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ABSTRACT

Strongly correlated materials are a class of materials that cannot be properly described by the Den-

sity Functional Theory (DFT), which is a single-particle approxim ation to the original many-body

electronic Hamiltonian. These systems contain d or f orbital electrons,i.e., transition metals, ac-

tinides, and lanthanides compounds, for which the electron-electron interaction (correlation) e�ects

are too strong to be described by the single-particle approximationof DFT. Therefore, complemen-

tary many-body methods have been developed, at the model Hamiltonians level, to describe these

strong correlation e�ects. Dynamical Mean Field Theory (DMFT) and Rotat ionally Invariant

Slave-Boson (RISB) approaches are two successful methods that can capture the correlation e�ects

for a broad interaction strength. However, these many-body methods,as applied to model Hamilto-

nians, treat the electronic structure of realistic materials in a phenomenological fashion, which only

allow to describe their properties qualitatively. Consequently, the combination of DFT and many

body methods, e.g., Local Density Approximation augmented by RISB andDMFT (LDA+RISB

and LDA+DMFT), have been recently proposed to combine the advantages of both methods into

a quantitative tool to analyze strongly correlated systems. In this dissertation, we studied the

possible improvements of these approaches, and tested their accuracy on realistic materials.

This dissertation is separated into two parts. In the �rst part, we s tudied the extension of

DMFT and RISB in three directions. First, we extended DMFT frame work to investigate the

behavior of the domain wall structure in metal-Mott insulator coexist ence regime by studying the

unstable solution describing the domain wall. We found that this solution, di�ering qualitatively

from both the metallic and the insulating solutions, displays an insulating-like behavior in resistivity

while carrying a weak metallic character in its electronic structure. Second, we improved DMFT to

describe a Mott insulator containing spin-propagating and chargeless fermionic excitations, spinons.

We found the spinon Fermi-liquid, in the Mott insulating phase, is immiscible to the electron Fermi-

liquid, in the metallic phase, due to the strong scattering between spinons in a metal. Third, we

proposed a new approach within the slave-boson (Gutzwiller) framework that allows to describe

both the low energy quasiparticle excitation and the high energy Hubbardexcitation, which cannot

be captured within the original slave-boson framework.
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In the second part, we applied LDA+RISB to realistic materials modeling. First, we tested the

accuracy of LDA+RISB on predicting the structure of transition metal com pounds, CrO, MnO,

FeO, CoO, CoS, and CoSe. Our results display remarkable agreements with the experimental ob-

servations. Second, we applied LDA+RISB to analyze the nature of the Am-Ochemical bonding

in the CsAm(CrO 4)2 crystal. Our results indicate the Am-O bonding has strongly covalentcharac-

ter, and they also address the importance of the correlation e�ects to describe the experimentally

observed electronic structure.

In summary, we proposed three extensions within DMFT and RISB framework, which allow

to investigate the domain wall structure in metal-Mott insulator coex istence regime, the metal-to-

Mott-insulator transition with spinons excitation in the Mott-insul ating phase, and the Hubbard

excitation within RISB approach. Furthermore, we demonstrated that LD A+RISB is a reliable

approximation to the strongly correlated materials by applying it to th e transition metal compounds

and the Americian chromate compounds.
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CHAPTER 1

INTRODUCTION

Since Kohn and Sham developed Density Functional Theory (DFT) [4] in 1965, this powerful tool

has been used a great deal within condensed matter physics and materials science. It serves as a

reliable tool to predict the electronic structure of many materials. For examples, spin-polarized DFT

accurately predicts the magnetic moments for Fe, Co, and Ni metals [5]. The modest extensions

of DFT, such as DFT+U and GW, also show promising results on predicting the band gap for

a wide range of semiconductors [6]. In addition, DFT is an indispensable tool for analyzing the

electronic structure measurement based on Angle-Resolved Photoemission Spectroscopy (ARPES)

and quantum oscillation techniques [7]. Besides the physics community, DFT is widely used in

chemistry and in material science where they combine DFT with stochastic structural sampling to

predict the stable crystal structures from the DFT formation enthal py [8, 9].

The idea of DFT is to map the original many-body Hamiltonian of electrons, which is too com-

plicated to solve, to a single-particle auxiliary problem, which canbe calculated e�ciently. This

approximation faithfully predicts the electronic structure for v arious weakly or moderately cor-

related materials. However, the predictions become unsatisfactory for some materials containing

transition metals, actinides, and lanthanides elements. This poor performance is now understood to

be a result of strong electron-electron correlation e�ects, originating from the large on-site Coulomb

interaction between the electrons in d or f shells in these materials. These kinds of systems are

known as strongly correlated systems, displaying various intriguing emergent phenomena. For ex-

ample, the Mott Metal-Insulator Transition (MIT) observed in transit ion metal oxides [10, 11], the

strong mass enhancement found in heavy fermion compounds [12, 13], the high-temperature super-

conductivity discovered in cuprate and iron-pnictide materials[14], etc. In contrast to the weakly

correlated materials, these phenomena cannot be described within the single-particle approximation

of DFT. Therefore, complementary treatments are urgently needed.

In more recent years, there have been signi�cant developments in many-body methods. This

methodology usually assumes a simple lattice model, e.g., a square, acubic, or a hypercubic tight-
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binding model, and the correlation e�ects from Coulomb interaction, U, are added through a

perturbative or a non-perturbative approach. The successful theories include Renormalization

Group (RG), Slave-Boson (SB) approaches [15], Gutzwiller Approximation (GA) [ 16, 17, 18], and

Dynamical Mean Field Theory (DMFT) [ 19]. Among these methods, the non-perturbative methods,

such as DMFT, GA, and SB, provide a good description of the aforementioned strongly correlated

phenomena by properly taking the low energy quasiparticle physicsand the high energy atomic

excitation into account. In contrary to DFT, these methods do not calculate the electronic structure

from the �rst principle. Consequently, they can only provide a qualitative description of the realistic

materials.

In the last decade, the incorporation of the realistic band structure produced by DFT within

many-body methods, such as DFT+U, DFT+DMFT, and DFT+GA, have been developed inten-

sively [20, 21, 22]. These techniques combine the power of DFT and many-body methods allowing

to quantitatively investigate various phenomena in strongly correlated materials. For example, the

origin of the high-spin to low-spin Mott transition in MnO [ 23], the volume collapse of plutonium

[24, 25], and the high-temperature superconductivity in iron pnictide and alkali-doped C60 [26, 27]

have been resolved using the aforementioned methods. In this dissertation, I will focus on the

extensions and the applications of these methods to various strongly correlated systems.

The structure of this dissertation is as follows. In chapter 2, I will introduce the methods

that we used in this dissertation, including DMFT, Iterative Per turbation Theory (IPT), Slave-

Rotor Non-Crossing Approximation (NCA), Continuous-Time Quantum Monte Car lo (CTQMC),

RISB and LDA+RISB. In chapter 3, I will present our research on the unstable solution in the

metal-Mott insulator coexistence regime. In chapter 4, I will discuss our investigation on the role

of spinon excitation in the Mott MIT. In chapter 5, I will introduce a n ew extension within the

RISB framework that allows us to describe both the low-energy quasiparticle excitation and the

high energy Hubbard excitation. In chapter 6, I will describe our investigation on the structural

predictions for transition metal oxides, sul�des, and selenides,using LDA+RISB approach. In

chapter 7, I will present our study on the electronic structure of the Americium chromate compound,

CsAm(CrO4)2. Finally, in chapter 8, I will summarize the main �ndings in this dis sertation.
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CHAPTER 2

MODELS AND METHODS

2.1 Introduction

In condensed matter physics, the many-body Hamiltonian for electronsin solid reads,

H = �
X

i

r 2
i

2m
�

X

i;�

Z � e2

jR� � r i j
+

1
2

X

i 6= i 0

e2

jr i � r i 0j
�

X

�

r 2
�

2M
+

X

�;� 0

Z � Z � 0e2

jR� � R� 0j
; (2.1)

where r i is the coordinate of electron i,R� is the coordinate of nuclei� , Z � is the atomic number

for nuclei, m and M are the mass of electron and nuclei, ande is the charge of electron. Note

that we set �h = 1 in this dissertation. In Born-Oppenheimer approximation, whic h assumes the

electron moves much faster than nuclei, the electron and nuclei degrees of freedom are decoupled.

Therefore, one can focus on the Hamiltonian for electrons,

H = �
X

i

r 2
i

2m
�

X

i;�

Z � e2

jR� � r i j
+

1
2

X

i 6= i 0

e2

jr i � r i 0j
= Te + Vext + Vee: (2.2)

When the interaction between electrons is set to zero, i.e., the last term of Eq. 2.2 is zero, the

Hamiltonian becomes

H0 =
X

i

h(r i ) =
X

i

[�
r 2

i

2m
�

X

�

Z � e2

jR� � r i j
] =

X

i

[�
r 2

i

2m
� vext (r i )]: (2.3)

The solution of Eq. 2.3 is a well-known Slater determinant,

	( x1; x2; :::; xN ) =
1

p
N !

�
�
�
�
�
�
�
�
�
�
�
�

� a1 (x1) � a1 (x2) ::: � a1 (xN )
� a2 (x1) � a2 (x2) ::: � a2 (xN )

: : : :
: : : :
: : : :

� aN (x1) � aN (x2) ::: � aN (xN )

�
�
�
�
�
�
�
�
�
�
�
�

; (2.4)

where � a(r ) � � nk (r ) = eikr unk (r ) is the Bloch wavefunctions, and unk (r ) is a periodic function

related to the periodicity of the lattice. k is the wavevector conjugated to the real space coordinate,
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r i , and the n is the band index for a speci�c wavevector. When the interaction between electrons

becomes strong, the above non-interacting approximation is not su�cient to describe the system.

Further treatments have to be applied to describe the interaction between electrons.

2.2 First principle approach: Density functional theory

One of the most popular approximations to the Hamiltonian in Eq. 2.2 is Density Functional

Theory (DFT). The Hohenberg-Kohn theorem is the basis of this approach [28], which state the

external potential, vext (r i ), and the ground state electron density,n(r i ), have a unique one to one

correspondence. Therefore, the energy can be written into a functional of electron density n(r i ),

E [n] = F [n] +
Z

drvext (r i )n(r i ) + Enn ; (2.5)

whereF [n] = T[n]+ Eee[n] contains the kinetic energy term,T[n], and the electron-electron interac-

tion, Eee[n], and Enn is the nucleus-nucleus interaction. The problem now becomes a minimization

problem of an energy functional with respect to the electron density. Kohn and Sham propose that

one can create an auxiliary non-interacting system with an external potential, vR (r i ), and the corre-

sponding ground state electron density isn(r i ) =
P

n j n (r i )j2. With this auxiliary non-interacting

system, the F [n] in Eq. 2.5 can be written into

F [n] = T0[n] +
e2

2

Z
dr i

Z
dr i 0

n(r i )n(r i 0)
jr i � r i 0j

+ Exc [n]; (2.6)

whereT0[n] is the kinetic energy of the auxiliary non-interacting system, andExc [n] is the exchange-

correlation functioanl. Now, we minimize the E[n] with respect to  n with constraint <  n j 0
n > =

� n;n 0, we obtain the famous Kohn-Sham equation,

h(r i ) n (r i ) = [
r 2

i

2m
+ vR (r i )] n (r i ) = � n  n (r i ); (2.7)

where � n comes from the Lagrange multipliers for orthogonal constraint, and

vR (r i ) = �
X

�

Z � e2

jr i � R� j
+

Z
dr i 0

e2

jr i � r i 0j
n(r i 0) +

�E xc [n]
�n

: (2.8)
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The exchange correlation functional,Exc [n], is unknown so the main di�culty in DFT is to de-

termine a proper approximation to it. The popular approaches are the local density approximation

(LDA), where the exchange correlation functional is approximated by

E LDA
xc [n(r i )] =

Z
dr3

i n(r i )� LDA
xc (n(r i )) ; (2.9)

and the local spin-density approximation (LSDA), where the exchange correlation functional is

approximated by

E LSDA
xc [n" (r i ); n#(r i )] =

Z
dr3

i n(r i )� LSDA
xc (n" (r i ); n#(r i )) : (2.10)

They are approximations derived from a homogeneous electron gas with density, n(r i ), and spin

density, n� (r i ). These approaches work amazingly well for a wide class of materials.

In DFT algorithm, one only needs to provide the lattice potential, i.e., the position of the atoms,

and the basis set to expand the wavefunction, n , e.g., linear augmented plane-wave (LAPW) or

projector augmented-wave (PAW) methods [29]. Then, the electronic structure can be computed

by solving the electron density, Kohn-Sham potential, and Kohn-Sham equation, iteratively. DFT

has enormous success in studying the electronic structure of semiconductor and weakly correlated

materials. However, the predictions of DFT become unsatisfactory when we apply it to strongly

correlated systems. The failure of DFT is caused by the strong electron-electron correlation in

these speci�c systems, which cannot be described by the single-particle picture in DFT. Therefore,

other treatments to describe these special systems will be introduced in the following sections.

2.3 Multiorbital Hubbard Model

Beside the �rst principle approach to Eq. 2.2, the model Hamiltonian approaches are also used

intensively to describe the phenomena in condensed matter physics. The most famous models are

the tight-binding model and the Hubbard model. These models are derived from the most general

Hamiltonian, Eq. 2.2, with the assumption that the electron wavefunction are localized in space,

which is true in most of the strongly correlated systems. Therefore,we can construct a local orbital

basis called Wannier orbital basis [30] to downfold the most general Hamiltonian, Eq. 2.2, to the

celebrated Hubbard model, which plays an important role in strongly correlated systems.
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Starting from the second quantization form of Eq. 2.2,

H =
X

�

Z
dr 	 y

� (r )[�
r 2

2m
�

X

�

Z � e2

jR� � r j
]	 � (r ) +

X

�;� 0

Z
drdr 0	 y

� (r )	 y
� 0(r 0)[

1
2

e2

jr � r 0j
]	 � 0(r 0)	 � (r );

(2.11)

where  � (r ) (  y
� (r )) is the second quantization �elds that annihilate (create) an electron with spin

� at coordinate r . Now, we introduce a localized Wannier orbital basis,

wm (r � Ri ) =
1

p
N

X

k2 BZ

e� ik:R i � km (r ); (2.12)

where Ri is the coordinate for lattice site i , k is the momentum label, m is the index for Wannier

orbital, and N is the total number of sites. The electron �elds can be expanded in the Wannier

orbital basis, 	 � (r ) =
P

i;m
wm (r � Ri )dim� , where dim� annihlate an electron at site i , orbital m,

and spin � . Within this basis, Eq. 2.11 becomes

H =
X

ijmm 0�

tmm 0

ij dy
im� djm 0� +

1
2

X

ijkl

X

mm 0nn 0

X

�� 0

V mm 0nn 0

ijkl dy
im� dy

jm 0� dkn 0� dln� ; (2.13)

where

tmm 0

ij =
Z

drw �
m (r � Ri )[

r 2

2m
+ V(r )]wm0(r � Rj ); (2.14)

and

V mm 0nn 0

ijkl =
Z

drdr 0w�
m (r � Ri )w�

m0(r 0� Rj )[
e2

jr � r 0j
]wn (r 0� Rk )wn0(r � Rl ): (2.15)

Hubbard made a drastic assumption that the electron-electron interaction is completly local,

which meansV mm 0nn 0

ijkl = Vmm 0nn 0� ij � jk � kl , so the Hamiltonian reads,

H =
X

ijmm 0�

tmm 0

ij dy
im� djm 0� +

1
2

X

mm 0nn 0

X

�� 0

Umm 0nn 0dy
m� dy

m0� 0dn0� 0dn� : (2.16)

This Hamiltonian is called multiorbital Hubbard model. For the rotationall y invariant interaction,

which assumes the Coulomb interaction is completely atomic without the in
uence from the lattice
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environment, the multiorbital Coulomb integral, Umm 0nn 0, can be parametrized using the Slater-

Condon parametrization as shown in Appendix. A. Although this approximation seems coarse, it

actually works well to many strongly correlated systems. The reason is that the d and f orbitals,

which are localized in space, are usually the dominant orbitals near theFermi surface for most

correlated materials. In addition, the screening e�ect between electrons suppresses the long-range

Coulomb interaction to a short-range Yukawa-like potential. Therefore, the local approximation to

the electron-electron interaction is indeed quite good. Although the Hubbard model looks simple,

it still cannot be solved exactly, even in the single orbital case, except in one and in�nite dimension.

Seeking for the exact solution for the Hubbard model is, therefore, an ultimate goal in condensed

matter physics. In this dissertation, we employed the Dynamical Mean Field Theory (DMFT)

and Rotationally Invariant Slave-Boson (RISB) method, which are suitable to describe the Mott

metal-insulator transition (MIT) and the mass enhancement in correlated materials, to study the

Hubbard model.

2.4 Dynamical mean �eld theory

Dynamical Mean Field Theory (DMFT) was �rst devloped for solving the Hu bbard model [19],

H = � t ij

X

<i;j>�

(cy
i� cj� + h:c:) + U

X

i

ni " ni #: (2.17)

It has successfully reproduced the Mott MIT and the strong mass enhancement in correlated ma-

terials [19]. Similar to the Weiss mean �eld theory for the Ising model, DMFT i s exact in in�nite

dimension, d ! 1 , but is not an appropriate approximation to describe the quantum criti cality in

low dimensional systems. In DMFT, the Hubbard model is mapped intoan impurity coupled to

an e�ective cavity �eld, which is an analogy to the Weiss �eld in the I sing model, as shown in Fig.

2.1. Then, the impurity problem and the cavity �eld is solved self-consistently with a set of DMFT

equations. The limitation of DMFT is its inability to describe the s patial correlation. As a result,

DMFT fails to describe the d-wave superconductivity in two-dimensional systems. This shortcom-

ing can be improved by the cluster extensions of DMFT, such as cellular DMFT and Dynamical

Cluster Approximation (DCA) [ 20]. In this dissertation, we focus on the Mott MIT. Therefore,

DMFT is su�cient to describe our systems. In the following subsection, I will review the DMFT

formalism and the methods for solving the impurity problem, i.e., Iterative Perturbation Theory
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(IPT), Slave-Rotor Non-Crossing Approximation (NCA) and Continuous Time Quantum Monte

Carlo (CTQMC).

2.4.1 Mapping to Anderson impurity model

The crucial step in DMFT is to map the Hubbard model to an Anderson Impurity Model (AIM).

