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ABSTRACT

Most of the data encountered is bounded nonlinear data. The Universe is bounded, planets are sphere like

shaped objects, and life growing on Earth comes in various shapes and colors that can hardly be represented

as points on a linear space, and even if the object space they sit on is embedded in a Euclidean space,

their mean vector can not be represented as a point on that object space, except for the case when such

space is convex. To address this misgiving, since the mean vector is the minimizer of the expected square

distance, following Fŕechet (1948)[11], on a compact metric space, one may consider both minimizers and

maximizers of the expected square distance to a given point on the object space as mean, respectivelyanti-

mean of a given random point. Of all distances on a object space, one considers here the chord distance

associated with an embedding of the object space, since for such distances one can give a necessary and

suf�cient condition for the existence of a unique Fréchet mean (respectively Fréchet anti-mean). For such

distributions these location parameters are called extrinsic mean (respectively extrinsic anti-mean), and the

corresponding sample statistics are consistent estimators of their population counterparts. Moreover one

derives the limit distribution of such estimators around an anti-mean located at a smooth point. Extrinsic

analysis is thus a general framework that allows one to run object data analysis on nonlinear object spaces

that can be embedded in a numerical space. New sample tests for extrinsic means, and a test statistic for

extrinsic MANOVA on manifolds are also developed here. In particular one focuses on Veronese-Whitney

(VW) means and anti-means of 3D projective shapes of con�gurations extracted from digital camera images.

The 3D data extraction is greatly simpli�ed by an RGB based 3D surface reconstruction algorithm using

the Faugeras-Hartley-Gupta-Chang 3D reconstruction method (see [10],[12]), that is used to collect 3D

image data. In particular one derives two sample tests for face analysis based on projective shapes, and

more generally a MANOVA on manifolds method to be used in 3D projective shape analysis. The manifold

based approach is also applicable to �nancial data analysis for exchange rates.

vii



CHAPTER 1

OVERVIEW

Due to technological advances in digital imaging, we are now able to collect and quantify a wide variety of

data sets, including 3D surface data from RGB regular digital camera images. Indeed if color pictures of the

same scene are collected under fairly uniform lighting conditions, a correlation based algorithm coupled with

a 3D reconstruction algorithm may help retrieve surfaces of a 3D scene, including texture. One of the task of

this dissertation was to collect such 3D data, and in particular face data including the mid-face of individu-

als that accepted to have their pictures taken, and volunteered, without being compensated for offering their

time. Some of the digital camera data collected this way is posted at stat.fsu.edu/� vic/Kouadio/collected-by-

Davids. The face surfaces, regarded as 2D manifolds in 3D could be partially retrieved using the technique

mentioned above and are presented in the data analysis for Chapters 3 and 6. Such surface data is in�nite

dimensional, thus a drastic data reduction method consisting in landmark coordinate selection post 3D re-

construction was key to speed up the analysis. Moreover, since the camera internal parameters are unknown,

for the landmark con�gurations considered, one may retrieve only the projective shapes (see Patrangenaru

et. al.(2010))[23]. Therefore, the object spaces we have to consider are projective shape spaces (see Mar-

dia and Patrangenaru(2005)[20]), which are direct products of real projective spaces, thus having in fact a

nonlinear structure of compact smooth manifolds. There are many other examples of object spaces with a

manifold structure, arising from morphometric data, protein and DNA structures, aerial or satellite imaging,

medical imaging outputs (angiography, CT scans, MRI) beside digital camera imaging considered here (see

Patrangenaru and Ellingson (2015)[21]). Fréchet (1948)[11] noticed that for data analysis purposes, in case

a list of numbers would not give a meaningful representation of the individual observation under investiga-

tion, it is helpful to measure not just vectors, but more complicated features, he used to call “elements”, and

are nowadays calledobjects. A natural way of addressing the problem of analyzing data on such a nonlin-

ear object space, consists of regarding arandom objectX as a random point on a complete metric space

(M ; � ) that often times has a smooth manifold structure (see Patrangenaru and Ellingson (2015)[21]). The

numerical spaceRm is the most elementary example of a manifold arising as an object space in Statistics.

Therefore, multivariate data analysis is the key basic example of data analysis on a manifold.
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Given a random object (r.o.)X on a complete separable metric space(M ; � ); the expected square distance

from X to an arbitrary pointp 2 M de�nes what we call theFréchet functionassociated withX :

F (p) = E(� 2(p; X )) ; (1.1)

and its minimizers form theFréchet mean set.[5]. Unless otherwise speci�ed, throughout this dissertation

we will assume that the object spaceM can be regarded as a subset of a numerical space via a one to

one mapj : M ! RN ; and the distance onM is � j ; the chord distancegiven by

� j (p1; p2) = kj (p1) � j (p2)k: (1.2)

If, in addition M has a smooth manifold structure (see Lee[18] for a de�nition), we will assume thatj is

an embedding, that is to say that at each pointp 2 M ; the differential mapdp is a one to one map from the

tangent spaceTpM to the tangent spaceTpRN :

In our case, the Fréchet function becomes

F (p) =
Z

M
kj (x) � j (p)k2Q(dx); (1.3)

whereQ = PX is the probability measure onM ; associated withX; and the Fŕechet mean set is called

extrinsic mean set. The complete separable metric space(M ; � j ) with chord distance� j and with an

additional smooth manifold structure, is isometric to(j (M ); � 0) where� 0 is the Euclidean distance.This

is by de�nition an isometric embedding ( distance preserving between two points and their images in

the ambient space ), if we consider the chord distance.

In general inference for extrinsic mean sets was never considered yet in literature, none the less, in case

the extrinsic mean set has a unique point, called the extrinsic mean, there is a large body of literature on

this subject (see Patrangenaru and Ellingson (2015)[21], and the related reference therein); this is due to a a

simple condition for the existence and uniqueness of the extrinsic mean (see Bhattacharya and Patrangenaru

(2003)[5]), saying the extrinsic mean exists if and only if the probability measureQ is j -nonfocal. I will

detail this condition in Chapter 2.

1.1 Short summary of results in chapters 3 through 7

In Chapter 3, I use two sample hypothesis testing methods for means of r.o.'s on a Lie group, as developed

by Crane and Patrangenaru(2011)[7], that are applied in the context of 3D projective shape analysis to

2



differentiate between faces. I conduct a landmark based analysis on the space of3D projective shapes ofk-

ads (labeled points). The object spaces of interest are often nonlinear spaces, and this poses some challenges

when attemping a two sample testing problem for mean change for random samples of different sizes. For

my statistical testing problems I consider Lie groups, which are smooth manifolds with an additional group

structure (in the algebraic sense) where the mulitplicative operation
 and the inverse operation are both

smooth. With such object spaces I can conduct a two sample hypothesis testing problem for mean change

(see Crane and Patrangenaru (2011) [7].) The3D projective shape spaces ofk-ads containing a projective

frame at �ve �xed landmark indices, denoted� P k
3 can be identi�ed withM = ( RP3)q; q = k � 5

which is a Lie group with multiplicative operation denoted� q: Fora = 1 ; 2, let Ya;1; � � � ; Ya;na identically

independent distributed random objects (i.i.d.r.o.'s) from the independentj k -nonfocal probability measures

Qa on (RP3)q , wherej k -nonfocal refers to a probability measure for which there is an extrinsc mean. We

consider the following hypothesis testing problem,

H0 : � � 1
2;E � q � 1;E = 1 (RP 3 )q vs. H1 : � � 1

2;E � q � 1;E 6= 1 (RP 3 )q (1.4)

were� 1;E ; � 2;E are the Veronese-Whitney means on(RP3)q: We are able to construct an asymptoticp-

value for large samples and100(1� � )% bootstrap con�dence region as well for small sample size at the

� level. These results were made possible by knowing the asymptotic convergence of the sequence of ran-

dom vectors n1=2
�

' q( �Y � 1
2;E � q �Y1;E )

�
where�Ya;E are the corresponding VW (Veronese-Whitney) sample

means and' q is an af�ne chart (i.e. a smooth one-to-one and onto function from(RP3)q to R3q). The

data analysis was conducted on three human faces. I placed all ten landmarks on all three subjects using

Matlab for all 29 pairs of noncalibrated digital camera images. The reconstruction of the corresponding

3D coordinates was also done in Matlab. I was then able to use the �rst �ve reconstructed coordinates to

construct the resulting5-tuples of projective coordinates represent the3D projective shapes and are the

elements that make up the random samples. After conducting the analysis I was able to effectively use

hypothesis testing for3D projective shape mean change to differentiate between faces and also to identify

the same face in cross-validation analysis. The analysis I ran, along with the various results, can be found

in a couple of publications [24] and [26]. Using the Agisoft software I was able to build a couple of3D

reconstructions of faces with color and texture (see stat.fsu.edu/� vic/Kouadio/collected-by-Davids/James

and stat.fsu.edu/� vic/Kouadio/collected-by-Davids/Mingfei). This software has not only a more visually

appealing3D reconstruction but would also allow for a much faster recovery of the3D coordinates of our
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landmarks.

The work in Chapter 4 was born out of a question asked by Professor Patrangenaru about the hypothesis

testing technique developed in [7]. More speci�cally, fora = 1 ; 2; X a;1; : : : ; X a;na i.i.d. random objects on

Lie group(G; � ); and the hypothesis problem given as follows

H0 : � � 1
2;E � � 1;E = � vs: H 1 : � � 1

2;E � � 1;E 6= � (1.5)

we would like to have the asymptotic behavior of

tan j ( � � 1
2;E � � 1;E )

�
j (X

� 1
2;E � X 1;E ) � j (� � 1

2;E � � 1;E )
�

(1.6)

where� 1;E ; � 2;E are the extrinsic means and� 1;E ; � 2;E their respective corresponding extrinsic covariance

matrices. The notation in (1.6) signi�es the projection of the vector
�

j (X
� 1
2;E � X 1;E ) � j (� � 1

2;E � � 1;E )
�

onto the tangent space ofj (G) at the pointj (� � 1
2;E � � 1;E ) and this results is given in Theorem 4.2.2 for

some embeddingj : G ! RN whereX 1;E ; andX 2;E are our resulting extrinsic sample means. For a

similar hypothesis testing problem as in [7] one of my goals was to take advantage of the CLT (Central

Limit Theorem) framework for extrinsic sample means and the con�dence regions one can construct from

the given asymptotic behavior.

I started by giving a variation of the Delta Method [4] used in [7] which differs from the other one as it uses

another extrinsic covariance matrix estimator, and also gives an explicit de�nition of it (see Lemma 4.1.1.)

Let M andN be respectively,m-dimensional andn-dimensional smooth manifolds and letG : M �M !

N be a smooth function between manifolds. In Theorem 4.2.1 I derived the following result;

n1=2 tan j 2 (G(� 1;E ;� 2;E ))
�
j 2

�
G(X 1;E ; X 2;E )

�
� j 2 (G(� 1;E ; � 2;E ))

� L�! N n (0; � G
j 2 ;E ) (1.7)

for a = 1 ; 2 let f (a)
1 ; � � � ; f (a)

m orthonormal basis inT� a;E (M ): I was then able to have the asymptotic

behavior of any smooth functionG (between manifolds) and this is done inTG(� 1;E ;� 2;E )N , the tangent

space onN at the pointG(� 1;E ; � 2;E ) and with the corresponding extrinsic covariance matrix given in

term of the extrinsic covariance matrices� 1;E ; � 2;E at � 1;E and� 2;E respectively. Note that it is important

to mention some of the bene�ts of using the extrinsic analysis framework, especially for computation

purposes and more speci�cally for the sample extrinsic covariance matrix tied toRPm : For more on the

extrinsic sample covariance matrix onRPm ; see [6]. In section 4.3 I apply the new asymptotic results to
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RP3: Fora = 1 ; 2 let [X a;1]; � � � ; [X a;na ] be independent random samples de�ned onRP3 from j -nonfocal

distributionsQa; with extrinsic means� a;E and extrinsic covariance matrices� a;E I get the following

asymptotic behavior.

n1=2 tan j ( � � 1
2;E � � 1;E )

�
j (X

� 1
2;E � X 1;E ) � j (� � 1

2;E � � 1;E )
�

! d Nm (0m ; � �G
E ) (1.8)

where forH (� � 1
2;E ; � 1;E ) = ( � � 1

2;E � � 1;E );

� �H
E =

1
�

(dH (1) ) � �
2;E (dH (1) )T +

1
1 � �

(dH (2) )� 1;E (dH (2) )T ; (1.9)

where� is the proportion of the �rst population relative to the total population. I was able to express

G�H
E the consistent estimator of� �H

E : This sample covariance matrix is expressed in a way that reduces

the amount of computation by using in its expression the already computationally friendly formula of the

sample covariance matricesG1;E andG2;E (see Battacharya and Patrangenaru (2005) [6]) and ,

G�H
E (j; X 1;1; X 2;1) =

1
n2

(d� (1) ) G2;E (d� (1) )T +
1
n1

(d� (2) )G1;E (d� (2) )T (1.10)

for d� (a) ; a = 1 ; 2 are both diagonal matrices with our choice of basis onS(4; R): One must also note that

all the results aboutRP3 can be extended to(RP3)q, the3D projective shape space.

Chapter 5 is about extrinsic anti-mean. This chapter includes work I have recently published jointly with V.

Patrangenaru and R. Guo (see [27] and [22]). In this chapter I introduce new location parameters, assuming

that the object space(M ; � ) is compact. In particular, if� is the chord distance induced by an embedding

j : M ! RN , the extreme values of the Fréchet function are attained at points onM : Note that the

extrinsic mean is de�ned in fact on any complete metric space that is homeomorphically embedded inRN ;

therefore this chapter allows also for the situation when the extrinsic mean is a singular point. LetX be a

random object for a distributionQ on M , then we get a distribution forj (X ) on j (Q) the ambient space.

And we have an extrinsic mean often denoted� j;E provided we have a unique projection of� denoted

Pj (� ) onto thej (M ) and� is called aj -nonfocal point. More speci�cally,� j -nonfocal implies that we

have� 0(�; j (M )) = � 0(�; j (� j;E )) where� 0(�; j (M )) is the distance between the point� and the closest

(unique) point onj (M ): The notion of anti-mean is motivated by the fact that, even when a distribution

Q might not have an extrinsic mean, it may occur that the extrinsic anti-mean exists, thus an extrinsic

analysis can still be performed. In case the extrinsic mean is a singular point, the asymptotic distributions
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of the extrinsic sample mean behave differently. In the case of a strati�ed space, such as anopen book

the extrinsic sample mean sticks to a lower dimensional stratum (see [3], [13]). The anti-means have a

similar asymptotic behavior, thus offering a way to conduct nonparametric data analysis on not just smooth

embedded manifolds but in a broader sense, on strati�ed spaces. In this chapter, I introduce the notion of

�j -nonfocal distribution, and it is shown that a distribution has a unique extrinsic anti-mean if and only if

it is �j -nonfocal (see Theorem 5.1.1). As a result, one also proves the existence and consistency of the

extrinsic sample anti-mean set. In section 5.3, the focus is turned toRPm with the VW embedding, and

one gives a necessary and suf�cient condition for a random axis[X ]; X T X = 1 being� -VW-nonfocal in

terms of eigenvalues of the expected matrixE(XX T ): Further, in this chapter I develop a nonparametric

methodology for addressing the hypothesis testing problem

H0 : �� � 1
2;j q

� q �� 1;j q = 1 (RP 3 )q vs.Ha : �� � 1
2;j q

� q �� 1;j q 6= 1 (RP 3 )q : (1.11)

As it turns out, the framework developed by Crane and Patrangenaru in [7] can be adapted to the case of

anti-means and provided certain general assumption on the VW anti-means�� a;j q ; a = 1 ; 2 I conduct, in

section 5.5 two sample test to compare 3D projective shapes of two lily �owers, based on their digital camera

images.

Chapter 6 is concerned with a new approach of hypothesis testing for the equality of extrinsic means of

g random objects,g � 3: This is an extension of the classical MANOVA (Multivariate Analysis of Variance)

problem (see Johnson and Wichern (2008)[15]), in nonparametric setting. This approach is motivated by

the standard MANOVA hypothesis testing problem

H0 : � 1 = � 2 = ::: = � g = �

Ha : at least one equation does not hold:

given the independent random vectorsX a � Np(� a; �) ; a = 1 ; : : : ; g: We �rst consider a nonparametric

test, based on the pooled sample mean, by dropping the normality assumption, and assuming that asymp-

totically the ratio between a group size and the total sample size converges to a positive constant, as the

total sample size goes to in�nity. I extended the ideas developped in the random variable case to object

data, assuming that thatQa; a = 1 ; : : : ; g; are independentj - nonfocal probability measures onM and

X a;1; : : : ; X a;na are i.i.d.r. objects fromQa; a = 1 ; 2; :::; g: The extrinsic mean ofQa if � a;E and corres-

ponding extrinsic sample means is�X a;E : To test

H0 : � 1;E = � 2;E = ::: = � g;E = � E ; Ha : at least one equation does not hold;
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in general I consider thepooled meangiven by� E = ( j � 1 � Pj )( � 1j (� 1;E ) + � � � + � gj (� g;E )) and the

corresponding sample counterpart�X E 2 M given by

�X E = ( j � 1 � Pj )
� n1

n
j ( �X 1;E ) + � � � +

ng

n
j ( �X g;E )

�

where �X a;E is the extrinsic sample mean forX a;1 andn =
P g

a=1 na and na
n ! � a > 0, asn ! 1 ,

with � g
a=1 � a = 1 . From Theorem 6.2.1 I get two candidate statistics for testing (1.12) that have both

asymptotically a� 2
gp distribution. These are used for rejection regions in the large sample case. The small

sample case is also addressed via nonparametric bootstrap in Corollary 6.2.2. In Section 6.3 I address the

extrinsic MANOVA problem on the 3D projective shape space(RP3)q with the VW embedding. As an

example I consider the equality of mean projective shapes of 3D landmark con�gurations in a number of

individuals from digital camera images of their faces.

Chapter 7 is concerned with future directions in extrinsic data analysis it will involve using the 3D

face data set I have reconstructed from digital images, to collect landmarks from the remaining faces in

the database. Extend the work done in chapters 4, 5 and 6 to data analysis for VW antimeans including to

MANOVA for such antimeans.

1.2 Description of contributions

In this section I clearly describe what are my contributions to the various research results in this dissertation,

and which of these have been published. I start by recalling all my results that are theorems:

� In Theorem (4.1.1) I developed a new Delta method for a smooth functionF : M 1 ! M 2 where

for a = 1 ; 2 M a arema-dimensional smooth manifolds. The aim was for me to express the resulting

covariance matrix in anexplicit form.

� Theorem (4.2.1) I develop the asymptotic behavior tied to a smooth functionG : M � M ! N

between smooth manifolds. This result can certainly be used to get the asymptotic behavior in a case

of a two sample hypothesis testing for extrinsic means because it can give the asymptotic behavior

of a functionG of two extrinsic sample means with an explicit expression of the resultingextrinsic

covariance matrix written in term a linear combination of the extrinsic matrices tied to each of the

two random samples whether they are of same size or not.

� For Theorem (4.2.2) I focus on Lie groups with a multiplicative operation� and an inverse map�. I

give an asymptotic behavior for the tangential component

tan j ( � � 1
2;E � � 1;E )

�
j (X

� 1
2;E � X 1;E ) � j (� � 1

2;E � � 1;E )
�

. For this result, I use Theorem (4.1.1) to get
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the asymptotic behavior oftan j ( � � 1
2;E )

�
j (X

� 1
2;E ) � j (� � 1

2;E )
�

and an explicit expression of its corres-

ponding extrinsic covariance matrix� �
2;E : I then used the results of Theorem (4.2.1) applied to the

functionH : G � G ! G and given byH (x2; x1) = x � 1
2 � x1 to get the desired asymptotic behavior

with an explicit expression of the extrinsic covariance matrix.

� In Theorems (5.1.1) and (5.1.2) I give the conditions for existence of the extrinsic anti-mean and the

sample extrinsic antimeans. I applied these to a data analysis for anti-mean 3D projective shapes

extracted from digital camera images.

� Theorem (6.2.1) I give the expression of two test statistic for the hypothesis testing problem of com-

paring multiple extrinsic means. One of the test statistic will be used to handle cases for which the

extrinsic pooled mean is known and the other can be used whenever the extrinsic pooled mean is

unknown.

� For Corollary (6.3.1) I used the results of Theorem (6.2.1) to expressed a couple of test statistic

designed to test the 3D mean projective shape changes between multiple VW means.

And below I give a list of ideas I have developed.

� In chapter 4, I developed an idea that would allow anyone to conduct a two sample hypothesis testing

involving random samples on smooth embedded manifolds whether the samples are of same sizes or

not.

� The extrinsic pooled mean and sample mean inspired by the case for multiple random vectors give

the possibility to develop and create a MANOVA for smooth embedded manifolds, allowing for the

possibility to test for multiple extrinsic means.

My contribution to the data analysis has been in the form of well de�ned condition of existence of the extrin-

sic anti-mean. I also took advantage of the extrinsic CLT result about antimean developped in Patrangenaru

et al (2016) [22] to conduct a two sample hypotheis testing method for change in antimean and therefore

giving another effective way to differentiate between object via a landmark based approach.

My contribution to the publications listed is

� Patrangenaru, Yao and Guo (2016) [27] I my mork involve the whole of sections 2 through 5.

� Patrangenaru, Guo and Yao (2016) [22] For this publication, my work is featured in the whole of

sections 4 and 5.

� For the paper Patrangenaru, Page, Yao, Qiu and Lester (2016) [24]) my work is featured in the whole

of sections 4 and 5.

� (Patrangenaru et al (2016) [26]) my work is featured in subsections 3.1 and 3.2 and also in the whole

of sections 4 and 5.
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CHAPTER 2

PRELIMINARIES

Most of my analysis will be conducted on object spaces. These spaces consist of features measured from

sample observations that can no longer be viewed as a values of random vectors if one wishes to conduct

a proper statistical analysis on such said spaces. Examples of some object spaces I will consider are the

space of points on a sphere and the space of projective shapes of con�gurations and for such a data set

the associated object considered are points on theprojective shape space. I will regard arandom objectX

as a random point on a complete metric space(M ; � j ) that has a manifold structure. In section 2.1 I give

some relevant de�nitions and introduce some meaningful concepts we will use throughout the analysis. In

the ensuing section I introduce the extrinsic mean and extrinsic sample mean as the unique minimizer of

Fréchet functions on(M ; � j ). Section 2.3 exposes the reader to a Central Limit Theorem for extrinsic

sample means on embedded manifolds. In section 2.4 I present them-D projective shape space ofk-ads

(labeled points, landmarks) in general position, which is denotedP� k
m : I highlight the fact that forP� k

3

can be identi�ed with(RP3)q with q = k � 5: With this particular representation one can now view any

elements of the3-D projective shape space as aq-tuple of elements from the3D projective space and

(RP3)q is embedded via the Veronese-Whitney embedding (see Patrangenaru and Ellingson(2015)[21]).

The �nal section introduce a two sample hypothesis testing problem for extrinsic means on Lie groups and

the resulting bootstrap con�dence region needed to conduct this test.

2.1 Some important concepts and de�nitions

The focus of our studies will revolve around metric spaces(M ; � ) with an additional smooth manifold

structure. For that purpose we give the following de�nition of asmooth manifold. We start by giving the

de�nition of a topological manifold.

DEFINITION 2.1.1. (Manifolds)

A metric space(M ; � ) is a manifold of dimensionm or a topological m-manifold ifM is second countable

, i.e. there exists a countable basis for the metric topology ofM ; and alsoM is locally Euclidean of

9



dimensionm, i.e. every point has a neighborhood that is homeomorphic to an open subset ofRm . And the

homeomorphism function' U : U ! ' U (U) 2 Rm is referred to as anm-dimensional chart onM . We

usually denote anm-dimensional chart by the pair(U; ' U ). (see Lee (2002) [18]).

Given a chart(U; ' U ) we call the setU a coordinate domain, or coordinate neighborhoodof each of its

points. If in addition' U (U) is an open ball inRm , thenU is called acoordinate ball. The map' U

is also referred to as a local coordinate map, and its components(x1
U ; � � � ; xm

U ), de�ned by ' U (p) =

(x1
U (p); � � � ; xm

U (p)) are calledlocal coordinatesonU: We will sometimes denote a chart by(U; (x i
U ) i =1 ;:::;m )

if we wish to emphasize the coordinate functions(x1
U ; � � � ; xm

U ): (see Lee (2002) [18]).

Note that a homeomorphism is a bijective continuous function with a continuous inverse. The smooth

structure of a manifold is established by a smoothatlasor C1 atlas.

DEFINITION 2.1.2. A collectionA = f (U� ; ' � ) � 2 A g of Rm -valued charts on the topological manifold

M is called atlas of classCr if the following conditions are satis�ed:

(i)
[

� 2 A

U� = M

(ii) WheneverU� \ U� 6= ; , then the (transition) map between' � (U� \ U� ) and' � (U� \ U� )

' � � ' � 1
� j ' � (U� \ U� ) : ' � (U� \ U� ) ! ' � (U� \ U� )

is differentiable. Furthermore, this transition map must also have a differentiable inverse that has

continuous partial derivatives up to orderr .

( see Lee (2002) [18]).

DEFINITION 2.1.3. An m-dimensional manifold of classCr is a manifoldM along with anRm -valued

atlas of classCr onM . We will refer to a smooth manifold as an m-dimensional manifold of classC1 .

Example 1. (i) Naturally, any open set in the Euclidean space(Rm ; � 0); is an m-dimensional smooth

manifold. Here� 0(x; y) = kx � yk; wherek(u1; : : : ; um )k2 =
P

i =1 ;:::;m (ui )2:

(ii) The unit sphereSm = f x 2 Rm+1 : kxk = 1g is an example ofm-dimensional smooth manifold.

(iii) The product of ap- dimensional manifold with aq- dimensional manifold is a(p + q)- dimensional

manifold.

(iv) The space of 1-dimensional linear subspaces ofRm+1 ; called them-dimensional real projective space

and labeledRPm is an example of a m - dimensional manifold that is not a subset of an Euclidean
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space. An element ofRPm is often represented by[x] wherex 2 Rm+1 : Here[x] = [ y] () y = �x

for some� 6= 0 .

( see Lee (2002) [18]).

Note: A projective point[x] 2 RPm can also have aspherical representation, when thought of as a pair

of antipodal points onSm ; and[x] = f x; � xg; with kxk = 1 andx 2 Rm+1 : From this point on when

referring to a projective point we will use this particular representation. (see [2] or [21] )

The de�nitions of smoothness of diffeomorphism and differentiable curves will be needed for us to introduce

tangent vectors and tangent spaces which are an integral part of the asymptotic analysis we will conduct later.

DEFINITION 2.1.4. (smooth function) LetM be a smoothm-manifold, a functionf : M ! Rk is said

to besmoothif for everyp 2 M ; there exists a smooth chart(U; ' ) for M whose domain containsp and

such that the composite functionf � ' � 1 is smooth on the open subset' (U) � Rm : (see Lee (2002) [18]).

DEFINITION 2.1.5. (Smooth map between manifolds)

A functionF : M ! N between two smooth manifolds is differentiable, if for any charts(U; ' U ) on M

and(V; � V ) , onN , the composite map,� U � F � ' � 1
V

�
�
� (U\ V ) is differentiable of classC1 : The composite

map above is referred to as the local representative. (see Lee (2002) [18]).

DEFINITION 2.1.6. A diffeomorphism between (differentiable) manifoldsM andN is a differentiable

functionF : M ! N that has a differentiable inverse. Furthermore, we say thatM andN are diffeomor-

phic if there exists a diffeomorphism between them. (see Lee (2002) [18]).

