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ABSTRACT

Most of the data encountered is bounded nonlinear data. The Universe is bounded, planets are sphere like
shaped objects, and life growing on Earth comes in various shapes and colors that can hardly be represented
as points on a linear space, and even if the object space they sit on is embedded in a Euclidean space,
their mean vector can not be represented as a point on that object space, except for the case when such
space is convex. To address this misgiving, since the mean vector is the minimizer of the expected square
distance, following Fréchet (1948)[11], on a compact metric space, one may consider both minimizers and
maximizers of the expected square distance to a given point on the object space as mean, respectively anti-
mean of a given random point. Of all distances on a object space, one considers here the chord distance
associated with an embedding of the object space, since for such distances one can give a necessary and
sufficient condition for the existence of a unique Fréchet mean (respectively Fréchet anti-mean). For such
distributions these location parameters are called extrinsic mean (respectively extrinsic anti-mean), and the
corresponding sample statistics are consistent estimators of their population counterparts. Moreover one
derives the limit distribution of such estimators around an anti-mean located at a smooth point. Extrinsic
analysis is thus a general framework that allows one to run object data analysis on nonlinear object spaces
that can be embedded in a numerical space. New sample tests for extrinsic means, and a test statistic for
extrinsic MANOVA on manifolds are also developed here. In particular one focuses on Veronese-Whitney
(VW) means and anti-means of 3D projective shapes of configurations extracted from digital camera images.
The 3D data extraction is greatly simplified by an RGB based 3D surface reconstruction algorithm using
the Faugeras-Hartley-Gupta-Chang 3D reconstruction method (see [10],[12]), that is used to collect 3D
image data. In particular one derives two sample tests for face analysis based on projective shapes, and
more generally a MANOVA on manifolds method to be used in 3D projective shape analysis. The manifold

based approach is also applicable to financial data analysis for exchange rates.

vii



CHAPTER 1

OVERVIEW

Due to technological advances in digital imaging, we are now able to collect and quantify a wide variety of
data sets, including 3D surface data from RGB regular digital camera images. Indeed if color pictures of the
same scene are collected under fairly uniform lighting conditions, a correlation based algorithm coupled with
a 3D reconstruction algorithm may help retrieve surfaces of a 3D scene, including texture. One of the task of
this dissertation was to collect such 3D data, and in particular face data including the mid-face of individu-
als that accepted to have their pictures taken, and volunteered, without being compensated for offering their
time. Some of the digital camera data collected this way is posted at stat.fsu.edu/~vic/Kouadio/collected-by-
Davids. The face surfaces, regarded as 2D manifolds in 3D could be partially retrieved using the technique
mentioned above and are presented in the data analysis for Chapters 3 and 6. Such surface data is infinite
dimensional, thus a drastic data reduction method consisting in landmark coordinate selection post 3D re-
construction was key to speed up the analysis. Moreover, since the camera internal parameters are unknown,
for the landmark configurations considered, one may retrieve only the projective shapes (see Patrangenaru
et. al.(2010))[23]. Therefore, the object spaces we have to consider are projective shape spaces (see Mar-
dia and Patrangenaru(2005)[20]), which are direct products of real projective spaces, thus having in fact a
nonlinear structure of compact smooth manifolds. There are many other examples of object spaces with a
manifold structure, arising from morphometric data, protein and DNA structures, aerial or satellite imaging,
medical imaging outputs (angiography, CT scans, MRI) beside digital camera imaging considered here (see
Patrangenaru and Ellingson (2015)[21]). Fréchet (1948)[11] noticed that for data analysis purposes, in case
a list of numbers would not give a meaningful representation of the individual observation under investiga-
tion, it is helpful to measure not just vectors, but more complicated features, he used to call “elements”, and
are nowadays called objects. A natural way of addressing the problem of analyzing data on such a nonlin-
ear object space, consists of regarding a random object X as a random point on a complete metric space
(M, p) that often times has a smooth manifold structure (see Patrangenaru and Ellingson (2015)[21]). The
numerical space R™ is the most elementary example of a manifold arising as an object space in Statistics.

Therefore, multivariate data analysis is the key basic example of data analysis on a manifold.



