality other than electron 

microscopy (most often X-ray crystallography). After filtration of the template, to match the 

approximate resolution of the electron-tomographic reconstruction, and direction-dependent 

adjustment, to match the missing angular information, cross correlation is used to find objects 

matching the template in the 3-D tomographic reconstruction. Preliminary studies indicate that 

template matching is reasonably effective for identifying large macromolecular complexes [48]. 

However, these initial efforts have to deal with a significant number of false positives, and have 

not yet been used to any appreciable extent, to segment 3-D reconstructions of in situ cellular 

complexes. Other major drawbacks of template matching include difficulty of constructing 

templates for complex biological structures, and its inability to incorporate variability in the 

shape of the structures. Template matching is also limited to finding only structures with a strong 

resemblance to the template; it is not particularly effective at finding an unknown structure. 
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The template is matched to every location within the tomographic reconstruction. In a brute force 

template matching [47], to compute the similarity, the cross-correlation is computed between the 

template and tomogram, at every location within the tomogram, and for all (predefined) angular 

orientations.  

Depending on the feature of interest, simple templates are generated based upon general 3D 

shapes like cylinders, cubes, spheres, or cuboids. For the relatively low-resolution requirements 

of the template-matching application, templates like a cylinder for microtubules and cuboids for 

patches of membrane are generated. For further information on application of template matching 

to segmentation of ET, readers are directed to [49].  

Water-snakes & Shape Driven Water-snakes: One major advantage of the traditional energy-

based methods is the ability to easily incorporate prior knowledge into the segmentation process. 

On the other hand, in traditional watershed methods, though incorporating prior knowledge of 

the number of objects, and their location is possible, it is not conducive to incorporation of a 

priori shape information. Hence, by reformulating the watershed segmentation in an energy 

minimization framework, the water-snake model offers the best of both worlds while avoiding 

their pitfalls. 

The traditional watershed algorithm is implemented via region growing, where seeds are the 

regional minima of the relief. To avoid over segmentation due to a large number of minima in 

the original edge evidence function, the watershed line is constructed from a given set of regions 

called the markers. For more information, please refer to [50].  
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A 3D model based approach for segmenting biological membranes of mitochondria and bacteria, 

by incorporating the prior knowledge about the shapes of membranes, was developed by [48] 

combining the watershed segmentation and the prior shape information. 

Maximum Likelihood Estimation: Commonly used approaches of subvolume analysis consist 

of two steps - an initial alignment step followed by a subsequent classification step.  The 

alignment step is mostly based on either conventional cross correlation or constrained cross 

correlation [51]. Classification algorithms use a distance metric to measure similarity between 

sub-tomograms and groups sub-tomograms into classes. An intrinsic limitation of this approach 

is that, alignment and classification are performed in two subsequent steps and the classification 

is dependent on alignment. Clearly, poor alignment produces poor classification. Existing 

strategies of sub-tomogram alignment and classification are less robust when the signal-to-noise 

ratio of the sub-tomograms is very low. 

An alternative 3D alignment approach based on maximum-likelihood optimization is used by 

[51]  for three dimensional subtomogram averaging and classification.  This approach, called 

MLTOMO, is based on a probabilistic data model, which comprises both an estimate of the 

underlying structure, as well as a formal description of the noise and the distribution of the 

alignment parameters. The goal of the ML refinement procedure is to find a set of most likely 

parameter values that describes the experimental data. In MLTOMO, the relative orientations of 

the subvolumes and their class assignments are treated as hidden variables, and expectation 

maximization is used to maximize the corresponding marginal likelihood function. The resulting 

algorithm is robust to high levels of noise and simultaneously tackles the problems of alignment 

and classification by calculating model parameters as probability-weighted averages over all 

possible orientation and class assignments. This method has been implemented in the RELION 
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software package [52] which is used for analyzing structure of both single particle electron 

micrographs and ET. 

3.2 Structure Determination from Electron Tomographic Data 

In this section, we describe methods for structure determination of macromolecular assemblies 

using ET. As the methods used for structure determination depend on the macromolecular 

assembly being studied, we discuss this in the context of determination of structure of HIV/SIV 

spikes. The HIV/SIV Env spikes initiate infection by facilitating entry of the virion into the host 

cells. They are also the sole protein on the surface of the virion accessible to the cells immune 

system [53]. Hence, understanding their structure will provide insight into host cell infection and 

may eventually help create effective vaccines against AIDS. Though we discuss some of the 

more important contribution in this area in Chapter 4, interested readers are hereby referred to 

[54] 

3.3 Structure Determination from Single Particle Electron Microscopic Data 

3.3.1 Actin Filament as a Helix 

Our second project was structure determination of actin-bound smooth muscle myosin-II (smM) 

complex in the nucleotide-free state. All muscles contain thin actin-containing filaments and 

thick myosin-containing filaments. A substantial portion of the cytoplasmic volume of smooth 

muscle cells is taken up by the molecules myosin and actin. Myosin present in a smooth muscle 

is primarily myosin II.  Muscle thin filaments (diameter 6–10 nm) are a double helix of 

polymerized actin monomers. The double helix repeats once every 28 monomers if the 

monomers from both strands are counted. Due to the helical nature of the filament, the molecule 
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repeats every 14 monomers if the distinction between strands is ignored. The F-actin, can be 

described as 13 subunits in 6 turns.   F-actin can have different helical structures but usually are 

found between the 13/6 symmetry for vertebrate striated muscle and the 28/13 symmetry for 

Lethocerus flight muscle 

Representation of Helix with Cylindrical Coordinates: In Cartesian coordinates, a continuous 

helix can be defined by a set of three equations, x=rcos(2πz/P), y=rsin(2πz/P), z=z; these 

describe a circle in the x-y plane that gradually rises along the z axis (Fig. 16a). The diagnostic 

parameters of the helix include the radius (r) and the repeat distance along the z axis, or pitch (P). 

In cylindrical coordinates, which are the most convenient way to describe a helix, these 

equations become r=r, ϕ=2πz/P, z=z. These equations describe a continuous helix, such as the 

continuous wire path of a spring (Fig. 3.1A), but biological assemblies generally, involve a 

discontinuous helix (Fig: 3.1B), built with individual building blocks, or subunits, positioned at 

regular intervals along the helical path. 

These assemblies are characterized by the angular and axial interval between the subunits, Δϕ, 

and Δz, or alternatively are characterized by the number of subunits per turn of the helix. From 

these values, the repeat distance (c) can be calculated as c = uΔz = tP (The pitch of a helix is the 

height of one complete helix turn, measured parallel to the axis of the helix). A helical repeat is 

defined as the distance that a subunit must be translated along the axis to be in register with 

another subunit. This helical repeat must be the product of an integer multiplied by the axial rise 

per subunit. Actin filaments have the simplest possible repeat, 13 subunits in 6 turns of the left-

handed 1-start helix, with an axial rise per subunit of 27.3 Å. This filament will have a repeat of 

13*27.3 Å=355 Å. The angle between adjacent subunits is 360°*6/13=166.15°. 
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3.3.2 Algorithms for Helical Reconstruction 

Many macromolecular assemblies in cells are constructed using identical protein subunits 

arranged with helical symmetry. The presence of helical symmetry is a terrific aid in a structure 

determination because a single view of the assembly provides multiple different views of the 

protein subunits. Consequently, fewer micrographs are needed to obtain a structure. In fact, a low 

resolution 3-D structure can generally be obtained from a single view. In order to determine the 

3D structure of helical specimens, the symmetry determination is the critical step of the structure 

determination procedure. The traditionally used approach for computing a 3-D image of a 

filament with helical symmetry is the Fourier-Bessel approach [55]. But, in recent time a real 

                 

Figure 3.1: Diagrams depicting the geometry of a helix. (A) A continuous helix is characterized by 
the pitch (P) and the radius (r) adopted by the spiral. Either a Cartesian coordinate system (x,y,z) or 
cylindrical coordinate system (r,φ,z) can be used. In either case, the z-axis corresponds to the helical 
axis. (B) Helical assemblies are generally composed of identical subunits arranged along the path of a 
continuous helix. This requires additional parameters, Δφ and Δz, which describe the incremental 
translation and rotation between the subunits  [55] 
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space method, called Iterative Helical Real Space Reconstruction (IHRSR) [56] is the near 

universally used algorithm for reconstructing helical assemblies. 

Fourier-Bessel Method for Helical Reconstruction: The Fourier transform of projection 

images of helices contains a pattern of structure factor peaks termed layer lines (Fig. 3.2A). The 

spacing between layer lines is a function of the helical repeat. The layer lines are sharp along the 

direction of the helical axis, but continuous perpendicular to the helical axis due to the lack of 

repeats in that direction. The vertical axis of the transform is referred to as the meridian and the 

horizontal axis termed equator. Diffraction patterns of helices, contain contributions from two 

separate lattices: first, the lattice of the front or the near side of the helix facing the observer and, 

second, the lattice of the back or the far side of the helix, which faces away from the observer. 

Each of these lattices gives rise to a set of corresponding layer lines in the Fourier transform, 

which are mirror symmetric along the meridian. 

The interpretation of the diffraction pattern is accomplished by decomposing the Fourier 

spectrum into its set of layer lines. This process is also known as indexing the helical diffraction 

pattern and is the crucial step for de novo structure determination of helical assemblies. Layer 

lines are found aligned perpendicularly to the meridian and spaced apart by the reciprocal 

distance of the helical repeat c. Mathematically, the layer lines are described by oscillating 

Bessel functions �x (5) with discrete orders n that depend on the helical radius r and the 

reciprocal radius R from the meridian �x (2 ∗ M ∗ X ∗ �) 955:. 

The Fourier spectrum reveals that peaks from layer lines of small Bessel order n are located close 

to the meridian as opposed to large Bessel orders that are spaced further away from the meridian 

and possess decreasing peak maxima. Each layer line has a horizontal position in the Fourier 



56 

spectrum, which is described by the layer line height, h, along the helix axis or the layer line 

number, l. Once the layer lines have been assigned with their layer line heights, h, and order n, a 

real-space lattice can be derived from the intersections of the layer line waves, which defines the 

unit positions of the helical array. 

Indexing the diffraction pattern is the key step to determine helical symmetry. If the helical 

symmetry is incorrect, the structure will be incorrect. First, the layer line heights, h, is measured. 

Preferably sharp layer lines with low Bessel orders close to the meridian should be examined 

first and assigned. Second, their meridional distance is measured and the corresponding Bessel 

order n determined by taking the helical radius, r, obtained from real-space analysis into account 

�x (2 ∗ M ∗ X ∗ �). In addition, the phase difference from opposite sides of a layer line helps to 

discriminate whether the corresponding Bessel orders, n, are odd or even. The intersections of 

the corresponding helical waves can be directly converted into the rise/rotation or pitch/unit 

number parameter convention. Using these parameters, the layer lines selection rule can be 

determined and used to test whether the predicted layer lines agree with the observed ones and 

whether the observed ones have been indexed correctly. 

The nature of the helical symmetry can better be described using a cylindrical polar coordinate 

system. Thus, if the density distribution of the object is Z(�, ∅, �) and its Fourier transform is 

(X, �, 7) , where the axis of helical symmetry is the z direction. 

The Fourier transform of a structure Z(�, ∅, �), with helical symmetry can be expressed in the 

form 

            8(X, �, 7) =  ∑ qx,�x (X)exp 9�� �� + =
<�:         ( 37) 
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The transform 8(X, �, 7) is non-zero only for 7 = �/� where � is the layer line number and c is 

the axial repeat of the structure [57].   Repeat distance c satisfies the condition 

           Z(�, ∅, �) =  Z(�, ∅, � + �)         ( 38) 

qx,�(X) is the transform of the layer line data. In real space, 

          _x,F (R)=� qx,F (X)�x(2M�X)2MgX         ( 39) 

In real space, the density is computed as, 

      

Figure 3.2: A) Fourier transform of a helical assembly. Discrete layer lines that run horizontally 
across the transform characterize the 2D Fourier transform from a helical tube. Each layer line 
corresponds to a helical family. The layer line running through the origin is called the equator. The 
vertical axis is called the meridian and the transform has mirror symmetry across the meridian 
provided that the layer line does not have contributions from Bessel functions of different orders, 
referred to as “beating of Bessel functions”. The layer lines are mathematically described by 
oscillating Bessel functions and the start number of each helix (n) determines the order of the Bessel 
function appearing on that layer line B) Indexing of layer lines in the Fourier transform of a helical 
assembly. Corresponding plot of Bessel order (n) vs. layer line height (ℓ). Assignment of (1,0) and 
(0,1) layer lines is arbitrary, but once chosen then all of the other visible layer lines should be a linear 
combination of these two [55]. 
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         Z(�, ∅, �) = ∑ _x,FG;G (X) exp(��∅)exp (−�2M�7)       ( 40) 

 Problems with Traditional Fourier-Bessel Approach: 

If a helical polymer is highly ordered over long distances, is rigid and straight, and diffracts so 

that only a single Bessel function is present on any layer line within the resolution being studied, 

then the Fourier-Bessel approach works well. This approach doesn’t work for real non-ideal 

specimens. An alternative, real space approach is Iterative Helical Real Space Reconstruction 

(IHRSR) method [56]. Problems of Fourier-Bessel methods are manifold: 

1) Non-integer symmetries: Fourier-Bessel formalism was based upon crystallographic 

description symmetry, and was therefore relies on helix having an integer number of subunits 

in an integer number of turns. For example, the symmetry of F-actin in this formalism can be 

described as 13/6 i.e. 2.1667 subunits per turn. This problem is quite problematic as small 

changes in twist leads to catastrophic changes in symmetry [58]. 

