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ABSTRACT

Most of the data encountered is bounded nonlinear data. The Universe is bounded, planets are sphere like
shaped objects, and life growing on Earth comes in various shapes and colors that can hardly be represented
as points on a linear space, and even if the object space they sit on is embedded in a Euclidean space,
their mean vector can not be represented as a point on that object space, except for the case when such
space is convex. To address this misgiving, since the mean vector is the minimizer of the expected square
distance, following Rechet (1948)[11], on a compact metric space, one may consider both minimizers and
maximizers of the expected square distance to a given point on the object space as mean, respettively
mean of a given random point. Of all distances on a object space, one considers here the chord distance
associated with an embedding of the object space, since for such distances one can give a necessary and
suf cient condition for the existence of a uniqueééhet mean (respectively@&ahet anti-mean). For such
distributions these location parameters are called extrinsic mean (respectively extrinsic anti-mean), and the
corresponding sample statistics are consistent estimators of their population counterparts. Moreover one
derives the limit distribution of such estimators around an anti-mean located at a smooth point. Extrinsic
analysis is thus a general framework that allows one to run object data analysis on nonlinear object spaces
that can be embedded in a numerical space. New sample tests for extrinsic means, and a test statistic for
extrinsic MANOVA on manifolds are also developed here. In particular one focuses on Veronese-Whitney
(VW) means and anti-means of 3D projective shapes of con gurations extracted from digital camera images.
The 3D data extraction is greatly simpli ed by an RGB based 3D surface reconstruction algorithm using
the Faugeras-Hartley-Gupta-Chang 3D reconstruction method (see [10],[12]), that is used to collect 3D
image data. In particular one derives two sample tests for face analysis based on projective shapes, and
more generally a MANOVA on manifolds method to be used in 3D projective shape analysis. The manifold

based approach is also applicable to nancial data analysis for exchange rates.

Vii



CHAPTER 1

OVERVIEW

Due to technological advances in digital imaging, we are now able to collect and quantify a wide variety of
data sets, including 3D surface data from RGB regular digital camera images. Indeed if color pictures of the
same scene are collected under fairly uniform lighting conditions, a correlation based algorithm coupled with
a 3D reconstruction algorithm may help retrieve surfaces of a 3D scene, including texture. One of the task of
this dissertation was to collect such 3D data, and in particular face data including the mid-face of individu-
als that accepted to have their pictures taken, and volunteered, without being compensated for offering their
time. Some of the digital camera data collected this way is posted at stat.fswedidbuadio/collected-by-

Davids. The face surfaces, regarded as 2D manifolds in 3D could be partially retrieved using the technique
mentioned above and are presented in the data analysis for Chapters 3 and 6. Such surface data is in nite
dimensional, thus a drastic data reduction method consisting in landmark coordinate selection post 3D re-
construction was key to speed up the analysis. Moreover, since the camera internal parameters are unknown,
for the landmark con gurations considered, one may retrieve only the projective shapes (see Patrangenaru
et. al.(2010))[23]. Therefore, the object spaces we have to consider are projective shape spaces (see Mar-
dia and Patrangenaru(2005)[20]), which are direct products of real projective spaces, thus having in fact a
nonlinear structure of compact smooth manifolds. There are many other examples of object spaces with a
manifold structure, arising from morphometric data, protein and DNA structures, aerial or satellite imaging,
medical imaging outputs (angiography, CT scans, MRI) beside digital camera imaging considered here (see
Patrangenaru and Ellingson (2015)[21])é&net (1948)[11] noticed that for data analysis purposes, in case

a list of numbers would not give a meaningful representation of the individual observation under investiga-
tion, it is helpful to measure not just vectors, but more complicated features, he used to call “elements”, and
are nowadays calledbjects A natural way of addressing the problem of analyzing data on such a nonlin-
ear object space, consists of regardinguadom objecX as a random point on a complete metric space

(M ; ) that often times has a smooth manifold structure (see Patrangenaru and Ellingson (2015)[21]). The
numerical spac®™ is the most elementary example of a manifold arising as an object space in Statistics.

Therefore, multivariate data analysis is the key basic example of data analysis on a manifold.



Given a random object (r.o¥ on a complete separable metric spélge; ); the expected square distance

from X to an arbitrary poinp 2 M de nes what we call thé&réchet functiorassociated witixX :

F(p) = E( *(p; X)); (1.1)

and its minimizers form theréchet mean s¢b]. Unless otherwise speci ed, throughout this dissertation
we will assume that the object spac® can be regarded as a subset of a numerical space via a one to

onemapj : M! RN:and the distance onM is j ; the chord distancegiven by

j(PLip2) = Ki(p1)  (p2)k: (1.2)

If, in addition M has a smooth manifold structure (see Lee[18] for a de nition), we will assumg tisat
an embedding, that is to say that at each ppiatM ; the differential mal, is a one to one map from the
tangent spac&,M to the tangent spaCE)RN :

In our case, the Echet function becomes
Z

F(p) = Mkj(X) i (PK*Q(dx); (1.3)

whereQ = Py is the probability measure a ; associated witX; and the Fechet mean set is called
extrinsic mean set The complete separable metric spgbé; ;) with chord distance; and with an
additional smooth manifold structure, is isometriqtéM ); o) where g is the Euclidean distanc&his

is by de nition an isometric embedding ( distance preserving between two points and their images in

the ambient space ), if we consider the chord distance

In general inference for extrinsic mean sets was never considered yet in literature, none the less, in case
the extrinsic mean set has a unique point, called the extrinsic mean, there is a large body of literature on
this subject (see Patrangenaru and Ellingson (2015)[21], and the related reference therein); this is due to a a
simple condition for the existence and uniqueness of the extrinsic mean (see Bhattacharya and Patrangenaru
(2003)[5]), saying the extrinsic mean exists if and only if the probability meaQuisej -nonfocal. | will

detail this condition in Chapter 2.

1.1 Short summary of results in chapters 3 through 7

In Chapter 3, | use two sample hypothesis testing methods for means of r.0.'s on a Lie group, as developed

by Crane and Patrangenaru(2011)[7], that are applied in the context of 3D projective shape analysis to



differentiate between faces. | conduct a landmark based analysis on the s@acprofective shapes &-

ads (labeled points). The object spaces of interest are often nonlinear spaces, and this poses some challenges
when attemping a two sample testing problem for mean change for random samples of different sizes. For
my statistical testing problems | consider Lie groups, which are smooth manifolds with an additional group
structure (in the algebraic sense) where the mulitplicative operatiand the inverse operation are both
smooth. With such object spaces | can conduct a two sample hypothesis testing problem for mean change
(see Crane and Patrangenaru (2011) [7].) 3Derojective shape spaceslofads containing a projective

frame at ve xed landmark indices, denotedP§ can be identi ed withM = (RP%)9, g = k 5

which is a Lie group with multiplicative operation denoteg: Fora=1;2,letYa1; ; Yan, identically
independent distributed random objects (i.i.d.r.0.'s) from the indepefngerdnfocal probability measures

Q. on(RP3)4 |, wherej «-nonfocal refers to a probability measure for which there is an extrinsc mean. We

consider the following hypothesis testing problem,

Ho! ,&8 q 1E=1mpsa Vs. Hii & g 1€ 6 L(rpy)a (1.4)

were 1e; 2g are the Veronese-Whitney means @P 3)%: We are able to construct an asymptqiic
value for large samples add0(1 )% bootstrap con dence region as well for small sample size at the
level. These results were made possible by knowing the asymptotic convergence of the sequence of ran-
dom vectors n1=2 ' CI(YZ;El qYie) WwhereYye are the corresponding VW (Veronese-Whitney) sample
means and 4 is an af ne chart (i.e. a smooth one-to-one and onto function f(®RA )9 to R39). The
data analysis was conducted on three human faces. | placed all ten landmarks on all three subjects using
Matlab for all 29 pairs of noncalibrated digital camera images. The reconstruction of the corresponding
3D coordinates was also done in Matlab. | was then able to use the rst ve reconstructed coordinates to
construct the resulting-tuples of projective coordinates represent 3ieprojective shapes and are the
elements that make up the random samples. After conducting the analysis | was able to effectively use
hypothesis testing foBD projective shape mean change to differentiate between faces and also to identify
the same face in cross-validation analysis. The analysis | ran, along with the various results, can be found
in a couple of publications [24] and [26]. Using the Agisoft software | was able to build a cou@e of
reconstructions of faces with color and texture (see stat.fsu.e@tKouadio/collected-by-Davids/James
and stat.fsu.edu/vic/Kouadio/collected-by-Davids/Mingfei). This software has not only a more visually

appealing3D reconstruction but would also allow for a much faster recovery oBibeoordinates of our



landmarks.
The work in Chapter 4 was born out of a question asked by Professor Patrangenaru about the hypothesis

Lie group(G; ); and the hypothesis problem given as follows
Ho: ,f 1= VStH1i: & 1£86 (1.5)

we would like to have the asymptotic behavior of

1 — i
tan; 1 y 1Ko X1e) (e 1E) (1.6)

LE
where 1g; 2 arethe extrinsic means and.g; 2 their respective corresponding extrinsic covariance
matrices. The notation in (1.6) signi es the projection of the vecij((rfz;,lg X1e) i 2;,15 1E)

onto the tangent space pfG) at the pointj ( z;é 1:£) and this results is given in Theorem 4.2.2 for
some embedding : G ! RN whereX 1.£; and X ,.¢ are our resulting extrinsic sample means. For a
similar hypothesis testing problem as in [7] one of my goals was to take advantage of the CLT (Central
Limit Theorem) framework for extrinsic sample means and the con dence regions one can construct from
the given asymptotic behavior.

| started by giving a variation of the Delta Method [4] used in [7] which differs from the other one as it uses
another extrinsic covariance matrix estimator, and also gives an explicit de nition of it (see Lemma 4.1.1.)
LetM andN be respectivelyn-dimensional andi-dimensional smooth manifolds and@t: M M !

N be a smooth function between manifolds. In Theorem 4.2.1 | derived the following result;
n'= tan; . i G(X1e;X2e) j2(G( 1e; 2e)) !N o(0; & (1.7)
j2(G( 1E; 2)) J2 LE A 2E J2 LE, 2E)) nlUs ZE .

fora=1;2 Ietf{a); ;f,%a) orthonormal basis im . (M ): | was then able to have the asymptotic
behavior of any smooth functio@ (between manifolds) and this is doneTg ,.; ,.)N, the tangent
space orN at the pointG( 1.g; 2:£) and with the corresponding extrinsic covariance matrix given in
term of the extrinsic covariance matricese; 2 at 1. and 2. respectively. Note that it is important

to mention some of the bene ts of using the extrinsic analysis framework, especially for computation
purposes and more speci cally for the sample extrinsic covariance matrix tigdPth: For more on the

extrinsic sample covariance matrix &P™; see [6]. In section 4.3 | apply the new asymptotic results to



RP3:Fora=1;2let[Xa1]; ;[Xan,]beindependent random samples de nedRi® from j -nonfocal
distributionsQ,; with extrinsic means 5. and extrinsic covariance matrices.g | get the following

asymptotic behavior.

- - .
nlztanj(zzé oy 1X2e Xag) j(og 18) ! aNmOm; &) (1.8)

where forH ( ,g; 16)=( &  1E);

g = 1 (AH®) e (@H®)T + %(dH(Z)) e (AH®)T; (1.9)

where is the proportion of the rst population relative to the total population. | was able to express
G the consistent estimator oft : This sample covariance matrix is expressed in a way that reduces
the amount of computation by using in its expression the already computationally friendly formula of the

sample covariance matric€s.g¢ andG,.g (see Battacharya and Patrangenaru (2005) [6]) and ,
. 1 1
G (i1 X 12:X21) = —(d @) Gae(d )T+ ~(d @)Gre(d @) (1.10)
2 1

ford (d;a = 1;2are both diagonal matrices with our choice of basiS¢# R): One must also note that

all the results abolRP 2 can be extended {@RP 2)9, the 3D projective shape space.

Chapter 5 is about extrinsic anti-mean. This chapter includes work | have recently published jointly with V.
Patrangenaru and R. Guo (see [27] and [22]). In this chapter | introduce new location parameters, assuming
that the object spadgv ; ) is compact. In particular, if is the chord distance induced by an embedding

j :M! RN the extreme values of the &het function are attained at points bh: Note that the
extrinsic mean is de ned in fact on any complete metric space that is homeomorphically embe&ded in
therefore this chapter allows also for the situation when the extrinsic mean is a singular poiXt.bleed
random object for a distributio® on M , then we get a distribution fgr(X ) onj (Q) the ambient space.

And we have an extrinsic mean often denotgg provided we have a unique projection ofdenoted

P;j( ) onto thej (M ) and is called aj -nonfocal point. More speci cally, ] -nonfocal implies that we

have o(;j (M))= o(;j ( je)) where o(;j (M)) is the distance between the pointind the closest
(unique) point orj (M ): The notion of anti-mean is motivated by the fact that, even when a distribution
Q might not have an extrinsic mean, it may occur that the extrinsic anti-mean exists, thus an extrinsic

analysis can still be performed. In case the extrinsic mean is a singular point, the asymptotic distributions



of the extrinsic sample mean behave differently. In the case of a strati ed space, suclopsnabook

the extrinsic sample mean sticks to a lower dimensional stratum (see [3], [13]). The anti-means have a
similar asymptotic behavior, thus offering a way to conduct nonparametric data analysis on not just smooth
embedded manifolds but in a broader sense, on strati ed spaces. In this chapter, | introduce the notion of
j -nonfocal distribution, and it is shown that a distribution has a unique extrinsic anti-mean if and only if
itis j -nonfocal (see Theorem 5.1.1). As a result, one also proves the existence and consistency of the
extrinsic sample anti-mean set. In section 5.3, the focus is turnBPt® with the VW embedding, and

one gives a necessary and suf cient condition for a random[x]sX "X = 1 being -VW-nonfocal in

terms of eigenvalues of the expected magi@<X "): Further, in this chapter | develop a nonparametric

methodology for addressing the hypothesis testing problem

Ho: 5 o 1iq=lweoeVs:Hai i q 1,6 Llwres: (1.11)
As it turns out, the framework developed by Crane and Patrangenaru in [7] can be adapted to the case of
anti-means and provided certain general assumption on the VW anti-meaps a = 1;2 | conduct, in
section 5.5 two sample test to compare 3D projective shapes of two lily owers, based on their digital camera
images.

Chapter 6 is concerned with a new approach of hypothesis testing for the equality of extrinsic means of
grandom objectsy  3: This is an extension of the classical MANOVA (Multivariate Analysis of Variance)
problem (see Johnson and Wichern (2008)[15]), in nonparametric setting. This approach is motivated by

the standard MANOVA hypothesis testing problem
Ho: 1= 2=:ii= 4=
H, : atleast one equation does not hold:

given the independent random vectdrg Np( a; ) ;a=1;:::;9: We rst consider a nonparametric
test, based on the pooled sample mean, by dropping the normality assumption, and assuming that asymp-
totically the ratio between a group size and the total sample size converges to a positive constant, as the

total sample size goes to in nity. | extended the ideas developped in the random variable case to object

ponding extrinsic sample means{s.t : To test

Ho: 1= 2 =:I= ge= g;Ha: atleastone equation does not hold;



in general | consider thpooled meargiven by g = (j 1! Pi)( d( ze)+ + gl ( gEe)) and the

corresponding sample counterpdg 2 M given by

. np. Ng.
Xe=( ' P) H(Xue)+  + Y (Xge)

. o P
whereX 5.g is the extrinsic sample mean fir,1 andn = gzl Na and”Ta ! a> 0asn! 1l |

with

gzl a = 1. From Theorem 6.2.1 | get two candidate statistics for testing (1.12) that have both

asymptotically a ép distribution. These are used for rejection regions in the large sample case. The small

sample case is also addressed via nonparametric bootstrap in Corollary 6.2.2. In Section 6.3 | address the

extrinsic MANOVA problem on the 3D projective shape spéB# )9 with the VW embedding. As an

example | consider the equality of mean projective shapes of 3D landmark con gurations in a number of

individuals from digital camera images of their faces.

Chapter 7 is concerned with future directions in extrinsic data analysis it will involve using the 3D

face data set | have reconstructed from digital images, to collect landmarks from the remaining faces in

the database. Extend the work done in chapters 4, 5 and 6 to data analysis for VW antimeans including to

MANOVA for such antimeans.

1.2 Description of contributions

In this section | clearly describe what are my contributions to the various research results in this dissertation,

and which of these have been published. | start by recalling all my results that are theorems:

In Theorem (4.1.1) | developed a new Delta method for a smooth funEtiorM ; ! M > where
fora=1;2M 4 aremy-dimensional smooth manifolds. The aim was for me to express the resulting
covariance matrix in aaxplicit form.

Theorem (4.2.1) | develop the asymptotic behavior tied to a smooth funGioM M ! N

between smooth manifolds. This result can certainly be used to get the asymptotic behavior in a case
of a two sample hypothesis testing for extrinsic means because it can give the asymptotic behavior
of a functionG of two extrinsic sample means with an explicit expression of the resudtitignsic
covariance matrix written in term a linear combination of the extrinsic matrices tied to each of the
two random samples whether they are of same size or not.

For Theorem (4.2.2) | focus on Lie groups with a multiplicative operatioand an inverse map |
give an asymptotic behavior for the tangential component
an; 1 j (72;,15 X1e) j( 2;,15 1) . For this result, | use Theorem (4.1.1) to get



the asymptotic behavior manj( L) i (72;,15) j( z;é) and an explicit expression of its corres-
ponding extrinsic covariance matrix,.¢ : | then used the results of Theorem (4.2.1) applied to the
functionH : G G ! G andgiven byH (x2;X1) = X, 1 x4 to get the desired asymptotic behavior
with an explicit expression of the extrinsic covariance matrix.

In Theorems (5.1.1) and (5.1.2) | give the conditions for existence of the extrinsic anti-mean and the
sample extrinsic antimeans. | applied these to a data analysis for anti-mean 3D projective shapes
extracted from digital camera images.

Theorem (6.2.1) | give the expression of two test statistic for the hypothesis testing problem of com-
paring multiple extrinsic means. One of the test statistic will be used to handle cases for which the
extrinsic pooled mean is known and the other can be used whenever the extrinsic pooled mean is
unknown.

For Corollary (6.3.1) | used the results of Theorem (6.2.1) to expressed a couple of test statistic
designed to test the 3D mean projective shape changes between multiple VW means.
And below I give a list of ideas | have developed.

In chapter 4, | developed an idea that would allow anyone to conduct a two sample hypothesis testing
involving random samples on smooth embedded manifolds whether the samples are of same sizes or
not.

The extrinsic pooled mean and sample mean inspired by the case for multiple random vectors give
the possibility to develop and create a MANOVA for smooth embedded manifolds, allowing for the
possibility to test for multiple extrinsic means.
My contribution to the data analysis has been in the form of well de ned condition of existence of the extrin-
sic anti-mean. | also took advantage of the extrinsic CLT result about antimean developped in Patrangenaru
et al (2016) [22] to conduct a two sample hypotheis testing method for change in antimean and therefore
giving another effective way to differentiate between object via a landmark based approach.

My contribution to the publications listed is
Patrangenaru, Yao and Guo (2016) [27] | my mork involve the whole of sections 2 through 5.

Patrangenaru, Guo and Yao (2016) [22] For this publication, my work is featured in the whole of
sections 4 and 5.

For the paper Patrangenaru, Page, Yao, Qiu and Lester (2016) [24]) my work is featured in the whole
of sections 4 and 5.

(Patrangenaru et al (2016) [26]) my work is featured in subsections 3.1 and 3.2 and also in the whole
of sections 4 and 5.



CHAPTER 2

PRELIMINARIES

Most of my analysis will be conducted on object spaces. These spaces consist of features measured from
sample observations that can no longer be viewed as a values of random vectors if one wishes to conduct
a proper statistical analysis on such said spaces. Examples of some object spaces | will consider are the
space of points on a sphere and the space of projective shapes of con gurations and for such a data set
the associated object considered are points opitbiective shape spacé will regard arandom objec

as a random point on a complete metric sp@de; ;) that has a manifold structure. In section 2.1 | give
some relevant de nitions and introduce some meaningful concepts we will use throughout the analysis. In
the ensuing section | introduce the extrinsic mean and extrinsic sample mean as the unique minimizer of
Fréchet functions on(M ; j). Section 2.3 exposes the reader to a Central Limit Theorem for extrinsic
sample means on embedded manifolds. In section 2.4 | present-ihgrojective shape space kfads

(labeled points, landmarks) in general position, which is denBted,: | highlight the fact that foP 5

can be identi ed with(RP3)9 with g = k 5: With this particular representation one can now view any
elements of the3-D projective shape space agyduple of elements from th8D projective space and

(RP?®)9 is embedded via the Veronese-Whitney embedding (see Patrangenaru and Ellingson(2015)[21]).
The nal section introduce a two sample hypothesis testing problem for extrinsic means on Lie groups and

the resulting bootstrap con dence region needed to conduct this test.

2.1 Some important concepts and de nitions

The focus of our studies will revolve around metric spa@dds; ) with an additional smooth manifold
structure. For that purpose we give the following de nition o$rmooth manifold We start by giving the

de nition of a topological manifold.

DEFINITION 2.1.1. (Manifolds)
A metric spacé€M ; ) is a manifold of dimensiom or a topological m-manifold iM is second countable

, i.e. there exists a countable basis for the metric topologigfand alsoM is locally Euclidean of



dimensiorm, i.e. every point has a neighborhood that is homeomorphic to an open sulig®t éfnd the
homeomorphism functiony : U ! ' y(U) 2 R™ is referred to as amm-dimensional chart oM . We

usually denote am-dimensional chart by the paiiU;' y). (see Lee (2002) [18]).