Given a random object (r.0.) X on a complete separable metric space (M, p), the expected square distance

from X to an arbitrary point p € M defines what we call the Fréchet function associated with X :

F(p) =E(p*(p, X)), (1.1)

and its minimizers form the Fréchet mean set.[5]. Unless otherwise specified, throughout this dissertation
we will assume that the object space M can be regarded as a subset of a numerical space via a one to

one map j : M — R" and the distance on M is p;, the chord distance given by

pi(p1,p2) = [|7(p1) — j(P2)|l- (1.2)

If, in addition M has a smooth manifold structure (see Lee[18] for a definition), we will assume that j is
an embedding, that is to say that at each point p € M, the differential map d,, is a one to one map from the
tangent space 7, M to the tangent space TpRN .

In our case, the Fréchet function becomes

Fp) = /M i) — §(0)|*Q(dx), (1.3)

where () = Px is the probability measure on M, associated with X, and the Fréchet mean set is called
extrinsic mean set.  The complete separable metric space (M, p;) with chord distance p; and with an
additional smooth manifold structure, is isometric to (j(M), pg) where pg is the Euclidean distance. This
is by definition an isometric embedding ( distance preserving between two points and their images in
the ambient space ), if we consider the chord distance.

In general inference for extrinsic mean sets was never considered yet in literature, none the less, in case
the extrinsic mean set has a unique point, called the extrinsic mean, there is a large body of literature on
this subject (see Patrangenaru and Ellingson (2015)[21], and the related reference therein); this is due to a a
simple condition for the existence and uniqueness of the extrinsic mean (see Bhattacharya and Patrangenaru
(2003)[5]), saying the extrinsic mean exists if and only if the probability measure @ is j-nonfocal. I will

detail this condition in Chapter 2.

1.1 Short summary of results in chapters 3 through 7

In Chapter 3, I use two sample hypothesis testing methods for means of r.0.’s on a Lie group, as developed

by Crane and Patrangenaru(2011)[7], that are applied in the context of 3D projective shape analysis to



differentiate between faces. I conduct a landmark based analysis on the space of 3D projective shapes of k-
ads (labeled points). The object spaces of interest are often nonlinear spaces, and this poses some challenges
when attemping a two sample testing problem for mean change for random samples of different sizes. For
my statistical testing problems I consider Lie groups, which are smooth manifolds with an additional group
structure (in the algebraic sense) where the mulitplicative operation ® and the inverse operation are both
smooth. With such object spaces I can conduct a two sample hypothesis testing problem for mean change
(see Crane and Patrangenaru (2011) [7].) The 3D projective shape spaces of k-ads containing a projective
frame at five fixed landmark indices, denoted X P¥ can be identified with M = (RP3)%, ¢ = k — 5
which is a Lie group with multiplicative operation denoted ®4. Fora = 1,2,let Y, 1,--- , Y, 5, identically
independent distributed random objects (i.i.d.r.0.’s) from the independent j;-nonfocal probability measures
Qq on (RP3)? , where j,-nonfocal refers to a probability measure for which there is an extrinsc mean. We

consider the following hypothesis testing problem,

Hy: iy Oq e = Lpsys vs. Hi: iy Oq in,p # Lmpsy (1.4)

were (i1, g, H2,p are the Veronese-Whitney means on (RP3)9. We are able to construct an asymptotic p-
value for large samples and 100(1 — «)% bootstrap confidence region as well for small sample size at the
a level. These results were made possible by knowing the asymptotic convergence of the sequence of ran-
dom vectors n!/2 (ﬁpq(Yzjé ®q Y1, E)) where Y, g are the corresponding VW (Veronese-Whitney) sample
means and ¢, is an affine chart (i.e. a smooth one-to-one and onto function from (RP3)? to R3%). The
data analysis was conducted on three human faces. I placed all ten landmarks on all three subjects using
Matlab for all 29 pairs of noncalibrated digital camera images. The reconstruction of the corresponding
3D coordinates was also done in Matlab. I was then able to use the first five reconstructed coordinates to
construct the resulting 5-tuples of projective coordinates represent the 3D projective shapes and are the
elements that make up the random samples. After conducting the analysis I was able to effectively use
hypothesis testing for 3D projective shape mean change to differentiate between faces and also to identify
the same face in cross-validation analysis. The analysis I ran, along with the various results, can be found
in a couple of publications [24] and [26]. Using the Agisoft software I was able to build a couple of 3D
reconstructions of faces with color and texture (see stat.fsu.edu/~vic/Kouadio/collected-by-Davids/James
and stat.fsu.edu/~vic/Kouadio/collected-by-Davids/Mingfei). This software has not only a more visually

appealing 3D reconstruction but would also allow for a much faster recovery of the 3D coordinates of our



landmarks.

