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ABSTRACT 

 

 
Colloidal suspensions transform between fluid and disordered solid states when parameters 

such as the colloid volume fraction and the strength and nature of the colloidal interactions are 

varied. Seemingly subtle changes in the characteristics of the colloids can markedly alter the 

mechanical rigidity and flow behavior of these soft composite materials. This sensitivity creates 

both a scientific challenge and an opportunity for designing suspensions for specific applications. 

In this work, we investigate how the mechanical properties of thermo-reversible gels composed of 

octadecyl silica particles in decalin (sizes varying between 18 nm and 185 nm), at moderate particle 

concentrations change as a function of strength of attraction and particle loading. We further test 

the limits of applicability of scaling criteria developed within the framework of percolation 

theories and the more recently developed mode coupling theories. By using the experimentally 

measured gel boundaries and elastic moduli, the strength and range of attraction between the 

particles were obtained by comparison with the naïve mode coupling theory (NMCT) assuming a 

Yukawa interaction potential. We find reasonable agreement between theory and experiment when 

the data are scaled according to the relations proposed by percolation models for individual particle 

sizes, however these models fail to collapse the elastic moduli and yield stress data onto universal 

scaling curves for the entire range of particle sizes studied. The naïve mode coupling theory 

framework however does a remarkable job at predicting the gel boundaries, elastic moduli and the 

yield stresses. Finally, scaling relations are developed that collapse the elastic moduli and yield 

stress data onto master curves for all particle sizes and particle concentrations examined in this 

study.  
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CHAPTER 1 

 

INTRODUCTION AND BACKGROUND 

 

 
1.1 Introduction 

 

Colloids are ubiquitous in many realms of science and technology. They are often classified 

as ‘soft materials’ since the interaction energies are of the order of thermal energy (kT) due to 

which small thermal and mechanical perturbations can lead to dramatic changes in properties. It is 

due to this sensitivity that they exhibit rich phase behavior. Colloidal suspensions can transform 

between fluid and disordered states by controlling the strength and nature of interaction between 

the colloidal particles. Understanding the mechanisms that underlie bulk property changes in 

colloidal systems provides fundamental insight that can be exploited to design advanced materials. 

Tuning inter-particle interactions electrostatically and sterically gives rise to interesting phase 

behavior and has been an active area of research for decades. Some examples include changing 

surface chemistry of the colloidal particles by grafting polymeric chains, 1-3 addition of surfactants, 

4,5 6 addition of other colloidal particles such as non – adsorbing polymer 7,8 9, colloidal particles 

of different surface potentials 10, sizes (binary mixtures) 11, aspect ratios 12-14, etc. to create 

mixtures. Engineering stable colloidal suspensions lies at the heart of several consumer product 

based industries including pharmaceuticals, paints, food, personal care products and ceramics and 

composites processing. Even the emerging field 3D printing relies heavily on the stability and 

printability of dispersions which is a classical problem in colloidal science. 

 

In addition to their use in industry, colloidal systems are also used as model systems to 

understand the phase behavior of pure materials at the atomic or molecular scale. The characteristic 
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length and time scales of colloidal dynamics are much larger than their atomic counterparts 15 16 

and can be experimentally measured using scattering and microscopy techniques down to single 

particle resolution. These analogues have been successful in explaining several phenomena such 

as crystallization 17,18, glass transition, gelation, etc.  

 

Apart from synthetic inorganic and polymeric particles, dynamics, self – assemblies and 

functionalities of several biologically active systems such as complex proteins 19, viruses 20, 

bacteria 21, etc. have been described using experimental tools similar to those used to study 

colloidal dynamics as mentioned above. In addition, theories and simulations for understanding 

colloidal behavior have been used to model these systems since the relevant length scales are of 

the same order of magnitude as colloidal systems. 

 

Colloidal dispersions, although complex in nature, can be theoretically modeled using 

effective interaction potentials such as the hard sphere 22, square well 23 24, Asakura Oosawa 25,26 

and Yukawa 27 potentials. Extensive work has been carried out in relating experimental results 

with theory and simulation. In particular, considerable efforts have gone into understanding phase 

behavior such as gelation and glass formation. Suspensions can transform from a liquid to a gel 

state at different concentrations upon introduction of short range attractions. At low 

concentrations, high strengths of attraction are required to induce this transition and at such 

concentrations, the structure is more fractal in nature. There have been efforts in literature to scale 

the mechanical properties of gelled suspensions based on percolation theories that are developed 

assuming fractal – like microstructures (which will be discussed in later sections). As 

concentration is increased (φ > 0.2), the combined effect of crowding and attractions between 
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particles result in suspensions gelling at a lower strengths of attraction. At very high concentrations 

(φ > 0.5), a transition to an amorphous glassy state is observed. When attractions are introduced at 

very high particle loadings, re-entrant glassy behavior is observed 28 29 30.  This is shown 

schematically in Figure 1.1 31. At moderate to high concentrations, the structure is no longer fractal 

in nature and thus an assumption of such a microstructure is no longer able to scale the mechanical 

properties of the system. An interplay of strength of attraction and particle concentration, thus, 

describes the microstructure in particle suspensions. 

 

Gelation can occur through different routes – (1) homogenous gelation, where the gel line 

lies outside the traditional phase boundaries and is purely a result of dynamic arrest caused by the 

slowing down of particles due to particle attractions, and, (2) as a result of spinodal decomposition, 

where the system phase separates at the microscale. In this case, the particles form a percolated 

jammed network which we call a gel. 

 

The disordered glassy and gelled states are characterized by the length and time-scales they 

exhibit as they dynamically arrest and how their mechanical properties evolve as they approach 

the ergodic to non – ergodic transition. A central question in the field of colloidal science has been 

whether a single framework can be developed which has the ability to capture the microstructural 

differences that occur at different concentrations and predict the bulk mechanical properties of the 

system given the nature of interactions exhibited by the particles. Theoretical models, generally 

classified as percolation models, were initially developed to explain the trends observed in the 

elastic moduli and yielding behavior relative to the gel point assuming that the system under 

consideration is fractal in nature 32 33 34 35. These theories have been successful in scaling the 



4 

experimental data for elastic moduli and yield strains for several systems at low to moderate 

particle concentrations. However, the suggested scaling relations (described in later sections) often 

fail at moderate to high concentrations where the contributions of particle crowding become 

significant. In addition, given an effective interaction potential, they cannot predict absolute elastic 

moduli and yield stresses/ strains.  

 

Recent advances in this field include the development of the Activated Barrier Hopping 

theory by Schweizer and co-workers 36 which utilizes the framework of the Naïve Mode Coupling 

Theory in order to explain the mechanical properties and dynamics of colloidal gels and glasses. 

The strength of this framework lies in the fact that it does not assume an initial microstructure and 

thus, may be applicable to a larger range of concentrations. Within this framework, particles in a 

system are assumed to be ‘caged’ by their nearest neighbors. When weak attractions exist between 

particles, the particles may diffuse out their cages and explore larger volumes (or length scales), 

whereas, as attractions become stronger, the particles become more and more localized, such that 

they now only have the ability to explore restricted volumes. When the particles interact with very 

strong attractions, they become arrested within their nearest neighbor cages. Gelation is described 

as the condition at which they particles first become localized. This framework captures 

contributions of both, the interaction potential and concentration in describing the resultant 

microstructure and particle dynamics. Initial work by Zukoski and co – workers 27 37 utilized the 

framework of the barrier hopping theory to predict the gel boundaries and the mechanical 

properties of thermo-reversible and depletion gels containing octadecyl silica particles. Their 

results demonstrate good agreement between theory and experiment, however, their studies were 

restricted to particles of a single size (D = 40 nm) only. Till date, no work has been carried out to 
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test the applicability of this framework for particles of different sizes. Our motivation to study how 

the gel boundaries and mechanical properties change at different particle sizes lies in the need for 

developing design rules for processing of particle mixtures. Real life systems utilize particles of 

different sizes and concentrations. In addition, mixing particles of different sizes gives us a new 

avenue to tailor the mechanical properties of the system. With a model system well characterized 

at a wide range of sizes, concentrations and interaction energies, and the ability to predict their 

rheological behavior, we aim to set the base for future work where we will focus on studying the 

rheology of binary mixtures of particles.  

 

In this work, we use thermo-reversible gels containing octadecyl silica particles of sizes 

varying over an order of magnitude (18-185 nm) in decahydronaphthalene (decalin), at moderate 

volume fractions to study the applicability of the barrier hopping theory in predicting gel 

boundaries, elastic moduli and yield stresses. We explore how an interplay of particle 

concentration and strength of attraction between particles affects the gel boundary and the bulk 

mechanical properties of the system. This system offers a unique advantage of good control over 

the strength of attraction between particles which can be achieved by controlling the temperature. 

Further, using the experimental data, we test the scaling criteria suggested by both, percolation and 

barrier hopping theory in scaling the elastic moduli and yield stresses onto universal scaling curves.  

 

This thesis has been divided in 5 chapters. In the following section we review the relevant 

literature pertinent to our study. Chapter 2 describes the theoretical background for the 

mathematical relations used in describing our results. Chapter 3 details the materials and methods 

used in the current work. Chapter 4 describes the results obtained in this study and a detailed 
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discussion of the findings. Finally, Chapter 5 gives a summary of the important findings from this 

work and a brief description of the future directions. 

 
 

1.2 Literature Review 

 
1.2.1 Model Systems 

 

Model systems are experimental systems that are designed such that their interaction 

potentials may be well defined by using simplified effective potentials. Three classes of model 

systems have been used extensively in studying particle gelation - charge stabilized systems, 

depletion systems and thermo-reversible systems.  

 

In charge stabilized systems, attractions are induced through London – Van der Waal 

dispersion forces and attractions may be strengthened by charge screening through addition of 

ions. Colloidal latex, polystyrene, silica and gold 38 exhibit such interactions and their phase 

behavior has been studied extensively. Addition of electrolyte in these systems alters the rate of 

aggregation and not the net surface potential. These systems offer irreversible particle aggregation 

and very limited control over surface potential.  

 

Depletion systems contain mixtures of particles and polymers (and combinations thereof) 

in which the size ratio (of hard cores) is large. In such a scenario, the exclusion of the small 

particles from between the large particles creates a local disturbance in the osmotic pressure 

thereby introducing attractions between large particles. One well-studied depletion system is 

octadecyl – silica in decalin with low molecular weight polystyrene 39.  Particle interactions are 

modeled using the AO potential and the system has been shown to undergo gelation through 
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spinodal decomposition 7,8. Quantification of the strength of attraction in these systems and 

accounting for the partitioning of the components on phase separation has proven to be very 

challenging 23. In addition, similar to electrostatically stabilized systems, introduction of 

attractions in these systems is an irreversible process.  

 

Thermo-reversible systems contain sterically stabilized colloidal particles in index 

matched solvents which can be made to reversibly aggregate by controlling the sample 

temperature. Steric stabilization by grafting short chain alkanes and suspension in an in index 

matched solvent neutralizes surface charges and minimizes the contribution of Van der Waals 

interactions in the system. At high temperatures, the attractions in the system are negligible and 

the particles behave as hard spheres whereas quenching the temperature induces particle attraction. 

Some prominent examples of such systems are octadecyl-silica in decalin 27,37,40 and tetradecane 

23 41 42. In solvents which are structurally different from the grafted chains, such as decalin, 

attractions are introduced as a result of poor solvency of the grafted chains at low temperatures. 

However, when solvents are structurally similar to the grafted chains, such as tetradecane, the 

solvent molecules are seen to interdigitate and freeze in the grafted chains at low temperatures 23. 

Thermo - reversible systems, as the name suggests can be reversibly made to transition between 

fluid and arrested states. Strength of attraction in these systems can be controlled very 

systematically and with great precision since it only requires good temperature control. In our 

study, we use octadecanol grafted silica suspended in decalin as the model system and carry out 

rheological measurements for samples of different particle sizes at moderate volume fractions. 
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1.2.2 Aggregation Theories 

 

1.2.2.1 Percolation Models 

 
Percolation models for particle gelation utilize the theoretical framework that was 

developed to describe the microstructure and mechanical properties of polymeric gels. It assumes 

that particles cluster to form fractal flocs which grow in size and eventually overlap to form a 

percolated, space – filling network. A percolated network that can sustain its own weight is defined 

as a gel. Close to the percolation transition, the system exhibits very high viscosities and upon 

percolation, attains a finite shear modulus. Clustering has been observed at low concentrations as 

seen in Ref 37 and 44 35,43. Space filling networks are formed when the mass of a floc (M) increases 

with the characteristic size of the floc (ξ) as a power law given by: M =  ξDf such that Df, the fractal 

dimension of the floc, is less than 3. Diffusion limited cluster aggregation (DLCA), a mechanism 

proposed for physical gelation is reported to have a characteristic floc dimension of Df ~ 1.75 

which is characteristic of fast aggregation 32. Reaction limited cluster aggregation (RLCA) occurs 

when gelation occurs as a result of formation of chemical bonds, and is reported to have Df ~ 2 – 

2.2 which is characteristic of slow aggregation kinetics 43. Floc sizes are estimated by assuming 

that all particles in the system participate in clustering and each particle floc has grown to achieve 

a volume fraction of random close packing ~ 0.64 yielding 
ξD = � φ

φm� 1Df−3. Several theories based 

on this fractal framework have been developed to explain the trends observed for the kinetics of 

gelation and the mechanical properties of the resultant gels relative to the gel point, some of which 

are described below. 