Given a char{U;' y) we call the setJ a coordinate domainor coordinate neighborhoodf each of its
points. If in addition' y(U) is an open ball irR™, thenU is called acoordinate ball. The map' y
is also referred to as a local coordinate map, and its comporiefts ;x[}), dened by’ y(p) =
(x&,(p); ; X{J (p)) are calledocal coordinate®nU: We will sometimes denote a chart fly; (in)izl;;::;m)
if we wish to emphasize the coordinate functicﬁng; ;X(}): (see Lee (2002) [18]).
Note that a homeomorphism is a bijective continuous function with a continuous inverse. The smooth

structure of a manifold is established by a smaattasor C! atlas

DEFINITION 2.1.2. A collectionA = f(U ;' ) »agof RM-valued charts on the topological manifold

M is called atlas of clas€" if the following conditions are satis ed:

(i)[ U=Mm
2A

(i) WhenevelU \ U 6 ;, then the (transition) map between(U \ U )and' (U \ U)
o wauyt (UVUDE T UV UY)

is differentiable. Furthermore, this transition map must also have a differentiable inverse that has
continuous partial derivatives up to order

(see Lee (2002) [18]).
DEFINITION 2.1.3. An m-dimensional manifold of clags' is a manifoldM along with anR™-valued
atlas of clas€C" onM . We will refer to a smooth manifold as an m-dimensional manifold of dss

Example 1. (i) Naturally, any open set in the Euclidean spd¢&"; o); is an m-dimensional smooth
manifold. Here o(x;y) = kx  yk; wherek(u®;:::;u™k? =" ., ... (uh)2

.....

(i) The unit spheres™ = fx 2 R™*! : kxk = 1gis an example af-dimensional smooth manifold.

(iii) The product of ap- dimensional manifold with g dimensional manifold is & + g)- dimensional
manifold.

(iv) The space of 1-dimensional linear subspaceR®f! ; called them-dimensional real projective space
and labeledRP™ is an example of a m - dimensional manifold that is not a subset of an Euclidean
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space. An element &P ™ is often represented Hy] wherex 2 R™*1: Here[x] =[y] ) Yy = X
forsome 60.

('see Lee (2002) [18]).

Note: A projective point[x] 2 RP™ can also have apherical representatignvhen thought of as a pair

of antipodal points or8™; and[x] = fx; xg; with kxk = 1 andx 2 R™*1: From this point on when
referring to a projective point we will use this particular representation. (see [2] or [21] )

The de nitions of smoothness of diffeomorphism and differentiable curves will be needed for us to introduce

tangent vectors and tangent spaces which are an integral part of the asymptotic analysis we will conduct later.

DEFINITION 2.1.4. (smooth function) Leé be a smoottm-manifold, a functiorf : M!  RX is said
to besmoothif for everyp 2 M ; there exists a smooth chgt;* ) for M whose domain containsand

such that the composite functién ' is smooth on the open subsdly) R™: (see Lee (2002) [18]).

DEFINITION 2.1.5. (Smooth map between manifolds)
A functionF : M!' N  between two smooth manifolds is differentiable, if for any ch@usts y) on M

and(V; v),onN, the composite map,y F ' Vl U\ V) is differentiable of clas€® : The composite

map above is referred to as the local representative. (see Lee (2002) [18]).

DEFINITION 2.1.6. A diffeomorphism between (differentiable) manifold8 andN is a differentiable
functionF : M I N that has a differentiable inverse. Furthermore, we say MaandN are diffeomor-

phic if there exists a diffeomorphism between them. (see Lee (2002) [18]).

DEFINITION 2.1.7. A differentiable curve (path) on a smooth manifédd is a differentiable function
from an interval toM . Two such paths; andc,, de ned on a neighborhood & 2 R are tangent ap if

c1(0) = ¢2(0) = pand there is a charfU;" ) aroundp such that

(u a¥0)=("uv %)
(see Patrangenaru and Ellingson (2015) [21])

With the de nition of differential curves we can now give a de nition of tangent spaces which is more

useful for object data analysis.

DEFINITION 2.1.8. (Tangent vectors and tangent space)

11



(i) The set of all paths tangent at p is called tangent vectoat p = ¢(0), and is labeled , = deg) =

dt
dc
dt o

(i) The tangent spacépM at a pointp of a manifoldM is the set of all tangent vectorg = gf oo
curvesc: ( ";")!'M  withp= c¢(0).

We will use the notation; ); p;and for a tangent vector imf,M ; depending on how much emphasis

we wish to give to the poimt (see Patrangenaru and Ellingson (2015) [21])

Example of tangent vectors

(E1) Ifer;  ;emistheusual basisdf = R™ andp 2 M the following partial derivatives

@ . @
are tangent vectors if,bR™: Fori = 1;:::;m; @@i is the tangent vector
@
& = ( )=
@k

wherec;(t) = p+ te;:
(E2) Similarly, if (U;" ) is a chart orM ; aroundp; @% isthe tangent vector
@

L 0= o,

whereci (t) = (" (p) + te;):

(E3) Inanother example, considdr = S™ regarded as a subsetRf"*! ; then the tangent spacem® S™
can be described as

S"=f(p;v); v 2 R™ jvTp=0g (2.1)

(E4) LetRP™ be identi ed with antipodal points (spherical representation) théx]if fx; xg2 RP™,
the tangent space B] is described as

TxRP™ = f([x]; ); 2R™?!j Tx=0g (2.2)
(see Patrangenaru and Ellingson (2015) [21]).

PROPOSITION 2.1.1. Let (U;') be a chart onM . ThenT,(M ) has a basis of tangent vectors

@—@)1 o @% b where(x®; ::::x™M) is the system ofocal coordinatesassociated with the chaftJ; ):
Each vector , 2 T,M can be written uniquely as a linear combination % |0; ; @—W b and we
have p = I; ' @&  with any choice of charts oMl and the numberé *; 2;:::;; ™) are called the

components of, with respect to the given coordinate system. ( see Lee (2002) [18])

12



DEFINITION 2.1.9. (Tangent Bundle).

The tangent bundl@M of an m-dimensional manifoll is the disjoint union of the tangent spaces at all
points ofM ; it has a2m-dimensional manifold structure. The tangent bundle is often represented by the
triple (TM ; ;M) where is a naturalprojection mamnd : TM!M s a differentiable map which
associates to each tangent vector its base pdifitp; p)) = p: (see Lee (2002) [18] or Patrangenaru and

Ellingson (2015) [21]).

DEFINITION 2.1.10 (Vector Fields) If M is a smooth manifold, gector eld onM is a smooth section
of the projection map ; thatis a smooth maj : M! TM usually writtenp ! Y (p); with the property
that

Y =ldy; (2.3)

or equivalently (p) 2 T,M foreachp 2 M : (see Lee (2002) [18] or Patrangenaru and Ellingson (2015)
[21])

One may think of a vector eld oM in the same way we think of vector elds in Euclidean spaces: as an
arrow attached to each point bf , chosen to be tangent d and to vary smoothly from point to point.

The value of a smooth vector eld at the pomts a tangent vector at each pom2 M :

Example 2. If (U; (x")) is any smooth chart okl , the assignment

@

Pl @k p (2.4)

determines a smooth vector eld an, called the ithcoordinate vector eldand denoted bX@L% (see Lee
(2002) [18])

The set of all smooth vector elds oMl often denoted by (M ) is an in nite-dimensional vector space

under point wise addition and scalar multiplication:
(aY + bZ)(p) = aY(p) + bZ(p)

(see Lee (2002) [18])

DEFINITION 2.1.11. LetU M be an open subset of an m-dimensional smooth manifold. A local frame

independent iMpM for eachp 2 U ( see Lee (2002) [18] or Patrangenaru and Ellingson (2015) [21]).
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Recall that for any smootm-manifoldM , the tangent bundle has a natural topology and smooth structure
that makes it into a smootm-dimensional manifold such that TM ! M is a smooth map. We can
therefore have maps from one tangent buridi¢ to another tangent bundieN : We now de ne a special

map below.

DEFINITION 2.1.12. (Tangent Map)

O Iff:M1!M »isadifferentiable function between manifolds, its tangent map is the function
d :TM 1! TM ,, given by

dc _d(f o

d dt o dt

f (c(0))

for all differentiable curves de ned on an interval containing 2 R.
(i) The differential off at the pointp is the restriction of the tangent map, regarded as a linear function

dpf :TlpM 1! Tf(p)M 2
dc _d(f ¢

dt P dt f (p)

o (2.5)

For the de nition above please refer to Patrangenaru and Ellingson (2015) [21]. Note that the restriction
of d at the pointp is a linear function that sends a tangent vectavlof to a corresponding tangent vector
of M : Such a linear map is also referred to as a push forward see Lee (2002) [18].
Data analysis on embedded manifolds will be the focus of our study. On such manifolds we can de ne a

distance with very useful properties.

DEFINITION 2.1.13. (Embedding)
An embedding of a manifol in a Euclidean spac®X is a differentiable one-to-one functign: M !

RK, for which
(i) the differentialdpj is a one-to-one function froMyM to T; (p, RK at any pointp 2 M ; and

(i) j is a homeomorphism froM toj (M ) with metric topology induced by the Euclidean distance.
(see Patrangenaru and Ellingson (2015) [21])

REMARK 2.1.1. Given an embedded manifo with embedding : M ! j(M) RX, we will,
throughout this manuscript, consider the corresponding metric splice ;) with the distance ; being

the chord distance de ned in (1.2).

14



Example 3. The unit spher&™ is a already embedded R™*! and the embedding is given by the inclu-

sion, :S™" ! R™* given by (x) = x; 8x 2 S™ with usual Euclidean metricj(x;y) = kx  yk?

Example 4. The projective spac@P™ is embedded in the space of symmetmict 1) (m+1) matrices,

via the Veronese-Whitney embedding

j:RP™IS (m+1;R);

j(xD) = xxT (2.6)

with the following metric oiBym(m + 1) given by 3(A;B) = Tr((A B)?), whereTr denotes the trace
of the matrix(A  B)?: (see Patrangenaru and Ellingson (2015) [21]) and Crane and Patrangenaru (2011)
[71)

The de nition below will allow us to set up a correspondence between a basis of tangent vectghs in

and arm-tuple of linearly independent tangent vectoré'jmp)Rk:

DEFINITION 2.1.14. (Adapted frame eld)

Assumep ! (f1(p);:::; fm(p)) is a local frame eld on an open subset bf such that, for eaclp 2

M ; (dpj (f1(p));::5; doj (Fm(p))) are orthonormal vectors iR¥. A local frame eld (e1(y); :::; ex(y))

de ned on an open neighborhoddl  R¥ is adapted to the embeddifgf it is an orthonormal frame eld

and
e((P)= dpj (Fr(P); r=21;:m; 8p 2| YU) (2.7)

( Patrangenaru and Ellingson (2015) [21])

2.2 Extrinsic means and sample means

The FEchet function on a complete metric space is the main tool by which we will introduce means on em-
bedded manifolds. It was introduced byeEhet in 1948 [11]. LeX be a random vector from a probability
measure on R™ with mean vector: The mean vector is also the valueR for which the expression
E[kX pk?] (viewed as a function op) is minimized. This function op is none other than the &chet
function on the metric spad®™; o): Furthermore, foiX 1; ::;; X iid random vectors from the distribution

1

— P
QonR™ the sample meanisgivenby= % L, X; with X | , : One thing we must note is that in the
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case of probability measures on Euclidean spaces we can easily estimate asymptotically the true mean via
the sample mean as de ned above. This will not be the case for most metric spaces we will encounter such
as the sphere and the projective space, until we have a notion of mean, that is also a point on such object
spaces . We must hence revisit the de nition of the mean and sample mean and it will start with us thinking
of it solely as the minimizer of some function, calleceEnhet function. We will later give a more general

de nition of a Fréchet function but rst we must mention that for this section, the reader may assume that a
de nition, an example, a theorem, property and most results can be found in the book by Patrangenaru and
Ellingson (2015) [21].

2.2.1 Extrinsic mean

Let M be anm-dimensional manifold and Iy be the Borel -algebra generated by open setdvbf
Let( ;A; Pr) be aprobability space. Arandom object (r.0.)Mnis a functionX : ! M ; such that
for any Borel seB 2 By ; X (B) 2 A: To each r.oX we associate a probability meas@e= Px on
Bw given byQ(B) = Pr(X 1(B)):In general, a natural index of location for a probability measpre
associated with a r.dX on a complete metric spadé with the distance metric is theFrechet meanltis

the unique minimizer of thérechet functionsee Fechet(1948) [11]), de ned by
z

F(P=E 2(px) =  2(p;x) Q(dx); (2.8)

whenever such a unique minimizer exists. Generally two types of distance on a mahifald considered:

1. A geodesic distance or arc distance. It is the Riemannian distgnassociated with Riemannian
structuregonM .

2. A chord distance ; associated with an embeddipg M ! RX: (see Patrangenaru and Ellingson
(2015) [21])

These two distances give rise to two types of statistical analysis on manifolds: an intrinsic analysis using an
arc distance and an extrinsic analysis based on a chord distance. We will focus on the latter.

From this point on, we will assume th@¥l ; ;) is a complete metric space.

DEFINITION 2.2.1. LetQ be a probability measure ol with a distance j. If F in (2:8) has a unique
minimizer, this minimizer is called the extrinsic mearQoénd it is denoted j;e (Q) or simply g. If the
minimizer is not unique, the set of all minimizers is the extrinsic mean set.

(see Patrangenaru and Ellingson (2015) [21])
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DEFINITION 2.2.2. LetX1; X2;:::; Xy be independent random variables with a common distribu@on

on the metric spacéM ; ), and consider their empirical distributiod, = % (Xk).
k=1
The extrinsic sample mean (set) is the extrinsic mean (sé€}) af. the (set of ) minimizer(g)of Fn(p) =

P
% jnzl jz(X,- i P). (see Patrangenaru and Ellingson (2015) [21])

DEFINITION 2.2.3. Assume g is the Euclidean distance iRK. A pointx of RK such that there is a unique
pointpin M for which o(x;j (M)) = o(x;] (p)) is calledj -nonfocal. A point which is ngt-nonfocal is

said to bg -focal.(see Patrangenaru and Ellingson (2015) [21])

The only focal point o8™ with the inclusion irR™*1 is O +1 : Note that the probability measu@induces

a probability measurg(Q) on RX:

DEFINITION 2.2.4. A probability measur&) on M is said to bg -nonfocal if the mean of j (Q) is a
j -nonfocal point. Ifx is aj -nonfocal point, its projection ojp(M ) is the unique poiny = Pj(x) 2 j (M)

with o(X;j (M)) = o(X;y).(see Patrangenaru and Ellingson (2015) [21])

THEOREM 2.2.1. If is the mean of (Q) in RK, Then
(a) the extrinsic mean set is the set of all poipta M , with o(;j (p)) = o(;j (M) and

(b) If je (Q) exists then exists and ig -nonfocal and e (Q) = | l(Pj( ).
(see Patrangenaru and Ellingson (2015) [21])

THEOREM 2.2.2. The set of focal points of a sub-manifditi of R¥ is a closed subset &* of measure

0. (Patrangenaru and Ellingson (2015) [21])

The 2D sphere and the 3D projective space are manifolds of interest to us. Their extrinsic means will appear

and be used at various points in our study.

Example 5. (Spheres) Lets assume that we have a random oKjéodm aj -nonfocal probability measure
QonS™ = fx 2 R™1 : kxk = 1g an m-dimensional sphere. For this particular space, jhaonfocal
condition which guarantees the existence ofégue extrinsic mean is equivalent to requiring that the true
mean g 60 2 R™1:

The embedding and its corresponding projection are two functpns thmat' are ﬁfjential in nding and express-

ing our extrinsic mean. Fo8™ the embedding is the inclusion map(' ) and the projection
X) = X
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(
P:F¢l (SM)
P(Y)= gk
the mean of(Q) then the extrinsic mean is given by

map is whereF ¢ = R™*1 nf0g is the set of-nonfocal points irR™**: Now, if is

e= PO 2.9)

Example 6. (Real projective spaces) We now assume [Kgtis a random object from @a-nonfocal pro-
bability measureQ on RP™: Much like in the example above we must have a clear expression of an em-
bedding and its corresponding projection and for real projective spaces the embedding of choicéV¢ the
(Veronese-Whitney) embedding mentioneif). With this choice of embedding

() The sefF of focal points of (RP™) 2 S, (m + 1; R) is the set of matrices iB+ (m + 1; R)( space
of positive semi-de nite symmetric matrices) whose largest eigenvalues are of multiplicity at least 2.

(i) The projectionP; : S, (m +1; R)nF ! j(RP™) assigns to each positive semi-de nite mat#ix
with a highest eigenvalue of multiplicity 1, the matjifm]); wherem is a unit eigenvector oA
corresponding to its largest eigenvalue.( see [6] or [21]. )

If X TX =1;and in the ambient space the mear E XX T exists, then the VW mean is

€= MPCN=17 G (m+1))
je =0 (m+1)] (2.10)

where (a)and (a); a=1; ;m+1 areeigenvalues inincreasing order and corresponding eigenvectors

ofE XX T :(see Patrangenaru and Ellingson (2015) [21])

In particular:

Example 7 (Extrinsic sample means f&@™ andRP™.). (i) AssumeQ is a nonfocal probability measure
on the manifoldl8™ andX = fXg;::;;Xpgare i.i.d.r.o's fromQ. Then the extrinsic sample mean is
given by

Xn

X . =
" kX ok

(2.11)

1
whereX p = = L X

(i) Now letQ be V-W nonfocal probability measure on the manif@RI™ and[X ] = f[X1];:::;[Xn]g are
i.i.d.r.o's fromQ. Then the V-W sample mean is given by;

XJjn =[g(m+1)] (2.12)
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whered(a) andg(a); a=1; ;m+ 1 are eigenvalues in increasing order and corresponding unit
, 1
eigenvectors o = — XX,

-
( Patrangenaru and EIIiIngson (2015) [21])

PROPOSITION 2.2.1. Consider an embedding: M ! RK. AssumgX 1;:::; X ) is a random sample
from aj -nonfocal probability measur® on M , and the sample mean vectgr(X)) is j -nonfocal. Then

this extrinsic sample mean is given by
Xe=j ' PiG(X) (2.13)
(see Patrangenaru and Ellingson (2015) [21])

Remark: At this point it is important to note that for an embedded smooth mankbléintoj (M) R,
one can analyze data from an unknown probability distribu@orwith help of the various widely known

multivariate techniques and conduct inferences for extrinsic means, variances, etc.

THEOREM 2.2.3. Assum@) is aj -nonfocal probability measure on the maniféid andX = fX1;:::;; Xng
are i.i.d.r.o's fromQ, then the extrinsic sample meXr is a strongly consistent estimator of thg: (Q):

( see Patrangenaru and Ellingson (2015) [21])

2.3 Central limit theorem for extrinsic sample means

A Central Limit Theorem for extrinsic sample means was given in Bhattacharya and Patrangenaru(2005)[6].
Let's assumd&) is aj -nonfocal probability measure on the maniftddd andX = fXq;::;; X garei.i.d.r.o's

from Q. Consider the embedded random variaples) = fj (X1);:::;j (Xn)g as random vectors from the
probability measurg¢(Q) with mean vector and assumg(Q) has nite moments of order four. We can
apply the usual (multivariate) Central Limit Theorem for our sample of embedded random objects and get

the following convergence in distribution:

n'= j(X) I ¢ N(O; ) (2.14)

P
wherej (X) = % "1 i (Xi): Given the formula of the extrinsic sample mean, we will need to understand

the asymptotic behavior & (j (X)) = j (X ): We do so by relying on the following theorem.
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THEOREM 2.3.1 (Cramer's Delta Method)LetY;; j 1 be i.i.d k-dimensional random vectors with
mean vector and covariance matrix = ( j): For H : RK I RP a vector-valued and continuously

differentiable function in a neighborhood ofwe have the following asymptotic behavior

PAIHY) H()! 4D H V Np ;DH DHT (2.15)

withD H = @gf(z) ('see Patrangenaru and Ellingson (2015) [21], Theorem 2.8.5)
2= i=lki=lsp

Using the Cramer's Delta method for the real-valued and continuously differentiable fuRgtise get the

following for the random vectons(X ) = fj(X1); 5] (Xn)g
n'? PG(X) P() ! 4D PV Ne(© )i (2.16)

where =D P, D PJ-T: HereP; : F¢! j(M ) whereF is the set of focal points ipn(M ): Note
that sinceF is a closed subset d&t¥ thusF ¢ is an open subset &&¥ a smoothk-manifolds and is itself

a smoothk-manifold. Lete;; e ::; €, be the canonical basis & and assume thdei(y);:::; e (y)) is

now represent this vector as a linear combinatiog0P; ( )); 5 em(Pj( ) 2 Tp,( )R";

xXn
d Pi(er)=  [d Pj(ep) ea(Pj( )lea(Pi()); 8b=1;:k (2.17)
a=1
xn
d Pj(ep) = ap €a(Pj () where 4 =[d Pj(ep) ea(Pj( ))]
a=1

Recall that using Cramer's Delta Method we have &€ Pj(j (X)) P;( ) converges weakly to a
random vectoD P; VN ((0; ), with = D P D PjT where is the covariance matrix
of j (X 1) w.r.t the canonical basky; :::; ex: We can now express our covariance matrix using the new
representation of vectots Pj (ep); 8b=1;:;;K
" # " #
Xn X0 T

ab€l(Pj( ) ab€l(Pj( ) (2.18)
a=1 b=1;::k a=1 b=1;:k

And note that

d Pj(e) e(Pj( ))=0; fora=m+1;:;k
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It is important to remember that= P;(j (X)) Pj( ) is a vector inR¥ with origin atPj( )= j( )

and as such it can be decomposed into component in the tangentlspage(M ) and component of the
orthogonal complement of the tangent spacg(at ): If we take the component in the tangent space then
asymptotic distribution we obtain is a distribution ®g ( ,j (M ); alinear space. To illustrate this point we
start by de ning tangential components which corresponds to tangent vecbeR'frand are dependent on

the choice of basis elements of the tangent space of interest.