Starting from Eq. 2.17, the action for the Hubbard model is

Z =
Z Y

i

Dcy
i� Dci� e� S; (2.18)

where

S =
Z �

0
d� [

X

i;�

cy
i� (� )(

@
@�

� � )ci� (� ) �
X

i;j;�

t ij (cy
i� (� )cj� (� ) + h:c:) + U

X

i

ni " (� )ni #(� )]: (2.19)

Then, we separate the action into three parts: the site with i = 0 (impurity), the sites with i 6= 0

(cavity), and the interaction between the site with i = 0 (impurity) and the sites with i 6= 0

(cavity). By integrating out the �eld ci 6=0 ;� using the linked-cluster theorem [31], we obtain an

e�ective action

Sef f =
Z �

0
d�

Z �

0
d� 0

X

�

cy
0� (� )G� 1

0 (� � � 0)c0� (� 0) + U
Z �

0
d�n 0" (� )n0#(� ): (2.20)

The G� 1
0 (� � � 0) in Eq. 2.20 is a Weiss �eld consisted by a cavity Green's function,

G(0)
ij (� � � 0) = < T � ci 6=0 ;� (� )cy

j 6=0 (� 0) > ,

G� 1
0 (� � � 0) = (

@
@�

� � )� �;� 0 +
X

i;j

t i 0t0j G(o)
ij (� � � 0): (2.21)

Note that for a Bethe lattice, the Fourier transform of
P

i;j
t i 0t0j G(0)

ij (� � � 0) becomest2G0(i! n ). The

e�ective action, Sef f , describes an impurity coupled to a cavity, as shown schematically in Fig. 2.1.

From the Dyson equation, we can calculate the lattice Green's functionthrough

G(i! n ) =
1

G� 1
0 (i! n ) � � imp (i! n )

: (2.22)

The local Green's function can be evaluated from
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Figure 2.1: Schematic representation for the DMFT mapping: Mapping a lattice problem to an
impurity coupled to a cavity �eld, �( ! ).

Gimp (i! n ) =
Z

d�
D0(� )

i! n + � � � � � imp (i! n )
; (2.23)

where D0(� ) is the non-interacting density of state. Eq. 2.20, 2.22, and 2.23 form a set of self-

consistent equations, for which we can solve iteratively by giving an initial guess of the lattice

Green's function, G(i! n ), or selfenergy, �( i! n ).

The DMFT algorithm is shown below:

1. Guess an initial lattice Green's function, G(i! n ).

2. Calculate the cavity �eld from �( i! n ) = t2G(i! n ).

3. Use the impurity solvers, e.g. IPT, NCA, or CTQMC, to get the selfenergy, �( ! ) = � imp (! ),

of Eq. 2.20.

4. Solve the local Green's function,Gimp (i! n ), using Eq. 2.23.

5. If the convergence criteria,jGk+1
imp (i! n ) � Gk

imp (i! n )j < accuracy, is satis�ed, stop the calcu-

lation, here k is the iteration index. Otherwise, go to step 2 and replaceG(i! n ) by the new

Gimp (i! n ).

The most tricky part of this algorithm is solving the impurity model. Fortunately, the impurity

model can be connected to the AIM, which can be solved with many exisiting methods. The AIM

reads
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HAIM = � d

X

�

dy
� d� +

X

k;�

� k;� cy
k;� +

X

k;�

Vk (cy
k;� d� + h:c:) + Udy

" d" dy
#d#: (2.24)

Here dy
� and cy

k� stand for the creation operators for the impurity and the conduction electrons,

respectively, with spin � and momentum k. � d and � k� are the energy for the impurity and the

conduction electrons. Vk is the hybridization between the impurity and the conduction electrons.

U is the Coulomb energy for the electrons in impurity. By integrating out the conduction electron

�elds, we obtain the same e�ective action as in Eq. 2.20, but the
P

i;j
t i 0t0j G(0)

ij (i! n ) is replaced by

P

k

V 2
k

i! n � � k
. These two functions is called hybrdization function labeled by �( i! n ).

There are various methods that can solve the AIM, such as Exact Diagonalization(ED) [32],

Iterative Perturbation Theory (IPT) [ 33], Slave-Rotor Non-Crossing Approximation (NCA) [34],

and Continuous Time Monte Carlo (CTQMC)[ 35], etc. In this dissertation, we employed the IPT,

slave-rotor NCA and CTQMC as our impurity solvers.

2.4.2 Iterative Perturbation Theory (IPT)

Iterative Perturbation Theory (IPT) is the most e�cient and easiest method to solve AIM

approximately. It was brought out by Yoshida and Yamada in 1970 [36, 37, 38]. This method

involves calculating a second order perturbation diagram of the e�ective action, Eq. 2.20. The

main equation we need to solve is

�( i! n ) =
U
2

+ U2
Z �

0
d�e i! n � Ĝ0(� )3: (2.25)

This method can be e�ciently implemented using the fast Fourier transformation between the

imaginary time, � , and the Matsubara frequency,! n . Although IPT is a weak coupling approach,

applying it in the DMFT self-consistent equations coincidentally generates reasonable solutions in

the strong coupling limit, i.e., Mott insulator solutions. Therefor e, IPT has the ability to smoothly

interpolate the solutions from the weak coupling limit to the strong coupling limit, and succesfully

produce a Mott transition at the critical point Uc. Although IPT has all these nice features, it

cannot captures the exact Fermi-liquid behavior in metallic phase atlow temperature. To study

the precise behavior at low temperature, we need numerical exact methods, such as Continuous

Time Quantum Monte Carlo (CTQMC) and Numerical Renormalization Group (NR G).
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2.4.3 Slave-Rotor Non-crossing Approximation (NCA)

Slave-Rotor Non-Crossing Approximation (NCA) is a method to solve AIM [34]. It can capture

the Kondo e�ect in AIM and gives quantitatively correct behavior for th e energy scale larger

than Kondo temperature, TK =
p

2U� exp[� �U= (8�)]. However, for temperature lower than TK ,

the NCA type of approaches could not reproduce the exact local Fermi liquid behavior, i.e., the

self-energy isIm �( ! ) / ! 2. Instead, NCA approaches gives a non-Fermi liquid,Im �( ! ) / ! � ,

power-law behavior. This power law behavior is originating from the large spin, with N 
avors,

and large charge channel, withM 
avors, approximation in NCA, which leads to an overscreening

e�ect between the bath and impurity resulting to a non-Fermi liq uid behavior at low energy. This

approximation becomes a good approach when we study the multi-channelAIM.

The idea of the slave-rotor method is based on the spin charge decomposition of the electron

�eld. We can decouple the physical electron operator into a spinlessand charge-carrying boson,

X j = ei� j , and a spin-carrying and chargeless fermion,f j;� , such that dy
j;� = f y

j;� ei� j . Now, we

apply the large N approximation to the spin 
avor, � = 1 ; 2:::N , by generalizing the AIM in Eq.

2.24 to SU(N ) AIM,

HSU(N )AIM = � d

X

�

dy
� d� +

X

k;�

� k;� cy
k;� +

X

k;�

Vk (cy
k;� d� + h:c:) +

U
2

[
X

�

dy
� d� �

N
2

]: (2.26)

Within the slave-rotor framework, we can introduce an angular momentumoperator, L =
P

� [f y
� f � �

1
2 ], which conjugate to the rotor phase, � j . By applying the following Lagendre transformation,

S �
R�

0 d� [� iL@� � + H + f y@f], the action of the SU(N ) AIM, Eq. 2.26, can be written into

S =
Z �

0
d�

X

�

f y
� (� )(@�+ � d � h)f � (� ) +

(@� � (� ) + ih )2

2U
+

N
2

h

+
X

k;�

[cy
k;� (� )f � (� )e� i� (� ) + H:c:]: (2.27)

Here h is the constraint �eld to enforce L =
P

� [f y
� f � � 1

2 ]. By integrate out the bath fermion �eld,

cy
k;� (� ), we obtain the following form of the SU(N ) AIM
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S =
Z �

0
d�

X

�

f y
� (� )(@�+ � d � h)f � (� ) +

(@� � (� ) + ih )2

2U
+

N
2

h

+
Z �

0
d�

Z �

0
d� 0�( � � � 0)

X

�

f y
� (� )f � (� 0)ei� (� )� i� (� 0) ; (2.28)

where �( � � � 0) is the Fourier transform of the hybridization function, �( i! n ). Now we apply the

largeM approximation to the rotor �eld, X � , where� = 1 ; :::; M , with the constraint
P

�
jX � j2 = M .

This approximation leads to the �nal form of the action for the AIM in large N and M limit,

S =
Z �

0
d�

X

�

f y
� (� )(@�+ � d � h)f � (� ) +

N
2

h � M
h2

2U
� M�

+
Z

0
�d�

X

�

j@� X � (� )j2

2U
+

h
2U

(X �
� (� )@� X � (� ) � H:c:) + � jX � (� )j2+

Z �

0
d�

Z �

0
d� 0 1

M
�( � � � 0)

X

�;�

f y
� (� )f � (� 0)X � (� )X �

� (� 0); (2.29)

here � is the constraint �eld to enforce
P

�
jX � j2 = M . The saddle point equations of this action

can be obtained using the bilocal �eld method in Ref. [39] at the large N and the large M limits

by �xing the N = N=M ratio. The equations are

G�
f 1(i! n ) = i! n � � d + h � � f (i! n ); (2.30)

G�
X 1(i� n ) =

� 2
n

U
+ � �

2ih� n

U
� � X (i� n ); (2.31)

� X (� ) = �N �( � � )Gf (� ); (2.32)

� f (� ) = �( � )GX (� ); (2.33)

where ! n and � n are the fermionic and the bosonic Matsubara frequency. Eq.2.30-2.33 forms a set

of self-consistent equations. One can start from an initial guess of the bosonic and the fermionic

self-energy. Then, one can calculate the corresponding Green's function from Eq. 2.30 and Eq.

2.31. The new Green's function can be used to calculate the new self-energy using Eq. 2.32 and

12



Eq. 2.33. This loop is iterated until the self-energy and the Green's function are converged to a

certain criteria. The calculation can be e�ciently implemented us ing the fast Fourier transformation

between� and ! n (� n ) space.

2.4.4 Continuous Time Quantum Monte Carlo Method (CTQMC)

Continuous Time Quantum Monte Carlo(CTQMC) is a numerical exact method to solve the

AIM. It captures the precise physics for a broad parameters range. The only disadvantage of

CTQMC is that it becomes ine�cient at low temperature. There are tw o types of CTQMC methods,

weak coupling CTQMC and hybridization CTQMC. In this dissertation, we use the hybridization

CTQMC to investigate our project [ 35, 40].

The formalism of CTQMC was developed by Wener, Gull, Rubtsov, and Millis. They separate

the impurity Hamiltonian into three parts, H = H loc + Hbath + Hhyb, which are

H loc = � � (n" + n#) + Un" n#; (2.34)

Hbath =
X

k�

� kcy
k� ck� ; (2.35)

and

Hhyb =
X

k�

(V �
k dy

� ck� + V � �
k cy

k� d� ); (2.36)

here thed� and ck� are the electron �elds for impurity and bath, respectively. They are several ways

to expand the partition function. One way is to expand it in the power of H loc and averaging over

Hbath + Hhyb, which is called the weak-coupling approach (CT-AUX) or the interaction approach

(CT-INT) [ 41, 42]. The other way is to expand it with respect to the hybridization t erm, Hhyb �

H2 � H dy

2 + H d
2 , and averaging overH1 = H loc + Hbath , which is called hybridization approach

(CT-HYB). The hybridization expansion in CT-HYB is shown below:

Z = T r [exp(� � (H1 + H2))]

=
X

n

(
1
n!

)2
Z

d� 1:::d� nd�
0

1:::d�
0

n � T r [T� e�
R

H 1 (� )d� H dy

2 (� 1):::H dy

2 (� n )H d
2 (�

0

1):::H d
2 (�

0

n )]: (2.37)
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The partition function can be further reformulated to

Z = Zbath

Y

�

X

n

Z
d� �

1 d� �
1

0:::d� �
n d� �

n
0T rd[e� �H loc T� dy

� (� �
1 )d� (� �

1
0):::dy

� (� �
n )d� (� �

n
0)]

� detM � 1
� (� �

1 :::� �
n ; � �

1
0:::� �

n
0); (2.38)

where the term T rd[e� �H loc :::] corresponds to the local average of the impurity electron �elds, and

the term detM � 1
� (� �

1 :::� �
n ; � �

1
0:::� �

n
0) corresponds to the average of the bath electron �elds. The ma-

trix M � 1
� (i; j ) = � � (� i � � 0

j ) is calculated by the Fourier transform of the hybridization function ,

� � (i! n ) =
P

k

jV �
k j2

i! n � � k
. Note that this formalism does not have fermionic sign problem because the

fermionic sign is absorbed into the bath determinant,detM � 1
� (� �

1 :::� �
n ; � �

1
0:::� �

n
0). The Monte Carlo

simulation can now be sampled on two continuous time line,� � , one for spin up and the other for

spin down. For each proposed con�guration, we calculate the ratio of the partition function between

the new and the old con�gurations from the local trace, T rd[e� �H loc :::], and the bath determinant,

detM � 1
� (� �

1 :::� �
n ; � �

1
0:::� �

n
0). Then, the metropolis algorithm is used to determine whether thecon-

�guration is accepted or not. Note that the ratio of the determinant, detM new
�

� 1=detMold
�

� 1
, can

be computed e�ciently using the Sherman-Morrison algorithm, which is a standard technique in

quantum Monte Carlo related methods. Since the calculation in CTQMC is calculated on the

Matsubara frequency, the physical observables, e.g., Green's function, has to be analytic continued

to the real frequency. We use both the Pade approximation and the Maximum Entropy Method

(MEM) to perform the analytic continuation. For detail, please refer t o Appdendix. B.

2.5 Rotationally invariant slave-boson method (RISB)

Slave-Boson Mean Field (SBMF) methods can be viewed as a simpli�edversion of DMFT [15],

which is focused on the low energy physics near the Fermi level. Therefore, it is suitable to describe

the low-energy quasiparticle parameters, such as quasiparticle weight, Z , corresponding to the

inverse of the e�ective mass. It is equivalent to Gutzwillar approximation (GA), which is an exact

approximation to the Gutzwiller variational problem in in�nite dime nsion, at the saddle point level

[15]. The dominant physics is the Mott metal-insulator transition in the Brinkman-Rice picture,

in which the quasiparticle weight vanishes smoothly to zero at the Mott critical point, Uc. The

disadvantage of this approximation is that it could not describe the high energy excitation, i.e., the
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high energy Hubbard bands. Extending the SBMF methods to describethe high energy excitation

is still an on-going research. In this dissertation, we proposed one of the methods called ghost GA

that allows to describe the high energy excitation within the SBMF or equivalently GA framework

in chapter 5.

Rotationally Invariant Slave-Boson (RISB) method is one of the most e�ci ent methods to solve

the multi-orbital Hubbard model as shown in Eq. 2.16. With the recent e�ort from Lanata et. al

[43, 25], this method can now be applied to multi-orbital systems with any kind of interactions.

This breakthrough allows us to study complicate materials with d and f orbital electrons. Starting

from the most general mult-orbital Hubbard model,

H =
X

k

X

ij =1 ;::;n a

X

� =1 ;::;M i

X

� =1 ;::;M j

� ��
k;ij cy

ki� ckj� +
X

Ri

H loc; (2.39)

where k is the momentum conjugate to the unit cell, R is the label for unit cell, i and j are the

labels for atoms in unit cell, na is the number of atoms in unit cell, � and � are spin and orbital

labels, andM i is the number of spin and orbital for a given atom i . The local interaction can be

represented in the local Fock state,

H loc �
X

Ri

X

AB

[H loc
i ]AB jA; Ri ihB; Ri j ; (2.40)

The local Fock state is de�ned by

jA; Ri i = [ cy
Ri 1]� 1 (A ): : : [cy

RiM i
]� M i (A ) j0i ; (2.41)

where � i (A) = 1 or 0 represents the occupancy of the local orbital, andA = 1 ; :::; 2M i runs over all

the con�guration space constructed by all the combinations off � 1(A); ::; � M i (A)g.

2.5.1 Rotationally invariant slave boson mapping

The RISB formalism introduces a new set of fermionic �eld, f Ria , called quasiparticle fermion.

For each quasiparticle fermion, we introduce a bosonic mode, �RiAn , providing a link between the

physical, jA; Ri i , and quasiparticle, jn; Ri i , Fock states. Note that the two Fock states has the

same particle number,NA �
P M i

a=1 � a(A) = Nn �
P M i

a=1 � a(n). Since we enlarge the Hilbert space

by introducing auxiliary bosonic mode, we have to apply the constraint to enforce our solution to
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be in the physical Hilbert subspace. Therefore, we have the following constraints called Gutzwiller

constraints,

K 0
Ri �

X

An

� y
RiAn � RiAn � Î = 0 ; (2.42)

and

K Riab � f y
Ria f Rib �

X

Anm

[F y
ia Fib]mn � y

RiAn � RiAm = 0 : (2.43)

With this RISB mapping, the original Hamiltonian, Eq. 2.39, can be written into

H =
X

kij��

� ��
k;ij cy

ki� ckj� +
X

RiAB

[H loc
i ]AB

X

n

� y
RiAn � RiBn ; (2.44)

where cy
Ri� �

P

a
RRia� f y

Ria with

RRia� =
X

AB

X

nm

[F y
i� ]AB [F y

ia ]nmp
NA (M i � NB )

� y
RiAn � RiBm : (2.45)

2.5.2 Rotationally invariant slave boson Mean �eld theory

The mean �eld approximation to the RISB formalism can be performed by introducing a mean

�eld wavefunction, j	 MF i = j	 0i 
 j � i , where j	 0i is the Slater determinant corresponding to the

quasiparticle f Ria and j� i is the bosonic coherent state corresponding to the bosonic �elds. Within

this approximation, the Gutzwiller constraint Eq. 2.42 and Eq. 2.43, become

T r [� y
i � i ] = 1 8 i; (2.46)

and

[� pi ]ab � T r [� y
i � i F

y
ia Fib] = h	 0jf y

Ria f Rib j	 0i 8 ; i: (2.47)

The variational energy within this mean �eld approximation becomes

E �
1
N

h	 MF jH j	 MF i =
X

i

T r
�
� i �

y
i H loc

i

�
+

1
N

X

kij

X

ab

�
Ri � k;ij Ry

j

�
abh	 0jf y

kia f kjb j	 0i ; (2.48)
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where [Ri ]a� � h � jRRia� j� i is given by

[Ri ]a� = T r
�
� y

i F
y
i� � i Fib

��
� pi (1 � [� pi ])

� � 1
2

ba : (2.49)

Follow the detail derivation in [ 43, 25], the constraint minmization problem of this variational

energy can be reformulated into the Lagrange function below,

L SB[h� j; E c; R; Ry; �; D; D y; � c; � p] =

� lim
T ! 0

T
N

X

k

X

m2 Z

T rlog(
1

i (2m + 1) � T � R� kRy � � + �
)ei (2m+1) � T 0+

+
X

i

[h� i jH emb
i [D i ; D y

i ; � c
i ]j� i i + E c

i (1 � h � i j� i i )]

�
X

i

[
X

ab

([� i ]ab + [ � c
i ]ab)[� pi ]ab +

X

ca�

([D i ]a� [Ri ]c� [� pi (1 � � pi )]
1
2
ca + c.c.)] ; (2.50)

whereHemb is called the embedding Hamiltonian describing a dimer system consisted by two atoms

coupled to each other. The �rst atom represents the physical impurity containing all the physical

energy level and interactions. The second atom is an auxiliary non-interacting atom representing

the environment. The Hemb reads

H emb
i [D i ; � c

i ] � H loc
i [f ĉy

i� g; f ĉi� g] +
X

a�

([D i ]a� ĉy
i� f̂ ia + H.c.) +

X

ab

[� c
i ]abf̂ ib f̂ y

ia : (2.51)

By minimizing the function, Eq. 2.50, with respect to all the parameters,h� j; E c; R; Ry; � ; D; D y

; � c; � p, we obtain the following saddle point equations that forms a root problem,

1
N

[
X

k

� i f (R� kRy + � )� i ]ba = [� pi ]ab (2.52)

1
N

[
1

Ri

X

k

� i R� kRy f (R� kRy + � )� i ]�a =
X

c

[D i ]c� [� ip (1 � � ip )]
1
2
ac (2.53)

X

cb�

@
@dpis

[� pi (1 � � pi )]
1
2
cb[D i ]b� [Ri ]c� + c.c. + [ l + lc]is = 0 (2.54)

H emb
i [D i ; � c

i ] j� i i = E c
i j� i i (2.55)

[F (1)
i ]�a � h � i jĉ

y
i� f̂ ia j� i i �

X

c

[� ip (1 � � ip )]
1
2
ca[Ri ]c� = 0 (2.56)

[F (2)
i ]ab � h � i j f̂ ib f̂ y

ia j	 i i � [� pi ]ab = 0 : (2.57)
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Here f (x) is the Fermi function, d, l , and lc are the parameters for the matricesD i , � i , and � c
i

parametrized in the Hermitian matrix basis. This set of equations can besolved using the quasi-

Newton approximation by giving an initial guess of the R and the � matrices. Then, the root solver

can �nd the �nal R and � matrices that satisfy Eq. 2.56 and 2.57.