2) Bessel overlap: The problem of Bessel overlap arises where more than one Bessel function 

occurs on a layer line due to symmetry of the object. This arises in most objects at high 

resolution, but in some objects (with a small, integral number of subunits in a ‘repeat’), it can 

arise at very low resolution [58].  

3) Helical disorder: The disorder that is naturally present in many polymers can be the main 

limitation in applying Fourier-Bessel analysis. Within a crystal, a space group maintains long 

range order, while local disorder can exist. Within a helical polymer, there are no forces or 

factors that maintain long-range order. Thus, all interactions are local, and the variations in 

these local interactions accumulate to cause liquid disorder, or disorder of second type. For 

some systems, (such as bacterial flagellar or Tobacco Mosaic Virus), the scale on which a 

structure is ordered may be long enough that this has no practical consequence. For other 
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systems, such a F-actin, liquid like cumulative disorder can arise over rather short distances. 

All helical filaments have some degrees of ‘cumulative’ disorder. The helical disorder of 

such filaments precluded using standard Fourier-Bessel reconstruction methods [58]. 

4) Heterogeneity: The Fourier-Bessel method cannot separate out heterogeneity within and 

between filaments. The Fourier-Bessel method involves, the imposition of helical symmetry 

on a single filament, and thus all structural variation is averaged together within this filament. 

While heterogeneity is a form of “helical disorder”, in the sense that strict helical symmetry 

is absent or broken in both cases, it is helpful to treat structure heterogeneity separately [58]. 

5) Weakly diffracting specimens: There are many thin helical filaments in biology, (for example 

bacteriophage and bacterial pili), for which conventional techniques, based upon trying to 

extract layer lines from individual filaments, fail when the Fourier transform of a single 

filament is so weak that not even a single layer line is typically seen. Fourier-Bessel method 

cannot handle weakly diffracting specimens [58]. 

On the other hand, IHRSR addressed all the above-mentioned problems and overcomes them 

successfully.  

Iterative Helical Real Space Reconstruction (IHRSR): An alternative to Fourier-Bessel 

reconstruction of helical assemblies, is the Iterative Helical Real-Space Reconstruction (IHRSR) 

method [56]. The method is based on matching short segments from the image of a helical 

assembly to a series of projections from a model using the SPIDER software, in a manner 

analogous to the single particle analysis of isolated macromolecular complexes. The segments 

are typically much shorter and IHRSR is therefore able to compensate for shorter-range disorder. 

Furthermore, indexing of the layer lines in the Fourier transform is unnecessary, though 

knowledge of Δφ and Δz for the smallest pitch helix is generally required. Specifically, after 
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using projection matching to determine the relative orientations of all the individual segments 

along the helical assembly, a 3D structure is generated by back-projection. The helical symmetry 

of this 3D structure is then determined empirically by examining auto-correlation coefficients 

after systematically rotating and translating the structure about its helical axis. Once helical 

parameters (Δϕ and Δz) are determined, the structure is symmetrized and used for the next round 

of alignment and projection matching [55]. 

The uniqueness about IHRSR approach is that the algorithm determines the screw symmetry, the 

coupled rotation and axial translation that best fits the reconstructed volume each cycle without 

the error prone necessity of indexing the Bessel orders. To express this properly, consider a 

three-dimensional density distribution (the reconstruction) in cylindrical coordinates, Z(r, ∅, z). 

For a helical object, Z(r, ∅, z) = Z(r,∅ + ∆∅, � + ∆�) shows the symmetry between two subunits, 

where ∇∅ is the rotation between the two subunits, and ∆z is the translation along the axis 

between the two subunits. More generally, Z(r, ∅, z) = Z(r, ∅ + n∆∅, z + n∆z), where n is any 

integer. 

This method for reconstructing helical polymers involved an iterative determination and 

imposition of helical symmetry upon objects that have been reconstructed without any helical 

symmetry imposed. A reference volume is used to generate reference projections, where each 

projection involves a different azimuthal rotation of the reference volume. The actual angular 

increment between projections depends upon the diameter of the object (D) and the expected 

resolution (d), and should be 360°*d/(2πD). Hence, the number of reference projections is 

2πD/d. In addition to the helical screw symmetry (an azimuthal rotation coupled with an axial 
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translation), there can also be a point group symmetry ( xor D�) present and in this case the 

number of reference projections is reduced to 2πD/nd. 

A multi reference alignment is performed between each projection and the raw images, i.e. the 

reference projections are cross-correlated against the actual raw image segments. This yielded 

five parameters for each filament: a correlation coefficient with the most similar reference, an in-

plane rotation, an x-shift, a y-shift, and the azimuthal angular orientation of the segment (from 

the known azimuthal orientation of the reference image that yielded the highest cross-correlation 

against the raw image). Images that had poor correlation coefficients, or large shifts, were 

excluded. Back projection was then used on the resulting aligned images, in what is essentially a 

single-axis tilt series with uniform sampling of all angles and no missing information. This 

generated a 3D volume in which no assumptions have been made about internal symmetry. 

Instead of using multi reference alignment, we have used RELION [52] software for classifying 

the actual raw segments. In RELION a structure is iteratively refined through a two-step 

procedure. The first step, which is called Expectation in mathematical terms, has been labeled 

“Alignment.” In this step, computer-generated projections of the structure are compared with the  

experimental images, resulting in information about the relative orientations of the images 

.Orientations are not assigned in a discrete manner, but probability distributions over all possible 

assignments are calculated, and the sharpness of these distributions is determined by the power 

of the noise in the data. The second step is called Maximization and has been labeled “Smooth 

reconstruction.” In this step, the experimental images are combined with the prior information 

into a smooth, 3D reconstruction, and updated estimates for the power of the noise and the signal 

in the data are obtained. The relative contributions of the data and the prior to the reconstruction  
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are dictated by Bayes' law and depend on the power of the noise and the power of the signal in the data. 

The new structure and the updated estimates for the power of the noise and the signal are then used for a 

subsequent iteration. Iterations are typically stopped after a user-defined number or when the structures 

do not change further. 

 

Figure 3.3: A schematic diagram of the IHRSR algorithm [56]. A reference structure (top of 
diagram) is used to determine the azimuthal orientation, in-plane rotation, and in-plane translation of 
every image segment. In this example, the reference structure is rotated by 4° increments. The actual 
azimuthal increment depends upon the diameter of the filament (D), and the expected resolution (d). 
The reference projections are cross-correlated against the actual image segments. The highest 
correlation determines the azimuthal orientation of the image in question, as well as providing the in-
plane rotation and translation needed to bring it into register with reference projection. A three-
dimensional reconstruction is generated by back projection from the aligned images using the 
azimuthal angular assignment, and this reconstructed volume is used to search for the screw symmetry 
that minimizes the density deviations. This symmetry is then imposed, generating a new reference 
volume (top of diagram). The procedure is allowed to cycle until there are no changes in the helical 
symmetry. The procedure is insensitive to the choice of an initial reference volume, and a solid 
cylinder can be used quite effectively as an initial reference. 
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Determination of helical symmetry in IHRSR: At this point, helical symmetry is imposed 

upon the central volume, first by determining the two helical parameters, the azimuthal rotation 

∆∅ and the axial rise ∆�, that related each subunit to its neighbor.  The two parameters are not 

independent (i.e. coupled), hence an initial ‘‘guess’’ for ∆z is used to determine ∆∅, by 

calculating the mean-squared deviation (< g< >) in density between voxels of density and the 

density at symmetry-related positions in the central volume as ∆∅ was varied [56]. In other 

words, the central volume is searched for the helical screw operator (the coupled rotation and 

axial translation) that minimizes the variance between the actual volume and a symmetrized 

version of the volume. A stochastic gradient descent technique is used to minimize the mean 

squared deviation. Since the two parameters are coupled, an initial ‘‘guess’’ for ∆� is used to 

determine ∆∅, and this value of ∆∅ is then used for a new determination of ∆�.The procedure 

                                                   

 

Figure 3.4: A schematic interpretation of the approach of RELION [52]. 
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was then iterated, since the determination of the best value for ∆∅ requires a value for ∆�, and 

vice versa. The test that these values were the best estimates came from the fact that there was no 

further change in the values of ∆∅ and ∆� with further iterations. The parameters ∆∅ and ∆� 

were then imposed upon the 3D volume generated by back-projection, and the resulting perfect 

helix is then used as a reference for the next cycle. 

Structure determination of Actin- Myosin Motor Domain (Acto-MD): In order to understand 

the mechanism of muscle contraction at the atomic level, it is necessary to understand how 

myosin binds to actin. Interaction between actin and myosin is one of the key features of 

contractile events of muscle fibers. Though this has been studied for the last 40 years, not much 

is known about the structure of the actin-myosin complex. We will discuss the important papers 

related to the structure of acto-MD in chapter 5 to make it easy for readers to refer back and forth 

between our work as described in the chapter, and the previous work in this field. However, 

interested readers are referred to [59] [60] [61] [62] [63] For more recent work about the acto-

MD structure intersected red ears are directed to [64] [65] [66] [67]. 
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CHAPTER 4 

      SEMI-AUTOMATED SEGMENTATION OF SIV SPIKES 

The Human Immuno Deficiency Virus (HIV)/ Simian Immuno Deficiency Virus (SIV) envelope 

(Env) spikes initiate infection by facilitating entry of the virion into the host cells [53]. They are 

also the sole protein on the surface of the virion accessible to the cells immune system [53]. 

Hence, understanding their structure will provide insight into host cell infection and may 

eventually help create effective vaccines against AIDS [9]. To understand the importance of the 

virus Env spikes we need to understand HIV Replication Cycle first. The HIV/SIV life cycle 

comprises of the following steps (Fig. 4.1): 

1) Fusion of the HIV cell to the host cell surface. 

2) HIV RNA, reverse transcriptase, integrase, and other viral proteins enter the host cell. 

3) Viral DNA is formed by reverse transcription. 

4) Viral DNA is transported across the nucleus and integrates into the host DNA. 

5) New viral RNA is used as genomic RNA and to make viral proteins. 

6) New viral RNA and proteins move to cell surface to form a new, immature, HIV virus. 

7) The virus matures by protease releasing individual HIV proteins. 

The spikes are the key parts of a virion that take an important role in the first half of the HIV/SIV 

life cycle on CD4 T cells. The HIV envelope protein, Env, is comprised of two proteins, gp120 

and gp41. In the first step, the Env attaches to the host cell and binds to the CD4 receptor of the 

helper T cell using gp120; Second step, the conformation of Env changes, and V3 loop is 

exposed to coreceptor, allowing to coreceptor binding. In the last step, gp41 mediates fusion with  
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Figure 4.1:  Complete HIV replication cycle. 1) Fusion of the HIV cell to the host cell surface. 2) 
HIV RNA, reverse transcriptase, integrase, and other viral proteins enter the host cell. 3) Viral DNA is 
formed by reverse transcription. 4) Viral DNA is transported across the nucleus and integrates into the 
host DNA. 5) New viral RNA is used as genomic RNA and to make viral proteins. 6) New viral RNA 
and proteins move to cell surface to form a new, immature, HIV virus. 7) The virus matures by 
protease releasing individual HIV proteins. 
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the target cell membrane allowing the viral genome to enter the cell. The fusion peptide of gp41 

inserts into target membrane and then six-helix bundle forms. Then, membrane fusion completes 

(Fig: 4.2). Hence, spikes are the key portion of the virus body that initiates the infection in the 

healthy cell and they are the only location where an antibody can bind with to prevent the 

infection. Hence, studies of the structure of the spikes are a main emphasis in AIDS research.  

A mutant form of SIV virions produced by truncating the small cytoplasmic domain has 80 to 90 

envelope spikes per virion (Fig. 4.3), whereas unmodified HIV/SIV virions possess only 8-9 Env 

spikes [9]. HIV Env spikes have some tendency to cluster [9], whereas truncated SIV Env spikes 

are more randomly distributed. Thus, any cryoET study of the spike structure becomes very 

tedious if spikes are selected by hand for further processing. Consequently, automating the 

process of spike selection is very important for determining the spike structure in situ.  

An automatic spike selection method would greatly accelerate research in this area. Automating 

this process is difficult for four reasons – (1) the automatic process should identify all the spikes 

 

Figure 4.2: The role of spikes in HIV/SIV infection. (A) The sketch of HIV Env. Env is comprised 
of gp120 and gp41. (B) First step, Env attaches to the host cell and bind CD4. (C) Second step, the 
conformation of Env changes, and V3 loop is exposure to coreceptor, allowing to coreceptor binding. 
(D) Last step, membrane fusion is initiated. The fusion peptide of gp41 inserts into target membrane 
and then six-helix bundle forms. Then, membrane fusion completes. Copied from [130]. 
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present, (2) it must identify each spike only once, (3) must account for the fact that the virions 

are not of fixed size or shape, and (4) must account for the possibility that the spikes are 

heterogeneous in structure. Below, we first describe our segmentation method in detail and then 

discuss the results of using the same for localizing SIV envelope spikes. 

4.1 Introduction 

CryoET is a powerful imaging technology for revealing the 3D representation of cellular details 

to an extent that individual macromolecular assemblies are visualized in the pristine cellular 

environment. Tomograms from frozen cells contain an overwhelming amount of structural detail. 

