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FUZZY EXPERT SYSTEM LEARNING
NETWORK

This application is a continuation in part of U.S. patent
application Ser. No. 08/138,847, filed on Oct. 19, 1993, now
abandoned.

1. REFERENCES

2. BACKGROUND OF THE INVENTION

Prior art includes two broad technologies for implement-
ing and manipulating knowledge based systems on
machines: expert systems and artificial neural networks. The
basic concept underlying an expert system is that a collec-
tion of domain specific JF-THEN rules are used to manipu-
late input data to derive a solution. In general, one or more
human experts are consulted about how to solve problems in
the target domain, e.g., chemical process control [Chester,
Lamb, and Dhurjati, “Rule-Based Computer Alarm Analysis
in Chemical Process Plants,” Proceedings of the Seventh
Annual Conference on Computer Technology, March, 1984,
pp- 158-163] or diagnosis of cardiovascular disease
[Kaihara, Koyama, Minamikawa, and Yasaka, “A Rule-
Based Physicians’ Consultation System for Cardiovascular
Disease,” Proceedings of the International Conference on
Cybemetics and Society, November, 1978, pp. 85-88].
Through these consultations, general rules about how the
data associated with a particular problem should be manipu-
lated are developed. These rules are eventually programmed
into the machine so that, given a set of input data, the
formulated rules can be applied to the data to yield a
solution. As this discussion indicates, expert systems are
generally associated with top-down knowledge engineering
or deductive reasoning. In other words, to implement an
expert system one must first have some previous information
indicating how a problem should be solved or a model
describing the problem’s underlying process in terms of a set
of rules.

In contrast to expert systems, artificial neural networks are
generally associated with bottom-up or inductive learning.
To construct a artificial neural network, one first constructs
a network of “neurons” (processing elements or nodes) that
receive input and produce an output in response to the input.
In most artificial neural networks, the neurons assign dif-
fering weights to each input, combining the weighted inputs
to produce an output. Once the basic artificial neural net-
work is constructed, it is trained by providing it data
representative of known problems and their known solu-
tions. During this initial presentation process, the network
repeatedly adjusts its weight values in accordance with
predetermined feedback rules so that eventually it can
produce an acceptable output for each set of known inputs.
In this sense, the artificial neural network “learns” from the
set of known problems and solutions.

2.1 Expert Systems

As used in this specification, an “expert system” is defined
as comprising three functional and interacting components:
a rule-base, an inference engine, and a cache. See FIG. 1.
The rule-base 105 is a collection of rules which direct the
expert system’s manipulation of input data. The cache 110
provides a dynamic working memory for the expert system
and the inference engine 115 applies incoming data to the
rules within the rule-base and updates the state of the cache.
Each of these components is discussed further below.
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At present, there are two principal types of expert systems
known in the prior art. The first, and more traditional, is the
crisp expert system and the second is the fuzzy expert
system. The terms “crisp” and “fuzzy” refer to the types of
rules contained in the expert system’s rule-base (the collec-
tion of rules used by the expert system).

A crisp rule has the form:

If a then b (cf),
where a is the antecedent, b the consequent, and cf the
certainty factor. For example, a human expert in the area of
auto repair may posit a rule that 75% of the time if a car’s
wheels squeak then the brake pads need replacement. Thus,
a crisp rule may be established indicating that if the brakes
squeak (a) then the brake pads need replacing (b) with a
certainty factor of 0.75 (cf). Certainty factors relate the
quality, or certainty, of the assertion and, for the purposes of
this discussion, are assumed to be restricted to the range
[-1,1]—although the present invention may be practiced
with other certainty factors.

Fuzzy rules and their associated fuzzy expert systems
constitute an important aspect of the invention and are
discussed in more detail below.

2.1(a) Fuzzy Rule Base

In contrast to a crisp rule with its implied absolute
membership of the antecedent (the brakes either squeak, in
which case the rule above would declare the brake pads need
replacement with a certainty of 0.75 or they don’t, in which
case the rule would not activate), fuzzy rules employ lin-
guistic variables to describe the relative membership of their
antecedent. A linguistic variable has, as its value, words
rather than numbers. Thus, the linguistic variable “pressure”
might have the values of very__low, low, medium, and high.
These four states are elements of the fuzzy set that describes
the linguistic variable pressure.

Curves that relate each value of a linguistic variable to a
measure (e.g., very__low, low, medium, and high to physical
values of pressure) are known as “membership functions.”
Membership functions represent a generalization in the
concept of set membership; larger values denote higher
degrees of set membership. FIG. 2 shows one possible set of
membership functions for the linguistic variable “pressure.”
Here, a measured pressure of p, has 2 membership of m,, in
the value very_low and a membership of m, in the value
low. Hence, the membership value of the antecedent variable
(e.g., pressure) is no longer binary (YES/NO or 1/0) as it is
in a crisp rule, it can now assume a spectrum of values
defined by its “membership function.”