From the solved R and � matrices, we can calculate the most important information in RISB,

which is the quasiparticle weight for each orbital. The quasiparticle weight is de�ned by the

eigenvalues of the matrixZ � RyR, which corresponds to the mass renormalization for each orbital,

m=m� = Z . The di�erence in quasiparticle weight for each orbital leads to many interesting

phenomena, e.g., orbital di�erentiation and orbital-selective Mott tr ansition [44, 45]. Also, from R

and � matrices, we can calculate the Green's function and selfenergy de�ned by

G(k; ! ) =
1

i! � � k + � � �( ! )
; (2.58)

and

�( ! ) = � !
I � RyR

RyR
+

1
R

�
1

Ry : (2.59)

From them, we can further calculate the density of state and band dispersion that can be measured

in ARPES and various experimental techniques.

2.6 The combination of �rst principle methods and many-body
methods

In the previous sections, we learned the advantages and the disadvantagesof �rst principle

simulations and many-body methods. It is interesting to notice that these two methods complement

each other's shortcoming. DFT does not have tunable parameters in the computation of band

structure, but it cannot treat the correlation e�ects properly. On t he other hand, the many-body

methodology provides a good description of the correlation e�ects, but the non-interacting band

structure to be modi�ed by the many-body e�ects is usually generated from the tight-binding

model with adjustable parameters. Therefore, it is intuitive to t hink that one can combine these

two methods. Indeed, in the last decades, methods such as LDA+U, LDA+DMFT, and LDA+RISB

have been intensively developed. They have been widely used to investigate the physics in strongly
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correlated materials. In this section, I will introduce LDA+RISB, w hich was employed to study

the transition metal compounds and the Americian compounds in this dissertation.

2.6.1 Correlated basis set

The �rst step of any LDA+X scheme is to project out the local correlated orbital from the

Kohn-Sham basis in LDA. In order to do so, we need to choose a proper local basis set to describe

the local correlated orbitals. The popular choices are maximum localized Wannier functions [30, 46],

and the basis set proposed by Haule et. al [47]. Below, following the convention in Ref. [25], we

de�ne a set label P representing the local correlated orbitals, and a set labelQ representing the

uncorrelated orbitals. For generality, we de�ne the local correlated basis set as� i� , where � is the

label for the local correlated orbitals, andi is the label for atoms. We can expand the electron �eld

at coordinate r and spin � in this basis set

X (r; � ) =
X

i;� 2 P

� i� (r; � )ci�� + X Q(r; � ) =
X

i

X P i (r; � ) + X Q(r; � ); (2.60)

where the �rst term represents the local correlated part of the electrons and the second term

represents the uncorrelated part of the electrons. With Eq. 2.60, any one-body operator,A, can

be separated into local correlated subspace,P, and uncorrelated subspace,Q,

A =
X

�

Z
drX y(r; � )AX (r; � ) �

X

i

A loc
i + Ahop; (2.61)

A loc
i �

X

�

Z
drX y

P i (r; � )AX P i (r; � ); (2.62)

Ahop � A �
X

i

A loc
i : (2.63)

We can also use the local correlated basis set to project out the correlated Green's function

from the DFT results or to embed the selfenergy into the DFT calculations, which correspond to

gi�;� 0(! ) =
Z

drdr 0� i� (r; � )G(r; r 0)� �
i� (r 0; � ); (2.64)

and

� ir;r 0(! ) =
X

�;� 0

� i� (r; � )� �;� 0(! )� �
i� (r 0; � ); (2.65)
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respectively.

From the projected operators and the projected Green's function, we can perform the many-

body correction, e.g., orbital potential methods (+U), DMFT, or RISB, on top of the DFT band

structure. Then, we can embed the self-energy, which contains the many-body correction, back to

the Kohn-Sham basis to update the charge density for the next DFT iteration. This procedure is

called DFT+X scheme, where X can be any many-body approximation.

2.6.2 LDA+RISB functional

It is straightforward do combine the LDA and the RISB functionals in Eq. 2.50to the following

LDA+RISB functional [ 25],


 V dc ;N [�; J ; h� j; E c; R; Ry; �; D; D y; � c; � 0
p] � 
 KSH

V dc ;N [J ; h� j; E c; R; Ry; �; D; D y; � c; � 0
p]

�
Z

drJ (r )� (r ) + E LDA
Hxc [� ] + E ion [� ] + E ion � ion ; (2.66)

where J is the constraint �eld to the electron density � (r ). 
 KSH is the functional for the Kohn-

Sham-Hubbard Hamiltonian,


 KSH
V dc ;N [J ; h� j; E c; R; Ry; �; D; D y; � c; � p] =

� lim
T ! 0

T
N

X

k

X

m2 Z

T rlog(
1

i (2m + 1) � T � R[r 2;hop � J hop]Ry � � + �
)ei (2m+1) � T 0+

+
X

i

[h� i jH emb
i [D i ; D y

i ; � c
i ]j� i i + E c

i (1 � h � i j� i i )]

�
X

i

[
X

ab

([� i ]ab + [ � c
i ]ab)[� pi ]ab +

X

ca�

([D i ]a� [Ri ]c� [� pi (1 � � pi )]
1
2
ca + c.c.)] : (2.67)

The embedding Hamiltonian in LDA+RISB becomes

H emb
i [D i ; D y

i ; � c
i ] � �r 2;loc

i [f ĉy
i� g; f ĉi� g] + J loc

i [f ĉy
i� g; f ĉi� g] + H loc

i [f ĉy
i� g; f ĉi� g] � V dc

i

X

�

cy
i� ci�

+
X

a�

([D i ]a� ĉy
i� f̂ ia + H.c.) +

X

ab

[� c
i ]abf̂ ib f̂ y

ia : (2.68)

Here we assume a linear double counting potential, �dc
i � V dc

i N loc
i . However, in our code, we used

the fully localized limit potential [ 48]. The optimization problem is summarized in Fig. 2.2. We
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Figure 2.2: Schematic representation for the LDA+RISB algorithm.

start from an initial electron density, which is usually the electron density from bare LDA. Then,

we calculate the constraint �eld, J (r ), and Kohn-Sham-Hubbard Hamiltonian, H KSH . After that,

we solve theH KSH saddle point equations, Eq. 2.52-2.57, to get the new electron density and

energy. If the electron charge and energy do not converge, we update the electron density for the

next iteration. The loop is iterated until the charge and energy self-consistency are reached.
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CHAPTER 3

UNSTABLE DOMAIN WALL SOLUTION IN THE
METAL-MOTT INSULATOR COEXISTENCE

REGIME

3.1 Introduction

A common feature of all �rst-order transitions is domain formation in the ph ase coexistence

regime, where two competing phases tend to form domains to minimizethe internal energy. Between

each pair of domains, there exist domain wall structures where their physical properties smoothly

evolve from one phase to the other. Standard examples of domain formation are the ferromagnetic

domains in transition metals, e.g., iron and nickel, below the Curie temperature. In strongly

correlated materials, the domain formations have also been observed in the optical image in V2O3

and VO2 within the metal insulator coexistence regime [49, 50, 51, 1], where the domain wall

structure displays an intermediate optical intensity between the metal (red region) and the insulator

(blue region) domains as shown in Fig.3.1.

The free energy of these systems in the phase coexistence regime can be described by the

Ginzburg-Landau free energy, which shows a double well structure with two minima corresponding

to the stable and metastable phase, Fig. 3.2(b). The local maximum separating the stable and

metastable phase is the unstable solution, which is known to correspond to the domain wall structure

[52]. In metal-Mott insulator coexistence regime, the two local minima are the metal and Mott

insulator solution, and the local maximum (unstable solution) is expected to describe the domain

wall structure.

To model the metal Mott-insulator transition (MIT), the fully frus trated Hubbard model turns

out to be the minimum model to describe the system in the paramagnetic phase. The exact

solution can be obtained by dynamical mean �eld theory (DMFT) [ 19]. In the last decades, various

exotic physics, such as the MIT phase diagram [19], resilient quasiparticle [53, 54], universal scaling

behavior along the Widom line [55, 56], etc., have been discovered using DMFT. Despite the intense

investigation, so far, these research were focused on the metal and the Mott insulator solution. The
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Figure 3.1: (a) Schematic representation for the near-�eld microscopy measurement of V2O3 from
McLeod et. al. [1]. (b) Near �eld image of the metal Mott insulator coexistence regime by warming
up the system from T = 164K to T = 184K . Blue areas correspond to the antiferromagnetic Mott
insulating phase and red areas correspond to correlated metallic phase [1].

previous studies on the unstable solution were restricted to the thermodynamics properties near

the critical point [ 57, 58, 59]. The other investigations on the layer and inhomogeneous Hubbard

model were only focused on the density of state (DOS) in the domain wall structure [60, 61].

Until now, there has not been any detailed investigation on the unstablesolution's transport and

quasiparticle properties. Several questions come to mind. One, isthe unstable solution more

metallic or insulating? Two, how does the unstable solution di�er from the metal and the Mott

insulator? Producing the answer of these questions is the subjectof this work.

In this project, we explored the nature of the unstable solution using DMFT with Iterative Per-

turbation Theory (IPT) and numerical exact Continuous Time Quantum Mon te Carlo (CTQMC)

solvers along two di�erent trajectories, the �rst order transition line and a constant U trajectory,

as shown in the phase diagram, Fig.3.2 (a). In order to study the unstable solution, the multi-

dimensional optimizer [58] was utilized to converge our solution to the local maximum of the free

energy functional (the unstable solution). We also employed the free energy analysis [62, 63] to

identify the �rst order transition line and the location of the unstab le solution.

Our results indicate that the unstable solution behaves like an incoherent metal with resistivity

around and above the Mott limit, � � � Mott . Its quasiparticle peak remains �nite in the entire

coexistence region. The resistivity for the unstable solution can be described by the Sommerfeld
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quasiparticle approximation with two quasiparticle parameters, Z and �, where Z � T2 and � �

T � 2 shows anomalous power law behavior di�er from the Fermi-liquid behavior.

3.2 Method

We studied the single band fully frustrated Hubbard model at half-�l ling

H = � t
X

<i;j>�

(cy
i� cj� + h:c:) + U

X

i

ni " ni #; (3.1)

where cy
i� and ci� are the electron creation and annihilation operators with spin � at site i , ni� =

cy
i� ci� , t is the nearest neighbor hopping, andU is the on-site Coulomb interaction. The energy

unit is set to the half band width, D = 2 t. The Hubbard model can be mapped to the Anderson

impurity model within the DMFT framework. To solve the impurity problem, we use the continuous

time quantum Monte Carlo (CTQMC) and iterative perturbation theory ( IPT) as impurity solvers.

The analytical continuation was done using maximum entropy method (MEM), and the 5th order

polynomial �tting for CTQMC. For IPT, we employed the Pade approximat ion.

The DMFT phase diagram is shown in Fig. 3.2 (a). The system undergoes a second order

transition at the critical temperature, Tc, along the Widom's line indicated by the green dotted line

above Tc. Below Tc, there is a metal-Mott insulator coexistence regime con�ned by thespinodal

lines, Uc1(T) and Uc2(T), where the metal and the Mott insulator solutions coexist. The metal

solution has a well-known Fermi-liquid behavior, where the resistivity and the scattering rate has a

T2 behavior. The Mott insulator solution shows a gap in the density of state, and its conductivity

has an activated behavior. The �rst order transition line is indicated by the green dotted line below

Tc, where the metal and the Mott insulator solution's free energy become the same. At T = 0,

the �rst order transition line merges with the spinodal line Uc2(T). The metal-Mott insulator

transition at Uc2(T = 0) along the T = 0 trajectory is known as a second order transition where

the quasiparticle weight Z decreases smoothly to zero.

3.2.1 Free energy and unstable solution

We employed the Landau free energy functional method to study the structure of the free

energy in the coexistence regime [62, 63]. In the DMFT formalism, we know the free energy

is a functional of the Green's function, G(i! n ). As a result, the free energy functional can be
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written into F [G] = Fimp [G] � t2T
P

n G2(i! n ). The local minima of the free energy functional are

the physically stable or metastable solutions. Inside the coexistence regime, we know the stable

and the metastable solutions are the metal and the Mott insulator solutions. Consequently, the

parameter space could be parametrized intoG(l) = (1 � l )Gins (i! ) + lGmetal (i! ) with a parameter

l . The change of the free energy along the parameterized space,l , can be calculated by an integral

� F (l) = t2T
Rl

0 dl0el � g(G(l0)), where el = ( Gins � Gmet )=jGins � Gmet j and g = Gimp (G) � G.

In this project, we focused on two trajectories, the �rst order l ine and a constant U trajectory,

as shown in Fig. 3.2 (a). Fig. 3.2 (b) is the free energy functional along the �rst order line.

The metal (l = 1) and the Mott insulator ( l = 0) solutions have the same free energy, and the

unstable solutions locate aroundl � 0:5. Fig. 3.2(c) shows the free energy along a constantU

trajectory. The unstable solution gradually shifts toward the Mott in sulator solutions as we lower

the temperature and �nally merges with the Mott insulator solution at T = 0, which indicates the

Mott insulator solution becomes unstable atT = 0.

It is known the steepest descent �x point solver cannot converge thesolution to the local

maximum (unstable solution) [58]. Therefore, in our approach, we used the Broyden method

as our �x point solver with an initial guess that is close to the local maximum of the free energy

functional. This method can e�ciently converge our solution to the un stable solution within several

iterations.

3.2.2 Resistivity calculation and Sommerfeld approximation

To study the transport property, we calculated the temperature dependence of the resistiv-

ity along both the �rst order transition line and the constant U trajectory. The resistivity was

calculated by the Kubo formula [54]

� = � 0

Z
d� �( ! )

Z
d! (�

@f(! )
@!

)A(�; ! )2; (3.2)

whereA(�; ! ) = � (1=� )Im (! + � � � � �( ! )) � 1 is the spectral function, �( ! ) = �(0)[1 � (!=D )2]3=2

corresponds to the velocity of the electron, and� 0 = 2 �e 2=�h is the conductance quantum. �( ! )

is the selfenergy obtained by the maximum entropy method (MEM) for CTQMC, and the Pade

approximation for IPT. The resistivity can be calculated by the inve rse of the conductivity, � = 1=� .

The Mott limit, � Mott = �hD=e2�(0), represents the scale in which the scattering process between
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Figure 3.2: (a) The phase diagram of the half-�iled Hubbard model, whereUc, Uc1, and Uc2

correspond to the �rst order transition line, the lower spinodal li ne, and the upper spinodal line,
respectively. The trajectories of interest, in this project, are labeled by the blue solid arrow and
the green dashed arrow, respectively. (b) The free energy functional along the �rst order transition
line (FOTL), and (c) along a constant U trajectory. Here Tc is the critical temperature, and TUc2

denotes the temperature at the spinodal lineUc2. l = 0 and l = 1 correspond to the insulator and
metal solution, respectively.
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electrons becomes incoherent. Consequently, a bad metallic behavior can be found in the resistivity

when � > � Mott .

The resistivity, Eq. 3.2, can be simpli�ed using the Sommerfeld approximation [53], where the

lattice Green's function is replaced by a Lorentzian,G(!; � ) ' Z
! � Z� + i � QP

, with the quasiparticle

weight Z = (1 � @Re�( ! )
@! ) � 1

! =0 and scattering rate � QP = � ZIm �( ! = 0). When � QP < T and

T < ZD , the conductivity can be described by only two parameters,Z and � = � QP =Z, such that

�
� Mott

�
1
�

tanh(
ZD
2T

): (3.3)

We found, in CTQMC, � QP < T and T < ZD hold for T < T c. Consequently, Eq. 3.3 is a good

approximation to the Kubo formula, Eq. 3.2 , in the coexistence regime.

3.3 Result

3.3.1 Along the �rst order transition line

To understand how the metal, the Mott insulator, and the unstable solutions behave around the

�nite temperature critical point, Tc, and the zero temperature critical point, Uc2(T = 0), we studied

the transport properties along the �rst order transition line where b oth sides of the transition line

are terminated by these second order critical points. Fig.3.3 (a) is the resistivities along the �rst

order transition line calculated from CTQMC with the Kubo formula, Eq . 3.2, and the Sommerfeld

approximation, 3.3, indicated by the dots and dashed lines, respectively. At critical temperature,

Tc, three solutions merge as expected, and the resistivity is around the order of the Mott limit,

� Mott . Below Tc, three solutions bifurcate to three trajectories. The unstable solution (green

diamonds) has higher resistivity than the metal solution (black circles), and its resistivity remains

around the order of the Mott limit, � � � Mott , to the lowest temperature. The resistivity of the

unstable solutions can be qualitatively described by the Sommerfeld approximation indicating the

unstable solution is an incoherent metal. The IPT results also show similar behavior to CTQMC

as shown in Fig. 3.3 (b).