Consequently, a segmentation and/or localization step is inevitably required for the interpretation 

of an electron density map, in order to identify structures of interest, among numerous other 

objects that provide the context. To interpret an electron density map, it is absolutely necessary 

to segregate the map into several constituent parts such as, membrane compartments, filamentous 

structures, and clusters of associated macromolecules like ribosomes or even virus spikes 

protruding from the viral membrane. Several techniques are known for tomographic 

segmentation [43] [41]. The choice of the segmentation method is dictated by the type of 

structure being segmented and also on the quality of the data. For the segmentation of 

heterogeneous structures, one of the most common segmentation technique employed is that of 

template matching or a variation thereof. However, this and related methods can address the 

problem of segmentation of macromolecular assemblies only if proper priors, in the form of 

templates, describing these assemblies are available [47]. However, it is usually difficult to get 

good templates for heterogeneous structures like the SIV/HIV virus envelope spikes. In such 

cases it is not possible to use template matching and related techniques for the segmentation.  
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Robust segmentation or localization algorithms for cryoET must overcome some inherent 

challenges. First, the signal-to-noise ratio of the tomogram is low due to the limited number of 

electrons that the specimen can tolerate as well as the low contrast inherent in unstained 

biological specimens [16]. Second, due to the “missing wedge” problem, identical structures are 

represented differently because the resolution becomes direction dependent and the contrast 

varies across the thickness of the tomogram [16], [68]. Moreover, cellular tomograms are full of 

large structural features and macromolecular assemblies. Identification of the different 

macromolecules from the density map is an inevitable step towards analyzing their structure as 

well as quantifying their presence. One way of identifying these macromolecules is manual 

selection. Although manual segmentation is considered reliable, it is also a laborious and time-

consuming process. Hence automatic localization techniques are important for macromolecular 

structure analysis. The most commonly used method of localization is based on a pattern 

recognition approach using cross-correlation, referred to generally as template matching. 

Template matching identifies and locates an a priori known structure [69] in a cellular 

tomogram. Template matching is the technique of detection and identification of macromolecular 

assemblies based on the structural signature [70]. A template can be generated provided a high or 

medium resolution structure of the macromolecule of interest is available. The templates are then 

scaled to the voxel size of the target volume, low pass filtered appropriately [71] and then cross 

correlated with the subvolumes of the same size of the target structure. Based on the value of the 

cross-correlation thus computed, the structures of interest are localized. 

Template matching, in spite of being one of the most common techniques for identification and 

localization of densely populated macromolecular assemblies, has several drawbacks. Template 

matching assumes the shape of the macromolecule of interest is known a priori and therefore a 
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template is available. The pattern recognition problem is then reduced to that of finding several 

occurrences of this template in the density map taking into account the fact that the map suffers 

from a low signal-to-noise ratio and anisotropic resolution because of the “missing wedge” [71]. 

In addition, because the approach is driven by a known template, it is ill suited for discovering 

novel structures within these complex biological volumes.  

Motivated by the urge to overcome these shortcomings, we propose a novel localization 

technique for identification and localization of macromolecular assemblies that does not depend 

on knowledge of the target object. Our method is based on the idea of “segmentation by 

classification”. “Segmentation by classification” is not a segmentation technique but a 

localization technique where structures, both known and unknown, within a region of interest are 

localized by iteratively grouping them into several different classes.  

Here we demonstrate our algorithm by using it to localize Env spikes in SIV (Fig.4.3). The 

HIV/SIV Env spikes initiate infection by facilitating entry of the virion into the host cells [53]. 

They are also the sole protein on the surface of the virion accessible to the cells immune system 

[53]. Hence, understanding their structure will provide insight into host cell infection and may 

eventually help create effective vaccines against AIDS [9]. A mutant form of SIV virion 

produced by truncating the small cytoplasmic domain has 80 to 90 envelope spikes per virion, 

whereas unmodified HIV virions possess only 8-9 Env spikes [9]. Thus, any cryoET study of the 

spike structure becomes very tedious if spikes are selected by hand for further processing. 

Consequently, automating the process of spike selection is very important for determining the 

spike structure in situ. An automatic spike selection method would greatly accelerate research in 

this area.  
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Automating this process is difficult for four reasons – (1) the automatic process should identify 

all the spikes  present, (2) it must identify each spike only once, (3) must account for the fact that 

the virions are not of fixed size or shape, and (4) must account for the possibility that the spikes 

are heterogeneous in structure. Below, we first describe our segmentation method in detail and 

then discuss the results of using the same for localizing SIV envelope spikes. 

                                   

 

Figure 4.3: A model image of SIV virion (Blue) with spikes (Orange) randomly distributed across 
the virion surface.  
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4.2 Materials and Methods 

4.2.1 Virus Sample Preparation  

Virus sample: The AIDS Vaccine Program (SAIC Frederick, National Cancer Institute [NCI], 

Frederick, MD) supplied the highly purified aldrithiol-2-treated virus: SIV 239/251 

TAIL/SUPT1-CCR5 CL.30, lot P3978 (SIV short-tailed). With AT-2 treatment the infectivity of 

viruses was totally eliminated while preserving the Env structure and functions [72] [73]. The 

production and purification procedures of the viruses are described elsewhere [72]. MAb 

KT11Fab was generously supplied from Peter Kwong’s lab, NIH Vaccine Research Center. 

Unconjugated 10 nm colloidal gold nanoparticles were purchased from BBI Solutions Cardiff, 

UK. 

Sample Preparation: The purified viral suspensions of 10 μl (~1.5-2 mg/ml total protein) were 

incubated at room temperature (20°C-25°C) for 30 mins in the presence of the Fab fragment of 

the KT11 antibody. Ligands were added at a concentration corresponding to an estimated tenfold 

molar ratio with Env trimers. Samples were then mixed with 10-nm colloidal gold (used for 

better tracking during tilt series collection) and 3.5 μl sample placed on a 200 mesh R2/1 

Quantifoil grid (Quantifoil Micro Tools GmbH, Jena, Germany). Excess liquid was blotted with 

filter paper from both sides of the grid to form a thin layer of buffer which was then rapidly 

frozen by plunging the grid in a liquid/solid ethane slush (about -180 °C) and this procedure was 

done using a FEI Vitrobot Mk IV (FEI, Hillsboro, OR) in conditions of 100% humidity at 4°C. 

The grids were either transferred to a cryo-holder for EM examination or stored in liquid 

nitrogen for later use. 
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4.2.2 Tomographic Data Collection:  

SIV-short tailed frozen virus specimens were examined at liquid nitrogen temperatures under 

low dose conditions using an FEI Titan Krios cryo-electron microscope (FEI, Hillsboro, OR) 

equipped with a Gatan Tridiem 863 UHS imaging filter with 2k X 2k CCD camera operated in 

the zero-energy-loss mode with a slit width of 20 eV. The microscope was operated at 300 kV 

and a magnification of x26,000, resulting in an effective pixel size of 5.4Å. Tilt series were 

collected at a defocus of -6 μm (underfocus) with a cumulative dose of ~100 e-/Å. The angular 

range of the tilt series was from -65° to +65° consisted of 131 images recorded at a fixed tilt 

increments of 1° using FEI tomography software in automatic batch mode. 

4.2.3 Tilt Series Alignment 

The tilt series were aligned with the “PROTOMO” software package [18] using marker free 

alignment and the final maps were computed with the general weighted back projection 

algorithm [31] that is intrinsic within PROTOMO. Of the 55 tilt series, only 3 were considered of 

sufficient quality for further analysis.  

4.2.4 Subvolume Processing 

We used the I3 software for the subvolume processing [18]. More specifically, we used I3 as a 

black box for computing the initial orientation of the subvolumes using the position of the 

generated points and the center of the virion. Multivariate data analysis (MDA) package from I3 

was used for generating the factors useful for classifying the subvolumes. Finally, we also used 

the alignment and classification functionalities provided by I3 for aligning the subvolumes and 

classifying them into different classes. All the data analysis reported in this study were carried 
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out on a desktop computer running Linux Mint on an 8 core AMD Fx processor having 16 GB 

RAM. 

4.3 Approach  

In this study, we have developed a semi-automated spike selection technique to segment out the 

virus spikes from the surface of SIVs. The segmentation approach consists of several steps (Fig. 

4.4) – starting from generating a densely populated point cage surrounding the virion surface, 

classifying the raw subvolumes, aligning the cluster averages against a featureless reference and 

finally separating the raw subvolumes from the clusters having spikes and those clusters having 

no spikes at all. 

4.3.1 Point Cage Generation 

In the tomograms under study, the underlying shape of most virions was either ellipsoidal (Fig. 

4.5A) or spheroidal (Fig. 4.5D) but some virions had an irregular shape (Fig. 4.5B and 4.5C). For 

this study, we used both regular and irregular shaped virions and selected particles using our 

segmentation technique described in this paper. Spike selection began by identifying four points 

~90° apart at axial positions approximating the virion equator. The depth of each virion was 

estimated by selecting two additional points in the polar (top and bottom) slices respectively. 

Since the membrane is not visible at the top and bottom, the spikes themselves guide this 

process. Identification of these six positions was the only manual operation involved in this 

segmentation process. The selected positions were used to determine the axes and center of each 

ellipsoidal shaped virion. Using the estimated values, we generate a set of uniformly distributed 

points covering the entire surface (Fig. 4.5) of the virion at approximately the radial position of 

the “spike heads.” The generated points are initially separated by a distance equivalent to the 
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“spike head radius” to ensure that the generated point cage was dense enough to select all the 

spikes at least once. Individual spike heads have a diameter of ~11 nm 99: [74].  For an unbinned 

tomogram with pixel size 0.54 nm, the spike head diameter was 20 pixels, and for a once binned 

tomogram the spike head diameter is 10 pixels with pixel size 1.08 nm. Coordinates within the 

point cage were spaced 5 pixels apart in both latitude and longitude. To examine the tradeoff 

between spike redundancies and identification accuracy, the subvolume size and point spacing 

can be parametrized so that points can be generated at any density desired. 

4.3.2 Segmentation by Classification 

In the SIV short-tailed virus, each virion contains ~70-80 spikes. The point cage algorithm 

automatically generated ~900 points per virion, which is approximately ten times the actual 

number of spikes present in a virion. Each virion was analyzed separately. From a once binned 

tomogram of the SIV virions, subvolumes of size 32x32x32 were cut centered on each of the 

positions in the point cage. For the spheroidal shaped SIV virions, each point in the point cage 

and the center of the virion were used to generate an initial transformation [18] to align all of the 

selected subvolumes along a radial line connecting the virion center and the individual cage 

points. For the ellipsoidal shaped SIV virions, the orientation of the subvolumes, i.e. the radial 

vector, was initially determined using the centroid of the ellipsoidal surface and the 

transformation applied to orient the spike axis along the z axis of the subvolume. After applying 

the initial orientation, the subvolumes were aligned by translation only and subjected to 

multivariate data analysis (MDA) and hierarchical ascendant classification (HAC). For aligning 

and classifying subvolumes, we followed the strategy called “alignment by classification” [18] 

[75]. With this strategy, different orientation of the set of objects are identified by classification 

and the class averages were aligned with respect to each other instead of the raw subvolumes. 
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Figure 4.4: A schematic interpretation of the workflow of "segmentation by classification" for 

segmenting out equatorial SIV spikes. In the first step, a point cage is generated using 6 manually 
selected positions from individual virions. Subvolumes are cut centering each of the generated 
positions. In the second step, raw subvolumes are subjected to classification and the cluster averages 
are evaluated. Clusters with a “mushroom” shaped average are aligned with a featureless reference 
only translationally. Clusters having averages with just a naked membrane are separated and kept aside 
to generate averages for intervening membrane. The process is repeated for several cycles until the 
method converges. 
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The initial alignment of the class averages only involved translational alignment with respect to 

an external featureless reference and no rotational alignment was involved. The resulting 

alignment transformations were then applied to the raw subvolumes, and a new cycle of the 

iterative procedure is started.  

 

  

                               

 

Figure 4.5: One slice of the denoised tomogram showing automatically generated points covering 

the virion surfaces. Denoising has been done using median filtering to enhance the contrast. Some of 
the virions are spherical in shape and the distribution of the generated points over a single slice looks 
like a circle. For the ellipsoid shaped virions, distribution of generated points over a single slice looks 
like an ellipse. For the irregular shaped virions, the underlying shape is estimated with an ellipse and 
the initial generated points try to capture the curvature of the membrane as correctly as possible. 
Subvolumes are generated centering each of these positions and are classified into clusters of any 
number of user’s choice. During alignment, cluster averages are allowed to move relative to the 
reference in all the three directions by an amount sufficient enough, so that points initially positioning 
away from the real membrane of the irregular shaped virions, approach the membrane and capture its 
actual curvature within few iterations. 
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The signal-to-noise ratio of the SIV tomograms was very low resulting in low contrast between 

the protein and the background. To get better contrast of the virion contours, as well as the spike 

definitions, the tomograms were denoised using median filtering [76]. Median filtering improved 

the contrast by sacrificing the structural details. In this particular study, contrast enhancement 

initially helped the user to identify the spike and non-spike clusters. In the initial cycle, prior to 

any alignment of the subvolumes, the raw subvolumes from the denoised data were subjected to 

classification using the hierarchical ascendant algorithm (HAC) [77]. A rectangular shaped 

binary mask sufficiently large to contain all of the spike head and a small amount of membrane  

was used for classification. MDA was required for the pattern classification of the raw 

subvolumes. MDA is an iterative process and is carried out in each of the successive alignment 

iterations. In the initial cycle, because of oversampling of the generated positions, approximately, 

     

 

Figure 4.6: Plot of the generated positions. Points are arranged on a regular lattice with a separation 
of 5 pixels along latitudinal circles and the circles of equidistant points are stacked along longitudinal 
axis generating the sphere of regularly spaced positions 
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22,394 raw subvolumes from tomogram 1 were classified into 50 and 100 clusters. Each cluster 

consists of a large number of raw subvolumes. More precisely, the expected number of raw 

subvolumes in each class is 448 with a standard deviation of 62, the mean and standard 

deviations being calculated over 50 clusters. For 100 clusters, the expected number of raw 

subvolumes is 224 with a standard deviation of 40. In the initial cycle, without any alignment, 

the raw subvolumes were subjected to classification. Only translational alignment of the cluster 

averages was carried out for centering up the off centered cluster averages. Only the cluster 

averages and not the raw subvolumes were aligned with respect to the external reference to avoid 

reference bias. A featureless reference image (side view Fig: 4.7A & top view Fig: 4.7B) was 

generated by a combination of both Gaussian sphere and Gaussian cylinder. Combination of two 

soft Gaussian spheres of correct radii were used to generate the featureless membrane and a soft 

Gaussian cylinder of correct width and height was added to the center of the membrane to give 

the reference image a shape of a mushroom which resembles the structure of viral spike 

protruding out the viral membrane. The alignment mask for aligning the cluster averages with 

the mushroom shaped reference was a rectangular mask with soft edge including the spike and a 

small portion of the membrane (Fig: 4.7F). Except for the initial six cycles, the classification 

mask, on the other hand, was a binary mask including only the spike and not the membrane (Fig: 

4.7D) to avoid the bias that separates spikes in the equatorial region (protruding out the sides of 

the virions) having a prominent membrane density from those of the spikes in the polar region 

(extends out from the top) where the membrane density is very poor or the membrane is not 

visible at all. For the later cycles, a more sophisticated classification mask (Fig. 4.7E) was used. 