 

Using the fractal gel framework, Shih and co – workers 32 developed scaling criteria for 

elastic moduli and yield strains for gels formed far from the gelation threshold. They suggested 
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that in the regime where the links between fractal flocs are stronger than links between particles 

within the flocs the elastic modulus scales as G′~ φ
� 3+�3−Df�  and the limit of linearity scales as 

γM~ φ 
� 1+b3−Df� where Df is the characteristic fractal dimension described earlier and b is the fractal 

dimension of the backbone of the percolated network. For alumina particles, they observed G’ ~ 

φ4.1 and γM ~ φ-2.1. Using a similar framework of percolation, several models were developed that 

demonstrate a power law dependence of G’ on φ. Buscall et al. 44-46 predicted G’ ~ φx where x = 

4.5 for reaction limited cluster formation and x = 3.5 for diffusion limited cluster formation where 

the power exponent depends upon the fractal dimensions of the flocs and the rigid backbone.  

 

A micro-rheological model was developed by De Rooij et al. 33,47 and Potanin et al. 48,49 to 

describe the aggregation kinetics and linear viscoelastic properties of aggregated suspensions with 

weak particle interactions. In deriving this model, the authors assume fractal clusters are formed 

which percolate to form space spanning networks and that these networks are transient. The 

aggregates (assumed to be impermeable spheres) form chains upon collisions through two types 

of bonds – rigid bonds which impart the structural stability as they form the elastic backbone of 

the percolated network and soft bonds which are elastically inactive, i.e., they don’t contribute to 

the elasticity of the network, and form inter-aggregate connections. The strength of the elastic 

network is thus determined by the rate at which rigid bonds form. The rigid chains respond 

elastically to deformation caused either mechanically or thermally and are assumed to transmit 

stress as Hookean springs. The system is then viewed as an interconnected system of beads and 

springs. The relaxation processes in such a system are characterized by the lifetime of the rigid 

bonds. This model predicts a power law dependence of G’, G’ ~ φx, with theoretically calculated 

exponent x ~ 6.15 – 7.15, normalized rate of gel growth, ΓgtD~ φa, with exponent a ~ 6.7 - 9.2 40 
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and τy ~ φb where b ~ 1.13 at low volume fractions and b ~ 2.5 – 4.3 at high volume fractions for 

sterically stabilized polystyrene latex particles. The power law exponents in this model, as seen 

earlier in the results of Shih et al. 32 and Buscall et al. 44, are dependent upon fractal dimensions.  

 

In the work carried out by Rueb and Zukoski 40 using octadecyl silica in decalin as a model 

system that gels thermo-reversibly, they observed the same power law dependence of G’ and rate 

of gel growth. They found that x ~ 5.6 close to the gel point and x ~ 4.4 away from the gel point, 

and, a ~ 2 – 3 close to the gel point and systematically decreases away from the gel point. They 

also observed that the dependencies of elastic modulus or yield stress on strength of attraction and 

particle concentration are very different. They observed that the power law exponents diverge at 

conditions close to the gelation transition when approached either by systematically changing 

particle concentration or system temperature. They concluded that the power law exponents, 

themselves, must have a temperature and/ or volume fraction dependence. Further, they noticed 

that at high particle concentrations, fractal arguments suggest that the effective number of particles 

in a ‘cluster’ is reduced to just two or three particles. In dense colloidal gels, thus, crowding would 

become significant and the concept of open fractal networks may have to be modified further. 

 

Alternate percolation models exist which, unlike the models shown earlier, do not assume 

that the system percolates at all particle concentrations. In such systems, a threshold volume 

fraction, φG, is defined as the minimum particle concentration at which the system can percolate. 

Universal scaling behavior has been observed when the bulk modulus is scaled as a function of the 

distance from the percolation threshold at a given strength of attraction. Percolation model by 

Stauffer (1985) 34 suggests that G’ should scale as G′~ �φ−  φG�s or G′~ � φ

φG − 1�pwhere the 



11 

quantities �φ−  φG� and � φ

φG − 1� represent the distance from the percolation threshold. The 

advantage of such scaling arguments lies in the fact that the scaling exponents p and s at these 

normalized ‘distances’ from the gel point don’t change significantly with the aggregation 

mechanism. These models, however, are expected to hold true strictly at conditions close to the 

percolation threshold and seem to fail at high particle loadings. Experimental studies carried out 

by Grant and Russel (1993) 35 using octadecyl silica in hexadecane show excellent collapse of data 

when the bulk modulus is scaled as G′~ �φ−  φG�s  with s ~ 3 for a large range of volume fractions 

up to �φ−  φG� = 0.3. They claim that �φ−  φG� represents the variable that describes the 

probability of bond formation as particle fraction is increased above the gelation threshold.  

Experiments carried out by Rueb and Zukoski 40 on octadecyl silica in decalin, however, suggest 

that both the elastic moduli and limit of linearity scale significantly better with � φ

φG − 1� with p ~ 

2. The authors suggest that at the same 
φ

φG, the density of the cluster may be assumed to be constant 

at all strengths of attraction. Thus, this variable is able to account for the effect of both strength of 

attraction and particle concentration in determining the final microstructure and aggregation rates 

and thus results in a better collapse of data than �φ−  φG�, which only takes volume exclusion 

effects into account.  

 
1.2.2.2 Activated Barrier Hopping Theory Framework 

 
The activated barrier hopping model developed by Schweizer and co-workers 50 36 within 

the framework of the Naïve Mode Coupling Theories (NMCT) has gained a lot of recognition in 

predicting both the location of the dynamic arrest transition well as the mechanical properties of 

the resultant gel. This theory describes how particle dynamics can be related to density fluctuations 
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arising in a system in which the particles are close enough for their collective motions to be 

sufficiently correlated. In this framework, the suspension is treated as an Einstein solid, i.e.: each 

particle is modeled as a harmonic oscillator, with the particles having a Gaussian positional 

dependence. A concept of caged particle motion is proposed such that a particle can diffuse freely 

within a “cage” of its nearest neighbors. The concept of a characteristic localization length is 

established which describes the length over which the particles can freely move around. In this 

regime, single particle transport requires thermally activated hopping over the entropic free energy 

barrier that is established as a result of interactions of the said particle with its nearest neighbors. 

At low strengths of attraction or particle loadings, thermal motion may be sufficient to allow 

particles to hop over the energy barriers and diffuse over large distances compared to the particle 

diameter. The system in this case behaves like a fluid containing freely diffusing particles and the 

localization length is effectively infinity since the particle motion is not restricted by its nearest 

neighbors. Conversely, as interaction strength or particle concentration is increased, the particle 

motion starts to become more confined and caging starts to become more prominent. In this 

regime, localization length decreases to attain a finite value – a fraction of the particle size. 

Gelation in such a system, is said to occur when the localization length first takes up a finite value 

27. Consequently, as the localization length decreases, it indicates that the particles are packed more 

tightly. The following sections will demonstrate the calculations required to predict the gel 

boundaries, elastic moduli and yield stresses for the octadecyl – silica – decalin system using the 

barrier hopping framework.  
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Figure 1.1 (Color Online) - Schematic phase diagram of colloidal suspensions depicting the 
transition between the fluid and disordered states with volume fraction ϕ and strength of 
interaction. 
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CHAPTER 2 

 

THEORETICAL BACKGROUND 
 

 
In this chapter we will detail the theoretical principles and assumptions underlying the 

models used to scale and predict the kinetics of gel growth, elastic moduli and yield stresses based 

on the framework of the percolation theories and the activated barrier hopping theory respectively. 

Our discussion for the percolation models describes the work carried out by Derooij and Potanin 

48, Shih et al. 32 and Rueb and Zukoski 40. For the discussion of the activated barrier hopping theory, 

we discuss the work carried out by Schweizer and co – workers 51 36 52, Ramakrishnan and Zukoski 

27and Gopalakrishnan and Zukoski 37.  

 
2.1 Percolation Theory 

 

 

2.1.1 Determination of Elastic Moduli 

 
An appropriate interaction potential U (r) is assumed to model inter – particle interaction 

where ‘r’ is the surface to surface distance between the particles. The particle separation at which 

the potential energy is minimum corresponds to the condition at which particles form strong, rigid 

connections. The location of the energy minimum is denoted as rc and the energy minima is 

denoted as Umin. The end to end chain length that forms the rigid backbone of the cluster is denoted 

by ‘q’. Assuming all the particles in the system participate in cluster formation, the volume fraction 

is given by φ ~ �qa�Df−3 where ‘a’ is the particle radius. It is assumed that the rigid particle network 

is elastic and the particles behave as Hookean springs, thus, the force, ‘f’ that would be exerted on 

a particle as it is driven away from the energy minima, r > rc can be written as:  

f = ke∆q 
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Here ke is the elastic constant given as ke = kel �qa�−(2+b)

= k0 Uminrc2 �qa�−(2+b)

, kel is the bond 

bending elastic constant, k0 is the elastic constant when the potential is the steepest, b is a fractal 

parameter corresponding to the rigid backbone of the aggregate and Δq is the displacement of the 

particle from rc 49. The stress on a microscopic volume, may be given as: τ ~ nqf ~ Nr q−2keΔq                    2.1 

Here, n is the number density of elastically active chains, n1 is the number of elastically active 

chains in a correlation volume of q3 given by n1  ≡ nq3.  When the stresses are small such that the 

system can respond elastically, the bonds break due to thermal and mechanical fluctuations of the 

system. A characteristic time – scale designated for this process is called the bond lifetime and is 

denoted by tL. No bond/chain can exist longer than this characteristic timescale regardless of 

whether it is subjected to any external stresses 49. The chain responds viscoelastically when 

subjected to small stresses. The elastic modulus, G’ may be written as:  

G′ =
τγ0  ~n1ξ3 kel

2a
 � ξ

2a
�−(3+b)

~ φy                    2.2 

Here y ~
6−b+Df3−Df , γ0 is the strain given by Δq/q and q ~ qcorr ~ ξ is the correlation length scale of 

the fractal aggregate. We can assume here that φ ~ n1ξ3 and φ  ~ � ξ2a�(Df−3)

. Thus, we expect the 

elastic modulus to scale as a power law function of volume fraction.  

 
 
2.1.2 Determination of Initial Growth Rate of the Elastic Modulus 
 

Using the framework developed by Derooij and Potanin 48, Rueb and Zukoski 40 derived a 

simplified expression to study the initial growth rate of the elastic modulus, Γg, for weakly 

aggregating systems. Under conditions of shear flow, the aggregates forming the rigid backbone 

of the percolated network shrink such as:  
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Nr(t)~ − 1/γ̇ 

Here, Nr represents the number of rigid bonds in the system and γ̇ represents the shear rate the 

system is exposed to. Soon after the cessation of shear, it may be assumed that all inter-floc bonds 

are soft and these soft bonds transform to rigid bonds as the structure develops. The number of 

rigid bonds at short times (after cessation of shear) may be written as:  

Nr(t) ~
Nsot

tD  

Here, Nso is the number of soft bonds that exist in the structure at time t = 0 and tD is the time scale 

corresponding to diffusion of the particles, given by tD = kT/6πηca3.  The elastic modulus is 

given as in equation 2.2: 

G′(t)~ Nr(t)ξ3 kel 
2a

�ξ
a
�−(3+b)

 

Here, ξ is the cluster size at time t, kel is the pair elasticity constant given by kel~ �dUdr�max Umin�c2  

where the first term represents maximum force required by the particle to diffuse out of its potential 

energy well, Umin represents the energy of the particle in the potential energy well and rc represents 

the position of the well in terms of distance from the particle surface.  

Experimentally, the growth of G’ in time is modeled using the following expression 40 53: 

G′(t) = G′(∞) �1 − exp �−Γg�t − tg���                     2.3 
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Here G’ (∞) is the modulus at long times, once it reaches a plateau value, Γg is the initial rate of 

gel growth and tg is the lag time. At short times, when (t – tg) → 0, equation 2.3 may be 

approximated using exp(x → 0)~ 1 + x as:  

G′(t ⟶ 0) ~ G′(∞) �Γg�t − tg��                    2.4  

The initial rate of growth of G’, Γg, may thus be defined as:  

Γg ~ limt⟶0 G′(t ⟶ 0)

G′(∞) (t − tg)
 

Using the model developed by Potanin et al., thus, the initial growth rate may be given as:  

limt⟶0 G′(t ⟶ 0)

G′(∞) 
  

tD
t − tg   ~ ΓgtD ~

Nso
Nr(∞)

�ξ0ξ∞�−b                     2.5 

Here, ξ0 and ξ∞ represent the cluster size at time t = 0 and at long times when the network is 

percolated. In terms of volume fraction, rigid floc volume fraction,  φr ~ Nr(∞) ξ∞3  ~ 1 and total 

particle fraction at time t = 0, φ ~ Nso ξ03 and the cluster size may be approximated as 2a = D if we 

assume that the shear broke up all space spanning clusters 40. Then, on expressing volume fraction 

as a function of cluster size, using φ ~ �ξ∞ξ0 �(Df−3)
47, the initial growth rate from equation 2.5 may 

then be expressed as a power law function of volume fraction given as:  

 ΓgtD ~ ϕDf+bDf−3 
~ ϕs                    2.6 

Thus, a power law dependence of Γg may be expected as a function of particle concentration. 
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2.1.3 Determination of Yield Stress  
 
The yield stress is defined as the maximum stress that a structure can sustain before it 

ruptures. As a first estimate, if we neglect the internal aggregate structure and assume that only 

one bond per cluster is required to break up the aggregate, then the yield stress may be 

approximated as:  

τy ~
FmaxΔA

 ~
1

q2 �dU

dr
�max,   rc ~

ϕ2
a3  �dU

dr
�max,   rc                     2.7 

Here, Fmax is the maximum inter - particle force which is defined as the first derivative of the total 

interaction potential which would be required to separate particles when their separation is ~ rc. 