DEFINITION 2.3.1. The tangential componetan( ) of 2 RXw.r.t. the basi®a(Pj( ) 2 Tp;( )i (M );a=
1;2;::;; m given by
2 3
e(Pi( )’
tan( )= 9 : £ =[ePi( ) snemPi() T (2.19)
em(P ()7

( Patrangenaru and Ellingson (2015) [21])

We now get the following asymptotic for the tangential compone;ofj (X) Pi()

nZtanj .y P j(X)  Pj() ! aNm(0; je) (2.20)

where 2 .3
el(P( )
e=AT A= 5 er() en(P; () (2.21)
em(Pi( )T
The tangential component & | (X) Pj () is atangent vector iif;  .)j (M ) and therefore its cor-
responding random vectdd . j) 1tan(Pj j (X) Pi()) 2 T .M converges asymptotically to a

multivariate normal with mean vectérand covariance matrix w.r.t. the basig g);:::;fm( g) given by

je =(ATD P)) (ATD P)T (2.22)
where under the new basis
2 3
d Pi(e1) ei(Pj()) ::: dPj(em) euP())
(ATD P)an=1[d Pj(en) ea(P;( M= 3 : s £ (2.23)
d Pj(e1) em(Pi( ) ::: dPj(em) em(Pi())
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DEFINITION 2.3.2. The matrix je given by(2.22)is the extrinsic covariance matrix of thenonfocal
distributionQ of X 1 w.r.t. the basig1( g);:::;fm( g). Whenj is xed in a speci ¢ context, the subscript

j will be omitted. If in addition, g is invertible (of rankm) we can de ne thg -standardized mean vector

1 L1 om T
Zin =02 22 X;uX o

P G (2.24)

1 —m T _
where les::ij are the coordinates of the tangent component@®fje ) ( je (Q)); w.r.t the basis

ea(Pj()) 2 T, ( yJ (M);a=1;2;:::;m: (Patrangenaru and Ellingson (2015) [21])

PROPOSITION 2.3.1. Assumé X ; g/'-; are i.i.d.r.o's from thg -nonfocal distributiorQ, with nite mean
= E(j (X1)), and assume the extrinsic covariance matrjx of Q is nite. Let (ei(y);:::; e (y)) be an

orthonormal frame eld adapted tp. Then

(a) the tangential component of the difference betwidetye ) and the ( e (Q)) has asymptotically a

distribution that is approximately multivariate normal the tangent spadd tat ;e (Q) with mean0
and covariance matrin ! ¢ :and

(b) if je isnonsingular, the standardized mean ve@ey, given in @:24) converges weakly toMm (Om; I m)-
distributed random vector.

( Patrangenaru and Ellingson (2015) [21])

The CLT for extrinsic sample means stated in Proposition 2.3.1 cannot be used to construct con dence
regions for extrinsic means since the population extrinsic covariance matrix is unknown. In order to de ne

our con dence regions we will need to have the following consistent estimator;for.
h o h R
Sj;E;n = dj (X) IDj (eb) ea(Pj (J (X ))) a= Sj;n dj (X) I:>j (eb) ea(Pj ( (X ))) a=1-m (2-25)

.....

is a consistent estimator ofje : With
_ 1>@ . Do o T
Sin =N J(Xe)  J(X) (Xy) (X)) (2.26)
r=1
a consistent estimator ofthe covariance matrix gf(X 1) anddj ) P; (ep) consistent estimator af P; (eb

andes(P;j (j (X))) a consistent estimator & (P;j( )):(see Bhattacharya and Patrangenaru [6] also Pa-

trangenaru and Ellingson (2015) [21]).
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THEOREM 2.3.2. Assumg : M! RXis aclosed embedding ™ in R¥. LetfX,g/'.; be a random
sample from thg -nonfocal distributionQ, and let = EJ[j (X 1)] and assumg (X ;) has nite second
order moments and the extrinsic covariance matrpe of X is nonsingular. Le{(e(y);:::; ex(y)) be
an orthonormal frame eld adapted tp. If S;e:n is given by 2:25), then forn large enoughSje;, is

nonsingular (with probability converging to one) and

(a) the statistic

-

niSj;E%;n tan(P( (X)) Pj( ) (2.27)

converges weakly td,, (Om; I m), so that

2
n S, tan(Pi((X)) Pi() (2.28)

[N

2
converges weakly tog, and

(b) the statistic

N[

l -
NZSy tany 5y (PG (X)) Pi() (2.29)

converges weakly td,, (Om; I m), so that

2
1 N
NS @, iy (PG P ) (2.30)

converges weakly to2, and
( Patrangenaru and Ellingson (2015) [21])

COROLLARY 2.3.1. Under the hypothesis of Theore&3;2) , a con dence region for ¢ of asymptotic

levell is given by

(@ Cn; = *(Un ) whereUp, = fP( )2 j(M): n Sj;E%;n tan Pi(i(X)) Pi()

%;1 gorby

1 -
() Dy =] LV )WhereVy = fPj()2j(M):n S tan, o PIGOX) ()
r2n;1 g

( Patrangenaru and Ellingson (2015) [21])
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For small samples, we use nonparametric bootstrap con dence regions. Now lets recalf ¥hadjif; is
a random sample from an unknown distribut@nandf X , gi-; is a (bootstrap) random sample from the

empirical distributior®,; conditionally given byf Xy 0r-; , then the statistic in Theorem 2.3.2 (a),

2
1 -
TX;Q)=n S, an(Pi( (X)) Pi() (2.31)
has the bootstrap analog

2
TX Q= n S 2, tany iy (PIGX ) P(GX) (2.32)

N

WhereT (X ;Q); S jen is obtained by substitutingX,g;_; by fX, g/_; and also by replacing by
j (X): From this point on, we will assume thp{Q); , has nite moment of suf ciently high order. This
result is automatic for compact manifolds suctsdsandRP™: The following theorem addresses the order

of convergence related to our bootstrap statistic.

THEOREM 2.3.3. LetfX,g/-; be a random sample from Henonfocal distributionQ which has a
nonzero absolutely continuous component w.r.t. the volume measiMeioduced by . Let = E[j (X1)]

and assume the covariance matrixof j (X1) is de ned and the extrinsic covariance matrixg is non-
singular and letp ! (e1(p);:::;ex(p)) an orthonormal frame eld adapted tp Then the distribution

of
2

[N

n S, tan(Pi((X)) Pi()

can be approximated by the bootstrap extrinsic Hotelling distribution of
2

N

NS gy @ oy PIAX ) PG(X)
with a coverage erroOp(n 2): ( Patrangenaru and Ellingson (2015) [21])

We will encounter cases whe®)e., is dif cult to compute and for such situations,we will rely on the

following result.

2
PROPOSITION 2.3.2. on the asymptotic distribution of tan(P;(j (X)) P;( ) can be approxi-

mated uniformly by the bootstrap distribution of
. . 2
n tan(Pi(j (X )) Pj( (X)) (2.33)
to provide a con dence region forg with coverage error no more tha@,(n ﬁ): ( see Patrangenaru

and Ellingson (2015) [21])

24



REMARK 2.3.1. For bootstrap con dence regions in Theorem 2.3.3 the bootstrap analog of Corollary
6.2.1 (a) is preferable. The correspondib@0(1 )% con dence regioniC,. = j (U, )withU,
given by

Uy =TP()2j(M):nkSetan(P (X)) P()K* ¢ g (2.34)

wherec; is the upperlO0(1 )% point of the values
KS £ tan, o (PG (X) PG OOK (2.35)

among the bootstrap re samples. And the region given by 2.34 has a coverag@gmor):

2.4 Projective shape space

The bulk of our analysis will directly involv® & the 3D projective shape space lofads (landmarks)
in general position. We will conduct a landmark based analysis which will involve recovering the 3D

coordinates of our labeled points.

2.4.1 Representation of projective shapes

We associate shapeto a con guration ofk labeled points. We are interested in conducting our analysis on
projective shapebut rst we start with de ning the a projective transformation of elements in a Euclidean

space.

DEFINITION 2.4.1. Generally, a projective transformationof R™ is de ned in terms of a matriA =

P-"‘lajx'+aj L Ay
I = == m* ;8 =1;::;m: 2.36
YT LA T AT Y e
whereAl is thej -th column ofA andu = (x%;:::;x™; 1)T

( Patrangenaru and Ellingson (2015) [21])

REMARK 2.4.1. Two con gurations of points ilR™ have the sam8D shapéf they differ by a projective
transformation oR3: However, in applications, such projective transformations act only on subsg of

and consequently they do not have a group structure under composition.
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Note that if one multiplies the matri& by a nonzero constant, then the equation (2.36) does not change;
therefore the group GL (m) of projective transformations &®™ has dimensiofm +1)? 1= m(m +

2): Furthermore R™ can be identi ed with an open af ne subset 8&P™; any con guration of points
of such an identi cation is the af ne embeddirig: R™ | RP™ given by

h(x) = h((x};::ox™) =[xt xM:1] (2.37)

(see Patrangenaru and Qiu (2014) [25]).
The pseudo group action by projective transformations on open dense sutRBtssafxtended to a group
action of the projective group GL (m): And the group action is given by

:PGL(m) RP™! RPT™

(AL;[x]) =[Ax]; 8A 2 GL(m+1;R); 8x 2 R™*! (2.38)

Note that given the matriA in the projective transformationin 2.36 andu we have the following vector

#= Au=((Al u);:::;(A™ u);(A™*1 u))T we now get the following equality
1 +1 ot &
[Aul=[&": & um )= GnT . gmel (2.39)
wherebrn‘i*—i+l = y' fori =1;:::;m: And we refer t(y?; : ::; y™) as the inhomogeneous (af ne) coordinates

of the point[t] 2 RP™:
Therefore, rather then considering projective shapes of con guratioR8'ime consider projective shapes

of con gurations in the projective spa¢eP™:

DEFINITION 2.4.2. Two sets of labeled poinf§xa1];:::;[Xaklg RP™; a=1;2 have the same pro-
jective shape if there is a projective transformation RP™ ! RP™, such that ([x;]) = [X2;]; 8] =

1;:::;k: (see Patrangenaru and Qiu (2014) [25]).

In projective shape analysis it is preferable to employ coordinates invariant with respect to the group

PGL(m). To create such coordinates we will need to use a projective frame.
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there is a unique 2 PGL(m) with (pyj) = pzj; ] = 1;:::;m + 2: (see Mardia and Patrangenaru
(2005) [20]).

A projective transformation takes a projective frame to a projective frame, and its actRR Bris deter-

mined by its action on a projective frame.

DEFINITION 2.4.4. The projective coordinate(s)f a pointp = [x! : : x™*1]1 2 RP™ wirt. a
projective frame = (p1;:::;pPm+2) as being given by
p= 1P (2.40)

where is a projective (transformation) map taking the standard projective fragte ; these coordinates

have automatically the invariance property. ( Patrangenaru and Ellingson (2015) [21])

b0 bme2 iN RP3 wherew; = [ui1 : ui2 : uz:1]fori =1;:::;m+ 2:If we consider then + 1 by
m + 1 matrixUy, = [#];:::; 6 ., ]; the projective coordinate ¢&] with respect to are given by
P o=y o y™H ()l
where yw) = — M withv )= U teT (2.41)
Vi(um +2) m '

( Patrangenaru and Ellingson (2015) [21])

DEFINITION 2.4.5. A projective shapeof a k-ad (con guration ofk labeled points) is the orbit of that
k-ad under projective transformations. If thead is regarded as a point ofRP ™)K, then such a trans-
formation acts at the same time on each point ofkked; therefore the action of PL&) is the diagonal
action of this group offRP ™)K,

k(P p) = C (P (Pw))

( Patrangenaru and Ellingson (2015) [21])
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Now, lets consider the s&(k; m) of k-ads(py;:::;pk) with k > m + 2 for which = (p1;:: Pm+2)

is a projective frame. Once the rsh + 2 points are used to create a projective frame, we now use the

respect to its projective frame Them-dimensional projective shape space geaerick-adis determined
by the projective coordinategp,,.3;:::;p,) of Kk m 2 of its points, relative to othefm + 2) of its
points that form a projective frame. Using the projective coordingigss ; - : :; p,) on can show tha® k

is a manifold diffeomorphic tqRP™)k ™ 2. The drawback of this representation is that the resulting
analysis may depend on the projective frame selection. But on the other hand the projective shape space has
a manifold structure allowing us to use the asymptotic theory for means on manifolds we introduced in the

previous subsections.

REMARK 2.4.2. We will now use interchangeably the notati®n X, and(RP™)k ™ 2 to refer to the pro-
jective shape space kfads inm-dimensions. Furthermore, we will now represents an elenyei&t P K,

byy = ([xa];:::;[Xq]) whereq = k  m  2and[xi] = p; is a projective coordinate with respect to

2.4.2 VW mean and sample mean ofRP3)k 5

We will look at samples of random projective shapeskedd k 5) in general position including a
projective frame irRP 3: The corresponding 3D projective spacekedd is given byp ¥ = (RP3)k 5 and
is an embedded manifold. The embedding of choice is the Veronese-Whitney embedg¢liRig B)f with
g=k m 2andthe embedding is denotgd But before we formally de ne this map, we will recall the
VW embedding orRP™ is de ned by
j RP™1 S,(m+1;R)
j(x) = xx"; kxk=1; andx 2 R™*?

j mapsRP™ into a %(m +1)(m +2) -dimensional Euclidean hypersphere in the spaga + 1;R),

where the Euclidean distance between two symmetric matticasiB is
olA;B)= Tr((A B)? (2.42)

(see Bhattacharya and Patrangenaru (2005) [6]).
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PROPERTY 2.4.1. The VW embedding dRP™ is an equivariant embedding. It means that the special
orthogonal grougSO(m + 1) of orthogonal matrices with determinafl acts as a group of isometries on
RP™ and it also acts on the left o8, (m + 1; R); the set of nonnegative de nite symmetric matrices with
real coef cients. This left action is giveny A = WAW T forW 2 SO(m+1) andA 2 S, (m+1;R)
(see Bhattacharya and Patrangenaru (2005) [6]). Also

W [XD=W j(x]); 8W 2SO(m+1); 8[x]2 RP™ (2.43)
DEFINITION 2.4.6. The VW embedding dikRP™)% is an equivariant embedding given by

jk :(RPMI1 (Sy(m+1;R))4

Jk(y) = (D ([xaD)s = X))y = ([xaliz: 25 [Xql) (2.44)

RP™: This function embed the manifo{@&P™)% in the Euclidean spackE = (( S(m +1;R))Y hh; ii )
with scalar product and metric given by
xa
htA ; Bii = Tr(AiBj)
i=1

xd
dj(A;B)= Tr((Ai Bi)?) (2.45)
i=1

For our Extrinsic analysis we will require a de nition of the projection of the VW embedding of the projec-

tive shape space.

DEFINITION 2.4.7. LetF9 (S;(m + 1;R)) be the set of focal points ¢f ((RP™)9), the projection
Pi, 1 (S+(m+1;R))InFA! j, (RP™M)9) is given by
P, (A)=(P (A1) P; (AY) = jk([ma]; 255 [mg)) (2.46)

where fori = 1;:::;qthe projectionP; : Si(m+1; R)nF ! j(RP™) assigns to each positive semi-
de nite matrix A; with a highest eigenvalue of multiplicity 1, the matrim;]); wherem; is a unit eigen-
vector ofA; corresponding to its largest eigenvalue. Alrd S. (m + 1;R) is the set of focal points of

j (RP™): ('see Crane and Patrangenaru (2011) [7].)

29



Now that we have properly, de ne an embeddjpgand its corresponding projectiét, we will introduce

the Extrinsic mean and sample mean on the projective shape space.

measure on(RP™)9whereq= k m 2: The corresponding VW mean is given by

i = 1@ o)) (2.47)

8s=1;:0q;( s(a); s(a); a=1;:;m+ 1 are eigenvalues in increasing order and corresponding

eigenvectors oF (Xs(Xs)T): ( see Crane and Patrangenaru (2011) [7].)

DEFINITION 2.4.9. LetfY;g/-; be ani.i.d. random sample de ned §RP™)9 from Veronese-Whitney-
nonfocal distributionQ: The corresponding sample mean extrinsic projective shape, in the multi-axial rep-

resentation, is given by
Yien = (0@)]; 5 [ge(4)]) (2.48)

. . 1
ding eigenvectors afs = - X $(X$)T: ('see Crane and Patrangenaru (2011) [7].)
r=1

2.4.3 Lie group structure of the 3D projective shape space

In this section we introduce a very useful feature of the 3D projective shape space under our usual projective
frame representation. Unlike in other dimensions,3Bereal projective spacBP 2 has alie groupstruc-
ture. This additional property is important and will allows to perform useful binary operations we would not

generally have for most smooth manifolds. we now de ne this group structure on manifolds.

DEFINITION 2.4.10. A Lie group is a smooth manifold that is also a group in the algebraic sense, with
the property the the multiplication map and the inversion map : G ! G are both smooth. (see Lee

(2002) [18]

Note that under our spherical representati®R,® is the quotienS®=f x xgand ifx;y 2 S3(a group

of quaternions of norm one) then if follows that the multiplication

[P [Pl =1[p1 p2l; forpy;pe 2 S (2.49)
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where( ) is the quaternion multiplication is a well de ned Lie group multiplicationRR 2. For more on
the quaternion multiplication please refer to Crane and Patrangenaru (2011) [7]. Apd fof{ X1 : y1 :

z; : t1]; i = 1;2 an explicit formula for our Lie group multiplication is given by

[Pu]  [p2]l = [(tax2  Xata+ y1zo  zay2) : (tay2  Yyito+ ZiXo  X1Zp)

. (t]_Zz thz + X1Y2 y1X2) . (tltz X1X2 Y1Y2 2122)] (250)

Also for[p] =[x :y :z:t] 2 RP3with kpk = 1, its conjugate igp] =[ x: y: z:t]2 RPS3, the
inverse map oRP 3 is given by

[Pl *=[pl (2.51)

and the identity of this Lie group idgps = [0 : O : O : 1]. Recall that the projective shape space is
diffeomorphic to(RP3)9; (q = k 5) . Therefore with this identi cationP '§ inherits a Lie group

structure from the group structure BP 3. The Lie group multiplication ifRP 2) is given by

(pal; 255 Ipgl) g @P3L; o5 9D = (TPl [PST;:::lpg]  [P3)) (2.52)

Lrpsya =([0:0:0:1];:::5[0:0:0:1]) (2.53)

pt=p=(pdi:ii;pal) (2.54)

(' see Crane and Patrangenaru (2011) [7].)

2.5 Homogeneous spaces and two sample means tests for unmatched pairs

The bene ts of an added Lie group structure have been exploited especially in hypothesis testing for two
sample means of matched pairs see Crane and Patrangenaru (2011) [7]. Recall that for a large sample of
observations from a matched péX; Y ) of random vectors ilR™, one may estimates the difference vector

D =Y X to eliminate much of the in uence of extraneous unit to unit variation without increasing the

dimensionality. Crane and Patrangenaru extended this technique to paired r.0.'s on an embedded Lie group
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that is not necessarily commutative. Assum¥igndY are paired r.0.'s on a Lie groyi®; ). Thechange
fromX toY wasdenedtobeC = X 1 Y:And a test for no mean change frofto Y is one for the
null hypothesis
Ho: j =16

where 1 is the identity ofG and ; is the extrinsic mean o€ with respect to the embeddirjg(see
Patrangenaru and Qiu (2014) [25] and Crane and Patrangenaru (2011) [7]). In Mathematical Statistics it
makes sense to consider the equality of means on a smooth objectMpaci¢h an action of a Lie group
G, only for those means that lie on the same orbit ( see Patrangenaru and Ellingson (2015) [21], Chapter 3),
which a good reason of considering smooth object spaces made of one orbit only.

For pairs of unmatched random objegtsandY on Lie groups we cannot use the new random object

C mentioned above. To circumvent this dif culties, we lookitomogeneous spaces

DEFINITION 2.5.1. (see Patrangenaru and Qiu (2014) [25])

A left action of a grougson aM ;isafunction :G M!M such that

Lg;x)=Xx; 8x2M ;
(g0 (hx))= (g hix);8g2G;8 2 M (2.55)
DEFINITION 2.5.2 (Homogeneous space)see Patrangenaru and Qiu (2014) [25])

Assume : G MIM is a left action of a groufison M and de ne the orbitG(x) of a pointx 2 M
astheset (k;x);k 2 Kg: ThenM is aG homogeneous space if there is a poirg.t. G(x) = M :

In the caséM is a manifold, we assume in addition ti{&; ) is a Lie group and the actionis smooth. A
Lie group(G; ) is automatically &-homogeneous space, for the actioa  : Examples of object spaces

that are homogeneous spaces:
spaces of directionsNI = S™; m = 1;2), spaces of dihedral angleld (= ( SH)¥),
the spaces of shapes of plakaad's M = CPX 2: (see [16])

spaces of shapes 2D contouvs (= ( P (H); H Hilbert space), spaces of cell lamentsl(= RP?
(0;1 ) (see Huckemann [14].)