The work in Chapter 4 was born out of a question asked by Professor Patrangenaru about the hypothesis
testing technique developed in [7]. More specifically, fora = 1,2, X, 1, ..., X4 n, 1.1.d. random objects on

Lie group (G, ®), and the hypothesis problem given as follows

Ho: iy @ prp =0 vs. Hi: iy @ g # 6 (15)

we would like to have the asymptotic behavior of

o~ ~ -
tanj(u;g®u1,3) (J (X2,E ©X1E) - ](IU’Q}E © Ml,E)) (1.6)

where p1 g, p12, 7 are the extrinsic means and X1 g, Yo  their respective corresponding extrinsic covariance
matrices. The notation in (1.6) signifies the projection of the vector ( J(X, ]15 ©X1g)— 3 (g, os E))
onto the tangent space of j(§) at the point j(x, 1 © p1,g) and this results is given in Theorem 4.2.2 for
some embedding j : G — RY where X1,E, and X9 g are our resulting extrinsic sample means. For a
similar hypothesis testing problem as in [7] one of my goals was to take advantage of the CLT (Central
Limit Theorem) framework for extrinsic sample means and the confidence regions one can construct from
the given asymptotic behavior.

I started by giving a variation of the Delta Method [4] used in [7] which differs from the other one as it uses
another extrinsic covariance matrix estimator, and also gives an explicit definition of it (see Lemma 4.1.1.)
Let M and N be respectively, m-dimensional and n-dimensional smooth manifolds and let G : M x M —

N be a smooth function between manifolds. In Theorem 4.2.1 1 derived the following result;

. ~ ~ . L
n'/? taan(G(Nl,E7N2,E)) (jQ (G(XLE’XZE)) —J2 (G(Ml,E7N2,E>)) — Nn(o’ EJGLE) (L.7)

fora = 1,2 let fl(a) R f,(ff ) orthonormal basis in Ty, 5(M). T was then able to have the asymptotic
behavior of any smooth function G (between manifolds) and this is done in T, o s, E)N , the tangent
space on A at the point G(p1, g, p2,z) and with the corresponding extrinsic covariance matrix given in
term of the extrinsic covariance matrices X1 g, X2 g at p1, g and o g respectively. Note that it is important
to mention some of the benefits of using the extrinsic analysis framework, especially for computation
purposes and more specifically for the sample extrinsic covariance matrix tied to RP™. For more on the

extrinsic sample covariance matrix on RP™, see [6]. In section 4.3 I apply the new asymptotic results to



RP3. Fora =1,21let [Xq1], -, [Xan,] be independent random samples defined on RP3 from j-nonfocal
distributions @),, with extrinsic means j, r and extrinsic covariance matrices Y, i I get the following

asymptotic behavior.
nl/2 tan., (§(Xap © Xup) = iz © 11,8)) —a N (O, S (1.8)
J (15 5 Om,E) A9 E 1,E Iy p W ULE d {tVm\Ym, &g .
where for H(u;’}g,m,bﬂ) = (MQ_}E © p1,E),

S = (@HO) B p(dHO) + L (dH )5, p(dH), (1.9)

m -7
where 7 is the proportion of the first population relative to the total population. I was able to express
Ggf the consistent estimator of ng . This sample covariance matrix is expressed in a way that reduces
the amount of computation by using in its expression the already computationally friendly formula of the
sample covariance matrices G and G g (see Battacharya and Patrangenaru (2005) [6]) and ,

GH (5, X11,X21) = an (A0 W) Gy p(dD T 4 nll(dF(Q))Gl,E(dF@))T (1.10)
for dI'(*), @ = 1,2 are both diagonal matrices with our choice of basis on S(4, R). One must also note that

all the results about R P2 can be extended to (RP3)4, the 3D projective shape space.