DEFINITION 2.1.7. A differentiable curve (path) on a smooth manifoldM is a differentiable function

from an interval toM . Two such pathsc1 andc2, de�ned on a neighborhood of0 2 R are tangent atp if

c1(0) = c2(0) = p and there is a chart(U; ' U ) aroundp such that

(' U � c1)0(0) = ( ' U � c2)0(0)

(see Patrangenaru and Ellingson (2015) [21])

With the de�nition of differential curves we can now give a de�nition of tangent spaces which is more

useful for object data analysis.

DEFINITION 2.1.8. (Tangent vectors and tangent space)
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(i) The set of all paths tangent at p is called tangent vector� p at p = c(0), and is labeled� p = dc
dt (0) =

dc
dt

�
�
0.

(ii) The tangent spaceTpM at a pointp of a manifoldM is the set of all tangent vectors� p = dc
dt

�
�
0 to

curvesc : (� "; " ) ! M with p = c(0).

We will use the notations(p; � ); � p; and� for a tangent vector inTpM ; depending on how much emphasis

we wish to give to the pointp: (see Patrangenaru and Ellingson (2015) [21])

Example of tangent vectors

(E1) If e1; � � � ; em is the usual basis ofM = Rm andp 2 M the following partial derivatives

@
@x1

�
�
�
�
p

; � � � ;
@

@xm

�
�
�
�
p

are tangent vectors inTpRm : For i = 1 ; : : : ; m; @
@xi

�
�
p

is the tangent vector

ei =
dci

dt
(0) =

@
@xi

�
�
�
�
p

;

whereci (t) = p + tei :

(E2) Similarly, if (U; ' ) is a chart onM ; aroundp; @
@xi

�
� '
p

is the tangent vector

dci

dt
(0) =

@
@xi

�
�
�
�

'

p
;

whereci (t) = ' � 1(' (p) + tei ):

(E3) In another example, considerM = Sm regarded as a subset ofRm+1 ; then the tangent space atp 2 Sm

can be described as

TpSm = f (p; v); v 2 Rm+1 jvT p = 0g (2.1)

(E4) LetRPm be identi�ed with antipodal points (spherical representation) then if[x] = f x; � xg 2 RPm ,

the tangent space at[x] is described as

T[x]RPm = f ([x]; � ); � 2 Rm+1 j� T x = 0g (2.2)

(see Patrangenaru and Ellingson (2015) [21]).

PROPOSITION 2.1.1. Let (U; ' ) be a chart onM . ThenTp(M ) has a basis of tangent vectors

@
@x1

�
�
p ; � � � ; @

@xm
�
�
p where(x1; :::; xm ) is the system oflocal coordinatesassociated with the chart(U;  ):

Each vector� p 2 TpM can be written uniquely as a linear combination of@@x1
�
�
p ; � � � ; @

@xm
�
�
p and we

have� p =
P m

i =1 � i @
@xi

�
�
p

with any choice of charts onM and the numbers(� 1; � 2; ::::; � m ) are called the

components of� p with respect to the given coordinate system. ( see Lee (2002) [18])
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DEFINITION 2.1.9. (Tangent Bundle).

The tangent bundleTM of an m-dimensional manifoldM is the disjoint union of the tangent spaces at all

points ofM ; it has a2m-dimensional manifold structure. The tangent bundle is often represented by the

triple (TM ; � ; M ) where� is a naturalprojection mapand� : TM ! M is a differentiable map which

associates to each tangent vector its base point,�(( p; � p)) = p: (see Lee (2002) [18] or Patrangenaru and

Ellingson (2015) [21]).

DEFINITION 2.1.10 (Vector Fields). If M is a smooth manifold, avector �eld on M is a smooth section

of the projection map� ; that is a smooth mapY : M ! TM usually writtenp ! Y (p); with the property

that

� � Y = Id M ; (2.3)

or equivalently,Y (p) 2 TpM for eachp 2 M : (see Lee (2002) [18] or Patrangenaru and Ellingson (2015)

[21])

One may think of a vector �eld onM in the same way we think of vector �elds in Euclidean spaces: as an

arrow attached to each point ofM , chosen to be tangent toM and to vary smoothly from point to point.

The value of a smooth vector �eld at the pointp is a tangent vector at each pointp 2 M :

Example 2. If (U; (x i )) is any smooth chart onM , the assignment

p !
@

@xi

�
�
�
�
p

(2.4)

determines a smooth vector �eld onU, called the ithcoordinate vector �eldand denoted by @
@xi : ( see Lee

(2002) [18])

The set of all smooth vector �elds onM often denoted byT (M ) is an in�nite-dimensional vector space

under point wise addition and scalar multiplication:

(aY + bZ)(p) = aY(p) + bZ(p)

( see Lee (2002) [18])

DEFINITION 2.1.11. LetU � M be an open subset of an m-dimensional smooth manifold. A local frame

�eld is a system ofm vector �elds(V1; : : : ; Vm ) of TM overU whose valuesV1(p); : : : ; Vm (p) are linearly

independent inTpM for eachp 2 U ( see Lee (2002) [18] or Patrangenaru and Ellingson (2015) [21]).
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Recall that for any smoothm-manifoldM , the tangent bundle has a natural topology and smooth structure

that makes it into a smooth2m-dimensional manifold such that� : TM ! M is a smooth map. We can

therefore have maps from one tangent bundleTM to another tangent bundleTN : We now de�ne a special

map below.

DEFINITION 2.1.12. (Tangent Map)

(i) If f : M 1 ! M 2 is a differentiable function between manifolds, its tangent map is the function

df : TM 1 ! TM 2, given by

df

 
dc
dt

�
�
�
�
c(o)

!

=
d(f � c)

dt

�
�
�
�
f (c(o))

for all differentiable curvesc de�ned on an interval containing0 2 R.

(ii) The differential off at the pointp is the restriction of the tangent map, regarded as a linear function

dpf : TpM 1 ! Tf (p)M 2

df

 
dc
dt

�
�
�
�
p

!

=
d(f � c)

dt

�
�
�
�
f (p)

(2.5)

For the de�nition above please refer to Patrangenaru and Ellingson (2015) [21]. Note that the restriction

of df at the pointp is a linear function that sends a tangent vector ofM 1 to a corresponding tangent vector

of M 2: Such a linear map is also referred to as a push forward see Lee (2002) [18].

Data analysis on embedded manifolds will be the focus of our study. On such manifolds we can de�ne a

distance with very useful properties.

DEFINITION 2.1.13. (Embedding)

An embedding of a manifoldM in a Euclidean spaceRk is a differentiable one-to-one functionj : M !

Rk , for which

(i) the differentialdpj is a one-to-one function fromTpM to Tj (p)Rk at any pointp 2 M ; and

(ii) j is a homeomorphism fromM to j (M ) with metric topology induced by the Euclidean distance.

(see Patrangenaru and Ellingson (2015) [21])

REMARK 2.1.1. Given an embedded manifoldM with embeddingj : M ! j (M ) � Rk , we will,

throughout this manuscript, consider the corresponding metric space(M ; � j ) with the distance� j being

the chord distance de�ned in (1.2).
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Example 3. The unit sphereSm is a already embedded inRm+1 and the embedding is given by the inclu-

sion,� : Sm ! Rm+1 given by�(x) = x; 8x 2 Sm with usual Euclidean metric� 2
0(x; y) = kx � yk2

Example 4. The projective spaceRPm is embedded in the space of symmetric(m +1) � (m +1) matrices,

via the Veronese-Whitney embedding

j : RPm ! S (m + 1 ; R);

j ([x]) = xx T (2.6)

with the following metric onSym(m + 1) given by� 2
0(A; B ) = T r ((A � B )2), whereT r denotes the trace

of the matrix(A � B )2: (see Patrangenaru and Ellingson (2015) [21]) and Crane and Patrangenaru (2011)

[7])

The de�nition below will allow us to set up a correspondence between a basis of tangent vectors inTpM

and anm-tuple of linearly independent tangent vectors inTj (p)Rk :

DEFINITION 2.1.14. (Adapted frame �eld)

Assumep ! (f 1(p); :::; f m (p)) is a local frame �eld on an open subset ofM such that, for eachp 2

M ; (dpj (f 1(p)) ; :::; dpj (f m (p))) are orthonormal vectors inRk . A local frame �eld (e1(y); :::; ek (y))

de�ned on an open neighborhoodU � Rk is adapted to the embeddingj if it is an orthonormal frame �eld

and

er (j (p)) = dpj (f r (p)) ; r = 1 ; :::; m; 8 p 2 j � 1(U) (2.7)

( Patrangenaru and Ellingson (2015) [21])

2.2 Extrinsic means and sample means

The Fŕechet function on a complete metric space is the main tool by which we will introduce means on em-

bedded manifolds. It was introduced by Fréchet in 1948 [11]. LetX be a random vector from a probability

measureQ on Rm with mean vector�: The mean vector is also the value ofRm for which the expression

E[kX � pk2] (viewed as a function ofp) is minimized. This function ofp is none other than the Fréchet

function on the metric space(Rm ; � 0): Furthermore, forX 1; :::; X n iid random vectors from the distribution

Q onRm the sample mean is given byX = 1
n

P n
i =1 X i with �X ! p �: One thing we must note is that in the
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case of probability measures on Euclidean spaces we can easily estimate asymptotically the true mean via

the sample mean as de�ned above. This will not be the case for most metric spaces we will encounter such

as the sphere and the projective space, until we have a notion of mean, that is also a point on such object

spaces . We must hence revisit the de�nition of the mean and sample mean and it will start with us thinking

of it solely as the minimizer of some function, called Fréchet function. We will later give a more general

de�nition of a Fréchet function but �rst we must mention that for this section, the reader may assume that a

de�nition, an example, a theorem, property and most results can be found in the book by Patrangenaru and

Ellingson (2015) [21].

2.2.1 Extrinsic mean

Let M be anm-dimensional manifold and letBM be the Borel� -algebra generated by open sets ofM .

Let (
 ; A ; P r ) be a probability space. A random object (r.o.) onM is a functionX : 
 ! M ; such that

for any Borel setB 2 BM ; X � 1(B ) 2 A : To each r.o.X we associate a probability measureQ = PX on

BM given byQ(B ) = P r (X � 1(B )) : In general, a natural index of location for a probability measureQ

associated with a r.o.X on a complete metric spaceM with the distance metric� is theFr�echet mean. It is

the unique minimizer of theFr�echet function(see Fŕechet(1948) [11]), de�ned by

F (p) = E
�
� 2(p; x)

�
=

Z
� 2(p; x) Q(dx); (2.8)

whenever such a unique minimizer exists. Generally two types of distance on a manifoldM are considered:

1. A geodesic distance or arc distance. It is the Riemannian distance� g associated with Riemannian

structureg onM .

2. A chord distance� j associated with an embeddingj : M ! Rk : (see Patrangenaru and Ellingson

(2015) [21])

These two distances give rise to two types of statistical analysis on manifolds: an intrinsic analysis using an

arc distance and an extrinsic analysis based on a chord distance. We will focus on the latter.

From this point on, we will assume that(M ; � j ) is a complete metric space.

DEFINITION 2.2.1. Let Q be a probability measure onM with a distance� j . If F in (2:8) has a unique

minimizer, this minimizer is called the extrinsic mean ofQ and it is denoted� j;E (Q) or simply� E . If the

minimizer is not unique, the set of all minimizers is the extrinsic mean set.

(see Patrangenaru and Ellingson (2015) [21])
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DEFINITION 2.2.2. Let X 1; X 2; :::; X n be independent random variables with a common distributionQ

on the metric space(M ; � j ), and consider their empirical distribution̂Qn =
1
n

nX

k=1

� (X k ).

The extrinsic sample mean (set) is the extrinsic mean (set) ofQ̂n i.e. the (set of ) minimizer(s)̂p of Fn (p) =

1
n

P n
j =1 � 2

j (X j ; p). (see Patrangenaru and Ellingson (2015) [21])

DEFINITION 2.2.3. Assume� 0 is the Euclidean distance inRk . A pointx of Rk such that there is a unique

point p in M for which� 0(x; j (M )) = � 0(x; j (p)) is calledj -nonfocal. A point which is notj -nonfocal is

said to bej -focal.(see Patrangenaru and Ellingson (2015) [21])

The only focal point ofSm with the inclusion inRm+1 is 0m+1 : Note that the probability measureQ induces

a probability measurej (Q) onRk :

DEFINITION 2.2.4. A probability measureQ on M is said to bej -nonfocal if the mean� of j (Q) is a

j -nonfocal point. Ifx is a j -nonfocal point, its projection onj (M ) is the unique pointy = Pj (x) 2 j (M )

with � 0(x; j (M )) = � 0(x; y).(see Patrangenaru and Ellingson (2015) [21])

THEOREM 2.2.1. If � is the mean ofj (Q) in Rk , Then

(a) the extrinsic mean set is the set of all pointsp 2 M , with � 0(�; j (p)) = � 0(�; j (M ) and

(b) If � j;E (Q) exists then� exists and isj -nonfocal and� j;E (Q) = j � 1(Pj (� )) .

(see Patrangenaru and Ellingson (2015) [21])

THEOREM 2.2.2. The set of focal points of a sub-manifoldM of Rk is a closed subset ofRk of measure

0. (Patrangenaru and Ellingson (2015) [21])

The 2D sphere and the 3D projective space are manifolds of interest to us. Their extrinsic means will appear

and be used at various points in our study.

Example 5. (Spheres) Lets assume that we have a random objectX from aj -nonfocal probability measure

Q on Sm = f x 2 Rm+1 : kxk = 1g an m-dimensional sphere. For this particular space, thej -nonfocal

condition which guarantees the existence of aunique extrinsic mean is equivalent to requiring that the true

mean� �E 6= 0 2 Rm+1 :

The embedding and its corresponding projection are two functions that are essential in �nding and express-

ing our extrinsic mean. ForSm the embedding is the inclusion map

(
� : Sm ! Rm+1

� (x) = x
and the projection
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map is

(
P� : F c ! � (Sm )

P� (y) = y
kyk

whereF c = Rm+1 nf 0g is the set of� -nonfocal points inRm+1 : Now, if � is

the mean of� (Q) then the extrinsic mean is given by

� �E = � � 1 (P� (� )) =
�

k� k
(2.9)

Example 6. (Real projective spaces) We now assume that[X ] is a random object from aj -nonfocal pro-

bability measureQ on RPm : Much like in the example above we must have a clear expression of an em-

bedding and its corresponding projection and for real projective spaces the embedding of choice is theVW

(Veronese-Whitney) embedding mentioned in(2.6). With this choice of embedding

(i) The setF of focal points ofj (RPm ) 2 S+ (m + 1 ; R) is the set of matrices inS+ (m + 1 ; R)( space

of positive semi-de�nite symmetric matrices) whose largest eigenvalues are of multiplicity at least 2.

(ii) The projectionPj : S+ (m + 1 ; R)nF ! j (RPm ) assigns to each positive semi-de�nite matrixA

with a highest eigenvalue of multiplicity 1, the matrixj ([m]); wherem is a unit eigenvector ofA

corresponding to its largest eigenvalue.( see [6] or [21]. )

If X T X = 1 ; and in the ambient space the mean� = E
�
XX T

�
exists, then the VW mean is

� jE = j � 1(Pj (� )) = j � 1(j ([ (m + 1)]))

� j;E = [  (m + 1)] (2.10)

where� (a) and (a); a = 1 ; � � � ; m+1 are eigenvalues in increasing order and corresponding eigenvectors

of E
�
XX T

�
: (see Patrangenaru and Ellingson (2015) [21])

In particular:

Example 7(Extrinsic sample means forSm andRPm .). (i) AssumeQ is a nonfocal probability measure

on the manifoldSm andX = f X 1; :::; X ng are i.i.d.r.o's fromQ. Then the extrinsic sample mean is

given by

X � n =
�X n

k �X nk
(2.11)

where �X n =
1
n

� n
i =1 X i

(ii) Now letQ be V-W nonfocal probability measure on the manifoldRPm and[X ] = f [X 1]; :::; [X n ]g are

i.i.d.r.o's fromQ. Then the V-W sample mean is given by;

[X ]j n = [ g(m + 1)] (2.12)
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whered(a) andg(a); a = 1 ; � � � ; m + 1 are eigenvalues in increasing order and corresponding unit

eigenvectors ofJ =
1
n

nX

i =1

X i X T
i

( Patrangenaru and Ellingson (2015) [21])

PROPOSITION 2.2.1. Consider an embeddingj : M ! Rk . Assume(X 1; :::; X n ) is a random sample

from a j -nonfocal probability measureQ on M , and the sample mean vector �(j (X )) is j -nonfocal. Then

this extrinsic sample mean is given by

X E = j � 1 �
Pj

�(j (X ))
�

(2.13)

(see Patrangenaru and Ellingson (2015) [21])

Remark: At this point it is important to note that for an embedded smooth manifoldM into j (M ) � Rk ,

one can analyze data from an unknown probability distributionQ; with help of the various widely known

multivariate techniques and conduct inferences for extrinsic means, variances, etc.

THEOREM 2.2.3. AssumeQ is aj -nonfocal probability measure on the manifoldM andX = f X 1; :::; X ng

are i.i.d.r.o's fromQ, then the extrinsic sample meanX E is a strongly consistent estimator of the� j;E (Q):

( see Patrangenaru and Ellingson (2015) [21])

2.3 Central limit theorem for extrinsic sample means

A Central Limit Theorem for extrinsic sample means was given in Bhattacharya and Patrangenaru(2005)[6].

Let's assumeQ is aj -nonfocal probability measure on the manifoldM andX = f X 1; :::; X ng are i.i.d.r.o's

from Q. Consider the embedded random variablesj (X ) = f j (X 1); :::; j (X n )g as random vectors from the

probability measurej (Q) with mean vector� and assumej (Q) has �nite moments of order four. We can

apply the usual (multivariate) Central Limit Theorem for our sample of embedded random objects and get

the following convergence in distribution:

n1=2
�

j (X ) � �
�

! d N (0; �) (2.14)

wherej (X ) = 1
n

P n
i =1 j (X i ): Given the formula of the extrinsic sample mean, we will need to understand

the asymptotic behavior ofPj (j (X )) = j (X j;E ): We do so by relying on the following theorem.
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THEOREM 2.3.1 (Cramer's Delta Method). Let Yj ; j � 1 be i.i.d k-dimensional random vectors with

mean vector� and covariance matrix� = ( � ij ): For H : Rk ! Rp a vector-valued and continuously

differentiable function in a neighborhood of� we have the following asymptotic behavior

p
n[H ( �Y ) � H (� )] ! d D � H � V � Np

�
0; D � H � D � H T �

(2.15)

with D � H =
�

@Hj (z)
@xi

�
�
�
z= �

�

i =1 ;�;k;j =1 ;�;p
( see Patrangenaru and Ellingson (2015) [21], Theorem 2.8.5)

Using the Cramer's Delta method for the real-valued and continuously differentiable functionPj we get the

following for the random vectorsj (X ) = f j (X 1); :::; j (X n )g

n1=2
�

Pj (j (X )) � Pj (� )
�

! d D � Pj � V � Nk (0; � � ) ; (2.16)

where� � = D � Pj � D � PT
j : HerePj : F c ! j (M ) whereF is the set of focal points inj (M ): Note

that sinceF is a closed subset ofRk thusF c is an open subset ofRk a smoothk-manifolds and is itself

a smoothk-manifold. Lete1; e2; :::; en be the canonical basis ofRk and assume that(e1(y); :::; ek (y)) is

an adapted frame �eld aroundPj (� ) = j (� E ) i.e er (Pj (� )) = er (j (� E )) = d� E j (f r (p)) ; r = 1 ; : : : ; m

wherep ! (f 1(p); : : : ; f m (p) is our local frame �eld of interest. Thend� Pj (eb) 2 TPj (� ) j (M ) and we can

now represent this vector as a linear combination ofe1(Pj (� )) ; :::; em (Pj (� )) 2 TPj (� )Rk ;

d� Pj (eb) =
mX

a=1

[d� Pj (eb) � ea(Pj (� ))] ea(Pj (� )) ; 8 b = 1 ; :::; k (2.17)

d� Pj (eb) =
mX

a=1

� a;b ea(Pj (� )) where� a;b = [ d� Pj (eb) � ea(Pj (� ))]

Recall that using Cramer's Delta Method we have thatn1=2
�

Pj (j (X )) � Pj (� )
�

converges weakly to a

random vectorD � Pj � V � N k (0; � � ), with � � = D � Pj � D � PT
j where� is the covariance matrix

of j (X 1) w.r.t the canonical basise1; :::; ek : We can now express our covariance matrix� � using the new

representation of vectorsd� Pj (eb); 8 b = 1 ; :::; k

� � =

"
mX

a=1

� a;b ea(Pj (� ))

#

b=1 ;:::;k

�

"
mX

a=1

� a;b ea(Pj (� ))

#T

b=1 ;::;k

(2.18)

And note that

d� Pj (eb) � ea(Pj (� )) = 0 ; for a = m + 1 ; :::; k
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It is important to remember thatn1=2
�

Pj (j (X )) � Pj (� )
�

is a vector inRk with origin atPj (� ) = j (� E )

and as such it can be decomposed into component in the tangent spaceTj ( � E ) j (M ) and component of the

orthogonal complement of the tangent space atj (� E ): If we take the component in the tangent space then

asymptotic distribution we obtain is a distribution onTPj (� ) j (M ); a linear space. To illustrate this point we

start by de�ning tangential components which corresponds to tangent vectors inTpRk and are dependent on

the choice of basis elements of the tangent space of interest.

DEFINITION 2.3.1. The tangential componenttan( � ) of � 2 Rk w.r.t. the basisea(Pj (� )) 2 TPj (� ) j (M ); a =

1; 2; :::; m given by

tan( � ) =

2

6
4

e1(Pj (� ))T

...
em (Pj (� ))T

3

7
5 � = [ e1(Pj (� )) � �; : : : ; e m (Pj (� )) � � ]T (2.19)

( Patrangenaru and Ellingson (2015) [21])

We now get the following asymptotic for the tangential component ofPj

�
j (X )

�
� Pj (� )

n1=2 tan j ( � E )

�
Pj

�
j (X )

�
� Pj (� )

�
! d Nm (0; � j;E ) (2.20)

where

� j;E = AT � � A =

2

6
4

e1(Pj (� ))T

...
em (Pj (� ))T

3

7
5 � �

�
e1(Pj (� )) � � � em (Pj (� ))

�
(2.21)

The tangential component ofPj

�
j (X )

�
� Pj (� ) is a tangent vector inTj ( � E ) j (M ) and therefore its cor-

responding random vector(d� E j ) � 1 tan(Pj

�
j (X )

�
� Pj (� )) 2 T� E M converges asymptotically to a

multivariate normal with mean vector0 and covariance matrix w.r.t. the basisf 1(� E ); :::; f m (� E ) given by

� j;E = ( AT D � Pj ) � ( AT D � Pj )T (2.22)

where under the new basis

(AT D � Pj )ab = [ d� Pj (eb) � ea(Pj (� ))] =

2

6
4

d� Pj (e1) � e1(Pj (� )) : : : d� Pj (em ) � e1(Pj (� ))
...

...
...

d� Pj (e1) � em (Pj (� )) : : : d� Pj (em ) � em (Pj (� ))

3

7
5 (2.23)
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DEFINITION 2.3.2. The matrix� j;E given by(2.22)is the extrinsic covariance matrix of thej -nonfocal

distributionQ of X 1 w.r.t. the basisf 1(� E ); :::; f m (� E ). Whenj is �xed in a speci�c context, the subscript

j will be omitted. If in addition,� E is invertible (of rankm) we can de�ne thej -standardized mean vector

Z j;n := n
1
2 �

� 1
2

E

�
X

1
j :::X

m
j

� T
; (2.24)

where
�

X
1
j :::X

m
j

� T
are the coordinates of the tangent component ofj (X j;E ) � �( � j;E (Q)) ; w.r.t the basis

ea(Pj (� )) 2 TPj (� ) j (M ); a = 1 ; 2; :::; m: ( Patrangenaru and Ellingson (2015) [21])

PROPOSITION 2.3.1. Assumef X r gn
r =1 are i.i.d.r.o's from thej -nonfocal distributionQ, with �nite mean

� = E(j (X 1)) , and assume the extrinsic covariance matrix� j;E of Q is �nite. Let (e1(y); :::; ek (y)) be an

orthonormal frame �eld adapted toj . Then

(a) the tangential component of the difference betweenj (X j;E ) and the�( � j;E (Q)) has asymptotically a

distribution that is approximately multivariate normal the tangent space toM at � j;E (Q) with mean0

and covariance matrixn� 1� j;E : and

(b) if � j;E is nonsingular, the standardized mean vectorZ j;n given in (2:24) converges weakly to aNm (0m ; I m )-

distributed random vector.

( Patrangenaru and Ellingson (2015) [21])

The CLT for extrinsic sample means stated in Proposition 2.3.1 cannot be used to construct con�dence

regions for extrinsic means since the population extrinsic covariance matrix is unknown. In order to de�ne

our con�dence regions we will need to have the following consistent estimator for� j;E :

Sj;E;n =
h
dj (X )Pj (eb) � ea(Pj (j (X )))

i

a=1 ;:::;m
Sj;n

h
dj (X )Pj (eb) � ea(Pj (�( X )))

i T

a=1 ;:::;m
(2.25)

is a consistent estimator of� j;E : With

Sj;n = n� 1
nX

r =1

�
j (X r ) � j (X )

� �
j (X r ) � j (X )

� T
(2.26)

a consistent estimator of� the covariance matrix ofj (X 1) anddj (X )Pj (eb) consistent estimator ofd� Pj (eb)

andea(Pj (j (X ))) a consistent estimator ofea(Pj (� )) :(see Bhattacharya and Patrangenaru [6] also Pa-

trangenaru and Ellingson (2015) [21]).
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THEOREM 2.3.2. Assumej : M ! Rk is a closed embedding ofM in Rk . Let f X r gn
r =1 be a random

sample from thej -nonfocal distributionQ, and let � = E[j (X 1)] and assumej (X 1) has �nite second

order moments and the extrinsic covariance matrix� j;E of X 1 is nonsingular. Let(e1(y); :::; ek (y)) be

an orthonormal frame �eld adapted toj . If Sj;E;n is given by (2:25), then forn large enoughSj;E;n is

nonsingular (with probability converging to one) and

(a) the statistic

n
1
2 S

� 1
2

j;E;n tan(Pj (j (X )) � Pj (� ) (2.27)

converges weakly toNm (0m ; I m ), so that

n




 S

� 1
2

j;E;n tan(Pj (j (X )) � Pj (� )






2

(2.28)

converges weakly to� 2
m and

(b) the statistic

n
1
2 S

� 1
2

j;E;n tanPj (j (X )) (Pj (j (X )) � Pj (� ) (2.29)

converges weakly toNm (0m ; I m ), so that

n




 S

� 1
2

j;E;n tanPj (j (X )) (Pj (j (X )) � Pj (� )






2

(2.30)

converges weakly to� 2
m and

( Patrangenaru and Ellingson (2015) [21])

COROLLARY 2.3.1. Under the hypothesis of Theorem (2:3:2) , a con�dence region for� E of asymptotic

level1 � � is given by

(a) Cn;� = j � 1(Un;� ) whereUn;� = f Pj (� ) 2 j (M ) : n




 S

� 1
2

j;E;n tan
�

Pj (j (X )) � Pj (� )
� 





2

�

� 2
m;1� � g or by

(b) Dn;� = j � 1(Vn;� ) whereVn;� = f Pj (� ) 2 j (M ) : n




 S

� 1
2

j;E;n tanPj (j (X ))

�
Pj (j (X )) � Pj (� )

� 




2

�

� 2
m;1� � g

( Patrangenaru and Ellingson (2015) [21])

23



For small samples, we use nonparametric bootstrap con�dence regions. Now lets recall that iff X r gn
r =1 is

a random sample from an unknown distributionQ; andf X �
r gn

r =1 is a (bootstrap) random sample from the

empirical distributionQ̂n ; conditionally given byf X r gn
r =1 , then the statistic in Theorem 2.3.2 (a),

T(X; Q ) = n




 S

� 1
2

j;E;n tan(Pj (j (X )) � Pj (� )






2

(2.31)

has the bootstrap analog

T(X � ; Q) = n




 S� � 1

2
j;E;n tanPj (j (X )) (Pj (j (X � )) � Pj (j (X ))






2

(2.32)

WhereT(X � ; Q); S�
j;E;n is obtained by substitutingf X r gn

r =1 by f X �
r gn

r =1 and also by replacing� by

j (X ): From this point on, we will assume thatj (Q); , has �nite moment of suf�ciently high order. This

result is automatic for compact manifolds such asSm andRPm : The following theorem addresses the order

of convergence related to our bootstrap statistic.