Throughout this specification, membership functions are
assumed to be symmetric triangular functions and normal-
ized to the range [0,1]. The present invention may be
practiced however with other values. For instance, member-
ship functions could be trapezoidal or range between [-2,2].
Having noted this, it is important to realize that membership
grades are not probabilities. One immediate difference is that
the summation of probabilities on a finite universal set must
equal one. There is no such requirement for membership
grades.

A fuzzy rule, as used in this specification, is an IF-THEN
rule in which the antecedent components are linguistic
variables. (The term fuzzy relates to the use of linguistic
variables). The form of such a rule, say rule-i, is:

If x,is A;; and . . . and x,, is A, then y is c;.

Here x, . . . x,, represent real valued measures of ‘m’
linguistic variables (e.g., pressure, temperature, €tc. ), A;; -
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. A,,, represent the antecedent membership functions for
rule-i (e.g., symmetric triangular functions as shown in FIG.
2), y represents a real valued output variable, and c; repre-
sents the value assigned to y as a result of the rule. Output
values are assumed to be restricted to the range [0,1]
although other ranges may be used without departing from
the inventive scope of the present invention.

A collection of fuzzy rules for use by an expert system,
constitutes a fuzzy rule-base. In nearly all expert systems,
rules are constructed to operate in a feed-forward manner in
which no cycles occur among the expert system rules. That
is, while the output of a rule in one layer may serve as an
antecedent for a rule in a subsequent layer, the outputs for a
rule in a subsequent layer do not serve as antecedents for
rules in preceding layers.

2.1(b) Cache

The second element in many expert systems is known as
the cache or working memory. Such a cache is figuratively
illustrated as element 110 in FIG. 1. A cache functions as the
dynamic working memory of the expert system. The current
state of any active rule is stored in the cache along with
information about the validity of the rule’s antecedents (e.g.,
measured values of pressure or temperature).

2.1(c) Inference Engine

The inference engine is that part of the expert system that
draws conclusions by manipulating rules from the rule-base
and facts from the cache and updates the current values in
the cache during processing. Even though it is usually
superimposed on a clocked computer, this cache updating is
naturally an event-driven computation.

In a fuzzy expert system the inference engine manipulates
collections of fuzzy rules (also referred to as inference rules)
according to a “compositional rule of inference.” A compo-
sitional rule of inference is a procedure which describes how
to combine (composite) different linguistic variables.

Because the combination of a number of linguistic vari-
ables is itself a linguistic variable, application of the com-
positional rule of inference needs to be followed by a
technique to “defuzzify” its result—to generate a single
output value which can, for example, be used to control a
mechanical device. This latter procedure is known as
defuzzification. The elementary operations employed in
most compositional rules of inference, and defuzzification,
are the arithmetic MAXIMUM and MINIMUM.

In FIG. 3, two hypothetical inference rules involving three
variables are used to illustrate the compositional rule of
inference and defuzzification methods used by a typical
fuzzy expert system'’s inference engine. In this example the
linguistic input variables are x, and x,, the linguistic output
variable is y, and the ‘crisp’ output value is denoted by c.
(Example membership functions for the linguistic variables
zero, small, medium and medium_ large are shown in FIG.
3.) The fuzzy inference rules in this example are:

Rule 1: If x, is small and x, is small then y is medium__
large

Rule 2: If x, is zero and X, is small then y is medium

Application of x; and x, to rule 1 results in the shaded
portion of the rule’s consequent membership function,
medium_ large 305, becoming activated: 1) input variable
x, has a membership value o in the linguistic variable small
300; 2) this value maps to a value of o in rule 1’s output
linguistic variable medium__large 305; 3) input variable x,
has a membership value P in the linguistic variable small
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300; 4) this value maps to a value of {§ in rule 1’s output
linguistic variable medium__large 305; 5) the minimum of
the rule’s two antecedent values is used as the rule’s output
(vertically striped region of rule 1’s consequent membership
function 305).

In a similar manner, application of x, and x, to rule 2
results in the shaded portion of rule 2’s consequent mem-
bership function, medium 315, becoming activated—hori-
zontally striped region of rule 2’s consequent membership
function 315. Combining the output from rules 1 and 2
results in a temporary linguistic variable, fuzzy_result 320.
(Temporary because it is only an intermediate step in the
calculation and need not be stored in the cache for later use.)

This result is now defuzzified to generate a final, unam-
biguous, output c. One common defuzzification technique is
the “centroid method.” In this method the abscissa value
corresponding to the center of gravity of the overlap region
(the region common to both rule 1 and rule 2 output) is taken
as the final output, c.