In the initial cycle, with only classifying the raw subvolumes without alignment, most of the 

class averages lacked any spikes because of the poor alignment (Fig. 4.8A). After an initial 
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alignment using just translation, against a simplified reference (Fig. 4.7A), class averages 

showing spikes began to appear (Fig. 4.8B). After four cycles of “alignment by classification”, 

spike definition improved and class averages showing only membrane became better defined 

(Fig. 4.8C). The original set of uniformly distributed data points showed concentration at spike 

coordinates and some migrated away from the correct radius. To improve accuracy in identifying 

spikes, we varied the alignment and classification masks. Subvolumes that contained spikes near 

their center were identified using MDA. 

 

 

                   

Figure 4.7: The reference image was used for alignment and different masks were used for 

classification and alignment. A) Side view of the mushroom shaped reference image used for 
translational alignment. The reference image was created by combining two Gaussian spheres of 
correct diameter with a Gaussian cylinder. B) Top view of the mushroom shaped reference that looks 
like a blob when looked down the z-axis. C) Side view of the reference image containing only 
membrane used for polar alignment. Two Gaussian spheres were used to make the reference 
membrane of proper width. D) Rectangular shaped classification mask excluding the membrane. E) A 
sophisticated classification mask excluding the membrane. F) Rectangular alignment mask with soft 
edge. Alignment mask is big enough to include membrane. 
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The cluster averages were band-pass filtered and aligned translationally with respect to the 

featureless reference. Translational alignment was achieved by locating the position of the 

correlation peak. For the first ten cycles, each class average was allowed to move sufficiently in 

all three directions to find the best correlation value, and then when the membrane became well 

aligned, their movement was restricted only in the radial direction for the later cycles. After the 

first alignment cycle, the cluster averages showed mushroom-like density centered up for very 

few classes and a significant number of classes lacked any spike density in the middle (Fig: 

4.8B), showing pure membrane as the cluster average. The output of an alignment cycle contains 

the changes in orientation obtained for each of the class averages. These changes are stored and 

subsequently combined with the parameters already stored for the members of each class. This 

resulted in a new set of parameters stored again for use in the next cycle. After the first four 

cycles of the described strategy, the cluster averages showed two significant shapes, mushroom 

like density in the middle and pure membrane without having any density in the upper part of the 

membrane. At this point, a manual inspection of the shapes of the cluster averages are performed 

and, classes with pure membranes were separated out and saved for generating averages for 

intervening membranes. The class averages having a mushroom shape, were subjected to the 

translational alignment with respect to the featureless reference. This process was then repeated 

for another six cycles with the median filtered map until all the cluster averages showed clear 

spike densities (Fig: 4.8C). 

As a natural consequence of the median filtering, the intrinsic details of the spikes structures 

were blurred significantly. Consequently, even after 10 iterations with the median filtered 

tomogram, the spike density in each class average improved but remained featureless. At this 

point, the unfiltered (un-denoised) tomograms were used instead of the median filtered ones and 
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the same technique was repeated on the unfiltered maps for 20 more cycles (Fig: 4.8D & 4.8E). 

At the end of each iteration the non-spike classes were separated out from those showing spikes 

and kept aside for future analysis.  

Examination of the class averages, shows that after translational alignment, the angular 

alignment of the membrane, and consequently the spike, is poor. To correct this, we carry out 

two cycles of polar alignment utilizing only the first two Euler angles against a synthetic 

reference having the shape of a curved membrane (Fig. 4.7C). The cross-correlation peaks were 

restricted to radial movements of only a few pixels. The polar alignment corrects the radial 

distortion of the subvolumes. During the polar alignment, the classification mask only includes 

the membrane part of the subvolume and the alignment reference was generated using two 

Gaussian spheres and with apodized edges.  

To get the better-defined spike density, five to eight (depending on the quality of the tomogram) 

multi-reference spin alignment cycles were carried out and the spin alignment cycles clearly 

improved the segmentation as the raw subvolumes were nicely classified into spike and non-

spike classes after alignment about the polar i.e. the z-axis. It must be noted that this spin 

alignment is distinctly different from the spin alignment carried out later for revealing the 

structure of the segmented spikes. This was coarser and was required in order to reveal the 

classes distinctively and was a result of the quality of the data used for the segmentation. In 

theory, the segmentation step should require only translational alignment. The spin alignment 

being applied only in special cases where the translational alignment fails to accurately define 

the classes because of the noise distribution of the data. 
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Figure 4.8: Class averages showing the “segmentation by classification” approach. A) Class 
averages of cycle 0 showing only blurry membranes when the raw subvolumes from a median filtered 
tomogram were classified into 50 classes. Because of the median filtering, all the intrinsic detail of the 
membrane structure was blurred and due to lack of alignment spikes were poorly resolved. B) After 
translational alignment of the class averages from cycle 0 with respect to the featureless mushroom-
shaped reference, the raw subvolumes were reclassified. The spike density improved significantly with 
some classes showing spike-like density and other averages showing naked membrane. C) Class 
averages of cycle 9. From this point on unfiltered maps were used for better definition of the cluster 
averages. D) In the first cycle using the unfiltered map, the cluster average showed improved clarity in 
the spike density; most of the classes showed spike-like averages and very few classes showed pure 
membrane. Each spike class average had ~230 members; classes showing only membranes had ~400 
members. The top view of the non-spike classes showed no significant spike density and the side view 
showed pure membrane. After manual inspection, non-spike classes were separated from the spike-
like classes. E) Class averages for cycle 30 showed spikes in all the 30 classes. In this cycle, the 
average number of members in each class was 56 with a standard deviation of 12 and the segmentation 
process was considered converged. 



84 

4.3.3 Identification of the Polar Spikes 

The method described above captured only the equatorial spikes. To capture the polar spikes, we 

did a distance analysis of the already segmented equatorial spikes. We measured the radial 

movement of each of the segmented spike from its original generated position (in the initial 

cycle). We computed the mean (¢) and standard deviation (£) of the radial movements of the 

equatorial spikes. From the originally generated positions, we separated out all the polar 

positions by simply identifying a point as a polar position if the point has a latitude greater or 

equal to 45° with respect to the center. Now, each of these identified polar positions may or may 

not contain spikes or even they may contain a spike only partially. In either of the cases, the 

membrane is not visible because of the missing wedge but the spike head will be clearly visible. 

In the initial cycle, we classified the raw subvolumes and the class averages were translationally 

aligned with respect to a featureless cylinder having no membrane. For the cross-correlation peak 

search, the subvolumes were allowed to move 9 pixels each in x and y direction and most 

importantly move independently with 3 different distances along the radial direction: ¢ ± £, ¢ ±
2£  and ¢ ± 3£ respectively (Fig: 4.10). For tomogram1, after continuing two cycles with radial 

movement of ¢ ± 2£, the classification factors started showing clear features indicating polar 

spikes and classification selecting those factors clearly showed classes having some blob 

indicating some object (may or may not be spikes) protruding out from the membrane and 

classes that don’t contain anything except a smeared image of the membrane. We continued this 

analysis for tomogram 2 and found that ¢ ± £ amount of radial movement gave the best result in 

terms of identifying polar spikes. For both tomograms, we separated out the classes having blobs 

as the average and continued multireference spin alignment to get the shape of the spikes as well 

as separate out any non-spike element that might be sticking out radially from the invisible 
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membrane.  After continuing 10 spin alignment cycles with a binned tomogram and continuing 

another 10 spin alignment cycles with an unbinned tomogram, we could capture polar spikes 

with an excellent accuracy (Fig: 4.11). 

 In the initial cycles, to get the best cross-correlation peak, the subvolumes were allowed to move 

in all the three directions. As a result, some of the subvolumes moved radially further away from 

their initial position while cross-correlated with the reference. Migration along the radial 

direction, eventually, captured the virion contour correctly over the first 6 to 8 iterations. For the 

irregular shaped virions, the generated point cages were just a rough estimation of the underlying 

shapes. Within first 10 iterations, the underlying shapes of these virions were captured almost 

accurately (Fig: 4.12). A high amount of radial movement caused some subvolumes to move 

either inside or outside the virion envelope, leaving some outliers. Outlier detection and hence 

elimination is an essential part of this method. 

                                               

Figure 4.9: 3D plot of spike distribution on one virion after 30 cycles of alignment and 

classification. After several cycles, due to subvolume alignment the initially generated spherical or 
ellipsoidal point cages change in shape and eventually capture actual contours of the virions. Hence, 
initial regular lattice of generated positions become a distorted point cage over the cycles and the 
remaining points represent the center of those subvolumes that contain spikes. 
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Figure 4.10: A schematic interpretation of the workflow of "segmentation by classification" for 

segmenting out polar SIV spikes. In the first step, the radial movement of the finally segmented 
equatorial spikes are measured and their mean (¢) and standard deviation (£) are computed. In the 
second step, polar subvolumes are identified. For the polar subvolumes, classification is done with the 
raw subvolumes and the class averages are translationally aligned with a featureless Gaussian cylinder. 
The subvolumes are allowed to move radially in three different distances (¢ ± £, ¢ ± 2£  and ¢ ±
3£) to find the best cross-correlation peak. The best distance is varied for different tomograms. The 
algorithm is stopped when class averages for all the classes showed a spike in the middle. Multiple 
pick elimination is performed to eliminate the redundant spikes.  
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In every iteration, clusters showing pure membrane as the average are separated resulting in a 

significant decrease in the number of raw subvolumes and leaving only those subvolumes that 

were centered on real spikes. The segmentation progress is depicted in Fig: 4.15. Finally, after 

~30 iterations of segmentation by classification, almost 90% of the resultant subvolumes 

contained spikes in the center. Multiple selection of the same spike is an obvious outcome of the 

oversampling. Consequently, a multiple pick elimination algorithm was developed to ensure that 

each spike is selected only once and was performed at the end of the final cycle of the 

segmentation process. 

                                   

 

Figure 4.11: 3D plot of polar and equatorial spikes shown for one single virion, segmented using 

“segmentation by classification”. Polar spikes are shown in blue and the equatorial spikes are shown 
in red. As the spikes are distributed over the entire surface of the virion, hence spikes, that were 
identified on the other side of the membrane, are visible (in defused red and blue color) inside of the 
translucent envelope. 
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4.3.4 Post Segmentation Subvolume Analysis  

After segmentation using the once binned tomograms, the segmented subvolumes were further 

analyzed using the unbinned tomogram and the subvolume size was increased to 64x64x64 

pixels. In each individual unbinned tomogram, another 15 cycles of multi-reference spin 

alignment was performed with the angular search range of ±180°. We varied the angular step 

from coarse (10°) for the first 8 cycles to fine (5°) for the next 7 cycles. Eventually, these spin 

cycles revealed the trimeric structure of the virus spikes.  

Multi-reference spin alignment for 10 more cycles were carried out on the segmented 

subvolumes from each of the individual tomograms. At this point in the processing, the trimeric 

shape of the spikes began to show but was not clearly visible because of the fact that each 

 

Figure 4.12: Two different virions in both upper and lower panels show the automatic 

membrane tracking on a particular image plane over the cycles. A) The virions are irregular in 
shape and B) initially generated point cages were ellipsoidal for both of them. C &D) Intermediate 
cycles E) After 10 cycles the contours are captured almost perfectly. Blue, yellow and green are 
showing above, current and below z levels when panned through the tomogram. The point density is 
reduced as the subvolumes lacking spikes are eliminated over the cycles.  
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individual tomogram did not have enough particles to reveal the structure. Hence, we combined 

the segmented subvolumes from tomogram-1 and tomogram-2 for further processing to obtain 

the spike structure. Subvolumes from tomogram 3 were not included for further processing 

because the subtomogram average of the segmented subvolumes from the unbinned map of 

tomogram-3 became very noisy with poor resolution. Hence, the segmented subvolumes only 

from tomogram-1 and tomogram-2 were combined and the raw subvolumes were classified into 

10 and 20 clusters (Fig: 4.13A), respectively. The class averages were polar aligned within an 

angular range of ±45° with angular intervals 5°. One polar alignment was sufficient to get good 

alignment of the membranes but to reveal the intrinsic details of the spikes, several iterations of 

spin alignment with finer angular steps were necessary. The cluster averages were aligned with 

each other by multi-reference spin alignment using a grid search about the polar (i.e. z-axis) and 

were classified into 20 clusters. During spin alignment, the cross correlation peak search was 

allowed to move only along the x and y directions and restricted from moving radially. After 20 

spin alignment cycles, though most of the cluster averages were clearly trimeric in shape when 

viewed along the z-axis, some lacked any clear shape (Fig: 4.13B)). At this point, multi reference 

spin alignment was performed using a subset of cluster averages showing good rotational 

symmetry. The majority of cluster averages after 20 more spin cycles had a clear trimeric shape 

from top view (Fig: 4.13C & 4.13D). Very few cluster averages, lacked a trimeric shape after 

spin cycles and were identified as the outliers and were excluded from further spike analysis. 