THEOREM 2.3.3. Let f X r gn
r =1 be a random sample from hej -nonfocal distributionQ which has a

nonzero absolutely continuous component w.r.t. the volume measure onM induced byj . Let� = E [j (X 1)]

and assume the covariance matrix� of j (X 1) is de�ned and the extrinsic covariance matrix� j;E is non-

singular and letp ! (e1(p); : : : ; eN (p)) an orthonormal frame �eld adapted toj: Then the distribution

of

n




 S

� 1
2

j;E;n tan(Pj (j (X )) � Pj (� )






2

can be approximated by the bootstrap extrinsic Hotelling distribution of

n




 S� � 1

2
j;E;n tanPj (j (X )) (Pj (j (X � )) � Pj (j (X ))






2

with a coverage errorOp(n� 2): ( Patrangenaru and Ellingson (2015) [21])

We will encounter cases whenSj;E;n is dif�cult to compute and for such situations,we will rely on the

following result.

PROPOSITION 2.3.2. on the asymptotic distribution ofn


 tan(Pj (j (X )) � Pj (� )





2
can be approxi-

mated uniformly by the bootstrap distribution of

n


 tan(Pj (j (X � )) � Pj (j (X ))





2
(2.33)

to provide a con�dence region for� E with coverage error no more thanOp(n� m
m +1 ): ( see Patrangenaru

and Ellingson (2015) [21])
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REMARK 2.3.1. For bootstrap con�dence regions in Theorem 2.3.3 the bootstrap analog of Corollary

6.2.1 (a) is preferable. The corresponding100(1� � )% con�dence region isC �
n;� := j � 1(U �

n;� ) with U �
n;�

given by

U �
n;� = f Pj (� ) 2 j (M ) : nkS� 1=2

j;E;n tan(Pj (j (X )) � Pj (� )k2 � c�
1� � g; (2.34)

wherec�
1� � is the upper100(1� � )% point of the values

kS� � 1=2
j;E;n tanPj (j (X ) (Pj (j (X � )) � Pj (j (X )k2 (2.35)

among the bootstrap re samples. And the region given by 2.34 has a coverage errorOp(n� 2):

2.4 Projective shape space

The bulk of our analysis will directly involveP� k
3 the 3D projective shape space ofk-ads (landmarks)

in general position. We will conduct a landmark based analysis which will involve recovering the 3D

coordinates of our labeled points.

2.4.1 Representation of projective shapes

We associate ashapeto a con�guration ofk labeled points. We are interested in conducting our analysis on

projective shapesbut �rst we start with de�ning the a projective transformation of elements in a Euclidean

space.

DEFINITION 2.4.1. Generally, a projective transformation� of Rm is de�ned in terms of a matrixA =

(aj
i ) 2 GL(m + 1 ; R), via � (x1; : : : ; xm ) = ( y1; : : : ; ym ),

yj =

P m
i =1 aj

i x i + aj
m+1P m

i =1 am+1
i x i + am+1

m+1

=
A j � u

Am+1 � u
; 8j = 1 ; : : : ; m: (2.36)

whereA j is thej -th column ofA andu = ( x1; : : : ; xm ; 1)T :

( Patrangenaru and Ellingson (2015) [21])

REMARK 2.4.1. Two con�gurations of points inRm have the same3D shapeif they differ by a projective

transformation ofR3: However, in applications, such projective transformations act only on subsets ofR3

and consequently they do not have a group structure under composition.
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Note that if one multiplies the matrixA by a nonzero constant, then the equation (2.36) does not change;

therefore the groupPGL(m) of projective transformations ofRm has dimension(m + 1) 2 � 1 = m(m +

2): Furthermore,Rm can be identi�ed with an open af�ne subset ofRPm ; any con�guration of points

f x1; : : : ; xkg in Rm can be regarded as a con�guration projective pointsf p1; : : : ; pkg in RPm : An example

of such an identi�cation is the af�ne embeddingh : Rm ! RPm given by

h(x) = h((x1; : : : ; xm )) = [ x1 : � � � : xm : 1] (2.37)

(see Patrangenaru and Qiu (2014) [25]).

The pseudo group action by projective transformations on open dense subsets ofRm is extended to a group

action of the projective groupPGL(m): And the group action is given by

� : PGL(m) � RPm ! RPm

� ([A]; [x]) = [ Ax ]; 8A 2 GL(m + 1 ; R); 8 x 2 Rm+1 (2.38)

Note that given the matrixA in the projective transformation� in 2.36 andu we have the following vector

~u = Au = (( A1 � u); : : : ; (Am � u); (Am+1 � u))T we now get the following equality

[Au] = [ ~u1 : � � � : ~um : ~um + 1 ] =
�

~u1

~um + 1 : � � � :
~um

~um + 1 : 1
�

(2.39)

where ~u i

~u m +1 = yi for i = 1 ; : : : ; m: And we refer to(y1; : : : ; ym ) as the inhomogeneous (af�ne) coordinates

of the point[~u] 2 RPm :

Therefore, rather then considering projective shapes of con�gurations inRm we consider projective shapes

of con�gurations in the projective spaceRPm :

DEFINITION 2.4.2. Two sets of labeled pointsf [xa;1]; : : : ; [xa;k ]g � RPm ; a = 1 ; 2 have the same pro-

jective shape if there is a projective transformation� : RPm ! RPm , such that� ([x1;j ]) = [ x2;j ]; 8 j =

1; : : : ; k: (see Patrangenaru and Qiu (2014) [25]).

In projective shape analysis it is preferable to employ coordinates invariant with respect to the group

PGL(m). To create such coordinates we will need to use a projective frame.

DEFINITION 2.4.3. A projective frame� = ( p1; : : : ; pm+2 ) in RPm is an ordered set ofm + 2 projective

points in general position. Note thatk points inRPm are in general position if their linear span isRPm :

For pi ; i = 1 ; : : : ; m + 2 with the spherical representationpi = f x i ; � x i g x i 2 Rm+1 , this means that for
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f x1; : : : ; xm+2 g any subset of sizem + 1 form a linear span ofRm+1 : ( Patrangenaru and Ellingson (2015)

[21])

An example of projective frame inRPm is thestandard projective frame� 0 = ([ e1]; : : : ; [em+1 ]; [e1 + ::: +

em+1 ]):

PROPOSITION 2.4.1. Given two projective frames� 1 = ( p1;1; : : : ; p1;m+2 ) and� 2 = ( p2;1; : : : ; p2;m+2 );

there is a unique� 2 PGL(m) with � (p1;j ) = p2;j ; j = 1 ; : : : ; m + 2 : (see Mardia and Patrangenaru

(2005) [20]).

A projective transformation takes a projective frame to a projective frame, and its action onRPm is deter-

mined by its action on a projective frame.

DEFINITION 2.4.4. The projective coordinate(s)of a point p = [ x1 : � � � : xm+1 ] 2 RPm w.r.t. a

projective frame� = ( p1; : : : ; pm+2 ) as being given by

p� = � � 1(p) (2.40)

where� is a projective (transformation) map taking the standard projective frame� 0 to �; these coordinates

have automatically the invariance property. ( Patrangenaru and Ellingson (2015) [21])

PROPOSITION 2.4.2. Assumeu1; : : : ; uk are points inRm : We then identify the �rstm + 2 points with

~u1; : : : ; ~um+2 in RP3 where~ui = [ ui
1 : ui

2 : � � � : ui
3 : 1] for i = 1 ; : : : ; m + 2 : If we consider them + 1 by

m + 1 matrixUm = [~uT
1 ; : : : ; ~uT

m+1 ]; the projective coordinate of[~u] with respect to� are given by

p� = [ y1(u) : : : : : ym+1 (u)];

where yi (u) =
vi (u)

vi (um + 2)
with v (u) = U � 1

m ~uT (2.41)

( Patrangenaru and Ellingson (2015) [21])

DEFINITION 2.4.5. A projective shapeof a k-ad (con�guration ofk labeled points) is the orbit of that

k-ad under projective transformations. If thek-ad is regarded as a point on(RPm )k , then such a trans-

formation acts at the same time on each point of thek-ad; therefore the action of PLG(m) is the diagonal

action of this group on(RPm )k ,

� k (p1; :::; pk ) = ( � (p1); :::; � (pk ))

( Patrangenaru and Ellingson (2015) [21])
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Now, lets consider the setG(k; m) of k-ads(p1; :::; pk ) with k > m + 2 for which � = ( p1; :::; pm+2 )

is a projective frame. Once the �rstm + 2 points are used to create a projective frame, we now use the

remaining projective coordinates(p�
m+3 ; : : : ; p�

k ) to uniquely represent our projective shape ofk-ads with

respect to its projective frame�: Them-dimensional projective shape space of agenerick-ad is determined

by theprojective coordinates(p�
m+3 ; :::; p�

k ) of k � m � 2 of its points, relative to other(m + 2) of its

points that form a projective frame. Using the projective coordinates(p�
m+3 ; : : : ; p�

k ) on can show thatP� k
m

is a manifold diffeomorphic to(RPm )k� m� 2. The drawback of this representation is that the resulting

analysis may depend on the projective frame selection. But on the other hand the projective shape space has

a manifold structure allowing us to use the asymptotic theory for means on manifolds we introduced in the

previous subsections.

REMARK 2.4.2. We will now use interchangeably the notationP� k
m and(RPm )k� m� 2 to refer to the pro-

jective shape space ofk-ads inm-dimensions. Furthermore, we will now represents an elementy 2 P� k
m

by y = ([ x1]; : : : ; [xq]) whereq = k � m � 2 and [x i ] = p�
j is a projective coordinate with respect to

� = ( p1; : : : ; pm+2 ):

2.4.2 VW mean and sample mean on(RP3)k� 5

We will look at samples of random projective shapes ofk-ad (k � 5) in general position including a

projective frame inRP3: The corresponding 3D projective space ofk-ad is given byP� k
3 = ( RP3)k� 5 and

is an embedded manifold. The embedding of choice is the Veronese-Whitney embedding on(RPm )q with

q = k � m � 2 and the embedding is denotedj k : But before we formally de�ne this map, we will recall the

VW embedding onRPm is de�ned by

j : RPm ! S+ (m + 1 ; R)

j ([x]) = xx T ; kxk = 1 ; and x 2 Rm+1

j mapsRPm into a
� 1

2(m + 1)( m + 2)
�
-dimensional Euclidean hypersphere in the spaceS(m + 1 ; R),

where the Euclidean distance between two symmetric matricesA andB is

� 0(A; B ) = T r ((A � B )2) (2.42)

(see Bhattacharya and Patrangenaru (2005) [6]).
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PROPERTY 2.4.1. The VW embedding onRPm is an equivariant embedding. It means that the special

orthogonal groupSO(m + 1) of orthogonal matrices with determinant+1 acts as a group of isometries on

RPm and it also acts on the left onS+ (m + 1 ; R); the set of nonnegative de�nite symmetric matrices with

real coef�cients. This left action is given byW � A = W AW T for W 2 SO(m + 1) andA 2 S+ (m + 1 ; R)

(see Bhattacharya and Patrangenaru (2005) [6]). Also

j (W � [x]) = W � j ([x]); 8 W 2 SO(m + 1) ; 8 [x] 2 RPm (2.43)

DEFINITION 2.4.6. The VW embedding on(RPm )q is an equivariant embedding given by

j k : (RPm )q ! (S+ (m + 1 ; R))q

j k (y ) = ( j ([x1]); :::; j ([xq])) ; y = ([ x1]; : : : ; [xq]) (2.44)

where[xs] 2 RPm for s = 1 ; : : : ; q with kxsk = 1 and xs 2 Rm+1 and j is the VW embedding on

RPm : This function embed the manifold(RPm )q in the Euclidean spaceE = (( S(m + 1 ; R))q; hh; ii )

with scalar product and metric given by

hhA ; B ii =
qX

i =1

T r(A i B i )

dq
0(A ; B ) =

qX

i =1

T r((A i � B i )2) (2.45)

with A = ( A1; : : : ; Aq) andB = ( B1; : : : ; Bq): ( see Crane and Patrangenaru (2011) [7].)

For our Extrinsic analysis we will require a de�nition of the projection of the VW embedding of the projec-

tive shape space.

DEFINITION 2.4.7. Let F q � (S+ (m + 1 ; R))q be the set of focal points ofj k ((RPm )q), the projection

Pj k : (S+ (m + 1 ; R))qnF q ! j k (RPm )q) is given by

Pj k (A ) = ( Pj (A1); :::; Pj (Aq)) = j k ([m1]; :::; [mq]) (2.46)

where fori = 1 ; : : : ; q the projectionPj : S+ (m + 1 ; R)nF ! j (RPm ) assigns to each positive semi-

de�nite matrixA i with a highest eigenvalue of multiplicity 1, the matrixj ([mi ]); wheremi is a unit eigen-

vector ofA i corresponding to its largest eigenvalue. AndF � S+ (m + 1 ; R) is the set of focal points of

j (RPm ): ( see Crane and Patrangenaru (2011) [7].)
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Now that we have properly, de�ne an embeddingj k and its corresponding projectionPj k we will introduce

the Extrinsic mean and sample mean on the projective shape space.

DEFINITION 2.4.8. Let Y = ([ X 1]; : : : ; [X q]) with be a random object from aj k -nonfocal probability

measureQ on (RPm )q whereq = k � m � 2: The corresponding VW mean is given by

� j k = ([  1(4)]; :::; [ q(4)]) (2.47)

8 s = 1 ; ::; q; (� s(a);  s(a)) ; a = 1 ; :::; m + 1 are eigenvalues in increasing order and corresponding

eigenvectors ofE(X s(X s)T ): ( see Crane and Patrangenaru (2011) [7].)

DEFINITION 2.4.9. Let f Yr gn
r =1 be an i.i.d. random sample de�ned on(RPm )q from Veronese-Whitney-

nonfocal distributionQ: The corresponding sample mean extrinsic projective shape, in the multi-axial rep-

resentation, is given by

Y j k ;n = ([ g1(4)]; :::; [gq(4)]) (2.48)

where fors = 1 ; : : : ; q (ds(a); gs(a)) ; a = 1 ; :::; 4 are the eigenvalues in increasing order and correspon-

ding eigenvectors ofJs =
1
n

nX

r =1

X s
r (X s

r )T : ( see Crane and Patrangenaru (2011) [7].)

2.4.3 Lie group structure of the 3D projective shape space

In this section we introduce a very useful feature of the 3D projective shape space under our usual projective

frame representation. Unlike in other dimensions, the3D real projective spaceRP3 has aLie groupstruc-

ture. This additional property is important and will allows to perform useful binary operations we would not

generally have for most smooth manifolds. we now de�ne this group structure on manifolds.

DEFINITION 2.4.10. A Lie group is a smooth manifoldGthat is also a group in the algebraic sense, with

the property the the multiplication map� and the inversion mapi : G ! G are both smooth. (see Lee

(2002) [18]

Note that under our spherical representation,RP3 is the quotientS3=f x � � xg and if x; y 2 S3(a group

of quaternions of norm one) then if follows that the multiplication

[p1] � [p2] = [ p1 � p2]; for p 1; p2 2 S3: (2.49)
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where(�) is the quaternion multiplication is a well de�ned Lie group multiplication onRP3. For more on

the quaternion multiplication please refer to Crane and Patrangenaru (2011) [7]. And for[pi ] = [ x1 : y1 :

z1 : t1]; i = 1 ; 2 an explicit formula for our Lie group multiplication is given by

[p1] � [p2] = [( t1x2 � x1t2 + y1z2 � z1y2) : ( t1y2 � y1t2 + z1x2 � x1z2)

: (t1z2 � z1t2 + x1y2 � y1x2) : ( t1t2 � x1x2 � y1y2 � z1z2)] (2.50)

Also for [p] = [ x : y : z : t] 2 RP3 with kpk = 1 , its conjugate is[�p] = [ � x : � y : � z : t] 2 RP3, the

inverse map onRP3 is given by

[p]� 1 = [�p]; (2.51)

and the identity of this Lie group is1RP 3 = [0 : 0 : 0 : 1]. Recall that the projective shape space is

diffeomorphic to(RP3)q; (q = k � 5) . Therefore with this identi�cation,P� k
3 inherits a Lie group

structure from the group structure ofRP3. The Lie group multiplication in(RP3)q is given by

([p1]; : : : ; [pq]) � q ([p0
1]; : : : ; [p0

q]) = ([ p1] � [p0
1]; : : : ; [pq] � [p0

q]) (2.52)

And the identity element of this group is given by

1(RP 3 )q = ([0 : 0 : 0 : 1]; : : : ; [0 : 0 : 0 : 1]); (2.53)

and givenp = ([ p1]; : : : ; [pq]) the inverse is

p � 1 = �p = ([�p1]; : : : ; [ �pq]) (2.54)

( see Crane and Patrangenaru (2011) [7].)

2.5 Homogeneous spaces and two sample means tests for unmatched pairs

The bene�ts of an added Lie group structure have been exploited especially in hypothesis testing for two

sample means of matched pairs see Crane and Patrangenaru (2011) [7]. Recall that for a large sample of

observations from a matched pair(X; Y ) of random vectors inRm , one may estimates the difference vector

D = Y � X to eliminate much of the in�uence of extraneous unit to unit variation without increasing the

dimensionality. Crane and Patrangenaru extended this technique to paired r.o.'s on an embedded Lie group
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that is not necessarily commutative. AssumingX andY are paired r.o.'s on a Lie group(G; � ). Thechange

from X to Y was de�ned to beC = X � 1 � Y: And a test for no mean change fromX to Y is one for the

null hypothesis

H0 : � j = 1 G

where1G is the identity ofG and � j is the extrinsic mean ofC with respect to the embeddingj (see

Patrangenaru and Qiu (2014) [25] and Crane and Patrangenaru (2011) [7]). In Mathematical Statistics it

makes sense to consider the equality of means on a smooth object spaceM ; with an action of a Lie group

G; only for those means that lie on the same orbit ( see Patrangenaru and Ellingson (2015) [21], Chapter 3),

which a good reason of considering smooth object spaces made of one orbit only.

For pairs of unmatched random objectsX andY on Lie groups we cannot use the new random object

C mentioned above. To circumvent this dif�culties, we look tohomogeneous spaces.

DEFINITION 2.5.1. (see Patrangenaru and Qiu (2014) [25])

A left action of a groupGon aM ; is a function� : G � M ! M such that

� (1G; x) = x; 8 x 2 M ;

� (g; � (h; x)) = � (g � h; x); 8 g 2 G; 8x 2 M (2.55)

DEFINITION 2.5.2 (Homogeneous space). (see Patrangenaru and Qiu (2014) [25])

Assume� : G � M ! M is a left action of a groupG on M and de�ne the orbitG(x) of a pointx 2 M

as the setf � (k; x); k 2 K g: ThenM is aG- homogeneous space if there is a pointx s.t. G(x) = M :

In the caseM is a manifold, we assume in addition that(G; � ) is a Lie group and the action� is smooth. A

Lie group(G; � ) is automatically aG-homogeneous space, for the action� = � : Examples of object spaces

that are homogeneous spaces:

� spaces of directions (M = Sm ; m = 1 ; 2), spaces of dihedral angles (M = ( S1)k ),

� the spaces of shapes of planark-ad's (M = CP k� 2: (see [16])

� spaces of shapes 2D contours (M = ( P(H); H Hilbert space), spaces of cell �laments (M = RP2 �

(0; 1 ) (see Huckemann [14].)

DEFINITION 2.5.3. (see Patrangenaru and Qiu (2014) [25])

M has a simply transitive Lie groupG; if there is a Lie group action� : G � M ! M , with the property

that givenx 2 M ; for any objecty 2 M ; there is a uniqueg 2 G such that� (g; x) = y:
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Let M be aG-homogeneous space, whereM is an embedded manifold and(G; � ) a Lie group that acts

simply transitively onM via a smooth left action� : G � M ! M . For a = 1 ; 2, let X a;1; � � � ; X a;na

be independent random samples de�ned onM , from a distributionQa, with the extrinsic means� 1;j ; � 2;j

and with the corresponding extrinsic covariance matrices� 1;j ; � 2;j , wherej : M ! RN is the embedding.

Then, a two-sample hypothesis testing problem can be formulated as follows

H0 : � 1;j = � (� 2;j ; � ) vs. H1 : � 1;j 6= � (� 2;j ; � );

for � 2 G. Now for a �xed object� 2;j the mapping� � 2j : G ! M ; � � 2j (g) = � (� 2j ; g); 8 g 2 G is

one-to-one, and we can now rewrite the hypothesis problem from above as follows

H0 : (� � 2;j ) � 1(� 1;j ) = � vs. H1 : (� � 2;j ) � 1(� 1;j ) 6= �; (2.56)

(see Patrangenaru and Qiu (2014) [25]) We recall the following

THEOREM 2.5.1. (see Patrangenaru and Qiu (2014) [25])

For a = 1 ; 2, let X a;1; � � � ; X a;na identically independent distributed random objects (i.i.d.r.o.'s) from the

independentj a-nonfocal probability measuresQa with �nite extrinsic moments of orders; s � 4 on them

dimensional manifoldM on which the Lie groupG acts simply transitively. Letn = n1 + n2 and assume

limn!1
n1
n ! � 2 (0; 1): Let ' be an af�ne chart de�ned on an open neighborhood of1G with ' (1G) = 0 g ;

andL � the left translation by� 2 G: Then underH0 (2.56),

(i) The sequence of random vectorsn1=2
�
' � L � 1

� (H ( �X 1;E ; �X 2;E ))
�

converges weakly toNm (0m ; � J ),

for some covariance matrix� J that depends linearly on the extrinsic covariance matrices� 1;E ; � 2;E :

(ii) If (i) holds and� is positive de�nite, then the sequence

n
�
' � L � 1

� (H ( �X 1;E ; �X 2;E ))
� T

� � 1
J

�
' � L � 1

� (H ( �X 1;E ; �X 2;E ))
�

converges weakly to� 2
m distribu-

tion.

Furthermore, assuming that� J is positive de�nite, given that̂� J is a consistent estimator for� J ; the

asymptoticp-value for the hypothesis testing problemH0 is given byp = P(T � t2
� ) where

t2
� = n

�
' � L � 1

� (H ( �X 1;E ; �X 2;E ))
� T

�̂ � 1
J

�
' � L � 1

� (H ( �X 1;E ; �X 2;E ))
�

(2.57)

andT has a� 2
m distribution. (see Patrangenaru and Qiu (2014) [25] )

If the distributions are unknown and the samples are small an alternative nonparametric bootstrap technique
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(see [8]) may be used. Ifmax(n1; n2) � m
2 , the pulled sample covariancê� J in 2.57 does not have an

inverse, and pivotal nonparametric bootstrap methodology can not be applied. In this case one can use

non pivotal bootstrap methodology for the two sample problemH0 which involves a bootstrap con�dence

region.

THEOREM 2.5.2. (see Patrangenaru and Qiu (2014) [25])

Under hypothesis of Theorem3:1(i ); assume in addition, that fora = 1 ; 2 the support of the distribution

of X a;1 and the extrinsic mean� a;E are included in the domain of the chart' and ' (X a;1) has absolutely

continuous component and �nite moments of suf�ciently high order. Then the joint distribution of

V = n1=2 �
' � L � 1

� (H ( �X 1;E ; �X 2;E ))
�

(2.58)

can be approximated by the bootstrap joint distribution of

V � = n1=2 �
' � L � 1

� (H ( �X �
1;E ; �X �

2;E ))
�

(2.59)

with an error Op(n� 1=2), where, fora = 1 ; 2 �X �
a;E are the extrinsic means of the bootstrap re samples

X �
a;r a ; ra = 1 ; : : : ; na: givenX a;r a ; ra = 1 ; : : : ; na:

COROLLARY 2.5.1. The large samplep-value for the hypothesis testing problemH0 (2.56) is given by

p = Pr(T > nV T �̂ J V) whereT has a� 2
m ) distribution andV is given by equation(2.58) and �̂ J is

consistent estimator of the extrinsic covariance matric ofH ( �X 1;E ; �X 2;E ):

When the sample size is small, we use Efron's bootstrap , and the hypothesis problem in (2.56) can be solved

by using the following100(1� � )% bootstrap con�dence region for' � L � 1
� (H (� 1;j ; � 2;j )) :

The concepts presented in sections 2.2 through 2.4 are essential to our statistical analysis in object spaces.

We will be able to take advantage of the asymptotic theory developed in section 2.3 (i.e CLT for extrinsic

sample means and con�dence regions) to conduct hypothesis testing problems on manifolds. Recall from

section 2.4 that this space has a Lie group structure with the multiplication operation inherited from the

quaternion multiplication onS3 � R4. Therefore a 3D object analysis based on landmarks can make use of

the recently developed nonparametric techniques for two sample tests on Lie groups (see [25, 21]). We em-

phasize that the reconstructed con�guration of 3D landmarks obtained from pairs of non calibrated camera

images, is unique up to a projective transformation in 3D, as noticed in [23]; this allows to analyze without
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ambiguity the projective shapes of such con�gurations (see [23]). The developed statistical analysis is per-

formed for samples of pictures of faces, without making any distributional assumption for the corresponding

3D projective shapes of human facial surfaces.
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CHAPTER 3

TWO SAMPLE TEST FOR UNMATCHED PAIRS OF 3D
PROJECTIVE SHAPES

In this chapter I use the two sample hypothesis testing method for extrinsic means, to differentiate between

two 3D scenes of the same kind ( faces, �owers, etc...), within the framework of 3D projective shape analysis

as developed in [7, 21, 25], based on small samples of digital camera images. The analysis is conducted on

the space of 3D projective shapes ofk-ads in general positionP� k
3 that contain a projective frame at given

landmarks labels, which is homeomorphic toM = ( RP3)k� 5 (see Mardia and Patrangenaru [20]).

In section 3.1 I apply the theory presented in section 2.5 to conduct a two sample test for unmatched pairs

on (RP3)k� 5; viewed as a Lie group. In section 3.2 I perform the statistical analysis for sets of pictures of

faces along with conveniently selected anatomical landmarks. I make no distributional assumptions for our

hypothesis testing methods . The data consist of three sets of images, one female face and two male faces.

In Section 3.3 I discuss the process involved in collecting the data sets via MATLAB and introduce a new

data collection tool named Agisoft which offers signi�cant bene�ts and improve the speed and accuracy

involved in data collection.