Of course the above example is an extremely simple one.
In most fuzzy expert systems the number of antecedents will
be much greater than two and the output state of one rule
may serve as the input antecedent for another. In such
systems, the modification of one antecedent almost always
involves a recalculation of several other antecedents, an
updating of these antecedent states in the cache, and a
reapplication of the rules in the rule base to the updated
antecedents.

2.2 Artificial Neural Networks

In contrast to the rule-based expert systems described
above, most artificial neural networks consist of a number of
artificial neural objects, sometimes referred to as nodes,
processing units, or neurons, which receive input data,
process that data, and generate an output signal. In such
systems, the key to solving a problem lies not in a rule
proclaimed by an expert but in the aggregate processing
function of the many neurons which comprise the network.

As used herein, a network is a directed graph with
weighted edges as shown in FIG. 4. In this example, input
signals are applied to three nodes which, after processing,
relay their results to other nodes. These nodes, in turn,
process their input signals and pass along their results to still
other nodes. The final output signal, in this example, is a
combination of output from two nodes. A weighted link such
a8 W 4005410, cONNecting a source node 400 and a destination
node 410, modifies the source node’s 400 output signal
before it is processed by the destination node 410.

In object-oriented programming, an object is character-
ized by a set of attributes describing its current state and a
set of operations which can be applied to that object. In a
similar fashion, an “artificial neural object” (ANO) may be
defined as an artificial neuron—nodes 400 through 425 in
FIG. 4—with its attendant states (e.g., idle or processing),
input-output (I/O) facilities, and processes: incoming con-
nections and connection strengths, combining function, out-
put function, outgoing connections, and possibly a learning
function, together with a communications facility to signal
changes in processing state to adjacent nodes in the network.
Precise specification of a communication facility for an
ANO is dependent on the learning method imposed on the
network and possibly other application-specific consider-
ations. The exact nature of the combining and output func-
tions is likewise variable.

A general, high-level description of an ANO’s operational
behavior is as follows. First, input signals are applied to the
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node and, possibly, modified by the weight of the connec-
tions over which they arrive. Next, the node’s combining
function combines the incoming signals to generate a value
which becomes the node’s new internal state value. Thirdly,
the node’s output function transforms the new internal state
value to a possibly new output value which, through the
node’s communication facilities, it sends to other nodes for
which it is the source of input. Based on other features of the
network, a learning function may be employed to modify the
node’s input signal weights. ‘

There is one specific type of ANO that is widely used in
prior art artificial neural networks. The combining function
for this ANO is the taking of a weighted sum of the inputs;
the output function for this ANO is a sigmoidal (logistic)
squashing function applied to.the value of the weighted
sums of the inputs. For the purposes of this specification, an
ANO having a weighted sum combining function and a
sigmoidal squashing output function, is referred to as an
“analog perceptron.”

In addition to the characteristics of an artificial neural
network already cited, the invention makes use of an event-
driven architecture as described by Lacher et al. [Lacher,
Hruska, and Kuncicky, “Backpropagation Learning in
Expert Networks,” FSUCS Tech. Report, 91-015]. In gen-
eral, the eveni-driven nature of an artificial neural network
is similar in concept to that of data flow computing. In data
flow computing, computational operations are ordered by
the interdependencies of the data and the availability of
resources rather than being specified entirely by the pro-
grammer. In other words, a computation proceeds form
beginning to end based on the availability of needed data and
the necessary computational resources such as a processing
unit or memory.

2.2(a) Learning

As mentioned above, one important step to enabling an
artificial neural network to solve a given problem is to teach
the neural network by supplying it with known input with
known output. During the training process, the artificial
neural network learns to generate the correct output (known
output) for the stimulus (known) input.

After enumerating the nodes in an artificial neural net-
work, each node is assigned a “weight vector” whose
components are the weights of its incoming edges. Each
weight vector (one for each node) is a row in the network’s
“weight matrix.” The value of the weight matrix—the value
of each of its elements—at any given time is called the
“knowledge state” of the network. The “weight space” of a
node consists of all possible weight vectors. “Learning” is
defined as a change in the network’s knowledge state.

As set forth above, learning implies a change in knowl-
edge. Generally speaking, artificial neural networks are said
to represent knowledge in their connections. There are two
levels on which to interpret such a statement. First, given a
set of connections (a network topology), knowledge is
stored in the synaptic functions. This is the more usual
interpretation and is usually referred to as “fine” knowledge.
In other words, fine knowledge is represented in an artificial
neural network by the weights of the connections between
the ANOs. Alternatively, the specification of just which
connections exist could also fit this concept of knowledge in
artificial neural networks. This is referred to as “coarse”
knowledge.