Assuming that the internal aggregate structure is composed of a rigid backbone, equation 2.1 

describes the relation between stress and strain in a viscoelastic system with a fractal 

microstructure. The system would yield when the stress is high enough to break the rigid inter – 

aggregate bonds. In order to break the bond, the applied mechanical energy must be greater than 

the energy stored in an elastic bond, Ubond~ kel(Δq)2. Thus the strain at bond rupture and the 

corresponding yield stress may be written as: Δqrup
q

 ~ k0−12  �rc
a
� �q

a
�−b                     2.8 

τy ~ �k012 n1 � Uc
a2rc��  φ

� 33−Df� ~ φd                    2.9 

Thus, a power law dependence of yield stress may be expected on particle concentration. 

 

 

2.1.4 Prediction of the Gel Boundary 

 
Rueb and Zukoski 40 verified the power law dependence of elastic modulus at long times, 

G’∞, on volume fraction and also found that for thermo - reversible systems, G’∞ varies as an 
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exponential function of temperature. G’∞ was found to scale on a universal scaling curve as a 

function of non – dimensionalized volume fraction, 
φ

φG such that, 

G∞′ (φ, T) ~ � φ
φG�y                     2.10 

Where φG is the volume fraction at the gel boundary at temperature T. The following expression 

was developed to determine the strength of attraction for octadecyl silica particles by Jansen et al. 

24:  ϵ
kT

= −A′ �1 −  
T

Tθ�                     2.11 

The exponential dependence of the elastic modulus on temperature was assumed to be related to 

the strength of attraction such that G’∞ ~ exp �− ϵkT� and thus,  

G∞′ (φ, T) =  G∞′ (φ, TR) exp �A′TR
Tθ �1 − T

TR��                     2.12 

Here TR is a reference temperature at which the volume fraction at the gel boundary is known for 

the system. Using equations 2.10 and 2.12, thus, we can determine the gel boundary using the 

following simplification:  

φG =  φG(TR) exp�[T − TR]

y
�                     2.13 

It must be noted that this method of determining φG is only approximate and depends upon the 

accuracy of the experimental data. In general, no consensus has been reached in predicting φG 

theoretically 27. 
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2.2 Activated Barrier Hopping Theory 

 
 
2.2.1 Prediction of the Gel Boundary 

 
A simplified form of the activated barrier hopping theory focusses on the short ranged 

aspect of the dynamics such as hard core collisions. This simplification is referred to as the “Ultra 

- local Limit” of the activated barrier hopping theory and is expected to be applicable to any system 

that interacts through a near hard core repulsion or short ranged attraction 36. Within this 

framework, the model describes the localization length as:  

1

rloc2 =
1

9
� 4πq2dq

2π3  q2ρ C2(q)
∞
0  S(q) exp�− q2rloc2

6 �1 +
1

S(q)
��                     2.14 

Here, q is the wave-vector (m-1), a Fourier transformed length scale, S (q) is the structure factor 

that represents density fluctuations at length scales of the order of 1/q, C (q) is the direct correlation 

function which can be determined from S (q) such that S(q) = � 11− ρC(q)
� 36 and ρ = � φ16πD3� is the 

number density. With an appropriate choice of interaction potential and closure relation, S (q) and 

consequently the localization length can be calculated using equation 2.14. As described in Section 

1.2, the transition to dynamic arrest is indicated when the localization length attains its first finite 

value. Ramakrishnan and Zukoski 27 have used this method to theoretically predict the gel 

boundaries assuming a Yukawa interaction potential (described in Section 2.2.2) to model the 

particle interactions is shown in Figure 2.1.  As can be seen, the barrier hopping theory predicts a 

power law dependence of strength of attraction at the gel boundary on volume fraction. 
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2.2.2 Determination of Elastic Moduli 

 
The glassy (or zero frequency) modulus may be determined using the Green – Kubo 

relation and MCT factorization approximation 36 27 37 and is given as:  

G′(ω = 0) =
kT

60π2� dq q4 �d ln S(q)

dq
�2∞

0 exp� − q2rloc2� 3
S(q)

��                     2.15 

Non - dimensionalizing this equation using q’ = qD and rloc’ = rloc/D gives:  

G′(0) =
kT

60π2D3� d(q′) (q′)4 �d ln S(q′)
d(q′) �2∞

0 exp� − (q′rloc′)2� 3

S(q′)� � 

G′D3
kT

=
1

60π2� d(q′) (q′)4 �d ln S(q′)
d(q′) �2∞

0 exp� − (q′rloc′)2� 3

S(q′)� �                     2.16 

The term on the left hand side of equation 2.16 is non – dimensionalized elastic modulus. We know 

that the function on the RHS of equation 2.16 can be written as a function of ϕ and a non - 

dimensionalized temperature, f (ϕ, T), since the RHS is essentially a complex function expressed 

in terms variables that determine S (q) such as q, T and ϕ. Taking a first order approximation of 

this function in ϕ for cases when concentrations are low, we get:  

G′D3kT = f(φ, T) =  φ ∗  g (φ, T)                    2.17  

Simplifications made to the Green Kubo expression for G’ (0) in the ultra - local limit yields an 

expression that relates the localization length to G’ (0) given as36:  

G′(0) =
95π φkT

D rloc2                     2.18  

Since rloc itself is dependent on volume fraction, equation 2.18 may be used to demonstrate the 

power law dependence of G’ on volume fraction. In an article by Ramakrishnan and Zukoski 27, 
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similar calculations have been carried out to predict the elastic modulus using the Yukawa 

interaction potential along with a modified Mean Spherical Approximation closure for the same 

octadeyl – silica – deaclin system. The Yukawa potential is a three parameter interaction potential 

that has been used extensively to model strong short range attractions in colloidal systems. It is 

characterized by three potential parameters – particle diameter, D (m), strength of interaction at 

contact given as 
ϵkT and range of attraction given as κ−1 (m) and is given as:  

uyukawa(r)

kT
= ⎣⎢⎢
⎡ ∞ for r < D− ϵ

kT
exp �−κD �r

D
− 1��

r
D

for r > D⎦⎥⎥
⎤
 

The octadecyl – silica – decalin system has been extensively studied and its strength of attraction 

is well described using the Flory – Higgins theory for polymers 54,55 as:  ϵ
kT

= A � T

Tθ − 1�                     2.19 

Here, A is defined as the overlap volume fraction of the octadecyl chains upon aggregation and Tθ 

is the theta temperature of the octadecane – decalin system. These variables are dependent on 

particle size and solvent properties. Given the particle diameter and the range and strength on 

interaction, thus, the elastic modulus can be predicted upon numerically integrating equation 2.15. 

 
 
2.2.3 Prediction of the Interaction Potential Parameters 
 

It must be stated here that determining absolute values for the range and strength of 

attraction for a system under a certain set of conditions is a non – trivial exercise. An empirical 

relation was developed by Ramakrishnan and Zukoski 27 using the barrier hopping framework for 

particles modeled using short range Yukawa interactions that allows one to back-calculate the 
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interaction potential parameters using experimentally measurable properties such as particle 

diameter, volume fraction, absolute temperature and equilibrium elastic modulus given as:  

G′D3
kT

=
0.58 φ [κD]2

M2(φ, κD)
exp �1.6 χ(φ, κD)A Tθ �1

T
− 1

Tgel��                     2.20 

Here, M(φ, κD) and χ(φ, κD) are constants that depend on volume fraction and the range of 

interaction. This empirical scaling relation is found to hold in the limit 0.15 ≤ ϕ ≤ 0.38 and 11 ≤ 

κD ≤ 100. This framework showed excellent collapse of experimental data for the octadecyl – 

silica – decalin system for a single particle size and varying volume fractions as seen in the two 

studies carried out for 90 nm particles and volume fractions varying between 0.253 and 0.446 by 

Ramakrishnan and Zukoski 27 and for 48 nm particles and volume fractions between 0.25 and 0.38 

for the studies carried out by Gopalakrishnan and Zukoski 37 when 
G′D3 kT  is plotted as a function of 

�1T− 1Tgel�. The range and strength of interaction is then determined using the slope and intercept 

of the exponential fit. If the volume fraction is known, the range of interaction, κD may be 

determined from the intercept using the following empirical relation developed by Ramakrishnan 

and Zukoski:  

� κD

M(φ, κD)
�2 = (3.11 − 27.31φ + 106.37φ2 − 137.45φ3)(κD)2.2                    2.21      

From the knowledge of κD, the χ parameter may be obtained from Table 1 in Ramakrishnan and 

Zukoski 27. An average value of χ over the range of volume fractions studied is used to determine 

the product ATθ. Next, individual values of A and Tθ may be determined by solving equation 2.19 

with one known experimental point on the gel boundary. 
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2.2.4 Determination of Yield Stress 

 
In the activated barrier hopping framework, particle localization is expressed in terms of 

an effective non-equilibrium free energy function, F (in units of kT) which is dependent on 

separation distance, r. This free energy function describes the effective interaction energy imposed 

on a primary particle from surrounding particles in the limit of zero stress and is given as:  

F(α) =
3

2
ln(α) −  � dq

2π3 ρC2(q)S(q)[{1 + S−1(q)}−1] ∗ exp�− q24α [1 + S−1(q)]� 

Here, α =
32r2 , ρ is the particle number density, S(q) is the structure factor dependent on wave – 

vector q (m-1) and C (q) is the direct correlation function which can be determined from the 

structure factor. Kobelev and Schweizer 51 derived an expression for the free energy function by 

incorporating effects of external stress, τ, in units of kT/D3, given as:  

F(α) =
3

2
ln(α) −  � dq

2π3 ρC2(q)S(q) �� 1

1 + S−1(q)
�� ∗ exp�− q24α �1 +

1

S(q)
�� − τ

φ
23� 32αD2 

                  ⋯ 2.22      

Gopalakrishnan and Zukoski 37 calculate F (α) using the experimentally backed out values of range 

and strength of attraction as described in Section 2.2.3 based on the work carried out by 

Ramakrishnan and Zukoski 27 and experimental values of shear stress as shown in Figure 2.2. The 

minimum if F (α) is the localization length of the particles. This localization length may then be 

used to calculate the elastic modulus at a given shear stress using equation 2.18. Gopalakrishnan 

and Zukoski define the yield stress as the shear stress corresponding to the point where the G’ 

drops to 90% of its linear viscoelastic value.  
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At low stresses, it can be assumed that the imposed external stress is constant throughout 

the material, thus, the macroscopic and microscopic stresses are equal. The microscopic force 

acting on a unit cross section area of the particle area may be given by assuming an averaged length 

scale of the system given by 〈L〉 ~ �φn�13 where φ is the volume fraction of particles and n is the 

number density of particles in the system. The averaged characteristic area may thus be given by 

〈A〉 ~ �φn�23 and the corresponding force may be written as:  

f = τ �φ
n
�−23 = �πD3

6
�23    

τ
φ
23  

The system is thought to yield when the external stress can impose an external force greater than 

the maximum cage restoring force, fmax given as fmax~ �dFdr�R∗where R* is the displacement at 

which the slope of the free energy function is maximum. The yield stress may thus be 

approximated as:  

τy ~ 
ϕ23
D2  fmax                    2.23 

Here, the yield stress is non – dimensionalized using characteristic stress kT/D3. 
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Figure 2.1 - ϵMSA/kT at the calculated gel boundary vs φ for particles interacting with short-
range Yukawa potential at different κD values using the NMCT framework. Solid symbols are 
theoretically calculated points on the gel boundary while the lines are power law fits to data 
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Figure 2.2 – Non-equilibrium free energy F, in units of kT, as a function of the normalized 
particle displacement (r/D). With increasing stress (values next to the curves, in units of kT/D3), 
the non-equilibrium free energy barrier height decreases while the position of the minima, or the 
localization length shifts to higher values. 
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CHAPTER 3 

 

MATERIALS AND METHODS 
 

This chapter describes the synthesis of silica particles, coating of the particles with 

octadecanol, suspension preparation, protocols for particle characterization, and protocols for 

rheological measurements. 