Chapter 5 is about extrinsic anti-mean. This chapter includes work I have recently published jointly with V.
Patrangenaru and R. Guo (see [27] and [22]). In this chapter I introduce new location parameters, assuming
that the object space (M, p) is compact. In particular, if p is the chord distance induced by an embedding
j : M — RY, the extreme values of the Fréchet function are attained at points on M. Note that the
extrinsic mean is defined in fact on any complete metric space that is homeomorphically embedded in RY,
therefore this chapter allows also for the situation when the extrinsic mean is a singular point. Let X be a
random object for a distribution ) on M, then we get a distribution for j(X) on j(Q) the ambient space.
And we have an extrinsic mean often denoted j; g provided we have a unique projection of ;. denoted
Pj(1) onto the j(M) and p is called a j-nonfocal point. More specifically, p j-nonfocal implies that we
have po(, j(M)) = po(i, j(15,E)) where po(p, j(M)) is the distance between the point  and the closest
(unique) point on j(M). The notion of anti-mean is motivated by the fact that, even when a distribution
() might not have an extrinsic mean, it may occur that the extrinsic anti-mean exists, thus an extrinsic

analysis can still be performed. In case the extrinsic mean is a singular point, the asymptotic distributions



of the extrinsic sample mean behave differently. In the case of a stratified space, such as an open book
the extrinsic sample mean sticks to a lower dimensional stratum (see [3], [13]). The anti-means have a
similar asymptotic behavior, thus offering a way to conduct nonparametric data analysis on not just smooth
embedded manifolds but in a broader sense, on stratified spaces. In this chapter, I introduce the notion of
aj-nonfocal distribution, and it is shown that a distribution has a unique extrinsic anti-mean if and only if
it is aj-nonfocal (see Theorem 5.1.1). As a result, one also proves the existence and consistency of the
extrinsic sample anti-mean set. In section 5.3, the focus is turned to RP"* with the VW embedding, and
one gives a necessary and sufficient condition for a random axis [X], X7 X = 1 being a-VW-nonfocal in
terms of eigenvalues of the expected matrix £(X X 7). Further, in this chapter I develop a nonparametric

methodology for addressing the hypothesis testing problem
Hy: a,u;jl-q Oq ap,j, = Lwpsya V8. Hy aui;q Oq apin,j, # Lrpsya- (1.11)

As it turns out, the framework developed by Crane and Patrangenaru in [7] can be adapted to the case of
anti-means and provided certain general assumption on the VW anti-means ajiq j,,a = 1,2 I conduct, in
section 5.5 two sample test to compare 3D projective shapes of two lily flowers, based on their digital camera
images.

Chapter 6 is concerned with a new approach of hypothesis testing for the equality of extrinsic means of
g random objects, g > 3. This is an extension of the classical MANOVA (Multivariate Analysis of Variance)
problem (see Johnson and Wichern (2008)[15]), in nonparametric setting. This approach is motivated by

the standard MANOVA hypothesis testing problem

Ho: pn=pr=..=pg=p

H, : atleast one equation does not hold.

given the independent random vectors X, ~ Np(uq, X),a = 1,...,g. We first consider a nonparametric
test, based on the pooled sample mean, by dropping the normality assumption, and assuming that asymp-
totically the ratio between a group size and the total sample size converges to a positive constant, as the
total sample size goes to infinity. I extended the ideas developped in the random variable case to object
data, assuming that that QJ,,a = 1,...,g, are independent j- nonfocal probability measures on M and
X1, .-, Xan, are iidr. objects from Q,,a = 1,2, ..., g. The extrinsic mean of @, if p, g and corres-

ponding extrinsic sample means is X, g. To test

Hy: pig = pog = ... = g, = g, Hq : at least one equation does not hold,



in general I consider the pooled mean given by pg = (71 o P;)(Mij(u1,e) + -+ + Agj(kg,r)) and the

corresponding sample counterpart Xz € M given by

_ n o ng ., o
Xp=(j"'oP) (fJ(Xl,E) + ;gJ(Xg,ED

where X, g is the extrinsic sample mean for X,; and n = > 9_;ng and 2= — A\, > 0, as n — oo,
with 37_, A\, = 1. From Theorem 6.2.1 I get two candidate statistics for testing (1.12) that have both
asymptotically a Xf]p distribution. These are used for rejection regions in the large sample case. The small
sample case is also addressed via nonparametric bootstrap in Corollary 6.2.2. In Section 6.3 I address the
extrinsic MANOVA problem on the 3D projective shape space (RP?3)¢ with the VW embedding. As an
example I consider the equality of mean projective shapes of 3D landmark configurations in a number of
individuals from digital camera images of their faces.

Chapter 7 is concerned with future directions in extrinsic data analysis it will involve using the 3D
face data set I have reconstructed from digital images, to collect landmarks from the remaining faces in
the database. Extend the work done in chapters 4, 5 and 6 to data analysis for VW antimeans including to

MANOVA for such antimeans.