Thus, coarse knowledge is captured in a network’s topol-
ogy, whereas fine knowledge is captured by the network’s
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weight matrix—not merely the fact of connections but the
strength of connections between different ANOs. Learning
of coarse knowledge is associated with changes to the
network topology while learning of fine knowledge (or
knowledge refinement) involves changes to the synaptic
functionalities. In either case, learning is represented by a
change in the artificial neural network’s configuration.

Fuzzy Rule 1 (If x, is small and x, is small then y is
medium__large), introduced in Section 2.1(c), may be used
to illustrate the difference between coarse and fine learning.
Assume that an artificial neural network is established and
that numerous known-correct cases have been applied where
it has been proper to assert that output variable y is
medium__large. After learning, the artificial neural network
should establish a link between (1) the neurons responsible
for indicating that input variables x, and x, are small and (2)
the neuron responsible for indicating that output variable y
is medium_ large. Establishment of this link may be referred
to as “coarse learning.” Once coarse learning has been
accomplished, the neural network must next determine what
weight factors to assign to the output connecting these
nodes. The determination of the exact weight factor to be
applied to given inputs is referred to as “fine learning.”

Learning of coarse knowledge could be loosely inter-
preted as rule extraction; a considerable body of research on
this topic exists independent of neural networks. Some
connectionist methods have also been introduced in recent
years that build or modify network topology. While these
methods are mostly not directed at high-level networks,
where a single connection may be assigned meaning, some
of them have potential in the realm of expert networks.

2.2(b) Backpropagation of Error

As previously cited, an artificial neural network must go
through a learning process before it can accurately be used
to solve problems. Although several procedures are avail-
able for training artificial neural networks, one of the most
widely used is the backpropagation of error or simply, the
backpropagation (BP) technique.

Backpropagation learning, more precisely described as
gradient-descent supervised learning using backpropagation
of error, has had a significant impact on the field of neural
networks. BP involves comparing the actual output of an
ANO with a known correct value to determine the error
between the two values. That error is then sent back, or
backpropagated, to the neurons that provided input to the
neuron for which the error was calculated. In a similar
manner, errors for each of those neurons is calculated and
backpropagated to their input ANOs. This is repeated until
each node in a network has received its backpropagated
€ITor.

Once each neuron receives its backpropagation error, it
has an indication of both what its output value actually is and
what that output value should be. Because the error for a
given neuron is essentially a vector representing the erro-
neous weights given to its various input values, each node
can be designed to (1) determine the gradient of the error
vector and (2) determine in which direction it must change
its weight vector to minimize the magnitude of the error
vector. In other words, each neuron can be designed to
determine the change in its weight vector that would tend to
minimize the magnitude of the error vector the fastest, and
then to change its weight vector in that direction. By
periodically receiving error vectors, calculating the fastest
way to minimize the magnitude of the error vector (i.e.,
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calculating the error vector’s gradient), and altering its
weight vector, the ANOs of an artificial neural network can
learn how to solve various problems.

Because of the need to backpropagate errors, many prior
art BP learning methods typically depend on a layered
feed-forward architecture that implicitly defines the role of
time during both operational and learning phases. In other
words, most artificial neural networks using BP divide the
ANOs into separate layers and backpropagate the error from
each layer to its predecessor through the use of a global
clock.

One example of a layered network is shown in FIG. 5. As
illustrated, the neural network is divided into four layers: 1,
11, 11, and IV. A known input signal is applied to layer I and
the network generates an output at layer IV: (1) an input
signal activates layer I which results in output from layer I;
(2) output from layer I activates layer I which results in
output from layer IT; (3) output from layer II activates layer
I which results in output from layer III; (4) output from
layer III activates layer IV which results in output from layer
IV. The error for each ANO in layer IV is then calculated
using the known and desired output and backpropagated to
layer III. This process is repeated from layer 1II to II and
layer I to I. By implementing backpropagation in this
manner these layers impose what amounts to a global clock
on the entire network.

Another feature typical of most prior art neural networks
using BP learning is that the ANOs are almost always simple
analog perceptrons. Although analog perceptrons are useful
for solving many problems, they are often inadequate when
more complicated types of neural networks are attempted to
be implemented. A recent extension of the BP technique has
allowed the use of backpropagation of error learning to be
applied to artificial neural networks derived from traditional
(e.g., non-fuzzy) expert system rule-bases using non-analog
perceptron ANOs [Lacher, Hruska, and Kuncicky, “Back-
propagation Learning in Expert Networks,” FSUCS Tech.
Report, 91-015].

In summary, although BP has been widely used in the
prior art as a supervised learning paradigm, it has been
applied almost exclusively to (1) layered, feed-forward
networks of analog perceptrons and, most recently, (2)
noncyclic, event-driven, artificial neural networks derived
from conventional (e.g., non-fuzzy) expert system rule-
bases.