  
 

3.1 Synthesis of Octadecyl Silica Dispersions 

 

 

The system under investigation is composed of monodisperse octadecyl silica spheres 

suspended in decahydronaphthalene (Decalin). Monodisperse silica cores were synthesized using 

the Stöber synthesis technique detailed in Section 3.1.1. To prepare larger particle sizes, these core 

particles were grown via double additions using a Seeded Growth Technique proposed by Bogush 

et al. 56 mentioned in Section 3.1.2 and finally surface functionalized with n-octadecanol using the 

method developed by Van Helden et al. 57 to neutralize the surface charges as described in Section 

3.1.3. Stock solutions of ~45% volume fraction of octadecyl silica in decalin are prepared initially 

and then diluted to 40%, 35%, 30%, 25% and 20% by diluting with Decalin. 

 
 
3.1.1 Stöber Synthesis 

 
An elegant method for controlled synthesis monodisperse silica particles through the 

hydrolysis of silicon alkoxides and subsequent condensation of SiO2 into uniform spheres was 

proposed by Stöber et al. 58. Silica particles of a particular size were synthesized from the 

hydrolysis of tetra-ethyl orthosilicate (TEOS) in an ethanol medium with ammonia as a catalyst 

(added as ammonium hydroxide).  Good control of the particle size was achieved by tuning the 
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concentrations of TEOS, ammonia, water and the solution temperature. The hydrolysis reactions 

governing the process are described as follows:  

 

Si(OC2CH5)4 + 4H2O 
NH3,   Alcohol�⎯⎯⎯⎯⎯⎯⎯⎯�  Si(OH)4 + 4C2H5OH              (Hydrolysis) 

                    Si(OH)4  
NH3,   Alcohol�⎯⎯⎯⎯⎯⎯⎯⎯�  SiO2 ↓ + 2H2O                            (Condensation) 

 
 

3.1.1.1 Synthesis of 30 nm Particles 

 
Initial reactions were carried out in a 5 L round flask inserted with a stir rod and placed in 

a hot water bath set to 49 oC.  3620 mL 200-Proof Ethanol and 89.2 mL de-ionized water were 

added to the reaction vessel and allowed to thermally equilibrate for 1 hour before simultaneously 

adding 152 mL of tetra ethyl orthosilicate (TEOS) and 139 mL of ammonia hydroxide (13% by 

weight), initializing the reaction.  The system was covered with aluminum foil to reduce the rate 

of evaporation from the water bath and glass stoppers on the flask were secured with parafilm to 

avoid leakage of the vapors and to avoid the stoppers from getting pushed out due to pressure in 

the vessel.  This batch reaction was allowed to go to completion overnight before the water bath 

was switched off to stop the reaction. Six batches were synthesized using this technique and 

combined before coating with octadecanol.  

 
 

3.1.1.2 Synthesis of 82 nm Particles 

 

The first step in synthesizing 82 nm particles is the 30 nm seed particles as detailed above. 

30 nm seed particles were synthesized in a 5 L round bottom flask with a stir rod, placed in a hot 

water bath at 49 C. 1818 mL of 200-Proof Ethanol and 46.8 mL of deionized water were 

equilibrated at 49 C for 1 hour after which 77 mL TEOS and 77ml ammonium hydroxide were 
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simultaneously added to initiate the reaction. The water bath was covered with aluminum foil to 

avoid evaporation and the stoppers on the flask were sealed using parafilm. The batch reaction was 

allowed to go to completion overnight.  In order to attain the desired particle sizes, the seed 

particles were grown to the desired size by the Seeded Growth technique proposed by Bogush et 

al. 58. A double addition reaction is carried out by adding 154 mL TEOS and 25 mL of deionized 

water to the seed particles in the ethanolic medium at 25 C.  This reaction is carried out for at least 

7 hours. Eight double addition reactions were carried out to synthesize particles of size for 82 nm 

particles respectively.  

 
 

3.1.1.3 Synthesis of 185 nm Particles 

 

72 nm seed particles of were synthesized in a 5 L round bottom flask containing 1818 mL 

of 200-Proof Ethanol and 46.8 mL of deionized water thermally equilibrated at 25 C by placing 

the apparatus in a water bath maintained at 25 C and stirring constantly using a stir rod. 77 mL 

TEOS and 77 mL ammonium hydroxyl are added to the ethanolic medium to initiate the reaction 

at 25C. The reaction was allowed to undergo completion overnight. Double Additions were carried 

out at 25 C by adding 154 mL TEOS and 25 mL deionized water each time. Nine double additions 

were used to grow the particles to a size of 185 nm particles. 

 
 
3.1.2 Surface Functionalization 

 

After synthesis of the silica particles, the particles were coated with 1-octadecanol using 

an esterification reaction according to the protocol followed in Van Helden et al 57. Volume 

reduction was carried out prior to transferring the sol into a 1000 mL beaker in order to reduce the 

amount of water and ethanol in the mixture. Care was taken to avoid excess ethanol and water 
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from evaporating which can cause the system to crash out. Addition of pure ethanol in this step 

enhances the removal of water. Once the volume is significantly reduced, 1000 g of anhydrous 

octadecanol is added in excess (3-5 times the amount of silica present by weight) to the sol. The 

esterification reaction takes place at 215 °C for 5 hours under constant stirring using a magnetic 

stirrer on a hot plate. The temperature is carefully monitored and recorded every 15-20 minutes. 

Once the reaction is completed, the temperature is slowly lowered down to room temperature and 

the remaining ethanol and water is allowed to evaporate overnight. The surface functionalized 

silica particles and unreacted octadecanol forms a cake at the bottom of the beaker. 

 
 
3.1.3 Purification 

 

The purification of the coated particles from excess octadecanol takes place through a 

series of centrifugation and vacuum drying steps. The cake obtained from the previous step is 

dispersed in excess chloroform, a good solvent for octadecanol, by heating it up to a temperature 

of 35-45 °C and stirring it simultaneously. Once the particles are well dispersed in chloroform, the 

solution is poured in 500ml polypropylene centrifuge bottles and centrifuged at 18000 rpm for 3 – 

4 hours at a temperature of 25-30 °C.  The supernatant is poured off and the suspended silica 

particles are dried under vacuum alone until dry powder is obtained without applying any heat. 

The dry powder is weighed and then re-dispersed in chloroform and the centrifugation and vacuum 

drying steps are repeated. For all particle sizes 4 cycles of centrifugation and vacuum drying were 

carried out, first two using chloroform as solvent and last two using cyclohexane. Cyclohexane 

offers a larger density difference between the particles and the media thus enabling better 

separation. 
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3.1.4 Sample Preparation 

 
After the final vacuum drying step, the dried powder is weighed and dispersed in calculated 

amounts of decalin to make a stock solution of ~45% by volume silica. To prepare samples of 

different volume fractions for the rheology experiments, the stock solution was diluted by adding 

requisite amounts of decalin to the stock. To verify the volume fractions, the samples were dried 

at 100°C in an oven overnight, the dry weight was recorded and the volume fractions were back-

calculated both before and after the rheological measurements. 

 

 
3.2 Particle Sizing and Characterization using SAXS 

 

 

Particle sizing during synthesis was carried out using a Dynamic Light Scattering (DLS) 

Apparatus. DLS gave initial estimates of the hydrodynamic radius of the particles and their 

polydispersity. Small Angle X-Ray Scattering (SAXS) was employed in order to get an accurate 

estimate of the particle size, polydispersity and nature of particle interactions.  

 
X-ray scattering experiments were carried out at Sector 12-ID of the Advanced Photon 

Source at Argonne National Laboratory. Dilute samples (volume fractions ~ 0.02) were loaded 

into a glass capillary of 1 mm thickness and mounted on the beamline. The energy of the incident 

X-ray beam was ~ 10 keV and the sample to detector distance was ~ 4 m. The wave vector (q) 

range accessed in this experiment was between 0.002 to 0.5 Å-1. The experimental data measured 

scatter intensity as a function of q. These data were fit to a model (form factor for a sphere with a 

size distribution) to back out the size and polydispersity of the particle using the Irena SAS 

Modeling Macro on Igor Pro. 
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3.3 Rheological Characterization  

 

 
Rheological experiments were carried out using the Bohlin Gemini Rotonetic Z, stress 

controlled rheometer in a C-14 couette geometry (Outer cup diameter = 14 mm; Gap = 0.7 mm) 

and the temperature was controlled using a Peltier drive setup with an accuracy of ± 0.2C. A 3ml 

sample volume was loaded each time and evaporation of the sample was prevented by using a 

solvent trap to cover the geometry. Samples remained unchanged in the rheometer for at least a 20 

hour period. Experiments were carried out up to 3 times to ensure repeatability. 

 
 
3.3.1 Determining the Gel Temperature 

 
The test sample was loaded into the cup at room temperature and then quenched quickly at 

a rate of 4 K/min to the desired temperature. It was then pre-sheared at 300 s-1 for 180 s in order 

to remove any thermal history that may have built up in the gel structure during the rapid quench 

so as to ensure reproducibility. The sample is then oscillated at a constant frequency of 1 Hz and 

a low stress between 0.1 – 0.5 Pa for 3600 s during which the modulus of the gel grows to a time 

independent equilibrium value G’ (∞).The sample is then subject to a temperature ramp of 0.1 

K/min and oscillated at 1 Hz and a very low stress of 0.05 Pa. As the sample is heated, both the 

storage and loss moduli undergo a rapid decrease in a small temperature window. The gel point is 

defined as the temperature at which the storage and the loss moduli first cross over. Summary of 

steps involved in determining the gel temperature – 

 

1. Load sample at 25C 

2. Rapid quench at 4 K/min to T_low 

3. Pre-shear at 300 s-1 at T for 180 s 
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4. Gel growth – 1 Hz, low stress (0.1-0.5 Pa), 1 hour 

5. Temperature ramp up at 0.1K/min at 0.05 Pa from T_low  

 
 

3.3.2 Rheological Characterization at Steady Temperatures 

 

The sample is rapidly quenched from room temperature at which the particles behave like 

hard spheres to a temperature below the gel point. Once the desired temperature is attained, the 

sample is pre-sheared at a shear rate of 300 s-1 for 180 s, and is then subject to - (1) a stress 

controlled oscillation at 1 Hz at a low stress between 0.1 and 0.5 Pa - low enough so that the growth 

of the gel structure is not disrupted, however, high enough so that the strain doesn’t approach 

instrument limits and result in noise in the measurement. Depending on how far the temperature 

is from the gel temperature, it takes from 2 – 3.75 hours for the modulus to reach a time invariant 

value. Once the modulus plateaus, (2) a frequency sweep is carried out where the sample is subject 

to stress controlled oscillation and a frequency ramp between 0.1Hz – 50Hz to probe the 

dependence of the moduli on frequency.  The frequency sweep is followed by (3) a stress sweep 

where the magnitude of the shear stress is increased logarithmically from a low value of 0.1 Pa to 

~ 100 Pa to determine the yield stress. Summary of steps involved in rheological characterization 

of a sample at a given temperature and concentration –  

1. Load sample at 25°C 

2. Rapid quench at 4 K/min to T 

3. Pre-shear at 300 s-1 at T for 180 s 

4. Gel growth – 1 Hz, low stress (0.1 - 0.5 Pa), > 3 hours  

5. Frequency Sweep – constant stress, 0.1 - 50Hz  

6. Stress Sweep – 1 Hz, 0.1 - 100 Pa 
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CHAPTER 4 

 

RESULTS AND DISCUSSION 

 

 
This chapter discusses the experimental results obtained from the SAXS and rheological 

measurements. Further, the experimentally obtained data are compared with the predictions of the 

barrier hopping theories for elastic moduli and yield stresses. In addition, scaling criteria proposed 

by percolation theories and mode coupling theories to collapse the experimental data for elastic 

moduli and yield stresses are tested. 

  

 

4.1 Particle Characterization using Small Angle X-Ray Scattering (SAXS) 

 
 

Octadecyl silica particles of sizes 30 nm, 82 nm, and 185 nm were successfully synthesized 

using the protocol described in Section 3.1. The particles were sized using SAXS which measures 

scattered intensity (I) as a function of wave vector (q) for a dilute sample. Figure 4.1 shows a 

sample static X-ray scattering plot for a dilute sample (φ ~ 0.02) of 82 nm particles at 25 °C - 

symbols represent experimental data and the solid lines are curve fits to the experimental data 

based on Equation 4.1 which represents the form factor for a sphere with a Gaussian (or log 

normal) distribution. 

f(q) =  � fs(q)
∞
0  R6 1δ√2π exp�− 1

2
�R −  〈R〉δ �2�  dR     ⋯ 4.1 

Where fs (q) is the form factor of a perfect sphere given as:  

fs(q) − �3(sin(qR) − qR cos(qR))

(qR)3 �2 
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Here q is the wave-vector, R is the radial distance, δ is the Gauss width and 〈R〉 is the Gauss mean 

particle radius. The mean value and the standard deviation of the particle sizes as determined from 

the curve fit for all particle sizes are given in the Figure 4.1 for 82 nm particles and in Appendix 

A for 18, 30 and 185 nm particles.  

 

Figure 4.2 is a plot of I vs q for a concentrated sample of 82 nm particles (φ = 0.3) in decalin 

at 25°C. The experimental points are open symbols while the solid lines are a curve fit to the 

experimental data using the Hard Sphere equation of state with the Percus - Yevick (PY) closure. 