DEFINITION 2.5.3. (see Patrangenaru and Qiu (2014) [25])
M has a simply transitive Lie grou; if there is a Lie group action : G M ! M , with the property
that givenx 2 M ; for any objecty 2 M ; there is a unique 2 G such that (g;x) = v:
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Let M be aG-homogeneous space, whéve is an embedded manifold arf; ) a Lie group that acts
simply transitively onM via a smooth left action : G M ! M . Fora=1;2letXa1; ;Xan,
be independent random samples de ned\dn from a distributionQa, with the extrinsic meansy;j; 2;
and with the corresponding extrinsic covariance matricgs, »;, wherej : M ! RN is the embedding.

Then, a two-sample hypothesis testing problem can be formulated as follows
Ho: 1= (255 ) vs. Hit 156 ( 25 );

for 2 G. Now for a xed object »; the mapping 2 : G ! M ; 2(9)= (2,9,892Gis

one-to-one, and we can now rewrite the hypothesis problem from above as follows

Ho:( 2) Y(15)= vs. Hi:( ) *( )6 ; (2.56)
(see Patrangenaru and Qiu (2014) [25]) We recall the following

THEOREM 2.5.1. (see Patrangenaru and Qiu (2014) [25])
Fora=1;2, letXa1; ;Xan, identically independent distributed random objects (i.i.d.r.o.s) from the
independenf,-nonfocal probability measurdd, with nite extrinsic moments of ordes; s 4 on them
dimensional manifold/d on which the Lie grous acts simply transitively. Let = n1 + n, and assume
limpy B! 2 (0;1): Let" be an af ne chart de ned on an open neighborhoodgfwith' (1g) = 0g;
andL the left translation by 2 G: Then undeH g (2.56)

(i) The sequence of randomvectors™ ' L Y(H(X1g;X2e)) converges weakly td, (O ; ),

for some covariance matrix; that depends linearly on the extrinsic covariance matriceg; 2.e:

(i) If (i) holds and is positive de nite, then the sequence
n 'L YHXwue: X2g)) | ;P L MH(X1Ee;X2E)) converges weakly to2, distribu-
tion.

Furthermore, assuming that; is positive de nite, given that’\J is a consistent estimator forj; the

asymptotigp-value for the hypothesis testing problé#g is given byp = P(T  t?) where
2= n L YH(Xze:iXze) | "yt L OAH(XueiX2e) (2.57)
andT has a 2, distribution. (see Patrangenaru and Qiu (2014) [25] )

If the distributions are unknown and the samples are small an alternative nonparametric bootstrap technique
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(see [8]) may be used. thax(ni;nz) T, the pulled sample covarianée in 2.57 does not have an
inverse, and pivotal nonparametric bootstrap methodology can not be applied. In this case one can use
non pivotal bootstrap methodology for the two sample probi&grwhich involves a bootstrap con dence

region.

THEOREM 2.5.2. (see Patrangenaru and Qiu (2014) [25])
Under hypothesis of Theore®il(i); assume in addition, that fax = 1; 2 the support of the distribution
of X 5.1 and the extrinsic mean,.g are included in the domain of the chartand' (X .1) has absolutely

continuous component and nite moments of suf ciently high order. Then the joint distribution of
V=n¥" L YHXye;X2e)) (2.58)
can be approximated by the bootstrap joint distribution of
V =n? LM HX e X2e)) (2.59)

with an error Op(n =), where, fora = 1;2 X ¢ are the extrinsic means of the bootstrap re samples

X aras ra=1;::0na:givenXgr,; ra=1;::0Nn4:

COROLLARY 2.5.1. The large sampl@-value for the hypothesis testing probléty (2.56)is given by
p= Pr(T >nVT";V) whereT has a 2 ) distribution andV is given by equatiorf2.58) and “yis

consistent estimator of the extrinsic covariance matriel¢X 1.g; X 2.g):

When the sample size is small, we use Efron's bootstrap , and the hypothesis problem in (2.56) can be solved

by using the followingL0O(1 )% bootstrap con dence region for L Y(H ( i 25)):

The concepts presented in sections 2.2 through 2.4 are essential to our statistical analysis in object spaces.
We will be able to take advantage of the asymptotic theory developed in section 2.3 (i.e CLT for extrinsic
sample means and con dence regions) to conduct hypothesis testing problems on manifolds. Recall from
section 2.4 that this space has a Lie group structure with the multiplication operation inherited from the
quaternion multiplication o8® R*. Therefore a 3D object analysis based on landmarks can make use of
the recently developed nonparametric techniques for two sample tests on Lie groups (see [25, 21]). We em-
phasize that the reconstructed con guration of 3D landmarks obtained from pairs of non calibrated camera

images, is unique up to a projective transformation in 3D, as noticed in [23]; this allows to analyze without
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ambiguity the projective shapes of such con gurations (see [23]). The developed statistical analysis is per-
formed for samples of pictures of faces, without making any distributional assumption for the corresponding

3D projective shapes of human facial surfaces.
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CHAPTER 3

TWO SAMPLE TEST FOR UNMATCHED PAIRS OF 3D
PROJECTIVE SHAPES

In this chapter | use the two sample hypothesis testing method for extrinsic means, to differentiate between
two 3D scenes of the same kind ( faces, owers, etc...), within the framework of 3D projective shape analysis
as developed in [7, 21, 25], based on small samples of digital camera images. The analysis is conducted on
the space of 3D projective shapeske&ds in general positioR ¥ that contain a projective frame at given
landmarks labels, which is homeomorphidiio = ( RP3)k 5 (see Mardia and Patrangenaru [20]).

In section 3.1 | apply the theory presented in section 2.5 to conduct a two sample test for unmatched pairs
on(RP3)k 5; viewed as a Lie group. In section 3.2 | perform the statistical analysis for sets of pictures of
faces along with conveniently selected anatomical landmarks. | make no distributional assumptions for our
hypothesis testing methods . The data consist of three sets of images, one female face and two male faces.
In Section 3.3 | discuss the process involved in collecting the data sets via MATLAB and introduce a new
data collection tool named Agisoft which offers signi cant bene ts and improve the speed and accuracy

involved in data collection.

3.1 Two sample test for VW means for unmatched pairs orfRP 3)¢

For a statistical analysis of 3D projective shapes, we are lead into consideriny ram'6RP )9 that have a
VW-mean ( have an extrinsic mean w.r.t. the VW-embedgi)gAnd sinceM = (RP®% q=k 5hasa

Lie group structure (see Chapter 2), and that a Lie group is a homogeneous manifold with a simply transitive
Lie group action, we can take advantage of the methodology introduced in the previous chapter. The large
sample distribution of the tangential component of the mean change between the extrinsic sample means of
two random objects on an embedded Lie grdtipcan be found in [25]. The probability measu?e on

(RP3)9; associated with such a r.o0. is said to\d&/-nonfocal probability measu@n (RP %)% The VW-

mean of a VW-nonfocal probability measuPe ;Y = ([ X ;5 [X9): (X3)TXS=1; 8s=1;::::q;

is given by
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where( s(a); s(a)), a = 1;2;3;4 are the eigenvalues in increasing order, and the corresponding unit

eigenvectors of the matriE [X $(X $)7], respectively (see [23], [20]). In particular, given a random sample

Yig = (01(4);::1:0q(4)); (3.2)

where (ds(a); gs(@)), a = 1;2;3;4 are the eigenvalues in increasing order, and the corresponding unit
eigenvectors of the matrix
1 X
— XX :
n.
i=1
The particular smooth Lie group action we will use in our analysis is , the Lie group multiplication

on (RP3)9; and if for simplicity we label the VW-means of the two populations hy; 2, the null

hypothesis in (2.56) can be expressed,
Ho: 1= 2 Vs. Hi: 16 2 (3.3)

where fora = 1;2; g are extrinsic means from VW distributiof@, on (RP3)9: We can rewrite the

hypothesis in (4.1) as follows

Ho : Z;é 1E = 1(Rp3)q vs. Hi: 2% 1E 6 1(RP3)q (34)

We further de ne the smooth mald : M2 ! M by H(x1;x2) = ( *2) 1(x1): We now have (4.2)

expressed as follow that the expression found in the hypothesis above
Ho . H( 1E, 2;E) = 1(Rp3)q VS. H]_ . H( 1E; 2;E) 6 l(Rps)q (35)

Fora=1;2 letYa1, ;Yan, be independent random samples from VW distributi@ason (RP 3)d
with the extrinsic meansi.g; 2. and the corresponding extrinsic covariance matrices; 2.g: We are
led into characterizing the asymptotic behavior‘w@;fE1 Y1.e; whereYy.g; Yo.g are the sample extrinsic

mean estimators corresponding to the two random samples.

DEFINITION 3.1.1. The afne chart' 4 de ned on an open neighborhodd of 1gpsya With " 4(U)
(R%)9 and it is given by

Co(Xal i xal) = 1 (Xal); it (X)) (3.6)
where' is an af ne chart de ned on an af ne open neighborhoodlg s ; given by ([(x*; x%;x3;xHT]) =
i k)’
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PROPOSITION 3.1.1. Fora = 1;2, let Ya1; ; Yan, identically independent distributed random ob-
jects (i.i.d.r.o’'s) from the independej-nonfocal probability measure®,: Leth = ng + n and assume
limpy %1 2 (0;1): Then undeH, in (3.4),
() The sequence of random vectora!= ' q(YZ;E1 Yie) converges weakly thlzq(0zq; 3,), for
some covariance matrix;, that depends linearly on the extrinsic covariance matricggs; 2
(i) 1If (i) holds and ;, is positive de nite, then the sequence
n ' q(Yoe Yie) ! s "a(Yag  Yie) converges weakly to3, distribution.
(iii) If (i) holds and assume in addition, that far = 1; 2 the support of the distribution df;.1 and the

extrinsic mean e are included in the domain of the charg and' 4(Ya;1) has absolutely continuous
component and nite moments of suf ciently high order. Then the joint distribution of

D="4(Yse YiE)
can be approximated by the bootstrap joint distribution of
D ='oY 26 Y 1g) (3.7)

with an errorOp(n 172y 'where, fora=1;2 Y, are the extrinsic means of the bootstrap resamples

COROLLARY 3.1.1. Fora = 1;2, let Ya.1; ; Yan, identically independent distributed random ob-
jects (i.i.d.r.o!s) from the independent VW probability meas@gsForm random resamples with repetition
(Ya1r 3 Yan,) from(Ya1; 5 Yan,); fora=1;2: The corresponding approximal®0(1 )% boot-
strap con dence region for ;2( )= ' ¢( &  1e)iSC ="' 4(U );whereU 2 (R%)Yis the Carte-
sian product of3q intervals at100(1 S—q)% con dence level for the components of ' ¢( 2;% 1E):
This simultaneous con dence intervals yield a con dence region of at E@3¢1 )% level, of coverage
error Op (n 172): We reject our null hypothesis @y 2 U , that is, if at least one of these intervals does

not containO:

3.2 Data set and hypothesis testing results

In this section we analyze tiD projective mean shape changes to differentiate between faces (see Pa-
trangenaru et.al.(2016)[24]). We conduct two sample hypothesis testing on unmatched pairs (i.e different

sample sizefs; 6 n»:) The analyzed data set consists of images of the faces shown below
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Figure 3.1: Faces used for analysis

For our landmark based analysis we rst recover a 3D con guratiok sf10 landmarks from each pairs

of uncalibrated pictures of the same face (see Ma et. 1.(2005)[19]). This will result, for the female face,in

8 projective shapes3{D con gurations of labeled points), for the rst male we hai® projective shapes

and nally for the last data set we hadd projective shapes. The collections and reconstructions of all of

our landmark con gurations were done in Matlab. The landmarks are shown in gure 3.2:

;Us are
used to construct a projective frame= (t1;:::; ts) wheret; = [ul b u'2 : 1]: Throughout the data
we use the same landmarks for our projective frame and they are, in increasingooodesale, right and

left Endocathion, Labiale Superius, left Crista Philtithe resulting< 5—tuple of projective coordinates
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word, the projective shape of the 3ID-ad, is determined by th& projective coordinates of the remaining

landmarks of the reconstructed con gurations.

3.2.1 2 sample test for facial data

ered from data sets consistingrof andn, pairs of images respectively are coming from a \@andQ

distribution on(RP 2)5: We statistically differentiate between faces if we reject the following null hypothesis

Ho 1;% 2 = 1(rp3)s
For our result we used the simultaneous con dence intervals mentioned in Corollary (3.1.1). We failed
to reject the null hypothesis if all of our con dence intervals contain the va@lue
Results for comparing Male faces:
For the two male faces with data sets of simgs= 10 andn, = 11 we conduct our two sample hypothesis

testing and we get the following simultaneous intervals

Simultaneous con dence intervals for changes between the

2 mean projective shapes of the two faces landmarks 6 to 8

LM6 LM7 LM8
x ( 1:1114980:805386) ( 1:1175121:099536) ( 1:2965470:966296)
y ( 1:2152180:710931) ( 1:3551671:336021) ( 0:6352821:372627)
z ( 1:1612341:150762) ( 1:4322171:349541) ( 1:3941411:349442)

Simultaneous con dence intervals for changes between the
2 mean projective shapes of the two faces landmarks 9 and 10
LM9 LM10

X (0:9521640:996354) ( 0.9625411:005917)
y ( 0:7601241:129782) ( 1.0706310:982195)
z ( 0:8175031:319117) ( 1.3193741.089272)

Another good set of visual tools we use in our analysis areBtatstrap marginalsboxes which can be

found in gure 3.3.

We notice that one of the simultaneous con dence intervals for landmark 9, corresponding to thexdght
canthion does not contaif. We then reject the null hypothesis, showing that there is signi cant projective
shape change between the two male faces. And for the bootstrap marginal boxes we notice that the rst
three landmarks have a pretty dense concentration around the center, indicating no signi cant mean change

which is not the case for the last two boxes.
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Figure 3.3: Bootstrap projective shape marginals for male face data

Result for cross gender comparison:

For samples of sizes; = 11 (male) andn, = 8 (female) conduct the following null hypothesidig :

1;}1 2:8 = 1 (rp3ys; and inthe gure below 3.4 we indicate the two faces being analyzed.

Figure 3.4: Faces used in cross gender analysis

We then get the following bootstrap marginals boxes ( gure 3.5) for our cross gender analysis along with
the simultaneous con dence intervals.

Figure 3.5: Bootstrap projective shape marginals for cross gender data

Simultaneous con dence intervals for cross gender landmarks 6 to 8

LM6 LM7 LM8
x ( 1:2519841:202986) ( 1:2286281:234229) ( 1:2730921:332798)
y ( 0:6338340:902621) ( 0:9285230:995304) ( 0:2265870:865510)
z ( 0:2311900:432009) ( 0:6844831:045302) ( 0:5906231:132418)

Simultaneous con dence intervals for cross gender landmarks 9 and 10
LM9 LM10

x  (0:9984461:028374) ( 0:988191 0:931250)

y ( 0:7023350:540613) ( 1:1628031:008259)

z ( 1:0578210:849069) ( 0:1186350:969739)
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The landmarks 9 and 10 corresponding to the right and left Exocanthion have intervals not coiftaisieng
reject the null hypothesis, and conclude that there is a signi cant projective shape change between the two

faces.
Results for cross validation:

We separate the original sample into two smaller data sets ofrsizes andn, = 6. They are displayed

in Figs ( 3.6).

Figure 3.6: Cross validation samples

The bootstrap axial marginals (Fig 3.7) and simultaneous con dence regions for cross validation are given

below.

Simultaneous con dence interval for cross validation face 2 for landmarks 6 1o 8
LM6 LM7 LM8

x ( 17:4967853:552070) ( 4:0278794:860970) ( 1:9907967:497709)

y ( 10:9672854:340129) ( 3:7760269:830274) ( 7:5585840:865119)

z ( 2:72418413093615) ( 3:0060495:891478) ( 0:6987454:293201)

Simultaneous con dence intervals for cross validation face2 for landmarks 9 and 10
LM9 LM10

x ( 2:4598821:230096) ( 3:2642921:036499)

y ( 1:6318390:983147) ( 1:3871332:942318)

z ( 1:4514871:196335) ( 0:9167681:658124)

Figure 3.7: Bootstrap marginals for crossvalidation of male face 2
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Figure 3.8: Landmark placements in Matlab

All the simultaneous intervals (af ne coordinates) cont@irWe fail to reject the null hypothesis; there no
statistically signi cant mean projective shape change. Furthermore, the bootstrap marginals all show values

that are concentrated aroufgt

3.3 Landmark coordinates from ideal non calibrated camera images

Our data sets are built from sets of digital camera images of faces and other objec8D fHoe analysis
we are conducting is a landmark based analysis. Our landmarks are composed of recoriryctieds

in a particular con guration and the collection of our landmarks in Matlab is done in a few stages.

3.3.1 Matlab data set

For any one reconstruction of a particular 3D object (faces, owers, leaves, etc...) two pictures from two
different angles are needed. Once the pair of pictures are stored and saved in the an appropriate window
within the Matlab platform, the digital images are loaded usingitheead command in Matlab. The
landmarks are manually selected using the funatioselect() We illustrate a set of landmarks in Fig 3.8.
Generally, a nite con guration of eight or more points in general position in 3D can be reconstructed,
by using the fundamental matrix of the coordinates of the images of these points provided by two ideal
non calibrated digital camera views. We assign the same landmarks throughout our whole data sample; the
images from below show the placement of our matching points.
By this method we usually get very reliable 3D coordinates for our landmarks. However, one drawback
associated with this technique is that it is hard to visualize the reconstructed 3D con gurations. In fact, to
get a descent visualization of our reconstruction may require the collection of a large amount of landmarks,

which can be time consuming.
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To illustrate this particular situation we have the following 3D reconstruction involving 80 landmarks placed
on a pair of pictures of an oak leaf and resulting in the following 3D images without color and/or texture.(see

Fig 3.9)

Figure 3.9: Oak leaf reconstruction with midriff

3.3.2 Advanced 3D data collection methods from digital camera outputs

Recently for our data analysis we started using a professional version of Agisoft, which extra@i® the
image of a surface from two or more non-calibrated digital camera views, based on RGB texture matching
followed by a3D reconstruction algorithm. This software gives us a much better visualization of our recon-
structed data set without relying on landmark collection and the use of an eight point algorithm to estimate
the fundamental matrix (see Ma et al.(2005)[19]).

Although the reconstruction could be done with just two uncalibrated camera images, we get a better res-
olution and complete reconstruction of the surface of a head or face, by increasing the number of im-
ages of the same individual. A training data set of fteen surfaces of faces including texture was col-
lected from digital images (see ani.stat.fsu.edu¢/Davids-PhDs). An additional sample of three sam-
ples of 3D faces was collected along with facial landmark coordinates; this will be used in Chapter 6 (see
ani.stat.fsu.edu/vic/Davids-PhDs/MANOVA) We illustrate this fact we use set of pictures in Fig. 3.10.
After the reconstruction is done, we may visualize our result and also indicate the relative camera placement

in Fig. 3.11. The Agisoft output then gives us B2 coordinates of our ten landmarks in Figs. 3.12-3.13.

In this chapter we took advantage of the fact Me= ( RP %)Y being a Lie group acts simply transitively
on itself with the action being the left multiplication. We can then use the recent work on asymptotic
behavior on homogeneous space to have an expression of the convergencelof(H (X 1E;X2E)) -

This allows us to perform hypothesis testing on random samples of different sizes de ied ©he theory
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Figure 3.10: Pictures used for 3D reconstruction

Figure 3.11: 3D face reconstruction with camera placement

Figure 3.12: Landmark placement and coordinates
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Figure 3.13: Pictures for 3D reconstructions

involves applying &Cramer's delta methotbr functions between manifolds that will depend heavily on the
choice of a convenient chdrt The expression of the covariance matrix we obtain depends linearly on

the extrinsic covariance matrices.g; 2g:. Recall that an extrinsic matrixg is always de ned with
respect to a basis ( g);:::;fm( g) of local frame eld referred to as orthoframe (see de nition 2.3.2).

In the next chapter we will work on developing an asymptotic theory that builds on the work in [25] but is
not dependent on the choice of a chart. The work in this chapter led to a couple of publi¢&idriace
analysis from digital camera imagegsee [26]) andProjective shape analysis of contours and nite 3D

con gurations from digital camera imagegsSee [24]).
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CHAPTER 4

A TWO SAMPLE TEST FOR MEAN CHANGE BASED ON A
DELTA METHOD ON MANIFOLDS

| introduce a new method of two sample tests for 3D mean projective shapes. This method builds upon the
various results of the two sample hypothesis testing methods, as developed in Patrangenaru et al. (2010)[23],
Crane and Patrangenaru et al.(2011) [7], and Patrangenaru et al.(2014) [25].

In section 4.1 | start by expressing a version of the Cramer's delta method for a fukctioh 1 | M »

that depends on a compositions of functions involving the embeddings of both the domain and co domain
space. In section 4.2 | will use the results of our new version of the Cramer's delta method to construct
an asymptotic behavior forz;é 1.£ With explicit de nition of the corresponding extrinsic covariance
matrix.The result in this section can also be applied to any smoth function between manifolds. In the last

section | express the some asymptotic behaviors for the $pRée

4.1 Cramer's delta method for data on manifolds

Recall that(G; ), a Lie group is a manifold with a group structure and for which the multiplication map
(g;h)! g handtheinverse mag! g !are smooth as maps between manifolds.