3. SUMMARY OF THE INVENTION

In the present invention, the prior an techniques discussed
above are extended to allow application of the BP learning
technique to artificial neural networks derived from fuzzy
expert system rule-bases, including an important and non-
obvious extension necessitating the definition of new opera-
tional characteristics for ANOs. A method in accordance
with the invention, referred to herein as a Fuzzy Expert
Network (FEN), is implemented in a programmed machine
such as a computer to provide automated learning of both
“fine” and “coarse” knowledge in a network of artificial
neural objects (ANOs) implementing fuzzy modeling rules.

Through application of the FEN method, an event-driven
fuzzy expert network comprising acyclically connected
ANOs derived from fuzzy modelling rules may be imple-
mented. Neural objects implement one or more fuzzy com-
bining and defuzzification rules and use backpropagation of
error techniques to implement learning. As in prior art, the
FEN allows each ANO to adjust its input weight param-
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eters—“fine”” knowledge learning. Unlike prior art, the FEN
allows each ANO to modify its internal parameters—
“coarse” knowledge learning. This latter action means that
individual ANOs have the capability to modify the param-
eters of the fuzzy rule upon which they are based, thus
altering the shape or meaning of the fuzzy rule which the
ANO implements. In this way the FEN is able to change the
structure of its encoded knowledge over time, making it a
more adaptable architecture for autonomous and/or adapt-
able control systems.

4. BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 is a block-diagram representation of a typical
expert system.

FIG. 2 is an illustrative example of a typical fuzzy rule’s
membership function.

FIG. 3 is an illustrative example of a typical fuzzy expert
system’s compositional rule of inference.

FIG. 4 is a block-diagram representation of an example
artificial neural network.

FIG. 5 is a block-diagram representation of a typical
‘layered’ artificial neural network.

FIGS. 6A, 6B, 6C and 6D show a symmetric triangular
membership function of a fuzzy rule’s antecedent part.

FIG. 7 is a block diagram representation of the invention’s
network structure for a fuzzy rule’s antecedent part.

FIG. 8 is block diagram representation of the invention’s
“defuzzification” process.

FIG. 9 show the structure of an example two input, four
rule fuzzy rule-base.

FIG. 10 is a block diagram representation of the inven-
tions network structure for the fuzzy rule-base of FIG. 9.

FIG. 11 is a graph of the FEN’s mean-square-error output,
for various values of the network’s learning parameters, as
a function of the number of training iterations.

FIG. 12 is a graph of the FEN’s adaptability for various
values of the network’s learning parameters.

FIG. 13 shows how an example fuzzy rule’s membership
function changes as a result of training (learning).

5. DETAILED DESCRIPTION OF SPECIFIC
EMBODIMENT

One illustrative embodiment of the invention is described
below as it might be implemented on a general purpose
computer using a suitable high-level language such as C,
Pascal, or Fortran. It will of course be appreciated that in the
development of any such actual implementation (as in any
software development project), numerous implementation-
specific decisions must be made to achieve the developers’
specific goals, such as compliance with system- and busi-
ness-related constraints, which will vary from one imple-
mentation to another. Moreover, it will be appreciated that
such a development effort might be complex and time-
consuming, but would nevertheless be a routine undertaking
of software engineering for those of ordinary skill having the
benefit of this disclosure.

Microfiche Appendix A sets out source code for one
illustrative example of the invention. Microfiche Appendix
As contained on one sheet of microfilm and contains a total
of 35 frames.

An artificial neural network in accordance with the
present invention, referred to herein as a Fuzzy Expert
Network (FEN), utilizes the concept of an artificial neural
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object (ANO) to construct a network whose structure (topol-
ogy) is determined by the knowledge and logical relation-
ships expressed in a fuzzy expert system’s (fuzzy) rule-base.
Unique features of the FEN include:

1. Definition of a set of ANOs that are both necessary and
sufficient to capture the knowledge and logical rela-
tionships described in a fuzzy rule.

2. A method of translating a fuzzy rule to an artificial
neural network composed of the invention’s defined
ANOs.

3. An ability to apply the Backpropagation (BP) learning
technique to the FEN. Using BP, nodes within a FEN
have the facility to modify both their output weighting
factors (as done in prior art artificial neural networks)
and a node’s operational parameters (novel to the FEN
method). This latter feature allows a FEN node to
modify the semantic, or functional characteristics, of a
node’s combining and output functions. This latter
feature enables a FEN node to adaptively (in response
to supplied input/output signals) alter the way in which
it processes incoming signals. This is in contrast to
prior art artificial neural networks, that only modify the
relative weighting factors of a node’s output signals.