The good agreement of experiments with theory suggests the particles indeed behave as hard 

spheres at room temperature even at high concentrations. In this work, attractions are introduced 

between the particles by reducing the system temperature. Below a critical threshold temperature, 

the particles form a gel. Good control over the strength of interaction is obtained by controlling 

temperature. 

 
 

4.2 Analysis of Rheology Data 

 

 

4.2.1 Gel Boundaries and Extraction of Interaction Potential Parameters  

 

A sample plot showing the temperature ramp carried out to determine the gel temperature 

(Tgel) for 30 nm octadecyl silica particles in decalin (φ= 0.4) using the protocol described in section 

3.3.1 is shown in Figure 4.3. A well - formed gel at Tlow = 13°C is slowly melted at a heating rate 

of 0.1 K/min. Initially, at Tlow, the sample is a strong gel as indicated by well separated G’ and G’’ 

and a high G’ (~ 15 kPa). As the temperature is increased, the strength of attraction between 

particles � ϵkT� decreases and the structure is expected to loosen which can be seen as a sharp decline 

in G’ and G’’ in Figure 4.3. At a certain temperature through the ramp, here, 15.9 C, the structure 
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loosens to the extent that it can’t sustain its own weight and collapses. This transition to a 

predominantly liquid-like regime is indicated by the intersection of G’ and G’’ and is defined as 

the gel point. Experimentally, if G’’ is greater than or equal to G’ and the oscillatory strains are 

high, it is indication of a fluidized regime as opposed to a solid-like structure. The sharp decline 

of G’ and G’’ within ~1°C from the gel point is noteworthy and is observed for every sample. It 

indicates the fragility of the gel at temperatures very close to the gel point. This method of 

determining the gel point is found to be reproducible to within 0.5°C. Gel point determination plots 

for all particle sizes and volume fractions studied are given in Appendix B.  

 

The effect of conducting a heating ramp versus a cooling ramp to determine the gel point 

was examined in the study as shown in Figure 4.4 for 82 nm octadecyl silica particles in decalin 

(φ = 0.2).  The experimental protocol followed to carry out a cooling ramp is similar to that 

described in section 3.3.1. The sample is first quenched from 25°C to 5°C and thermally 

equilibrated. The cooling ramp is then carried out from 5°C to 1°C at a cooling rate of 0.1 K/min, 

1% strain and a frequency of 1 Hz. Once Tlow is attained, the heating ramp is carried out 

immediately after, at the same ramp rate, strain and frequency conditions from 1°C to 5°C. Figure 

4.4a shows that the heating ramp doesn’t re-trace the cooling ramp. This hysteresis between the 

two temperature ramps indicates that the gel is evolving differently in time during the cooling and 

heating ramp when the ramping rates are the same in the two cycles. The effect of the heating and 

cooling rate on the determination of the gel point was examined by Guo et al. (2011) 59 for the 

same octadecyl silica - decalin system. They claimed that heating rates between 0.05 – 1 K/min 

don’t show a significant difference in the determination of the gel point, whereas changing cooling 

rates within the same range yield very different gel points. This indicates that the loosening/melting 
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of the gel structure upon heating from an initially arrested state is fast and, thus, not sensitive to 

the rate at which the temperature, or inter-particle strength of attraction is changed. Formation of 

a gelled network by increasing the strength of attraction (cooling) however, is a slower process 

and thus the evolution of the moduli is different with different cooling rates.  

 

Another approach used to determine the gel point, utilizes the idea that the gelation 

transition should occur at the same temperature over a range of probing frequencies 60. Thus, the 

frequency of oscillation during the heating ramp conducted in our experiments may affect the gel 

point slightly. However, Guo et al. 53 found that gel temperature measurements carried out for the 

same octadecyl silica - decalin system yield similar values of gel temperatures which show similar 

trends with increasing particle concentration using both the approaches of determining the gel 

point.  

 

Figure 4.5 shows how the gel temperature varies with particle size and volume fraction. 

We see that for a given particle size Tgel increases as a weak power law function of volume fraction, 

φG for the range of volume fractions between 0.2 and 0.4. As can be seen from Figure 4.5, as the 

volume fraction decreases, a lower temperature or higher strength of attraction is needed for 

gelation to occur. This is because particle crowding contributes significantly to hindered particle 

motion and dynamic arrest and since the particles are closer together at higher volume fractions, a 

lower strength of attraction is sufficient to form a space spanning network thereby inducing 

gelation. However, we also see that the gel temperatures don’t change systematically with particle 

size for a given volume fraction. The 30 nm particles have the highest Tgel followed by the 185 nm 

particles and finally the 82 nm particles. It is not clear what gives rise to this non-monotonic trend 
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in Tgel. We hypothesize that this may be due to a difference in surface density of octadecanol 

between different particle sizes. Although we added octadecanol in excess during synthesis and 

care was taken while handling the particles during the purification process, there is a chance that 

octadecyl chains may have cleaved from the surface of the silica particles resulting in a difference 

in the surface coating between different particle size dispersions.  

 

The dashed lines in Figure 4.5a are curve fits of the experimental data using equation 2.13 

developed by Rueb and Zukoski 40 as discussed in Section 2.1.4 while the solid symbols are the 

experimentally determined gel temperatures at different volume fractions. These equations are 

used to fit T vs φ at the gel point so that φG can be determined at a given temperature. These will 

be used to test the scaling functions (φ - φG) and (φ/φG – 1) suggested by the percolation theories. 

As can be seen, equation 2.13 shows reasonable agreement in determining the gel boundary for 

the different particle sizes. The predicted values of the gel points lie well within the experimental 

error limits (± 0.3°C). Similar results were observed by Rueb and Zukoski 40 in determining the 

gel boundary for the same experimental system. 

 

Using the experimental data in Figure 4.5, we can back out the parameters determining the 

strength of attraction, A and Tθ as outlined by Ramakrishnan and Zukoski 27. For the same system 

of octadecyl particles in silica, the work carried out by Ramakrishnan and Zukoski, 

Gopalakrishnan and Zukoski 37 and Breuer and Ramakrishnan 61 showed that particles interacting 

with a range parameter, κD = 11 was able to predict the gel boundary, elastic moduli and yield 

stresses for different sized particles. Using the exponential fit suggested in equation 2.20, we can 

obtain the product of ATθ from the slope of the exponential fit obtained by plotting 
G′D3kT  as a 
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function of �1T− 1Tgel� (Figure 4.21, details given in a later section). By assuming κD = 11 we 

obtain the χ parameter by averaging the data obtained by Ramakrishnan and Zukoski (Table 1) 27 

over all volume fractions under consideration. Upon the knowledge of ATθ, individual values of 

A and Tθ were determined by matching the experimentally determined gel point (Figure 4.5b) to 

the theoretically predicted gel point (Figure 2.1) at one volume fraction (here, at φ = 0.3) using 

equation 2.19. The values of A and Tθ for the different particle sizes extracted from ATθ = 9147.72 

are listed in Table 4.1. Once the interaction potential parameters A and Tθ are determined, we can 

predict the gel boundary at other volume fractions using the data for κD = 11 given in Figure 2.1 

using equation 2.19. The predicted gel boundaries are depicted as solid lines in Figure 4.5b. As 

can be seen from the plot there is excellent agreement between theory and experiment at other 

volume fractions as well.  

 

Table 4.1: Interaction potential parameters for different particle sizes at κD = 11 

Parameter 30 nm 82 nm 185 nm 

A 28.85 29.93 29.39 

Tθ 317.02 305.64 311.22 

 

 

 
4.2.2 Growth of Elastic Modulus with Time 

 
Once the sample is quenched to the desired temperature below the gel point, it is first pre-

sheared at very high strains in order to ensure consistency between the thermal and shear history 

of different samples 40. One may expect that pre-shearing would break up any clusters that may 

have formed during the sharp temperature quench from room temperature to Tlow as a result due to 
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shear thinning. On the contrary, Brownian simulations of sheared aggregating suspensions by 

Melrose and Heyes 62 suggest the formation of dense regions, many particle diameters in size 

during shear thinning; simulations by Chen and Doi 63 suggest that the structure doesn’t change 

during shear thinning and Lin et al. 64 and Muzny et al. 65  report shear densification in fractal gold 

sols and dilute silica gels respectively. However, Ramakrishnan and co – workers 7 demonstrated 

that for octadecyl silica in decalin, at low temperatures, shear produces clusters, however they 

break up once the shear is stopped. Immediately after the temperature quench, the sample is probed 

through oscillatory measurements carried out at a frequency of 1 Hz and very low stresses. Figure 

4.6 shows a sample plot of how the structure evolves in time after pre-shear. Three distinct phases 

of structure evolution are observed – the lag phase, indicated by a very low/unmeasurable G’ and 

G’’, often with G’ ≤ G’’ indicating liquid-like behavior; the exponential growth phase where both 

G’ and G’’ show a steep exponential increase and intersect such that G’ becomes greater than G’’. 

This phase is characterized by cluster-formation and growth to form a percolated structure that can 

support its own weight. This is indication of a cross-over to a solid-like regime. Clustering may 

occur through the lag phase as well, however since we don’t see a measurable elasticity, we can 

assume that the clusters may not have percolated through the sample volume. Finally, the structure 

evolves to a point where the modulus changes either very slowly or just fluctuates about a constant 

mean value indicated by G’ (∞). The slow increase of modulus is called ageing of the gel. 

Appendix C contains plots for G’ as a function of time for all particle sizes, volume fractions and 

temperatures. Equation 4.1 has been used in literature 59 40 to describe the evolution of the gel in 

time.  

G′(t) = G′(∞) �1 − exp �−Γg�t − tg���                4.1 
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Here G’ (∞) is the plateau elastic modulus at long times, Γg is the exponential growth rate of the 

elastic modulus, t is the waiting time after pre-shear and tg is the lag time through which the 

modulus is unmeasurable. Figure 4.6 is a sample plot of the growth of the elastic modulus with 

time for a sample containing 40 % by volume 82 nm silica particles in decalin at different 

temperatures. The dashed lines represent curve fits of the experimental data using Equation 4.1. 

As can be seen, equation 4.1 doesn’t fit the experimental data at early times for our system, 

however does a very good job fitting the data at long times. Hence, in this work, in order to back 

out initial rates of growth of the elastic modulus, data at short times was taken where the modulus 

grows linearly with time and a linear curve fit was used to back out the initial growth rate according 

to the following simplification: 

limt→0 exp �−Γg�tw − tg��~ 1 −  Γg(t − tg) 

G′(t) = G′(∞) �1 − Γg(t − tg)�            4.2 

In Figure 4.7, we plot (ΓgtD) vs volume fraction and temperature for 185 nm octadecyl silica 

particles in decalin. Here tD is the single particle diffusive time scale given as tD = (6πηca3)/kT 

as described in Section 2.1.2. As can be seen, the absolute values of ΓgtD decreases as temperature 

is increased from 4°C to 9°C. A similar trend can be seen in the results obtained by Rueb and 

Zukoski 40. As can be seen, at the same temperature, as the volume fraction increases, the 

normalized rate of growth of G’ increases. We also find that at high temperatures, the growth rate 

increases more rapidly with increasing φ. These results are in line with those obtained by Potanin 

et al. 49 who obtain power law exponents ranging between 6.7 and 9.2 as a function of φ for a 

system of sterically stabilized polystyrene latex particles, decreasing as one moves away from the 

gel point. Rueb and Zukoski 40 obtain power law exponents between 2 and 3 on plotting normalized 

growth rate as a function of φ for octadecyl silica in decalin such that the exponent decreases as 
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one moves deeper into the gel. Although we see the same qualitative trends, qualitatively, we don’t 

have enough data points to fit the experimental data to obtain good power law fits.  

 

Figure 4.8 shows how ΓgtD changes as a function of quench temperature for different 

volume fractions for 185 nm particles. As can be seen, the growth rate of G’ decreases as 

temperature is increased. At weaker strengths of attraction, thus, it takes longer to form a gel. This 

is seen for all particle sizes and the relevant plots are given in Appendix F. When the strength of 

attraction is low, we can anticipate the potential energy well to be shallow. Thus, a larger fraction 

of particles could acquire energy from local temperature and mechanical fluctuations and diffuse 

out of their nearest neighbor cages. It would take much longer for the system to become 

dynamically arrested in this case as opposed to the case where the temperature is low and particles 

become localized in steep energy minima such that diffusion out of nearest neighbor cages is 

considerably restricted.  

 
 
4.2.3 Elastic Modulus as a Function of Temperature  

 
Figure 4.9 is a plot of G’ (∞), the plateau elastic modulus as a function of temperature for 

82 nm particles at different volume fractions. The solid symbols are experimental data points while 

the dashed lines are curve fits to the data. As can be seen from the figure, the plateau elastic 

modulus scales exponentially with time G′(∞) ≈ exp(−zT) with an exponent z ~ 1 ± 0.05. This 

is in agreement with previous experiments on a similar particle system as studied by Ramakrishnan 

and Zukoski 27 and Rueb and Zukoski 40. At high temperatures, strength of attraction between the 

particles is low and thus, the resultant gel network is weak, as indicated by a lower elastic modulus. 