We consider the following null hypothesis

Hoi 1.E = 2E (4.1)

Hi: 16 2

follows

Ho: ,f 1= VStHi: & 1£86 (4.2)

For that we will need to know the asymptotic behaviob@)‘.é X1.g; whereX 1.g; X2 are the sample
extrinsic mean estimators corresponding to the two random samples. To address this problem, we are rst

considering an extension of Cramer's delta method, in the context of manifold valued data. An initial
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extension can be found in Patrangenaru et al.(2014)[25]. Here we are interested in a method which applies to
embedding$a : M o ! RNa;a=1;2:LetXq;:::;Xp beiid. random objects oM 5; j,) and assume

E; E are respectively the extrinsic mean, and extrinsic covariance matdx qgee Bhattacharya and
Patrangenaru (2005)). LBt RNt be the set of1-focal points therPj, is the corresponding projection

withPj, :F¢! ji(Mq) RN

THEOREM 4.1.1. (Delta method for embedded manifolds). AsslimeM 1 ! M, is a differentiable

function between manifolds, and I@£;:::;f (%) be orthonormal bases ifi ,. (M ), where 1£ =

g; 28 = F( g): Fora = 1;2, assumedimM 5 = m, with j; andj, as previously de ned. Let

n= tanj, .y (1(Xn) j1( €)' aNm (0; g):

Then
N tan, e o) (2(FXn))  J2(FC ) ! aNm,(0; L)
where . =dF g (dF)T withdF given by

h i
dF =[(dF)ap] = d Fis(ey) ea(Fio( ) ; fora =1;::;mp; andb=1;::;my:

wherej; F j; 1 P, = Fua

Proof. Now recall from Bhattacharya and Patrangenaru (2005)[6] that

2 3
ex(Py,( )T
e=AT A=§ . 5 erE() emy (P2 () (4.3)
eml(le( ))T

where =(D Pj;) (D le)T and is the covariance matrix gfi(X 1) with respect to the standard

basises; :::; ey, of RNz, By the CLT, we have

= (1(Xn) j1( ) ! NN, (0 ):
Let us de ne the following maF = j, F j, % thisisamap fronj1(M1) ! j2(M2) and acts as follows

F1()) = F(P (1)) = j2(F(x));8x 2 M y:
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Note that= Pj, is a smooth function front © RN1tojo(M )  RN2: We can now apply the Cramer's
delta method and get
N (2(F(Xn) j2(FCeN) ! aNn, (05 )

where j, =(D (F Py)) ( D (F Py)T =(Dp,()F)  (Dp, (P

Now assume that, is an open neighborhood Bf( g) in M »; andV; = F 1(\,): AssumeU, RNz2:is

8y 2 Vo, &(ja(y)) = dyja(f2s(y)); s=1;:rima:
Now let e (F(p1));:::;en,(F(p1)) be the value of this adapted frame eld at a poftp;) on
j2(V2) aroundj, F( g) andforp; 2 j3(M 1) RNi: Note thatd (F Pj,)(ep) 2 TF(le( ))jz(M 2),
To ease notation we 1€ Pj, = FpandFi : FC ! jo(M 2); whereF © represent$;-nonfocal set,

and we now have:

¥z h i
d Fia(ep) = d Fio(en) €a(F12( ) ea(Fi2( )) (4.4)

a=1

_ T
j2 —(Z?Pj( yF)  (Dpy(HF)

# 3
2
=4 d Fiz(ep) e€a(j2(F( e))eali2(F( €)) >
a=1 b=1;:N1
2 4 3;
X2
4 d Fia(en) €a(j2(F( e))€ali2(F( E)) >
a=1 b=1;:N;
Note that j, 2 M (N2; N2; R); while 2 M(N1;N1;R):
If we set = jo(F( g)); then the tangential componetan( ) of 2 RNz = T, )i2(M 2)

(T, 1i2(M2))? ; w.r.t the basi®a(Fiz( )) 2 T, )i2(M 2) has the following asymptotic behavior

tan, ..y Fr2(1(Xn) Fi2( ) ! a Nm,(0; sz;E)

tan, ..y (2(FXny))  j2(FCE)) ! aNm,(0; [e) (4.5)
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with
2 3
er(Fra( )T
Fe= L b e (P D (P)T elFia( ) em, (F12( )
&m, (Fizo( )T

sz;E =B BT
2 - 3
e1(Fi2( )) h i

a1 d Fiaen) ea(Fio Dea(Fia( )

yIN1

wereB = :
em, (F12( )"

2
d Fio(e1) e(Fi2( ) i d Fia(en1) e(Fia( )
B = g : 2 (4.6)
d Fio(e1) em,(Fi2( ) =i d Fia(eny)  em,(Fiz( ))
Note thatAT A = I, and
f,e = BAAT AATBT =(BA) g (BA)T;and

2 3
d Fio(er) ei(Fiz( ) i d Fia(emy) ew(Fiz( )
BA = § : z 4.7
d Fio(e1) em,(Fi2( )) i d Fia(ém;) em,(F12( ))
and lettingB A = dF we have our desired result. O

4.2 Asymptotic behavior for Lie group

Fora=1;2letX51; ;Xan, beindependent random samples de ned®m Lie group, from a distri-
butionQ,, with the extrinsic means;.g; 2. and corresponding extrinsic covariance matriceg; 2g:

Letj : G! RN be an embedding. We are interested in the asymptotic behavior of
! N .
tanj( Z;é 1E) J (X 2:E X l;E) J ( z;é l;E)

Recall that the magg:;g2) ! 01 @, forgi; g 2 G is a smooth map frone G ! G . Theorem
4.2.1 below, focuses on a more general case involving manifdldsndN along with their corresponding

embedding::M! RNtandj,:N! RN2 and corresponding chord distancgsand j,:
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THEOREM 4.2.1. LetM andN be respectivelym-dimensional andh-dimensional smooth manifolds
with embeddingg; : M! RNtandj,:N! RN2 LetG:M M!IN be a smooth function between
manifolds. Fora = 1;2 Ietf{a); ;f,(Tf‘) be orthonormal basis i ,. (M) where g are extrinsic

means of 1-nonfocal probability distributiorQ, on M with corresponding extrinsic covariance matrices

aE andX 4e are their respective extrinsic sample means.

(i) Letn = ny+ ny, if Ot 1 asny!1 ,andfora=1;2we have the following asymptotic behavior,

na” tan;,( .e) 11(Xag) j1( aE) 1N m(0; ae)

Then
' ane o, iPXueiX2e) PP e 28) !N 2O j(?;E); (4.8)
@) 1o Om (2 , ,
where 1E = : 1 andj;” :M M! M) ja(M).
' Om 17— 2E
(i) Let(gi;  ;0n) be anorthonormal basis ifig( .. ; , )N, if the resultin(i) holds we have

N2 tan,6( 1e: 2y 2 GXueiXze)  12(G( 1e: 2e) !N (0 Sg)  (4.9)

with
S = T (6D) 1e(@GM) + 1 (dG?) se(dGP)T (4.10)

anddGY) = d ,. ,G(&) e(G( 1; 2); dG¥) = d ,. ,G(en,+) €(G( 1; 2) fora=1;:5n
andb=1;:;m AndG=j, G j, Py ji*(P):

Proof. For part(i), it follows from Bhattacharya and Patrangenaru (2005) [6] that

7 PLiXa) Pula) ! aNn O L) (1)

where, fora=1;2 ,=(D ,Pj,) a(D ,Pj,)T and 4 is the covariance matrix for the random vector
j1(Xa1) 2 j1(M): And the projectiorP;, : F¢! j1(M ) whereF is the set of 1-focal points. Since

ni=n! asn; !'1 it then follows that

n'Z P, PLG(X12:i(X21)) P, P 1 2) ! aNang (0 ?) (4.12)

1
0 ! 1ON1 since the samples are independents.
N1 T 2
Recall that from Bhattacharya and Patrangenaru (2005) [6] , tha ferl;2 . are the extrinsic

with 7=
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orthonormal frame elds around,.g : For each of these local frame elds there is a corresponding adapted
frame eld (e(la)(le( a));:::;eE\,""z(le( a)) aroundP;, ( a) = j1( a) (for ade nition see section (2.2)).
Now from the two local frame elds we have above, we can construct the following local frame eld in

M M around the poin 1g; 2£);

[f1(x1;%2); 00 Fm (X1 X2); Fmer (X1:X2)5 205 Fam (X1 X2)]
1 ) 2 i
FO ) (x2) s T0x); (x2) ;5 )i fPx2) i (x)ifP(xa) (4.13)

where (x) is the zero section of,U with U 2 M andU contains o¢ fora=1;2:
For ease of notation we I¢tbe the embedding jf) M M! ji(M)  j1(M) then we get, for
the local frame eld in equation (4.13) on an open subséfloM  containing( 1.£; 2:), the following

vectors inRN1  RN:

h
d et Px)d ,eial (x2) i d e aF P xa)id e ial (x2)
|
doein (x)id e 1P x2) s doeia (x)id e 1@ (x2) (4.14)

whered . j1( (Xa)) is the zero section df; , ;j 1(U) which corresponds to the zero vectoRf L:

It follows that the expression in (4.14) represents a set of orthonormal vectgféin RN and they are
represented below as follow;

" . # . # " . # " # "
d 1P x)) - d 1P Ld i1 (ER ) . On; On,

On, ’ On, On, U d L 1i(FP () T d L ia(FR (x2)

local frame eld on an open neighborhottd  R?N* containing(j1( 1:e);j1( 2:£)) such thaB (x1;xz) 2
()
&(j(Xy;x2)=d LE 2;Ej (fr(X1;x2)); forr =1;::5m (4.15)

and

eny+r(J (X1 X2)) = d o L) (Fmser (X2 x2)); forr =55m (4.16)
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Note that these vectors are orthonormal to each other by results of equation (4.14). Since the other elements

&P (M) &P (M)t 8 (P (M) enys1 (P (M) 111 én,+m (Pj (M) are represented below as follow;

! L # " L # " ) # " # " #
e (P, ( 1) ; &’ (P, ( 1) e e (P, ( 1) @) On @) Ons
ONl 0N1 ON1 el (le( 2)) €m (le( 2)):
(4.17)
Then
d,; ,Pj()=(d ,Pj,(e);0n,) 2 Tp,( 4; i (M;M); for b=1; ;N
and

dy; ,Pj(eny+b) = (0N d ,Py(8) 2 Tp (4 I (M M); for b=1; Ny

Note that
(d ,Pj.(ep);0n,;) €a(Pij(")=0
fora= m+1; ;2N7 andb=1; 'm

(On,:d ;P (&) €a(Pj(") =0

a=N;+m+1; :2Nianda=1;::;;N;andb=1; 'm

It then follow that the tangential component oP; (j (X1.1);j (X21)) Pj( 1; 2) 2 RNt with re-

ing asymptotic behavior;

N tanp vy P (X11):) (X21)  Pi( 13 2) ! o Nom(Ozm; j(?;E); (4.18)

where
2 ?
j(l); — [A(Z)] f A(Z)
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whereA@ isa2N; 2m matrix given by;

1
e’ (Pi1( 1) e (PL( 1) | O On,
A® = B j K @19
On, oy 2(PL( 2) e (Pi1( 2))
A@ = A | A
And we have
® _ * 1 Om (4.20)
ET Om 2 2e '
For part(ii ), we will rely on colorblue Theorem (4.1.1) with (X1;X2);:::; fom(X1; X2) de ned in (4.13),

as our orthonormal basis iy , .. ,.)(M ?) and its corresponding embeddingjis M 2 | R?N1: We
willalso let(g1;  ;0n) be an orthonormal basis g . ; ,.)(N) with embedding, : N ! RN2 and

(e(G( 1; 2)); ;en(G( 1; 2))) is adapted to the embeddipgonN and is such that;
&(G( 1 2)) = dyja(ts); withy = G( 1e; 2e); ands=1;um; with G=j, G j, '(Py,) j; '(P},)
With our result in par{i) we now appeal to the Theorem and we get the following asymptotic behavior;
N2 tan; ,o( 1e: 4y 2 G(X1eiX2e)  §2(G( 1e; 26)) !N a0 Si)
and S =(B?A@) @ (B’A@)T withB?A@ =[BWA; jB@Az] and for
G=j2 G j1'(P) J1'(P):F® F 1 jao(N)

whereF ¢ is the set ofji-nonfocal points. Let;:::; &y, be the canonical basis &2N1, And for

e1(p2); i en(p2), for p2 2 j2(Va):

2 3
d-G(81) e(G(") = dG(em) e(G("))
B(”A1=§ :
drG(81) e (G(") =i diG(em) en(G(M))
and 2 3
drG(en,+1)  e(G(M) i diG(ny+m)  €(G(M))
B@A, = § : (4.21)
drG(en,+1) e (G(Y)) it diG(ny+m)  en(G(M))
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LettingdG® = BMWA; anddG@ = B@ A, we have

S = 2(dGW) 1g(dGD)T + %(dG@)) 2£(dG?)T (4.22)

]2

O]

DEFINITION 4.2.1. The matrix sz;E given in(4.22)is the extrinsic covariance matrix of the-nonfocal

THEOREM 4.2.2. Fora = 1;2, let X 5:1; ; Xan, be independent random samples de ned@ran
m-dimensional Lie group, from a distributio@,, with the extrinsic meansi.e; 2. and corresponding
extrinsic covariance matrices;.g; 2e and respective extrinsic sample medn.e and X . Letj" :
G ! RN bean embedding oG and fora = 1;2 Ietfia); ;fr(na) be orthonormal basis i . (G):
Furthermore forn = nq; + no, if ”n—l ! asng ! 1 : Letg; ;Om be an orthonormal basis in

T 1+ _(G) we have the following
2:E 1;E

=, N7 l N7
n'?tan, oy 1 Xue) (e 1e) ! aNmOm: &) (4.23)

( 2;é
wereH : G G!G andis given bH (Yz;é;flf) = Yz;é X 1.g; then we have,
1 1
g = = (dH®) e (AHO)T + -=—(dH®) 1 (dH®)T (4.24)
where
dHW = dHY) = diH(e) ea(B ()
dH® = dHE) = diA(enen) &(R(M) ; forab=1;:5m
where f H '~ Py [ XPp):FCF ¢l f(M):
Proof. Recall that forX1.1; ; X1:n, independent random samples de ned Gnwe have the following
asymptotic behavior
tany oy FXze) I 1e) ! aNmOm; 1€) (4.25)
and for the other independent random sampies; ; ; X2:n, We have, after applying Theorem (4.1.1),

the following asymptotic behavior;

- 1
tanj"( o8 JA(XZ;E) JA( 2;]|§) ' ¢ Nm(Om; 2;E) (4.26)
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2E — (di) 2e (d|)T

and
2 3
(d,~ Pi(er)) e~ Pi( 2) =i (d,~ Pj(em)) e~ Pi( 2)
dl = :
(d,~ Pi(er)) em(~ Pi( 2) = (d,~ Pj(em)) em(~ Pj( 2)
Not that fora = 1;2 4 is the mean of (Qa) and wherd' f 1 =~ and the new covariance matrix

Note thatW, is an open neighborhood of 2.g) = 2;|15 andV, = 1(W,) is the open neighborhood
of 2. on which the local frame eldf {2); ::::;f,%z)) is de ned. Furthermore, for points; 2 {'(V4); and

P2 2 1(Va): with (p2) 2 [(W>), we have
e (p); el (py)
e?p2); e (Hp2)

respectively the adapted frame eld aroutd 1. ) andj'( 2;é):

We then get the following combined asymptotic behavior;

= v l.v . . (2
nlztanj‘(z)( SLe) j\(z)(xz;val;E) JA(Z)( 2;|151 LE) N om (0; (E))

e 0
where (EZ) = O;’E %ml;E
Here, (EZ) is the extrinsic covariance matrix with respect to the local framefelg.; X1); i Fom (Y25 X1)
around( ,g; 1e) 2G G :And (8x1({P2); Pr): &2(H(P2); Pa);: 1 €an (H(P2); p)) is the adapted frame
eld around (J'( 2;é);f‘( 1:£)): And now forPJA =~ PJA with @1;::; 8y ; :ii; @y the canonical basis iR?N
we have,

d,; Py Pp(€)=(d,~ Pj(e);0n)=(d L (F(y2)); On) 2 TP]A Py ( 1@ (G G);

2;E
and

d,; Py Pp(eui+n) = (On;id Pp(en) 2 TPJA Py ( @M M ); for b=1; ;N
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Ande,; b=1; ;N representthe canonical basis R : These tangentvectorsTr,1>r Py( 2 1)j‘(z)(M M)
are linear combinations of the vectors

&Py Pp( 2 a)iiiniém(Py Pp(2r a))ienaa(Pr PpC2s a))iiitiénam(Pr Pp( 2 1)
Now we may use the results from péiit) of Theorem (4.2.1). Le;;  ; gm be an orthonormal basis in
T : . (G andalocal frame el (B (M);  ;en (B (7)) adapted to the embeddifigith

e )=d | fe) s=1; :m

We have the following asymptotic behavior,

= o 1 <o
n*= tan; oy 1K Xue) (26 1) ! aNmOm; £) (4.27)

1
( 2;E

H= 2(@HO) Le@HO)T+ %(dH@)) 1e (AH@)T (4.28)

Andfor? = H f 1~ P) [ *P):FC¢F ¢l f(M):

dH® = dH{) = diA(e) ea(B ()

dH®@ = dH;;zg drHF (Bn,+p) (P (M) ; forab=1;:;m

Recall the following hypothesis testing problem,
Ho: 2;|15 1E= VS:Hy: 2;% 1 6
we get the following corollary.

COROLLARY 4.2.1. Under the assumptions of Theorem 4.2.2 and also assuming(tkat;) for a =
1,2 have nite second order moments and the extrinsic covariance matriggs are nonsingular, then
for n = ny + ny large enough the sample extrinsic covariance matri€gg.,, are nonsingular (with

probability converging to one) and

(a) The statistics

= o1 o :
kS P tan () | Xpe Xze () KA

SN

(4.29)

1=2 oo 1 a . 2 L 2
nkS 4 tanjz(fz;é o) J Xag Xo2E ji() k4 n (4.30)
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(b) and a con dence region for 2;,15 1.e of asymptotic level is given by
(Gl =] HUd),
whereU? = f 2j(0): nkS;Hl:2 tan j Yz;é X 2 k> 2, ¢
Another such con dence region can also be given by
(i)DAT = (V") where

Vo' = f 2j(0):nks, 7 ta Xot Xag Kk 2, g

nj(fz;é X2E) J
whereSy = & (dHE) Goe (AHE)T + L (dHP)G e (HEP)T and

dHE = dg (&) ea(H (Ry))
dH® = dkflq(éNﬁb) ea(ﬁ(*f))

Fora;b=1;:;mand®y = j(X2);j(X1)

4.3 3D real projective spaceRP3

For[X,]; kX;k=1; r =1;:::;n; arandom sample from a VW-nonfocal probability measgren RP3
let £ be the VW mean anfK g] its VW sample mean with the corresponding extrinsic covariance matrix

e . We have the following asymptotic behavior
tanj"( eh JA([YE] l) i\( El) ' 4 Nm(Om; )

where ¢ =(dl) g (d)T anddlap = (d ~ Pj(en) e&(~ Pj( ) a;b=1;2;3:And isthe inverse
map of the Lie groufRP 3:

PROPOSITION 4.3.1. AssumgX,]; kX k =1; r =1;::;n; is a random sample from a VW-nonfocal
probability measureQ on G = RP?3 a 3-dimensional Lie group. Also let: RP3 ! RP2 be the inverse
map on that manifold. The sample covariance maBix(j; X ), which is the consistent estimator o,
has entries given by;

X
Ge(j;X )ap=n 1( 4 a) 2( 4 b) 2 (Mg X¢)(mp X¢)(my Xr)2 (4.31)

r

. P o .
where 5; a=1;:;4are eigenvaluesd = n 1 le XrXrT in increasing order andang = 1;:::;4; are

corresponding linearly independent unit eigenvectors.
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Proof. Note that sincg ([X]) is a consistent estimator ofthe mean of ([X1]) 2 S(4;R): Also for the
orthonormal frame eld(e1(P; ( ));ex(P;( ));e3(P;( ))) on a subset oRP 3 with Pi()=j(Xg)we
have that fora = 1;2;3; ea(Pj(j ([X])) is a consistent estimator eh(P;( )). Similarly, dj([T])Pj is a
consistent estimator af P; .

For the orthonormal frame el@ei(~ Pj( ));e(~ Pj( ));es(~ P;j( ))) we also have the corresponding
consistent estimatafer(~ Pj(j ([X]):e(~ P;j(([X])) e~ P GIXD)): And d ~ P; has the

following consistent estimatat ry~ P

Now recall that

g=(dl) g(d)’

(dDap=d ~ Pj(en) e~ Pj())

fora;b=1;2;3: And ¢ is the extrinsic covariance matrix. Lp{{Xe]) = P;(j ([X])) then we would
like to rst investigate the case for whigH[X]) = D be a diagonal matrix. If this matrix is diagonal we get
[m4] = [e4] = [ X g] and we get the consistent estimator ¢f denotedGe (j; X ) and with entries given by
Ge(iX)ab=1n (4 a) (a4 b % XX P(X{H? (4.32)
r
where 4; a = 1;::;4 are eigenvalues & = n 1P le XrXrT in increasing order anthy = 1;:::; 4,
are corresponding linearly independent unit eigenvectors. We can now express our consistent estimator
Gg (j; X ) as follow

Ge(i;X)=(d )Ge(i;X)(d )T

whered is a matrix with entries

d ap=dp~ Pj (en) €a(~ Pj (D))
for a;b = 1;2;3: S(4;R) has the orthonormal basis; b  a; where, fora < b; the matrixF2 has all
entries zeros except for those in the posititad); (b; 8 that are equal t&8 72; alsoF2 = j ([e,]): Recall
from proposition 4.2 in Battacharya and Patrangenaru 2005, that we have
doPj(F)=0;8b a<4

=) do~ P;(FY) = dp (py~dpPj(F))=0;8b a<4
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Note thaX £] = [ m4] = [ e4] and the other unit eigenvectorsdf= j ([X]) arem, = e;; 8a=1;2;3:

Sincej ([Xe] ) =~ P;(D), we want to evaluatdp~ P; (FH2 1. p; (D)) (G): But given that
[Xe] *=[es] "=[es] =[es] =[XE]
we then have the following choice of orthonormal frame
ea(~ P;(D)) = €a(j (Xe] )= dyg_j(€a) = dieyi (€a)
We will now compute the remainingtangent vectors ifip, )] (RP?3) of interest, namely;
do ~ Pj(ea) = dp ~ Pj(FJ); fora =1;2;3
And fora = 1; 2; 3; direct computations
ay — d a
d~ Pj(Fy) = at Pj(D + tFyY)
t=0

will yield

db~ (e)=( 1 4) ‘eu(P;(D))
do ~ (&2)=( 2 4) 'e(P;(D))

do~ (e3)=( 3 4) ‘e(Pj(D))
we then have the following
2 1 3
(1 4) 0 0
d =4 0 (2 a1? 0o
0 0 (3 a1t

Hence, the matrixg (j; X ) has entries;
- 1 2 s X by 4y2
Ge(iX)ap=n "(4 a) (a4 v XXX )
O

Fora=1;2let[Xa1]; ;[Xan,] be independent random samples de nedr? from j -nonfocal
distributionsQ,; with extrinsic means 5. and extrinsic covariance matrices.g . Also letn = n1 + ny

such than;=n! asny !'1 a=1;2 Then using the result of Lemm&2:2 we have for, : RP31
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RP3 the inverse map and : RP3 RP3! RP3 the Lie group multiplication, the following asymptotic

behavior.