In contrast to the �nite temperature critical point, Tc, close to the zero temperature critical

point, Uc2(T = 0), the resistivites of the three solutions do not merge together. This is due to the

fact that the order parameter to describe the zero temperature phasetransition is the quasiparticle

weight, Z , not the Green's function or the density of state (DOS), which directly relate to the
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Figure 3.3: (a) The resistivity for metal (black circles), insulator ( red squares), and unstable (green
diamonds) solutions along the �rst order transition calculated from the continuous-time quantum
Monte Carlo (CTQMC). The dashed lines are the resistivities calculated from the Sommerfeld
approximation, Eq. 3.3. (b) Similar �gure as in (a) calculated from the iterative perturbation theory
(IPT). (c) The density of state (DOS) at the lowest temperature T = 0 :1Tc (near Uc2(T = 0)).
(d) The DOS near the critical temperature T = 0 :75Tc (e) The quasiparticle weight, Z , for metal
and unstable solution. (f) The scattering rate, � , for metal and unstabl e solution. The analytical
continuation was done using the maximum entropy method (MEM) and the 5th order polynomial
�tting (5th poly). 28



conductivity through Eq. 3.2 and Eq. 3.3. Fig. 3.3 (c) and (d) shows the DOS aroundUc2(T = 0)

and aroundTc, respectively. At the lowest temperature, Fig. 3.3 (c), we found both the metal (black

line) and the unstable (green line) solutions have a narrow quasiparticle peak at the Fermi level.

The width of the quasiparticle peak for both solutions are expected to goto zero at Uc2(T = 0).

Therefore, both the unstable and the metal solution's quasiparticle weight, Z , can be smoothly

extrapolated to zero when approachingUc2(T = 0) as shown in Fig. 3.3 (e). This feature is

consistent with the study of the Mott MIT at zero temperature with n umerical renormalization

group (NRG) [64].

Fig. 3.3 (e) shows the quasiparticle weight,Z , for the unstable (green diamonds) and the metal

(black circles). The unstable solution has lower quasiparticle weight, Z , than the metal solution.

Both solutions can be smoothly extrapolated toZ = 0 at low temperature as we expect for a second

order transition. Fig. 3.3 (f) shows the scattering rate , �, for unstable (green diamonds) and the

metal (black circles) solutions. The scattering rate for the unstable solutions are around the order

of the half-bandwidth D = 1, which is the scale of the Mott limit for the scattering rate. With

only two parameters, Z and �, the resistivity can be described by the Sommerfeld approximation,

Eq. 3.3 , qualitatively up to the critical temperature, Tc, as shown in the dashed lines in Fig.3.3

(a) and (b). This is similar to the resilient quasiparticle behavior in Ref. [54].

3.3.2 Along the constant U trajectory

In order to understand the behavior of the unstable solution in the entire coexistence regime,

we studied the resistivity along a constant U trajectory. From the free energy analysis, Fig. 3.2

(a), we know the unstable solution gradually shifts toward the Mott insulator solution and merges

with the Mott insulator solution at T = 0. Therefore, it is expected that the unstable solution

becomes more insulating at low temperature. Fig.3.4 (a) shows the resistivities along the constant

U trajectory, where U = 2 :4 and U = 2 :83 for CTQMC and IPT, respectively. The metal and

the Mott insulator solutions has the Fermi-liquid and the activated behavior, respectively. On the

other hand, for the unstable solution, we found the resistivity (green diamonds) increases as the

temperature decreases. In addition, the resistivity of the unstable solutions can be two orders larger

than the Mott limit, � Mott , at low temperature. However, in Fig. 3.4 (c), we found the unstable

solution's DOS at the lowest temperature still has a small quasiparticle peak at the Fermi level
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indicating the unstable solution still carries metallic properties despite the insulating behavior in

its resistivtiy.

Fig. 3.4 (d) is the quasiparticle weight for Z for the metal (black circles) and the unstable

(green diamonds) solutions. The metal has a normal Fermi-liquid behavior that Z saturates to

a constant at low temperature. On the other hand, the unstable solution's Z decreases with the

decrease of temperature as a power law fashion,Z � T2, indicating the reduction of its quasiparticle

peak at the Fermi level. Fig. 3.4 (e) shows the scattering rate for the metal and the unstable

solutions. The metal solution's scattering rate has a � � T2 Fermi-liquid behavior. In contrast, the

unstable solution's scattering rate increases as the temperature decreases as a function, �� T � 2.

In addition, the scattering rate of the unstable solution excess the Mott limit, � > D = 1, at low

temperature, again, indicating an incoherent scattering behavior. Although the unstable solution's

resistivities are several orders larger than the Mott limit, surprisingly, we found the Sommerfeld

approximation, the dashed line in Fig. 3.4 (a), still captures its transport properties qualitatively

to very low temperature.

3.4 Conclusion

In this project, we studied the behavior of the unstable, the metal, and the insulator solutions

along the �rst order transition line and a constant U trajectory using t he DMFT with CTQMC and

IPT impurity solvers. The unstable solution is expected to describe the domain wall structure in

the metal-Mott insulator coexistence regime. Our results indicate the unstable solution resembles

an incoherent metal, where the resistivity and the scattering rateare around or above the Mott

limit, � Mott , in the entire coexistence regime.

Along the �rst order transition line, the unstable solution's resist ivity and scattering rate remain

around the order of the Mott limit ( � � � Mott and � � D ) representing its incoherent metallic

nature. In addition, we found both the metal and the unstable solution's quasiparticle weight, Z ,

can be extrapolated to zero atUc2(T = 0). The vanishing of Z leads to a sharp quasiparticle peak

at the Fermi level for both solutions. Similar behavior has been reported by Bulla and Tong et.

al [64, 57]. Along the constant U trajectory, the results are more striking. We found the unstable

solution's scattering rate and quasiparticle weight show a power lawbehavior, where � � T � 2 and

Z � T2, resulting to an insulating behavior in its resistivity. Moreov er, the scattering rate and the
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Figure 3.4: (a) The resistivity for metal (black circles), insulator ( red squares), and unstable
(green diamonds) solution along a constantU = 2 :4 trajectory calculated from the continuous-
time quantum Monte Carlo (CTQMC). The dashed lines are the resistivity calculated from the
Sommerfeld approximation, Eq. 3.3. (b) Similar �gure as in (a) calculated from the iterative
perturbative theory (IPT) at U = 2 :83. (c) The density of state (DOS) at low temperature
T = 0 :01. (d) The DOS near the spinadol lineUc2 at T = 0 :019. (e) The quasiparticle weight,Z ,
for metal and unstable solution. (f) The scattering rate , � , for metal and unstable solution. The
analytical continuation was done using maximum entropy method (MEM) and 5th order polynomial
�tting (5th poly). 31



resistivity of the unstables solution can be two orders larger than theMott limit at low temperature,

which also indicate a strong incoherent character in the unstable solution. In the entire coexistence

regime, we found the unstable solution always has a quasiparticle peak atthe Fermi-level even at

the lowest temperature. Consequently, the Sommerfeld quasiparticle approximation to the Kubo

formula provides a good description to the resistivity. In conclusion, the unstable solution represents

a new state of matter that carries strong incoherent metallic character. The physical properties of

this matter are intermediate between the metal and the Mott insulator solution. This result can

be connected to the optical image ofV O2 and V2O3 in the metal insulator coexistence regime, in

which the optical image of the domain wall structure has an intermediate optical scattering strength

between the metallic and the insulating domains.
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CHAPTER 4

THE FATE OF SPINONS AT THE MOTT POINT

4.1 Introduction

The physical nature of the Mott metal to insulator transition (MIT), a p henomenon generic

to strongly correlated materials, still remains the subject of much controversy and debate. In

contrast to conventional critical phenomena, the relevant degrees of freedom at the MIT cannot be

easily identi�ed using an appropriate order parameter of symmetry breaking principle, although

di�erent competing orders often do arise in its vicinity. As stressed in pioneering works by Mott

and Anderson, however, a fundamentally di�erent physical mechanism has to exist, because the

Mott insulating state typically persists to temperatures much hi gher than any conventional order.

A clear physical picture of how a sharp Mott transition can exist without any intervening order

has emerged only recently, with the development of Dynamically Mean-Field Theory (DMFT) [ 19],

which is formally exact in the limit of large coordination. Physically, it represents the limit of

maximal frustration, therefore eliminating the precursors of any competing order, and retaining

only purely local dynamical scattering processes. In contrast to alternative theoretical approaches

describing dilute low-energy excitations, DMFT is most reliable at intermediate and high temper-

atures, where incoherent behavior prevails. The DMFT picture resulted in a �nite temperature

�rst-order boundary between the two phases, around which many fascinating phenomena organize

themselves. Several of its most striking predictions were experimentally con�rmed in a variety of

systems, including organic charge-transfer salts of the� -family, as well as various transition metal

oxides. Here one can list the observation of strongly renormalized Fermiliquids [65], bad metal

behavior, Ising universality near the Mott endpoint [66, 67], and even quantum critical scaling at

higher temperatures [68, 69].

At lower temperatures, most Mott insulators still undergo magnetic ordering, but experimental

studies of several frustrated organic materials have instead observedspin liquid behavior [2, 70, 3,

71, 72]. Two particular compounds have attracted a lot of attention, � -(BEDT-TTF) 2Cu2(CN) 3

and EtMe3Sb[Pd(dmit) 2]2. Most remarkably, thermodynamic measurement in the Mott insulating
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(a) (b)

Figure 4.1: (a) Phase diagram for the� -(BEDT-TTF) 2Cu2(CN) 3 where a spin liquid state is found
in the Mott insulating phase from Kurosaki et. al. [ 2]. (b) Speci�c heat measurement from
Yamashita et. al. for � -(BEDT-TTF) 2Cu2(CN) 3 in the Mott insulating phase. The �nite intercept
in CpT � 1 axis indicates a low-energy fermionic excitation in Mott insulating phase [3].

phase of these materials have revealed behavior normally expected formetals, including displaying

linear in temperature speci�c heat and large thermal conductivity, indicating the presence of gapless

magnetic excitations. In Fig. 4.1(a), we show the phase diagram for� -(BEDT-TTF) 2Cu2(CN) 3. In

the Mott insulating phase, the NMR measurement indicates there is no magnetic ordering down to

the lowest temperature, 1K [2]. Fig. 4.1(b) shows the speci�c heat for the same materials [3]. The

intercept in the CpT � 1 axis indicates the low-energy excitation has a linearCV T fermionic behavior.

Since the charge degrees of freedom is frozen in the insulating phase,the fermion contributing to

the linear speci�c heat is not the normal electrons.

These observations are easiest to rationalize using a time-honored idea, the resonating valence

bond (RVB) theory [ 14], in which chargeless spin excitations embody a magnetic 
uid withfermionic

statistics. Despite this appealing picture, the RVB approach focuses on the zero temperature

phases, and is at trouble in recovering the expected DMFT predictions upon warming up the

system. One question that immediately arises concerns the compatibility of the two electronic
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Figure 4.2: Proposed scheme to blend the static RVB approach with the DMFT, using an impurity
solver based on emergent spinon degrees of freedom. The spinon self-energy � f (i! ), usually absent
from a mean-�eld RVB treatment, is extracted from a spinon-based DMFT framework. Using the
RVB self-consistent determination of the spinon bandwidth Je� , this in turn allows to incorporate
feedback e�ects due to scattering on charge excitations, which a�ectthe gapless spin-excitations in
the Mott state.


uids, namely the Fermi liquid describing the correlated metall ic state, and the magnetic 
uid

characterizing such a gapless Mott insulator. In this Letter, we address this question by proposing

a consistent framework that succeeds in marrying the DMFT and the RVBapproaches. This allows

to preserve the known high temperature phenomenology of the DMFT, while introducing the strong

thermodynamic signature of a gapless spin liquid state in the Mott phase. Akin to the impossibility

of mixing oil and vinegar, we �nd that the Fermi liquid and the magnetic 
 uid are not miscible

into each other in the transition region. While the insulating spin-liquid obviously cannot support

mobile charge carriers, the Fermi liquid metal always shows stronglyincoherent spinon excitations,

due to an orthogonality catastrophe [73, 74, 75]. This observation has important consequences,

because the two associated Fermi surfaces cannot be tuned into each other in a continuous way.

Thus, the Mott localization into a gapless spin-liquid turns out to h ave �rst-order character even at

zero temperature, similarly to the case of a spin-gapped insulator described by frozen short-range

singlets. This result is in contrast with other scenarios based on theRVB picture only, in which the

quasiparticles vanish continuously [76, 77, 78, 79], but is consistent with all available experiments.

4.2 Method

We start by describing our theoretical framework, that is sketched in Fig. 4.2. The main idea is

to solve the DMFT equations by explicitly introducing spinon degrees of freedom, and to feedback

the resulting spinon self-energy �f (! ) into the RVB equations, thus a�ecting the stability of the
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spin liquid. To be concrete, we consider henceforth the half-�lled Hubbard-Heisenberg Hamiltonian:

H = � t
X

hi;j i �

dy
i� dj� + U

X

i

�
dy

i " di " �
1
2

� �
dy

i #di # �
1
2

�

+ J
X

hi;j i

"
X

�;� 0

dy
i�

~� �;� 0

2
di� 0

#

:

"
X

�;� 0

dy
j�

~� �;� 0

2
dj� 0

#

: (4.1)

Here t is the intersite hopping, U the local Coulomb interaction, J an explicit nearest neighbor

exchange, and we have denoted by~� the set of Pauli matrices. The RVB picture results here from

a decomposition of the physical electron into a chargeless spin-carrying fermion f y
j;� and a spinless

charge-carrying compact bosonX j = ei� j , using on each sitej the so-called slave rotor [76, 80] de-

composition dy
j;� = f y

j;� ei� j , with i@=@�j =
P

� [f y
j� f j� � 1

2 ]. This provides an e�ective Hamiltonian:

He� =
X

hi;j i �

f y
i� f j�

h
Je� � tei ( � i � � j )

i
�

U
2

X

i

@2

@�2i
; (4.2)

with Je� = � J


f y

i� f j�
�

the RVB bond parameter. This mean-�eld Hamiltonian is consecu-

tively solved within the DMFT, by employing an impurity solver t hat is naturally based on the

spinon/rotor decomposition [80], leading to the following respective Green's functions in Matsubara

domain:

Gf (i! n ) � 1 = i! n + � � � f (i! n ) � � f (i! n ); (4.3)

GX (i� n ) � 1 =
� 2

n

U
+ � � � X (i� n ); (4.4)

and self-energies in imaginary time:

� f (� ) = �( � )GX (� ); (4.5)

� X (� ) = N �( � )Gf (� ); (4.6)

with N = 3. The DMFT self-consistency equations account both for the physicalelectron and the

spinon hybridization functions, which read for the Bethe lattice: � (� ) = t2Gd(� ) = t2Gf (� )GX (� )

and � f (� ) = J 2
e� Gf (� ). The RVB equation can now be explicited on the Bethe lattice:

Je� =
J
2�

X

i! n

Je�

z2
n
2 + zn

q
z2

n
4 + J 2

e� + J 2
e�

; (4.7)
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with zn = ! n � Im� f (i! n ) and � = 1=T the inverse temperature. We will set in what follows

t = 1=2, taking the electronic half-bandwith D = 2 t = 1 as natural energy unit. The computation

of the electronic speci�c heat results from the internal energy:



H

�
=

2
�

X

n;k

[� d
kGd(k; i! n ) + � f

k Gf (k; i! n )]ei! n 0+
+

U
2

D "# ; (4.8)

with � d
k / � f

k the electron and spinon dispersion relations, andGd / Gf their respective Green's

functions. An important term to consider here is the double occupancy D "# , which is related to the

local charge susceptibility by D "# = (1 =2)� c(� = 0). This quantity can be expressed from either a

spinon response� f
c or a rotor response� X

c :

� f
c (� ) =


 X

�;� 0

[f y
j� (� )f j� (� ) �

1
2

][f y
j� 0(0)f j� 0(0) �

1
2

]
�
;

� X
c (� ) =



i

@
@�j

(� )i
@

@�j
(0)

�
: (4.9)

Both expressions are equivalent only provided the constraint is dealt strictly, but in a mean-�eld

treatment, one must use Nagaosa and Lee's composition rule� c(i! ) = [( � f
c ) � 1 +( � X

c ) � 1]� 1 [further

technical details on the implementation of the speci�c heat calculation are given in Appendix.C][14].

The solution of the combined RVB and DMFT self-consistent scheme provides the physical

density of states and speci�c heat curves shown in Fig.4.3.

4.3 Results

4.3.1 Density of state and speci�c heat

The electronic density of states shows at low temperature the expected behavior: the quasipar-

ticle peak narrows down for increasing values ofU, with strong spectral weight transfer towards

Hubbard bands located at� U=2. This situation persists upon a discontinuous disappearance of the

quasiparticle peak, leading to the formation of an insulating state with a large Mott gap (shown

for U = 3). The formation of heavy quasiparticles can equally be witnessed inthe speci�c heat

(bottom panel in Fig. 4.3), with a strong enhancement of the
 = CV =T coe�cient at the lowest

temperature. However, in strong contrast with the usual DMFT predictions, we �nd the persistence

of a �nite 
 coe�cient in the Mott phase, instead of the usually observed activated behavior for

a high entropy paramagnetic insulator. This result is in agreement with the thermodynamic mea-

surements made in several organic materials showing spin liquid behavior. Fitting from Fig. 4.3
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Figure 4.3: Upper panel: electronic density of states across the Mott transition for T = 0 :005D and
J=D = 0 :2, with increasing values of the Coulomb interactionU=D = 1 ; 2; 3. Lower panel: corre-
sponding speci�c heat as a function of temperature. A striking linear in temperature contribution
remains in CV at U=D = 3, while quasiparticles have disappeared from the density of statesin the
Mott phase.
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the low-temperature linear slope ofCV in the Mott insulating phase, we �nd 
 = 27k2
B =D and


 = 14k2
B =D for J=D = 0 :2 and J=D = 0 :4 respectively. Taking the half-bandwidth in the range

D = 200 meV, from recent estimates on various organic systems [81, 82], we have approximately


 = 80 mJK � 2mol� 1 and 
 = 40 mJK � 2mol� 1 for J=D = 0 :2 and J=D = 0 :4 (these correspond to

typical values of the exchange constant in organics [83]). Our predictions are somewhat larger, but

of the right magnitude, with the experimental value 
 = 20 mJK � 2mol� 1 measured both for the

EtMe3Sb[Pd(dmit) 2]2 [71] and � -(BEDT-TTF) 2Cu2(CN) 3 compounds [3].

We now demonstrate that this thermodynamic e�ect has a strong in
uence of the metal-insulator

phase diagram. The main reason is the quenching of the entropy of the Mott insulator by the

presence of a �nite exchange interactionJ , which typically bends the transition lines towards a

stabilization of the metal upon heating. Indeed, the entropic contribution to free energy of the

insulator is strongly diminished by exchange, leading to a reentrance of the �rst order transition

lines [84, 85, 86]. We show in Fig. 4.4 two phase diagrams, for J=D = 0 :1 and J=D = 0 :4

respectively. The continuous lines denote the metal to insulator boundaries,Uc1(T) and Uc2(T) at

which the insulator and metallic solution disappear respectively. For small J (upper panel), only

the Uc1 line is bent, while the whole transition region is a�ected for large J (lower panel), with

a slight increase of the maximum critical temperature Tc due to the coupling to spinon degrees

of freedom. Most importantly, the critical domain moves towards strongly reduced values of the

Coulomb strength U at increasingJ , so that the Brinkman-Rice transition, associated to a diverging


 coe�cient, is strongly pre-empted by spin 
uctuations. This read ily explains the small values of


 that were found in our calculations.