At a fixed particle concentration, this exponential dependence on strength of attraction is predicted 
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by the activated barrier hopping theory as seen from equation 2.18. We see a significant, yet non 

- systematic spread in the exponent for different particle sizes - 0.65 – 1.3 for 30 nm particles and 

z ~ 0.8 – 1.21 for 185 nm particles. Plots for the different particle sizes are given in Appendix F.  

 

 

4.2.4 Elastic Modulus as a Function of Volume Fraction 

 
G’ (∞) is plotted against volume fraction φ at different temperatures in Figure 4.10a for 

samples containing 82 nm particles.  Solid symbols indicate experimental data points and the 

dashed lines represent power law fits G′(∞) ≈  φy to data. The modulus has a power law 

dependence on volume fraction with exponents y ~ 6.6 close to the gel temperature and y ~ 3.8 

deeper into the gel. For 30 nm particles, y ~ 4.6 and 5.7 between 11°C and 13°C and for 185 nm 

particles, y ~ 5.2 at 5°C and y ~ 7 at 9°C. This result is in agreement with literature where higher 

exponents are observed close to the gel boundary while as one gets deeper in the gel phase, the 

exponents become lower (Potanin et al. (1995) 48, Rueb and Zukoski (1996) 40 , Ramakrishnan and 

Zukoski (2005) 27, Shih et al. (1990) 32; Chen and Russel (1993) 66; Derooij et al. (1994) 47).  In 

the case of gels formed by addition of a non-adsorbing polymer to a hard sphere system, 

Ramakrishnan and co-workers 7 39 measured exponents of 9 closer to the gel boundary and the 

exponents decreased to 5 deeper inside the gel phase while for thermo - reversible gels at deep 

quenches, Tgel–T ~ 1–8K, y ~ 5 at all temperatures. In Figure 4.10b, we see that exponent y 

systematically increases as a weak exponential function of temperature for each particle size with 

exponents varying between 0.08 – 0.1 for the three particle sizes. The final elasticity of the network 

depends upon its microstructure which in turn is a result of an interplay between the strength of 

attraction and the crowding of the nanoparticles in the system. At a given strength of interaction, 

both activated barrier hopping and percolation theories predict a power law dependence of elastic 
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moduli on volume fraction. Our results suggest that at weaker strengths of attraction, rapid increase 

of moduli is seen as one increases the volume fraction of particles as opposed to conditions in 

which attractions are strong. This complex interplay of strength of attraction and crowding 

determines how the modulus changes with volume fraction. From a NMCT point of view both of 

these factors influence the localization length and how this localization length changes with both 

φ and T determines how the modulus changes. Plots for other particle sizes are given in Appendix 

F. 

 

 

4.2.5 Prediction of Elastic Moduli  

 
Using the interaction potential parameters given in Table 4.1, one can predict the plateau 

elastic modulus of the gel at different temperatures, concentrations and for different particle sizes 

using equation 2.20 based on the framework developed by Ramakrishnan and Zukoski 27. In our 

analysis, we use κD = 11 and the parameter χ (κD, φ) = 3.77 (averaged for κD = 11 for all volume 

fractions under consideration using Table 1 given in Ref 2 27) to theoretically predict G’ and 

compare it to the experimentally obtained G’. Figure 4.11 (in color) is a plot of normalized elastic 

modulus, 
G′D3kT  as a function of temperature showing experimental data (solid symbols) and 

theoretical predictions (solid lines). We find excellent agreement between the results predicted by 

the barrier hopping theory and the experimental data at deep quenches below the gel point. We 

observe however, that the agreement becomes poor as we approach the gel boundary (at high 

temperatures, close to the gel boundary). This may be due to the fact that even after waiting for 

nearly 4 hours for the modulus to develop and show a plateau, the gels may age to achieve higher 

moduli. Aging is seen for the same experimental system in the work carried out by Guo et al. 53. 
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Such agreement between theory and experiment is also observed by Ramakrishnan and Zukoski 27 

for the same experimental system. Plots for other particle sizes are given in Appendix F. 

 
 
4.2.6 Elastic Modulus as a Function of Frequency  

 
Once a gel is formed at a certain temperature, indicated by a plateau in G’ in time, a 

frequency sweep is performed to study the dependence of G’ and G’’ on oscillation frequency. 

Figure 4.12 shows how G’ and G’’ vary with oscillation frequency for a sample containing 20% 

by volume 82 nm octadecyl silica particles in decalin at different temperatures. As expected for a 

gelled system, there is a weak dependence of G’ and G’’ on frequency. The symbols denote 

experimental data points and the dashed lines represent power law fits to the data. Power law 

exponents close to 0.15 are observed at temperatures close to the gel boundary and 0.09 deeper 

inside the gel phase. We do not observe a minima in G’ or G’’, nor a crossover between the two 

in the experimentally measured frequency window suggesting the existence of a solid like network. 

These trends are observed for all particle sizes. Plots for the data obtained for different volume 

fractions and particle size particles are given in Appendix D.  

 
 
4.2.7 Yield Stress as a Function of Temperature and Volume Fraction  

 
After the frequency sweeps, amplitude sweeps were carried out in order to study the 

yielding behavior of the gels. Stress amplitude, τ, was increased logarithmically and elastic and 

loss moduli were measured as a function of τ. Figure 4.13 shows a sample plot of an amplitude 

sweep for 82 nm particles in decalin loaded at a 20% volume fraction. As can be seen, G’ and G’’ 

are characterized by a plateau in moduli at low stresses. This plateau region is called the Linear 

Viscoelastic (LVE) regime. The LVE regime gives us information about the maximum stress/strain 
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a structure can endure before it yields. At a certain critical stress, the structure loses its elasticity, 

in that, the structure prior to the oscillatory perturbation and after are drastically different. Since 

the structure can no longer recover to its original modulus, it suggests that some permanent 

deformation has taken place. On applying more stress, the structure further loosens and eventually 

fluidizes. This is characterized by high strains, a sharp drop in both G’ and G’’ until they cross 

over, after which G’’ becomes equal to or greater than G’ indicating liquid like behavior. It must 

be noted that determining the yield stress experimentally can be tricky as it may be influenced by 

the rate of the stress ramp. Although, care was taken in carrying out amplitude sweeps in a 

logarithmic fashion, such that the majority of data points are taken at low stresses, the errors in 

determining absolute yield stresses that match the theoretical framework may be significant. Plots 

for different particle sizes are given in Appendix E.  

 

Three different definitions of the yield point from literature are examined in this work. 

These include – (i) When G’ reaches 90% of its LVE limit 37, (ii) when G’ reached 95% of its LVE 

limit 40 and (iii) when G’ and G’’ intersect 67. The extracted yield stresses from the three different 

approaches though different in magnitude show very similar qualitative dependence on 

temperature and volume fraction. For the sake of discussion in this chapter, we restrict ourselves 

to definition number (i).  

 

Figure 4.14 shows how yield stress varies with temperature at different volume fractions 

for the system containing 82 nm particles. We see a systematic increase in yield stress as 

temperature is decreased at a fixed volume fraction. In this plot, the symbols represent the 

experimental data points and the dashed lines represent exponential fits to τy ~ exp(−cT). Here, 
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the exponent c changes non-systematically between 0.50 and 0.83 for all three particle sizes. Figure 

4.15a is a plot of yield stress vs volume fraction for a system of 82 nm particles plotted at different 

temperatures. The lines represent power law fits of experimental data to τy ~ φd. The power law 

exponent varies between 4.5 at 2°C and 8.8 at 5°C. For 30 nm particles, d varies between 3.7 at 

11°C and 6.4 at 13°C, and between 5.8 at 5°C and 8.0 at 9°C for 185 nm particles. Plots for 

different particle sizes are given in Appendix F. The trends observed for yield stress as a function 

of volume fraction and temperature track those observed for elastic moduli for these samples. A 

stronger microstructure, indicated by a higher G’ (∞), also has a higher yield stress. At a constant 

volume fraction, as the strength of attraction is increased, the potential energy minima becomes 

more negative and the slope of the free energy function becomes steeper. Thus, higher stresses 

would be required to separate particles/aggregates. At a constant strength of attraction, as the 

particle loading is increased, we see an increase in G’ due to an increased contribution of crowding 

in the system. As with G’, we see a systematic power law increase in yield stress as a function of 

volume fraction. Figure 4.15b shows how the exponent d changes as a function of temperature for 

the three particle sizes. We see a power law dependence of d on temperature with the exponent 

varying non-systematically between 0.08 and 0.28 for the different particle sizes.   

  
 
4.2.8 Predicting Yield Stresses  

 
Following the protocol developed by Gopalakrishnan and Zukoski 37, we attempt to 

theoretically determine yield stress using the framework of the activated barrier hopping theory as 

discussed in Section 2.2.4. The interaction potential parameters A and Tθ listed in Table 4.1 and 

κD = 11 are used to numerically calculate the free energy function (in units of kT) at different 

input stresses (in units of kT/D3) described using Equation 2.22 for the three particle sizes at a 
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given particle concentration and temperature. Next, the derivative of the free energy function in 

‘r’ is numerically calculated to determine the localization length as the point where 
dFdr first attains 

a value of 0 (at the energy minima). The elastic modulus can be calculated using the localization 

length using the relation given in equation 2.18. According to definition (i) of yield stress, we 

calculate the stress at which G’ ~ 0.9 G’ (∞). Figure 4.16 (in – color) is a plot of experimentally 

determined and theoretically calculated yield stress, τy (in units of kT/D3) as a function of 

temperature for the three particle sizes at volume fractions 0.2 and 0.35. Solid symbols denote 

experimental data points and solid lines are theoretical predictions of the yield stress. We see 

reasonable agreement between theory and experiment for the data corresponding to the all particle 

sizes. We find that for the majority of the data, the theory underestimates the yield stresses. This 

may be due to the fact that while carrying out the amplitude sweep, we are increasing the stress in 

steps which logarithmically increase in step size. The stress predicted by the barrier hopping theory 

may lie between two data points and may not be captured well experimentally. Additionally, the 

barrier hopping theory assumes that prior to the reduction of the bulk modulus to 90% of its 

original value, the system is in the linear viscoelastic regime – i.e.: no deformation has taken place. 

In reality, however, the system has deformed appreciably well before the modulus is reduced to 

0.9G’∞. Through the sweep, thus, we are applying a high stress on an already deformed system. 

This may also lead to discrepancies between theoretical predictions and experimental observations 

which we observe in our results.  

 
 

4.3 Scaling Relationships 

 

 

Figure 4.17 is a plot of G’ (∞) as a function of temperature for different particle sizes and 

volume fractions. As can be seen from the plot, there is considerable scatter in the data with G’ 
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ranging from 10 to 105 Pa. Our aim in this section is to check if scaling relationships exist that can 

collapse the initial growth rates, elastic moduli and yield stresses on-to master curves in order to 

better understand their dependencies on the strength of interaction and particle loading.  

 

 

4.3.1 Scaling Initial Growth Rates 

 

Figure 4.18a, b and c shows how ΓgtD scales as a function of �φ− φG�, � φ

φG − 1� and 
Tgel−TTgel . 

These three functions are measures of proximity of the system to the gel boundary and may be 

related to the probability of rigid bond formation as discussed in Section 1.2.4. These functions 

have been used to scale experimental data at different temperatures and volume fractions on to 

universal scaling curves. In all three plots, symbols represent experimental data and lines represent 

power law fits for the different particle sizes. As can be seen, ΓgtD increases roughly by two orders 

of magnitude as the particle size is increased from 30 nm to 185 nm. This is due to the strong 

dependence of tD on particle size. Although our data don’t scale on a single master curve for 

different particle sizes, we attempt to scale data for a single particle size at different volume 

fractions and temperatures onto master curves. We see substantial scatter in the data in all three 

plots for all particle sizes. We note that as temperatures and concentrations close to the gel 

boundary, the power law fits similar to those carried out by Rueb and Zukoski 40 don’t scale the 

data well. Finally, we observe marginally better power law fits in Figure 4.18c as a function of 

reduced temperature. We conclude that normalization of the rate with diffusion time greatly 

enhances the size dependence of the normalized function Γg tD and may not be an appropriate 

choice of scaling variable.  
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In an attempt to scale the initial growth rate data for all particle sizes onto a single master 

plot, we determine α, the initial rate at which non-dimensionalized elastic modulus, G’D3/kT grows 

in time using a similar linear fit as used to determine Γg. As can be seen in Figure 4.18d, we find 

that α for all particle sizes, concentrations and temperatures collapses onto a universal exponential 

scaling curve. Equation 2.18 shows that G’D3/kT is essentially a measure of the normalized 

localization length 
ϕD2rloc2  and thus the rate, α (1/s) represents the rate at which the normalized 

localization length changes for a system at early times. The universal scaling as a function of  
Tgel−TTgel  

then tells us that the rate of change of localization length for a system only depends upon the 

proximity to the gel boundary. It must be noted that scaling these data as a function of �φ− φG� 
and � φ

φG − 1� as suggested by percolation models resulted in a lot of scatter. The significant 

improvement in scaling as a function of  
Tgel−TTgel   suggests that it is better able to capture the interplay 

of concentration and strength of attraction as compared to �φ− φG� and � φ

φG − 1� 68.  