3.1 Two sample test for VW means for unmatched pairs on(RP3)q

For a statistical analysis of 3D projective shapes, we are lead into considering r.o.'sY on(RP3)q that have a

VW-mean ( have an extrinsic mean w.r.t. the VW-embeddingj k ): And sinceM = ( RP3)q; q = k � 5 has a

Lie group structure (see Chapter 2), and that a Lie group is a homogeneous manifold with a simply transitive

Lie group action, we can take advantage of the methodology introduced in the previous chapter. The large

sample distribution of the tangential component of the mean change between the extrinsic sample means of

two random objects on an embedded Lie groupM can be found in [25]. The probability measurePY on

(RP3)q; associated with such a r.o. is said to beVW-nonfocal probability measureon (RP3)q: The VW-

mean of a VW-nonfocal probability measurePY ; Y = ([ X 1]; :::; [X q]); (X s)T X s = 1 ; 8 s = 1 ; : : : ; q;

is given by

� j k ;E = (  1(4); : : : ;  q(4)) ; (3.1)
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where(� s(a);  s(a)) , a = 1 ; 2; 3; 4 are the eigenvalues in increasing order, and the corresponding unit

eigenvectors of the matrixE [X s(X s)T ], respectively (see [23], [20]). In particular, given a random sample

of 3D projective shapesy1; : : : ; yn ; with yi = [ x i ]; xT
i x i = 1 ; 8i = 1 ; : : : ; n; their sample VW-mean is

�yj q = ( g1(4); : : : ; gq(4)) ; (3.2)

where(ds(a); gs(a)) , a = 1 ; 2; 3; 4 are the eigenvalues in increasing order, and the corresponding unit

eigenvectors of the matrix
1
n

nX

i =1

x i xT
i :

The particular smooth Lie group action we will use in our analysis is� � 
 , the Lie group multiplication

on (RP3)q; and if for simplicity we label the VW-means of the two populations by� 1;E ; � 2;E , the null

hypothesis in (2.56) can be expressed,

H0 : � 1;E = � 2;E vs. H1 : � 1;E 6= � 2;E (3.3)

where fora = 1 ; 2; � a;E are extrinsic means from VW distributionsQa on (RP3)q: We can rewrite the

hypothesis in (4.1) as follows

H0 : � � 1
2;E 
 � 1;E = 1 (RP 3 )q vs. H1 : � � 1

2;E 
 � 1;E 6= 1 (RP 3 )q (3.4)

We further de�ne the smooth mapH : M 2 ! M by H (x1; x2) = ( � x2 ) � 1(x1): We now have (4.2)

expressed as follow that the expression found in the hypothesis above

H0 : H (� 1;E ; � 2;E ) = 1 (RP 3 )q vs. H1 : H (� 1;E ; � 2;E ) 6= 1 (RP 3 )q (3.5)

For a = 1 ; 2, let Ya;1; � � � ; Ya;na be independent random samples from VW distributionsQa on (RP3)q

with the extrinsic means� 1;E ; � 2;E and the corresponding extrinsic covariance matrices� 1;E ; � 2;E : We are

led into characterizing the asymptotic behavior of�Y � 1
2;E 
 �Y1;E ; where �Y1;E ; �Y2;E are the sample extrinsic

mean estimators corresponding to the two random samples.

DEFINITION 3.1.1. The af�ne chart' q de�ned on an open neighborhoodU of 1(RP 3 )q with ' q(U) �

(R3)q and it is given by

' q([x1]; : : : ; [xq]) = ( ' ([x1]); : : : ; ' ([xq])) : (3.6)

where' is an af�ne chart de�ned on an af�ne open neighborhood of1RP 3 ; given by' ([(x1; x2; x3; x4)T ]) =

( x1

x4 ; x2

x4 ; x3

x4 ):
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Note that' q
�
1(RP 3 )q

�
= (0 3; : : : ; 03) in R3q From Patrangenaru et al.(2016)[26] we have the following

PROPOSITION 3.1.1. For a = 1 ; 2, let Ya;1; � � � ; Ya;na identically independent distributed random ob-

jects (i.i.d.r.o.'s) from the independentj k -nonfocal probability measuresQa: Let n = n1 + n2 and assume

limn!1
n1
n ! � 2 (0; 1): Then underH0 in (3.4),

(i) The sequence of random vectorsn1=2
�

' q( �Y � 1
2;E 
 �Y1;E )

�
converges weakly toN3q(03q; � Jk ), for

some covariance matrix� Jk that depends linearly on the extrinsic covariance matrices� 1;E ; � 2;E :

(ii) If (i) holds and� Jk is positive de�nite, then the sequence

n
�

' q( �Y � 1
2;E 
 �Y1;E )

� T
� � 1

Jk

�
' q( �Y � 1

2;E 
 �Y1;E )
�

converges weakly to� 2
3q distribution.

(iii) If (i) holds and assume in addition, that fora = 1 ; 2 the support of the distribution ofYa;1 and the

extrinsic mean� a;E are included in the domain of the chart' q and' q(Ya;1) has absolutely continuous

component and �nite moments of suf�ciently high order. Then the joint distribution of

D = ' q( �Y � 1
2;E 
 �Y1;E )

can be approximated by the bootstrap joint distribution of

D � = ' q( �Y � � 1
2;E 
 �Y �

1;E ) (3.7)

with an errorOp(n� 1=2), where, fora = 1 ; 2 �Y �
a;E are the extrinsic means of the bootstrap resamples

Y �
a;r a ; ra = 1 ; : : : ; na: givenYa;r a ; ra = 1 ; : : : ; na:

COROLLARY 3.1.1. For a = 1 ; 2, let Ya;1; � � � ; Ya;na identically independent distributed random ob-

jects (i.i.d.r.o.'s) from the independent VW probability measuresQa: Form random resamples with repetition

(Y �
a;1; � � � ; Y �

a;na
) from(Ya;1; � � � ; Ya;na ); for a = 1 ; 2: The corresponding approximate100(1� � )% boot-

strap con�dence region for' � 1
q (� ) = ' q(� � 1

2;E 
 � 1;E ) is C �
� = ' � 1

q (U �
� ); where U �

� 2 (R3)q is the Carte-

sian product of3q intervals at100(1� �
3q)% con�dence level for the components of� = ' q(� � 1

2;E 
 � 1;E ):

This simultaneous con�dence intervals yield a con�dence region of at least100(1� � )% level, of coverage

error OP (n� 1=2): We reject our null hypothesis if03q =2 U �
� , that is, if at least one of these intervals does

not contain0:

3.2 Data set and hypothesis testing results

In this section we analyze the3D projective mean shape changes to differentiate between faces (see Pa-

trangenaru et.al.(2016)[24]). We conduct two sample hypothesis testing on unmatched pairs (i.e different

sample sizesn1 6= n2:) The analyzed data set consists of images of the faces shown below
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Figure 3.1: Faces used for analysis

For our landmark based analysis we �rst recover a 3D con�guration ofk = 10 landmarks from each pairs

of uncalibrated pictures of the same face (see Ma et. l.(2005)[19]). This will result, for the female face,in

8 projective shapes (3-D con�gurations of labeled points), for the �rst male we have10 projective shapes

and �nally for the last data set we have11 projective shapes. The collections and reconstructions of all of

our landmark con�gurations were done in Matlab. The landmarks are shown in �gure 3.2:

Figure 3.2: Landmark placements for all faces

For a given face, and a single set of landmarksf u1; : : : ; u10g the �rst �ve labeled pointsu1; : : : ; u5 are

used to construct a projective frame� = (~u1; : : : ; ~u5) where~ui = [ ui
1 : ui

2 : ui
2 : 1]: Throughout the data

we use the same landmarks for our projective frame and they are, in increasing order;pronasale, right and

left Endocathion, Labiale Superius, left Crista Philtri. The resultingk � 5-tuple of projective coordinates

(p�
6 ; : : : ; p�

10) 2 (RP3)5 represents one observation used in our analysis. The resultingk � 5-tuple of

projective coordinates(p�
6 ; : : : ; p�

10) 2 (RP3)5 represents one observation used in our analysis. In other
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word, the projective shape of the 3D10-ad, is determined by the5 projective coordinates of the remaining

landmarks of the reconstructed con�gurations.

3.2.1 2 sample test for facial data

Given two faces, we assume that the setsY1;1; : : : ; Y1;n1 andY2;1; : : : ; Y2;n2 of 3D projective shapes recov-

ered from data sets consisting ofn1 andn2 pairs of images respectively are coming from a VWQ1 andQ2

distribution on(RP3)5: We statistically differentiate between faces if we reject the following null hypothesis

;

H0 : � � 1
1;E 
 � 2;E = 1 (RP 3 )5

For our result we used the simultaneous con�dence intervals mentioned in Corollary (3.1.1). We failed

to reject the null hypothesis if all of our con�dence intervals contain the value0.

Results for comparing Male faces:

For the two male faces with data sets of sizesn1 = 10 andn2 = 11 we conduct our two sample hypothesis

testing and we get the following simultaneous intervals

Simultaneous con�dence intervals for changes between the
2 mean projective shapes of the two faces landmarks 6 to 8

LM6 LM7 LM8
x (� 1:111498; 0:805386) (� 1:117512; 1:099536) (� 1:296547; 0:966296)
y (� 1:215218; 0:710931) (� 1:355167; 1:336021) (� 0:635282; 1:372627)
z (� 1:161234; 1:150762) (� 1:432217; 1:349541) (� 1:394141; 1:349442)

Simultaneous con�dence intervals for changes between the
2 mean projective shapes of the two faces landmarks 9 and 10

LM9 LM10
x (0:952164; 0:996354) (� 0:962541; 1:005917)
y (� 0:760124; 1:129782) (� 1:070631; 0:982195)
z (� 0:817503; 1:319117) (� 1:319374; 1:089272)

Another good set of visual tools we use in our analysis are theBootstrap marginalsboxes which can be

found in �gure 3.3.

We notice that one of the simultaneous con�dence intervals for landmark 9, corresponding to the rightExo-

canthion, does not contain0. We then reject the null hypothesis, showing that there is signi�cant projective

shape change between the two male faces. And for the bootstrap marginal boxes we notice that the �rst

three landmarks have a pretty dense concentration around the center, indicating no signi�cant mean change

which is not the case for the last two boxes.
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Figure 3.3: Bootstrap projective shape marginals for male face data

Result for cross gender comparison:

For samples of sizesn1 = 11 (male) andn2 = 8 (female) conduct the following null hypothesisH0 :

� � 1
1;11 
 � 2;8 = 1 (RP 3 )5 ; and in the �gure below 3.4 we indicate the two faces being analyzed.

Figure 3.4: Faces used in cross gender analysis

We then get the following bootstrap marginals boxes (�gure 3.5) for our cross gender analysis along with
the simultaneous con�dence intervals.

Figure 3.5: Bootstrap projective shape marginals for cross gender data

Simultaneous con�dence intervals for cross gender landmarks 6 to 8
LM6 LM7 LM8

x (� 1:251984; 1:202986) (� 1:228628; 1:234229) (� 1:273092; 1:332798)
y (� 0:633834; 0:902621) (� 0:928523; 0:995304) (� 0:226587; 0:865510)
z (� 0:231190; 0:432009) (� 0:684483; 1:045302) (� 0:590623; 1:132418)

Simultaneous con�dence intervals for cross gender landmarks 9 and 10
LM9 LM10

x (0:998446; 1:028374) (� 0:988191; � 0:931250)
y (� 0:702335; 0:540613) (� 1:162803; 1:008259)
z (� 1:057821; 0:849069) (� 0:118635; 0:969739)
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The landmarks 9 and 10 corresponding to the right and left Exocanthion have intervals not containing0. We

reject the null hypothesis, and conclude that there is a signi�cant projective shape change between the two

faces.

Results for cross validation:

We separate the original sample into two smaller data sets of sizesn1 = 5 andn2 = 6 . They are displayed

in Figs ( 3.6).

Figure 3.6: Cross validation samples

The bootstrap axial marginals (Fig 3.7) and simultaneous con�dence regions for cross validation are given

below.

Simultaneous con�dence interval for cross validation face 2 for landmarks 6 to 8
LM6 LM7 LM8

x (� 17:496785; 3:552070) (� 4:027879; 4:860970) (� 1:990796; 7:497709)
y (� 10:967285; 4:340129) (� 3:776026; 9:830274) (� 7:558584; 0:865119)
z (� 2:724184; 13:093615) (� 3:006049; 5:891478) (� 0:698745; 4:293201)

Simultaneous con�dence intervals for cross validation face2 for landmarks 9 and 10
LM9 LM10

x (� 2:459882; 1:230096) (� 3:264292; 1:036499)
y (� 1:631839; 0:983147) (� 1:387133; 2:942318)
z (� 1:451487; 1:196335) (� 0:916768; 1:658124)

Figure 3.7: Bootstrap marginals for crossvalidation of male face 2
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Figure 3.8: Landmark placements in Matlab

All the simultaneous intervals (af�ne coordinates) contain0: We fail to reject the null hypothesis; there no

statistically signi�cant mean projective shape change. Furthermore, the bootstrap marginals all show values

that are concentrated around03:

3.3 Landmark coordinates from ideal non calibrated camera images

Our data sets are built from sets of digital camera images of faces and other objects. The3D face analysis

we are conducting is a landmark based analysis. Our landmarks are composed of reconstructed3D points

in a particular con�guration and the collection of our landmarks in Matlab is done in a few stages.

3.3.1 Matlab data set

For any one reconstruction of a particular 3D object (faces, �owers, leaves, etc...) two pictures from two

different angles are needed. Once the pair of pictures are stored and saved in the an appropriate window

within the Matlab platform, the digital images are loaded using theimread command in Matlab. The

landmarks are manually selected using the functioncpselect(). We illustrate a set of landmarks in Fig 3.8.

Generally, a �nite con�guration of eight or more points in general position in 3D can be reconstructed,

by using the fundamental matrix of the coordinates of the images of these points provided by two ideal

non calibrated digital camera views. We assign the same landmarks throughout our whole data sample; the

images from below show the placement of our matching points.

By this method we usually get very reliable 3D coordinates for our landmarks. However, one drawback

associated with this technique is that it is hard to visualize the reconstructed 3D con�gurations. In fact, to

get a descent visualization of our reconstruction may require the collection of a large amount of landmarks,

which can be time consuming.
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To illustrate this particular situation we have the following 3D reconstruction involving 80 landmarks placed

on a pair of pictures of an oak leaf and resulting in the following 3D images without color and/or texture.(see

Fig 3.9)

Figure 3.9: Oak leaf reconstruction with midriff

3.3.2 Advanced 3D data collection methods from digital camera outputs

Recently for our data analysis we started using a professional version of Agisoft, which extracts the3D

image of a surface from two or more non-calibrated digital camera views, based on RGB texture matching

followed by a3D reconstruction algorithm. This software gives us a much better visualization of our recon-

structed data set without relying on landmark collection and the use of an eight point algorithm to estimate

the fundamental matrix (see Ma et al.(2005)[19]).

Although the reconstruction could be done with just two uncalibrated camera images, we get a better res-

olution and complete reconstruction of the surface of a head or face, by increasing the number of im-

ages of the same individual. A training data set of �fteen surfaces of faces including texture was col-

lected from digital images (see ani.stat.fsu.edu/� vic/Davids-PhDs). An additional sample of three sam-

ples of 3D faces was collected along with facial landmark coordinates; this will be used in Chapter 6 (see

ani.stat.fsu.edu/� vic/Davids-PhDs/MANOVA) We illustrate this fact we use set of pictures in Fig. 3.10.

After the reconstruction is done, we may visualize our result and also indicate the relative camera placement

in Fig. 3.11. The Agisoft output then gives us the3D coordinates of our ten landmarks in Figs. 3.12-3.13.

In this chapter we took advantage of the fact theM = ( RP3)q being a Lie group acts simply transitively

on itself with the action being the left multiplication
 . We can then use the recent work on asymptotic

behavior on homogeneous space to have an expression of the convergence of
�
' � L � 1

� (H ( �X 1;E ; �X 2;E ))
�

:

This allows us to perform hypothesis testing on random samples of different sizes de�ned onM . The theory
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Figure 3.10: Pictures used for 3D reconstruction

Figure 3.11: 3D face reconstruction with camera placement

Figure 3.12: Landmark placement and coordinates
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Figure 3.13: Pictures for 3D reconstructions

involves applying aCramer's delta methodfor functions between manifolds that will depend heavily on the

choice of a convenient chart': The expression of the covariance matrix� J we obtain depends linearly on

the extrinsic covariance matrices� 1;E ; � 2;E :. Recall that an extrinsic matrix� E is always de�ned with

respect to a basisf 1(� E ); :::; f m (� E ) of local frame �eld referred to as orthoframe (see de�nition 2.3.2).

In the next chapter we will work on developing an asymptotic theory that builds on the work in [25] but is

not dependent on the choice of a chart. The work in this chapter led to a couple of publications“ 3D face

analysis from digital camera images“(see [26]) and“Projective shape analysis of contours and �nite 3D

con�gurations from digital camera images “(see [24]).
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CHAPTER 4

A TWO SAMPLE TEST FOR MEAN CHANGE BASED ON A
DELTA METHOD ON MANIFOLDS

I introduce a new method of two sample tests for 3D mean projective shapes. This method builds upon the

various results of the two sample hypothesis testing methods, as developed in Patrangenaru et al. (2010)[23],

Crane and Patrangenaru et al.(2011) [7], and Patrangenaru et al.(2014) [25].

In section 4.1 I start by expressing a version of the Cramer's delta method for a functionF : M 1 ! M 2

that depends on a compositions of functions involving the embeddings of both the domain and co domain

space. In section 4.2 I will use the results of our new version of the Cramer's delta method to construct

an asymptotic behavior for� � 1
2;E � � 1;E with explicit de�nition of the corresponding extrinsic covariance

matrix.The result in this section can also be applied to any smoth function between manifolds. In the last

section I express the some asymptotic behaviors for the spaceRP3:

4.1 Cramer's delta method for data on manifolds

Recall that(G; � ), a Lie group is a manifold with a group structure and for which the multiplication map

(g; h) ! g � h and the inverse mapg ! g� 1 are smooth as maps between manifolds.

We consider the following null hypothesis

H0 : � 1;E = � 2;E � � (4.1)

H1 : � 1;E 6= � 2;E � �

Since fora = 1 ; 2; X a;1; : : : ; X a;na i.i.d. random objects onG we can rewrite the hypothesis in (4.1) as

follows

H0 : � � 1
2;E � � 1;E = � vs: H 1 : � � 1

2;E � � 1;E 6= � (4.2)

For that we will need to know the asymptotic behavior of�X � 1
2;E � �X 1;E ; where �X 1;E ; �X 2;E are the sample

extrinsic mean estimators corresponding to the two random samples. To address this problem, we are �rst

considering an extension of Cramer's delta method, in the context of manifold valued data. An initial
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extension can be found in Patrangenaru et al.(2014)[25]. Here we are interested in a method which applies to

embeddingsj a : M a ! RNa ; a = 1 ; 2: Let X 1; : : : ; X n be i.i.d. random objects on(M a; � j a ) and assume

� E ; � E are respectively the extrinsic mean, and extrinsic covariance matrix ofX 1 (see Bhattacharya and

Patrangenaru (2005)). LetF � RN1 be the set ofj 1-focal points thenPj 1 is the corresponding projection

with Pj 1 : F c ! j 1(M 1) � RN1 :

THEOREM 4.1.1. (Delta method for embedded manifolds). AssumeF : M 1 ! M 2 is a differentiable

function between manifolds, and let(f (a)
1 ; : : : ; f (a)

ma ) be orthonormal bases inT� a;E (M a), where� 1;E =

� E ; � 2;E = F (� E ): For a = 1 ; 2, assumedimM a = ma with j 1 and j 2 as previously de�ned. Let

X 1; : : : ; X n be a sequence of random objects onM 1 such that

n1=2 tan j 1 (� E ) (j 1(X n ) � j 1(� E )) ! d Nm1 (0; � E ):

T hen

n1=2 tan j 2 (F (� E )) (j 2 (F (X n )) � j 2 (F (� E ))) ! d Nm2 (0; � F
j 2 ;E )

where� F
j 2 ;E = dF � E (dF )T with dF given by

dF = [( dF )ab] =
h
d� ~F12(eb) � ~ea( ~F12(� ))

i
; for a = 1 ; :::; m2; and b= 1 ; :::; m1:

wherej 2 � F � j � 1
1 � Pj 1 = ~F12:

Proof. Now recall from Bhattacharya and Patrangenaru (2005)[6] that

� E = AT � � A =

2

6
4

e1(Pj 1 (� ))T

...
em1 (Pj 1 (� ))T

3

7
5 � �

�
e1(Pj 1 (� )) � � � em1 (Pj 1 (� ))

�
(4.3)

where� � = ( D � Pj 1 ) � ( D � Pj 1 )T and� is the covariance matrix ofj 1(X 1) with respect to the standard

basise1; :::; eN1 of RN1 . By the CLT, we have

n1=2 (j 1(X n ) � j 1(� E )) ! d NN1 (0; � � ):

Let us de�ne the following map~F = j 2 � F � j � 1
1 ; this is a map fromj 1(M 1) ! j 2(M 2) and acts as follows

~F (j 1(x)) = ~F (Pj 1 (j 1(x))) = j 2 (F (x)) ; 8x 2 M 1:
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Note that~F � Pj 1 is a smooth function fromF c � RN1 to j 2(M 2) � RN2 : We can now apply the Cramer's

delta method and get

n1=2 (j 2 (F (X n )) � j 2 (F (� E ))) ! d NN2 (0; � j 2 )

where� j 2 = ( D � ( ~F � Pj 1 )) � ( D � ( ~F � Pj 1 ))T = ( DPj 1 (� )
~F ) � � (DPj 1 (� )

~F )T :

Now assume thatV2 is an open neighborhood ofF (� E ) in M 2; andV1 = F � 1(V2): AssumeU2 � RN2 ; is

an open subset, such thatU2 \ j 2(M 2) = j (V2); andp2 ! (~e1(p2); : : : ; ~eN2 (p2)) is an orthonormal frame

�eld on U2; which is adapted to the embeddingj 2: De�ne the local frame �eldy ! (f 2;1(y)) ; : : : ; f 2;m 2 (y))

onV2; such that

8 y 2 V2; ~es(j 2(y)) = dy j 2(f 2;s(y)) ; s = 1 ; : : : ; m2:

Now let
�

~e1( ~F (p1)) ; : : : ; ~eN2 ( ~F (p1))
�

be the value of this adapted frame �eld at a point~F (p1) on

j 2(V2) aroundj 2 � F (� E ) and forp1 2 j 1(M 1) � RN1 : Note thatd� ( ~F � Pj 1 )(eb) 2 T ~F ( Pj 1
( � ))

j 2(M 2),

while (e1; : : : ; eN1 ) is the standard basis inRN1 :

To ease notation we let~F � Pj 1 = ~F12 and ~F12 : F c ! j 2(M 2); whereF c representsj 1-nonfocal set,

and we now have:

d� ~F12(eb) =
m2X

a=1

h�
d� ~F12(eb)

�
� ~ea( ~F12(� ))

i
~ea( ~F12(� )) (4.4)

And, for eb 2 RN1 with b = 1 ; : : : ; N1; we have

� j 2 = ( DPj (� )
~F ) � � (DPj (� )

~F )T

� j 2 =

2

4

"
m2X

a=1

d� ~F12(eb) � ~ea(j 2(F (� E ))~ea(j 2(F (� E ))

#

b=1 ;::;N 1

3

5 � �

2

4

"
m2X

a=1

d� ~F12(eb) � ~ea(j 2(F (� E ))~ea(j 2(F (� E ))

#

b=1 ;::;N 1

3

5

T

Note that� j 2 2 M (N2; N2; R); while � � 2 M (N1; N1; R):

If we set � = j 2(F (� E )) ; then the tangential componenttan( � ) of � 2 RN2 = T ~F12 (� ) j 2(M 2) �

(T ~F12 (� ) j 2(M 2))? ; w.r.t the basisea( ~F12(� )) 2 T ~F12 (� ) j 2(M 2) has the following asymptotic behavior

tan j 2 ( F ( � E ))

�
~F12(j 1(X n1 ) � ~F12(� )

�
! d Nm2 (0; � F

j 2 ;E )

tan j 2 ( F ( � E )) (j 2 (F (X n1 )) � j 2 (F (� E ))) ! d Nm2 (0; � F
j 2 ;E ) (4.5)
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with

� F
j 2 ;E =

2

6
4

~e1( ~F12(� ))T

...
~em2 ( ~F12(� ))T

3

7
5 (DPj (� )

~F ) � � (DPj (� )
~F )T �

~e1( ~F12(� )) � � � ~em2 ( ~F12(� ))
�

� F
j 2 ;E = B � � B T

wereB =

2

6
4

~e1( ~F12(� ))T

...
~em2 ( ~F12(� ))T

3

7
5

� hP m2
a=1 d� ~F12(eb) � ~ea( ~F12(� ))~ea( ~F12(� ))

i

b=1 ;::;N 1

�

B =

2

6
6
6
4

�
d� ~F12(e1)

�
� ~e1( ~F12(� )) :::

�
d� ~F12(eN 1)

�
� ~e1( ~F12(� ))

...�
d� ~F12(e1)

�
� ~em2 ( ~F12(� )) :::

�
d� ~F12(eN1 )

�
� ~em2 ( ~F12(� ))

3

7
7
7
5

(4.6)

Note that,AT A = I N1 and

� F
j 2 ;E = BA A T � � A A T B T = ( BA ) � E (BA )T ; and

BA =

2

6
6
6
4

�
d� ~F12(e1)

�
� e1( ~F12(� )) :::

�
d� ~F12(em1 )

�
� e1( ~F12(� ))

...�
d� ~F12(e1)

�
� em2 ( ~F12(� )) :::

�
d� ~F12(em1 )

�
� em2 ( ~F12(� ))

3

7
7
7
5

(4.7)

and lettingB A = dF we have our desired result.

4.2 Asymptotic behavior for Lie group

For a = 1 ; 2, let X a;1; � � � ; X a;na be independent random samples de�ned onG, a Lie group, from a distri-

butionQa, with the extrinsic means� 1;E ; � 2;E and corresponding extrinsic covariance matrices� 1;E ; � 2;E :

Let j : G ! RN be an embedding. We are interested in the asymptotic behavior of

tan j ( � � 1
2;E � � 1;E )

�
j (X

� 1
2;E � X 1;E ) � j (� � 1

2;E � � 1;E )
�

Recall that the map(g1; g2) ! g1 � g2, for g1; g2 2 G is a smooth map fromG � G ! G . Theorem

4.2.1 below, focuses on a more general case involving manifoldsM andN along with their corresponding

embeddingj 1 : M ! RN1 andj 2 : N ! RN2 and corresponding chord distances� j 1 and� j 2 :
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THEOREM 4.2.1. Let M and N be respectively,m-dimensional andn-dimensional smooth manifolds

with embeddingsj 1 : M ! RN1 andj 2 : N ! RN2 .LetG : M � M ! N be a smooth function between

manifolds. Fora = 1 ; 2 let f (a)
1 ; � � � ; f (a)

m be orthonormal basis inT� a;E (M ) where� a;E are extrinsic

means ofj 1-nonfocal probability distributionQa on M with corresponding extrinsic covariance matrices

� a;E andX a;E are their respective extrinsic sample means.

(i) Let n = n1 + n2, if n1
n ! � asna ! 1 , and fora = 1 ; 2 we have the following asymptotic behavior,

n1=2
a tan j 1 (� a;E )

�
j 1(X a;E ) � j 1(� a;E )

� L�! N m (0; � a;E )

T hen

n1=2 tan
j (2)

1 (� 1;E ;� 2;E )

�
j (2)

1 (X 1;E ; X 2;E ) � j (2)
1 (� 1;E ; � 2;E )

�
L�! N 2m (0; � (2)

j 1 ;E ); (4.8)

where� (2)
j 1 ;E =

� 1
� � 1;E 0m

0m
1

1� � � 2;E

�
andj (2)

1 : M � M ! j 1(M ) � j 1(M ) .