4.3.2 Phase diagram

We then consider the fate of the gapless insulating spin liquid. Thephase diagrams of Fig.4.4

also show as dots the onset of the spinon Fermi surface, namely the low-temperature domain where

the e�ective spinon bandwidth Je� 6= 0. We �nd that this domain corresponds precisely to the

region of existence of the Mott insulator (only at low temperature for small J , and at temperatures

up to the critical Tc of the terminal Mott endpoint for large enough J ). Said otherwise, the high

entropy local moment insulator is always unstable to the formation of a low entropy spin liquid,

even in the coexistence region of the MIT where the Mott gap is stronglyreduced. Since the gapless

spin-liquid state penetrates fully the part of the phase diagram where metal and insulator coexist,
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Figure 4.4: Phase diagram forJ=D = 0 :1 (upper panel) andJ=D = 0 :4 (lower panel) as a function
of Coulomb strength U=D and temperature T=D. Continuous lines denote the metal-insulator
boundaries, and dashed lines indicate the true �rst-order transition based on the free energy. Also,
the region bounded by dots show the low-temperature onset of the spinon Fermi surface in the
Mott insulator. The shaded region indicates that J metal

e� = 0 for the metallic state within the whole
coexistence region. This demonstrates that spinons are only well de�ned quasiparticles in the low
temperature Mott phase, and are never stable in the metal.
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one can wonder whether the metallic state is capable of hosting non-trivial spinon excitation. We

�nd however, for all our simulations, that the spinon bandwidth always vanishes in the metal,

namely J metal
e� = 0. Since the critical value Uc2(T = 0) for the loss of the metal steadily decreases

with increasing J , this shows that the Mott transition becomes intrinsically �rst ord er at zero

temperature, in contrast to the case J = 0 (standard DMFT), where the quasiparticle weight

continuously vanishes.

4.3.3 Spinon orthogonality catastrophe

We �nally show that spinons are dramatically repelled from the Fermi l iquid because of the

generic occurence of an orthogonality catastrophe in the spinon self-energy � f (! ) for a Fermi

liquid state. The reason is deeply rooted in the spinon/rotor decomposition, and its associated

constraint Q = i@=@�j �
P

� [f y
j� f j� � 1

2 ] = 0. While the spectral function of the physical electron

dy
j� = f y

j� ei� j connects excitations within the physical subspaceQ = 0 only, the spinon density of

states corresponds to processes that link the physical subspaceQ = 0 to an unphysical subspace

Q = 1 containing one extra auxiliary slave-particle. Thus, the spinon density of states involves

matrix elements of the type j


� (1) jf y

j� j� (0)
�
j2, where j� (Q)

�
are wavefunctions living in di�erent

Q-subspace, which thus experience in a metal a singular x-ray edge.Due to this mechanism,

the spinon self-energy acquires an anomalous frequency dependence �f (! ) / ! � at low-energy

(typically � < 1=2). This crucial property is well obeyed by construction in our impurity solver [80],

and can be shown from an exact numerical solution of quantum impurity problems [73, 74], as well

as from 1=N 
uctuations [ 87] around the condensed slave boson mean-�eld theory (upon which the

static RVB picture is based). The calculated spinon self-energy is shown in Fig. 4.5 for the metallic

and insulating phases. The anomalously large spinon scattering rate is clearly seen forU=D = 1,

while a regular behavior is found for U=D = 3. Spinon are thus very incoherent in the metallic

state, insomuch as to fully destroys their Fermi surface, as we discuss now.

The spinon orthogonality catastrophe is indeed the key physical mechanism leading to the

instability of the spinon Fermi surface in the whole metallic phase. The absence of spinons in the

metal, J metal
e� = 0, can be formulated as a simple inequality from the linearized version of the RVB

equation (4.7):
1
J

>
1

2�

X

i! n

1
[! n � Im� f (i! n )]2 : (4.10)
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Figure 4.5: Frequency-dependent spinon self-energy �f (i! n ) at temperature T = 0 :005D for U=D =
1 (metal) and U=D = 3 (insulator). The strong enhancement in the metal is due to an x-ray edge
e�ect, which is a hallmark the spinon spectral density.

Using the anomalous spinon self-energy �f (i! ) = � iC f j! j � Sign(! ) at low energy, and evaluating

the Matsubara sum at low temperatures, we �nd the inequality for stability of the a true Fermi

liquid:
1
J

>
Z 1

0

d!
�

1
[! + Cf ! � ]2

(4.11)

Since � < 1=2, the infrared divergence in the integral is cut o� and the inequality is ful�lled for

small J . In contrast, the Mott insulator is always unstable to the spin-liqu id because the integral

diverges for � f = 0. These analytic arguments are in complete agreement with our numerical

�ndings.

4.4 Conclusion

In conclusion, we have examined the role of gapless spin excitations, characterizing frustrated

Mott insulators, in the vicinity of the Mott metal-insulator transiti on at half-�lling. Our result

indicate that the spin-liquid arises simultaneously with Mott gap opening, suggesting that local

magnetic moments generically tend to form a zero-entropy gapless state in absence of magnetic

ordering. However, a spinon Fermi surface cannot be stabilized upon closing of the Mott gap, due

to an orthogonality catastrophe we identi�ed with emerging charge 
uctuat ions. This mechanism

leads to the conclusion that the Mott transition associated with the loss of quasiparticles atUc2
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is inherently of �rst-order type, even at zero temperature and for a zero entropy Mott insulator.

From this perspective, we advocate a scenario where behavior consistent with quantum criticality

(QC) has purely local character and emerges only at high temperatures, above the metal-insulator

coexistence region, consistent with experiments. Our result indicate, thus, that spin liquid correla-

tions do not play a signi�cant role within this high temperature QC re gion, which marks the closing

of the Mott gap. The physical picture we propose is dramatically di�erent from the perspective

provided from alternative theories [76, 77, 78, 79], which postulate the dominance of spin-liquid

excitation in the entire QC regime surrounding the Mott point.
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CHAPTER 5

EMERGENT BLOCH EXCITATIONS IN MOTT
MATTER

5.1 Introduction

The physical nature of the excited states in strongly interacting quantum systems has long been

a subject of much controversy and debate. Deeper understanding wasachieved by Landau, more

than half a century ago [88], who realized that in systems of fermions the Pauli principle provides

a spectacular simpli�cation. He showed that many properties of Fermi systems can be understood

in terms of weakly interacting quasiparticles (QP), allowing a precise and detailed description of

strongly correlated matter. Modern experiments provide for even more direct evidence of such

QP excitations, for example from using angle-resolved photoemission spectroscopy (ARPES) [7] or

scanning-tunneling microscopy (STM) methods [89].

The Fermi liquid paradigm, however, describes only the low energyexcitations. At higher en-

ergies, the physical properties are often dominated by incoherent processes, which do not conform

to the Landau picture. The task to provide a simple and robust theoretical description of such

incoherent excitations has therefore emerged as a central challenge of contemporary physics. An

intriguing apparent paradox is most evident around the Mott point. Here, ARPES and STM ex-

periments provide often clear evidence of additional well-de�nedhigh energy excitations (Hubbard

bands) which, while being fairly incoherent, still display relatively well de�ned Bloch character with

pronounced momentum dispersion, see, e.g., Ref. [90]. As a matter of fact, it is often di�cult to

experimentally even distinguish the Hubbard bands found in Mott insulators from ordinary Bloch

bands found at high energy in conventional band insulators. While such behavior can be already

numerically reproduced by some modern many-body approximations [19, 91], a simple conceptual

picture for the apparent Bloch character of such high energy charge excitations is not still available.

In particular, variational methods such as the Gutzwiller Approximat ion (GA) [ 18] | which are

often able to reproduce the numerical results in a much simpler semi-analytical fashion | generally
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capture only the low-lying QP features on the metallic side, but cannot provide a description of

charge excitations around the Mott point and in the insulating regime.

The goal of this Letter is to write an appropriate variational wave function able to capture

both the (low energy) QP bands and the (high energy) Hubbard bands, within the same theoret-

ical framework. A particularly interesting fact emerging from our theory is that many important

features of both types of excitations are encoded in the bare density ofstates (DOS) of the uncorre-

lated system and a few renormalization parameters | in a similar fashion as for the QP excitations

in Landau theory of Fermi liquids. This is accomplished, similarly as in many other theories for

many-body systems, see, e.g., Refs. [92, 93, 94], by enlarging the Hilbert space by introducing aux-

iliary "ghost" degrees of freedom. In particular, this construction sheds light on the physical origin

of the "hidden" Bloch character of the Hubbard bands mentioned above. Our calculations of the

single-band Hubbard model, which are benchmarked against the DynamicalMean Field Theory

(DMFT) [ 19, 91] solution, show that the new wave function quantitatively captures not only the

dispersion of the QP but also the Hubbard bands. Furthermore, our theory enables us to describe

the Mott transition and the coexistence region between the metallicand the Mott-insulator phases.

5.2 Ghost GA theory

For simplicity, our theory will be formulated here for the single-band Hubbard model

Ĥ =
X

RR 0

X

�

tRR 0 cy
R� cR0� +

X

R�

U n̂R" n̂R# (5.1)

at half-�lling. The generalization to arbitrary multi-orbital Hubbard Hami ltonians is straightfor-

ward.

In order to construct the Ghost-GA theory we are going to embed the physical Hamiltonian of

the system [Eq. (5.1)] within an extended Hilbert space obtained by introducing auxiliary Fermionic

"ghost" degrees of freedomnot coupled with the physical orbitals, see Fig.5.1. Let us representĤ

within the extended Hilbert space mentioned above as follows:

Ĥ =
X

RR 0

X

���

~t ��
RR 0 cy

R�� cR0�� +
X

R

U n̂R1" n̂R1#

=
X

k

X

���

~� ��
k cy

k�� ck�� +
X

R

U n̂R1" n̂R1# ; (5.2)
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Figure 5.1: Representation of a lattice including 2 ghost orbitals (� = 2 ; 3). The Hamiltonian of
the system acts as 0 over the the auxiliary ghost degrees of freedom. In particular, the Hubbard
interaction U acts only over the physical orbital � = 1.

where ~t11
RR 0 = tRR 0 are the physical hopping parameters, ~� 11

k = � k are the eigenvalues of the �rst

term of Ĥ , ~t ��
RR 0 = ~� ��

k = 0 8 (�; � ) 6= (1 ; 1) and � is the spin.

Our theory consists in applying the ordinary multi-orbital GA theory [95, 96, 97, 98, 99] to

Eq (5.2). In other words, the expectation value of Ĥ is optimized variationally with respect to

a Gutzwiller wave function represented asj	 G i = P̂G j	 0i , where j	 0i is the most general Slater

determinant, P̂G =
Q

R P̂R , and P̂R acts over all of the local degrees of freedom labeled byR |

including the ghost orbitals � > 1. The variational wave function is restricted by the following

conditions:

h	 0j P̂ y
R P̂R j	 0i = h	 0j	 0i (5.3)

h	 0j P̂ y
R P̂R cy

R�� cR�� j	 0i = h	 0j cy
R�� cR�� j	 0i ; (5.4)

which are commonly called "Gutzwiller constraints". Furthermore, th e so called "Gutzwiller Ap-

proximation" [ 18] | which is exact in the limit of in�nite dimensions (where DMFT i s exact)

| is employed. The minimization of the variational energy will be perf ormed by employing the

algorithms derived in Ref. [100].

The basis of our theory is that extending the Hilbert space by introducing the ghost orbitals

does not a�ect the physical Hubbard Hamiltonian Ĥ , as all of its terms involving ghost orbitals

are multiplied by 0, see Eq. (5.2). The advantage of enlarging the Hilbert space arises exclusively
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from the fact that the corresponding Ghost-GA multi-orbital variational space is substantially more

rich with respect to the original GA variational space (where P̂R acts only on the physical degrees

of freedom). In this respect, our scheme presents analogies with thesolution of the A�eck, Lieb,

Kennedy and Tasak (AKLT) model [ 92] and with the theory of matrix product states (MPS) [ 93, 94],

which are also constructions obtained involvingvirtual bipartite entanglement and projections.

As shown in previous works, see, e.g., Refs. [97], the variational energy minimum of Ĥ is

realized by a wave function j	 G i = P̂G j	 0i where j	 0i is the ground state of a quadratic multi

band Hamiltonian represented as

Ĥqp =
X

k

X

ab�

� ~R~� k ~R y + ~�
�

ab f y
ka� f kb�

=
X

kn�

~� �
kn  y

kn�  kn� ; (5.5)

where f ka� are related to cka� by a proper unitary transformation [ 95, 97], the matrices ~R and

~� are determined variationally and ~� �
kn are the eigenvalues ofĤqp. The states represented as

j	 p
Gkn� i = P̂G y

kn� j	 0i and j	 h
Gkn� i = P̂G kn� j	 0i ; where  y

ka� are the eigen-operators ofĤqp,

represent excited states ofĤ [101, 102].

The energy-resolved Green's function of the physical degrees of freedom (� = 1) can be evaluated

in terms of the excitations mentioned above and represented as

G(� k ; ! )=
�
! � ~� k � ~�( ! )

� � 1
11 =

�
! � � k � �( ! )

� � 1; (5.6)

where ~�( ! ) = � !
�
I � ~R y ~R

�� ~R y ~R
� � 1 + ~R � 1~� ~R y� 1 and the subscript "11" indicates that we are

interested only in the physical component� = � = 1 of the Green's function. We point out that,

since Eq. (5.6) involves a matrix inversion, the Ghost-GA approximation �( ! ) to the physical self-

energy is generally anon-linear function [103, 104] | while, by construction, the self-energy is

linear in the ordinary GA theory. Note also that, since

G(� k ; ! ) =

"

~R y 1

! �
� ~R~� k ~R y + ~�

� ~R

#

11

; (5.7)

the poles ofG(� k ; ! ) coincide with the eigenvalues ~� �
ka of Ĥqp, see Eq. (5.5).
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5.3 Results

5.3.1 Benchmark: Energy, double occupancy, and quasiparticle weight

Below we apply our approach to the Hubbard Hamiltonian [Eq. (5.2)] at half-�lling assuming a

semicircular DOS, which corresponds, e.g., to the Bethe lattice in the limit of in�nite connectivity,

where DMFT is exact [19]. The half-bandwidth D will be used as the unit of energy. The extended

Ghost-GA scheme will be applied following the procedure of Ref. [100], utilizing up to 2 ghost

orbitals.

In Fig. 5.2 is shown the evolution as a function of the Hubbard interaction strengthU of the

Ghost-GA total energy, the local double occupancy and the QP weightz. Our results are shown in

comparison with the ordinary GA theory and with DMFT in combination with Numerical Renor-

malization Group (NRG). In particular, we employed the "NRG Ljubljana" im purity solver [105].

The agreement between Ghost-GA and DMFT is quantitatively remarkable. In particular,

the Ghost-GA theory enables us to account for the coexistence region ofthe Mott and metallic

phases, which is not captured by the ordinary GA theory. The values of the boundaries of the

coexistence regionUc1 ' 2, Uc2 ' 2:79 are in good agreement with the DMFT results available

in the literature [ 106, 107, 108, 109], i.e., Uc1 ' 2:39, Uc2 ' 2:94. The Ghost-GA value of Uc2,

which is the actual Mott transition point at T = 0, is particularly accurate. The method also

gives a reasonable value for the very small energy scale characterizing the coexistence region,

which we can estimate asTc ' E ins(Uc1) � Emet (Uc1) ' 0:02, consistently with both DMFT and

experiments [110, 111]. We point out also that, as shown in the second panel of Fig.5.2, the Ghost-

GA approach captures the charge 
uctuations in the Mott phase, while this is approximated by the

simple atomic limit (which has zero double occupancy) within the Brinkman-Rice scenario [112].

Interestingly, while at least 2 ghost orbitals are necessary to obtain the data illustrated above

for the Metallic solution, 1 ghost orbital is su�cient to obtain our resul ts concerning the Mott

phase. Increasing further the number of ghost orbitals does not lead toany appreciable di�erence.

As we are going to show, this is connected with the fact that the electronic structures of the Mott

and the metallic phases are topologically distinct.
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Figure 5.2: Evolution of total energy (upper panel), local double occupancy (middle panel) and
QP weight (lower panel) as a function of the Hubbard interaction strength U for the single-band
Hubbard model with semicircular DOS at half-�lling. The Ghost-GA re sults are shown in compar-
ison with the ordinary GA and with the DMFT+NRG results. The Ghost-G A boundaries of the
coexistence regionUc1; Uc2 are indicated by vertical dotted lines. Inset: Integral of Ghost-GA local
spectral weight over all frequencies (see discussion in main text).
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5.3.2 Benchmark: Single-particle Green's function

Let us now analyze the Ghost-GA single-particle Green's functionG(�; ! ), see Eq. (5.7). In

Fig. 5.3 is shown the Ghost-GA energy-resolved spectral functionA(�; ! ) = � 1
� ImG(�; ! ) in com-

parison with DMFT [ 113]. Although the broadening of the bands (scattering rate), is not captured

by our approximation (as it is not captured by the ordinary GA), the positi ons and the weights of

the poles of the Ghost-GA spectral function encode most of the DMFT features, not only at low

energies (QP excitations), but also at high energies (Hubbard bands). In order to analyze how the

spectral properties of the system emerge within the Ghost-GA theory, it is particularly convenient

to express the QP Hamiltonian [Eq. (5.5)] in a gauge where~� is diagonal.

In the metallic phase, an explicit Ghost-GA calculation obtained employing 2 ghost orbitals

shows that the matrices ~R and ~� are represented as follows:

~� ij = l � ij (� 2i � � 3i ) (5.8)

~R ij = � j 1

� p
z � i 1 +

p
h (� i 2 + � i 3)=

p
2
�

; (5.9)

where � ij is the Kronecker delta, and l, z and h are real positive numbers determined numerically

as in Ref. [100]. The corresponding self-energy, see Eq. (5.6), is given by:

�( ! ) =
!

1 + 1
z� ! 2 � l 2+2 h! 2

! 2 � l 2

= �
1 � z

z
! + o(! 2) : (5.10)

Thus, the variational parameter z of Eq. (5.9) represents the QP weight, whose behavior was

displayed in the third panel of Fig. 5.2. Note that the overall spectral weight
R

d!
R

d� � (� ) A(�; ! ),

where� (� ) is the semicircular DOS, is notz as in the ordinary GA theory, but it is z+ h = [ ~R y ~R]11,

which is almost equal to 1 for all values ofU (see the inset of the third panel in Fig. 5.2). The

additional spectral contribution h, which is not present in the ordinary GA approximation, enables

the Ghost-GA theory to account for the Hubbard bands.