However, this subset of “spikes” could be either cellular membrane spikes or incompletely 

formed Env spikes. These outliers are separated from the subvolumes that are showing clear 

rotational symmetry in the spike structure and they are classified again to observe the structural 

variability amongst them. 
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4.4 Experimental Results 

4.4.1 Identification and Localization of the Envelope Spikes 

Our approach is designed to identify spikes more accurately than manual picking while at the 

same time not biasing the selection toward a particular spike structure. We tested the procedure 

using three different tomograms of an unstained frozen-hydrated suspension containing an 

average of 20 individual SIV virions per tomogram (Fig. 4.14). The automatically generated 

point cage totaled 22,394 coordinates for 23 virions in tomogram 1, 16,886 for 19 virions in 

tomogram 2 and 18,587 for 22 virions in the tomogram 3. Points were generated at spacing of 5 

pixels along the circumference of the horizontal circles (latitudes) which are in turn stacked up 

along the entire volume of the virion at a separation of 5 pixels (Fig. 4.6). As we move from the 

equatorial plane to the polar planes of the virion sphere, the circumference of the latitudes 

decreases, as so does the number of points on each latitude.   

At the beginning, before any alignment, many class averages lacked any spikes because the 

initial coordinates were not obtained with reference to the spikes themselves (Fig. 4.8A). Many 

coordinates were centered on the intervening membrane. After an initial translational alignment 

of the class averages was done against a simplified (featureless) mushroom shaped reference, 

class averages showing spikes began to appear (Fig. 4.8B). After multiple cycles of alignment by 

classification, spike definition improved and class averages showing only membrane became 

better defined (Fig. 4.8C). After few alignment iterations, some points in the original set of 

uniformly distributed data points migrated away from their initial position and concentrated 

around the actual spikes. The class averages were observed from two different views, the side 

view and the top view. In the earlier cycles, because of lack of intrinsic details, a class average 
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showing spikes should look like a mushroom from the side and a circular blob from the top view. 

For classes lacking spike concentration, the class averages are expected to show only membrane 

from the side view and no blobs in the center were expected from the top view. The montage of 

the class averages was mainly examined from both the views and classes lacking spikes were 

separated. These “membrane” classes would be used later in reassembly of the virus envelope 

from class averages of the separate entities. This is an iterative process.  

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Figure 4.13: Class averages of the equatorial spikes showing 3-fold symmetry. A) Class averages 
from 20 classes from the first spin cycle after combining the segmented equatorial subvolumes from 
two tomograms. Class membership is ~150 on average. Some of the classes reveal the trimeric 
structure but some do not. B) Class averages after 20 more multi-reference spin cycles. Most of the 
class averages show better 3-fold symmetry but a few of them do not show a clear trimeric shape. C) 
Continued 20 more Spin alignment cycles against only a subset (those showing good 3-fold symmetry) 
of the class averages as a reference and discarding the outliers, almost all of the 20 cluster averages 
show good 3-fold symmetry. Class membership at this point is ~60 spikes per class. D) Class averages 
of 10 classes are showing better density as the class averages are ~120 per class. 
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For all the three tomograms, the first few (4/5) cycles did not show a clear enough result to 

decide about whether a particular class is a spike or not. As the alignment improved, the spike 

definition improved as well.  Hence, we could separate out classes where the class average looks 

like a spike from the classes where class average is just naked membrane showing no spikes at 

all. 

The automatically generated points, at the very beginning, were dense enough to ensure that no 

spikes were missed. Consequently, spike redundancy is an obvious outcome of the oversampling. 

Spike redundancies were identified by the proximity of centers of the subvolumes on a virion by 

virion basis at two stages of the analysis - after translational alignment and at the end of the spin 

alignment cycles. Redundant spikes were eliminated rather than separated. Redundancy 

 

Figure 4.14: One slice from the tomogram-1 of SIV data. Red arrows are showing some of the 
possible spikes radially protruding from the virus membrane. The underlying shape of individual 
virions are either spherical or ellipsoidal. Some of the virions have no regular shape. 
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elimination played an important role in downsizing the subvolume numbers and hence, in the 

segmentation of the spikes. 

 

We cross validated the final segmented spike positions captured by this semi-automated 

segmentation technique separately, once only for the equatorial spikes and then for both 

equilateral and polar spikes.  We compared the outcome of “segmentation by classification” with 

Figure 4.15: The Graphical representation of the “segmentation by classification” method for 

capturing the equatorial spikes. The method had been tested for three different tomograms 
containing ~20 virions per tomogram. The graph shows the reduction of the number of subvolumes as 
a function of cycles. In tomogram-1 initial number of generated positions were 22,394, for tomogram-
2 total number of generated positions were 16,886 and for tomogram-3 it was 18,587. For each of the 
tomograms first 10 translational alignment cycles were performed on denoised tomogram (denoising 
were done using median filtering) where the class average was aligned with respect to a featureless 
reference. For further analysis, unfiltered tomograms were used. For next 15 cycles, the class averages 
were subjected to a translational alignment with the same featureless reference. For next 5 (or 7) 
cycles a multi-reference spin alignment were carried on improving the spike density in the class 
averages. At the end of cycle 30, the number of subvolumes were reduced to 1671 for tomogram-1, 
1084 for tomogram-2 and 1162 for tomogram-3. The initial cycle took ~4 hours to complete because 
of the high number of subvolumes caused by the oversampling. Completion time for next 5 cycles 
were gradually decreased and after cycle 6 each iteration completed in less than an hour. 



94 

manually picked equilateral positions from each of the three tomograms. For each manually 

identified position, we calculated the number of automatically selected spike locations within 16 

pixels proximity. Our method missed only ~4% of the manually selected spike positions (Table 

1). Further investigation showed that 98% of the missed spikes belonged to the irregular shaped 

virions. Our method also selected some extra spike locations, which were not captured by 

manual selection. 

To cross validate the result of the semi-automated algorithm in combined equatorial and polar 

locations, we compared the outcome of “segmentation by classification” with manually picked 

positions from each of the two good quality tomograms from the aforementioned three 

tomograms. Again, for each manually identified position, we calculated the number of 

automatically selected spike locations within 16 pixels proximity. Our method missed only 

~15% of the manually selected spike positions (Table 2). Our method also selected some extra 

locations, which were not captured by manual selection. Further investigation, proved that a 

significant percent, of these extra picks are real spikes which are in a distorted shape. Hence, 

these extra picks cannot be referred to as false positives.  

After significant downsizing of the generated point cage in each individual tomogram, we 

combined the segmented subvolumes from tomogram 1 and 2 for further processing to obtain the 

spike structure. The total number of subvolumes combined from both the tomograms was 3230. 

Though at this point, the spin alignment cycles on individual unbinned maps started showing the 

3-fold symmetry but the intrinsic details were not satisfactory probably because the total number 

of spikes in each individual tomogram were not large enough and as a result the number of 

members in each class were not sufficient to improve the signal-to-noise ratio to a certain level to 

reveal the intrinsic details of the trimeric structure. 
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After a few iterations of multi-reference spin alignment cycles with the combined data, the class 

average started revealing the inherent 3-fold symmetry of the spike structure. In each refinement 

cycle ~50% of the class averages showed clear trimetric shape from the top view. These class 

averages were used as the reference for the next iteration and the rest of the classes were aligned 

against these selected references.  

 

 

Figure 4.16: The Graphical representation of the “segmentation by classification” method for 

capturing the polar spikes. For the first 3 cycles the number of sub-volumes did not reduce. In the 
fourth cycle for the tomograms a significant drop in the number of subvolumes occurred. Finally, the 
method converged in cycle 38.  
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Table 4.1: Segmentation accuracy for equatorial spikes 
 

 Number of 

manually 

picked 

spikes 

Number manually 

selected spike 

positions missed 

by the method 

(false negatives) 

Number of 

extra spike 

positions 

localized by the 

method  

Number of 

actual spikes 

captured by 

the method 

% of the 

actual 

spikes 

captured by 

the method 

Tomogram1 1231  29  440 1202 97.6% 

Tomogram2  579  21  505 558 96.4% 

Tomogram3 392 20 770 372 94.5% 

 

 

Table 4.2: Segmentation accuracy for combined polar and equatorial spikes 
 

 Number 

of 

manually 

picked 

spikes 

Number manually 

selected spike 

positions missed 

by the method 

(false negatives) 

Number of extra 

spike positions 

localized by the 

method 

Number of 

actual 

spikes 

captured by 

the method 

% of the 

actual 

spikes 

captured by 

the method 

Tomogram1 1342 201 969 1141 85% 

Tomogram2 757 116 848 641 84.7% 

 

The process of alignment against selected references improved the quality of the trimetric shaped 

class averages. In addition, a few classes having an average with an unexplained shape became 

more prominent. These classes were separated from the classes showing spikes and kept aside 

for future analysis. Final redundancy elimination was done at this stage and for each subvolume. 

In this process, any neighboring subvolume within 10 nm proximity was eliminated. This 

confirmed that each spike had one and only one copy in the database. 
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4.4.2 Identification of The KT11 Antibody  

The virus specimens used here, had been treated with the monoclonal antibody KT11. If the 

antibody had labeled a large fraction of the available gp120, it would have been evident in the 

segmented class averages. Since it was not visible, the labeled fraction of gp120 must have been 

low. Therefore, evidence of antibody (KT11) attach to the trimetric shaped Env spike head 

required a more refined classification procedure. We utilized a procedure tried several times 

earlier, which involved triplicating (making two additional copies) of the raw Env subvolumes 

and rotating one set 120˚ and the other 240˚ respectively about the spike axis [78] [79]. We then 

classified the subvolumes using a wedge-shaped mask that covers only a single spike arm. This 

improved the quality and 4 out of 10 of the class averages (Fig: 4.17A starting from the left and 

assuming the class numbering starts from 0, four classes, class 1, 3, 6 and 9 showed evidence of 

antibody) in the form of extra density of varying shape attached with one arm. The surface 

rendering of the class average from class 9 from both the top and the side view emphasizes the 

evidence of the antibody (Fig: 4.18 A & B).  

In order to eliminate the possibility that the antibody could simply be a neighboring spike arm, 

we did a proximity analysis. From the triplicated data set, we did the analysis on each set (i.e. 

each of the three rotational sets) separately. As a first step of this analysis, centers of three arms 

of the global average were manually selected. Then centers of each spike arm in each of the raw 

subvolumes were computed by extrapolating the selected arm centers of the global average on 

the raw subvolumes. After computing the arm centers, we first identified the proximal spikes and 

then investigated further to identify the proximal arms. Towards this, we first identified whether 

the proximal spikes belong to the same virion or from two neighboring virions.  
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For both the cases, we identified the proximal arms among the three arms of the spikes and 

eliminated those spikes from further analysis and continued the same identification and 

elimination process from all the three rotational sets. After reclassifying the non-proximal spikes, 

we could not resolve the extended density (Fig: 4.17B) attached to one of the spike arms and 

because of this poor occupancy rate we could not conclude anything about the presence or 

position of the antibody KT11. 

4.4.3 Analysis of Combined Polar and Equatorial Positions 

After completing the semi-automated algorithm for the polar positions separately, we ended-up 

having few polar spike positions for both the tomograms. At this point, we combined the newly 

segmented polar positions (Fig. 4.11 blue dots) with the existing equatorial positions (Fig. 4.11 

red dots), that we segmented out by analyzing only the equatorial positions.  We continued few 

classification cycles with multireference alignment with these combined positions. Surprisingly, 

the class averages showed two distinct shapes – 1) T-shaped averaged with 2) trimeric-shaped 

averaged (Fig.4.19). At this point, we separated out the class members of the T-shaped classes 

from the members of the trimeric-shaped classes and analyzed them separately. 

       

 

Figure 4.17: A) Top view of the class averages at the final cycle. Class 2,6 and 9 are showing 
antibody attached to one of the arms. B) Class averages after proximity analysis shows no extra 
density that could be identified as antibody KT11. 
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In next few cycles, we separately classified the T-shaped subvolumes and aligned then with the 

global average. Similarly, the trimeric subvolumes were first classified and the class averages 

were subjected to multi-reference alignment. We performed the symmetrization on the trimeric-

shaped subvolumes i.e. we triplicated the dataset by rotating each raw subvolume 120˚ and 240˚ 

respectively about the spike axis and then classified the subvolumes using a wedge-shaped mask 

that covers only a single spike arm (Fig. 4.20). 