5.1 Fuzzy Modeling

As introduced in Section 2.1(a), the generic form of a
fuzzy rule, say rule number ‘i’ is:

Rule-i: If x, is A;; and . . . and x,,, is A, then y is ¢;,

where X, . .. X,, represent m input variables, A;; represents
rule i’s antecedent membership function for input variable
X, A, represents rule i’s antecedent membership function
for input variable x,,, and c, represents the output value
assigned to output variable y as a result of rule-i.

The invention utilizes a widely known simplified fuzzy
inference model whose fuzzy rule consequences are
described with singletons (unitary real values) and whose
fuzzy rule antecedent membership functions have a sym-
metric triangular shape as shown in FIG. 6A. In this
example, membership function A;; has an antecedent whose
shape is symmetric and triangular and can, therefore, be
described as the product of two linear threshold functions,
Al; and A2, For example, if

AL (x)=(((a;(5~b}+1DVO) AD),

and
A2, )=(((-a{x-byIVO) AL),

then
Ay (AT (x)A2,(x).

Here, Al,(x) represents one linear threshold function for
rule-i’s j*” input variable x; (FIG. 6B), A2,(x,) represents a
second linear threshold function for rule-i’s j** input variable
x; (FIG. 6C), a; is the positive gradient (slope) of rule-i’s i
input variable’s (x;) antecedent membership function, by is
the center value of rule-i’s j* input variable’s (x;) antecedent
membership function, A;(x;) is rule-i’s complete antecedent
membership function for input variable x; (FIG. 6D). V
represents the logical OR operator and A represents the
logical AND function.

5.2 Node Definitions

In an event-driven artificial neural network, an n-input
“node” is defined to be a processing element consisting of
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the following attributes:

1. ‘N’ real-valued connection strengths, one for each input
signal, wy, . . . , w,, represented in vector notation as
wW=(Wy, . . .. W,).

2. ‘N’ real-valued input signals x,, . . ., X,, represented in
vector notation as x=(Xy, . . . , X,)=(Z; Wy, . . ., Zp Wy,
..., Z, W,), where z; is node k’s output value.

3. A combining function I'(x) that determines the node’s
internal state y=Y'(x), based on the its input signal and
connection strength parameters.

4. An output function ¢(y) that determines a single output
value z=¢(y) from the node’s internal state y.

If the combining function I'(x) is the summation function
and the output function ¢(y) is the sigmoidal squashing
function, the node is referred to as an analog perceptron.

With this background, a sufficient and necessary set of
node (artificial neural objects) types for implementing an
artificial neural network derived from a fuzzy expert system
whose rule-base contains ‘n’ rules (a fuzzy expert network)
can be defined.

5.2(a) SUM Node

The SUM node’s combining and output functions are
defined by T,,,,(x) and ¢,,,,(y) respectively where,

Faum==Eim1 sntiom(¥)-

For notational convenience let SUM(X)=,,,m(Lsum(X))-

5.2(b) LINEAR THRESHOLD Node

The LINEAR THRESHOLD node’s combining and out-
put functions are defined by I',,,(x) and ¢,,(y) respectively
where,

Tan®) =y =Z a1,

din(y) =
= yif0=y<l,

1ifyz1;

= 0 otherwise.

For notational convenience let LIN(x)=0,,,(I'y;,(xX))-

5.2(c) PRODUCT Node

The PRODUCT node’s combining and output functions
are defined by T,,,,(x) and ¢,,,,(y) respectively where,

Lo o)==y ¥is Ppraa3=.

For notational convenience let PROD(X)=0,,,,4(I prou(X))-

5.2(d) WEIGHTED-SUM-GRAVITY Node

The WEIGHTED-SUM-GRAVITY node is used to
defuzzify the output resulting from fuzzy rule activation
(refer to Section 2.1). This node’s combining and output
functions are defined by T, (u) and ¢,,,,(y) respectively
where,

T gra(0=y=Zem; n(UXClZi1snltis [ )

where u represents a vector of fuzzy rule outputs (one
element—u,—for each fuzzy rule involved in the output y)
and c; represents the weight factor of rule-i’s output in the
final “defuzzified” output, ¢,,,,(y)=y. For notational conve-
nience let GRAV(u)=0,,,,(1 ¢a ().
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5.2(e) INPUT Node

The INPUT node is used as a notational convenience to
represent an externally supplied input signal to the FEN.
This node has no combining function and its output function
d,,(x,) is the unitary multiplier,

Dinx)=x;..

For notational convenience let INP(x,)=¢,,(x,)=X,;..

5.3 Building a Fuzzy Expert Network

Through the practice of the present invention, an artificial
neural network can be constructed from any fuzzy rule-
based expert system. While the details of the construction
may vary somewhat from application to application, the
general principle is to interconnect ANOs of the types
defined in Section 5.2 to represent each rule in the fuzzy
rule-base. Thus, the FEN’s topology is determined by the
knowledge contained in the fuzzy expert system.