In the Mott phase, an explicit Ghost-GA calculation obtained employing 1 ghost orbital shows

that the matrices ~R and ~� are represented as follows:

~� ij = l � ij (� 1i � � 2i ) (5.11)

~R ij = � j 1
p

h (� i 1 + � i 2)=
p

2; (5.12)
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Figure 5.3: Poles of the Ghost-GA energy-resolved Green's function (bullets), see Eq. (5.7), in
comparison with DMFT+NRG. The size of the bullets indicates the spectral weights of the corre-
sponding poles. Metallic solution forU = 1 ; 2:5 and Mott solution for U = 3 :5; 5.
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where l and h are real positive numbers determined numerically as in Ref. [100]. Note that h =

[ ~R y ~R]11 ' 1 (see the inset of the third panel in Fig. 5.2). The corresponding self-energy, see

Eq. (5.6), is given by:

�( ! ) = �
1 � h

h
! +

l2

h
1
!

: (5.13)

The pole of the self energy at! = 0, which is the source of the Mott gap, is captured by the

Ghost-GA theory.

The analysis above clari�es also why, by construction, within the Ghost-GA approximation the

self-energy can develop poles, see Eqs. (5.10) and (5.13), but can not capture branch-cut singularities

on the real axis.

It is important to point out that the Hilbert space extension that we hav e introduced in this

work has been essential in order to capture the e�ect of the electron correlations on the topology

of the excitations | such as the change of the number of bands at the Mott tran sition (between

3 bands in the metallic phase and 2 bands in the Mott phase). In fact, without extending the

Hilbert space, the ordinary GA theory enables only to renormalize and shift the band structure

with respect to the uncorrelated limit U = 0, without a�ecting its qualitative topological structure.

On the other hand, extending the Hilbert space enables us to relax this constraint, as G(�; ! ),

see Eq. (5.7), is variationally allowed to have any number of distinct poles equal orsmaller to the

corresponding total (physical and ghost) number of orbitals. It is for this reasons that only 1 ghost

(2 orbitals) is su�cient to describe the Mott phase of the single-band Hubbard model, while at

least 2 ghosts (3 orbitals) are necessary in order to describe its metallic phase | whose spectra

includes the QP excitations and the 2 Hubbard bands. A remarkable aspect of this construction is

that, within the Ghost-GA theory, the information concerning the sp ectral function | including

the Hubbard bands | is entirely encoded in only 3 parameters ( z; h; l) in the Metallic phase, and

in 2 parameters (h; l ) in the Mott phase, see Eqs. (5.8), (5.9), (5.11), (5.12).

5.4 Conclusion

We derived a uni�ed theoretical picture for excitations in Mott sys tems based on a generalization

of the GA, which captures not only the low-energy QP excitations, but also the Hubbard bands. The

essential idea consists in extending the Hilbert space of the system by introducing auxiliary "ghost"

orbitals. This construction enables us to express analytically many important features of both
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types of excitations in terms of the bare DOS of the uncorrelated system and a few renormalization

parameters, in a similar fashion as for the QP excitations in Landau theory ofFermi liquids. In

particular, this idea provides us with a conceptual picture which assigns naturally a Bloch character

to the Hubbard bands even in Mott insulators. In this respect, we notethat our theory presents a

few suggestive analogies with the interesting (but rather speculative) idea of "hidden Fermi liquid"

previously introduced by P. W. Anderson [114] within the context of the BCS wave function (for

superconductors) and the Laughlin's Jastrow wave function (for the Fractional Hall E�ect). In

fact, they both propose a descriptions of non-Fermi liquid states related to ordinary Fermi liquids

residing in unphysical Hilbert spaces, see, e.g., Ref. [115]. From the computational perspective,

our Ghost-GA theory constitutes a very promising tool for ab-initio calculations in combination

with Density Functional Theory (DFT) [ 116, 117, 99, 118, 97], as it is substantially more accurate

with respect to the ordinary GA approximation, without much addition al computational cost.

In fact, within the numerical scheme described in Refs. [100, 97], our theory results in solving

iteratively a �nite impurity model with 2 � � 1 bath sites, where� is the total number of orbitals

(physical and ghost). Since there exist numerous available techniques enabling to solve e�ciently

this auxiliary problem, see, e.g., Refs. [119, 120, 121, 122, 123], this opens an exciting avenue

for realistic modeling of many challenging materials, including predictions of ARPES spectra for

complex orbitally-selective Mott insulators. Furthermore, since the Ghost-GA theory is based on

the multi-orbital GA [ 100, 97], it can be straightforwardly generalized to �nite temperatures [124,

125, 126] and to non-equilibrium problems [127, 128]. For the same reason, the Ghost-GA theory can

be reformulated [129, 95, 97] in terms of the rotationally invariant slave boson (RISB) theory [ 130,

131], whose exact operatorial foundation recently derived in Ref. [100] constitutes a starting point

to calculate further corrections [132]. It would be also interesting to apply the ghost-orbital Hilbert

space extension in combination with the Variational Monte Carlo method [133] or the generalization

of the GA to �nite dimensions of Ref. [134], which might lead to a more accurate description of

strongly correlated electron systems even beyond the DMFT approximation.
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CHAPTER 6

STRUCTURAL PREDICTIONS AND
POLYMORPHISM IN TRANSITION METAL

COMPOUNDS

6.1 Introduction

Predicting ground-state structure of periodic systems became an active area of research with

the advent and e�cient numerical implementation of total energy metho ds, density functional

theory (DFT) in particular. Various approaches to exploring potential e nergy surface of solids have

been proposed [9, 135] including simulated annealing [136, 137], evolutionary algorithms [138, 139,

140], metadynamics [141], minima hopping [142], random structure search [143], methods based

on data mining and machine learning [144], structure prototyping [ 145, 8, 146], etc. Alongside, an

increased activity in exploring the space of low energy polymorphs insearching for new functional

materials [147, 148] and advancing our understanding of the phenomenon of polymorphism itself

and realizability of metastable structures [146, 149] can be observed.

The common trait of all of the above-mentioned methods is their critical dependence of the

accurate representation of the potential energy surface,i.e., on the correct electronic Hamiltonian

that de�nes the potential energy of the ions within the adiabatic approximation. Given the usual

method of choice, typically based on DFT, it is not a surprise that mostof the structure prediction

works try to avoid transition metals and their compounds. This is because of the inability of

DFT and related approaches to correctly describe e�ects of strong electronic correlations present

in these systems,e.g., the strong mass enhancement in heavy fermion compounds and the Mott

insulator metal transition (IMT) in transition metal oxides [ 13, 10]. One manifestation of the

problems that can arise due to the e�ects that go beyond DFT is the inaccurate dependence of

the total energy on crystal structure leading to wrong energy orderingof di�erent polymorphs.

This can even cause incorrect predictions of the stable structure.For example, the tendency to

erroneous predictions of the lowest energy structure of compounds that contain transition metal

atoms has recently been recognized for MnO, which according to DFT and DFT+U has lower
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energy in the tetrahedrally coordinated zincblende structure in antiferromagnetic phase contrary

to experimentally known rocksalt ground state [150, 151], and for MnO2 where DFT, DFT+U

and hybrid HSE functionals favor � phase instead of the experimentally known� ground state

structure [152]. In the case of MnO, the improved description of electronic correlations within

the random phase approximation [150] or �xed node di�usion Monte Carlo [ 151] provides correct

energy ordering of di�erent structures and correct prediction of the rocksalt ground-state structure.

Despite the success of DFT+U and RPA treatments in the aforementioned magnetic ordered phases,

in general, most of the transition metal oxides are paramagnetic Mott insulators at the ambient

condition and show a Mott IMT by applying pressure [153, 154]. For example, MnO, FeO, and CoO

are paramagnetic Mott insulators at the ambient condition and experience anantiferromagnetic

transition below the Neel temperatures, 116K, 198K, and 291K, respectively. It is known DFT+U

and RPA related methods fail to produce paramagnetic insulating solutions in FeO and CoO.

Therefore, more accurate and e�cient methods to treat the correlation e�ect are required in the

�eld of structure prediction.

In this work, we investigate a general preference of DFT based methods (LDA) toward tetra-

hedral coordination of transition metals in their oxide compounds (manganese oxide included).

Namely, we �nd that, in DFT, the transition metal oxides such as MnO, C rO, FeO, and CoO in

their rocksalt structure, which consists of edge-sharing coordination octahedra, are higher in energy

than in their wurtzite or zincblende structures within which t he transition metal atoms are tetra-

hedrally coordinated. This is in contradiction with the rocksalt st ructure being the experimentally

known the stable structure for all these systems in the ambient condition. To elucidate the physical

reasons behind this preference and investigate further the role of electronic correlations on the total

energy di�erence between di�erent crystal structures in transition metal compounds, we employ the

local density approximation (LDA) plus rotationally-invariant slave-b oson (RISB) approach as the

treatment for the correlation e�ect in LDA. This state of art method is cap able of describing the

large mass enhancement and the Mott IMT due to the strong local Coulomb interaction between

electrons [21, 155]. It also has been shown to have qualitatively agreements with sophisticated

LDA plus dynamical mean �eld theory (LDA+DMFT) approach [ 20] but is computationally more

e�cient for performing large scale calculations. LDA+U, which is one of the most popular methods

to treat correlation e�ects, is also used to compare the performance of LDA+RISB.
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Figure 6.1: Four crystal structures, (a) NiAs-type, (b) rocksalt, (c) wurtzite, and (d) zincblende,
studied in this project. NiAs-type and rocksalt have octahedral coordinate with hexagonal and cubic
symmetry, respectively, and wurtzite and zincblende have tetrahedral coordinate with hexagonal
and cubic symmetry, respectively.

To benchmark our approach, we studied six transition metal binary oxides and chalcogenides

including CrO, FeO, MnO, CoO, CoS, and CoSe, in four di�erent crystal structures: rocksalt,

NiAs-type, zincblende, and wurtzite, as shown in Fig. 6.1. This set of crystal structures is chosen

to help analyzing the interplay between the local coordination versus the long range order as they

combine octahedral coordination with cubic symmetry (rocksalt), octahedral coordination with

hexagonal symmetry (NiAs-type), tetrahedral coordination with cubic symmetry (zincblende) and

tetrahedral coordination with hexagonal symmetry (wurtzite). Another observation which follows

from the available experimental data is that, while transition metal monoxides favor the rocksalt

structure, as the anion changes down along the group-16 of the periodic table, from O to S, Se and

Te, the ground state structure in some systems changes to hexagonal symmetry and/or tetrahedral

coordination. This is the case for CoS and CoSe which adopt the NiAs-type structure rather than

the rocksalt. To elucidate the importance of strong correlation e�ects, we constrain our system in

the paramagnetic phase, corresponding to the high temperature phase forthese materials, where

DFT related methods fail to produce the experimentally observedstructures in these transition

metal oxides. Our results show that LDA+RISB correctly captures th e experimentally observed

crystal and electronic structures for all six transition metal binary oxides and chalcogenides. It also

reproduces the Mott IMT in MnO, FeO, and CoO, as found in experiments. Moreover, LDA+RISB

predicts accurate equilibrium volumes of all the oxides and chalcogenides compared to the data from

inorganic crystal structure database (ICSD).
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6.2 Method

The electronic structure calculation was performed using the density functional theory within

the local density approximation (LDA) and LDA+U as implemented in the WI EN2k package [156].

The LDA plus rotationally invariant slave boson (LDA+RISB) calculation wer e performed using

the CyGutz package interfaced with the LDA in WIEN2k as describe in Chapter. 2. The calculation

was carried out using 50000 k-points andRKmax = 8 for all the calculations. The total energy and

charge convergence criteria were set to 10� 5 Ry and 10� 3 electrons, respectively. For the double

counting functional, we used the fully-localized limit (FFL) in LD A+RISB and the self-interaction

correction (SIC) in LDA+U. For the Coulomb interaction parametrization in LD A+RISB, we

use the rotationally invariant Coulomb interaction within the Slater-C ondon parametrization as

described in Appendix. A. For all the cases, we only consider the crystal �eld (CF) e�ect and

ignore the spin-orbit coupling (SOC) e�ect because the energy scalefor SOC is much smaller than

the CF in 3d transition metal compounds.

6.3 Results

6.3.1 Predicted structures and unit cell volumes

To demonstrate the importance of the electronic correlation, we show the predicted unit cell

volumes and structures from LDA, LDA+RISB and the experiment data in Fi g. 6.2. The ex-

perimentally observed and the predicted structures are color coded by blue, green, red, cyan, for

NiAs-type, rocksalt, wurtzite, zincblende, respectively, and the �lled and half-�lled symbols cor-

respond to the the metallic and the Mott-insulating phase, respectively. As shown in the �gure,

without the correction of the correlation e�ects, LDA (triangles) fails to predict the ground state

structures for all the oxides, and the predicted equilibrium volumes of CoS and CoSe are inaccurate

compared to the experimental data (circles). LDA also predicts theMnO, FeO, and CoO as metal

instead of the experimentally known Mott insulator. After the inclu sion of electronic correlation

e�ects by using LDA+RISB, the LDA+RISB data (diamonds) faithfully cap ture the correct exper-

imental structures and unit cell volumes for all the selected materials, CrO, MnO, FeO, CoO, CoS,

and CoSe. This result indicates that LDA+RISB is a reliable method to treat the correlation e�ects

in transition metal compounds. In the following section, we will compare the di�erence between
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LDA+RISB and LDA+U, the most popular method to add electronic correlation, an d show that

the LDA+RISB is the most proper method to treat correlated materials.

Figure 6.2: Predicted unit cell volumes and crystal structures. The colors, blue, green, red,
and cyan, correspond to NiAs-type, rocksalt, wurtzite, and zincblende structures, respectively.
The metallic and the Mott-insulating solution are labeld by �lled and h alf-�lled symbols, respec-
tively. The circle, triangle, and diamond markers correspond to the experiment data, LDA, and
LDA+RISB predictions, respectively. U and J is 13 eV and 0.9 eV, respectively, for LDA+RISB
calculation.

6.3.2 LDA

We �rst show our LDA energy-volume plot in Fig. 6.3. The black vertical solid lines in each

�gure indicate the experimental equilibrium volumes of each material. The colored vertical dashed

lines indicate the equilibrium volumes predicted by LDA, and the colors correspond to the predicted

ground state structures. As shown in the �gure, LDA fails to predict t he experimentally stable

structures for all the oxides which are known as in the rocksalt structure (green triangles) in

experimental observation. Instead, LDA predicts the wurtzite structures (red squares) of CoO

[Fig. 6.3 (a)], CrO [Fig. 6.3 (d)], and CoO [Fig. 6.3 (e)], and zincblende structure (cyan diamonds)

of FeO [Fig. 6.3 (f)] are favored in energy. In addition, LDA predicts all the oxides are metals

in contrary to the experimentally known Mott insulator in MnO, FeO, and CoO. The inability of
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Figure 6.3: LDA energy-volume curves for (a) CoO, (b) CoS, (c) CoSe, (d) CrO, (e) MnO, and
(f) FeO in the paramagnetic phase. The blue circle, green triangle, red square, and cyan diamond
curves corresponds to NiAs-type, rocksalt, wurtzite, and zincblende structures, respectively. The
experimental equilibrium volumes of each compound are indicated by the vertical colored solid
lines, and the equilibrium volumes predicted by LDA are indicated by the colored dashed lines,
where the colors correspond to the structures labeled in the legend.

LDA to describe the electronic correlation e�ect, i.e., band renormalization and Mott transition,

resulting inaccurate energy ordering for all the oxides. Despite the unsatisfactory performance

on the oxides, LDA captures the correct NiAs-type structures (blue circles) for CoSe [Fig. 6.3

(b)] and CoS [Fig. 6.3(c)]. This is because the electronic correlation e�ects, in thesesystems,

are relatively weak compared to the oxides, and cannot drive the system to the Mott-insulating

phase. Therefore, the single-particle description of LDA still works for these materials. However,

the equilibrium volumes predicted from LDA, for CoS and CoSe, are quitefar from the experiment

data, as shown in the �gure. Later, we will show the equilibrium volume can be improved by taking

the electronic correlation into account.

6.3.3 LDA+RISB

We now discuss how the electronic correlation e�ects modify the energy ordering among di�erent

polymorphs in LDA+RISB method. Fig. 6.4 shows the energy ordering among di�erent structures

within LDA+RISB approach at U = 13 eV and J = 0 :9 eV. An additional feature in Fig. 6.4

is the Mott IMT as indicated by the crossing between the solid and dashed lines representing
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the metallic and the Mott-insulating phase, respectively. Withi n this approach, we recovered the

experimentally observed Mott-insulating solution in rocksalt structure (green triangles dashed line)

for CoO [Fig. 6.4 (a)], MnO [Fig. 6.4 (e)], and FeO [Fig. 6.4 (f)] in the paramagnetic phase with

the equilibrium volume indicated by the green vertical dashed lines. However, for CrO [Fig. 6.4

(d)], LDA+RISB predicts its ground state is a metal in rocksalt struc ture (green triangle solid

line). It is also interesting to notice that the NiAs-type structu res (blue circles) experience a Mott

transition at large volume, indicated by the crossing of the blue solid and the blue dashed lines,

in CoO, MnO, FeO. In our calculation, the Mott transition appears only in t he octahedral crystal

�eld structures, i.e., rocksalt and NiAs-type, in MnO, FeO, and CoO. For CoS [Fig. 6.4 (b)] and

CoSe [Fig. 6.4 (c)], the stable crystal and electronic structures remain in NiAs-type structure (blue

circles) and metallic phase, as in LDA. However, the equilibrium volumes are signi�cantly improved

by including the electronic correlation e�ects, as indicated by the vertical lines in Fig. 6.4 (b) and

(c).

Fig. 6.4 demonstrates the reliability of the LDA+RISB approach as it captures the experimen-

tally observed crystal and electronic structures for all the compounds. This success is because

the LDA+RISB can capture the most important physics in strongly correlat ed material, i.e., the

renormalization of the band width and the Mott IMT due to the strong local Coulomb interaction

between electrons. These e�ects, which can not be systematicallydescribed in LDA and LDA+U,

are faithfully reproduced in LDA+RISB. Table. 6.1 shows the smallest quasiparticle weight,Z ,

among all the orbitals for all the compounds at its equilibrium volume. Z can be directly related

to the inverse of the e�ective mass,Z = m=m� , or the renormalized bandwidth. The quasiparticle

weight for MnO, FeO, and CoO in rocksalt and NiAs-type structure are zero, Z = 0, at the equi-

librium volume, indicating the systems are in the Mott-insulatin g phase in Brinkman-Rice picture.

For all the other metallic compounds, we �nd signi�cant band renormalizat ion e�ects, Z < 1,

which is responsible for the improvement of the predicted equilibrium volumes within LDA+RISB

approach.
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Table 6.1: The smallest LDA+RISB quasiparticle weight, Z , among all the orbitals for all the
materials at U = 13 eV and J = 0 :9 eV at the experimental equilibrium volumes. Z = 0 corresponds
to the Mott-insulating phase in Brinkman-Rice picture, and �nite Z corresponds to the correlated
metallic phase.