4.5 Discussion  

For localizing macromolecular assemblies one of the most common methods used is template 

matching [47] [70] [80]. Template matching is a model-based approach of segmentation where 

templates derived from the high-resolution structure of the molecule under scrutiny are used to 

search the reconstructed volume to localize the object of interest. It must be noted that template 

matching can also be computationally intensive when applied in a “brute force” approach, for the 

        

Figure 4.18: Evidence of extra density(KT11). A) Top view and B) side view of the class average of 
class 9 from figure 10. Clearly the class average shows evidence of extra density, which can be 
identified as antibody KT11. 
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reason that the orientation of the particles will be random and, consequently, the whole angular 

range has to be scanned by rotating the templates and calculating the cross-correlation coefficient 

for all independent combinations of Eulerian angles. Another limitation of template matching is 

that it needs a proper template against which the search has to be implemented. But there are 

situations where such a template may not be available and the data may be heterogeneous which 

in turn reduces the efficiency of template matching. Thus, in such cases it is advisable to have 

methods for localizing macromolecular structures that do not depend on the existence of 

template. The localization of HIV/SIV envelope spikes is one such problem, the data is noisy 

with poor SNR and the structure is highly heterogeneous. As an alternative to template matching, 

our method uses classification to localize the macromolecular structures. The advantage of this 

approach is that it does not depend on a particular template and hence can localize highly 

heterogeneous macromolecular structures in tomograms even with very low SNR. Our method is 

not tied to the structure of a given template and hence can localize and find new 

structures/particles that may be present in the tomogram. This in turn avoids the bias introduced 

by the use of a template. It also reduces the chance of having false positives in situations where 

the noise has a distribution similar to that of the template. One of the limitations of our method is 

that initial cycles are computationally intensive because of oversampling and hence may take 

more time compared to a method based on the template matching. In the initial cycle, with 

almost 10 times over sampling, the multivariate data analysis and classification took about three 

hours on the average to finish and this was the longest part of the process. To speed up the initial 

cycles, we aligned the cluster averages only translationally with the reference and the alignment 

took about 30 minutes to complete. The initial spin alignment cycles were little longer (about an 
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Figure 4.19 A) Top view of 50 classes with combined polar and equatorial spikes and B) side 

view of the class averages. Some class averages are showing trimeric shape while others are showing 
a clear T-shape. C) Ref boxes are showing the trimeric classes. Those class members were separated 
out from the T-shaped classes and analyzed separately.  
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hour) but for the later spin cycles, with gradually decreasing number of subvolumes it took only 

30 to 45 minutes to complete the full iteration i.e. MDA, classification and alignment. 

The goal of our research is to develop a semi-automatic 3D segmentation mechanism that could 

be used for any membranous specimen with embedded proteins extending above the membrane. 

Because of the fact, that HIV/SIV tomograms under study are highly noisy having very low 

signal-to-noise ratio (SNR), and the envelope spikes are distributed all over across the virus 

envelope, identification of each individual spike manually, needs huge human intervention and is 

prone to errors. Our automated segmentation method greatly alleviates this problem substituting 

computer time for human time. 

   

Figure 4.20: Class averages showing the T-shaped and trimeric spikes. A) Top view of 20 classes 
of only trimeric-shaped spikes and B) Top view of 20 classes of only T-shaped spikes and C) Class 
averages of trimeric-shaped spikes after symmetrization.  



103 

We analyzed three experimental data sets of frozen-hydrated SIV samples and carried out our 

algorithm independently in all of them to test and validate our method. The shapes of the virions 

varied from perfectly spheroidal and ellipsoidal to extremely irregular shapes. We started from 

an automatically generated point cage either of spheroidal or ellipsoidal shapes, depending on the 

measured radii of each virion. Generated point cages were the initial estimation of the underlying 

3D contours of the virions under study. For the irregularly shaped virions, the initially generated 

point cage was a rough estimation of the actual shape. Surprisingly, our method could capture 

the accurate shapes of the virion contours quite efficiently within first few iterations. The spikes, 

protruding outside the viral membrane, were identified by the method. Interestingly, the spikes 

located at the top and bottom Z-levels of the tomogram, which are difficult to identify by manual 

inspection, were identified by this method. Because of the anisotropic resolution as a 

consequence of the missing wedge, the membrane of the virus envelope is either undefined or 

poorly defined blurriness in the polar spikes and making polar spikes difficult to identify by 

manual eye inspection. Our approach was able to identify both equatorial as well as polar spikes 

with significant accuracy within a reasonable amount of time and very little human intervention. 

Using manual spike picking as “truth”, our results show that only a small number of spikes failed 

to be identified (false negative rate of 4%), which is a very important result in the analysis of the 

structure. 

We believe the method would be useful for other enveloped viruses or cellular plasma 

membranes with large molecules extending out the membrane. We have yet to apply this method 

to HIV virions which pose a greater challenge because the spike density is ~10% of the mutant 

SIV spike density. This method has a very good potential for whole cell segmentation, where 

manual segmentation will take several years to finish. Our approach does not depend on the 
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template of the object that is being looked for. Hence this method could be of great use in whole 

cellular segmentation, the biggest challenge in the world of biological segmentation. 
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                                                        CHAPTER 5 

THE ACTIN-MYOSIN INTERFACE (ACTO-MD) STRUCTURE 

DETERMINATION 

The interaction between myosin heads and F-actin filament is the key feature for force 

generation in muscle. In order to understand the mechanism of muscle contraction and cargo 

movement along actin filaments in the cytoplasm at the atomic level, it is necessary to 

understand how myosin heads bind F-actin during the various steps of the ATPase cycle. 

Myosin (Fig. 5.1) is composed of paired molecular trimers, the heavy chain plus the essential and 

regulatory light chains. The C-terminal part of the paired heavy chain forms a coiled-coil rod; the 

remainder of the heavy chains and the two light chains form two globular heads (called Myosin 

cross-bridges), each of which can independently bind the thin (actin) filament.  

The binding of myosin to actin weak in some steps of the catalytic cycle and strong in other 

steps, i.e. the ones where tension is generated. In the absence of nucleotide, the myosin 

crossbridge binds tightly to the actin filament to form the ‘‘strong’’ or ‘‘rigor’’ complex. The 

binding of ATP to the myosin crossbridge rapidly dissociates the actomyosin complex [62]. 

Myosin then hydrolyzes ATP and forms a stable myosin-products complex (M�ADP�Pi). This 

reaction primes the crossbridge, which then reattaches to a neighboring actin site. Binding to 

actin causes a crossbridge to change its shape so as to move the actin approximately 10 nm. This 

phenomenon is called the ‘‘powerstroke’’ or ‘‘working stroke” (Fig 5.1). Binding to actin first 

releases the phosphate from the crossbridge and at the end of the powerstroke, ADP is released, 

which allows a new ATP molecule to bind to the myosin. ATP binding produces “weak binding” 

to F-actin, hence the myosin head detaches. In the absence of ATP the binding is “strong.” 
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Hence right after the ATP binding, a rapid release of the crossbridge from the actin filament 

follows and the cycle starts again (Fig. 5.2). This crossbridge cycle was first proposed by Lymn 

and Taylor (1971). In the absence of ATP (rigor mortis), the crossbridge binds tightly to actin in 

the end of powerstroke conformation. The mechanism of this interaction and its control by ATP 

is central to an understanding of muscle contraction. Thus, we need to know the structure of the 

strong-binding state of myosin to actin in atomic detail. 

 

 

                                  

                                              

Figure 5.1:  Myosin structure. a) Myosin is composed of three paired molecules, the heavy chain and 
the essential and regulatory light chains. Part of the heavy chains form a coiled-coil tail; the remainder 
of the heavy chains and the two light chains form two globular heads, each of which can 
independently bind the thin (actin) filament. b) Acto-myosin power stroke. The acto-myosin power 
stroke. (1) A myosin head with bound ADP-Pi approaches an actin-binding site. (2) The head becomes 
strongly bound. (3) During this step the Pi disassociates and the head rotates about a hinge, and the 
actin filament is displaced. (4) The ADP also disassociates, ATP binds to the myosin head, and the 
head dissociates from the actin filament, thus allowing the cycle to repeat. Blue is head catalytic core; 
yellow and red are, respectively, the pre- and post-stroke lever arm of the head. [127] 
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5.1 The Structure of the Actin-Smooth Muscle Myosin Motor Domain Complex in the 

Rigor State 

5.1.1 Introduction 

Myosins form a family of motor proteins currently comprising over 30 identified classes [81] 

that function within cells to move different types of cargo along F-actin while converting the 

energy of ATP into work. The myosin-II class, the only filament forming class, plays a central 

                                       

Figure 5.2: A minimal mechanochemical scheme for the acto-myosin cross-bridge cycle [62]. 
Starting from the rigor complex (state a), ATP binds to the ATP binding site and causes rapid 
dissociatiation of the complex and the lever arm is reprimed to the pre-power-stroke position (state b). 
This is followed by hydrolysis.  The M·D·Pi complex rebinds to actin, initially weakly (state c) and 
then strongly (state d). Binding to actin induces the dissociation of Pi and the power stroke (state e). 
The completion of the tail swing (state f) is followed by ADP release to return to the rigor-like 
complex (state a); in some myosins  ADP dissociation is associated with a further displacement of the 
lever arm. Actin monomers are shown as golden spheres. The motor domain is coloured metallic grey 
for the free form, purple for the weakly bound form and violet for the strongly bound form. The 
converter is shown in blue and the lever arm in orange [62]. 
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role in muscle contraction where binding to F-actin, accelerates its ATP hydrolysis rate to 

produce filament sliding and sarcomere shortening [82]. 

Muscle myosins are primarily of class II and consist of a pair of heavy chains (HC) each of 

which has a pair of bound light chains, the regulatory light chain (RLC) and the essential light 

chain (ELC). In smooth muscle myosin-II (smM-II), the first ~850 HC residues constitute the 

head which is folded into a globular motor domain (MD) containing the catalytic and actin 

binding properties, followed in turn by a small folded domain called the converter and a long α- 

helix to which the light chains bind [83]. This light chain-binding domain or LCD constitutes the 

lever arm, the motion of which causes movement of the cargo, in this case the thick filament, 

relative to the actin filament to produce sarcomere shortening. Following the head is a long α- 

helix in the form of an α-helical coiled-coil, the first ~1/3 of which, the S2 domain, causes the 

HC to form a dimer and the rest forms the thick filament backbone. A recent 6 Å cryoEM 3-D 

reconstruction of the thick filaments from the flight muscles of the large waterbug Lethocerus 

indicus has revealed the details of myosin II rods within the backbone in unprecedented detail 

[84]. 

Historically, the myosin head has been described as comprising three major proteolytically 

derived domains that are named after their respective molecular weights, the N-terminal 25-, the 

50-, and the C-terminal 20-kDa segments of the heavy chain [85]. The crystal structure of 

myosin-II from vertebrate skeletal muscle showed that the 25-kDa domain contains an SH3 

motif and that the 50-kDa domain is separated into lower and upper domains by a distinct cleft 

[86]. The 20-kDa domain begins with a helix associated with the lower 50-kDa domain and 

includes the converter and the HC component of the lever arm. Situated at the center of these 

four domains is a seven-stranded β-sheet that connects them via a couple of loops and helices. 



109 

The actin-based motility of myosin consists of repetitive kinetic cycles in which myosin 

produces a high rate of ATP hydrolysis when interacting with actin. As a product-inhibited 

ATPase [83], the actin-induced conformational changes enable myosin to release the hydrolysis 

products, rebind ATP and continue the cycle. This mechanism was initially elucidated using 

muscle myosin and evolved into the Lymn-Taylor kinetic model [87]. Several classes of non-

muscle myosins work in a similar way, but with modifications of the different rate constants 

producing different functional adaptations [67]. Thus, this cyclic myosin-actin interaction has 

become a general ATP hydrolysis mechanism of myosin. During this cycle, the myosin head 

bridges the separation between thick and thin filaments, initially weakly, followed by 

conformational changes, some linked to product release, that alter both the position of the lever 

arm and the affinity for actin. The process results in force generation, the so-called power-stroke, 

and is now referred to as the swinging lever-arm hypothesis [88]. 

In the myosin catalytic cycle, not only are large conformational changes observed in the major 

subdomains, but also subtle changes occur in the connectors, which might have close 

associations with the accelerated rate of ATP hydrolysis and the swinging of lever arm. It has 

been reported, initially in myosin V [89] and later in myosin II [90], that the seven-stranded β-

sheet is more twisted in the nucleotide-free state than in the actin-detached transition states. Both 

of these structures differ from other nucleotide free crystal structures in having a closed actin-

binding cleft that is associated with the rigor complex of acto-myosin. In the transition state, a 

structure called the relay helix is kinked but it is straight in the rigor state [88]. The actin binding 

cleft is open in the weak binding states [91], or half-closed in the prepower-stroke state [92], or 

entirely closed in the rigor state when attached to actin [64] [93]. The positions of key structures 
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at the catalytic site, switch 1, switch II, and P-loop, highly depend on the biochemical state of 

myosin [94].  

Knowledge about the structure of myosin in different catalytic steps has been accumulated 

gradually from the crystal structures of myosin subfragments dissociated from F-actin combined 

with spectral analysis and electron microscopy of actin filaments decorated with myosin 

subfragments [95]; [96]; [97]; [98]. To date, structures of three actin-detached catalytic 

intermediates of myo-II have been solved; the prepower-stroke, sometimes called the transition 

state [91]; [96], post-rigor [99], and a so-far unique ADP-bound state with an unusual lever arm 

position [100]. Previously structures of F-actin-myosin-II complexes structures were determined 

from cryoEM only to medium resolution [93]; [86]; [101]; [102]. Recently, 3-D images of the 

actin-myosin complex from a non-muscle class I and class II myosin have been reported at near 

atomic resolution [64]; [65]. The least well-characterized step is the transition between the 

weakly attached, prepower-stroke and the strongly bound power-stroke despite it being the most 

critical step of the Lymn-Taylor cycle.  

Here we report a sub-nm actin-bound smooth muscle myosin-II motor domain (smMD) complex 

in the nucleotide-free state at an average resolution ~6 Å using iterative helical real space 

reconstruction (IHRSR). The reconstruction is very similar to the structure of the non-muscle 

myosin II class bound to actin in most essentials, particularly in the actin subunit structure, the 

actin-myosin interface as well as the transducer β-sheet. The nucleotide free myosin-V crystal 

structure was also an excellent fit to the density map even though that structure was in an actin-

free state. Conversely, the myosin-V transition state crystal structure was, as might have been 

predicted, a poor fit. When our density map and atomic model are compared with the recent 5.2 
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Å structure of nucleotide F-actin decorated with free myosin V, large differences are seen in the 

N-terminal 25 kDa domain and upper 50 kDa domains.  