 

 

4.3.2 Scaling Elastic Moduli  

 

We first examine how G’ scales as a function of �φ− φG� and � φ

φG − 1� as suggested by 

percolation models in Figure 4.19a and b for 82 nm particles. As can be seen from the figure, �φ− φG� does a much better job at scaling the data for all different temperatures onto a single 

master curve with power law exponents varying systematically between 1.80 and 1.92, increasing 

as particle size decreases. In comparison, the fits in Figure 4.19b as a function of � φ

φG − 1� are 

much poorer and the power law exponents vary non – systematically between 1.23 and 1.88. For 
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a similar system, octadecyl silica in hexadecane, Grant and Russel 35 found G’ to scale as a power 

law function of �φ− φG� at a range of volume fractions, up to 0.3 and obtained a power law 

exponent of ~ 3. For the same system as ours, Rueb and Zukoski 40 found the data to scale better 

as a function of � φ

φG − 1�with a power law exponent of ~ 2.  

 

In order to scale the data onto a universal scaling curve, we must account for the particle 

size dependence on G’ since we use a very large range of particle sizes, from 18 nm to 185 nm. 

We utilize G’D3/kT (also predicted by the barrier hopping theory, equation 2.17) to scale the data. 

Figures 4.18a and b show how G’D3/kT scales as a function of non – dimensionalized volume 

fraction, �φ− φG� and � φ

φG − 1�. We find that data collected at different temperatures collapses 

well for each individual particle size, however, while the data for the 30 nm and 82 nm particles 

lies in the same vicinity, data for 185 nm particles has much higher overall values of G’D3/kT. 

Power law fits to data yield exponents between 1.84 – 1.93 when plotted as a function of �φ− φG�  
and exponents between 1.37 and 1.79 when plotted as a function of � φ

φG − 1�.  

 

Next, we examine the scaling relations suggested by equation 2.20 derived from the 

activated barrier hopping theory approach 27 as explained in Section 2.2. In Figure 4.21 we plot 

G′D3kT  as a function of �1T− 1Tgel�. We find that the data collapses reasonably when fit using an 

exponential function as suggested by equation 2.20. In Figure 4.22 we have plotted the 

experimental data obtained by Ramakrishnan and Zukoski 27 as well as Breuer and Ramakrishnan61 

for the same system, within the same range of volume fractions however, using particles of 
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different sizes along with the data we obtained. We have also plotted equation 2.20 which predicts 

how the modulus should scale with re-scaled temperature at κD = 11 (lower limit for the validity 

of empirical fitting relation given in equation 2.4), χ = 3.77 and ATθ = 9147.72. Symbols represent 

experimental data points and lines indicate exponential fits to the data. We find that our data points 

correlate very well with the experimental data found for other independent studies carried out for 

the same particle system as well as the with the barrier hopping model.  

 

An exponential fit to our experimental data shown in Figure 4.20 however yield a lower 

intercept of 8.55, nearly 2 - 3 times less than that predicted by the barrier hopping model and a 

slope of 83650, roughly 2 - 3  times higher than that predicted by the model as shown in Figure 

4.22. This discrepancy may be attributed to the range of temperatures studied in this work. In our 

study, we have carried out measurements of the elastic moduli at fairly shallow temperature 

quenches, Tgel – T ~ 3 – 4°C in comparison with the studies carried out by Ramakrishnan and 

Zukoski Breuer and Ramakrishnan in which Tgel – T ~ 6 – 7°C. We expect the data to scale along 

the activated barrier hopping model curve at deeper quenches.   

 

The change in scaling at lower quenches, however, is interesting to note. A reduction in 

elastic modulus from that predicted by the activated barrier hopping theory may be indicative of a 

change in the mechanism of aggregation. For depletion gels, Ramakrishnan and Zukoski 7 

observed that the experimentally measured elastic modulus is significantly lower than that 

predicted for depletion systems by the barrier hopping theory. Using ultra - small angle x – ray 

scattering techniques, they found evidence of cluster formation in the system and re-scaled the 

modulus with the number of particles, Nc, in a cluster such that G′ = GMCT′ /Nc 
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where Nc~ 8φc �ξD�3. Here, φc is the particle volume fraction in a single cluster (φc = 0.5 for dense 

clusters) and ξ is the characteristic size of the cluster. We used SAXS measurements to measure 

the structure factor for the 82 nm particles at a volume fraction of 0.2 at a range of temperatures 

both above and below the gel transition temperature as shown in Figure 4.23. At low temperatures 

(Tgel – T ~ 2°C), we see up-turns in the structure factor at low qD values which are indicative of 

cluster formation and a shift of the structure factor peak to very high qD values ~ 7 which indicates 

that the particles are extremely closely packed in the gelled system. Although these observations 

are indicative of the existence of densely packed clusters in the system, we don’t have any 

quantitative proof to suggest that particles are clustering at shallow quenches.  

 

 

4.3.3 Scaling Yield Stresses  

 
In Section 2.2.4, we established that yield stress normalized with characteristic stress, 

(kT/D3), should theoretically scale as a power law function of volume fraction, ϕ23. We thus scale 

τyD3ϕ23kT as a function of rescaled temperature, �1T− 1Tgel� in Figure 4.24a. We find that although the 

data collapses onto a single exponential – like curve, there is significant scatter that corresponds 

to the 82 nm and 185 nm data. Plotting as a function of �φ− φg� and � φ
φg − 1� resulted in very 

poor power law fits and thus have not been shown. Figure 4.24b shows that normalizing the data 

with a volume fraction contribution of  φ2 suggested by equation 2.7 does a significantly better job 

at collapsing the data for the different particle sizes onto an exponential master curve. When the 

volume fraction dependence of the interaction potential is ignored, the function   
τyD3ϕ2kT represents 

the slope of the free energy function as shown in equation 2.7. When scaled as a function of 
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rescaled temperature (or reduced temperature), the excellent collapse of data indicates the 

similarity of the potential energy surface for all particle sizes (varying by a factor of 10) and 

volume fractions at the same distance away from the gel point. Evidently, as one moves deeper 

into the gel, the slope of the potential energy function would become steeper and thus more force 

would be required for the system to yield. This function, thus, does an excellent job at capturing 

the particle size and concentration dependence of yield stress. 
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Figure 4.1 – Intensity (A.U.) vs. Wave Vector (Q) (Å-1) form factor fit for 82nm octadecyl silica 
particle sample in Decalin (dilute -  ~ 2%). Large red solid-filled circles represent the data 
points fitted to the Hard Sphere model, small red solid filled dots represent data points that were 
excluded from the fitting and the solid grey line represents the model fit. 
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Figure 4.2 – Intensity (A.U.) vs. Wave Vector (Q) (Å-1) form factor fit for 82 nm octadecyl 
silica particle sample in Decalin ( = 0.3). Red solid-filled circles represent the data points fitted 
to the Hard Sphere equation of state with a Percus – Yevick (PY) closure and the solid grey line 
represents the model fit. 
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Figure 4.3 – Determination of the Gel Temperature for 30 nm octadecyl silica particles in 
decalin ( = 0.4). Symbols represent experimental data points and solid lines are drawn to guide 
the eye. On heating the sample from 13 C to 16.6 C, the temperature at which G’ and G’’ first 
intersect is regarded as the Gel Point.   
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Figure 4.4 – Plot showing hysteresis between heating ramp and cooling ramp for 82 nm 
octadecyl silica particles in decalin. (a) Evolution of G’ (Pa) during heating and cooling at 0.1 
K/min (b) Difference between the G’ and the G’’ during heating and cooling. The gel point (Tgel) 
is defined as the point where G’ – G’’ first becomes zero (indicated by *). For the heating ramp, 
Tgel = 3.7°C and for the cooling ramp, Tgel = 2.4°C. 
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Figure 4.5 – Experimentally determined Gel Temperatures Tgel (K) as a function of Volume 
Fraction () for different particle size. Solid filled points represent experimental data points, 
lines represent (a) fits to equation 2.13, (b) fits to equation 2.19 using interaction potential 
parameters listed in Table 4.1. 
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Figure 4.6 – Growth of G’ and G’’ with time for 82 nm particles (φ = 0.4) symbols with solid 
line represents experimental data points, dashed line represents fits of experimental data to 
equation 1 (a) log-log plot showing poor curve fits at short times. (b) Log – linear plot shows 
curve fits of equation 1 are good at long times. 
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Figure 4.7 – Γg tD vs Volume Fraction at different temperature for 185 nm particles. Symbols 
indicate experimental data points.  
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Figure 4.8 –Γg tD vs Temperature at different volume fractions for 185 nm particles. Symbols 
indicate experimental data points. 
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Figure 4.9 – Sample plot showing the regularity of G’ (∞) with Temperature for 82 nm particles. 
Solid circular markers indicate experimental data and dashed lines represent exponential fits 
G′(∞) ≈ exp(−zT)  such that z ~ 1 ± 0.05.  
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Figure 4.10 – (a) Sample plot showing the regularity of G’ (∞) with Volume Fraction for 82 nm 
particles. Solid circular markers indicate experimental data and dashed lines represent power 
law fits to G′(∞) ≈  Φ−y such that y ~ 3.8 at T = 274 K and y ~ 6.6 at T = 277 K. (b) Plot 
showing the exponential scaling of the power law exponents for all particle sizes - y ~ exp( mT). 
m = 0.1 for 30 nm particles, 0.08 for 82 nm particles and 0.07 for 185 nm particles.   
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Figure 4.11 (color online) – Theoretically predicted and experimental 
G′D3kT  as a function of 

temperature for 82 nm particles for volume fractions between 0.2 and 0.4. Symbols represent 
experimental data points and lines represent theoretical predictions using equation 2.20. 
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Figure 4.12 – Frequency Sweep Plots for 82 nm particles, φ = 0.2 at different temperatures. 
Symbols represent experimentally determined data points and the solid, dashed and dotted lines 
represent power law fits to experimental data. Power law exponent systematically increases from 
0.9 to 1.5 as temperature is decreased.  
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Figure 4.13 – Representative plot for an amplitude sweep for 82 nm particles, φ = 0.4 at 5°C. 
Symbols represent experimental data points while the lines are drawn to guide the eye. 
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Figure 4.14 – Sample plot showing Yield Stress (Pa) vs Temperature (K) for 82 nm octadecyl 
silica in decalin. Symbols represent experimental data and dashed lines represent exponential 
fits to τy ~ exp(−cT). For this system, c ~ 0.55 – 0.8.  
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Figure 4.15 – (a) Sample plot showing Yield Stress (Pa) vs Volume Fraction (φ) for 82 nm 
octadecyl silica in decalin. Symbols represent experimental data and dashed lines represent 
power law fits to  τy ~ φd. (b) Exponent d as a function of Temperature for different particle 
sizes. Symbols represent experimental values of d and dashed lines represent power law fits. 
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Figure 4.16 (color online) – Theoretically predicted and experimental 
τyD3kT  as a function of 

temperature for 30 nm, 82 nm and 185 nm particles at φ = 0.35. Symbols represent experimental 
data points and lines represent theoretical predictions determined using the protocol described 
in Section 4.2.8. 
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Figure 4.17 – Elastic Modulus (Pa) plotted as a function of temperature for all particle sizes 
and volume fractions shows a lot of scatter.  
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Figure 4.18 – (a) Γg tD vs �φ − φG�, (b) vs � φ

φG − 1� and (c) vs s =
Tgel−TTgel  . Solid symbols 

indicate experimental data points and lines indicate power law fits to data. (d) Universal scaling 

curve α vs 
Tgel−TTgel . Solid symbols indicate data points and the dashed line indicates an exponential 

fit to data.  
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Figure 4.19 – (a) G’ vs �φ− φg� and (b) G’ vs � φ

φg − 1� for all particle sizes. Symbols represent 

experimental data points and lines represent power law fits. Power law exponent in (a) lies 
between 1.80 – 1.92 and systematically decreases with increasing particle size. Power law 
exponent in (b) varies non - systematically for the different particle sizes between 1.23 – 1.88. 
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Figure 4.20 – (a) 
G′D3kT  vs �φ − φg� and (b) 

G′D3kT   vs � φ

φg − 1� for all particle sizes. Symbols 

represent experimental data points and lines represent power law fits. Power law exponent in (a) 
lies between 1.84 – 1.93 and systematically decreases with increasing particle size. Power law 
exponent in (b) varies non - systematically for the different particle sizes between 1.37 – 1.79. 
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Figure 4.21 – 
G′D3kT vs �1T − 1Tgel� for all particle sizes and volume fractions. Symbols indicate 

experimental data points and dashed line indicates the model fit obtained evaluating equation 
2.19 using the parameters listed in Table 4.1. 
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Figure 4.22 - 
G′D3kT vs �1T− 1Tgel� for experimental data obtained by Ramakrisnan and Zukoski 

(2006), Breuer and Ramamkrishnan (2008) and the data obtained for 18, 30, 82 and 185 nm 
particles (same as in Figure 4.21). Solid line represents the model fit to equation 2.21 with κD 
= 11, ATθ = 46578 and χ = 3.77. Symbols represent experimental data points. Solid and dotted 
lines indicate exponential fit to experimental data.    
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Figure 4.23 – Normalized Intensity � I(q)I(q)Form Factor� vs normalized wave vector qD for 82 nm 

particles at a volume fraction of 0.2 at different temperatures. We find upturns at low qD values 
that indicate the possibility of clustering in the system.   
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Figure 4.24 – (a) 
τD3ϕ2/3kT and (b) 

τD3ϕ2kT vs �1T − 1Tgel� data for 30 nm, 82 nm and 185 nm particles.  
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CHAPTER 5 

 

CONCLUSIONS AND FUTURE DIRECTION 

 

 
5.1 Conclusions 

 
We find that the gel temperatures increase as a power law function of volume fraction for 

a single particle size. We observe very similar slopes for the three particle sizes, however, we don’t 

see the gel boundaries change systematically in terms of particle sizes. We hypothesize that this 

non – monotonicity in terms of particle size may be a result of different surface graft densities for 

the different particle sizes. Further, we extract the interaction potential parameters used to 

determine the strength of attraction at a range which was seen to be appropriate for the octadecyl 

silica – decalin system based on previous studies carried out by Ramakrishnan and Zukoski 2 and 

Breuer and Ramakrishnan 62 and our results are of the same order of magnitude as seen in literature.  