_ L1 o :
nlztanj(zé y 1X2g X1e) i 18) ! dNmOm; £) (4.33)

1E
where forH ( z;é; 1e) = ( 2;% LE);
1 1
g = = (@HY) o (@HD)T+ = (dH®) 1 (@H®)T (4.34)

PROPOSITION4.3.2.Fora=1; 2, letf[X ra]g{‘aa:1 ; kXy,k =1; beindependent random samples fjom
nonfocal probability measure3, onRP3: Then the consistent estimator of is denoted (j; X 1.1; X 2:1)
with extrinsic means and covariance respectively: and 5.g: Also let RP3 1 RP3 be the inverse
map on that manifold and denote the Lie group multiplication dRP3: The sample covariance matrix

Ge (X), which is the consistent estimator of , has entries given by;

GEH (X 115 X2:1)ab =

X2
N 24 2a) (24 20) 3 (M2a X&) (M2 X5 ) (M2a X3,)?
r=1
+
X1
N4 1) 2(1a 1) 2 (Mua X§)(Mip X2 (Mg X )2 (4.35)
r=1
. XS . . -
where fors = 1;2and sq; a=1;::;4are eigenvalues i s = ng?! XS;rXST;, in increasing order and
r=1

Ms.a = 1;:::;4; are corresponding linearly independent unit eigenvectors.

Proof. And for 1. and , are the extrinsic covariance matricesXf;; andX ;1 respectively. With-
out loss of generality, we now assume thgX a.e]) = P (j ([Xa:1])) is a diagonal matrix, and lets take
j ([Xa1]) = Da to be a diagonal matrix as well.

We then have the consistent estimators of ¢ and 1.¢ denoted G, g (j; X 2:1) andGye (j; X 1;1) and

with entries given by .

X2
Goe(iiX 20)ap= N (24 22) 2(24 20) 2 X3 X2y (X 2,)?
r=1
X1
Gre(iX 10)ab= N1 (14 1a) (e 1p) b OXE XD (XE)? (4.36)
r=1
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. P o )
where fors = 1;2and s.5; a = 1;:;;4 are eigenvalues d{s = ng 1 Pil XS;,XST;r in increasing order
andmsg.a = 1;:::;4; are corresponding linearly independent unit eigenvectors.

Now the extrinsic covariance matrix
Ho Loy Wy 4 1 @ @\T
g = —(dHY) Lg(dHY)" + ﬁ(dH ) 1e(dH) (4.37)

has the following consistent estimator

. 1 . 1 .
Ge' (j; X 1:1;X21) = s (d @) G (; X 21)(d D) + Fl(d @YGre(; X 1a)(d D)7 (4.38)
whered ) andd @ are matrices with entries given by

d &= dip,o)A (&) el (D2D))
d &= do,p0,A(en,+n) €a(B(D2;D1) ; foraib=1;2;3

whereD = (Dy;D31) and fora = 1;2 D, 2 S(4;R). Recall thatS(4; R) has the orthonormal basis
F2 b a;where, fora < b; the matrixF 2 has all entries zeros except for those in the posit{ank); (b; a)
that are equal t&@ 72; alsoF2 = j ([ea]): We have tha® 2 S(4;R) S(4;R) and a convenient basis for
such a manifold i§F2,; 04 4) for a;b=1;::4 and(04 4; FL,) For the entries ofl ) we consider the

following basis eIementinb;a; 04 4) and the following elemerd(Dz;Dl)ﬁ((sz;a; 04 4)) where,
R((F2ai0 a) =] H ( HP( P(FLa);P;(0a ) (4.39)
We rst look at the following derivatives

d
o0 (F24i0a 4)) = G H(D2+ tF34D1)
t=0

=) %ﬁ(D2+th~1;4;D1) . =( 21 24) ‘degie)=( 21 4) te(P())
t=

and

d
dp,:01) (04 4iF1y) = alq(Dz; D1+ tF{y) (4.40)
t=0

=( 14 11) “degi€)=( 14 11) ‘ea(H(D2D1)
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2 ) 3
(24 21) 0 0
dM=4 0 (24 221 0 >
2 . 0 ( 2;4 2;3) 13
(14 11) 0 0
d@=4 0 (14 121t 0 >
0 0 (1a 131
h | 1 X2 b 2
(d D) Goe(iXan)(d D) =np(2a 22) (2a 20) ° XEXZ(X3)
' r=1
h i X1
(d (2)) Gie(j; X 1;1)(d (2))T a = nll( 1,4 1a) 2( 1;4 1b) 2 Xfl;rxi);r(xf;r)2

b r=1

O]

PROPOSITION4.3.3.Fora=1; 2, letf[X ra]g{‘:z1 ; kXy,k =1; beindependent random samples fjom
nonfocal probability measure3, onRP 3: Then the consistent estimator of isdenotedsg (j; X 1.1; X 2;1):
(i

- . - o 1 o .
nlzGE(J;X 1;1;X2;1) 12tanj( Zé 1E) J(XZ;E Xl;E) J( z;é l;E) ! de(Omilm)
(4.41)

so that

(ii)
i : 1=2 Ll i 1 2
N Ge(iXuuXzy) “tany 1) 1(X2e Xue) J( 28 uE) (4.42)

converges weakly to?, and the
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CHAPTER 5

EXTRINSIC ANTI-MEAN

In this chapter Icontinue to focus on extrinsic analysis, which is the statistical analysis performed relative
to ; achord distance oN induced by the Euclidean distanceR\ via an embedding : M! RN:

with an emphasis on compact object spaces. Most of the results in this section are due to the author of
this dissertation, were presented at the second Conference of the International Society of Nonparametric
Statistics, in Cadiz, Spain in 2015, and appeared in the peer reviewed publication [27]. Recall that the
expected square distance from the random objet an arbitrary poinp de nes what we call the FErchet

function associated witK and in extrinsic analysis it is given by;
z
F(p) = y ki () (P)KGQ(dx); (5.1)

whereQ = Py is the probability measure oM ; associated wittX: In this case the Echet mean set

is called theextrinsic mean sefsee Bhattacharya and Patrangenaru (2003)[5]), and if we have a unique
point in the extrinsic mean set &f; this point is theextrinsic mearof X; and is labeled g (X) or simply

mean (set) of the empirical distributid, = % P L x,: Recall that the existence of an extrinsic mean
is tied to the existence of a unique projection of the meanf j (Q) from the ambient spacRN onto

the spacg (M ) RN: In the section 5.1 | introduce a new location parameter which is viewed as the
(unique) maximizer of the Echet function given in (5.1) and is referred to as élx&insic anti-mean(

see Patrangenaru and Ellingson (2015)[21]) and | also express its correspsadiiplig anti-meanmiewed

as the maximizer of the Echet function associated with the empirical distribut@: In section 5.2 |

give explicit formulas of the Veronesee-Whitney (VW) anti-mearRH". The following section involves
inference problems for extrinsic means and anti-means oB-ih@rojective shape spa¢&P 3)9: Section

5.4 using the results from the previous section, | perform a two sample test on a set of data consisting of

digital images of owers.
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5.1 Geometric description of the extrinsic anti-mean

We assume thdM ; ) is a compact metric space, therefore thedhet function is bounded, and its extreme

values are attained at points bh: We are now introducing aew location parameterfor X:

DEFINITION 5.1.1. The set of maximizers of the&ahet function, is called thextrinsic anti-mean setn
case the extrinsic anti-mean set has one point only, that point is cakethsic anti-mean of X; and is

labeled e (Q), or simply g; whenj is known.

Let(M ; ;) be acompact metric space, wheyds the chord distance via the embeddjngM ! RN ;

that is
1P p2) = Ki(p)  §(P2)k = o (P1);] (P2)); 8(p1ip2) 2 M Z;

where ¢ is the Euclidean distance RN :

REMARK 5.1.1. Recall that a pointy 2 RN for which there is a unique poimi 2 M satisfying the
equality,

oy:ii (M) = inf ky j(Oko= o(yij (p)
is calledj -nonfocal. A point which is ngt-nonfocal is said to bg-focal. And ify is aj -nonfocal point, its

projection onj (M ) is the unique point(p) = Pj(y) 2 j (M ) with o(y;j (M )) = o(y;j (p)):
With this in mind we now have the following de nition.

DEFINITION 5.1.2 (j -nonfocal) (a) Apointy 2 RN for which there is a unique poipt2 M satisfying
the equality,

supky j(x)ko=o(y;j(p)) (5.2)
X2M
is called j -nonfocal. A point which is noj -nonfocal is said to bg -focal.

(b) Ifyisanj -nonfocal point, its farthest projection gifM ) is the unique point = j(p) = Pg; (y) 2
j (M) with
supky j(X)ko=o(y;](p):
x2M

For example if we consider the unit sph&® in R™*1 | with the embedding given by the inclusion map
j :S™1 RM*l thenthe onlyj -focal point isOy-+1 ; the center of this sphere; this point also happens to

be the onlyj -focal point ofS™:
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DEFINITION 5.1.3. A probability distributionQ onM is said to bej -nonfocal if the mean ofj (Q) is

j -nonfocal.

The gures below illustrate the extrinsic mean and anti-mean of distributions on a one dimensional topo-
logical manifoldM where the distributions ajenonfocal and alsg -nonfocal. Note that in the smooth

case, given a family of distributions, for which the mean vector in the ambient space, slightly moves in a
direction perpendicular on the tangent sppte:); the extrinsic mean stays the same, while the extrinsic
anti-mean may change; this shows that the extrinsic anti-mean is a new location parameter, that detects cer-
tain global aspects of a distribution, that are not captured by the extrinsic mean. On the second line of Figure
5.1, one displays the stickiness phenomenon in case of both the extrinsic mean and anti-mean. Recall that
a sticky family of distributions is a family of distributions for which any small perturbation does not affect

the location of the Fachet mean; this phenomenon may occurs in case #ehEr mean happens to be a

singular point in both extrinsic analysis ( see [9]) and intrinsic analysis (see [13]).

Figure 5.1: Extrinsic mean and extrinsic anti-mean on a 1-dimensional topological manifold (up-
per left: regular mean and anti-mean, upper right: regular mean and sticky anti-mean, lower left:
sticky mean and regular anti-mean, lower right : sticky mean and anti-mean
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THEOREM 5.1.1. Let be the mean vector {Q) in RN : Then the following hold true:
(i) The extrinsic anti-mean setis the set of all poxt M suchthasupy,y k  j(p)ko = of;] (X)):

(i) If e (Q) exists, then is j -nonfocaland e (Q) = j 1(P|:;j( ):
Proof. For part(i), we rst rewrite the following expression;
Ki(p) i(0ks=Ki(p) k5 2hj(p) JOQi+k 0K (5.3)

Since the manifold is compact,exists, and from the de nition of the mean vector we have

z z
y j (x) Q(dx) = i yi (Q)(dy) = (5.4)
From equations (5.4), (5.3) it follows that
Z
F() =k ki+ . k  ykgi (Q)(dy) (5.5)
Then, from (5.5), 7
supF(p)=sup ki(p) k§+  k  yk3j(Q)(dy) (5.6)
p2M p2M RN

This then implies that the anti-mean set is the set of peirgdM with the following property;
supkj(p) ko= kj(x) ko (5.7)
p2M

For Part(ii) if ;g (Q) exists, then e (Q) is the unique poink 2 M ; for which equation (5.7) holds
true, which implies that is j -nonfocaland ( e (Q)) = Pr;j ( ): O

DEFINITION 5.1.4. Letxjy;::::; Xn be random observations from a distributi@hon a compact metric
space(M ; ); then their extrinsic sample anti-mean set, is the set of maximizers oféehdtrfunctior,
P
associated with the empirical distributid®, = % . x;; which is given by
X .
Fa@= = K(xi) Pk (5.8)

n .
i=1

If Qn has an extrinsic anti-mean, its extrinsic anti-mean is called extrinsic sample anti-mean, and it is

denotedaX e :

THEOREMJ5.1.2. Assum&) is an j -nonfocal probability measure on the manifdfid andX = fXq;:::5 Xnhg0

are i.i.d random objects fror®: Then,
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(@) Ifj(X)is j -nonfocal, then the extrinsic sample anti-mean is giveaXy:= = | 1(P|:;j GoxXN):

(b) Theset F )¢of j -nonfocal points is a generic subset®} , and if i.e (Q) exists, then the extrinsic
sample anti-meaaX e is a consistent estimator of e (Q):

Proof. (Sketch). (a) Sincg(X) is j -nonfocal the result follows from Theorem 5.1.1, applied to the em-
pirical Qn, thereforg (aXje ) = Pg; (j (X)):

(b) All the assumptions of the SLLN are satis ed, sirfjd® ) is also compact, therefore the sample mean
estimatorj (X) is a strong consistent estimator ofwhich implies that for any > 0; and for any > 0;
there is sample size( ;" ): such thatP(kj (X) k> ) ";8n>n(;"):Bytaking a small enough

> 0; and using a continuity argument fBe;; , the result follows. O

REMARK 5.1.2. A CLT for extrinsic sample anti-means is given in a paper | have coauthored (see Pa-

trangenaru et. al.(2016)[22]).

5.2 VW anti-means onRP™

In this section we consider the case of a probability mea@uua the real projective spad¢ = RP™;
which is the set of axesX-dimensional linear subspaces )RT*: Here the points iR™*! are regarded
as(m + 1) 1 vectors. RP™ can be identi ed with the quotient spa@&"=fx; xg; it is a compact
homogeneous space, with the gr&P(m + 1) acting transitively ofRP™; j); where the distancg on
RP™ is induced by the chord distance on the spH&Pe There are in nitely many embeddings &P ™
in a Euclidean space, however for the purpose of two sample mean or two sample anti-mean testing, it is
preferred to use an embeddinthat is compatible with two transitive group actionsS®®(m+1) onRP™;

respectively o (RP™); that is
(T XD=T j(x]); 8T 2S0O(m+1);8[x]2 RP™; whereT [x]=[Tx]: (5.9)

Such an embedding is said to bquivariant(see Kent (1992)[17], where the equivariance was used in
the context of a VW embedding of a planar direct similarity shape space). For computational purposes, the
equivariant embedding &P ™ that was used so far in the axial data analysis literature is the VW embedding

j :RP™ 1 S, (m+1;R); that associates to an axis the matrix of the orthogonal projection on this axis (

see Patrangenaru and Ellingson(2015)[21] and references therein ):

J(IXD = xx T kxk = 1; (5.10)
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HereS, (m + 1;R) is the set of nonnegative de nite symmet(im + 1) (m + 1) matrices, and in this
case

T A=TATT; 8T2SOm+1);8A2S,(m+1;R) (5.11)

REMARK 5.2.1. LetN = % m + 1)(m + 2): The spaceE = (S(m + 1;R); h;ip) is anN -dimensional
Euclidean space with the scalar product givenhdy Big = Tr(AB); where A; B 2 S(m + 1;R):
The associated norik ko and Euclidean distancey are given by respectively BCk3 = hC; Cig and

o(A;B)= kA Bkg; 8C;A;B 2 S(m+1;R):

With the notation in Remark 5.2.1 we have

Z

F(p) = ki(p) K+ y k  J([xDk§ Q(dIx]); (5.12)
andF ([p]) is maximized ( minimized ) if and only Kj ([p]) k3 is maximized ( minimized ) as a function
of [p] 2 RP™M:
From Patrangenaru and Ellingson (2015, Chapter 4)[21] and de nitions therein, recall that the extrinsic
mean je (Q) of aj - nonfocal probability measui® onM w.r.t. an embedding, when it exists, is given
by e (Q) =] 1(Pj( )) where is the mean of (Q): In the particular case whedd = RP™; andj
is the VW embedding®; is the projection o (RP™) andP; : Sy (m+1;R)nF ! j(RP™); whereF is
the set ofj -focal points ofjf (RP™) in S; (m + 1; R): For the VW embedding; is the set of matrices in
S+ (m + 1;R) whose largest eigenvalues are of multiplicity at least 2. The proje&joassigns to each
nonnegative de nite symmetric matri with highest eigenvalue of multiplicity; the matrixmm?T ; where
m is a unit eigenvector oA corresponding to its largest eigenvalue.
Furthermore, the VW mean of a random object 2 RP™; kX T X k = 1 is given by e (Q)=[ (m+1)]
and( (a); (a)); a=1;:;m+1 are eigenvalues and unit eigenvectors pairs (in increasing order of eigen-

values) of the mean = E (XX T): Similarly, the VW sample mean is given by = [g(m + 1)] where

=]
values) of the sample meah = % L xixiT associated with the samp{gxi]);-t5; on RP™; where
xIxi =1;8 = In:
Based on (5.12), we get similar results in the case of anonfocal probability measur@ :

PROPOSITION 5.2.1. (i) The set ofV W -nonfocal points inS; (m + 1;R); is the set of matrices in
S: (m + 1; R) whose smallest eigenvalue has multiplicity 1.
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(i) The projectionPg; : (F )¢! j(RP™) assigns to each nonnegative de nite symmetric mahrjx
of rank 1, with a smallest eigenvalue of multiplicity 1, the majt(ix ]), wherek k = 1 and is an
eigenvector oA corresponding to that eigenvalue.

We now have the following;

PROPOSITION 5.2.2. LetQ be a distribution orRP™:

(a) The VW-antimean set of a random objp¢; X "X = 1 onRP™; is the set of pointp = [v] 2 Vi;
whereV; is the eigenspace corresponding to the smallest eigenvdlijeof E (XX T):

(b) Ifin additionQ = Ppx;is VW -nonfocal, then
Q=] "Pei( D= Q)]

where( (a); (a)),a = 1;:;m+ 1 are eigenvalues in increasing order and the corresponding unit
eigenvectors of = E(XX T):

aXje =] (Prj (1 () = [ 9(D)]

where(d(a); g(a)) are the eigenvalues in increasing order and the corresponding unit eigenvectors of

1 .
J = o xixiT;WherexiTxi =1:8 =1;n:
i=1

5.3 Two-sample test for VW means and anti-means projective shapes in 3D

Recall that the spadeé & of projective shapes of 3R-ads inRP3, ([u1]; :::; [uk]); with k > 5, for
which = ([u4];:::;[us]) is a projective frame ilRP2, is homeomorphic to the manifoldRP 3)% with
q= k 5(see Patrangenaru et. al.(2010)[23]). Recall from Section 2.5RtR4thas a natural structure
of Lie group. This multiplicative structure turns tiiBP 3)9 into a product Lie grougG; ) whereG =
(RP3)d (see Crane and Patrangenaru (2011)[7], Patrangenaru et. al. (2014)[25]). For the rest of this section
Grefers to the Lie groupRP 3)9. The VW embeddingq : (RP3)9! (S. (4;R))Y (see Patrangenaru et al.
(2014)[25]), is given by

Ja(xali oo Ixal) = ( (xal)i 2 23) (X)) (5.13)

withj : RP3 ! S, (4;R) the VW embedding given in (6.19), fen = 3 andj is also an equivariant
embedding w.r.t. the grou®: (4; R))%:
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(RP3)4is given by

ia=C 15 5 ai)s (5.14)
where, fors = 1;q; s;j IS the VW mean of the marginal®:
AssumeY,; a = 1;2 are r.0.'s with the associated distributio@s = Py,; a = 1;20nG = (RP3)4:
We now consider the two sample problem for VW means and separately for VW-anti-means for these ran-
dom objects. Note that the asymptotic results leading to nonparametric bootstrap con dence regions for
VW-mean change are presented in Section 2.5. For VW anti-means we will simply use nonpivotal boot-
srap computations, since for the sample VW-antimean@®v) for our data, involve sample covariance

matrices that are degenerate.

5.3.1 Hypothesis testing for VW means

Assume the distribution®,4; a = 1; 2 are in addition VW-nonfocal. We are interested in the hypothesis
testing problem:

Ho! 1j,= 2j4VS-Hal 1j,6 2 (5.15)

which is equivalent to testing the following

Ho: Z;jlq Ljq = 1(Rp3)q VS.Hj ! 2;jlq Liq 6 1(RP3)q (516)
1. Letn = ny + n; be the total sample size, and assuimg, i1 ”n—l ! 2 (0;1). Let' 4 bethe af ne
chart de ned in a neighborhood dfrps)q (see de nition 3.1.1), with ¢(1(rps)ys) = 0: Then, under
Ho
n=2 oY 2 Y ) ! g Nag(Osq i) (5.17)
A\ Tjging jgina/) - d N3g\V3gy g .