1.2 Description of contributions

In this section I clearly describe what are my contributions to the various research results in this dissertation,

and which of these have been published. I start by recalling all my results that are theorems:

e In Theorem (4.1.1) I developed a new Delta method for a smooth function ' : M; — Mo where
fora = 1,2 M, are m4-dimensional smooth manifolds. The aim was for me to express the resulting

covariance matrix in an explicit form.

e Theorem (4.2.1) I develop the asymptotic behavior tied to a smooth function G : M x M — N
between smooth manifolds. This result can certainly be used to get the asymptotic behavior in a case
of a two sample hypothesis testing for extrinsic means because it can give the asymptotic behavior
of a function G of two extrinsic sample means with an explicit expression of the resulting extrinsic
covariance matrix written in term a linear combination of the extrinsic matrices tied to each of the

two random samples whether they are of same size or not.

e For Theorem (4.2.2) I focus on Lie groups with a multiplicative operation ® and an inverse map ¢. I
give an asymptotic behavior for the tangential component

I P .
tanj(#Z{E@HLE) (](XQ,E ©X1,E)— j(MQ’lE ® ,U,LE)). For this result, I use Theorem (4.1.1) to get



the asymptotic behavior of tan, (gL ( (X 119) —j(ps 119)) and an explicit expression of its corres-
2, ’ ’

ponding extrinsic covariance matrix >3 ;. I then used the results of Theorem (4.2.1) applied to the

function H : G x G — G and given by H(x2,21) = x5 * ® 2 to get the desired asymptotic behavior

with an explicit expression of the extrinsic covariance matrix.

In Theorems (5.1.1) and (5.1.2) I give the conditions for existence of the extrinsic anti-mean and the
sample extrinsic antimeans. I applied these to a data analysis for anti-mean 3D projective shapes

extracted from digital camera images.

Theorem (6.2.1) I give the expression of two test statistic for the hypothesis testing problem of com-
paring multiple extrinsic means. One of the test statistic will be used to handle cases for which the
extrinsic pooled mean is known and the other can be used whenever the extrinsic pooled mean is

unknown.

For Corollary (6.3.1) I used the results of Theorem (6.2.1) to expressed a couple of test statistic
designed to test the 3D mean projective shape changes between multiple VW means.

And below I give a list of ideas I have developed.

In chapter 4, I developed an idea that would allow anyone to conduct a two sample hypothesis testing
involving random samples on smooth embedded manifolds whether the samples are of same sizes or

not.

The extrinsic pooled mean and sample mean inspired by the case for multiple random vectors give
the possibility to develop and create a MANOVA for smooth embedded manifolds, allowing for the

possibility to test for multiple extrinsic means.

My contribution to the data analysis has been in the form of well defined condition of existence of the extrin-

sic anti-mean. I also took advantage of the extrinsic CLT result about antimean developped in Patrangenaru

et al (2016) [22] to conduct a two sample hypotheis testing method for change in antimean and therefore

giving another effective way to differentiate between object via a landmark based approach.

My contribution to the publications listed is

Patrangenaru, Yao and Guo (2016) [27] I my mork involve the whole of sections 2 through 5.

Patrangenaru, Guo and Yao (2016) [22] For this publication, my work is featured in the whole of

sections 4 and 5.

For the paper Patrangenaru, Page, Yao, Qiu and Lester (2016) [24]) my work is featured in the whole
of sections 4 and 5.

(Patrangenaru et al (2016) [26]) my work is featured in subsections 3.1 and 3.2 and also in the whole

of sections 4 and 5.



CHAPTER 2

PRELIMINARIES

Most of my analysis will be conducted on object spaces. These spaces consist of features measured from
sample observations that can no longer be viewed as a values of random vectors if one wishes to conduct
a proper statistical analysis on such said spaces. Examples of some object spaces I will consider are the
space of points on a sphere and the space of projective shapes of configurations and for such a data set
the associated object considered are points on the projective shape space. 1 will regard a random object X
as a random point on a complete metric space (M, p;) that has a manifold structure. In section 2.1 I give
some relevant definitions and introduce some meaningful concepts we will use throughout the analysis. In
the ensuing section I introduce the extrinsic mean and extrinsic sample mean as the unique minimizer of
Fréchet functions on (M, p;). Section 2.3 exposes the reader to a Central Limit Theorem for extrinsic
sample means on embedded manifolds. In section 2.4 I present the m-D projective shape space of k-ads
(labeled points, landmarks) in general position, which is denoted PX* . I highlight the fact that for PZ’;;
can be identified with (RP3)? with ¢ = k — 5. With this particular representation one can now view any
elements of the 3-D projective shape space as a g-tuple of elements from the 3D projective space and
(RP3)? is embedded via the Veronese-Whitney embedding (see Patrangenaru and Ellingson(2015)[21]).
The final section introduce a two sample hypothesis testing problem for extrinsic means on Lie groups and

the resulting bootstrap confidence region needed to conduct this test.