NiAs-type rocksalt wurtzite zincblende

CoO 0.0 0.0 0.65 0.67
CoS 0.67 0.69 0.77 0.78
CoSe 0.64 0.65 0.77 0.75
CrO 0.62 0.34 0.68 0.64
MnO 0.0 0.0 0.51 0.49
FeO 0.0 0.0 0.62 0.65

Figure 6.4: LDA+RISB energy-volume curves for (a) CoO, (b) CoS, (c) CoSe, (d) CrO, (e) MnO,
and (f) FeO at U = 13 eV and J = 0 :9 eV in the paramagnetic phase. The blue circle, green
triangle, red square, and cyan diamond curves corresponds to NiAs-type,roscksalt, wurtzite, and
zincblende structures, respectively. The solid and dashed curves correspond to the metallic and
the Mott-insulating phase, respectively. The experimentally observed equilibrium volumes of each
compound are indicated by the colored vertical solid lines, and the equilibrium volumes predicted by
LDA+RISB are indicated by the colored dashed lines, where the colors correspond to the structures
labeled in the legend.

6.3.4 LDA+U

Fig. 6.5 shows the LDA+U results at U = 13 eV and J = 0 :9 eV in the paramagnetic phase.

For CoO [Fig. 6.5 (a)], LDA+U predicts the stable structure is an insulator in zincble nde structure
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instead of the experimentally observed rocksalt structure. For the experimentally observed rocksalt

structure, LDA+U predicts it as a metal. The NiAs-type and the wurtzi te structures of CoO are

predicted as insulators. For CoS [Fig.6.5 (b)] and CoSe [Fig.6.5 (c)], LDA+U predicts the stable

structures are metals in zincblende structures with very large equilibrium volumes instead of the

experimentally observed NiAs-type structures. The rocksalt and the wurtzite structures of CoS and

CoSe are predicted as metals. For CrO [Fig.6.5 (d)], LDA+U obtains the experimentally observed

rocksalt structure but the equilibrium volume is too large compared to experiment. Besides the

wurtzite structure of CrO, for which LDA+U predicts an insulating s olution, all other structures

of CrO are predicted as metals. In MnO [Fig. 6.5 (e)], we obtained similar results as in the

LDA+RISB predictions. LDA+U predicts the experimentally observed Mott-insulating solution in

rocksalt structure. Besides the NiAs-type structure of MnO, for which LDA+U obtains a Mott-

insulating solution, the wurtzite and the zincblende of MnO are predicted as metal in LDA+U.

For FeO [Fig. 6.5 (f)], LDA+U predicts the stable structure is in the metallic NiAs-t ype structure

instead of the experimentally known Mott-insulating rocksalt str ucture. Moreover, in the rocksalt

phase, LDA+U predicts it as a metal instead of a Mott insulator. The wurtz ite and the zincblende

structure of FeO are predicted as metals.

From the above results, we conclude LDA+U performs unsatisfactorily in all these transition

metal compounds in the paramagnetic phase. It predicts incorrect stable crystal structures in CoO,

CoS, CoSe, and FeO. In addition, it fails to predict the experimentally known Mott-insulating

rocksalt structures in CoO and FeO. In MnO, LDA+U obtained identical e lectronic phases as in

LDA+RISB. However, the Mott IMT is absent in the LDA+U pictures. Table . 6.2 summarized the

electronic phases obtained from LDA+U among all the structures. It is interesting to notice that

MnO has identical prediction in the electronic phases compared to the prediction in LDA+RISB,

as shown in Table.6.1. This might be the reason that the LDA+U has fairly good prediction only

in MnO and works poorly in all the other compounds.
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Table 6.2: The electronic phases predicted by LDA+U for all the materialsand structures around
the experimental equilibrium volumes. Here we setU = 13 eV and J = 0 :9 eV.

NiAs-type rocksalt wurtzite zincblende

CoO insulator metal insulator insulator
CoS metal metal metal metal
CoSe metal metal metal metal
CrO metal metal metal metal
MnO insulator insulator metal metal
FeO metal metal metal metal

Figure 6.5: LDA+U energy-volume curves for (a) CoO, (b) CoS, (c) CoSe, (d) CrO, (e) MnO, and
(f) FeO at U = 13 eV and J = 0 :9 eV in the paramagnetic phase. The blue circle, green triangle,
red square, and cyan diamond curves corresponds to NiAs-type, rocksalt, wurtzite, and zincblende
structures, respectively. The experimental equilibrium volume of each compounds are indicated by
the vertical colored solid lines, and the equilibrium volumes predicted by LDA+U are indicated by
the colored dashed lines, where the colors correspond to the structures labeled in the legend. Note
that the equilibrium volumes of CoS and CoSe are out side of the volume of interest.

6.3.5 Comparison: LDA+RISB and LDA+U

To elucidate how the correlation e�ects modify the energy surface in LDA+RISB and LDA+U,

we show their energy-volume curves as a function of interaction,U, with a �xed exchange interac-

tion, J = 0 :9 eV, in Fig. 6.8 (a) and (b). We select the MnO as an example, where both LDA+RISB

and LDA+U predict the experimentally observed stable structure in the ambient condition by in-
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cluding the interaction, U. In the ambient condition, MnO is a Mott insulator in rocksalt struct ure

(green curves) with equilibrium volume, V0 = 21:97�A3=f:u: , indicated by the black dashed line.

However, LDA, corresponding to the curves atU = J = 0 in Fig. 6.8 (a) and (b), predicts the

metallic wurtzite structure (red curve) has the lowest energy among all the structures. Within the

LDA+RISB framework, as shown in Fig. 6.8 (a), the stable structure evolves from the wurtzite

structure (red curve), at U = J = 0 eV, to the rocksalt structure (green curves), at U � 8 eV and

J = 0 :9 eV. For U � 6 eV, the rocksalt (green curves) and the NiAs-type (blue curves) structures

experience a Mott IMT at large volume, where the energy-volume curves shows a kink at the tran-

sition, as indicated by a dot between the Mott insulator (dashed lines) and the metallic (solid lines)

solutions. Remarkably, after the Mott transition, the equilibrium v olume is signi�cantly improved

to V0 = 21:41�A3=f:u: for U � 8 eV. In addition, the energy gap between the tetrahedral coordi-

nate structures, zincblende (cyan curves) and wurtzite (red curves), and the octahedral structures,

rocksalt (green curves) and NiAs-type (blue curves), increases signi�cantly with increasing U. For

comparison, we show the LDA+U results for MnO in Fig. 6.8 (b). Although LDA+U predicts an

experimentally stable rocksalt structure (green curves), it cannot capture the physics of Mott IMT.

Moreover, the energy gap between the octahedral and the tetrahedral coordinated structures does

not have signi�cant change as we increase the interaction,U.

Figure 6.6: LDA+RISB energy di�erences relative to the ground state structure for all the selected
structures as a function of interaction, U, and a �xed exchange coupling,J = 0 :9 eV.
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Figure 6.7: LDA+U energy di�erences relative to the ground state structure for all the selected
structures in LDA+U as a function of interaction, U, and a �xed exchange coupling,J = 0 :9 eV.

To check further how the interaction, U, in
uence the energy ordering among all the polymorphs,

we plot the energy di�erences relative to the ground state structure for all the structures and

materials in Fig. 6.6 for LDA+RISB, and in Fig. 6.7 for LDA+U. As shown in Fig. 6.7, LDA+U

fails to obtain the experimentally stable rocksalt structures in CoO and FeO for all the selectedU.

However, in LDA+RISB, the experimentally observed rocksalt structures for all the oxides can be

obtained with large enough interaction, whereU = 8 eV for MnO, U = 10 eV for CrO, and U = 13

eV for CoO and FeO are su�cient to have a stable Mott-insulating rocksalt solution.

Finally, we benchmark our LDA, LDA+U, and LDA+RISB results against the exper imental

observation in Table. 6.3. The LDA only obtains the experimentally stable structures and phases

for CoS and CoSe. In LDA+U, only the experimental structure of MnO is correctly predicted.

In contrary to the unsatisfactory performance in LDA and in LDA+U, our LDA+RIS B approach

captures all the experimentally stable structure and electronic phases correctly. The equilibrium

volumes are also improved signi�cantly, within 4% error compared to the experimental data, after

including the electronic correlation e�ect.

6.4 Conclusion

In summary, we tested the reliability of LDA, LDA+U, and LDA+RISB as a struc ture prediction

tools on CrO, MnO, FeO, CoO, CoS, and CoSe in NiAs-type, rocksalt, wurtzite, and zincblende
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Figure 6.8: (a) LDA+RISB energy-volume curves for all the MnO polymorphs as a function of
U with a �xed J = 0 :9 eV. The green, blue, red, and cyan curves correspond to rocksalt, NiAs-
type, wurtzite, and zincblende structures, respectively. The solid and dashed line correspond to
metallic and Mott-insulating phases. The black dashed line indicates the experimental equilibrium
volume in the rocksalt structure. The rocksalt structures, evolves from a metastable state to a
stable state after U � 8 eV, and the wurtzite structure, predicted as a stable structure in LDA,
becomes metastable. (b) LDA+U energy-volume curves for all the MnO polymorphs with the
same parameters as in LDA+RISB. The experimentally stable rocksalt structures evolves from a
metastable structure to a stable structure after U � 6 eV, and the wurtzite structure predicted to
be stable in LDA becomes metastable.
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Table 6.3: Stable structures, electronic phases, and equilibrium volumes (in unit �A3=f:u: ) predicted
by LDA, LDA+U at U = 13 eV and J = 0 :9 eV, and LDA+SB at U = 13 eV and J = 0 :9 eV.

LDA+U LDA+SB experiment
structure phase V0 structure phase V0 structure phase V0

CoO Zincblende Insulator 23.5 Rocksalt Insulator 20.48 Rocksalt Insulator 19.35
CoS Zincblende Metal > 35 NiAs Metal 26.25 NiAs Metal 25.77
CoSe Zincblende Metal > 40 NiAs Metal 30.85 NiAs Metal 30.27
CrO Rocksalt Metal 20.74 Rocksalt Metal 18.27 Rocksalt N/A 18
MnO Rocksalt Insulator 21.8 Rocksalt Insulator 22.06 Rocksalt Insulator 21.97
FeO NiAs Insulator 20.2 Rocksalt Insulator 21.23 Rocksalt Insulator 20.35

structures within the paramagnetic phase, corresponding to the roomtemperature phase for these

materials. Our results show that the LDA+RISB is a superior method, compared to LDA and

LDA+U, by demonstrating its remarkable consistency with the known experimental observations.

The crucial ingredient for the success of LDA+RISB is its ability to capture the Mott transition

and the band renormalization e�ects, which is absent in LDA and LDA+U. With the inclusion

of these electronic correlation e�ects, LDA+RISB predicted the experimentally known rocksalt

Mott-insulating phase for MnO, FeO, and CoO compounds in the ambient condition, and the

equilibrium volumes of CoS and CoSe are signi�cantly improved. In addition, we found LDA+RISB

and LDA+U have qualitatively di�erent behavior when turning up the interaction, U. The gap

between the octahedral (NiAs-type and rocksalt) and the tetrahedral (zincblend and wurtzite)

coordinated structures increase drastically with U in LDA+RISB. However, in LDA+U, the gap

does not have signi�cant change. These promising results show the potential of LDA+RISB as

a tool for structural prediction for correlated materials. It is also im portant to note that the

computational speed of our LDA+RISB implementation is in the same order as LDA+U. With

this accuracy and e�ciency, LDA+RISB opens a new avenue for structural prediction and material

by design in the �eld of strongly correlated electronic systems.
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CHAPTER 7

NATURE OF AM-O BONDING IN AMERICIAN
CHROMATE CsAm(CrO 4)2

7.1 Introduction

The chromate moiety (CrO2�
4 ) can be found in various minerals, where the characteristic color

is usually red, orange, or yellow. One of the examples is the lead chromate crocoite, PbCrO4,

which was discovered in 18th century and displays orang-yellow color. In the chromate compounds

containing f-electrons, it is widely believed that the f-electrons do not participate in chemical

bonding with the other atoms. Since the absorption rate of the f-f transition is weak due to the

selection rule in an atomic environment, � l = � 1, these chromate compounds are expected to have

orange-yellow color originating from the charge-transfer gap, 2-3 eV, of the chromate alone. This

is, indeed, true for all the lanthanide compounds, CsLn(CrO4)2, studied by Arico et. al. However,

the actinide compound, CsAm(CrO4)2, measured by the same group displays anomalous dark red

color, and the UV-vis-NIR absorption spectrum shows a smaller band gap of 1.65 eV, as shown

in Fig. 7.2. This discrepancy indicates that, contrary to the other lanthanide compounds, the

Am(III) may participates to the chemical bonding with chromates. Th e bonding between Am(III)

and chromates leads to di�erent behaviors in the electronic structure, such as a smaller band gap

in dark red color. Therefore, the nature of the Am-O bonding in CsAm(CrO4)2 requires detailed

experimental and theoretical investigations. Below, I will �rst re view the experimental result from

Arico et. al. Then, I will present our theoretical investigation.

The Am(CrO 4)2 crystallizes in the triclinic space group P�1. It forms a two-dimensional layered

structure that incorporates Cs+ cations in the interlayer channels similar to the early and mid-

lanthanide structures, but there are two crystallographically-unique chromium centers in the CrO2�
4

moieties present that alter the layer composition. The layers extend through the ab plane and are

composed of edge-sharing chains of Am(III) polyhedra connected by alternating corner- and edge-

sharing CrO2�
4 tetrahedra (Cr1) and strictly corner-sharing CrO 2�

4 tetrahedra (Cr2), as shown in

Fig. 7.1 (a) and (b). The Am(III) polyhedra are eight-coordinate adopting a bicapped trigonal
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Figure 7.1: Polyhedral representations of CsAm(CrO4)2. (a) View down the a axis showing the
interlayer channels. (b) Single layer of one of the two-dimensional sheets. Am 3+ is represented
as dark red polyhedra, CrO2�

4 as orange tetrahedra, and Cs + as tan spheres. (c) Coordination
environment of Am3+ in CsAm(CrO 4)2 with Am 3+ represented as dark red polyhedra, CrO2�

4 as
orange tetrahedra, and Cs+ as tan spheres.

prism geometry. The coordination environments are composed of eight oxygen atoms; seven CrO42�

tetrahedra donate to Am(III), which can be seen in Fig. 7.1 (c). Average Am-O bond lengths are

2.438�A.

In sharp contrast to the observed spectra of the lanthanide compounds,that CsAm(CrO 4)2

crystals feature a very strong absorption extending through the visible spectrum, 390 nm - 700 nm

(1.7 eV - 3.1 eV), to around 720 nm (1.72 eV), which can be found in Fig.7.2. This is obvious in

the very dark red color of the crystals, so dark that they actually appear black to the naked eye.

Upon inspection of well-known UV-Vis-NIR spectra of americium compoundsin solution (such

as solutions of Am(III) in perchlorate or carbonate) the 7F0 ! 5 L 6 and 7F0 ! 7 F6 transitions

routinely appear around 2.47 eV and 1.53 eV, respectively. The sharp peak at 2.47 eV cannot be

con�rmed in this experiment due to the strong, extensive charge transfer absorption which obstructs

that wavelength region. A triplet is observed in the NIR with local max ima occurring at 1.49 eV,

1.52 eV, and 1.57 eV. In the aforementioned solution-state spectra, the feature that appears around

1.52 eV is typically broad and weakly absorbing. In that same region of these solid-state spectra, a

very strongly absorbing triplet is resolved; this indicates the complexities of the local environment
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Figure 7.2: (a) Solid-state UV-Vis-NIR absorbance spectrum Vs. optical energyplot of
CsAm(CrO4)2 showing a band gap of� 1:65 eV.

around the trivalent americium centers in these compounds. Such strong absorption across the

visible range in these compounds is an indication of semiconducting behavior, which is analyzed in

the absorbance vs. optical energy plot in Fig.7.2.

In order to disentangle the nature of the Am-O bonding and the anomalous bandgap in

CsAm(CrO4)2, we investigate the electronic structure of this compound using local density ap-

proximation plus rotationally invariant slave-boson method (LDA+RISB) . Our results shows the

strong correlation e�ect in the Am(III) f-electrons, which enhance the bare LDA band gap in the

J=5/2 and 7/2 sector, is the key igredient to capture the correct band gap in this material. In

addition, our result indicates the f electrons in Am(III) entangles strongly with rest of the system.

Therefore, the f electrons in Am(III) has strong convalent character that participate intensively

in the chemical bonding. The compound is a non-magnetic strongly renormalized band insula-

tor with Pauli like behavior in magnetic susceptibility which is c onsistent with the experimental

measurement.

7.2 Method

We employ the LDA+RISB method [ 99]. As in Refs. [21, 155], we utilize the DFT code

WIEN2K [ 156] and employ the Local Density Approximation (LDA) and the standard fully -
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Figure 7.3: Local density approximation (LDA) density of state (DOS) for CsAm(CrO 4)2. The
energy is shifted with respect to the Fermi energy. The gap is around0.6 eV.

localized limit form for the double-counting functional. Consistently with previous works[ 21], we

assume that the Hunds coupling constant is J=0.7eV and the value of the screened Coulomb in-

teraction strength is U=6.0 eV. Since our experiments have been all performed above the Neel

temperature of the system, in our simulations we have assumed from the onset a paramagnetic

wavefunction, i.e., a solution which does not break spontaneously the symmetry of the system.

For simplicity, the approximation of averaging over the crystal �eld splittings (CFS) of the Am-5f

electrons was employed, see the supplemental material of Ref. [155] for a detailed description of

the CFS averaging procedure.

7.3 Electronic structure study

7.3.1 LDA

In this subsection, we discuss the LDA band structure for this compound. The LDA density of

state (DOS) is shown in Fig.7.3. The Fermi level is shifted to 0, and the f electron from Am has

the dominant weight near the Fermi level. The gap is around 0:6 eV, which is due to the spin-orbit

splitting between the J = 5=2 and the J = 7=2 sectors. The d electron from Cr also has salient
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Figure 7.4: Local density approximation plus rotationally invariant slave-boson (LDA+RISB) den-
sity of state (DOS) for CsAm(CrO 4)2. at U=6 eV and J=0.7 eV. The gap is around 2.2 eV.

weight near Fermi surface implying the signi�cant hrbridization be tween the f and the d electrons

from Am and Cr. The occupancy for 5=2 sector is 5.68 and 7=2 is 0.26. The nominal valence for f

electron is 6. Clearly, the band gap, 0:6 eV, is not comparable to the experimental observed band

gap, � 1:65 eV. Therefore, other important physics, which is absent in LDA, should be taken into

account. In the next subsection, we employed the LDA+RISB to treat the strongly correlation

e�ect, which plays an important role in the strongly localized f-electron compounds.