(ii) Let (g1; � � � ; gn ) be an orthonormal basis inTG(� 1;E ;� 2;E )N , if the result in(i ) holds we have

n1=2 tan j 2 (G(� 1;E ;� 2;E ))
�
j 2

�
G(X 1;E ; X 2;E )

�
� j 2 (G(� 1;E ; � 2;E ))

� L�! N n (0; � G
j 2 ;E ) (4.9)

with

� G
j 2 ;E =

1
�

(dG(1) ) � 1;E (dG(1) )T +
1

1 � �
(dG(2) )� 2;E (dG(2) )T (4.10)

and dG(1)
ab = d� 1 ;� 2

~G(êb) � ~ea( ~G(� 1; � 2); dG(2)
ab = d� 1 ;� 2

~G(êN1+ b) � ~ea( ~G(� 1; � 2) for a = 1 ; :::; n

andb = 1 ; :::; m: And ~G = j 2 � G � j � 1
1 (Pj 1 ) � j � 1

1 (Pj 1 ):

Proof. For part(i ), it follows from Bhattacharya and Patrangenaru (2005) [6] that

n1=2
a

�
Pj 1 (j (X a;1)) � Pj 1 (� a)

�
! d NN1 (0; � � a ) ; (4.11)

where, fora = 1 ; 2 � � a = ( D � a Pj 1 ) � a (D � a Pj 1 )T and� a is the covariance matrix for the random vector

j 1(X a;1) 2 j 1(M ): And the projectionPj 1 : F c ! j 1(M ) whereF is the set ofj 1-focal points. Since

n1=n ! � asn1 ! 1 it then follows that

n1=2
�

Pj 1 � Pj 1 (j (X 1;1); j (X 2;1)) � Pj 1 � Pj 1 (� 1; � 2)
�

! d N2N1 (0; � ?) (4.12)

with � ? =
� 1

� � � 1 0N1

0N1
1

1� � � � 2

�
since the samples are independents.

Recall that from Bhattacharya and Patrangenaru (2005) [6] , that fora = 1 ; 2 � a;E are the extrinsic

covariance matrices of thej -nonfocal distributionsQa of X a w.r.t. (f (a)
1 (� a;E ); : : : ; f (a)

m (� a;E )) the special
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orthonormal frame �elds around� a;E : For each of these local frame �elds there is a corresponding adapted

frame �eld (e(a)
1 (Pj 1 (� a)) ; : : : ; e(a)

N1
(Pj 1 (� a)) aroundPj 1 (� a) = j 1(� a;E ) (for a de�nition see section (2.2)).

Now from the two local frame �elds we have above, we can construct the following local frame �eld in

M � M around the point(� 1;E ; � 2;E );

[f 1(x1; x2); : : : ; f m (x1; x2); f m+1 (x1; x2); : : : ; f 2m (x1; x2)]

=
h�

f (1)
1 (x1); � (x2)

�
; : : : ;

�
f (1)

m (x1); � (x2)
�

;
�

� (x1); f (2)
1 (x2)

�
; : : : ;

�
� (x1); f (2)

m (x2)
�i

; (4.13)

where� (x) is the zero section ofTpU with U 2 M andU contains� a;E for a = 1 ; 2:

For ease of notation we letj be the embeddingj � j (2)
1 : M � M ! j 1(M ) � j 1(M ) then we get, for

the local frame �eld in equation (4.13) on an open subset ofM � M containing(� 1;E ; � 2;E ), the following

vectors inRN1 � RN1

�
d� 1;E ;� 2;E j (f 1(x1; x2)) ; : : : ; d� 1;E ;� 2;E j (f m (x1; x2)) ; d� 1;E ;� 2;E j (f m+1 (x1; x2)) ; : : : ; d� 1;E ;� 2;E j (f 2m (x1; x2))

�

which is expressed in more details as follow;

h�
d� 1;E j 1(f (1)

1 (x1)) ; d� 2;E j 1(� (x2))
�

; : : : ;
�

d� 1;E j 1(f (1)
m (x1)) ; d� 2;E j 1(� (x2))

�
;

�
d� 1;E j 1(� (x1)) ; d� 2;E j 1(f (2)

1 (x2))
�

; : : : ;
�

d� 1;E j 1(� (x1)) ; d� 2;E j 1(f (2)
m (x2))

�i
; (4.14)

whered� a;E j 1(� (xa)) is the zero section ofTj 1 (p) j 1(U) which corresponds to the zero vector inRN 1:

It follows that the expression in (4.14) represents a set of orthonormal vectors inRN1 � RN1 and they are

represented below as follow;

"
d� 1;E j 1(f (1)

1 (x1))
0N1

#

;

"
d� 1;E j 1(f (1)

2 (x1))
0N1

#

: : : ;

"
d� 1;E j 1(f (1)

m (x1))
0N1

#

; : : :

"
0N1

d� 2;E j 1(f (2)
1 (x2))

#

; : : :

"
0N1

d� 2;E j 1(f (2)
m (x2))

#

For ê1; ê2; : : : ; ê2N1 be the canonical basis ofRN1 � RN1 ; let (ê1(p1; p2); ê2(p1; p2); : : : ; ê2N1 (p1; p2)) be a

local frame �eld on an open neighborhoodU � R2N1 containing(j 1(� 1;E ); j 1(� 2;E )) such that8 (x1; x2) 2

j � 1(U)

êr (j (x1; x2)) = d� 1;E ;� 2;E j (f r (x1; x2)) ; for r = 1 ; :::; m (4.15)

and

êN1+ r (j (x1; x2)) = d� 1;E ;� 2;E j (f m+ r (x1; x2)) ; for r = ; :::; m (4.16)
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Note that these vectors are orthonormal to each other by results of equation (4.14). Since the other elements

of the local frame �eld(ê1(p1; p2); ê2(p1; p2); : : : ; ê2N1 (p1; p2)) can be orthogonalized and normalized,

we may now assume that(ê1(p1; p2); ê2(p1; p2); : : : ; ê2N1 (p1; p2)) is an orthonormal frame �eld with ele-

ments ranging from1 to m and fromN1 + 1 to N1 + m de�ned as in (4.15) and (4.16). It then follows

that forp = ( p1; p2); (ê1(p); ê2(p); : : : ; ê2N1 (p)) is an adapted frame �eld around(j 1(� 1;E ); j 1(� 2;E )) =

(Pj 1 (� 1); Pj 1 (� 2)) = Pj (� 1; � 2) = Pj (�̂ ): The vectors

ê1(Pj (�̂ )) ; ê2(Pj (�̂ )) ; : : : ; êm (Pj (�̂ )) ; êN1+1 (Pj (�̂ )) ; : : : ; êN1+ m (Pj (�̂ )) are represented below as follow;

"
e(1)

1 (Pj 1 (� 1))
0N1

#

;

"
e(1)

2 (Pj 1 (� 1))
0N1

#

: : : ;

"
e(1)

m (Pj 1 (� 1))
0N1

#

; : : :

"
0N1

e(2)
1 (Pj 1 (� 2))

#

; : : :

"
0N1

e(2)
m (Pj 1 (� 2)) :

#

(4.17)

Then

d� 1 ;� 2 Pj (êb) = ( d� 1 Pj 1 (eb); 0N1 ) 2 TPj (� 1 ;� 2 ) j (M ; M ); for b = 1 ; � � � ; N1

and

d� 1 ;� 2 Pj (êN1+ b) = (0 N1 ; d� 2 Pj 1 (eb)) 2 TPj (� 1 ;� 2 ) j (M ; M ); for b = 1 ; � � � ; N1

are linear combinations of̂e1(Pj (�̂ )) ; ê2(Pj (�̂ )) ; : : : ; êm (Pj (�̂ )) ; êN1+1 (Pj (�̂ )) ; : : : ; êN1+ m (Pj (�̂ ))

Note that

(d� 1 Pj 1 (eb); 0N1 ) � êa(Pj (�̂ )) = 0

for a = m + 1 ; � � � ; 2N1 andb = 1 ; � � � ; m

(0N1 ; d� 2 Pj 1 (eb)) � êa(Pj (�̂ )) = 0

a = N1 + m + 1 ; � � � ; 2N1 anda = 1 ; :::; N1 andb = 1 ; � � � ; m

It then follow that the tangential component of
�

Pj (j (X 1;1); j (X 2;1)) � Pj (� 1; � 2)
�

2 R2N1 with re-

spect to the basiŝe1(Pj (�̂ )) ; ê2(Pj (�̂ )) ; : : : ; êm (Pj (�̂ )) ; êN1+1 (Pj (�̂ )) ; : : : ; êN1+ m (Pj (�̂ )) has the follow-

ing asymptotic behavior;

n1=2 tanPj ( �̂ )

�
Pj (j (X 1;1); j (X 2;1)) � Pj (� 1; � 2)

�
! d N2m (02m ; � (2)

j 1 ;E ); (4.18)

where

� (2)
j 1 ;E = [ A (2) ]T � ? A (2)
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whereA (2) is a2N1 � 2m matrix given by;

A (2) =

0

B
@

e(1)
1 (Pj 1 (� 1)) � � � e(1)

m (Pj 1 (� 1)) j 0N1 � � � 0N1

�� �� �� j �� �� ��

0N1 � � � 0N1 j e(2)
1 (Pj 1 (� 2)) � � � e(2)

m (Pj 1 (� 2))

1

C
A (4.19)

A (2) =
�
A1 j A2

�

And we have

� (2)
j 1 ;E =

� 1
� � 1;E 0m

0m
1

1� � � 2;E

�
(4.20)

For part(ii ), we will rely on colorblue Theorem (4.1.1) withf 1(x1; x2); : : : ; f 2m (x1; x2) de�ned in (4.13),

as our orthonormal basis inT(� 1;E ;� 2;E ) (M 2) and its corresponding embedding isj : M 2 ! R2N1 : We

will also let (g1; � � � ; gn ) be an orthonormal basis inTG(� 1;E ;� 2;E ) (N ) with embeddingj 2 : N ! RN2 and

(~e1( ~G(� 1; � 2)) ; � � � ; ~en ( ~G(� 1; � 2))) is adapted to the embeddingj 2 onN and is such that;

~es( ~G(� 1; � 2)) = dy j 2(gs); with y = G(� 1;E ; � 2;E ); and s = 1 ; :::n; with ~G = j 2� G� j � 1
1 (Pj 1 )� j � 1

1 (Pj 1 )

With our result in part(i ) we now appeal to the Theorem and we get the following asymptotic behavior;

n1=2 tan j 2 (G(� 1;E ;� 2;E ))
�
j 2

�
G(X 1;E ; X 2;E )

�
� j 2 (G(� 1;E ; � 2;E ))

� L�! N n (0; � G
j 2 ;E )

and� G
j 2 ;E = ( B ?A (2) ) � (2)

j 1 ;E (B ?A (2) )T with B ?A (2) = [ B (1) A1 j B (2) A2] and for

~G = j 2 � G � j � 1
1 (Pj 1 ) � j � 1

1 (Pj 1 ) : F c � F c ! j 2(N )

where F c is the set ofj 1-nonfocal points. Let̂e1; :::; ê2N1 be the canonical basis ofR2N1 . And for

~e1(p2); :::; ~en (p2), for p2 2 j 2(V2):

B (1) A1 =

2

6
6
6
4

�
d�̂ ~G(ê1)

�
� ~e1( ~G(�̂ )) :::

�
d�̂ ~G(êm )

�
� ~e1( ~G(�̂ ))

...�
d�̂ ~G(ê1)

�
� ~en ( ~G(�̂ )) :::

�
d�̂ ~G(êm )

�
� ~en ( ~G(�̂ ))

3

7
7
7
5

and

B (2) A2 =

2

6
6
6
4

�
d�̂ ~G(êN1+1 )

�
� ~e1( ~G(�̂ )) :::

�
d�̂ ~G(êN1+ m )

�
� ~e1( ~G(�̂ ))

...�
d�̂ ~G(êN1+1 )

�
� ~en ( ~G(�̂ )) :::

�
d�̂ ~G(êN1+ m )

�
� ~en ( ~G(�̂ ))

3

7
7
7
5

(4.21)
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LettingdG(1) = B (1) A1 anddG(2) = B (2) A2 we have

� G
j 2 ;E =

1
�

(dG(1) ) � 1;E (dG(1) )T +
1

1 � �
(dG(2) )� 2;E (dG(2) )T (4.22)

DEFINITION 4.2.1. The matrix� G
j 2 ;E given in(4.22)is the extrinsic covariance matrix of thej 2-nonfocal

distribution Q2 (of G(X 1;1; X 2;1)) w.r.t the orthonormal basisg1(G(� E;1; � E;2)) ; : : : ; gn (G(� E;1; � E;2))

written in term of the extrinsic covariance matrices� 1;E and� 2;E of X 1;1 andX 2;1 respectively and where

for a = 1 ; 2 � a;E is expressed w.r.t the orthonormal basisf (a)
1 (� a;E ); : : : ; f (a)

m (� a;E ):

THEOREM 4.2.2. For a = 1 ; 2, let X a;1; � � � ; X a;na be independent random samples de�ned onG, an

m-dimensional Lie group, from a distributionQa, with the extrinsic means� 1;E ; � 2;E and corresponding

extrinsic covariance matrices� 1;E ; � 2;E and respective extrinsic sample meanX 1;E and X 2;E . Let ĵ :

G ! RN be an embedding onG and for a = 1 ; 2 let f (a)
1 ; � � � ; f (a)

m be orthonormal basis inT� a;E (G):

Furthermore forn = n1 + n2, if n1
n ! � as na ! 1 : Let g1; � � � ; gm be an orthonormal basis in

T� � 1
2;E � � 1;E

(G) we have the following

n1=2 tan ĵ ( � � 1
2;E � � 1;E )

�
ĵ (X

� 1
2;E � X 1;E ) � ĵ (� � 1

2;E � � 1;E )
�

! d Nm (0m ; � �H
E ) (4.23)

wereH : G � G ! G and is given byH (X
� 1
2;E ; X 1;E ) = X

� 1
2;E � X 1;E ; then we have,

� �H
E =

1
�

(dH (1) ) � �
2;E (dH (1) )T +

1
1 � �

(dH (2) )� 1;E (dH (2) )T (4.24)

where

dH (1) =
�

dH (1)
a;b

�
=

�
d�̂ Ĥ (êb) � ~ea(Ĥ (�̂ ))

�

dH (2) =
�

dH (2)
a;b

�
=

�
d�̂ Ĥ (êN1+ b) � ~ea(Ĥ (�̂ ))

�
; for a; b = 1 ; :::; m

where Ĥ � ĵ � H � ĵ � 1(~� � Pĵ ) � ĵ � 1(Pĵ ) : F c � F c ! ĵ (M ):

Proof. Recall that forX 1;1; � � � ; X 1;n1 independent random samples de�ned onG we have the following

asymptotic behavior

tan ĵ ( � 1;E )

�
ĵ (X 1;E ) � ĵ (� 1;E )

�
! d Nm (0m ; � 1;E ) (4.25)

and for the other independent random samples,X 2;1; � � � ; X 2;n2 we have, after applying Theorem (4.1.1),

the following asymptotic behavior;

tan ĵ ( � � 1
2;E )

�
ĵ (X

� 1
2;E ) � ĵ (� � 1

2;E )
�

! d Nm (0m ; � �
2;E ) (4.26)
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� �
2;E = ( dI ) � 2;E (dI )T

and

dI =

2

6
4

(d� 2~� � Pj (e1)) � ~e1(~� � Pj (� 2)) ::: (d� 2~� � Pj (em )) � ~e1(~� � Pj (� 2))
...

(d� 2~� � Pj (e1)) � ~em (~� � Pj (� 2)) ::: (d� 2~� � Pj (em )) � ~em (~� � Pj (� 2))

3

7
5

Not that fora = 1 ; 2 � a is the mean ofj (Qa) and wherêj � � � ĵ � 1 = ~� and the new covariance matrix

� �
2;E is the extrinsic covariance matrix with respect to the local frame �eld(f �

1; ::::; f �
m ) de�ned onW2 2 G.

Note thatW2 is an open neighborhood of� (� 2;E ) = � � 1
2;E andV2 = � � 1(W2) is the open neighborhood

of � 2;E on which the local frame �eld(f (2)
1 ; ::::; f (2)

m ) is de�ned. Furthermore, for pointsp1 2 ĵ (V1); and

p2 2 ĵ (V2); with ~�(p2) 2 ĵ (W2), we have

e(1)
1 (p1); � � � ; e(1)

N (p1)

e(2)
1 (~� (p2)) ; � � � ; e(2)

N (~� (p2))

respectively the adapted frame �eld aroundĵ (� 1;E ) andĵ (� � 1
2;E ):

We then get the following combined asymptotic behavior;

n1=2 tan ĵ (2) (� � 1
2;E ;� 1;E )

�
ĵ (2) (X

� 1
2;E ; X 1;E ) � ĵ (2) (� � 1

2;E ; � 1;E )
�

L�! N 2m (0; � (2)
E )

where� (2)
E =

� 1
� � �

2;E 0m

0m
1

1� � � 1;E

�

Here,� (2)
E is the extrinsic covariance matrix with respect to the local frame �eldf 1(y2; x1); � � � ; f 2m (y2; x1)

around(� � 1
2;E ; � 1;E ) 2 G � G : And (ê1(~� (p2); p1); ê2(~� (p2); p1); : : : ; ê2N (~� (p2); p1)) is the adapted frame

�eld around(ĵ (� � 1
2;E ); ĵ (� 1;E )) : And now forP �

ĵ
= ~� � Pĵ with ê1; :::; êN ; :::; ê2N the canonical basis inR2N

we have,

d� 2 ;� 1 P �
ĵ

� Pĵ (êb) = ( d� 2~� � Pj 1 (eb); 0N ) = ( d� � 1
2;E

ĵ (f �
b(y2)) ; 0N ) 2 TP �

ĵ
� Pĵ (� 21 ) ĵ

(2) (G; G);

and

d� 2 ;� 1 P �
ĵ

� Pĵ (êN1+ b) = (0 N ; d� 1 Pĵ (eb)) 2 TP �
ĵ

� Pĵ (� 21 ) ĵ
(2) (M ; M ); for b = 1 ; � � � ; N
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Andeb; b = 1 ; � � � ; N represent the canonical basis forRN : These tangent vectors inTP �
ĵ

� Pĵ (� 2 ;� 1 ) ĵ (2) (M ; M )

are linear combinations of the vectors

ê1(P �
ĵ

� Pĵ (� 2; � 1)) ; : : : ; êm (P �
ĵ

� Pĵ (� 2; � 1)) ; êN +1 (P �
ĵ

� Pĵ (� 2; � 1)) ; : : : ; êN + m (P �
ĵ

� Pĵ (� 2; � 1))

Now we may use the results from part(ii ) of Theorem (4.2.1). Letg1; � � � ; gm be an orthonormal basis in

T� � 1
2;e � � 1;E

(G) and a local frame �eld~e1(Ĥ (�̂ )) ; � � � ; ~eN (Ĥ (�̂ )) adapted to the embeddingĵ with

~es(Ĥ (�̂ )) = d� � 1
2;E � � 1;E

ĵ (gs); s = 1 ; � � � ; m

We have the following asymptotic behavior,

n1=2 tan ĵ ( � � 1
2;E � � 1;E )

�
ĵ (X

� 1
2;E � X 1;E ) � ĵ (� � 1

2;E � � 1;E )
�

! d Nm (0m ; � �H
E ) (4.27)

� �H
E =

1
�

(dH (1) ) � �
2;E (dH (1) )T +

1
1 � �

(dH (2) )� 1;E (dH (2) )T (4.28)

And for Ĥ = ĵ � H � ĵ � 1(~� � Pĵ ) � ĵ � 1(Pĵ ) : F c � F c ! ĵ (M ):

dH (1) =
�

dH (1)
a;b

�
=

�
d�̂ Ĥ (êb) � ~ea(Ĥ (�̂ ))

�

dH (2) =
�

dH (2)
a;b

�
=

�
d�̂ Ĥ (êN1+ b) � ~ea(Ĥ (�̂ ))

�
; for a; b = 1 ; :::; m

Recall the following hypothesis testing problem,

H0 : � � 1
2;E � � 1;E = � vs: H 1 : � � 1

2;E � � 1;E 6= �

we get the following corollary.

COROLLARY 4.2.1. Under the assumptions of Theorem 4.2.2 and also assuming thatj (X a;1) for a =

1; 2 have �nite second order moments and the extrinsic covariance matrices� a;E are nonsingular, then

for n = n1 + n2 large enough the sample extrinsic covariance matricesSa;E;n a are nonsingular (with

probability converging to one) and

(a) The statistics

nkS� 1=2
�;H tan j ( � )

�
j

�
X

� 1
2;E � X 2;E

�
� j (� )

�
k2 L�! � 2

n (4.29)

nkS� 1=2
�;H tan

j 2 (X
� 1
2;E � X 2;E )

�
j

�
X

� 1
2;E � X 2;E

�
� j (� )

�
k2 L�! � 2

n (4.30)
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(b) and a con�dence region for� � 1
2;E � � 1;E of asymptotic level1 � � is given by

(i )C �;H
n;� := j � 1(U �;H

n;� ),

whereU �;H
n;� = f � 2 j (G) : nkS� 1=2

�;H tan�

�
j

�
X

� 1
2;E � X 2;E

�
� �

�
k2 � � 2

n;1� � g:

Another such con�dence region can also be given by

(ii )D �;H
n;� := j � 1(V �;H

n;� ) where

V �;H
n;� = f � 2 j (G) : nkS� 1=2

�;H tan
j (X

� 1
2;E � X 2;E )

�
j

�
X

� 1
2;E � X 2;E

�
� �

�
k2 � � 2

n;1� � g:

whereS�;H = 1
n2

(dH (1)
e ) G�

2;E (dH (1)
e )T + 1

n1
(dH (2)

e )G1;E (dH (2)
e )T and

dH (1)
e =

�
dx̂ ĵ

Ĥ (êb) � ~ea(Ĥ (x̂ ĵ ))
�

dH (2)
e =

�
dx̂ ĵ

Ĥ (êN1+ b) � ~ea(Ĥ (x̂ ĵ ))
�

Fora; b= 1 ; :::; m andx̂ ĵ =
�

j (X 2); j (X 1)
�

4.3 3D real projective spaceRP3

For [X r ]; kX r k = 1 ; r = 1 ; :::; n; a random sample from a VW-nonfocal probability measureQ onRP3 ,

let � E be the VW mean and[X E ] its VW sample mean with the corresponding extrinsic covariance matrix

� E : We have the following asymptotic behavior

tan ĵ ( � � 1
E )

�
ĵ ([X E ]� 1) � ĵ (� � 1

E )
�

! d Nm (0m ; � �
E )

where� �
E = ( dI ) � E (dI )T anddI a;b = ( d� ~� � Pj (eb)) � ~eb(~� � Pj (� )) a; b = 1 ; 2; 3: And � is the inverse

map of the Lie groupRP3:

PROPOSITION 4.3.1. Assume[X r ]; kX r k = 1 ; r = 1 ; :::; n; is a random sample from a VW-nonfocal

probability measureQ on G = RP3 a 3-dimensional Lie group. Also let� : RP3 ! RP3 be the inverse

map on that manifold. The sample covariance matrixG�
E (j; X ), which is the consistent estimator of� �

E ,

has entries given by;

G�
E (j; X )a;b = n� 1(� 4 � � a) � 2(� 4 � � b) � 2 �

X

r

(ma � X r )(mb � X r )(m4 � X r )2 (4.31)

where� a; a = 1 ; ::; 4 are eigenvalues ofK = n� 1 P n
r =1 X r X T

r in increasing order andma = 1 ; :::; 4; are

corresponding linearly independent unit eigenvectors.
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Proof. Note that sincej ([X ]) is a consistent estimator of� the mean ofj ([X 1]) 2 S(4; R): Also for the

orthonormal frame �eld(e1(Pj (� )) ; e2(Pj (� )) ; e3(Pj (� ))) on a subset ofRP3 with Pj (� ) = j (X E ) we

have that fora = 1 ; 2; 3; ea(Pj (j ([X ])) is a consistent estimator ofea(Pj (� )) . Similarly, dj ([X ])Pj is a

consistent estimator ofd� Pj .

For the orthonormal frame �eld(~e1(~� � Pj (� )) ; ~e2(~� � Pj (� )) ; ~e3(~� � Pj (� ))) we also have the corresponding

consistent estimator(~e1(~� � Pj (j ([X ]))) ; ~e2(~� � Pj (j ([X ]))) ; ~e3(~� � Pj (j ([X ])))) : And d� ~� � Pj has the

following consistent estimatordj ([X ])~� � Pj

Now recall that

� �
E = ( dI ) � E (dI )T

(dI )a;b = d� ~� � Pj (eb) � ~ea(~� � Pj (� ))

for a; b = 1 ; 2; 3: And � E is the extrinsic covariance matrix. Letj ([X E ]) = Pj (j ([X ])) then we would

like to �rst investigate the case for whichj ([X ]) = D be a diagonal matrix. If this matrix is diagonal we get

[m4] = [ e4] = [ X E ] and we get the consistent estimator of� E denotedGE (j; X ) and with entries given by

GE (j; X )ab = n� 1(� 4 � � a) � 1(� 4 � � b) � 1
X

r

X a
r X b

r (X 4
r )2 (4.32)

where� a; a = 1 ; ::; 4 are eigenvalues ofK = n� 1 P n
r =1 X r X T

r in increasing order andma = 1 ; :::; 4;

are corresponding linearly independent unit eigenvectors. We can now express our consistent estimator

G�
E (j; X ) as follow

G�
E (j; X ) = ( d ) GE (j; X ) (d )T

whered is a matrix with entries

d a;b = dD ~� � Pj (eb) � ~ea(~� � Pj (D ))

for a; b = 1 ; 2; 3: S(4; R) has the orthonormal basisF b
a ; b � a; where, fora < b; the matrixF b

a has all

entries zeros except for those in the positions(a; b); (b; a) that are equal to2� 1=2; alsoF a
a = j ([ea]): Recall

from proposition 4.2 in Battacharya and Patrangenaru 2005, that we have

dD Pj (F b
a ) = 0 ; 8 b � a < 4

=) dD ~� � Pj (F b
a ) = dPj (D )~� dD Pj (F b

a ) = 0 ; 8 b � a < 4
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Note that[X E ] = [ m4] = [ e4] and the other unit eigenvectors ofD = j ([X ]) arema = ea; 8 a = 1 ; 2; 3:

Sincej ([X E ]� 1) = ~� � Pj (D ), we want to evaluatedD ~� � Pj (F b
a ) 2 T~� � Pj (D ) j (G): But given that

[X E ]� 1 = [ e4]� 1 = [�e4] = [ e4] = [ X E ]

we then have the following choice of orthonormal frame

~ea(~� � Pj (D )) = ~ea(j ([X E ]� 1)) = dX E
j (ea) = d[e4 ]j (ea)

We will now compute the remaining3 tangent vectors inTPj (D ) j (RP3) of interest, namely;

dD ~� � Pj (ea) = dD ~� � Pj (F a
4 ); for a = 1 ; 2; 3:

And for a = 1 ; 2; 3; direct computations

d� ~� � Pj (F a
N ) =

d
dt

~� � Pj (D + tF a
N )

�
�
�
�
t=0

will yield

dD ~� � (e1) = ( � 1 � � 4) � 1 ~e1(Pj (D ))

dD ~� � (e2) = ( � 2 � � 4) � 1 ~e2(Pj (D ))

dD ~� � (e3) = ( � 3 � � 4) � 1 ~e3(Pj (D ))

we then have the following

d =

2

4
(� 1 � � 4) � 1 0 0

0 (� 2 � � 4) � 1 0
0 0 (� 3 � � 4) � 1

3

5

Hence, the matrixG�
E (j; X ) has entries;

G�
E (j; X )a;b = n� 1(� 4 � � a) � 2(� 4 � � b) � 2 �

X

r

X a
r X b

r (X 4
r )2

For a = 1 ; 2 let [X a;1]; � � � ; [X a;na ] be independent random samples de�ned onRP3 from j -nonfocal

distributionsQa; with extrinsic means� a;E and extrinsic covariance matrices� a;E . Also letn = n1 + n2

such thatn1=n ! � asna ! 1 a = 1 ; 2: Then using the result of Lemma4:2:2 we have for,� : RP3 !
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RP3 the inverse map andH : RP3 � RP3 ! RP3 the Lie group multiplication, the following asymptotic

behavior.

n1=2 tan j ( � � 1
2;E � � 1;E )

�
j (X

� 1
2;E � X 1;E ) � j (� � 1

2;E � � 1;E )
�

! d Nm (0m ; � �G
E ) (4.33)

where forH (� � 1
2;E ; � 1;E ) = ( � � 1

2;E � � 1;E );

� �H
E =

1
�

(dH (1) ) � �
2;E (dH (1) )T +

1
1 � �

(dH (2) )� 1;E (dH (2) )T (4.34)

PROPOSITION 4.3.2. For a = 1 ; 2, let f [X r a ]gna
r a =1 ; kX r a k = 1 ; be independent random samples fromj -

nonfocal probability measuresQa onRP3: Then the consistent estimator of� �
E is denotedG�

E (j; X 1;1; X 2;1)

with extrinsic means and covariance respectively� a;E and � a;E : Also let� : RP3 ! RP3 be the inverse

map on that manifold and� denote the Lie group multiplication onRP3: The sample covariance matrix

G�
E (X ), which is the consistent estimator of� �

E , has entries given by;

G�H
E (j; X 1;1; X 2;1)a;b =

n� 1
2 (� 2;4 � � 2;a) � 3(� 2;4 � � 2;b) � 3 �

n2X

r =1

(m2;a � X a
2;r )(m2;b � X b

2;r )(m2;4 � X 4
2;r )2

+

n� 1
1 (� 1;4 � � 1;a) � 2(� 1;4 � � 1;b) � 2

n1X

r =1

(m1;a � X a
1;r )(m1;b � X b

1;r )(m1;4 � X 4
1;r )2 (4.35)

where fors = 1 ; 2 and� s;a; a = 1 ; ::; 4 are eigenvalues ofK s = n� 1
s

nsX

r =1

X s;r X T
s;r in increasing order and

ms;a = 1 ; :::; 4; are corresponding linearly independent unit eigenvectors.