The conversion of a fuzzy expert system rule-base to a
fuzzy expert network is accomplished via a two step process.
First, each fuzzy rule is decomposed into the product of two
linear threshold functions as described in Section 5.1. Sec-
ondly, the appropriate fuzzy rule outputs are combined and
defuzzified for each output variable defined in the original
fuzzy expert system.

It is assumed in the following discussion that the given
fuzzy expert system uses fuzzy rules whose antecedent’s
membership functions are 1) symmetric and triangular and
2) normalized to the range [0, 1]. Values in square brackets,
e.g., [a,], represent values that are eligible for modification
through application of a leaming method, see Section 5.4.
Input variables are assumed to be restricted to the range [-1,
1]. Other values and types of antecedent membership func-
tion may be used without departing from the inventive
concept of the invention. S

5.3(a) Membership Function of the Antecedent Part

Using the ANO definitions introduced in Section 5.2, the
two linear threshold functions that together make up a
triangular membership function can be expressed in the
following manner (refer to Section 5.1 and FIG. 6):

A 1,-,.(xj) = LIN(a,-j (Xj - bU))
LIN(SUM(ay (x; ~ by)))
LIN(SUM(SUM(x; ~ by) a;))
Alin() = LIN(SUM(SUM(NP(x),INP(-1)[by])ag]),

where the notation SUM(a, b) implies SUM(a)+SUM(b); if
either ‘a’ (or ‘b’) is a scalar value then SUM(a)=a
(SUM(b)=b).

Making the same set of substitutions for A2,,(x;) yields,

A2,,()=LIN(SUM(SUM(INP(x)), INP(-~1)[b;;)[a;])(~1)).

The product of Al,,(x;) and A2,,(x;) is a formula for fuzzy
rule-i’s antecedent membership function for input variable

X

Ay (x)=PROD(AL,,(x), A2;,(x),

where the notation PROD(a, b) implies (axb).
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FIG. 7 is a schematic of the fuzzy modeling function
A;(x;) used in the FEN. In FIG. 7, and all subsequent
figures: a square symbol denotes an input, INP( ), node as
described in Section 5.2(e); a circle symbol denotes a sum,
SUM( ), node as described in Section 5.2(a); a circum-
scribed-square symbol denotes a linear threshold, LIN( ),
node as described in Section 5.2(b); and a double-circle
symbol denotes a product, PROD( ), node as described in
Section 5.2(c). As introduced earlier (see FIG. 6 and Section
5.1), a, is the positive gradient (slope) of rule-i’s i** input
variable’s (x;) antecedent membership function and b, is the
center value of rule-i’s j,, input variable’s (x;).

5.3(b) Defuzzification of Rule Output

Defuzzification is a process which translates the combi-
nation of a rule’s antecedent parts to a single, real value. As
introduced earlier, a rule may have a number of antecedent
parts. If u; represents the output of rule-i, having ‘m’
antecedent parts, then

Tu=A (0)XAR()X . .. XA, (%),
or alternatively,

u=PROD(A;(x), Ap(x), - - s ApnlX)).

If the combination of ‘n’ rules generate an output z, then
defuzzification in the FEN uses the WEIGHTED-SUM-
GRAVITY function to combine these ‘n’ fuzzy rule outputs
to produce a single, ‘crisp’, output. Letting the vector v
represent the n-tuple product (u;Xc;, u,xc,, . . . , 4, Xc,), then

z=GRAV(v).

FIG. 8 is a schematic of the defuzzification process
captured in the above equation; a double-square symbol
represent the GRAV( ) function. In the FEN, there is one
defuzzification element for each output variable in the
modeled system. For instance, if a specific FEN implemen-
tation is designed to control a single motor that requires
three inputs, then the FEN will have three GRAV( ) ele-
ments.

5.3(c) Example FEN

As an illustrative example of how to convert a fuzzy
rule-base into an artificial neural network structure—a
FEN—consider a fuzzy expert system with two input vari-
ables, x,and x, and two membership functions (symmetric
and triangular) of the antecedent parts for each input. The
four rules that comprise this sample fuzzy expert system
rule-base are shown in Table 1.

Assume that the example FEN generates a single output
signal that is a weighted combination of the four rules given
in Table 1. FIG. 9 shows a graphical representation of the
four rules’ antecedent parts.