5.2 Experimental Procedures 

5.2.1 Specimen Preparation 

The smooth motor domain consisted of residues 1-Leu790, followed by a FLAG-tag to facilitate 

affinity purification. Sf9 cells were infected with recombinant baculovirus encoding for the 

heavy chain, harvested 72 hours later, and purified by FLAG-affinity chromatography (Sigma- 

Aldrich) essentially as described in [103]. 

Actin was prepared from rabbit muscle acetone powder [104] with the modification that the 

chromatography step was done on a Superdex 200 column. Actin was stored as G-actin in a -

80°C freezer, thawed as needed. It was then polymerized to 1.5 mg/ml F- actin (with 10mM 

Imidazole, 10 mM KCl, 2 mM MgCl2, 1 mM EGTA, 1 mM DTT, pH 7.4) for 1 hour and diluted 

to 0.1 mg/ml just before use (with 10 mM Imidazole, 10 mM NaCl, 0.5 mM MgCl2, 0.5 mM 

DTT, pH 7.4). 

Specimens were made for cryo-EM by applying 4 μl of actin to the grid bar side of a 2/1 µm 

Quantifoil grid for 1 minute, rinsing with MD dilution buffer and applying 3 µl MD for ~5 

minutes. Some grids were prepared in a 3° C cold room by manually blotting for 3-4 seconds and 

followed by plunging into liquid ethane. Other grids were frozen at the University of Vermont in 

a Gatan CP-3 freezing device operated at 100% relative humidity at room temperature.  
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5.2.2 Data Collection and Preliminary Analysis 

Approximately 4,000 low dose images were collected automatically using the Leginon software 

package [105] on a Titan Krios electron microscope (FEI, Hillsboro, OR) equipped with a field 

emission gun and operated at 300 keV. Images were recorded with a DE-20 direct electron 

detector. The defocus mean and standard deviation was 3.6 ± 0.7 µm under focus; the pixel size 

was 0.9861Å, as calibrated by FEI. Each micrograph consisted of a 43-frame movie, with a total 

dose of 60 e- /Å2.  

We used the Appion software package [106] to manage the data, perform damage compensated 

motion correction, CTF determination, and particle picking. The damage compensated motion 

correction process [107] was used to correct for beam induced specimen motion and 

accumulated electron dose. Defocus was first searched using ACE [108] and then refined by 

CTFFIND3 [109]. The filaments were manually selected, divided into 384 x 384 pixel boxes, 

then extracted and normalized using the DoG picker utility within Appion [106]. Each “particle” 

consisted of a filament segment masked to a length of 210 Å, or slightly more than 7 actin 

subunits of 27.6 Å separation. Adjacent filament segments overlapped by ~6 repeats (~84% 

overlap). A total of 346,395 filament segments were selected from 1,417 of the best micrographs. 

Appion software [106] was used to create a metadata (.star file) having all the positional, 

orientation and defocus information of the segments and was supplied to RELION [52] version 

1.3 for classification. Once the classification is done, we could identify the particles that are then 

subjected to further processing to elicit the helical structure of the filaments. 
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5.2.3 Three-Dimensional Reconstruction  

Unfortunately, we found that RELION version 1.3 does not incorporate algorithms for helical 

reconstruction. In order to determine the helical symmetry parameters, we used a specific version 

of RELION, named as Relion_helix_1.2 implemented by Z. Hong Zhou’s group [110], which 

included the Iterative Helical Real Space Reconstruction (IHRSR) package [58] with RELION 

version 1.2. 

 A small set of particles was subjected to 2D classification to eliminate bad particles but 

unfortunately, none of the class average showed obvious bad particle assemblies. Hence, 

hierarchical 3D classification was carried out in order to identify “shiny particles” for further 

analysis.  

To reduce the computational burden, the particle stack was divided into two halves and 3D 

classification was performed on each of them separately. The 8 Å cryo-EM map of the rigor 

(nucleotide-free) actin-tropomyosin-myosin complex (EMD-1987) [64] was low-pass filtered to 

100Å and used as the initial model for 3D refinement of both the particle sets. To increase the 

speed of the process of selecting good particles by interactive 3D classification, each stack was 

first binned by a factor of 4. The first particle stack, consisting of 154,559 particles, was 

subjected to 3D classification from which 82,661 good particles were selected. From the second 

stack, consisting of 191,836 initial particles, only 104,221 good particles were identified. Then 

the 186,882 selected good particles were combined, binned by a factor of 2 and subjected to 25 

more classification iterations. Particles were randomly divided into four classes and four 

reconstructions calculated. A set of projections were generated for each reconstruction, and used 

to reassign each of the 186,882 particles to one of the four groups according to which projection 
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it most closely resembled. After 25 cycles of 3D classification, the final good-looking classes 

were selected and combined leaving 101,976 segments for “shiny particle” data analysis. 

“Shiny particle” selection utilized 25 additional hierarchical 3D classifications of the 101,976 

good particles. This time, one of the best-looking class averages from the final iteration of the 

previous classifications was chosen as the reference image and filtered to 20 Å. The 101,976 

particles were divided into four classes containing 26,683, 17,698, 40,847 and 16,748 filament 

segments. All of the four class averages appeared good and 3D auto refinement was carried out 

on each of the classes separately. This process revealed an acto-MD density with an estimated 

resolution of ~7 Å for all four classes. Each of the four reconstructions were compared with one 

another in Chimera and the three most homogeneous classes (1-3) were combined to produce the 

final reconstruction. A combined total of ~85,000 particles were subjected to 3D auto-

refinement. One of the good reconstructions from the previous individual auto-refinement 

scheme was low-pass–filtered to 60 Å and used as the starting model for the final reconstruction. 

The 3D auto-refinement converged in 24 cycles.  

The resolution based on the gold standard FSC (0.143 criterion) [111] showed an average 

resolution of ~6 Å for the final acto-MD electron density map. The temperature factors are 

calculated using EM-BFACTOR [112] and the F-actin-MD map was sharpened using a 

temperature factor of -390.86 Å. Local resolution of the full reconstructed volume computed 

using Resmap [113] revealed a resolution gradient of ~4.0 Å in the actin core region, ~5 Å in the 

central part of the map and  ~6.5 Å at the outer myosin domains.  
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5.2.4 Atomic Model Fitting     

The starting models of myosin used for homology modeling came from the crystal structure of 

myosin II subfragment 1 from the adductor muscle of the scallop Argopecten irradians, (PDB 

1DFK) [100] and the crystal structure of the myosin II motor domain from the slime mold, 

Dictyostelium discoideum, (PDB 1FMV) [114]. First, a homology model of the chicken smooth 

muscle myosin sequence was built by MODELLER [115] using both PDBs as input. Because 

several large loops, such as loop 2, are not determined in all the myosin head S1 atomic models, 

those loops were deleted after homology modeling, in order to avoid clashes in the real space 

flexible fitting. The real space flexible fitting was performed using Relax in Rosseta [116] at a 

resolution of 5.5 Å. Because the converter domain has a large conformational change, the SH3 

domain, which is located near the converter domain, was not fit well into the density by the real 

space flexible fitting. So, after the converter domain was fit, the SH3 domain was manually fit 

into the density and another real space flexible fitting of myosin was performed. 

The starting model of actin was taken from the actin-tropomyosin filament structure (PDB 

3J8A). The actin species in PDB 3J8A is of skeletal muscle α-actin from the rabbit Oryctolagus 

cuniculus, which is same as our sample. The α-actin atomic model was four residues short of the 

actual C- terminus. When we found that the γ-actin atomic model [65] fit our actin density quite 

well, we built in the remaining four residues based on their placement in the γ-actin structure. As 

of this writing, the subsequent flexible fitting has not been completed. The real space flexible 

fitting was performed using Relax in Rosseta at a resolution 4.0 Å. In the above fitting, only one 

myosin MD and one actin subunit are considered. Next, the actin-MD combination was refined 

using rosetta_scripts in Rosseta [116] with asymm_refine.xml. Next, contact between two 
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successive actin-MD subunits was refined using rosetta_scripts with symm_refine.xml. Finally, 

ADP was fit into density map with the fixed actin main chain using Relax.  

5.3 Results and Discussion 

Motion corrected images recorded on the DE-20 showed F-actin with a high degree of saturation 

of actin subunits with MD, which are individually resolved (Fig. 5.3). A significant fraction of 

the filaments appeared bundled and thus only a small fraction of filaments were suitable for 

further analysis. In addition to the heavily decorated F-actin, a significant fraction of filaments 

was completely undecorated, a phenomenon typical of F-actin decorated with rigor myosin heads 

[64]. 

The reconstruction procedures to find the best-preserved segments of decorated actin eliminated 

75% of the segments. The remaining 25% of segments produced a density map with variable 

resolution that depends roughly on the distance from the helical axis (Fig. 5.4A). The local 

resolution computed with RESMAP shows regions with ~3.5 Å but these occur mostly near the 

actin filament. On the MD, the local resolution is mostly in the 5-7 Å range (Fig. 5.4B), being 

best near the actin and worst near the converter and SH3 domains. Some regions within the 

smMD show right handed α-helices and their bulky side chains rather than cylindrical shapes in 

those places where α-helices are expected consistent with a resolution of 4.5-5 Å (Fig. 5.4C). 

Except around the actin subunits, other places in the reconstruction do not show density 

corresponding to amino acid side chains with clarity. 

We fit an atomic model to the density using Rosseta but starting with a homology model based 

on the prepower stroke transition state of scallop adductor muscle myosin II. Despite the rather 

large difference in conformation between the starting model and the final fitted model, the 
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agreement is quite striking with the atomic model from the higher resolution reconstruction of F-

actin decorated with vertebrate non-muscle myosin II motor domain (nmMD) [65]. The 

structures of the actin subunit are nearly identical (Fig. 5.5A). At the C-terminus, our 

reconstruction indicated a helical arrangement of the last four residues that were missing in the 

rabbit α-actin that we started the fitting with (Fig. 5.5B). The non-muscle γ-actin atomic model 

[65] is a very good fit to this feature so we manually built the last four residues into the density 

using the γ-actin model as a guide. At the N-terminus of our actin structure, density extends only 

as far as T5. Two other minor departures occur at G168 (G167 for γ-actin) where the γ-actin 

chain falls out of the density envelope slightly and T324 (T323 for γ- actin) where both models 

appear to fit the density equally well. We conclude that at our resolution, the α-actin used in the 

present study and the γ-actin used for non-muscle myosin II are nearly indistinguishable.  

Our density map where F-actin is located also shows strong density in the ADP binding pocket 

(Fig. 5.5C). We therefore fit ADP into the density. The conformation obtained is similar but not 

identical to that obtained for γ-actin [65]. The differences are probably not significant at our 

resolution.  

For the smMD, the atomic model begins at residue D2 but at the optimal contour threshold, the 

model does not enter defined density until N22. The topology of the SH3 domain is the same as 

the nmMD, but the chains are displaced by about half the spacing between β-strands (Fig. 

5.6A,B). The converter domains, the other feature at high radius of interest, have a similar but 

not identical topology and do not overlap. This could be influenced by the fact that the nmMD 

has 7 turns of the lever arm α-helix, which are missing in the smMD construct (Fig. 5.10B). The 

most noticeable difference in the converter occurs between residues E735 and G749. This 
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segment of polypeptide chain is extended and without secondary structure and differs 

significantly in the path that the two chains follow.  

In the region of the transducer β-sheet, the two structures are virtually superimposable as are 

most of the α-helices in that neighborhood (Fig. 5.6B, C). The helix from R507-W546 is tilted 

out of alignment at its beginning but otherwise the differences in this area seem insignificant and 

the alignment seems quite good.  

At the actin-myosin interface, the similarity is more striking than the differences (Fig. 5.6E, F). 

The most noticeable difference occurs in the loop from R530-G536. The corresponding loop in 

 

                                          

 

                                  

Figure 5.3: Electron micrograph of F-actin decorated with the smooth muscle myosin motor 

domain. Segments were taken only from the filament region marked by the line. Arrow heads point to 
bundled filaments. Arrows point to actin filaments completely undecorated with myosin heads. 
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Figure 5.4: Overview and resolution of the reconstruction of F-actin decorated with smMD. (A) 
Overview showing the atomic models of the actin subunit (yellow) and the smMD (dark red). (B) 
RESMAP image of the reconstruction. Resolution is clearly highest close to the filament axis and 
lowest at the high radius where the converter and SH3 domain are positioned. RESMAP color ranges 
are shown at the bottom. (C) Images of a pair of long α-helices from the acto-smMD reconstruction 
(purple). Large side chains are clearly visible. Top panel helix comprises residues 477-506; bottom 
panel comprises residues 420-450.  
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Figure 5.5: Comparison of vertebrate non-muscle and rabbit skeletal muscle actin subunits. (A) 
Overlay of the fitted actin subunits. Present reconstruction is colored yellow and the actin subunit from 
vertebrate non-muscle actin subunit colored dark magenta. (B) Region near the C-terminus. The initial 
rabbit actin subunit did not include four residues at the C-terminus. These were added in later but have 
not been energy minimized. The C-termini of the non-muscle γ-actin subunit fits the density very well 
indicating that after refinement, the rabbit muscle α-actin C-terminus will likely be very similar. (C) 
Region near the ADP binding site. Substantial density is present where the nucleotide binds. The black 
sphere is a magnesium ion for which clear density is not visible. Its presence provides a useful 
landmark. 
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Figure 5.6: Comparison of vertebrate non-muscle and smooth muscle motor domains when 

bound to F-actin. Vertebrate smooth muscle myosin MD is colored dark red; the vertebrate non-
muscle MD is colored dodger blue, rabbit muscle α-actin is yellow, non-muscle γ-actin is colored dark 
magenta. (A) View showing the relative difference between converter and SH3 domains plus the 
reconstruction envelope. (B) Slightly different view from (A) showing the actin subunits and the 
converter in better profile without the map. (C). View showing five strands of the transducer β-sheet 
with both the smooth muscle MD (dark red) and non-muscle MD (dodger blue). (D) Similar view as 
(C) but showing four major α-helices, which align well to the smooth muscle MD density and atomic 
model. (D) Actin-myosin interface from the “front”. (E) Actin-myosin interface from the back. In all 
these views, the vertebrate smooth muscle acto-MD and the vertebrate non-muscle acto-MD atomic 
models are nearly superimposable at this resolution.  
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nmMD is R543-G549. In fact, the fit of our smMD in this region is not good, but is closer than is 

the nmMD. Density corresponding to loop 2 is not visible in our reconstruction, nor is it visible 

in the nmMD structure. Other than this, the topology in the actin-myosin interface is very 

similar.  