Where j, depends linearly on the extrinsic covariance matricgg, of Qa:

2. Assume in addition that fax = 1;2 the support of the distribution of,;; and the VW mean 4,
are included in the domain of the chaig and' 4(Ya;1) has an absolutely continuous component and
nite moment of suf ciently high order. Then the joint distribution

1,
V=n2 oY m,  Yign) (5.18)

Jq:n2

can be approximated by the bootstrap joint distribution of
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) 1
Jq:N2

Y.

Jq?nl)

Vo=l (Y

From Patrangenaru et. al.(2010)[23], recall that given a random sample from a distriQuoioRP™; if
Js;s=1;:::;qare the matriceds = n 1P P XS8(X®)T;andiffora=1;:::;m+1; ds(a) andgs(a)
are the eigenvalues in increasing order and corresponding unit eigenvectgrthei the VW sample mean
Yjq:n IS given by

Yign = (gu(m + 1)]; 113 [gg(m + 1)) : (5.19)

REMARK 5.3.1. Given the high dimensionality, the VW sample covariance matrix is often singular. There-
fore, for nonparametric hypothesis testing, non-pivotal bootstrap is preferred. For details, on testing the ex-
istence of a mean change 3D projective shape, when sample sizes are not equal, using non-pivotal bootstrap,

see Patrangenaru et al. (2014).

5.3.2 Hypothesis testing for VW anti-means

Unlike in the previous subsection, we now assume thaaforl ; 2; Q, are VW-nonfocal. We are now

interested in the hypothesis testing problem:
Ho : Ljg = 2iq VS.Hj : Liq 6 2ig> (5.20)

which is equivalent to testing the following

Ho: Z;jlq Ljq = 1(rp2)a VS.Ha z;jlq Liq 8 1(rP3)a (5.21)
1. Letn = ny + ny be the total sample size, and assuimg,;; "L ! 2 (0;1). Let' 4 bethe afne

n
chart with' ¢(1rpsya) = 034: Then, from Patrangenaru et al. (2016)[26], it follows that urtdigr
N @Y, 5, aYign) ! a Nag(Osq Tjo); (5.22)
for some covariance matrix; , :

2. Assume in addition that faax = 1; 2 the support of the distribution of;.1 and the VW anti-mean
aj, are included in the domain of the charand' (Ya;1) has an absolutely continuous component
and nite moment of suf ciently high order. Then the joint distribution

1
av = nz' 0,(a\(jq;},2 aYgn,) (5.23)

can be approximated by the bootstrap joint distribution of
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- 1=2 . 1
av.=n a(@Y jgn,  AYjgin,)

Now, from Proposition 5.2.2, we get the following result that is used for the computation of the VW sample

anti-means.

PROPOSITION 5.3.1. follows that given a random sample from a distributi@ron RP™; if Jg;s =
1;:::;gare the matriceds = n 1P n XS(X$)T;andiffora=1;:::;m+1;ds(a) andgs(a) are the
eigenvalues in increasing order and corresponding unit eigenvectals; tfien the VW sample anti-mean
aYj,:n is given by

aYjgn = (@)1 [ga()]): (5.24)

5.4 Two sample test for lily owers data

In this section we will test for the existence of 3D mean projective shape change to differentiate between
two lily owers. We will use pairs of pictures of two owers for our study.
Our data sets consist of two samples of digital images. The rst one consist of 11 pairs of pictures of a single

lily ower. The second has 8 pairs of digital images of another lily ower.

Figure 5.2: Flower 1 image sample

We will recover the 3D projective shape of a spakiedd (in our cas& = 13) from the pairs of images,
which will allow us to test for mean 3D projective shape change detection.

Flowers belonging to the genus Lilum have three petals and three petal-like sepals. It may be dif cult to
distinguish the lily petals from the sepals. Here all six are referred tegeds For our analysis we selected

13 anatomic landmarks, 5 of which will be used to construct a projective frame. In order to conduct a proper
analysis we recorded the same labeling of landmarks and kept a constant con guration for both owers.

The tepals where labeled 1 through 6 for both owers. Also thessixnengmale part of the ower) ,were
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Figure 5.3: Flower 2 image sample

labeled 7 through 12 starting with the stamen that is closely related to tepal 1 and continuing in the same
fashion. The landmarks were placed at the tip ofahtherof each of the six stamens and in the center of

the stigmafor thecarpel(the female part).

Figure 5.4: Landmarks for ower 1 and ower 2

For 3D reconstructions df-ads we used the reconstruction algorithm in Ma et al (2005)[19]. The rst 5 of
our 13 landmarks were selected to construct our projective framep each projective point we associated

its projective coordinate with respect to The projective shape of the 3Dad, is then determined by ti&e
projective coordinates of the remaining landmarks of the reconstructed con guration.

We tested for the VW mean change, sin@P2)® has a Lie group structure (Crane and Patrangenaru
(2011)[7]). Two types of VW mean changes were considered: one for cross validation, and the other for
comparing the VW mean shapes of the two owers.

Suppos&):1 andQ; are independent r.0.'s, the hypothesis for their mean change is
.1 =
Ho® 1j,  2is = Ll(reros
Given' , the Log chart on this Lie group,q(1s) = 0 g; we compute the bootstrap distribution

D =" (Y1) * Yigs)
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We fail to rejectH o; if all simultaneous con dence intervals contdinand reject it otherwise. We construct
95% simultaneous nonparametric bootstrap con dence intervals. We will then expect to fail to reject the

null, if we haveO in all of our simultaneous con dence intervals.

5.4.1 Results for comparing the two owers

We will fail to reject our null hypothesis
Ho: & s =1
0. 1;g Zjs — - (RP3)8

if all of our con dence intervals contain the val@e

Figure 5.5: Bootstrap projective shape marginals for lily data

Simultaneous con dence intervals for lily's landmarks 6 to 9

LM6 LM7 LM8 LM9

x

(0:6095141:638759)  (03205150:561915) ( 0:4279790:821540) (0:0550070:876664)

<

( 0:9162540:995679) ( 0:2005140:344619) ( 0:2522810:580393) ( 0:3580600:461555)

N

( 1:5899831.224176) (0:1776870:640489)  (02915300:831977) (0213021 0:883361)

Simultaneous con dence intervals for lily's landmarks 10 to 13

LM10 LM11 LM12 LM13

x

(0:0601180:822957)  (04950500:843121)  (04196250:648722) (0471093 0:874260)

<

( 0:3461210:160780) ( 0:0472730:253993) ( 0:0796620:193945) ( 0:0757510:453817)

N

(0:1983510:795122) (00586590:619450) (00759020:569353) ( 0:1464310:497202)

We notice thaD is does not belong to 13 simultaneous con dence intervals in the table above. We then

can conclude that there is signi cant mean VW projective shape change between the two owers. This
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difference is also visible with the gure of the boxes of the bootstrap projective shape marginals found in
Figure 5.5. The bootstrap projective shape marginals for landmarks 11 and 12 we can also visually reinforce

our choice of rejection of the null hypothesis.

5.4.2 Results for cross-validation of the mean projective shape of the lily ower in second
sample of images

One can show that, as expected, there is no mean VW projective shape change, based on the two samples
with sample sizes respectivetyy = 5 andn, = 6. In the tables below) is contained in all of the

simultaneous intervals. Hence, we fail to reject the null hypothesis at lewd) :05:

Figure 5.6: Bootstrap projective shape marginals for cross validation of lily ower

Simultaneous con dence intervals for lily's landmarks 6 to 9

LM6 LM7 LM8 LM9

( 1:1504410:940686) ( 1:0141471:019635) ( 0:9609721:142165) ( 1:1043601:162658)

<

( 1:2455852:965492) ( 1:4181211:145503) ( 1:2504291:300157) ( 1:0788331:282883)

( 0:9712711:232609) ( 1:6545941:400703) ( 1:4645061:318222) ( 1:6494961:396918)

Simultaneous con dence intervals for lily's landmarks 10 to 13

LM10 LM11 LM12 LM13

( 1:0787651:039589) ( 0.9956221:381674) ( 0.7396631:269416) ( 1:0152201:132021)

<

( 1.1267031:140513) ( 1:2102711:184141) ( 1:3241111:026571) ( 1.6500261:593305)

( 1:0924251:795890) ( 1:2228561:963960) ( 1:1280441:762559) ( 1:0357962:227439)
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5.4.3 Comparing the sample anti-mean for the two lily owers

The Veronese-Whitney (VW) anti-mean is the extrinsic anti-mean associated with the VW embedding
The VW anti-mean changes were considered for comparing the VW anti-mean shapes of the two owers.

Supposd&)1 andQ; are independent r.0.'s, the hypothesis for their mean change are
: 1 -
Ho: 44, 2js = L(rp3)s

Let' be the afne chart on this product of projective spaceélg) = 0g, we compute the bootstrap
distribution,

D ="'g4@@Y jg;lll ayY j,:s)
and construct th85% simultaneous nonparametric bootstrap con dence intervals. We will then expect to

fail to reject the null, if we hav@ in all of our simultaneous con dence intervals.

Figure 5.7: Eight bootstrap projective shape marginals for anti-mean of lily data

Highlighted in blue are the intervals not containidg@ R.
In conclusion there is signi cant anti-mean VW projective shape change between the two owers, showing

that the extrinsic anti-mean is a sensitive parameter for extrinsic analysis.

In this chapter we introduced a new population parameter, the extrinsic anti-mean. This new location param-
eter is based on a projection unlike the one in the extrinsic mean case, where we focus on projghgng
mean of] (Q) in the ambient space) onto the closest (unique) gding) onj (M ); we will instead project

onto the farthest (unique) poifit( g) on the embedded object space . Just as with the extrinsic mean,
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simultaneous con dence intervals for lily's landmarks 6 to 9

LM6 LM7 LM8 LM9
x| ( 102 051)|( 1:41069) | ( 1:14,0:40) | ( 0:87,0:35)
y (0:82;2:18) (0:00;0:96) | ( 0:150:92) | ( 0:09;0:69)
z| ( 0:750:36) | ( 6:93,2:83) | ( 3:07;3:23) | ( 2:45;2:38)
Simultaneous con dence intervals for lily's landmarks 10 to 13
LM10 LM11 LM12 LM13
x| ( 0:61032) | ( 0:87,0.08) | ( 0:990:02) | ( 0:84;, 0:04)
y | ( 0:07,0:51) | ( 0:04,0:59) | (0:06,;0:75) (0:18,0:78)
z|( 303191) | ( 542198) | ( 7:22,241) | ( 491,2:62)

7

8

the extrinsic anti-mean captures important features of a distribution on a compact object space. Certainly

the de nitions and results extend to the general case of arbitré@ghet anti-means.



CHAPTER 6

MANOVA ON MANIFOLDS

In this chapter I revisit MANOVA for comparing the mean vectorgjipopulations. | am extending such
considerations to testing for the equality of extrinsic means fygropulations on a manifoll embedded

in an numerical space. In section 6.1 | introduce a new approach applied to various mean vectors. The main
difference between this approach and classical MANOVA, is that we do not assume that all populations
have a common covariance matrixand also we do not make any distributional assumption, except for the
existence of suf ciently high order moments of tg@opulations. In section 6.2 | extend the work presented

in the previous section to develop a hypothesis testing problem used to compare multiple means on smooth
manifolds, and this test is performed on random samples of various sizes, collected from each gf these
groups. This newly developed MANOVA test is then applied in section 6.3 to populatiBi3 pfojective

shapes.

6.1 Motivations for new MANOVA on manifolds

Fora = 1;::;g; SUPPOSEX 4 Np( a; a);i =1;::ng arep dimensional i.i.d random vectors. To test

if the mean vectors of thg groups are the same, one considers the hypothesis testing problem
Ho: 1= 2=:i= 4= (6.1)
H, : atleast one equation does not hold:

Assuming that the covariance matrix is invertible, by the Central Limit Theorem, for large sample sizes

1
Pha a?(Xa ) Np(Opilp); (6.2)
Na(Xa )T al(xa ) S: (6.3)
However, 4 is always unknown, so in practice, one has to use its unbiased estigatar=1; :::; g:

Na(Xa )'S'(Xa ) 3 (6.4)

_ P
Let us consider the pooled sample méare 3(n1Xq+ i+ ngXg);n= 2 na
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LEMMA 6.1.1. Under the null X is a consistent estimator gf provided”n—a !' 4>0 asn!l ;a=
1550

Proof. Indeed, foranya 2 f 1, 2;:::;gg, sincefla I ;> 0;asn!1 ,andX, is the consistent estimator
of , therefore,

XV p 1+ 2 v+ g = (6.5)
O

THEOREM 6.1.1. The statistic for the hypothesis (6.1)is

S

na(Xa X)'S;'(Xa X) gy (6.6)

a=1
So the rejection region at level c, for this test is

X9
na(Xa X)'S;*(Xa X)> Z(o): (6.7)

a=1
6.2 MANOVA on manifolds

In this section we will focus on the asymptotic behavior of statistics related to means on a mighif@ded

(a=1;2;::;g) of iid random objects oM with common probability measu@,: We denote the extrinsic
mean of thg - nonfocal probability measur@, onM by 5. for ease of notation and because there is
no ambiguity about the embedding used. The corresponding extrinsic sample means areXwyittéor

a=1; ;g:From this point on, we will assume that all the distributionsjarenfocal.

6.2.1 Hypothesis testing and ? statistic

sureQ, witha = 1;2;:::; g. We are interested in comparing multiple extrinsic means.

We would like to develop a test similar to (6.1) designed to test the difference betwegnettiansic

means. One challenge that presents itself at the early stage is a proper de nition of a pooled mean for
random objects on p-dimensional manifoldM : Linearity becomes an issue when dealing with extrinsic

means. For a proper de nition we will focus on the equalities tied to the assumption

Ao: 1= = gE
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DEFINITION 6.2.1. Under the assumptioAg and for anya 2 f 1; 2; ::;; gg, with ’L—a I 4>0;asn!
1 :Wedene

by
JCe)=P(4gCe)+ + gi( ge) (6.8)

Where . is the extrinsic mean of the random obj&ct.; and gzl a=1

(i) Theextrinsic pooled sample meandenotedXg 2 M given by;
. ny. Ng.
i(Xe)= P (Xug)+  + ¥ (Xge) (6.9)

. o P
WhereX 4.g is the extrinsic sample mean f&ry.1 andn = g=1 Na

Note that sincé\g impliesj ( 1g) = = j( g;); and with our de nition of the extrinsic pooled mean
we getj( g) = j( ae) foreacha = 1;:::;9: Furthermore, the linear combinationj ( 1.g) + +
gd( ge)2j(M):Notethatfora=1; ;gXaE is aconsistent estimator ofg and therefore we get

thatj (Xg) ! pj( e): Sincej is a homeomorphism fromfl toj (M ) we also have thaX g is a consistent
estimator of g the extrinsic pooled mean. With this de nition at hand, we now express the following

hypothesis test, designed to test the difference between extrinsic means and is given by;

Ho: 1= 2= 1% gE= E; (6.10)

H,: atleastoneequality g = pe;1 a<b gdoesnothold:

And since the embedding: M ! RN is one-to-one the hypothesis above can be interchangeably

written

HY i 1e) = 28)= =0 ge) = §( g); (6.11)

Hg . atleastone equality ae = pe;l a<b gdoesnothold:

In order to test hypothesis (6.10) we will us& 4like statistic. The theorem below, gives us the asymptotic

[6], the following:

(1) Sn, =(na) ! 0 Xai)  TXeD( (Xasi) j(Xg)) T is a consistent estimator of,; and
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(i) tan;x.) Isaconsistentestimator tdnp, () ; where 2 RN:

It follows thatGy (J; X a); given by

2n # 3
- Xrl - -
Cx(iX)= 4 duiPie) a((Xe)al(Xe) 5 S,
a=1 i=1;:p
2 # 37
Xr] . .
d e Pi (e & (Xe))e( (Xe)) 5
a=1 i=1;:p

where forj P (X) = Mj(X1g)+  + T2j(Xq:e) and is a consistent estimator ofsuch that;j ( ) =

j ( g): One must note that the extrinsic sample covariance maiijixX ;) is expressed in terms deWPj (ep) 2

T (xg)l (M) and not in term oﬁij (&) 2 Tj(x )i (M):

THEOREM 6.2.1. Assumg : M! RN is a closed embedding f . Letf X ,ig'? fora=1;::;gbe
random samples from thjenonfocal distributiongQ,. Let 5 = E(j (X4:1)) and assumg(Xa:1)'s have
nite second-order moments and the extrinsic covariance matriggs of X 5.1 are nonsingular. We also
let (er(p); i en(p), forp 2 M be an orthonormal frame eld adapted {o

Furthermore, Iet”n—a I a>0,asn!1 ,withn= g=1 Na, and g=1 a = 1.Then we have the following

asymptotic behavior;

x9
Na tanj( o) (Xae) JCe)T .t tan o (Xae) JCeED! ¢ &

a=1

It follows that the statistics for hypothegis.10)have the following behaviors;

(a) the statistic

x9
Na tanj( o) (Xag) J(Xe) Gx(iXa) *tanj  o)(G (Xag) JXeD! a g
a=1

(b) the statistic

X9
Na tan; x.)( (Xag) 1 (Xe))TGx (X a) *tan;xo)(i (Xag) F(Xe)! ¢ g

a=1

Proof. recall that from Bhattacharya and Patrangenaru (2005) [6] we have

Pfatan;( ) (Xag) 1(e) ! aNOp ag)i fora=1;2:g

where
hx i hx T
aE = dPi(e) &i() .. a d Pj(en) e(Pi( ) _

..........

82



where = 4j( 1)+ + gl ( ge) and the ,'s are the covariance matrices of theX 5;1)'s with
respect to the canonical basis ::;; ey . And under the null, from 6.10, the matriceg.e are de ned with

respect to the basfs( g);:::;fp( g) of local frame elds. We then have for eaet 1;:::; 9

natan;( o) (Xae) JCe)T aftan o Xae) j(e)! q 5

and since the random samples are independent we have,

X9
natan;( o) (Xae) JCE)T «f @an o (Xae) JCe)! a 5 (6.12)

a=1

X g is the consistent estimator ot , then the pooled sample mean
!

X8
j (Xg) = P % Naj (Xae) ! pi( ) (bylemma6:1:1) (6.13)

a=1

And sinceGy (J; X a) consistently estimate, andtan; . is a consistent estimator tn; ( ), we have

the following
xd
Natan( o) (Xae) J(Xe) Gx(iXa) *tanj  oy(G Xag) J(XeD! a g
a=1
X9
Na tan; x.)( (Xag) J(Xe)) Gx (i Xa) *tanxy((Xag) T(Xe)! a 3
a=1

6.2.2 Nonparametric bootstrap con dence regions

From Corclllary 3.2in [6] under the hypothesis
Ho @ 1= 28=1% ge= E;
Ha :3(ij)1 i<j<g; st £ 6 je;

we have:

COROLLARY 6.2.1. Under the assumptions of Theorésn2.1), a con dence regions forg of asymptotic

levell cis given byC{% andD % which are de ned below

(@) CY2 = (Unc) where
. . . — . . 2
Une=fj()2j(M):n gzl Na Gy (j; X a) =2 tan;(y(J (Xae) () Sp;l 9
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(0) DI = j (Vi) where
) i P ) _ o ) 2
Vae = fi()2j(M): 31 na Gy(iiXa) 2 tan; x .y (0 (Xae) () Sp;l 9

whereX g is the extrinsic pooled sample mean de ned in De nition 6.@i)

Most of the data we will be focusing on will have valuerofelatively small. We will need to use re sam-
pling, in particular bootstrap methods. For= 1;::;9; let fX4ig'® be ii.d.r.o's from the -nonfocal
tionally givenf X 5, g% : The con dence regionﬁ:ﬁ?g andDﬁ,?g described above have the corresponding

bootstrap analogué (& andD (& which are de ned in the corollary below.

COROLLARY 6.2.2. The(1 ¢)100%bootstrap con dence regions forg with d = gpare given by

@ C @ =j YU, and

i i X i 1=2 (X i 2 (9)
Une = FI()2](M) 1 na Gx(iXa) " tan()((Xae) 1() ¢ (6.14)

a=1

wherec (19)C is the upperl00(1 ¢)% point of the values

Na Gx (15X a) 7 tan;x.)( (X ae) (X)) (6.15)

a=1

among the bootstrap re samples.

(b) D @ =] XV ne)and

. . X9 . - Lo ) 2
Ve =fi()2i(M):  na Gx(iXa) 2 tanx,((Xae) () dPg (6.16)

a=1
whered (19)C is the upperl00(1 €)% point of the values
><g . 1=2 - . 2
Na Gx (11X 3) tan; x (I (X ae)  J(Xg)) (6.17)
a=1

whereX ¢ is the extrinsic pooled re sampled mean given by
. ny. Ng.
(Xe)= P i (Xye)+ (X ge) (6.18)

among the bootstrap re samples. Both of the regions givé¢é.h@)and(6.14)have coverage er@p(n 2):
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Note thatGy (j; X ,)

2 ” 3
G (X =4 dus P a(Xeal((e) 5 S,
2 a=1 ) i=l;:::;|c:>:;T
P @) a0XeDalxe) 8
a= i=1;:p

whereS,, = (na) * 1% (1 (Xai) TXeD( Xai) FXe)T
We now express the following test statistics that will be used in our analysis and are tied to the con dence

regions mentioned above.