Proof. And for � 1;E and� �
2;E are the extrinsic covariance matrices ofX 1;1 andX 2;1 respectively. With-

out loss of generality, we now assume thatj ([X a;E ]) = Pj (j ([X a;1])) is a diagonal matrix, and lets take

j ([X a;1]) = Da to be a diagonal matrix as well.

We then have the consistent estimators of� �
2;E and� 1;E denoted G�

2;E (j; X 2;1) andG1;E (j; X 1;1) and

with entries given by .

G�
2;E (j; X 2;1)a;b = n� 1

2 (� 2;4 � � 2;a) � 2(� 2;4 � � 2;b) � 2 �
n2X

r =1

X a
2;r X b

2;r (X 4
2;r )2

G1;E (j; X 1;1)ab = n� 1
1 (� 1;4 � � 1;a) � 1(� 1;4 � � 1;b) � 1

n1X

r =1

X a
1;r X b

1;r (X 4
1;r )2 (4.36)
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where fors = 1 ; 2 and� s;a; a = 1 ; ::; 4 are eigenvalues ofK s = n� 1
s

P ns
r =1 X s;r X T

s;r in increasing order

andms;a = 1 ; :::; 4; are corresponding linearly independent unit eigenvectors.

Now the extrinsic covariance matrix

� �H
E =

1
�

(dH (1) ) � �
2;E (dH (1) )T +

1
1 � �

(dH (2) )� 1;E (dH (2) )T (4.37)

has the following consistent estimator

G�H
E (j; X 1;1; X 2;1) =

1
n2

(d� (1) ) G�
2;E (j; X 2;1)(d� (1) )T +

1
n1

(d� (2) )G1;E (j; X 1;1)(d� (2) )T (4.38)

whered� (1) andd� (2) are matrices with entries given by

d� (1)
a;b =

�
d(D 2 ;D 1 )Ĥ (êb) � ~ea(Ĥ (D2; D1))

�

d� (2)
a;b =

�
dD 2 ;D 1 Ĥ (êN1+ b) � ~ea(Ĥ (D2; D1))

�
; for a; b = 1 ; 2; 3

whereD̂ = ( D2; D1) and fora = 1 ; 2 Da 2 S(4; R). Recall thatS(4; R) has the orthonormal basis

F b
a ; b � a; where, fora < b; the matrixF b

a has all entries zeros except for those in the positions(a; b); (b; a)

that are equal to2� 1=2; alsoF a
a = j ([ea]): We have that̂D 2 S(4; R) � S(4; R) and a convenient basis for

such a manifold is(F b
2;a; 04� 4) for a; b = 1 ; :::4 and(04� 4; F b

1;a) For the entries ofd� (1) we consider the

following basis elements,(F b
2;a; 04� 4) and the following elementd(D 2 ;D 1 )Ĥ ((F b

2;a; 04� 4)) where,

Ĥ ((F b
2;a; 04� 4)) = j � H � (j � 1)(2) (~� � Pj (F b

1;a); Pj (04� 4)) (4.39)

We �rst look at the following derivatives

d(D 2 ;D 1 )Ĥ ((F 1
2;4; 04� 4)) =

d
dt

Ĥ (D2 + tF 1
2;4; D1)

�
�
�
�
t=0

=)
d
dt

Ĥ (D2 + tF 1
2;4; D1)

�
�
�
�
t=0

= ( � 2;1 � � 2;4) � 1 d[e4 ]j (e1) = ( � 2;1 � � 4) � 1 e1(Pj (� ))

and

d(D 2 ;D 1 )Ĥ ((04� 4; F 1
1;4)) =

d
dt

Ĥ (D2; D1 + tF 1
1;4)

�
�
�
�
t=0

(4.40)

= ( � 1;4 � � 1;1) � 1 d[e4 ]j (~e1) = ( � 1;4 � � 1;1) � 1 ea(Ĥ (D2; D1))
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d� (1) =

2

4
(� 2;4 � � 2;1) � 1 0 0

0 (� 2;4 � � 2;2) � 1 0
0 0 (� 2;4 � � 2;3) � 1

3

5

d� (2) =

2

4
(� 1;4 � � 1;1) � 1 0 0

0 (� 1;4 � � 1;2) � 1 0
0 0 (� 1;4 � � 1;3) � 1

3

5

h
(d� (1) ) G�

2;E (j; X 2;1)(d� (1) )T
i

a;b
= n� 1

2 (� 2;4 � � 2;a) � 3(� 2;4 � � 2;b) � 3 �
n2X

r =1

X a
2;r X b

2;r (X 4
2;r )2

h
(d� (2) ) G1;E (j; X 1;1)(d� (2) )T

i

a;b
= n� 1

1 (� 1;4 � � 1;a) � 2(� 1;4 � � 1;b) � 2
n1X

r =1

X a
1;r X b

1;r (X 4
1;r )2

PROPOSITION 4.3.3. For a = 1 ; 2, let f [X r a ]gna
r a =1 ; kX r a k = 1 ; be independent random samples fromj -

nonfocal probability measuresQa onRP3: Then the consistent estimator of� �
E is denotedG�

E (j; X 1;1; X 2;1):

(i)

n1=2 G�
E (j; X 1;1; X 2;1) � 1=2 tan j ( � � 1

2;E � � 1;E )

�
j (X

� 1
2;E � X 1;E ) � j (� � 1

2;E � � 1;E )
�

! d Nm (0m ; I m )

(4.41)

so that

(ii)

n


 G�

E (j; X 1;1; X 2;1) � 1=2 tan j ( � � 1
2;E � � 1;E )

�
j (X

� 1
2;E � X 1;E ) � j (� � 1

2;E � � 1;E )
� 




2
(4.42)

converges weakly to� 2
m and the
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CHAPTER 5

EXTRINSIC ANTI-MEAN

In this chapter Icontinue to focus on extrinsic analysis, which is the statistical analysis performed relative

to � j a chord distance onM induced by the Euclidean distance inRN via an embeddingj : M ! RN ;

with an emphasis on compact object spaces. Most of the results in this section are due to the author of

this dissertation, were presented at the second Conference of the International Society of Nonparametric

Statistics, in Cadiz, Spain in 2015, and appeared in the peer reviewed publication [27]. Recall that the

expected square distance from the random objectX to an arbitrary pointp de�nes what we call the Fréchet

function associated withX and in extrinsic analysis it is given by;

F (p) =
Z

M
kj (x) � j (p)k2

0Q(dx); (5.1)

whereQ = PX is the probability measure onM ; associated withX: In this case the Fréchet mean set

is called theextrinsic mean set(see Bhattacharya and Patrangenaru (2003)[5]), and if we have a unique

point in the extrinsic mean set ofX; this point is theextrinsic meanof X; and is labeled� E (X ) or simply

� E : Also, givenX 1; : : : ; X n i.i.d random objects fromQ, their extrinsic sample mean (set)is the extrinsic

mean (set) of the empirical distribution̂Qn = 1
n

P n
i =1 � X i : Recall that the existence of an extrinsic mean

is tied to the existence of a unique projection of the mean� of j (Q) from the ambient spaceRN onto

the spacej (M ) � RN : In the section 5.1 I introduce a new location parameter which is viewed as the

(unique) maximizer of the Fréchet function given in (5.1) and is referred to as theextrinsic anti-mean(

see Patrangenaru and Ellingson (2015)[21]) and I also express its correspondingsample anti-meanviewed

as the maximizer of the Fréchet function associated with the empirical distributionQ̂n : In section 5.2 I

give explicit formulas of the Veronesee-Whitney (VW) anti-mean onRPm . The following section involves

inference problems for extrinsic means and anti-means on the3-D projective shape space(RP3)q: Section

5.4 using the results from the previous section, I perform a two sample test on a set of data consisting of

digital images of �owers.
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5.1 Geometric description of the extrinsic anti-mean

We assume that(M ; � ) is a compact metric space, therefore the Fréchet function is bounded, and its extreme

values are attained at points onM : We are now introducing anew location parameterfor X:

DEFINITION 5.1.1. The set of maximizers of the Fréchet function, is called theextrinsic anti-mean set. In

case the extrinsic anti-mean set has one point only, that point is calledextrinsic anti-mean of X; and is

labeled�� j;E (Q), or simply�� E ; whenj is known.

Let (M ; � j ) be a compact metric space, where� j is the chord distance via the embeddingj : M ! RN ;

that is

� j (p1; p2) = kj (p1) � j (p2)k = � 0(j (p1); j (p2)) ; 8(p1; p2) 2 M 2;

where� 0 is the Euclidean distance inRN :

REMARK 5.1.1. Recall that a pointy 2 RN for which there is a unique pointp 2 M satisfying the

equality,

� 0(y; j (M )) = inf
x2M

ky � j (x)k0 = � 0(y; j (p))

is calledj -nonfocal. A point which is notj -nonfocal is said to bej -focal. And ify is a j -nonfocal point, its

projection onj (M ) is the unique pointj (p) = Pj (y) 2 j (M ) with � 0(y; j (M )) = � 0(y; j (p)) :

With this in mind we now have the following de�nition.

DEFINITION 5.1.2 (�j -nonfocal). (a) A pointy 2 RN for which there is a unique pointp 2 M satisfying

the equality,

sup
x2M

ky � j (x)k0 = � 0(y; j (p)) (5.2)

is called�j -nonfocal. A point which is not�j -nonfocal is said to be�j -focal.

(b) If y is an�j -nonfocal point, its farthest projection onj (M ) is the unique pointz = j (p) = PF;j (y) 2

j (M ) with

sup
x2M

ky � j (x)k0 = � 0(y; j (p)) :

For example if we consider the unit sphereSm in Rm+1 , with the embedding given by the inclusion map

j : Sm ! Rm+1 , then the only�j -focal point is0m+1 ; the center of this sphere; this point also happens to

be the onlyj -focal point ofSm :
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DEFINITION 5.1.3. A probability distributionQ onM is said to be�j -nonfocal if the mean� of j (Q) is

�j -nonfocal.

The �gures below illustrate the extrinsic mean and anti-mean of distributions on a one dimensional topo-

logical manifoldM where the distributions arej -nonfocal and also�j -nonfocal. Note that in the smooth

case, given a family of distributions, for which the mean vector in the ambient space, slightly moves in a

direction perpendicular on the tangent spacej (� E ); the extrinsic mean stays the same, while the extrinsic

anti-mean may change; this shows that the extrinsic anti-mean is a new location parameter, that detects cer-

tain global aspects of a distribution, that are not captured by the extrinsic mean. On the second line of Figure

5.1, one displays the stickiness phenomenon in case of both the extrinsic mean and anti-mean. Recall that

a sticky family of distributions is a family of distributions for which any small perturbation does not affect

the location of the Fŕechet mean; this phenomenon may occurs in case the Fréchet mean happens to be a

singular point in both extrinsic analysis ( see [9]) and intrinsic analysis (see [13]).

Figure 5.1: Extrinsic mean and extrinsic anti-mean on a 1-dimensional topological manifold (up-
per left: regular mean and anti-mean, upper right: regular mean and sticky anti-mean, lower left:
sticky mean and regular anti-mean, lower right : sticky mean and anti-mean
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THEOREM 5.1.1. Let � be the mean vector ofj (Q) in RN : Then the following hold true:

(i) The extrinsic anti-mean set is the set of all pointsx 2 M such thatsupp2M k� � j (p)k0 = � 0(�; j (x)) :

(ii) If �� j;E (Q) exists, then� is �j -nonfocal and�� j;E (Q) = j � 1(PF;j (� )) :

Proof. For part(i ), we �rst rewrite the following expression;

kj (p) � j (x)k2
0 = kj (p) � � k2

0 � 2hj (p) � �; � � j (x) i + k� � j (x)k2
0 (5.3)

Since the manifold is compact,� exists, and from the de�nition of the mean vector we have

Z

M
j (x) Q(dx) =

Z

RN
yj (Q)(dy) = �: (5.4)

From equations (5.4), (5.3) it follows that

F (p) = kj (p) � � k2
0 +

Z

RN
k� � yk2

0j (Q)(dy) (5.5)

Then, from (5.5),

sup
p2M

F (p) = sup
p2M

kj (p) � � k2
0 +

Z

RN
k� � yk2

0 j (Q)(dy) (5.6)

This then implies that the anti-mean set is the set of pointsx 2 M with the following property;

sup
p2M

kj (p) � � k0 = kj (x) � � k0: (5.7)

For Part(ii ) if �� j;E (Q) exists, then�� j;E (Q) is the unique pointx 2 M ; for which equation (5.7) holds

true, which implies that� is �j -nonfocal andj (�� j;E (Q)) = PF;j (� ):

DEFINITION 5.1.4. Let x1; ::::; xn be random observations from a distributionQ on a compact metric

space(M ; � ); then their extrinsic sample anti-mean set, is the set of maximizers of the Fréchet functionF̂n

associated with the empirical distribution̂Qn = 1
n

P n
i =1 � x i ; which is given by

F̂n (p) =
1
n

nX

i =1

kj (x i ) � j (p)k2
0 (5.8)

If Q̂n has an extrinsic anti-mean, its extrinsic anti-mean is called extrinsic sample anti-mean, and it is

denoteda �X j;E :

THEOREM 5.1.2. AssumeQ is an�j -nonfocal probability measure on the manifoldM andX = f X 1; ::::; X ng

are i.i.d random objects fromQ: Then,
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(a) If j (X ) is �j -nonfocal, then the extrinsic sample anti-mean is given bya �X j;E = j � 1(PF;j (j (X ))) :

(b) The set(�F )c of �j -nonfocal points is a generic subset ofRN , and if�� j;E (Q) exists, then the extrinsic

sample anti-meana �X j;E is a consistent estimator of�� j;E (Q):

Proof. (Sketch). (a) Sincej (X ) is �j -nonfocal the result follows from Theorem 5.1.1, applied to the em-

pirical Q̂n , thereforej (a �X j;E ) = PF;j (j (X )) :

(b) All the assumptions of the SLLN are satis�ed, sincej (M ) is also compact, therefore the sample mean

estimatorj (X ) is a strong consistent estimator of� , which implies that for any" > 0; and for any� > 0;

there is sample sizen(�; " ); such thatP(kj (X ) � � k > � ) � "; 8n > n (�; " ): By taking a small enough

� > 0; and using a continuity argument forPF;j , the result follows.

REMARK 5.1.2. A CLT for extrinsic sample anti-means is given in a paper I have coauthored (see Pa-

trangenaru et. al.(2016)[22]).

5.2 VW anti-means onRPm

In this section we consider the case of a probability measureQ on the real projective spaceM = RPm ;

which is the set of axes (1-dimensional linear subspaces ) ofRm+1 : Here the points inRm+1 are regarded

as (m + 1) � 1 vectors. RPm can be identi�ed with the quotient spaceSm =f x; � xg; it is a compact

homogeneous space, with the groupSO(m + 1) acting transitively on(RPm ; � j ); where the distance� j on

RPm is induced by the chord distance on the sphereSm : There are in�nitely many embeddings ofRPm

in a Euclidean space, however for the purpose of two sample mean or two sample anti-mean testing, it is

preferred to use an embeddingj that is compatible with two transitive group actions ofSO(m+1) onRPm ;

respectively onj (RPm ); that is

j (T � [x]) = T � j ([x]); 8 T 2 SO(m + 1) ; 8 [x] 2 RPm ; where T � [x] = [ T x]: (5.9)

Such an embedding is said to beequivariant(see Kent (1992)[17], where the equivariance was used in

the context of a VW embedding of a planar direct similarity shape space). For computational purposes, the

equivariant embedding ofRPm that was used so far in the axial data analysis literature is the VW embedding

j : RPm ! S+ (m + 1 ; R); that associates to an axis the matrix of the orthogonal projection on this axis (

see Patrangenaru and Ellingson(2015)[21] and references therein ):

j ([x]) = xx T ; kxk = 1 ; (5.10)
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HereS+ (m + 1 ; R) is the set of nonnegative de�nite symmetric(m + 1) � (m + 1) matrices, and in this

case

T � A = T AT T ; 8 T 2 SO(m + 1) ; 8 A 2 S+ (m + 1 ; R) (5.11)

REMARK 5.2.1. Let N = 1
2(m + 1)( m + 2) : The spaceE = ( S(m + 1 ; R); h; i 0) is anN -dimensional

Euclidean space with the scalar product given byhA; B i 0 = T r(AB ); where A; B 2 S(m + 1 ; R):

The associated normk � k0 and Euclidean distance� 0 are given by respectively bykCk2
0 = hC; Ci 0 and

� 0(A; B ) = kA � B k0; 8C; A; B 2 S(m + 1 ; R):

With the notation in Remark 5.2.1 we have

F ([p]) = kj ([p]) � � k2
0 +

Z

M
k� � j ([x])k2

0 Q(d[x]); (5.12)

andF ([p]) is maximized ( minimized ) if and only ifkj ([p]) � � k2
0 is maximized ( minimized ) as a function

of [p] 2 RPm :

From Patrangenaru and Ellingson (2015, Chapter 4)[21] and de�nitions therein, recall that the extrinsic

mean� j;E (Q) of a j - nonfocal probability measureQ on M w.r.t. an embeddingj , when it exists, is given

by � j;E (Q) = j � 1(Pj (� )) where� is the mean ofj (Q): In the particular case whenM = RPm ; andj

is the VW embedding,Pj is the projection onj (RPm ) andPj : S+ (m + 1 ; R)nF ! j (RPm ); whereF is

the set ofj -focal points ofj (RPm ) in S+ (m + 1 ; R): For the VW embedding,F is the set of matrices in

S+ (m + 1 ; R) whose largest eigenvalues are of multiplicity at least 2. The projectionPj assigns to each

nonnegative de�nite symmetric matrixA with highest eigenvalue of multiplicity1; the matrixmmT ; where

m is a unit eigenvector ofA corresponding to its largest eigenvalue.

Furthermore, the VW mean of a random object[X ] 2 RPm ; kX T X k = 1 is given by� j;E (Q) = [  (m + 1)]

and(� (a);  (a)) ; a = 1 ; ::; m + 1 are eigenvalues and unit eigenvectors pairs (in increasing order of eigen-

values) of the mean� = E(XX T ): Similarly, the VW sample mean is given by�x j;E = [ g(m + 1)] where

(d(a); g(a)) ; a = 1 ; : : : ; m + 1 are eigenvalues and unit eigenvectors pairs (in increasing order of eigen-

values) of the sample meanJ = 1
n

P n
i =1 x i xT

i associated with the sample([x i ]) i = 1;n ; on RPm ; where

xT
i x i = 1 ; 8i = 1; n:

Based on (5.12), we get similar results in the case of an�j -nonfocal probability measureQ :

PROPOSITION 5.2.1. (i) The set of�V W -nonfocal points inS+ (m + 1 ; R); is the set of matrices in

S+ (m + 1 ; R) whose smallest eigenvalue has multiplicity 1.
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(ii) The projectionPF;j : (�F )c ! j (RPm ) assigns to each nonnegative de�nite symmetric matrixA,

of rank 1, with a smallest eigenvalue of multiplicity 1, the matrixj ([� ]), wherek� k = 1 and � is an

eigenvector ofA corresponding to that eigenvalue.

We now have the following;

PROPOSITION 5.2.2. LetQ be a distribution onRPm :

(a) The VW-antimean set of a random object[X ]; X T X = 1 on RPm ; is the set of pointsp = [ v] 2 V1;

whereV1 is the eigenspace corresponding to the smallest eigenvalue� (1) of E (XX T ):

(b) If in additionQ = P[X ] is �V W -nonfocal, then

�� j;E (Q) = j � 1(PF;j (� )) = [  (1)]

where(� (a);  (a)) , a = 1 ; ::; m + 1 are eigenvalues in increasing order and the corresponding unit

eigenvectors of� = E(XX T ):

(c) Let [x1]; : : : ; [xn ] be observations from a distributionQ on RPm ; such thatj (X ) is � VW-nonfocal.

Then the VW sample anti-mean of[x1]; : : : ; [xn ] is given by

ax j;E = j � 1(PF;j (j (x))) = [ g(1)]

where(d(a); g(a)) are the eigenvalues in increasing order and the corresponding unit eigenvectors of

J =
1
n

nX

i =1

x i xT
i ; wherexT

i x i = 1 ; 8i = 1; n:

5.3 Two-sample test for VW means and anti-means projective shapes in 3D

Recall that the spaceP� k
3 of projective shapes of 3Dk-ads inRP3, ([u1]; :::; [uk ]); with k > 5, for

which � = ([ u1]; : : : ; [u5]) is a projective frame inRP3, is homeomorphic to the manifold(RP3)q with

q = k � 5 (see Patrangenaru et. al.(2010)[23]). Recall from Section 2.5 thatRP3 has a natural structure

of Lie group. This multiplicative structure turns the(RP3)q into a product Lie group(G; � ) whereG =

(RP3)q (see Crane and Patrangenaru (2011)[7], Patrangenaru et. al. (2014)[25]). For the rest of this section

Grefers to the Lie group(RP3)q. The VW embeddingj q : (RP3)q ! (S+ (4; R))q (see Patrangenaru et al.

(2014)[25]), is given by

j q([x1]; : : : ; [xq]) = ( j ([x1]); : : : ; j ([xq])) ; (5.13)

with j : RP3 ! S+ (4; R) the VW embedding given in (6.19), form = 3 andj q is also an equivariant

embedding w.r.t. the group(S+ (4; R))q:
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Given the product structure, it turns out that the VW mean� j q of a random objectY = ( Y 1; : : : ; Y q) on

(RP3)q is given by

� j q = ( � 1;j ; � � � ; � q;j ); (5.14)

where, fors = 1; q; � s;j is the VW mean of the marginalY s:

AssumeYa; a = 1 ; 2 are r.o.'s with the associated distributionsQa = PYa ; a = 1 ; 2 on G = ( RP3)q:

We now consider the two sample problem for VW means and separately for VW-anti-means for these ran-

dom objects. Note that the asymptotic results leading to nonparametric bootstrap con�dence regions for

VW-mean change are presented in Section 2.5. For VW anti-means we will simply use nonpivotal boot-

srap computations, since for the sample VW-antimeans on(RP3)q for our data, involve sample covariance

matrices that are degenerate.

5.3.1 Hypothesis testing for VW means

Assume the distributionsQa; a = 1 ; 2 are in addition VW-nonfocal. We are interested in the hypothesis

testing problem:

H0 : � 1;j q = � 2;j q vs.Ha : � 1;j q 6= � 2;j q ; (5.15)

which is equivalent to testing the following

H0 : � � 1
2;j q

� � 1;j q = 1 (RP 3 )q vs.Ha : � � 1
2;j q

� � 1;j q 6= 1 (RP 3 )q (5.16)

1. Letn = n1 + n2 be the total sample size, and assumelimn!1
n1
n ! � 2 (0; 1). Let ' q be the af�ne

chart de�ned in a neighborhood of1(RP 3 )q (see de�nition 3.1.1), with' q(1(RP 3 )q ) = 0 : Then, under

H0

n1=2 ' q( �Y � 1
j q ;n2

� �Yj q ;n1 ) ! d N3q(03q; � j q ) (5.17)

Where� j q depends linearly on the extrinsic covariance matrices� a;j q of Qa:

2. Assume in addition that fora = 1 ; 2 the support of the distribution ofYa;1 and the VW mean� a;j q

are included in the domain of the chart' q and' q(Ya;1) has an absolutely continuous component and

�nite moment of suf�ciently high order. Then the joint distribution

V = n
1
2 ' q( �Y � 1

j q ;n2
� �Yj q ;n1 ) (5.18)

can be approximated by the bootstrap joint distribution of
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V � = n1=2 ' q( �Y � � 1
j q ;n2

� �Y �
j q ;n1

)

From Patrangenaru et. al.(2010)[23], recall that given a random sample from a distributionQ on RPm ; if

Js; s = 1 ; : : : ; q are the matricesJs = n� 1 P n
r =1 X s

r (X s
r )T ; and if for a = 1 ; : : : ; m + 1 ; ds(a) andgs(a)

are the eigenvalues in increasing order and corresponding unit eigenvectors ofJs; then the VW sample mean

�Yj q ;n is given by

�Yj q ;n = ([ g1(m + 1)] ; : : : ; [gq(m + 1)]) : (5.19)

REMARK 5.3.1. Given the high dimensionality, the VW sample covariance matrix is often singular. There-

fore, for nonparametric hypothesis testing, non-pivotal bootstrap is preferred. For details, on testing the ex-

istence of a mean change 3D projective shape, when sample sizes are not equal, using non-pivotal bootstrap,

see Patrangenaru et al. (2014).

5.3.2 Hypothesis testing for VW anti-means

Unlike in the previous subsection, we now assume that fora = 1 ; 2; Qa are� VW-nonfocal. We are now

interested in the hypothesis testing problem:

H0 : �� 1;j q = �� 2;j q vs.Ha : �� 1;j q 6= �� 2;j q ; (5.20)

which is equivalent to testing the following

H0 : �� � 1
2;j q

� �� 1;j q = 1 (RP 3 )q vs.Ha : �� � 1
2;j q

� �� 1;j q 6= 1 (RP 3 )q (5.21)

1. Letn = n1 + n2 be the total sample size, and assumelimn!1
n1
n ! � 2 (0; 1). Let ' q be the af�ne

chart with' q(1(RP 3 )q ) = 0 3q: Then, from Patrangenaru et al. (2016)[26], it follows that underH0

n1=2 ' q(a �Y � 1
j q ;n2

� a �Yj q ;n1 ) ! d N3q(03q; ~� j q ); (5.22)

for some covariance matrix~� j q :

2. Assume in addition that fora = 1 ; 2 the support of the distribution ofYa;1 and the VW anti-mean

�� a;j q are included in the domain of the chart' and' (Ya;1) has an absolutely continuous component

and �nite moment of suf�ciently high order. Then the joint distribution

aV = n
1
2 ' q(a �Y � 1

j q ;n2
� a �Yj q ;n1 ) (5.23)

can be approximated by the bootstrap joint distribution of
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aV � = n1=2 ' q(a �Y � � 1
j q ;n2

� a �Y �
j q ;n1

)

Now, from Proposition 5.2.2, we get the following result that is used for the computation of the VW sample

anti-means.