We also compared our structure with the recently published crystal structures of the F-actin-

myosin-V MD structure nucleotide free and with ADP strongly bound (PDB 4ZG4) [66]. Here 

the differences were much greater. Because there is little sequence homology between the smMD 

and the myosin-V MD, we fit both myosin-V MD atomic coordinates to our map as a rigid body 

using the fitinmap utility of Chimera [117]. The initial fit done this way for nucleotide-free 

myosin-V MD was entirely satisfactory and could not be visually improve by manual 

adjustment. The nucleotide-free myosin-V coordinates overlapped the smMD atomic model 

quite well and fell almost entirely within the density map envelope (Fig. 5.7A-E). 

The fit using the ADP bound myosin-V MD was poor (data not shown). When fit as a rigid body 

into the density, many features were displaced out of the density and poorly aligned with the 

smMD coordinates. Although the topology of both MD atomic models is similar, most features 

are displaced or otherwise modified almost nothing overlapped exactly. 

We also compared our reconstruction with the recent structure of rabbit striated muscle α-actin 

decorated with subfragment 1 of rabbit skeletal muscle myosin II [118], hereafter referred to as 

the skMD since only the motor domain can be compared with the smMD. Here we found 

significant differences. We tried three alignment methods. The first used the actin subunit 

coordinates to drive the alignment using the Matchmaker utility of Chimera. Done this way, the 

actin subunit structures are superimposable and matched well and with them the helices that 
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make up the lower 50 kDa domain that are bound to actin However, nothing else matched well 

except for those features, like the myopathy loop, that contact actin. We also fit the actin-skMD 

coordinates as a single rigid body into the acto-smMD density map. This fit was slightly different 

giving some improvement to the parts that fit poorly using the actin subunit as the alignment 

driver, i.e. the upper 50 kDa domain, but at the expense of those features that fit well, i.e. the 

lower 50 kDa domain. The third fit used only the skMD coordinates. This result was also slightly 

different giving again a small improvement to the upper 50 kDa domain at the expense of the 

lower 50 kDa domain. We preferred the fit using the actin subunit coordinates as the alignment 

driver because the differences are more easily visualized but the other alignments did not 

eliminate these differences; it only reduced them. The following discussion is based on the first 

method. 

When the smMD and the skMD are compared within the density map, two things stand out. 

First, the so-called loop 3 feature of the skMD is located completely outside of density (Fig. 

5.8A). This is the only part of the lower 50 kDa domain that does not match well. Note that the 

myosin-V MD structure was a good fit at this loop (Fig. 5.7C,D). Second, many of the upper 50 

kDa domain helices are positioned outside of density (Fig. 6A) in a way that places them further 

from the axis of the F-actin. When the map is left out and the models viewed from the other side 

to show the lower 50 kDa domain, it matches well but the upper 50 kDa domain does not (Fig. 

5.8B). We also looked at the position of the transducer β-sheet, which revealed significant 

differences. Generally, the length of the peptides that conformed to the β-sheet conformation 

were longer in the smMD atomic model than the skMD model with the first three strands 

displaced to the right (Fig. 5.8C). The transducer β-sheet is also twisted differently (Fig. 5.8D). 

When the map is superimposed at the same time, the first four strands are not positioned within 
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the density map (Fig. 5.8E). When the two atomic models are viewed looking through the actin 

binding cleft, the general impression is that with the exception of the lower 50 kDa helices, 

which fit very well, the upper 50 kDa and N-terminal 25 kDa domains are shifted outwards of 

the smMD atomic model (Fig. 5.8F). This gives the impression that the actin-binding cleft is 

more open in the skMD structure than in the smMD structure.  

We find that the structural differences between the smMD, the nmMD and the myosin-V MD 

when bound to actin are small whereas the differences between the smMD and the skMD when 

bound to actin are large. Neither our reconstruction of acto-smMD nor that of acto-skMD has 

sufficient resolution to make a detailed comparison at the level of amino acid side chains. The 

most obvious difference at the current resolution lies in the size of the actin binding cleft, 

reflected in the displacement outward of the upper 50 kDa domain, and the position of the 

transducer β-sheet, which likely correlate with the properties of the two-myosin species. 

According to the Protein Data Bank, the myosin species used for the acto-skMD reconstruction 

is rabbit extraocular muscle, which is a super-fast muscle characterized by rapid shortening and 

comparatively low tension [119]. On the other hand, vertebrate smooth muscle is a slow muscle 

capable of sustained, high-tension contractions. Myosin-V also has a comparatively slow actin-

activated ATPase with a slow rate of ADP release [120].  

The kinetics of the actin-activated ATPase of four muscle myosins from chicken, fast and slow 

skeletal, cardiac and smooth, were compared in a single study [121]. Measurable differences 

were found in the rates of ATP induced dissociation from actin, the rate of reassociation with 

actin after ATP cleavage and rates of release of ADP when actin bound. The rate of ATP induced 

dissociation from actin at 20°C was slowest for smooth and too rapid to be measurable for fast 
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skeletal myosin; at 3°C there was a 4-fold difference. Marston and Taylor concluded that ATP 

must induce a conformational change in myosin which we now know involves opening of the 

actin binding cleft [122]. The more open actin-binding cleft in the acto-skMD reconstruction, 

which may be interpreted as partially along the opening pathway, may offer an explanation for 

the difference in this rate. Since we only observe a single, nucleotide-free, actin-bound state, the  

Figure 5.7: Comparison of the actin bound smMD with the nucleotide-free myosin-V MD crystal 

structure (PDB 1OE9), which has been aligned to the reconstruction using Chimera’s fitinmap utility. 
Coloring scheme has the actin subunit yellow, the smMD dark magenta, and the myosin-V MD blue. 
(A) View down the actin binding cleft showing the excellent fit of the myosin-V crystal structure even 
though not bound to actin. The myosin-V converter domain has a very similar position and orientation 
as the smMD converter. (B) Same view direction as panel A but with the map removed to shown the 
excellent alignment of the myosin-V helices with the corresponding smMD helices and loops. (C) 
View perpendicular to the helix axis showing the fit of the myosin-V coordinates within the acto-
smMD reconstruction. (D) View from the opposite side without the map showing alignment of the 
myopathy loop, loop 3 and the SH3 domains. (E) View showing the excellent alignment of the 7-
stranded transducer β-sheets. 
 



126 

                                    
 

Figure 5.8: Comparison of acto-smMD with acto-skMD. (A) The two reconstructions shown with the 
acto-smMD reconstruction. The acto-skMD was aligned to the acto-smMD using the coordinates of the 
actin subunit, which is colored black and comes from the acto-skMD atomic model (PDB 5H53). There is 
little difference between the two actin subunit atomic models from the two reconstructions. The smMD 
atomic model is colored purple. The acto-skMD atomic model is colored according to the MD 
subdomains, which are N-terminal 25 kDa domain (blue), upper 50 kDa domain (red), lower 50 kDa 
domain (orange), converter domain (green) and the lever arm (magenta). Note that the smMD does not 
have the lever arm helix. (A) Both atomic models shown within the reconstruction envelope. Many 
features of the skMD atomic model fall outside of the density envelope of the smMD. The most obvious 
difference is the position of loop 3 (skeletal residues K567–F579), which falls clearly outside the 
reconstruction envelope. (B) The atomic models of the skMD and the smMD shown with a pair of actin 
subunits, one black, the other gray. This view from the opposite direction from that of panel A. (C) 
Comparison of the transducer β-sheet with the smooth muscle structure shown in purple and the skeletal 
muscle sheet colored according to subdomain origin. Since the sheet itself is curved, the displacements 
for strands 1 and 2 are the most obvious. This view direction is from outside the MD looking in towards 
the actin-binding cleft. The relative displacement has the skeletal β-sheet to the side and on the outside 
the smooth β-sheet (Roughly looking from the top of panel F towards the bottom). (D) View looking 
down from the top of panel C. (E) Same view direction as panel C but with the reconstruction envelope 
showing. Note that the skMD β-sheet mostly falls outside of the corresponding density envelope. (F) 
View looking down the actin binding cleft showing the actin subunit atomic models from the two 
reconstructions as well as their MD atomic models. The actin atomic model from the acto-smMD 
reconstruction is shown in sky blue. Note that the lower 50 kDa domains overlap well, whereas the upper 
50 kDa domains overlap poorly. The 25 kDa domains also overlap poorly.  
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reconstructions cannot offer an explanation for the rates of re-association with actin following 

ATP cleavage or the differences in ADP release. However, we do point out that in smooth 

muscle myosin, the ADP release rate is about 20 times slower for smooth compared to fast 

skeletal muscle myosin [121] and causes a further, 35 Å displacement of the end of the myosin 

lever arm toward rigor [123], which may affect the rate of ADP release. 
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CHAPTER 6 

       CONCLUSION 

In this dissertation we have focused broadly on two aspects of electron microscopy – 

segmentation in electron tomography and structure determination from single particle electron 

microscopy. We demonstrated the results of our segmentation methods using HIV/SIV data and 

used Acto-MD data for structure determination from single particle reconstructions. However, as 

the field of electron microscopy grows every day the challenges are far from over. In fact, even 

in the limited context of segmentation in electron tomography there are several challenges due to 

the heterogeneity of the particles, existence of missing wedge and extremely poor SNR. In case 

of single particle, even though people have been able to get atomic resolutions, some of the 

methods used have very large time complexity and still some of the solutions are not optimal. 

For example, in problems like helical reconstruction, the methods primarily employed, can get 

stuck at local optima. However, getting the optimal solution is expensive. Some of these 

challenges would be the focus of my work going forward. 

In summary, for this dissertation, we have developed a novel and reliable approach for semi-

automatic selection o of HIV/SIV Env spikes using cryoET. In our second project, we 

determined the structure of actin-smooth muscle myosin motor domain complex in the rigor state 

and revealed the structurer at ~6 Å resolution using single particle data. As a background survey, 

we performed an in-depth study of segmentation methods that had been already applied in the 

field of electron tomography. A review article containing the different top-down and bottom-up 

segmentation methods in cryoET is in preparation and will be a good contribution to future 

researchers interested in working with segmentation in cryo-ET. Also, this dissertation contains 
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an elaborate description of processing pipeline of electron tomography. We have submitted a 

book chapter named Electron Tomography of Biological Specimens that includes the contents of 

chapter 2 of this dissertation and also some parts of other chapters.  

As a future work, we are planning to concentrate on application of deep learning techniques for 

automatic feature extraction for classification in cryoET. Deep Learning has been used for 

segmentation and object detection extensively, but till now it has not been used in cryoET or 

Single particle electron microscopy. Due to the success of deep learning methods elsewhere it 

would be interesting to apply such techniques in cryoET and single particle electron microscopy. 

For the structure determination of Acto-MD we achieved near atomic resolution (~3.5 Å) for the 

actin-part and could resolve the myosin motor domain part to a resolution of ~6 Å. For symmetry 

determination we used IHRSR [56]. This method searches for two parameters, helical rise and an 

in-plane rotation. We noticed that instead of searching a joint parameter space, this method 

searches on one direction while keeping the other fixed and vice versa. This one-directional 

search gives a sub-optimal result. The accuracy can be improved by incorporating a grid search. 

Lastly, our semi-automated segmentation algorithm works with significant accuracy. Although, 

our experimental data showed that the method had only ~4% false negative rate while capturing 

equatorial spikes and ~15% false negative rate while capturing combined (polar and equatorial) 

spikes even with the presence of very high amount of uncertainty, we still keen to explore a 

mathematical analysis for segmentation by classification method. We have used this method for 

ribosomes and chromatin and we would like to continue that line of work and show the efficacy 

of the method for any such data.  
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                                                 APPENDIX 

SOURCE CODE FOR SUBROUTINES 

In this appendix we provide code snippets for the most important sub-routines that were used for 

this dissertation. I am distributing these sub-routines under the assumption that anyone using it 

would refer to this dissertation and in turn make his/her code that uses parts of this sub-routine 

available to researchers for free.   I forbid anyone from using this code or parts thereof in any 

commercial enterprise and/or for making profits.  

Due to space constrains we omit utility functions for using these subroutines. Anyone interested 

in using these packages for research purposes can request a copy by emailing to 

cb10u@my.fsu.edu or taylor@bio.fsu.edu. The author would expect a citation of this dissertation 

for any such use. 

 

Code for calculating the orientation angle of the virions: 
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Code for generating points on the sphere: 
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Code for generating points on the ellipse: 
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Code for elimination of multiple picks: 
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Code for aligning class averages with the selected class averages: 
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Code to figure out the relationship of each segment of filament and the micrograph 
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Code to figure out if the segments are coming from same filament: 
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