TABLE 1

Sample Fuzzy Expert System Rule-Base

Expression

1 if x; is A}, and x, is Ay, then ¢,
2 if x, is A}, and x, is A,, then ¢,
3 if x, is Ay, and x, is A}, then ¢4
4 if x, is Ay, and x, is A, then c,
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The artificial neural network for each rule is identical in
structure to that shown in FIG. 7 and described in Section
5.3(a). Output for each rule formed by multiplying the
outputs from each of the rules antecedent parts. For instance,

1;=PROD(A;(x1), A}5(x5)),

u,;=PROD(A1; (%), Apx(X2)),

u;=PROD(A,,(x,), A;5(x,)), and

1,=PROD(A,,(X,), Ays(X))-

Finally, the output z is generated by taking the weighted
product of each rule, that is:

7=GRAV(13XCy, UpXCoy UsXCa, UsXKCa).

The network representation of the four rules listed in
Table 1—using the ANO definitions described earlier—and
z calculated above is shown in FIG. 10. (In FIG. 10,
connections not labeled have a weight value of 1). In Section
5.5 a numerical example will be introduced to show how
backpropagation learning is applied to a FEN to allow
modification of the network weight values, a;, by, and ¢;
—learning.

5.4 Backpropagation Learning in the FEN

Well known in the field of artificial neural networks is the
application of backpropagation learning (BP) to layered
networks of feed forward analog neurons [Rumelhart and
McClelland, “Parallel Distributed Processing,” Cambridge,
Mass., MIT Press, 1986, pp. 444-459]. More recently,
application of BP to artificial neural networks derived from
non-fuzzy expert system rule-base’s has been shown
[Lacher, Hruska, Kuncicky, “Back-Propagation Learning in
Expert Networks,” IEEE Transactions on Neural Networks,
vol. 3, no. 1, 1992], [Lacher, “Node error assignment in
expert networks” in Intelligent Hybrid Systems, A. Kandel
and G. Langholz, Eds. Boca Ratan, Fla., CRC Press].

During learning in a FEN, an ideal output I is assumed for
each output ANO and defined for each non-output ANO.
Thus, for an output ANQ j, the error ¢; may be defined as the
difference between the ideal output and the actual output for
that ANO:

&Iz,

where z, is the calculated output from node j as previously
described.

Using the concept of an “influence factor,” denoted by €
(originally introduced by Lacher et al.), the error at a
non-output ANO € (e.g., an ANO which does not have a
defined ideal output value) can be described as:

=Yy sn€rXer

Here, ANO k is the successor node to ANO j, €, is a weight
distribution factor called the “influence factor,” and the
index k runs from 1 to n where n is the number of nodes that
ANO j sends its output to. Lacher et al. further defines the
influence factor €,; to be:

O OIOT (xry,s - -+ 5 XendOXR Wy

where €,; represents the influence factor between node j and
the ANOs’ that node j sends its output to, x,; represents the
signal from ANO j to ANO k, w,; represents the weight of
the connection between ANO j and ANO k, ¢'(y,) represents
the derivative of ANO k’s output function—at its current
input value, and 9I'( )/0x,; represents the partial derivative of
ANO k’s combining function with respect to the connection
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between node j and node k. Values for ¢'(y,) and oI'( )/0x,;
are given by the following equations.

1. For the SUM node:
Plyn=1

and

ATVax,=1.

2. For the LINEAR THRESHOLD node:

¢'(yk) = 0if Y > 1
= lifO0<y =1
= 0 otherwise
and
aT/ox,=1.

3. For the PRODUCT node:
d'(y)=1
and

OT/ox, =TT, % Where i#j.

4. For the WEIGHTED-SUM-GRAVITY node:
'(yp=1

and

OT10x =y X W) (WX (E iy )X Femy i) Wi 2.
The total sum squared error, E, of ANO j is given by

E:ijl—)n(ej)2~
5.4(a) Gradient Descent in the FEN

Key to the use of BP is the computation of an ANO’s error
gradient; it is used to determine how to change or modify the
node’s parameters. As discussed earlier, it is the change in
nodal parameters that constitutes learning. Unique to the
FEN is its ability to modify the membership functions of the
neiwork’s nodes. To accomplish this, standard BP tech-
niques have been extended in a novel and nonobvious
manner.

Suppose that ANO j has been designated for training.
Denote the vector of weights of incoming connections to
ANO j by w=(w;;, . . ., W;,). The gradient of the sum
squared error, VE, with respect to w; is the vector of partials

VE=0E/dw;=2e;x(de/02;)x(dz/3y;x(0y; /a,gi)x(axj,lawj,»):-—Zer
OO} 1, - - -, X;)I0X;X2;.

Thus, changing a weight w;, in the direction of VE will
reduce ANO j’s total sum squared error. In this case, it
should be remembered that w;; in the above equation rep-
resents any one of the FEN parameters a;;, b, and c,.

The amount by which wj; is changed during a single step
of training is given by a Aw;;:

Aw;=nxexd @K, - - . X 0K )Xz Hhw; .

Here, N (learning rate) and p (momentum) are learning
control parameters introduced to control the size and rate of