7.3.2 LDA+RISB

In this subsection, we discuss our LDA+RISB results. Let us investigate the band gap of the

system, which is 1.6 eV according to our absorption experiments. While bare LDA predicts a

band gap of only 0.6 eV, within the LDA+RISB method, which takes into account more accurately

the strong Am-5f electron correlations, the band gap is about 2 eV (for the U, Jconsidered) as

shown in Fig. 7.4, which is in much better agreement with the absorption experiments. Such a

large enhancement of the band gap with respect to LDA constitutes an unequivocal evidence of the

importance of the strong electron correlations in this material.
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In order to analyze the electronic structure of the system and characterize the role of the strong

f-electron correlations in this material, here we consider the localreduced density matrix of the

Am-5f electrons, � f , which is formally obtained from the LDA+RISB ground state wavefunction

of the solid by tracing out all degrees of freedom except the f shell of oneof the Am atoms in the

crystal. For later convenience, we represent� f as:

� f =
X

wi r i (7.1)

where r i = Pi =T r[Pi ], Pi are projectors over the eigenspacesVi of � f , and the probability weights

wi are sorted in descending order. Note that, since we made the approximation of averaging over

the CFS, each one of the eigenspacesVi has well de�ned electron occupationN i and total angular

momentum J i . However, the orbital angular momentum L and the spin angular momentum S are

not good quantum numbers, as the spin orbit coupling (SOC) between the J=5/2 and J=7/2 Am-5f

electrons is very large in this material (� SOC � 1:25 eVs). Within our calculations, the average

number of f electrons per Am atom isnf = T r [� f N ] � 6:02. As shown in Table 1, the Am-5f

electronic structure is dominated by a singlet with N=6 electrons and total angular momentum

J=0, which carries a probability weight w0 = 0 :88. Interestingly, we �nd that T r [r0S2] = T r [r0L 2 =

2:25� (2:25+1)]. This indicates that the reason why the Am-5f electronic structure is dominated by a

non-degenerate ground state is the SOC, which is su�ciently strong to contaminate considerably the

spin and orbital angular-momentum quantum numbers and, at the same time,to lift substantially

the corresponding degeneracy in favor a J=0 singlet, in agreement with the third Hund's rule. We

note also that the probability weight arising from di�erent multiple ts besides the dominantJ 2 = 0

singlet discussed above is more than 10 %, which is non-negligible. This fact is reveled also by

the value of the Am-5f entanglement entropySf = T r [� f ln [� f ]], see Refs. [157, 158], which is 0.72

according to our calculations, while it would be 0 if was a pure state. This observation provides

us with a clear indication of the fact that the Am-5f electrons are entangled with the rest of the

lattice, i.e., their contribution to the f-bonding is not purely i onic, but has also a non-negligible

covalent component.

In order to quantify the importance of the covalency e�ects relative to the Am-5f electrons, i.e.,

their covalent energy contribution to the bonding of the system, here we compare the total energy of

the system with the energy that the system would have if the Am-5f shell hosted exactly 6 electrons
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Table 7.1: Parameters of the Am-5f reduced density matrix computed by LDA+RISB assuming
U=6 and J=0.7, see Eq. 7.1: Probability weights wi , corresponding quantum labelsN i (number of
electrons) andJ i (total angular momentum).

wi 0.88 0.06 0.04 0.002
N i 6 7 5 6
J i 0 3.5 2.5 6

entirely isolated from the rest of the system (i.e., ifSf was exactly 0). According to our calculations,

such a state would have an energy �Ecov � 1:85 eV higher with respect to the ground state of

the system. Based our analysis we deduce that the electron correlations are very strong in this

material. However, the electron correlations do not lead to the formationof a local moment, i.e., this

material does not qualify as a Mott insulator, but as a strongly renormalized band insulator. This

conclusion is consistent with the experimental evidence that themagnetic susceptibility displays

Pauli-like behavior within the whole range of temperatures exploredexperimentally.

7.4 Conclusion

In summary, we calculated the electronic structure of CsAm(CrO4)2 by employing LDA+RISB,

and reproduced the band gap observed in the optical absorption experiment. We found a signi�cant

di�erence between the band gaps produced by LDA+RISB and LDA, demonstrated the importance

of the many-body e�ects in this system. Moreover, our theoretical analysis indicates that this

material is not a Mott insulator, but a strongly renormalized band insulat or, in which the f electrons

in Am participate strongly in the chemical bonding. The formation of a local moment is prevented

by the strong SOC of the system, which favors a singlet state with total angular momentum J=0.

Therefore, the magnetic susceptibility shows a Pauli like behavior at low temperatures, which is

consistent with the experimental results.
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CHAPTER 8

CONCLUSION AND OUTLOOK

In this dissertation, we studied the Mott metal-insulator transiti on (MIT) in various type of sys-

tems, which include the domain wall structure in metal-Mott insul ator coexistence regime, the

Mott MIT in the presence of spinon excitations, the structure prediction for the transition metal

oxides, sul�des, and selenides, and the electronic structure ofthe Americian compounds. We ap-

plied both the many-body techniques, Dynamical Mean Field Theory (DMFT) and Rotationally

Invarianty Slave-Boson (RISB) methods, and the �rst principle si mulations, local density approx-

imation (LDA), LDA+U, and LDA+RISB, as our tools to investigate these problems . The main

�ndings of our investigations are summarized in the following paragraphs.

In chapter 3, we employed the DMFT and the Broyden method to investigate the transport and

the quasiparticle properties of the unstable solution in Mott metal-insulator coexistence regime.

Physically, this solution is expected to describe the properties of the domain wall separating the

metallic and the Mott-insulating regions in a spatially inhomogeneous system. We found that,

within our theory, the unstable solution represents a new phase of matter, di�ering qualitatively

from the conventional metal and insulator, displaying an incoherent weakly insulating-like behavior

down to the lowest temperatures. Still, the unstable solution hasa well-de�ned quasiparticle peak

at the Fermi level in the entire coexistence regime, and the resistivity can be described qualitatively

by the Sommerfeld quasiparticle approximation.

In chapter 4, we blended the static resonanting-valence-bond theory ofa gapless insulating quan-

tum spin liquid carrying a Fermi surface with the DMFT using an im purity solver based on emergent

spinon degrees of freedom. This idea allows to reproduce the salient thermodynamic features re-

cently observed in the organic compounds� -(BEDT-TTF) 2Cu2(CN) 3 and EtMe3Sb[Pd(dmit) 2]2,

providing a consistent picture of the Mott transition towards a gapless low entropy insulator. In

the Fermi liquid metal, the strong local scattering of the magnetic degrees of freedom occurs due

to a generic orthogonality catastrophe in the spinons density of states, destroying discontinuously

the spinon Fermi surface at the insulator-to-metal phase boundary.
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In chapter 5, we developed a uni�ed theoretical picture for excitations in Mott systems, por-

traying both the heavy quasiparticle excitations and the Hubbard bands as features of an emergent

Fermi liquid state formed in an extended Hilbert space, which is non-perturbatively connected to

the physical system. This observation sheds light on the fact that even the incoherent excitations in

strongly correlated matter often display a well de�ned Bloch character, with pronounced momentum

dispersion. Furthermore, it indicates that the Mott point can be viewed as a topological transition,

where the number of distinct dispersing bands displays a sudden change at the critical point. Our

results, obtained from an appropriate variational principle, display also remarkable quantitative

accuracy. This opens an exciting avenue for fast realistic modelingof strongly correlated materials.

In chapter 6, we studied six common transition metal binary compounds, CrO, MnO, FeO, CoO,

CoS, and CoSe, and demonstrated the critical role of the strong electronic correlation e�ects on

the total energy di�erences between di�erent crystal structures. By explicitly including the e�ects

of strong correlations in the total energy calculations, at the LDA plus rotationally-invariant slave-

boson (RISB) level of theory, we are able to reproduce the known groundstate structures for all

6 compounds. The signi�cance of this result is in that it deepens our understanding of the role

that strong correlations play in determining the crystal structur e of transition metal compounds,

paves the way for predicting and studying metastability and polymorphism in these systems, and

�nally, opens the door for extending materials by design ideas and the large-scale (high-throughput)

calculations to strongly correlated systems.

In chapter 7, we investigated the electronic structure of the Americium chromate compounds,

CsAm(CrO4)2, displaying anomalous dark red color corresponding to a small band gap, 1:65 eV,

as observed in the optical absorption measurement. Our calculation indicates that the strong

correlation e�ect in the Am-5f electrons, which enhance the spin-orbit gap in the J=5/2 and the

J=7/2 sectors, is important to capture the observed band gap. Our calculation further shows

the Am-5f electrons are strongly entangled with the rest of the systems, indicating a pronounced

covalent character in the Am-O bonding. In addition, the atomic structu re analysis shows that the

strong spin-orbit coupling (SOC) prevent the Am-5f electron to form local moments. Consequently,

the magnetic susceptibility has a Pauli like behavior, which is consistent with the experimental

measurement.
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From the above results, we conclude that DMFT, RSIB, and their combinations with den-

sity functional theory (DFT) serve as reliable tools to explain various complicated phenomena in

strongly correlated systems. They can remedy the inability of DFT related methods to describe

the strong correlation e�ects, and provide a good description of correlated materials. However,

there still remain many challenges for these approaches. For example, since the local approxima-

tion in DMFT and RISB does not have the ability to describe the spatial correlations, which are

important in one and two dimensional systems, the cluster and the diagrammatic extensions have

to be applied. Finding an unbiased and e�cient methods to systematically include these spatial

correlations are still an active �eld of research. Also, since the popularmethods to study strongly

correlated materials, such as DFT+U, DFT+DMFT, and DFT+RISB, all tre at the Coulomb in-

teraction, U, and Hund's coupling, J , as �tting parameters to the experimental data, seeking for a

more objective tool to avoid these tunable parameters is still underintense investigation. Therefore,

we still need to make many e�orts to develop a systematic tool that can describe the important

physics in strongly correlated systems in an unbiased fashion.

77



APPENDIX A

PARAMETRIZATION OF THE MULTIORBITAL
COULOMB INTERACTION

The multiorbital Coulomb interaction can be approximated by a rotationall y invariant form, which

is exact for an atomic environment. It is also a good approximation to the dand f electrons,

because their wavefunction are localized in real space. Within this approximation, the Coulomb

interaction can be parameterized in the following fashion, called Slater-Condon parametrization.

Starting from the most general form of the interaction,

X

mm 0nn 0

X

�;� 0

Umm 0nn 0cy
m� cy

m0� 0cn� 0cn0� ; (A.1)

and

Umm 0nn 0 =
Z

drdr 0w�
m (r � R)w�

m0(r 0� R)[
1

jr � r 0j
]wn (r 0� R)wn0(r � R): (A.2)

We can approximate our basis by an atomic basis,wm (r; �; � ) = Rl (r )Ylm (�; � ), and expand 1
jr � r 0j

in this basis,

1
jr � r 0j

= 4 �
1X

k=0

r k
<

r k+1
>

1
2k + 1

kX

� k

Ykq(r )Y �
kq(r 0): (A.3)

Within this approximation, we have the Coulomb interaction in the fol lowing form,

Umm 0nn 0 =
X

k

F k
kX

q= � k

hY2m jY �
kqjY2n0ihY2m0jYkqjY2n i ; (A.4)

where F k is the Slater integral,

F k =
4�

2k + 1

Z
r 2dr

Z
r 02dr0 r k

<

r k+1
>

R2
l (r )R2

l (r 0): (A.5)
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The F 0 term corresponds to the Coulomb interaction, U. The exchange term involving Umnmn

corresponds to the Hund's interaction J . For d electron, the parametrization are U = F 0 and

J = 1=14(F 2 + F 4).
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APPENDIX B

ANALYTICAL CONTINUATION

The IPT, NCA and CTQMC that we utilized in this dissertation were cal culated in the Matsubra

space,i! n . As a result, our Green's function and selfenergy were a function of Matsubara frequency,

G(i! n ) and �( i! n ). The physical observables, such as density of states, conductivity, susceptibility,

etc, are a function of real frequency,G(! ) and �( ! ). Therefore, we need to analytical continuate

the Matsubara functions to real fequency,! , to extract the physical information.

For closed-form functions, the analytical continuation can be transformed by directly substi-

tuting the imaginary frequency to real frequency plus a in�nitesimal small imaginary number,

i! n ! ! + i� . However, the results we obtained from IPT, NCA, and CTQMC were a set ofdata

on Matsubara space. Thus, we need numerical analytical continuation algorithms to transform the

data to real frequency. The Pade approximation [159, 160] is one of the most widely used methods

for the data generated by the methods without statistical error, suchas IPT and NCA. However,

for CTQMC, the statistical error (small random 
uctuations in the data) b ecomes a problem in

Pade approximation. In this case, the Maximum entropy method (MEM) [161] has to be utilzed

for the analytical continuation.

B.1 Pade Approximation

When the impurity solver does not have statistical error, e.g. IPT and NCA, the Pade ap-

proximation is a reliable method to perform the analytical continuati on. Pade approximation is a

fractional polynomial �tting to a rational function, R(x) =
P m

j =0 aj x j

1+
P n

k =1 bk xk , with �tting parameters ai

and bi , which can be calculate by a recursive manner [160]. Our Pade method is based on one of

its application to Green's function, H. J. Vidberg and J. W. Serene's[159] formalism, as described

below.

Given a set of data representing a Green's function on Matsubara frequency,ui , wherei = 1 :::N

is the indices of Matsubara frequency points, we can �t the Green'sfunction by a continuous

fraction,
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G(z) =
a1

1 + a2 (z� z1 )

1+ a3 ( z � z2 )

1+ ::::
an � 1 ( z � zn � 2 )
1+ an ( z � zn � 1 )

;

where the coe�cient an can be calculate by a recursive relation,

ai = gi (zi ); g1(zi ) = ui (i = 1 ; :::N );

and

gp =
gp� 1(zp� 1) � gp� 1(z)

(z � zp� 1)gp� 1(z)
; (p � 2):

The Green's function can, then, be calculated by

GN (z) =
AN

BN
:

Here N represent the order of Pade approximation.AN and BN can be calculated by the following

recursive relation,

A i +1 (z) = A i (z) + ( z � zi )ai +1 A i � 1(z)

and

B i +1 (z) = B i (z) + ( z � zi )ai +1 B i � 1(z);

with the initial condition A0 = 0, A1 = a1, B0 = B1 = 1. After obtaining the GN (z), we could set

the Matsubara frequency, z, to real frequency, ! , to calculate the real frequency Gree's function,

G(! ).

B.2 Maximum Entropy Method (MEM)

When the QMC method is used, the Green's function has statisticalnoise leading to uncontrol-

lable 
ucutations in the Pade approximation. Therefore, the maximum entropy method (MEM)

needs to be utilized to obtain a reasonable real frequency Green's function.

81



For a general analytical continuation problem, we need to �nd a spectral function, A(! ) =

� 1
� ImG (! ), for a given Green's function G(� ), such that they satisfy the following equation,

G(� ) =
Z 1

�1
d!

e� !�

1 + e� �! A(! ) =
Z 1

�1
d!K (�; ! )A(! ) '

X

l

K l;j A j = Gl :

Here l and j are the indeces for the discretized form of the� and ! , respectively. The direct

inversion of this equation can not be implemented e�ectively, because the e� !� term leads to

an exponentially small Kernel, K (�; ! ), at large frequency. Consequently, due to the limitation of

machines precision, there exist manyA(! ) at large frequency that can yield the sameG(� ), resulting

an ill-de�ned inversion problem. The MEM can be utilized here to overcome this di�culty. The

idea of MEM is that we can treat the spectral function, A(! ), as a statistical observable, and we

need to �nd the most probable A(! ) for a given G(� ). The probability for this problem has been

shown to be [161]

P(AjG; m; � ) � e�S � � 2=2

with the entropy, S =
R

d! [A(! ) � m(! ) � A(! )ln ( A(! )
m(! ) )]. Here, m(! ) is the default model for our

spectral function (usually is a constant density of state) and� 2 =
P

l
(

Gl �
P

j K l;j A j

� l
)2 is the guassian

distribution describing the deviation of the observation, A(! ), from the given G(� ). � can be think

as a paramter describing the competition between the entropy and thegaussian distribution. � l is

a adjusting parameter that control the width of the guassian distributi on. The main task here is

to �nd the A(� ) that maximize the function, �S � � 2=2, for a given � . Here, we use the Bryan's

algorithm, as implemented in A. Sandvik's code, to solve the spectralfunction by averaging the

spectal function over �

< A > =
Z 1

0
d�P (� jG; m)A(� ):

Here, P(� jG; m) =
R

dAP (A; � jG; m). After obtained the spectral function, A(! ), we used the

Hilbert transformation to calculate the full Green's function, G(! ).
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APPENDIX C

TOTAL ENERGY AND SPECIFIC HEAT
CALCULATION FOR HUBBARD HEISENBERG

MODEL

Starting from e�ective Hamiltonian of the main text (adding the constant mean �eld contribution,

last term in the equation below),

H =
X

hi;j i �

f y
i� f j� [Je� � tei ( � i � � j ) ] �

U
2

X

i

@2

@�2i
+

X

hi;j i �

jJe� j2

J
: (C.1)

the internal energy per site (with Ns sites) is calculated by standard Green's function methods [19]

E int =



H

�

Ns
=

T
Ns

X

n;k;�

[� kGd� (k; i! n )]ei! n 0+
+

T
Ns

X

n;k;�

[� kGf � (k; i! n )]ei! n 0+
+

U
2

D "# +
1

Ns

X

hi;j i �

jJe� j2

J
:

(C.2)

Here, the �rst and second term correspond to the kinetic energy for electrons and spinons, that

can be computed using a spectral decomposition:

T
Ns

X

n;k;�

[� kGd=f;� (k; i! n )]ei! n 0+
= 2T

X

n

ei! n 0+
Z

d� �� d=f (� )Gd=f;� (�; i! n ); (C.3)

with the semi-circular density of states of the Bethe lattice for the electronic density of states,

� d(� ) = 1
�t

p
1 � [�=(2t)]2. The spinons also follow a semi-circular density of states,� f (� ) =

1
�J e�

p
1 � [�=(2Je� )]2, that involves a di�erent bandwidth 4 Je� associated to the spinon dispersion.

Here the lattice electron and spinon Green's functions are given byGd=f (�; i! n ) = 1
i! n � � � � d=f (i! n ) ,

using the fact that the DMFT self-energies � d=f (i! n ) are purely local (but frequency dependent).

The third term in Eq. ( C.2) is associated to the Coulomb interaction, and is expressed as a

function of the double occupancy,D "# , which is related to the dynamical charge susceptibility by

D "# = (1 =2)� c(� = 0). The charge susceptibility can be computed in principle either from spinon
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response� f
c or from rotor response� X

c [80],

� f
c (� ) =


 X

�;� 0

[f y
j� (� )f j� (� ) �

1
2

][f y
j� 0(0)f j� 0(0) �

1
2

]
�

= 2Gf (� )Gf (� );

� X
c (� ) =



i

@
@�j

(� )i
@

@�j
(0)

�
=

2
U2 f GX (� )[@2

� GX (� ) + U� (� )] � [@� GX (� )]2g: (C.4)

Both quantities should be equal in absence of approximation, but they do di�er at the saddle point

level. For this reason, we use Nagaosa and Lee composition rule,� c(i! ) = [( � f
c ) � 1 +( � X

c ) � 1]� 1[14],

which allows to recover the correct behavior of the physical charge response both in the Fermi

liquid and in the Mott state.
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