 

Upon examining how the elastic moduli and yield stresses vary as functions of temperature 

and volume fraction, we find that the qualitative trends observed for the two are very similar. They 

vary as exponential functions of temperature with relatively similar exponents (z ~ 1) for all 

volume fractions and particle sizes, while they vary as power law functions of volume fraction 

with the power law exponent decreasing systematically on decreasing temperature. The power law 

exponents observed in this work match those observed by Rueb and Zukoski for the same 

experimental system 41.  

 

We studied how the initial growth rates, elastic moduli and yield stresses scaled with 

functions denoting proximity to the gel point, �φ − φG� and � φ

φG − 1�. These functions describe the 
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probability of bond formation as one moves deeper into the gel, away from the gel point within 

the framework of percolation models and have been employed in literature to universally scale 

data for the properties mentioned earlier on universal scaling curves. We find that �φ− φG� does 

a much better job at scaling data for different temperatures and volume fractions onto master 

curves for individual particle sizes compared to � φ

φG − 1� (the fits to both these functions are very 

similar for scaling initial growth rates). These results match those obtained by Russel and Grant 37 

for a similar system of octadecyl silica particles in hexadecane, however don’t match the results 

obtained by Rueb and Zukoski 41 whose data scale well with � φ

φG − 1�  for the same experimental 

system. A temperature analog of � φ

φG − 1� defined as reduced temperature, 
Tgel−TTgel  gives the best 

fits for all three properties. Thus for a given range of interaction, a non-dimensional strength of 

interaction scales the viscoelastic properties well.   

 

The interaction potential parameters extracted from the gel boundaries are used to predict 

the elastic moduli and yield stresses using the barrier hopping framework. We find very good 

agreement between the predicted and experimentally obtained yield stresses for the 30 nm and 82 

nm particles, while poor agreement is seen for samples containing 185 nm particles. Excellent 

agreement is seen between the predicted and experimentally determined values of G’ at high 

volume fractions for the 82 nm particles while the agreement between the two becomes poor as 

one moves closer to the gel boundary upon increasing temperature or decreasing volume fraction 

at a fixed temperature. These results are consistent with what is found in literature 2 for the same 

model system.  
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In order to collapse the data on to a universal scaling curve for all particle sizes and 

concentrations, elastic moduli and yield stresses were re – scaled to incorporate the contributions 

of particle size and volume fraction and plotted as a function of �1T− 1Tgel� using the framework 

proposed by Ramakrishnan and Zukoski 2. We find reasonable collapse of our data on universal 

scaling curves plotted as 
G′D3kT  and  

τyD3ϕ2kT vs �1T − 1Tgel�.  

 

This scaling of the elastic modulus confirms that it is indeed the localization length that 

determines the final modulus of the gel. i.e.: if two systems have the same φD2/rloc
2 then they will 

have the same modulus. As for the universality in scaling observed for yield stress, non 

dimensionalized yield stress given by 
τyD3ϕ2kT essentially describes the slope of the potential energy 

surface. The scaling tells us that at the same distance from the gel boundary, rescaled as �1T− 1Tgel�, 

the collapse in data is due to the fact that the slope 
dFdr is the same while this force increases as we 

go deeper into the gel.  

 
 

5.2 Future Directions 

 
In this work we have characterized a well-defined system of particles which gel upon reducing 

temperature. Good control of strength is obtained by controlling the sample temperature and the 

kinetics of gel growth, mechanical properties and yielding behavior are characterized for wide 

range of temperatures for different size particles at moderate concentrations. This sets the stage 

for the following work: 
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1) Understanding the microscopic dynamics of nanoparticles as one traverses the gel 

boundary and how it relates to the growth in elastic modulus. We’d like to understand what 

a gel point is at the microscopic level and what happens to the dynamics of the particles at 

the gel point. 

 

2)  Temperature Quench vs Shear Melting: One of the questions of interest to the community 

is how the rheological properties evolve when different routes are taken to traverse the gel 

boundary. From a liquid state one can form a gel by reducing temperature and the gel can 

be fluidized again by applying high shear then, upon the cessation of shear, at the same 

temperature, the system gels again. But do properties evolve in the same manner along 

different routes to the gel boundary?  The current system is ideal for such investigations. 

 

3) Rheology of Mixtures: Most industrial formulations utilize mixtures of particles of 

different sizes and nature of interactions. However, processing of mixtures of high 

complexity can be challenging and limited progress has been made in developing design 

criteria for their processing. Our well characterized system may be an ideal choice to study 

the mechanical and yielding properties of particle mixtures. We’d like to study if there are 

there any scaling relationships that can be developed for predicting the mechanical 

properties of particle mixtures or if we can identify design criteria that enable us to 

independently tune the elastic moduli and yield stresses of mixtures of particles. Initial 

studies carried out on bimodal mixtures of octadecyl silica particles in decalin show that 

using mixtures of particles (16 nm and 32 nm), we see an enhancement in gel points. A 1:1 

mixture of the 16 nm and 32 nm particles gel at a higher temperature than the individual 
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particles at the same concentration. We hope to be able to use such results to tune the 

rheological properties of particle mixtures. 
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APPENDIX A 

 

FORM FACTORS FOR DIFFERENT PARTICLE SIZES 

 
 

  

 

 

Figure A.1 (Color Online) Intensity vs wave-vector plots for (a) 18 nm, (b) 30 nm and (c) 185 
nm particles. Solid red symbol represent fit data points, red dots represent data points excluded 
from the fit and the grey line represents the hard sphere form factor fit. Plots generated using 
Igor Pro 7 - USAXS Modeling Toolbox. 
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APPENDIX B 

 

GEL POINT DETERMINATION 
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Figure B.1 – Gel Temperature Determination for 30 nm and 18 nm particles at all φ 
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Figure B.2 – Gel Point Determination for 82 nm particles at different φ 
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Figure B.3 – Gel Point Determination for 185 nm particles at different φ 
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APPENDIX C 

 

ELASTIC MODULI 
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Figure C.1 – Growth of Elastic Modulus in Time for 18 nm particles, φ = 0.30 
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Figure C.2 – Growth of Elastic Modulus in Time for 30 nm particles, φ = 0.20 
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Figure C.3 - Growth of Elastic Modulus in Time for 30 nm particles, φ = 0.25 
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Figure C.4 - Growth of Elastic Modulus in Time for 30 nm particles, φ = 0.30 
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Figure C.5 - Growth of Elastic Modulus in Time for 30 nm particles, φ = 0.35 
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Figure C.6 - Growth of Elastic Modulus in Time for 30 nm particles, φ = 0.40 
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Figure C.7 - Growth of Elastic Modulus in Time for 82 nm particles, φ = 0.20 
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Figure C.8 - Growth of Elastic Modulus in Time for 82 nm particles, φ = 0.25 
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Figure C.9 - Growth of Elastic Modulus in Time for 82 nm particles, φ = 0.30 

 

  

10
-1

10
0

10
1

10
2

10
3

0 10
0

2 10
3

4 10
3

6 10
3

8 10
3

1 10
4

1.2 10
4

82 nm φ = 0.3 4C Constant Oscillation

G' (Pa)

G'' (Pa)

G
' 
(P

a
)

Time (s)

10
0

10
1

10
2

10
3

0 10
0

2 10
3

4 10
3

6 10
3

8 10
3

1 10
4

1.2 10
4

82 nm φ = 0.3 3C Constant Oscillation

G' (Pa)

G'' (Pa)

G
' 
(P

a
)

Time (s)

10
0

10
1

10
2

10
3

10
4

0 10
0

2 10
3

4 10
3

6 10
3

8 10
3

1 10
4

1.2 10
4

82 nm φ = 0.3 2C Constant Oscillation

G' (Pa)

G'' (Pa)

G
' 
(P

a
)

Time (s)

10
0

10
1

10
2

10
3

10
4

0 10
0

2 10
3

4 10
3

6 10
3

8 10
3

1 10
4

1.2 10
4

82 nm φ = 0.3 1C Constant Oscillation

G' (Pa)

G'' (Pa)

G
' 
(P

a
)

Time (s)

G’ 

G’ 

G’ 

G’ 

G’’ G’’ 

G’’ 

G’’ 



98 
 

 
 

 

Figure C.10 - Growth of Elastic Modulus in Time for 82 nm particles, φ = 0.35 
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Figure C.11 - Growth of Elastic Modulus in Time for 82 nm particles, φ = 0.40 
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Figure C.12 - Growth of Elastic Modulus in Time for 82 nm particles, φ = 0.43 
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Figure C.13 - Growth of Elastic Modulus in Time for 185 nm particles, φ = 0.20 
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Figure C.14 - Growth of Elastic Modulus in Time for 185 nm particles, φ = 0.25 
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Figure C.15 - Growth of Elastic Modulus in Time for 185 nm particles, φ = 0.30 
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Figure C.16 - Growth of Elastic Modulus in Time for 185 nm particles, φ = 0.35 
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Figure C.17 - Growth of Elastic Modulus in Time for 185 nm particles, φ = 0.40 
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Figure D.1 – Frequency Sweeps for 30 nm and 18 nm particles at different temperatures and 
volume fractions. Symbols denote data points and the solid and dashed lines represent power 
law fits to experimental data.  
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Figure D.2 – Frequency Sweeps for 82 nm particles at different temperatures and volume 
fractions. Symbols denote data points and the solid and dashed lines represent power law fits to 
experimental data. 
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Figure D.3 – Frequency Sweeps for 185 nm particles at different temperatures and volume 
fractions. Symbols denote data points and the solid and dashed lines represent power law fits 
to experimental data. 
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APPENDIX E 

 

YIELD STRESSES 
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Figure E.1 – Amplitude Sweep plot for 18 nm particles,  = 0.30 
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Figure E.2 – Amplitude Sweep plot for 30 nm particles,  = 0.20 
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Figure E.3 – Amplitude Sweep plot for 30 nm particles,  = 0.25 
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Figure E.4 – Amplitude Sweep plot for 30 nm particles,  = 0.30 
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Figure E.5 – Amplitude Sweep plot for 30 nm particles,  = 0.35 
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Figure E.6 – Amplitude Sweep plot for 30 nm particles,  = 0.40 
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Figure E.7 – Amplitude Sweep plot for 82 nm particles,  = 0.2 
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Figure E.8 – Amplitude Sweep plot for 82 nm particles,  = 0.25 
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Figure E.9 – Amplitude Sweep plot for 82 nm particles,  = 0.30 
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Figure E.10 – Amplitude Sweep plot for 82 nm particles,  = 0.35 
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Figure E.11 – Amplitude Sweep plot for 82 nm particles,  = 0.40 
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Figure E.12 – Amplitude Sweep plot for 82 nm particles,  = 0.43 
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Figure E.13 – Amplitude Sweep plot for 185 nm particles,  = 0.20 
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Figure E.14 – Amplitude Sweep plot for 185 nm particles,  = 0.25 
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Figure E.15 – Amplitude Sweep plot for 185 nm particles,  = 0.30 
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Figure E.16 – Amplitude Sweep plot for 185 nm particles,  = 0.35 
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Figure E.17 – Amplitude Sweep plot for 185 nm particles,  = 0.40 
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APPENDIX F 

 

SCALING DATA FOR DIFFERENT PARTICLE SIZES 
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Figure F.1 - ΓgtD vs Temperature and Volume Fraction for 30 nm and 82 nm particles 
respectively 
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Figure F.2 – G’ vs Temperature for 30 nm and 185 nm particles at different volume fractions 
respectively. Symbols represent experimental data points while the solid and dashed lines 
represent exponential fits to data. 
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Figure F.3 – G’ vs Volume fraction for 30 nm and 185 nm particles at different temperatures 
respectively. Symbols represent experimental data points while the solid and dashed lines 
represent power law fits to data. 
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Figure F.4 – Yield Stress vs Temperature for 30 nm and 185 nm particles at different volume 
fractions respectively. Symbols represent experimental data points while the solid and dashed 
lines represent exponential fits to data. 
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Figure F.5– Yield Stress vs Volume Fraction for 30 nm and 185 nm particles at different 
temperatures respectively. Symbols represent experimental data points while the solid and 
dashed lines represent power law fits to data. 
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