PROPOSITION 6.2.1. Letf X 4;g3 for a = 1;:::;g be random samples from tfienonfocal distribu-
tionsQa: Let 4 = E(j (Xa:1)) and assumg(Xa:1)'s have nite second-order moments and the extrinsic

covariance matrices 5. of X 5.1 are nonsingular.

P _
() Then the distribution oT¢(X (@;Q@) = * 9 na G (X a) ¥ tan;( .)( Xae) i( g)) 2

a=1
can be approximated by the bootstrap distribution function of

P . - o - 2
TC(X (g),Q(g)): g:l Na GX (J,X a) 1=2 tanj (XE)(J (X a;E) J(XE))

P _ 2
(b) Similarly, the distribution oTg(X (@; (@) = J_na G(jXa) ¥ tan; x )i (Xae) J( E))
can be approximated by the bootstrap distribution function of

P : - e . 2
Ta(X @;Q @) =" 2., na Gy (X 4) 2 tanjx_)(i(X ag) J(Xe))
with coverage erroOp(n 2).
Note thafT (X (9; Q@) is obtained fronT (X (@; Q(@) by substituting< {¥ = (X 11; ;X g1)" with re
samples< ;¥ = (X1.3; i Xg)T:
Using the bootstrap analogue in the previous Proposition 6.2.1 yields simpler method for T@biy

)% con dence regions. We will utilize the tests statistics expressed above to conduct our analysis with

con dence region<,.. andD .. as shown in the Corollary 6.2.2.

6.3 MANOVA on (RP3)d

We start with the 3-dimensional real projective spRE®®: It is a space of 1-dimensional linear subspaces
of R* and is also a 3-dimensional manifold. A projective pgnt [x] 2 RP3, is an equivalence class

of x = (x%; ;x* 2 R* and can also be represented py= [x* : x? : x3 : x*] (homogeneous
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coordinates notation). We will identifyl = RP 2 with the sphereés® with the antipodal points identi ed,
[X] = fx; xg 2 RP3x 2 R% kxk = 1: We will often refer to this identi cation as thepherical

representatiorof the real projective spac&P 2 is an embedded manifold with the embedding

j :RP31S (4; R)

j(Ix]) = xxT (6.19)

And for[X ] a random object ojrnonfocal probability measuf@ onRP 3 the projectiorP; : S (4, R)nF !

j (RP?) assigns to each nonnegative de nite symmetric mairiwith highest eigenvalue of multiplicity;

the matrixj ([ ]); where is a unit eigenvector ok corresponding to its largest eigenvalue(see Bhattacharya
and Patrangenaru [6]).

Our analysis will be conducted da 5 the projective shape space of ads inRP™ for which
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g (see Patrangenaru et. al (2010)). The embedding on this space is the VW (Veronese-Whitney) embedding
given by
jk: RPA1(S(4;R)
Jr@xal; oo Xql) = (G (xaD) 2555 ([xal)) (6.20)

withj : RP3! S, (4;R) the embedding given in (6.19). Additionajly is an equivariant embedding w.r.t.
the group(S: (4; R))9 and has the corresponding projection

Pi, : (S+(4;R)InFq! jx RP3 1

Pi(Azs i1 Ag) = (j ([ma]); 5 [mg))) (6.21)

mean is given by
i = 1@ L o@)D; (6.22)

where, fors = 1;q; (r) and s(r);r = 1;:::;4 are the eigenvalues in increasing order and the corres-

ponding eigenvectors & X S(X )T
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In case of a random objegX ] on R3: let us assume thate; = [ 4], where ; and ; r = 1;2;3;4;

are eigenvalues in increasing order and corresponding unit eigenvectors &[XX '] corresponding to
eigenvalues in their increasing order. The corresponding extrinsic sample mean, for a sample of size n, is
given byX g = [g(4)], whered(r) andg(r) 2 R* r = 1;2;3;4; are eigenvalues in increasing order and
corresponding unit eigenvectorsbf= %P XX

We now recall the result from Theorem 4.1 in Bhattacharya and Patrangenaru (2005) [6] well as represent

the statistics
T(X1;Q) = nkS(j; X ) tanj( ., ) i(Xej) ( gj) K
We have forT ([X]; Q) = T(X ;[ al)
TOXLL 4D = ng@" [( Dlr=1:23SG: X ) M =123 9(4) (6.23)
This results extends to the statistics
T(XLQ) = T(XL[9@)]) = kS(j; X ) 1=2tan,-(yE;j) i(Xej) i(g) K
TIXLEO@D = n 4 [9(N]r=1:23SGX ) Mo =125 4 (6.24)

where

X
S(i;X )ap=n *(d(4) d(a) *(d4) d(b) * (9(a Xi)(g(b) Xi)(g@) Xi)?
i=1
and, asymptoticallyT ([X ];[ 4]) and T([X ];[9(4)]) both have a % distribution.(see Bhattacharya and
Patrangenaru (2005) [6])
Before we express our statistics of interest, it will be important to note another result from Crane and

Patrangenaru (2011) [7] concerning the statistics
T(Y: )= nkSy (i Y) tanye, ) i(Ves) J(eg) K
And this HotellingT 2 type statistic is given by

TGO @L [e@D)=n a@'Diit o@D Sy(kiY) 1 1(@)TD1:: @) Dg
(6.25)
wherefors=1;:::;qwe haveDs = (gs(1) 9s(2) gs(3)) 2 M (4; 3; R) and for a pair of indiceés; a); s =

X
Sy (k; Y)(say(eh) = N H(ds(4) ds(a)) *(di(4) di(b) * (9s(a) XP)(ae(b) X{)(gs(4) XN (& (4) X{)
i=1
(6.26)
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In the next theorem we will take advantage of these results.

Ho: 1= 2= gE= E; (6.27)

Ha: atleastone equality o = pe;l a<b gdoesnothold:

We aim to have an explicit representation of the expressions,

x9 o 2
Te YO P =na Sy(Ya) Plan o k(Vae) ko P (6.28)
a=1
2l 2 () ?
Ta YO, Y =n, Sy (jk; Ya) 1‘2tanjk 7 ikYag) ik g (6.29)
a=1

P
J&= ia e X35i(X g;i)T: Also (Ep) is the VW pooled mean given by
!

L X
Ik g =Py —Jk( aE) (6.30)
a=1
® =1 P@g:r P@) (6.31)

andV(Ep) is the corresponding pooled mean, given by

_ X on,
ik YO =p, fjk(Ya;E) (6.32)
a=1
YO = (o @] 0P @) (6.33)
where fors = 1;:::;q, dgp)(r) andgép)(r) 2 R* r = 1;2;3;4; are eigenvalues in increasing order

n

P _
and corresponding unit eigenvectors of the matH®) = gzl ik(YaE):

We now express the following matrices

Cs=( P P PE)2M 4;3:R) (6.34)
Ds=(0P(1) gP(2) gP(3)) 2M (4;3:R) (6.35)
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are independent random samples frpganonfocal probability measure®, on (RP™)% that have non

degeneratég-extrinsic covariance matrices. Then the statistics
. P : T
M Te YO, P =" 9 na (GR@)TCai (@A) Cq Sy, likiYa) T B@TC1gi4) Cq

h i

(i) Tq Y©@;vP = P S ina (P@ @)™ PB) RE@)TDg
L Syl Ya) ! -
(P@ @@ ™D P &@)'Dg

where
Sy, (ik; Ya)soeny = Na (AP @) dP(0) *@dP@) dP(p) *
X
@P© X MH) XL)eP @) X3P @) XL)

5q distribution.

Proof. For part(i) we note that for eaca = 1;:::gwe get a natural extension of the result in theorem 4.1

Bhattacharya and Patrangenaru (2005) [6] as shown in 6.23.Fdjiipartcall that

e X - v ?
Ta YO, ¥ =n, Sy, (ix; Ya) l_ztanjk 7 Jk(YaE) Jk (Ep)
a=1
we start by rewriting the expression above and we have
(9). (P X ; 1=2 evald ; (p)
Ta Y@ YET =ng SYa(Jk;Ya) tanjk v ik(YED) Jk
a=1
: ) v
Sv,(ikiYa) tan co  jk(YE) jk Yae
Jk YE
. X0 _h ir
T YOXP =7 na s, (iiYa) 2 ((P@)TD1:( Pa)TDg
a=1
. - T 2
Sy,(iki Ya) 2 (93(4)'D1:::(g§(4)) "Dy (6.36)
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If Y,a arejy-nonfocal populations ofRP3)q we can construct an Edgeworth expansion up to order
Op(n ?) 012 the pivotal statisticT. Y(©@; ® andTy Y©@;Y® - under the hypothesis

Ho LE= 2= 1T gE = (EP);

Ha 3(ij)1 i<j<g; st g6 je:

COROLLARY 6.3.2. The(1 ¢)100%bootstrap con dence regions forg withd = gpare given by

a 2= U,.)andU,.. = fjk Jk((RP s Te Y'Y, C gwherec IS the upper
(8) C @ =j *Upe)andUye = fjk( ) 2 j((RP3)% : T YO ¥ gwherec {9 is th
100(1 c¢)% point of the values

I | )
To Y @vP =" n, (93@4)TD1:::(g 24)™Dg Sy, (kiYa) ¥ 934 D1iiig 34Dy

a=1
(6.37)
among the bootstrap re samples.
() D &= YV ne)andV ne = fii( ) 2 Jk(RPHN: T YO, YL d P gwhere
_ P _ _ o . 2 .
To YO XL = na &y Sy(kYa) tan, co k(Yag) k() whered s

the upperl00(1 ¢)% point of the values

o | _ w2
To Y OV VY =7 na sy (kYa) Ptan oo kVee) (YY) (6:39)

a=1
among the bootstrap re samples. Both of the regions givei® i) and (6.14) have coverage error

Op(n 2):
Note that here

Sy, (iki Ya)soen = Na *dsP @)  dP(e) d,P@) d,Pb) *

X
(9P(0) Xa)(g: PO Xai) (9P @) Xa3)(g P (4) Xqf)ibio=1:23:

6.4 Application to face data

We will now test for the existence of 3D mean projective shape change to differentiate between three faces
which are represented in Fig 6.4
Our analysis will be conducted @n= 3 individuals. The 3D reconstruction was done using the AGISOFT

software. The images in Fig 6.4 represent 19 facial reconstructions. Each of those reconstruction was created
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Figure 6.1:Faces used in MANOVA analysis

Figure 6.2:Sample of facial reconstructions
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Figure 6.3:Projective frame shown in red

using mostly 4 to 5 digital camera images of a given individual. We are also able to place and recover 7
landmarks which are shown in gure 6.4.

Five of those landmarks (colored in red) will be used to construct a projective frame and the resulting two
projective coordinate will determine our 3D projective shapes. We will compare these faces by conducting
a MANOVA on manifold to comparg = 3 VW-means orP  § = (RP3)2: Forn = P 3 L Na=19 where

n; =6, N, =6 andngz = 7 our hypothesis problem will be

Ho: 1= 2= 3E= E;

H, : atleast one equation does not hold:

Since the true pulled mean is unknown and our data set is relatively small we will reject the null hypothesis
if

—(p) P 3 iva v (P) 2
Ta YOIV =" Lina Sy(kYa) *2tan (o ik(Yae) j«(YE)  doesnotbelongto

E

Ve = fik( ) 2 jk(RP¥?) : T, YO, ¥, d ® g whered {)_isthe(1  ¢)100%cutoff of
the corresponding bootstrap distribution.
Using 46800resamples we obtain a value fog Y @;Y® = 757260and for thed &) = 355420and
we therefore reject the null hypothesis. And we conclude that there exist a statistically signi cant VW-mean

projective shape face difference between at least two of the individuals.
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CHAPTER 7

FUTURE WORK

In this chapter we explore some of the possible directions for extrinsic data analysis.

7.1 New test statistics for data or(RP %)% and MANOVA for anti-means
7.1.1 MANOVA cross validation

Although | was able to conclude effectively that there is a statistically signi cant VW-mean projective
shape difference between at least two of the individuals, this test involvedgorly3: | would like to
signi cantly increase the numbey of samples to be compared in order to nd the numerical limits of this
particular method.
I would also like to use the data collected to conduct a cross-validation test. It will mean that | will compare
g samples of the same face in order to verify that this method can in fact be used to properly differentiate

between objects (faces, ours, etc...).

7.2 Anti-mean and MANOVA on manifolds

The results about the asymptotic of the anti-means are part of a joint paper with my colleague Ruite Guo
and professor Patrangenaru (see Patrangenaru et all (2016b) [22]). | include this under future work, as more

credit for this paper should be attributed to Ruite.

7.2.1 CLT for the sample anti-means

Assumg is an embedding of d-dimensional manifold! such thaj (M ) is closed inR¥, andQ is a
j -nonfocal probability measure dvl such thaf (Q) has nite moments of order 2. Let and be the
mean and covariance matrix jofQ) regarded as a probability measureRIn LetF be the set ofj -focal
points ofj (M ), and letPg; : F¢! j(M ) be the projection on(M ). Pg; is differentiable at and has

the differentiability class of (M ) around anyj -nonfocal point.
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de ned on an open neighborhoddi  R¥ is adapted to the embeddipgf it is an orthonormal frame eld

frame eld aroundPg;( ) = j( e ): Thend Pg;(ey) 2 Tee ( yJ (M) is a linear combination of

e1(Pr;j ( ));€(Prj( ));:::5eq(Prj (1 )):

xd
d Prj(en) = (d Prj(en)) €a(Pr;( ))€a(Pr;()): (7.1)

a=1
By the delta methoda'™2(Pg;j (j (X))  Pg; ( )) converges weakly tdli(Ox; ), wherej
P .
L L i) and

n

—~

X)

xd
= d Pr;j(en) €a(Pr;j( ))€a(Pr;j ( Nlb=1::k
asl 7.2
xd i (7.2)
[ d I:)F;j (eo) ea(PF;j ( ))ea(PF;j ( ))] b=1;::k
a=1
Here isthe covariance matrix ¢f(X 1) w.r.t the canonical basiy; e;:::; e.

The asymptotic distributioN  (O; ) is degenerate and the support of this distribution iSgn j (M ),
since the range al Pf; is Tee, ( yJ (M'). Note thatd Pr;j (ey) €a(Pr;j( )) =0 fora=d+1;:::k
we obtain the following asymptotic result, our CLT for extrinsic anti-mean, on the tangent spp@dd §f

atPe; () =1( )

tanp., () Pri(G(X))) Pri() ! aN(@O  jE) (7.3)
Then the random vectqd . j) Y(tanp,, ( \(Pe; (G(X)) Prj( ) = P 9-1 X[ T4 has the fol-
lowing covariance matrix w.r.t. the badis( g);:::;fq( g):
i = €Pri () @(Pri( )1 ap d
=[ d Prj(en) €(Prj( Nla=1:::d (7.4)

The matrix ;g given above is the extrinsic anti-covariance matrix of fhe-nonfocal distributiorQ(of

Xi)w.rt. thebasisi( g );:::;fq( g):
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7.2.2 MANOVA for anti-means

| will start by considering the following extension to my MANOVA on manifolds method, from Chapter 6.

DEFINITION 7.2.1. Under the assumptiorA g : 1E = g:e and for anya 2 f 1;2;:::; gg,

withfa1 ;> 0;asn!l :Wedene
() Theextrinsic pooled anti-mean with weights = ( 1;:::; ¢), denoted g( ) as the value irM
given by
O B)=Pri(d( ze)+Y  + 4i( gE)) (7.5)

Where 4. is the extrinsic anti-mean of the random obj&Gt1 and gzl a=1
(i) Theextrinsic sample pooled anti-meandenotedaX g 2 M given by;
j(aXe)= Py (aXye)+  + % (@Xge) (7.6)
whereaX ,.g is the extrinsic sample anti-mean f&r,.; andn = P gzl Na

With this de nition at hand, | can now express the following hypothesis test, designed to test the differ-

ence between extrinsic anti-means and is given by;

Ho: 1= 2=:1= gE= E; (7.7)
H, : atleastone equality 4 = pe;l a<b g doesnothold:
The results in chapter 6 can be adapted to extrinsic anti-means and pooled anti-means as well and | will

take advantage of these results. After some effort | will be able to have an explicit representation of the

expressions,

e o 2
Te YO, P =7 as,(uYa) e o ik@Vee) jk (7.8)
a=1
(P X = 2 ’
To YO0 =7 as,(Ya) Ptan, o (Vae) Bk @ 0 (79)
a=1
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=]
J&= % 2 XSi(X5) T Also (Ep) is the VW pooled mean given by

. P _ _ X Ngy.
Jk e = Prj, ij( aE) (7.10)
a=1
O = Pl P (7.11)
andaV(Ep) is the corresponding pooled sample anti-mean, given by
|
— X ona o .
o a¥e =P, —fk(@Vae) (7.12)
a=1
a¥® = ([gP @21 [P D)) (7.13)
where fors = 1;::::0q, d(sp)(r) andgép)(r) 2 R%r=1:23:4; are eigenvalues in increasing order and

corresponding unit eigenvectors of the matH®) = P 91"k aE):

I will then be able to construct con dence regions for(Ep) of asymptotic level c¢much like in the case of
VW means, and when our sample size is relatively small we will be able to b{dld a£)100%con dence
regions for (Ep) using nonparametric bootstrap. These con dence regions will be the tool | will use to

differentiate between different objects.

7.3 Dependence on embedded manifolds

We are interested in determining the dependence between the random ofjeds,S? andY a
random variable. And for that we start by observing the dependence structure befXgea random
vector inR3 andY a random variable. We will call upon copula functions to start this process. At this
point it is important to note that copula functions have been widely used to model the dependence structure
between random vectors which is of importance in the computation of certain nancial products such as
VAR (Value At Risk). And the copula framework offers a wide variety of copulas, such as the Gaussian,
student copula, Frank’s copula, Archimedes family of copula and so on. We will focus on only one type of

copula, the Gaussian copula. We rst de ne a two dimensional copula function.

DEFINITION 7.3.1. The copula functior€ is a copula for the random vect¢X; Y ) with X 2 R™ and
Y 2 RK, ifitis the joint distribution of the random vectét); V) whereU = F1(X), andV = F»(Y) and

Fa; a=1;2; are the marginal distribution functions &f andY respectively. This implies that
H(x;y) = C(Fa(x);Fa(y)) = C(u;v) (7.14)

WhereH is the joint distribution function ofX; Y ). If F; andF, are continuous the copul@ is unique.
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Note that

P(X  xY y)= P(FuX)  Fa(x);F2(Y)  Fa(y)) = C(Fu(x);Fa(y))

The results of the Sklar Theorem (see Rockinger and Jondeau (2001) [29]) show that we may link any
group of univariate distributions, of any type with any copula and we will have de ned a valid multivariate

distribution.

DEFINITION 7.3.2. [Gaussian Copula] This copula is given by
Coaussian (UiV) = P(( X) u (Y) v)=  ( ‘u; *v) (7.15)

where is the standard normal cdf and is the joint distribution function of a standard Gaussian random
vectorZ = (X;Y )T  N,(0; ) . Note that can also be viewed as a correlation matrixzfAnd in two

dimensions we have

Z 1 Z 1

“ ) 1 s? 2S1Sp+ S5

Cgaussian (U;V) = 513 €XP (s 1 22 5)
1 1 2 (1 )1= 2(1 )

ds;ds; (7.16)
(see [28].)

REMARK 7.3.1. Itisimportant to note thatt) andV are independent if and only if the correlation matrix

is the identity. Recall that in the case of Gaussian random vector this result holddzpgian (U; V) = uv:

PROPOSITION 7.3.1. Let X andY be random vectors oR™ and RK respectively thexX andY are

independentifand only I = F1(X) andV = F»(Y) (viewed as random variables) are independent.

Proof. Note thatX andY independent implie$ (x;y) = P(X X)P(Y y) = Fi(X)Fa(y) =
uv = C(u;v) and we conclude thdt andV are independent (recall the cdf of a unifotd{0; 1) is
F (uj(0; 1)) = u). The other direction follows from the same set of equalities. For the direction from left to

right please see [1]. O]

We will now use the proposition above along with the useful property of the Gaussian copula correlation

matrix to design an independence test.

97



7.3.1 Test for independence

Now back to our data set made upXfa random object 0i$? andY a random variable oR: We will
rst use the proposition and Gaussian copula to test for independence between the embedded @éaniable
(random vector oiR®) andY a random variable oR. We will also assume th&t; andF, are, respectively,
the cdf's of (X ) andY: We can now do the following

1. DeneU = F1( (X)) andV = Fy(Y)

2. Find the Gaussian Copula that t our random vectdrandV: This process is done using Matlab and
the function callea¢copula t(..., )

3. After tting, the resulting correlation matrix is used to conclude dependence betwesaV

4. Once the dependence is established we draw the necessary conclusiorf>abautdY , by relying
on proposition 7.3.1

PROPOSITION 7.3.2. The random objecK and the random variabl& are independent if and only if

U = Fi( (X)) andV = F»(Y) are independent random variables.

Proof. From the proposition 7.3.1 we have th@X ) andY are independent ify andV are independent.

And since is one-to-one we have our desired result. (see [28]) O

Step one above, requires knowledge of the cdf's of the marginal distributior{X9fandY which may

distribution on(S?; R) with marginal cdf'sF1 andF, respectively. We can use the corresponding empirical
cdf's F1 andF,: We can then use the following steps,
1. Dene 0 = Fy( (X)) and¥ = Fa(Y)

2. Find the Gaussian Copula that t our random vectdrand¥ : This process is done using Matlab and
the function callectopula t(..., )

3. After tting, the resulting correlation matrix is used to conclude dependence betwesadV

4. Once the dependence is established we draw the necessary conclusiorf>apaundy , by relying
on proposition 7.3.2
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