PROPOSITION 5.3.1. follows that given a random sample from a distributionQ on RPm ; if Js; s =

1; : : : ; q are the matricesJs = n� 1 P n
r =1 X s

r (X s
r )T ; and if for a = 1 ; : : : ; m + 1 ; ds(a) andgs(a) are the

eigenvalues in increasing order and corresponding unit eigenvectors ofJs; then the VW sample anti-mean

a �Yj q ;n is given by

a �Yj q ;n = ([ g1(1)]; : : : ; [gq(1)]) : (5.24)

5.4 Two sample test for lily �owers data

In this section we will test for the existence of 3D mean projective shape change to differentiate between

two lily �owers. We will use pairs of pictures of two �owers for our study.

Our data sets consist of two samples of digital images. The �rst one consist of 11 pairs of pictures of a single

lily �ower. The second has 8 pairs of digital images of another lily �ower.

Figure 5.2: Flower 1 image sample

We will recover the 3D projective shape of a spatialk-ad (in our casek = 13) from the pairs of images,

which will allow us to test for mean 3D projective shape change detection.

Flowers belonging to the genus Lilum have three petals and three petal-like sepals. It may be dif�cult to

distinguish the lily petals from the sepals. Here all six are referred to astepals. For our analysis we selected

13 anatomic landmarks, 5 of which will be used to construct a projective frame. In order to conduct a proper

analysis we recorded the same labeling of landmarks and kept a constant con�guration for both �owers.

The tepals where labeled 1 through 6 for both �owers. Also the sixstamens(male part of the �ower) ,were
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Figure 5.3: Flower 2 image sample

labeled 7 through 12 starting with the stamen that is closely related to tepal 1 and continuing in the same

fashion. The landmarks were placed at the tip of theantherof each of the six stamens and in the center of

thestigmafor thecarpel(the female part).

Figure 5.4: Landmarks for �ower 1 and �ower 2

For 3D reconstructions ofk-ads we used the reconstruction algorithm in Ma et al (2005)[19]. The �rst 5 of

our 13 landmarks were selected to construct our projective frame� . To each projective point we associated

its projective coordinate with respect to� . The projective shape of the 3Dk-ad, is then determined by the8

projective coordinates of the remaining landmarks of the reconstructed con�guration.

We tested for the VW mean change, since(RP3)8 has a Lie group structure (Crane and Patrangenaru

(2011)[7]). Two types of VW mean changes were considered: one for cross validation, and the other for

comparing the VW mean shapes of the two �owers.

SupposeQ1 andQ2 are independent r.o.'s, the hypothesis for their mean change is

H0 : � � 1
1;j 8

� � 2;j 8 = 1 (RP 3 )8

Given' , the Log chart on this Lie group,' q(18) = 0 8; we compute the bootstrap distribution

D � = ' q(( �Y �
j 8 ;11) � 1 � �Y �

j 8 ;8)
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We fail to rejectH0; if all simultaneous con�dence intervals contain0; and reject it otherwise. We construct

95% simultaneous nonparametric bootstrap con�dence intervals. We will then expect to fail to reject the

null, if we have0 in all of our simultaneous con�dence intervals.

5.4.1 Results for comparing the two �owers

We will fail to reject our null hypothesis

H0 : � � 1
1;j 8

� � 2;j 8 = 1 (RP 3 )8

if all of our con�dence intervals contain the value0.

Figure 5.5: Bootstrap projective shape marginals for lily data

Simultaneous con�dence intervals for lily's landmarks 6 to 9
LM6 LM7 LM8 LM9

x (0:609514; 1:638759) (0:320515; 0:561915) (� 0:427979; 0:821540) (0:055007; 0:876664)
y (� 0:916254; 0:995679) (� 0:200514; 0:344619) (� 0:252281; 0:580393) (� 0:358060; 0:461555)
z (� 1:589983; 1:224176) (0:177687; 0:640489) (0:291530; 0:831977) (0:213021; 0:883361)

Simultaneous con�dence intervals for lily's landmarks 10 to 13
LM10 LM11 LM12 LM13

x (0:060118; 0:822957) (0:495050; 0:843121) (0:419625; 0:648722) (0:471093; 0:874260)
y (� 0:346121; 0:160780) (� 0:047271; 0:253993) (� 0:079662; 0:193945) (� 0:075751; 0:453817)
z (0:198351; 0:795122) (0:058659; 0:619450) (0:075902; 0:569353) (� 0:146431; 0:497202)

We notice that0 is does not belong to 13 simultaneous con�dence intervals in the table above. We then

can conclude that there is signi�cant mean VW projective shape change between the two �owers. This
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difference is also visible with the �gure of the boxes of the bootstrap projective shape marginals found in

Figure 5.5. The bootstrap projective shape marginals for landmarks 11 and 12 we can also visually reinforce

our choice of rejection of the null hypothesis.

5.4.2 Results for cross-validation of the mean projective shape of the lily �ower in second
sample of images

One can show that, as expected, there is no mean VW projective shape change, based on the two samples

with sample sizes respectivelyn1 = 5 and n2 = 6 . In the tables below,0 is contained in all of the

simultaneous intervals. Hence, we fail to reject the null hypothesis at level� = 0 :05:

Figure 5.6: Bootstrap projective shape marginals for cross validation of lily �ower

Simultaneous con�dence intervals for lily's landmarks 6 to 9
LM6 LM7 LM8 LM9

x (� 1:150441; 0:940686) (� 1:014147; 1:019635) (� 0:960972; 1:142165) (� 1:104360; 1:162658)
y (� 1:245585; 2:965492) (� 1:418121; 1:145503) (� 1:250429; 1:300157) (� 1:078833; 1:282883)
z (� 0:971271; 1:232609) (� 1:654594; 1:400703) (� 1:464506; 1:318222) (� 1:649496; 1:396918)

Simultaneous con�dence intervals for lily's landmarks 10 to 13
LM10 LM11 LM12 LM13

x (� 1:078765; 1:039589) (� 0:995622; 1:381674) (� 0:739663; 1:269416) (� 1:015220; 1:132021)
y (� 1:126703; 1:140513) (� 1:210271; 1:184141) (� 1:324111; 1:026571) (� 1:650026; 1:593305)
z (� 1:092425; 1:795890) (� 1:222856; 1:963960) (� 1:128044; 1:762559) (� 1:035796; 2:227439)
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5.4.3 Comparing the sample anti-mean for the two lily �owers

The Veronese-Whitney (VW) anti-mean is the extrinsic anti-mean associated with the VW embedding

The VW anti-mean changes were considered for comparing the VW anti-mean shapes of the two �owers.

SupposeQ1 andQ2 are independent r.o.'s, the hypothesis for their mean change are

H0 : �� � 1
1;j 8

� �� 2;j 8 = 1 (RP 3 )8

Let ' be the af�ne chart on this product of projective spaces,' (18) = 0 8, we compute the bootstrap

distribution,

�D � = ' q(aY
� � 1

j 8 ;11 � aY
�

j 8 ;8)

and construct the95%simultaneous nonparametric bootstrap con�dence intervals. We will then expect to

fail to reject the null, if we have0 in all of our simultaneous con�dence intervals.

Figure 5.7: Eight bootstrap projective shape marginals for anti-mean of lily data

Highlighted in blue are the intervals not containing0 2 R.

In conclusion there is signi�cant anti-mean VW projective shape change between the two �owers, showing

that the extrinsic anti-mean is a sensitive parameter for extrinsic analysis.

In this chapter we introduced a new population parameter, the extrinsic anti-mean. This new location param-

eter is based on a projection unlike the one in the extrinsic mean case, where we focus on projecting� (the

mean ofj (Q) in the ambient space) onto the closest (unique) pointj (� E ) on j (M ); we will instead project

� onto the farthest (unique) point(j (�� E ) on the embedded object space . Just as with the extrinsic mean,
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simultaneous con�dence intervals for lily's landmarks 6 to 9
LM6 LM7 LM8 LM9

x (� 1:02; � 0:51) (� 1:41; 0:69) (� 1:14; 0:40) (� 0:87; 0:35)
y (0:82; 2:18) (0:00; 0:96) (� 0:15; 0:92) (� 0:09; 0:69)
z (� 0:75; 0:36) (� 6:93; 2:83) (� 3:07; 3:23) (� 2:45; 2:38)

Simultaneous con�dence intervals for lily's landmarks 10 to 13
LM10 LM11 LM12 LM13

x (� 0:61; 0:32) (� 0:87; 0:08) (� 0:99; 0:02) (� 0:84; � 0:04)
y (� 0:07; 0:51) (� 0:04; 0:59) (0:06; 0:75) (0:18; 0:78)
z (� 3:03; 1:91) (� 5:42; 1:98) (� 7:22; 2:41) (� 4:91; 2:62)

the extrinsic anti-mean captures important features of a distribution on a compact object space. Certainly

the de�nitions and results extend to the general case of arbitrary Fréchet anti-means.
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CHAPTER 6

MANOVA ON MANIFOLDS

In this chapter I revisit MANOVA for comparing the mean vectors ing populations. I am extending such

considerations to testing for the equality of extrinsic means fromg populations on a manifoldM embedded

in an numerical space. In section 6.1 I introduce a new approach applied to various mean vectors. The main

difference between this approach and classical MANOVA, is that we do not assume that all populations

have a common covariance matrix� ; and also we do not make any distributional assumption, except for the

existence of suf�ciently high order moments of theg populations. In section 6.2 I extend the work presented

in the previous section to develop a hypothesis testing problem used to compare multiple means on smooth

manifolds, and this test is performed on random samples of various sizes, collected from each of theseg

groups. This newly developed MANOVA test is then applied in section 6.3 to populations of3D projective

shapes.

6.1 Motivations for new MANOVA on manifolds

For a = 1 ; :::; g; supposeX a;i � Np(� a; � a); i = 1 ; :::; na arep dimensional i.i.d random vectors. To test

if the mean vectors of theg groups are the same, one considers the hypothesis testing problem

H0 : � 1 = � 2 = ::: = � g = � (6.1)

Ha : at least one equation does not hold:

Assuming that the covariance matrix� a is invertible, by the Central Limit Theorem, for large sample sizes

na; a = 1 ; : : : ; g; we have

p
na�

� 1
2

a ( �X a � � ) � Np(0p; I p); (6.2)

na( �X a � � )T � � 1
a ( �X a � � ) � � 2

p: (6.3)

However,� a is always unknown, so in practice, one has to use its unbiased estimatorSa; a = 1 ; :::; g:

na( �X a � � )T S� 1
a ( �X a � � ) � � 2

p: (6.4)

Let us consider the pooled sample mean�X = 1
n (n1 �X 1 + ::: + ng �X g); n =

P g
a=1 na:
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LEMMA 6.1.1. Under the null, �X is a consistent estimator of�; providedna
n ! � a > 0; as n ! 1 ; a =

1; :::; g.

Proof. Indeed, for anya 2 f 1; 2; :::; gg, sincena
n ! � a > 0; as n ! 1 , and �X a is the consistent estimator

of � , therefore,

�X ! p � 1� + � 2� + ::: + � g� = �: (6.5)

THEOREM 6.1.1. The statistic for the hypothesis in(6.1) is

gX

a=1

na( �X a � �X )T S� 1
a ( �X a � �X ) � � 2

gp: (6.6)

So the rejection region at level c, for this test is

gX

a=1

na( �X a � �X )T S� 1
a ( �X a � �X ) > � 2

gp(c): (6.7)

6.2 MANOVA on manifolds

In this section we will focus on the asymptotic behavior of statistics related to means on a manifoldM based

on samples of different sizes from different populations onM : Now let's consider the setX a;1; : : : ; X a;na

(a = 1 ; 2; :::; g) of iid random objects onM with common probability measureQa: We denote the extrinsic

mean of thej - nonfocal probability measureQa on M by � a;E for ease of notation and because there is

no ambiguity about the embedding used. The corresponding extrinsic sample means are written�X a;E for

a = 1 ; � � � ; g: From this point on, we will assume that all the distributions arej -nonfocal.

6.2.1 Hypothesis testing andT2 statistic

AssumeX a;1; : : : ; X a;na are iid random objects onM ap-dimensional manifold, with probability mea-

sureQa with a = 1 ; 2; :::; g. We are interested in comparing multiple extrinsic means.

We would like to develop a test similar to (6.1) designed to test the difference between theg extrinsic

means. One challenge that presents itself at the early stage is a proper de�nition of a pooled mean for

random objects on ap-dimensional manifoldM : Linearity becomes an issue when dealing with extrinsic

means. For a proper de�nition we will focus on the equalities tied to the assumption

A0 : � 1;E = � � � = � g;E
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DEFINITION 6.2.1. Under the assumptionA0 and for anya 2 f 1; 2; :::; gg, with na
n ! � a > 0; as n !

1 : We de�ne

(i) Theextrinsic pooled mean with weights� = ( � 1; : : : ; � g), denoted� E (� ) as the value inM given

by

j (� E ) = Pj (� 1j (� 1;E ) + � � � + � gj (� g;E )) (6.8)

Where� a;E is the extrinsic mean of the random objectX a;1 and� g
a=1 � a = 1

(ii) Theextrinsic pooled sample meandenoted�X E 2 M given by;

j ( �X E ) = Pj

� n1

n
j ( �X 1;E ) + � � � +

ng

n
j ( �X g;E )

�
(6.9)

Where �X a;E is the extrinsic sample mean forX a;1 andn =
P g

a=1 na

Note that sinceA0 implies j (� 1;E ) = � � � = j (� g;E ); and with our de�nition of the extrinsic pooled mean

we getj (� E ) = j (� a;E ) for eacha = 1 ; : : : ; g: Furthermore, the linear combination� 1j (� 1;E ) + � � � +

� gj (� g;E ) 2 j (M ): Note that fora = 1 ; � � � ; g �X a;E is a consistent estimator of� a;E and therefore we get

thatj ( �X E ) ! p j (� E ): Sincej is a homeomorphism fromM to j (M ) we also have that�X E is a consistent

estimator of� E the extrinsic pooled mean. With this de�nition at hand, we now express the following

hypothesis test, designed to test the difference between extrinsic means and is given by;

H0 : � 1;E = � 2;E = ::: = � g;E = � E ; (6.10)

Ha : at least one equality � a;E = � b;E ; 1 � a < b � g does not hold:

And since the embeddingj : M ! RN is one-to-one the hypothesis above can be interchangeably

written

H j
0 : j (� 1;E ) = j (� 2;E ) = ::: = j (� g;E ) = j (� E ); (6.11)

H j
a : at least one equality � a;E = � b;E ; 1 � a < b � g does not hold:

In order to test hypothesis (6.10) we will use aT2 like statistic. The theorem below, gives us the asymptotic

behavior needed to establish such a statistic. Fora = 1 ; : : : ; g; we get, from Bhattacharya and Patrangenaru

[6], the following:

(i) Sna = ( na) � 1� na
i =1 (j (X a;i ) � j ( �X E ))( j (X a;i ) � j ( �X E ))T is a consistent estimator of� a; and
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(ii) tan j ( �X E ) � is a consistent estimator oftanPj (� ) �; where� 2 RN :

It follows thatG �X (j; X a); given by

G �X (j; X a) =

2

4

"
mX

a=1

d
j ( p) (X )

Pj (eb) � ei (j ( �X E )) ei (j ( �X E ))

#

i =1 ;:::;p

3

5 � Sna

2

4

"
mX

a=1

d
j ( p) (X )

Pj (eb) � ei (j ( �X E ))ei (j ( �X E ))

#

i =1 ;:::;p

3

5

T

where forj (p) (X ) = n1
n j ( �X 1;E ) + � � � + ng

n j ( �X g;E ) and is a consistent estimator of� such thatPj (� ) =

j (� E ): One must note that the extrinsic sample covariance matrixG(j; X a) is expressed in terms ofd
j ( p) (X )

Pj (eb) 2

Tj ( �X E ) j (M ) and not in term ofdj (Xa; 1)Pj (eb) 2 Tj ( �X a;E ) j (M ):

THEOREM 6.2.1. Assumej : M ! RN is a closed embedding ofM . Let f X a;i g
na
i =1 for a = 1 ; :::; g be

random samples from thej -nonfocal distributionsQa. Let � a = E(j (X a;1)) and assumej (X a;1)'s have

�nite second-order moments and the extrinsic covariance matrices� a;E of X a;1 are nonsingular. We also

let (e1(p); ::::; eN (p)) , for p 2 M be an orthonormal frame �eld adapted toj .

Furthermore, letna
n ! � a > 0, asn ! 1 , withn = � g

a=1 na, and� g
a=1 � a = 1 .Then we have the following

asymptotic behavior;
gX

a=1

na tan j ( � E ) (j ( �X a;E ) � j (� E ))T � � 1
a;E tan j ( � E ) (j ( �X a;E ) � j (� E )) ! d � 2

gp:

It follows that the statistics for hypothesis(6.10)have the following behaviors;

(a) the statistic
gX

a=1

na tan j ( � E ) (j ( �X a;E ) � j ( �X E ))T G �X (j; X a) � 1 tan j ( � E ) (j ( �X a;E ) � j ( �X E )) ! d � 2
gp:

(b) the statistic
gX

a=1

na tan j ( �X E ) (j ( �X a;E ) � j ( �X E ))T G �X (j; X a) � 1 tan j ( �X E ) (j ( �X a;E ) � j ( �X E )) ! d � 2
gp:

Proof. recall that from Bhattacharya and Patrangenaru (2005) [6] we have

p
na tan j ( � E ) (j ( �X a;E ) � j (� E )) ! d N (0p; � a;E ); for a = 1 ; 2; :::; g

where

� a;E =
� hX

d� Pj (eb) � ek (Pj (� ))
i

k=1 ;:::;p

�
� a

� hX
d� Pj (eb) � ek (Pj (� ))

i T

k=1 ;:::;p

�
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where� = � 1j (� 1;E ) + � � � + � gj (� g;E ) and the� a's are the covariance matrices of thej (X a;1)'s with

respect to the canonical basise1; :::; eN . And under the null, from 6.10, the matrices� a;E are de�ned with

respect to the basisf 1(� E ); :::; f p(� E ) of local frame �elds. We then have for eacha = 1 ; :::; g

na tan j ( � E ) (j ( �X a;E ) � j (� E ))T � � 1
a;E tan j ( � E ) (j ( �X a;E ) � j (� E )) ! d � 2

p:

and since the random samples are independent we have,

gX

a=1

na tan j ( � E ) (j ( �X a;E ) � j (� E ))T � � 1
a;E tan j ( � E ) (j ( �X a;E ) � j (� E )) ! d � 2

gp: (6.12)

�X E is the consistent estimator of� E , then the pooled sample mean

j ( �X E ) = Pj

 
1
n

gX

a=1

naj ( �X a;E )

!

! p j (� E ) (by lemma6:1:1) (6.13)

And sinceG �X (j; X a) consistently estimate� a andtan j ( �X E ) is a consistent estimator oftan j ( � E ) , we have

the following

gX

a=1

na tan j ( � E ) (j ( �X a;E ) � j ( �X E ))T G �X (j; X a) � 1 tan j ( � E ) (j ( �X a;E ) � j ( �X E )) ! d � 2
gp:

gX

a=1

na tan j ( �X E ) (j ( �X a;E ) � j ( �X E ))T G �X (j; X a) � 1 tan j ( �X E ) (j ( �X a;E ) � j ( �X E )) ! d � 2
gp:

6.2.2 Nonparametric bootstrap con�dence regions

From Corollary 3.2 in [6] under the hypothesis(
H0 : � 1;E = � 2;E = ::: = � g;E = � E ;

Ha :3 (i; j )1 � i < j < g; s.t. � i;E 6= � j;E ;

we have:

COROLLARY 6.2.1. Under the assumptions of Theorem(6.2.1), a con�dence regions for� E of asymptotic

level1 � c is given byC(g)
n;c andD (g)

n;c which are de�ned below

(a) C(g)
n;c = j � 1(Un;c) where

Un;c = f j (� ) 2 j (M ) : n
P g

a=1 na

 G �X (j; X a) � 1=2 tan j ( � ) (j (X a;E ) � j (� ))


 2

� � 2
gp;1� cg

83



(b) D (g)
n;c = j � 1(Vn;c) where

Vn;c = f j (� ) 2 j (M ) :
P g

a=1 na



 G �X (j; X a) � 1=2 tan j ( �X E ) (j (X a;E ) � j (� ))





2
� � 2

gp;1� cg

where �X E is the extrinsic pooled sample mean de�ned in De�nition 6.2.1(ii )

Most of the data we will be focusing on will have value ofn relatively small. We will need to use re sam-

pling, in particular bootstrap methods. Fora = 1 ; :::; g; let f X a;i g
na
i =1 be i.i.d.r.o's from thej -nonfocal

distributionsQa: Let f X �
a;r gr =1 ;:::;n a be random re samples with repetition from the empiricalQ̂na condi-

tionally givenf X a;i g
na
i =1 : The con�dence regionsC(g)

n;c andD (g)
n;c described above have the corresponding

bootstrap analogueC � (g)
n;c andD � (g)

n;c which are de�ned in the corollary below.

COROLLARY 6.2.2. The(1 � c)100%bootstrap con�dence regions for� E with d = gpare given by

(a) C � (g)
n;c = j � 1(U �

n;c) and

U �
n;c = f j (� ) 2 j (M ) :

gX

a=1

na



 G �X (j; X a) � 1=2 tan j ( � ) (j (X a;E ) � j (� ))





2
� c� (g)

1� cg (6.14)

wherec� (g)
1� c is the upper100(1� c)% point of the values

gX

a=1

na



 G �X � (j; X �

a) � 1=2 tan j ( �X E ) (j (X �
a;E ) � j ( �X E ))





2
(6.15)

among the bootstrap re samples.

(b) D � (g)
n;c = j � 1(V �

n;c) and

V �
n;c = f j (� ) 2 j (M ) :

gX

a=1

na



 G �X (j; X a) � 1=2 tan j ( �X E ) (j (X a;E ) � j (� ))





2
� d� (g)

1� cg (6.16)

whered� (g)
1� c is the upper100(1� c)% point of the values

gX

a=1

na



 G �X � (j; X �

a ) � 1=2 tan j ( �X �
E ) (j (X �

a;E ) � j ( �X E ))




2
(6.17)

where �X �
E is the extrinsic pooled re sampled mean given by

j ( �X �
E ) = Pj

� n1

n
j ( �X �

1;E ) + � � � +
ng

n
j ( �X �

g;E )
�

(6.18)

among the bootstrap re samples. Both of the regions given by(6.16)and(6.14)have coverage erroOp(n� 2):
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Note thatG �X � (j; X �
a )

G �X � (j; X �
a ) =

2

4

"
mX

a=1

d
j ( p) (X � )

Pj (eb) � ei (j ( �X �
E )) ei (j ( �X �

E ))

#

i =1 ;:::;p

3

5 � S�
na

2

4

"
mX

a=1

d
j ( p) (X � )

Pj (eb) � ei (j ( �X �
E ))ei (j ( �X �

E ))

#

i =1 ;:::;p

3

5

T

whereS�
na

= ( na) � 1� na
i =1 (j (X �

a;i ) � j ( �X �
E ))( j (X �

a;i ) � j ( �X �
E ))T :

We now express the following test statistics that will be used in our analysis and are tied to the con�dence

regions mentioned above.

PROPOSITION 6.2.1. Let f X a;i g
na
i =1 for a = 1 ; :::; g be random samples from thej -nonfocal distribu-

tionsQa: Let � a = E(j (X a;1)) and assumej (X a;1)'s have �nite second-order moments and the extrinsic

covariance matrices� a;E of X a;1 are nonsingular.

(a) Then the distribution ofTc(X (g) ; Q̂(g) ) =
P g

a=1 na

 G� (j; X a) � 1=2 tan j ( � E ) (j (X a;E ) � j (� E ))


 2

can be approximated by the bootstrap distribution function of

Tc(X � (g) ; Q̂(g) ) =
P g

a=1 na



 G �X (j; X �

a ) � 1=2 tan j ( �X E ) (j (X
�
a;E ) � j ( �X E ))





2

(b) Similarly, the distribution ofTd(X (g) ; Q̂(g) ) =
P g

a=1 na



 G(j; X a) � 1=2 tan j ( �X E ) (j (X a;E ) � j (� E ))





2

can be approximated by the bootstrap distribution function of

Td(X � (g) ; Q̂� (g) ) =
P g

a=1 na



 G �X � (j; X �

a ) � 1=2 tan j ( �X �
E ) (j (X �

a;E ) � j ( �X E ))




2

with coverage errorOp(n� 2).

Note thatT(X � (g) ; Q̂(g) ) is obtained fromT(X (g) ; Q̂(g) ) by substitutingX (g)
1 = ( X 1;1; � � � ; X g;1)T with re

samplesX � (g)
1 = ( X �

1;1; � � � ; X �
g;1)T :

Using the bootstrap analogue in the previous Proposition 6.2.1 yields simpler method for �nding100(1�

c)% con�dence regions. We will utilize the tests statistics expressed above to conduct our analysis with

con�dence regionsC �
n;c andD �

n;c as shown in the Corollary 6.2.2.

6.3 MANOVA on (RP3)q

We start with the 3-dimensional real projective spaceRP3: It is a space of 1-dimensional linear subspaces

of R4 and is also a 3-dimensional manifold. A projective pointp = [ x] 2 RP3, is an equivalence class

of x = ( x1; � � � ; x4) 2 R4 and can also be represented byp = [ x1 : x2 : x3 : x4] (homogeneous
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coordinates notation). We will identifyM = RP3 with the sphereS3 with the antipodal points identi�ed,

[x] = f x; � xg 2 RP3; x 2 R4; kxk = 1 : We will often refer to this identi�cation as thespherical

representationof the real projective space.RP3 is an embedded manifold with the embedding

j : RP3 ! S (4; R)

j ([x]) = xx T (6.19)

And for [X ] a random object onj -nonfocal probability measureQ onRP3 the projectionPj : S+ (4; R)nF !

j (RP3) assigns to each nonnegative de�nite symmetric matrixA with highest eigenvalue of multiplicity1;

the matrixj ([ ]); where is a unit eigenvector ofA corresponding to its largest eigenvalue(see Bhattacharya

and Patrangenaru [6]).

Our analysis will be conducted onP� k
3, the projective shape space of 3Dk-ads inRPm for which � =

([u1]; : : : ; [u5]) is a projective frame inRP3: P � k
3 is homeomorphic to the manifold

�
RP3

� k� 5 with k� 5 =

q (see Patrangenaru et. al (2010)). The embedding on this space is the VW (Veronese-Whitney) embedding

given by

j k :
�
RP3� q

! (S(4; R))q

j k ([x1]; : : : ; [xq]) = ( j ([x1]); : : : ; j ([xq])) ; (6.20)

with j : RP3 ! S+ (4; R) the embedding given in (6.19). Additionallyj k is an equivariant embedding w.r.t.

the group(S+ (4; R))q and has the corresponding projection

Pj k : (S+ (4; R))q nFq ! j k
�
RP3� q

Pj k (A1; : : : ; Aq) = ( j ([m1]); : : : ; j [mq])) (6.21)

wherem1; : : : ; mq are unit eigenvectors ofA1; : : : ; Aq (respectively) corresponding to the respective highest

eigenvalues of those nonnegative de�nite symmetric matrices. LetY be be a random object from a VW

distributionQ on (RP3)q; whereY = ( Y 1; : : : ; Y q); andY s = [ X s] 2 RP3 for all s = 1; q: The VW

mean is given by

� j k = ([  1(4)]; � � � ; [ q(4)]) ; (6.22)

where, fors = 1; q; � s(r ) and s(r ); r = 1 ; : : : ; 4 are the eigenvalues in increasing order and the corres-

ponding eigenvectors ofE
�
X s(X s)T

�
:
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In case of a random object[X ] on R3; let us assume that� E;j = [ � 4]; where� r and� r ; r = 1 ; 2; 3; 4;

are eigenvalues in increasing order and corresponding unit eigenvectors of� = E [XX T ] corresponding to

eigenvalues in their increasing order. The corresponding extrinsic sample mean, for a sample of size n, is

given byX E;j = [ g(4)], whered(r ) andg(r ) 2 R4; r = 1 ; 2; 3; 4; are eigenvalues in increasing order and

corresponding unit eigenvectors ofJ = 1
n

P n
i =1 X i X T

i :

We now recall the result from Theorem 4.1 in Bhattacharya and Patrangenaru (2005) [6] well as represent

the statistics

T([X ]; Q) = nkS(j; X ) � 1=2 tan j ( � E;j )
�
j (X E;j ) � j (� E;j )

�
k2

We have forT([X ]; Q) = T([X ]; [� 4])

T([X ]; [� 4]) = n g(4)T [(� r )]r =1 ;2;3S(j; X ) � 1[(� r )]T
r =1 ;2;3 g(4) (6.23)

This results extends to the statistics

T([X ]; Q̂) = T([X ]; [g(4)]) = kS(j; X ) � 1=2 tan j (X E;j )

�
j (X E;j ) � j (� E;j )

�
k2

T([X ]; [g(4)]) = n � T
4 [g(r )]r =1 ;2;3S(j; X ) � 1[g(r )]T

r =1 ;2;3 � 4; (6.24)

where

S(j; X )ab = n� 1(d(4) � d(a)) � 1(d(4) � d(b)) � 1 �
nX

i =1

(g(a) � X i )(g(b) � X i )(g(4) � X i )2

and, asymptoticallyT([X ]; [� 4]) and T([X ]; [g(4)]) both have a� 2
3 distribution.(see Bhattacharya and

Patrangenaru (2005) [6])

Before we express our statistics of interest, it will be important to note another result from Crane and

Patrangenaru (2011) [7] concerning the statistics

T(Y; � E;j k ) = nkS �Y (j k ; Y ) � 1=2 tan j (Y E;j k )

�
j (Y E;j k ) � j (� E;j k )

�
k2

And this HotellingT2 type statistic is given by

T(Y;([ 1(4)]; � � � ; [ q(4)])) = n
�
 1(4)T D1 : : :  q(4)T Dq

�
S �Y (j k ; Y ) � 1 �

 1(4)T D1 : : :  q(4)T Dq
� T

(6.25)

where fors = 1 ; : : : ; q we haveDs = ( gs(1) gs(2) gs(3)) 2 M (4; 3; R) and for a pair of indices(s; a); s =

1; : : : ; q anda = 1 ; 2; 3 in their lexicographic order we have

S �Y (j k ; Y )(s;a);(t;b) = n� 1(ds(4)� ds(a)) � 1(dt (4)� dt (b)) � 1�
nX

i =1

(gs(a)�X s
i )(gt (b)�X t

i )(gs(4)�X s
i )(gt (4)�X t

i )

(6.26)
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In the next theorem we will take advantage of these results.

H0 : � 1;E = � 2;E = ::: = � g;E = � E ; (6.27)

Ha : at least one equality � a;E = � b;E ; 1 � a < b � g does not hold:

We aim to have an explicit representation of the expressions,

Tc

�
Y (g) ; � (p)

E

�
= na

gX

a=1




 S �Y (j k ; Ya) � 1=2 tan

j k

�
� ( p)

E

�
�

j k (Y a;E ) � j k

�
� (p)

E

�� 




2

(6.28)

Td

�
Y (g) ; Y

(p)
E

�
= na

gX

a=1




 S �Y (j k ; Ya) � 1=2 tan

j k

�
Y

( p)
E

�
�

j k (Y a;E ) � j k

�
� (p)

E

�� 




2

(6.29)

where� a;E = ([ � a
1 (4)]; : : : ; [� a

q (4)]) are the VW mean from distributionQa (of Yr a ) and(� a
s (r ); � a

s (r )) ;

r = 1 ; : : : ; 4, are eigenvalues and corresponding unit eigenvectors ofE(X s
a;1(X s

a;1)T ]. The corresponding

VW sample mean is given byY a;E = ([ ga
1(4); : : : ; [ga

q(4)]) and for eachs = 1 ; : : : ; q we have forr =

1; : : : ; 4, (da
s(r ); ga

s (r )) which are eigenvalues in increasing order and corresponding unit eigenvectors of

J a
s = 1

na

P na
i =1 X s

a;i (X
s
a;i )

T : Also � (p)
E is the VW pooled mean given by

j k

�
� (p)

E

�
= Pj k

 gX

a=1

� a

�
j k (� a;E )

!

(6.30)

� (p)
E = ([  (p)

1 (4)]; : : : ; [ (p)
q (4)]) (6.31)

andY
(p)
E is the corresponding pooled mean, given by

j k

�
Y

(p)
E

�
= Pj k

 gX

a=1

na

n
j k (Y a;E )

!

(6.32)

Y
(p)
E = ([ g(p)

1 (4)]; : : : ; [g(p)
q (4)]) (6.33)

where fors = 1 ; : : : ; q, d (p)
s (r ) andg(p)

s (r ) 2 R4; r = 1 ; 2; 3; 4; are eigenvalues in increasing order

and corresponding unit eigenvectors of the matrixJ (p) =
P g

a=1
na
n j k (Y a;E ):

We now express the following matrices

Cs = (  (p)
s (1)  (p)

s (2)  (p)
s (3)) 2 M (4; 3 : R) (6.34)

D s = ( g(p)
s (1) g(p)

s (2) g(p)
s (3)) 2 M (4; 3 : R) (6.35)
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COROLLARY 6.3.1. Assumej k is the VW embedding of(RP3)q and f Ya;r a gr a =1 ;:::;n a ; a = 1 ; : : : ; g

are independent random samples fromj k -nonfocal probability measuresQa on (RPm )q that have non

degeneratej k -extrinsic covariance matrices. Then the statistics

(i) Tc

�
Y (g) ; � (p)

E

�
=

P g
a=1 na

�
(ga

1(4))T C1 : : : (ga
s (4))T Cq

�
S �Ya

(j k ; Ya) � 1
�
ga

1(4)T C1 : : : ga
q(4)T Cq

� T

(ii) Td

�
Y (g) ; Y

(p)
E

�
=

P g
a=1 na

h
( (p)

1 (4) � ga
1(4))T D 1 : : : ( (p)

q (4) � ga
q(4))T D q

i

S �Ya
(j k ; Ya) � 1

h
( (p)

1 (4) � ga
1(4))T D 1 : : : ( (p)

q (4) � ga
q(4))T D q

i T
:

where

S �Ya
(j k ; Ya)(s;c)( t;b) = n� 1

a (d (p)
s (4) � d (p)

s (c)) � 1(d (p)
t (4) � d (p)

t (b)) � 1

�
X

i

(g(p)
s (c) � X s

a;i )(g(p)
t (b) � X t

a;i )(g(p)
s (4) � X s

a;i )(g(p)
t (4) � X t

a;i )

ands; t = 1 ; : : : ; q andc; b= 1 ; : : : ; m. BothTc

�
Y (g) ; � (p)

E

�
andTd

�
Y (g) ; Y

(p)
E

�
have, asymptotically a

� 2
3q distribution.

Proof. For part(i ) we note that for eacha = 1 ; : : : g we get a natural extension of the result in theorem 4.1

Bhattacharya and Patrangenaru (2005) [6] as shown in 6.23.For part(ii ) recall that

Td

�
Y (g) ; Y

(p)
E

�
= na

gX

a=1




 S �Ya

(j k ; Ya) � 1=2 tan
j k

�
Y

( p)
E

�
�

j k (Y a;E ) � j k

�
� (p)

E

�� 




2

we start by rewriting the expression above and we have

Td

�
Y (g) ; Y

(p)
E

�
= na

gX

a=1




 S �Ya

(j k ; Ya) � 1=2 tan
j k

�
Y

( p)
E

�
�

j k (Y
(p)
E ) � j k

�
� (p)

E

��

� S �Ya
(j k ; Ya) � 1=2 tan

j k

�
Y

( p)
E

�
�

j k (Y
(p)
E ) � j k

�
Y a;E

� � 




2

Td

�
Y (g) ; Y

(p)
E

�
=

gX

a=1

na




 S �Ya

(j k ; Ya) � 1=2
h
( (p)

1 (4))T D 1 : : : ( (p)
q (4))T D q

i T

� S �Ya
(j k ; Ya) � 1=2 �

(ga
1(4))T D 1 : : : (ga

q(4))T D q
� T





2
(6.36)
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If Yr a are j k -nonfocal populations on(RP3)q we can construct an Edgeworth expansion up to order

Op(n� 2) of the pivotal statisticsTc

�
Y (g) ; � (p)

E

�
andTd

�
Y (g) ; Y

(p)
E

�
: under the hypothesis

(
H0 : � 1;E = � 2;E = ::: = � g;E = � (p)

E ;

Ha :3 (i; j )1 � i < j < g; s.t. � i;E 6= � j;E :

COROLLARY 6.3.2. The(1 � c)100%bootstrap con�dence regions for� E with d = gpare given by

(a) C � (g)
n;c = j � 1(U �

n;c) andU �
n;c = f j k (� ) 2 j k ((RP3)q) : Tc

�
Y (g) ; �

�
� c� (g)

1� cg wherec� (g)
1� c is the upper

100(1� c)% point of the values

Tc

�
Y � (g) ; Y

(p)
E

�
=

gX

a=1

na
�
(g� a

1(4))T D 1 : : : (g� a
s(4))T D q

�
S �Y �

a
(j k ; Y �

a ) � 1 �
g� a

1(4)T D 1 : : : g� a
q(4)T D q

� T

(6.37)

among the bootstrap re samples.

(b) D � (g)
n;c = j � 1(V �

n;c) andV �
n;c = f j k (� ) 2 j k ((RP3)q) : Tc

�
Y (g) ; Y

(p)
E ; �

�
� d� (g)

1� cg where

Td

�
Y (g) ; Y

(p)
E ; �

�
= na

P g
a=1




 S �Ya

(j k ; Ya) � 1=2 tan
j k

�
Y

( p)
E

�
�
j k (Y a;E ) � j k (� )

�





2

where d� (g)
1� c is

the upper100(1� c)% point of the values

Td

�
Y � (g) ; Y � (p)

E ; Y
(p)
E

�
=

gX

a=1

na




 S �Y �

a
(j k ; Y �

a ) � 1=2 tan
j k

�
Y

� ( p)
E

�
�

j k (Y
�
a;E ) � j k (Y

(p)
E )

� 




2

(6.38)

among the bootstrap re samples. Both of the regions given by(6.16)and (6.14)have coverage error

Op(n� 2):

Note that here

S �Y �
a

(j k ; Y �
a )(s;c)( t;b) = n� 1

a (d � (p)
s (4) � d � (p)

s (c)) � 1(d � (p)
t (4) � d � (p)

t (b)) � 1

�
X

i

(g� (p)
s (c) � X � s

a;i )(g� (p)
t (b) � X � t

a;i )(g� (p)
s (4) � X � s

a;i )(g� (p)
t (4) � X � t

a;i ); b; c= 1 ; 2; 3:

6.4 Application to face data

We will now test for the existence of 3D mean projective shape change to differentiate between three faces

which are represented in Fig 6.4

Our analysis will be conducted ong = 3 individuals. The 3D reconstruction was done using the AGISOFT

software. The images in Fig 6.4 represent 19 facial reconstructions. Each of those reconstruction was created
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Figure 6.1:Faces used in MANOVA analysis

Figure 6.2:Sample of facial reconstructions

91



Figure 6.3:Projective frame shown in red

using mostly 4 to 5 digital camera images of a given individual. We are also able to place and recover 7

landmarks which are shown in �gure 6.4.

Five of those landmarks (colored in red) will be used to construct a projective frame and the resulting two

projective coordinate will determine our 3D projective shapes. We will compare these faces by conducting

a MANOVA on manifold to compareg = 3 VW-means onP� 7
3 = ( RP3)2: Forn =

P 3
a=1 na = 19 where

n1 = 6 , n2 = 6 andn3 = 7 our hypothesis problem will be

H0 : � 1;E = � 2;E = � 3;E = � E ;

Ha : at least one equation does not hold:

Since the true pulled mean is unknown and our data set is relatively small we will reject the null hypothesis

if

Td

�
Y (3) ; Y

(p)
E

�
=

P 3
a=1 na




 S �Ya

(j k ; Ya) � 1=2 tan
j k

�
Y

( p)
E

�
�

j k (Y a;E ) � j k (Y
(p)
E )

� 




2

does not belong to

V �
n;c = f j k (� ) 2 j k ((RP3)2) : Tc

�
Y (3) ; Y

(p)
E ; �

�
� d� (3)

1� cg; whered� (3)
1� c is the(1 � c)100%cutoff of

the corresponding bootstrap distribution.

Using46800resamples we obtain a value forTd

�
Y (3) ; Y

(p)
E

�
= 757260and for thed� (3)

0:95 = 355420and

we therefore reject the null hypothesis. And we conclude that there exist a statistically signi�cant VW-mean

projective shape face difference between at least two of the individuals.
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CHAPTER 7

FUTURE WORK

In this chapter we explore some of the possible directions for extrinsic data analysis.

7.1 New test statistics for data on(RP3)q and MANOVA for anti-means

7.1.1 MANOVA cross validation

Although I was able to conclude effectively that there is a statistically signi�cant VW-mean projective

shape difference between at least two of the individuals, this test involved onlyg = 3 : I would like to

signi�cantly increase the numberg of samples to be compared in order to �nd the numerical limits of this

particular method.

I would also like to use the data collected to conduct a cross-validation test. It will mean that I will compare

g samples of the same face in order to verify that this method can in fact be used to properly differentiate

between objects (faces, �ours, etc...).

7.2 Anti-mean and MANOVA on manifolds

The results about the asymptotic of the anti-means are part of a joint paper with my colleague Ruite Guo

and professor Patrangenaru (see Patrangenaru et all (2016b) [22]). I include this under future work, as more

credit for this paper should be attributed to Ruite.

7.2.1 CLT for the sample anti-means

Assumej is an embedding of ad-dimensional manifoldM such thatj (M ) is closed inRk , andQ is a

�j -nonfocal probability measure onM such thatj (Q) has �nite moments of order 2. Let� and� be the

mean and covariance matrix ofj (Q) regarded as a probability measure onRk . Let F be the set of�j -focal

points ofj (M ), and letPF;j : F c ! j (M ) be the projection onj (M ). PF;j is differentiable at� and has

the differentiability class ofj (M ) around any�j -nonfocal point.

Assumex ! (f 1(x); : : : ; f d(x)) is a local frame �eld on an open subset ofM such that for eachx 2 M ,

(dx j (f 1(x)) ; : : : ; dx j (f d(x))) are orthonormal vector inRk . A local frame �eldp ! (e1(p); e2(p); : : : ; ek (p))
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de�ned on an open neighborhoodU � Rk is adapted to the embeddingj if it is an orthonormal frame �eld

and8x 2 j � 1(U); er (j (x)) = dx j (f r (x)) ; r = 1 ; : : : ; d.

Let e1; e2; : : : ; ek be the canonical basis ofRk and assume(e1(p); e2(p); : : : ; ek (p)) is an adapted

frame �eld aroundPF;j (� ) = j (� �E ): Then d� PF;j (eb) 2 TPF;j (� ) j (M ) is a linear combination of

e1(PF;j (� )) ; e2(PF;j (� )) ; : : : ; ed(PF;j (� )) :

d� PF;j (eb) =
dX

a=1

(d� PF;j (eb)) � ea(PF;j (� ))ea(PF;j (� )) : (7.1)

By the delta method,n1=2(PF;j (j (X )) � PF;j (� )) converges weakly toNk (0k ; � � � ), wherej (X ) =

1
n

P n
i =1 j (X i ) and

� � � = [
dX

a=1

d� PF;j (eb) � ea(PF;j (� ))ea(PF;j (� ))]b=1 ;:::;k

� �[
dX

a=1

d� PF;j (eb) � ea(PF;j (� ))ea(PF;j (� ))]T
b=1 ;:::;k

(7.2)

Here� is the covariance matrix ofj (X 1) w.r.t the canonical basise1; e2; : : : ; ek .

The asymptotic distributionNk (0k ; � � � ) is degenerate and the support of this distribution is onTPF;j j (M ),

since the range ofd� PF;j is TPF;j (� ) j (M ). Note thatd� PF;j (eb) � ea(PF;j (� )) = 0 for a = d + 1 ; : : : ; k:

we obtain the following asymptotic result, our CLT for extrinsic anti-mean, on the tangent space ofj (M )

atPF;j (� ) = j (�� E ):

tanPF;j (� )

�
PF;j ((j (X ))) � PF;j (� )

�
! d N (0; � � j;E ) (7.3)

Then the random vector(d�� E j ) � 1(tanPF;j (� ) (PF;j ((j (X ))) � PF;j (� ))) =
P d

a=1 X
a
j f a has the fol-

lowing covariance matrix w.r.t. the basisf 1(�� E ); : : : ; f d(�� E ) :

� � j;E = ea(PF;j (� )) t � � � eb(PF;j (� ))1� a;b� d

= [� d� PF;j (eb) � ea(PF;j (� ))]a=1 ;:::;d �

� [� d� PF;j (eb) � ea(PF;j (� ))]T
a=1 ;:::;d

(7.4)

The matrix� � j;E given above is the extrinsic anti-covariance matrix of the�j -nonfocal distributionQ(of

X 1) w.r.t. the basisf 1(� �E ); : : : ; f d(� �E ):
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7.2.2 MANOVA for anti-means

I will start by considering the following extension to my MANOVA on manifolds method, from Chapter 6.

DEFINITION 7.2.1. Under the assumption�A 0 : �� 1;E = � � � = �� g;E and for anya 2 f 1; 2; :::; gg,

with na
n ! � a > 0; as n ! 1 : We de�ne

(i) Theextrinsic pooled anti-mean with weights� = ( � 1; : : : ; � g), denoted�� E (� ) as the value inM

given by

j (�� E ) = PF;j (� 1j (�� 1;E ) + � � � + � gj (�� g;E )) (7.5)

Where�� a;E is the extrinsic anti-mean of the random objectX a;1 and� g
a=1 � a = 1

(ii) Theextrinsic sample pooled anti-meandenoted �aX E 2 M given by;

j (a �X E ) = PF;j

� n1

n
j (a �X 1;E ) + � � � +

ng

n
j (a �X g;E )

�
; (7.6)

wherea �X a;E is the extrinsic sample anti-mean forX a;1 andn =
P g

a=1 na

With this de�nition at hand, I can now express the following hypothesis test, designed to test the differ-

ence between extrinsic anti-means and is given by;

H0 : �� 1;E = �� 2;E = ::: = �� g;E = �� E ; (7.7)

Ha : at least one equality �� a;E = �� b;E ; 1 � a < b � g does not hold:

The results in chapter 6 can be adapted to extrinsic anti-means and pooled anti-means as well and I will

take advantage of these results. After some effort I will be able to have an explicit representation of the

expressions,

�T c

�
Y (g) ; �� (p)

E

�
=

gX

a=1




 aS�Y (j k ; Ya) � 1=2 tan

j k

�
�� ( p)

E

�
�

j k (aY a;E ) � j k

�
�� (p)

E

�� 




2

(7.8)

�T d

�
Y (g) ; aY

(p)
E

�
=

gX

a=1




 aS�Y (j k ; Ya) � 1=2 tan

j k

�
aY

( p)
E

�
�

j k (Y a;E ) � j k

�
�� (p)

E

�� 




2

; (7.9)

where�� a;E = ([ � a
1;(1)]; : : : ; [� a

q (1)]) are the VW anti-mean from distributionQa (of Yr a ) and(� a
s (r ); � a

s;(r ))

are eigenvalues and corresponding unit eigenvectors ofE(X s
a;1(X s

a;1)T ]. The corresponding VW sam-

ple anti-mean is given byaY a;E = ([ ga
1(1)]; : : : ; [ga

q(1)]) and for eachs = 1 ; : : : ; q we have forr =

1; : : : ; 4, (da
s(r ); ga

s (r )) which are eigenvalues in increasing order and corresponding unit eigenvectors of
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J a
s = 1

na

P na
i =1 X s

a;i (X
s
a;i )

T : Also �� (p)
E is the VW pooled mean given by

j k

�
�� (p)

E

�
= PF;j k

 gX

a=1

na

n
j k (�� a;E )

!

(7.10)

�� (p)
E = ([  (p)

1 (1)]; : : : ; [ (p)
q (1)]) (7.11)

andaY
(p)
E is the corresponding pooled sample anti-mean, given by

j k

�
aY

(p)
E

�
= PF;j k

 gX

a=1

na

n
j k (aY a;E )

!

(7.12)

aY
(p)
E = ([ g(p)

1 (1)]; : : : ; [g(p)
q (1)]) ; (7.13)

where fors = 1 ; : : : ; q, d (p)
s (r ) andg(p)

s (r ) 2 R4; r = 1 ; 2; 3; 4; are eigenvalues in increasing order and

corresponding unit eigenvectors of the matrixJ (p) =
P g

a=1
na
n j k (� a;E ):

I will then be able to construct con�dence regions for�� (p)
E of asymptotic level1� c much like in the case of

VW means, and when our sample size is relatively small we will be able to build a(1 � c)100%con�dence

regions for�� (p)
E using nonparametric bootstrap. These con�dence regions will be the tool I will use to

differentiate between different objects.

7.3 Dependence on embedded manifolds

We are interested in determining the dependence between the random objects,X on S2 and Y a

random variable. And for that we start by observing the dependence structure between�(X ) a random

vector inR3 andY a random variable. We will call upon copula functions to start this process. At this

point it is important to note that copula functions have been widely used to model the dependence structure

between random vectors which is of importance in the computation of certain �nancial products such as

VAR (Value At Risk). And the copula framework offers a wide variety of copulas, such as the Gaussian,

studentt copula, Frank's copula, Archimedes family of copula and so on. We will focus on only one type of

copula, the Gaussian copula. We �rst de�ne a two dimensional copula function.

DEFINITION 7.3.1. The copula functionC is a copula for the random vector(X; Y ) with X 2 Rm and

Y 2 Rk , if it is the joint distribution of the random vector(U; V) whereU = F1(X ), andV = F2(Y ) and

Fa; a = 1 ; 2; are the marginal distribution functions ofX andY respectively. This implies that

H (x; y) = C(F1(x); F2(y)) = C(u; v) (7.14)

WhereH is the joint distribution function of(X; Y ). If F1 andF2 are continuous the copulaC is unique.
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Note that

P(X � x; Y � y) = P(F1(X ) � F1(x); F2(Y ) � F2(y)) = C(F1(x); F2(y))

The results of the Sklar Theorem (see Rockinger and Jondeau (2001) [29]) show that we may link any

group of univariate distributions, of any type with any copula and we will have de�ned a valid multivariate

distribution.

DEFINITION 7.3.2. [Gaussian Copula] This copula is given by

CGaussian (u; v) = P(�( X ) � u; �( Y ) � v) = � � (� � 1(u); � � 1(v)) (7.15)

where� is the standard normal cdf and� � is the joint distribution function of a standard Gaussian random

vectorZ = ( X; Y )T � N2(0; �) . Note that� can also be viewed as a correlation matrix ofZ: And in two

dimensions we have

CGaussian (u; v) =
Z � � 1 (u)

�1

Z � � 1 (v)

�1

1
2� (1 � � 2)1=2

exp
�

� (s2
1 � 2�s 1s2 + s2

2)
2(1 � � 2)

�
ds1ds2 (7.16)

(see [28].)

REMARK 7.3.1. It is important to note thatU andV are independent if and only if the correlation matrix�

is the identity. Recall that in the case of Gaussian random vector this result holds andCGaussian (u; v) = uv:

PROPOSITION 7.3.1. Let X and Y be random vectors onRm and Rk respectively thenX and Y are

independent if and only ifU = F1(X ) andV = F2(Y ) (viewed as random variables) are independent.

Proof. Note thatX and Y independent impliesH (x; y) = P(X � x)P(Y � y) = F1(x)F2(y) =

uv = C(u; v) and we conclude thatU and V are independent (recall the cdf of a uniformU(0; 1) is

F (uj(0; 1)) = u). The other direction follows from the same set of equalities. For the direction from left to

right please see [1].

We will now use the proposition above along with the useful property of the Gaussian copula correlation

matrix to design an independence test.
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7.3.1 Test for independence

Now back to our data set made up ofX a random object onS2 andY a random variable onR: We will

�rst use the proposition and Gaussian copula to test for independence between the embedded variable� (X )

(random vector onR3) andY a random variable onR. We will also assume thatF1 andF2 are, respectively,

the cdf's of� (X ) andY: We can now do the following

1. De�ne U = F1(� (X )) andV = F2(Y )

2. Find the Gaussian Copula that �t our random vectorsU andV: This process is done using Matlab and

the function calledcopula�t(..., )

3. After �tting, the resulting correlation matrix is used to conclude dependence betweenU andV

4. Once the dependence is established we draw the necessary conclusion about� (X ) andY , by relying

on proposition 7.3.1

PROPOSITION 7.3.2. The random objectX and the random variableY are independent if and only if

U = F1(� (X )) andV = F2(Y ) are independent random variables.

Proof. From the proposition 7.3.1 we have that� (X ) andY are independent iffU andV are independent.

And since� is one-to-one we have our desired result. (see [28])

Step one above, requires knowledge of the cdf's of the marginal distributions of� (X ) andY which may

not be known at the time. Now assume that(X 1; Y1); : : : ; (X n ; Yn ) are i.i.d random objects from a joint

distribution on(S2; R) with marginal cdf'sF1 andF2 respectively. We can use the corresponding empirical

cdf's F̂1 andF̂2: We can then use the following steps,

1. De�ne Û = F̂1(� (X )) andV̂ = F̂2(Y )

2. Find the Gaussian Copula that �t our random vectorsÛ andV̂ : This process is done using Matlab and

the function calledcopula�t(..., )

3. After �tting, the resulting correlation matrix is used to conclude dependence betweenU andV

4. Once the dependence is established we draw the necessary conclusion about� (X ) andY , by relying

on proposition 7.3.2
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féchet functions.Second International Symposium on Stochastic Models in Reliability Engineering,
Life Science and Operations Management, Beer Sheva, Israel, pages 254–262, 2016.

[23] V. Patrangenaru, X. Liu, and S. Sugathadasa. Nonparametric 3D projective shape estimation from pairs
of 2d images - i.Journal of Multivariate Analysis, 101:11–31, 2010.

[24] V. Patrangenaru, R. Paige, K. Yao, M. Qiu, and D. Lester. Projective shape analysis of contours and
�nite 3D con�gurations from digital camera images.Statistical Papers, 57:1017–1040, 2016.

[25] V. Patrangenaru, M. Qiu, and M. Buibas. Two sample tests for mean 3D projective shapes from digital
camera images.Methodology and Computing in Applied Probability, 16:485–506, 2014.

[26] V. Patrangenaru, K. D. Yao, and V. Balan. 3D face analysis from digital camera images.BSG Proceed-
ings. The International Conference Differential Geometry - Dynamical Systems DGDS-2015, 23:43–
55, 2016.

100



[27] V. Patrangenaru, K. D. Yao, and Ruite Guo. Extrinsic means and antimeans.2nd ISNPS, Cadiz, June
2014 Editors: Cao, Ricardo; Gonzalez Manteiga, Wenceslao; Romo, Juan, 175:161–178, 2016.

[28] E. Platen and N. Bruti-Liberati.Numerical Solution of Stochastic Differential Equations with Jumps
in Finance, volume 64 ofStochastic Modeling and Applied Probability. Springer, New York, USA,
2010.

[29] M. Rockinger and E. Jondeau. Conditional dependency of �nanical series: An application of copulas.
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