2.1 Some important concepts and definitions

The focus of our studies will revolve around metric spaces (M, p) with an additional smooth manifold
structure. For that purpose we give the following definition of a smooth manifold. We start by giving the

definition of a topological manifold.

DEFINITION 2.1.1. (Manifolds)
A metric space (M, p) is a manifold of dimension m or a topological m-manifold if M is second countable

, L.e. there exists a countable basis for the metric topology of M, and also M is locally Euclidean of



dimension m, i.e. every point has a neighborhood that is homeomorphic to an open subset of R™. And the
homeomorphism function oy : U — @y (U) € R™ is referred to as an m-dimensional chart on M. We

usually denote an m-dimensional chart by the pair (U, pyr). (see Lee (2002) [18]).

Given a chart (U, pr7) we call the set U a coordinate domain, or coordinate neighborhood of each of its
points. If in addition ¢ (U) is an open ball in R™, then U is called a coordinate ball. The map o
is also referred to as a local coordinate map, and its components (z{;,--- ,x}}), defined by py(p) =
(x5 (p), -+, 2T (p)) are called local coordinates on U. We will sometimes denote a chart by (U, (z%;)i=1,...m)
if we wish to emphasize the coordinate functions (x%], cee :c}?) (see Lee (2002) [18]).

Note that a homeomorphism is a bijective continuous function with a continuous inverse. The smooth

structure of a manifold is established by a smooth atlas or C* atlas.

DEFINITION 2.1.2. A collection A = {(Un, Ya)aca} of R"-valued charts on the topological manifold

M is called atlas of class C" if the following conditions are satisfied:

(i) | Ua=M

a€cA

(ii) Whenever U, N Ug # 0, then the (transition) map between po(Us N Up) and pg(Uy N Ug)

080 00 loaarty) * Pa(Ua NUs) = ¢5(Ua N Up)

is differentiable. Furthermore, this transition map must also have a differentiable inverse that has

continuous partial derivatives up to order r.
( see Lee (2002) [18]).
DEFINITION 2.1.3. An m-dimensional manifold of class C" is a manifold M along with an R™-valued
atlas of class C" on M. We will refer to a smooth manifold as an m-dimensional manifold of class C*°.

Example 1. (i) Naturally, any open set in the Euclidean space (R™, po), is an m-dimensional smooth

manifold. Here py(z,y) = ||z — yl|, where ||(u', ..., u™)||? =3, ., (u)>
(ii) The unit sphere S™ = {x € R™*L . ||z|| = 1} is an example of m-dimensional smooth manifold.

(iii) The product of a p- dimensional manifold with a q- dimensional manifold is a (p + q)- dimensional

manifold.

(iv) The space of 1-dimensional linear subspaces of R™*, called the m-dimensional real projective space

and labeled RP™ is an example of a m - dimensional manifold that is not a subset of an Euclidean
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space. An element of RP™ is often represented by [x] where x € R™ V. Here [x] = [y] <= y = A\
for some A # .

( see Lee (2002) [18]).

Note: A projective point [x] € RP™ can also have a spherical representation, when thought of as a pair
of antipodal points on S™, and [z] = {z, —x}, with ||z|| = 1 and z € R™*!. From this point on when
referring to a projective point we will use this particular representation. (see [2] or [21])

The definitions of smoothness of diffeomorphism and differentiable curves will be needed for us to introduce

tangent vectors and tangent spaces which are an integral part of the asymptotic analysis we will conduct later.

DEFINITION 2.1.4. (smooth function) Let M be a smooth m-manifold, a function f : M — R¥ is said
to be smooth if for every p € M, there exists a smooth chart (U, ) for M whose domain contains p and

such that the composite function f o =" is smooth on the open subset p(U) C R™. (see Lee (2002) [18]).

DEFINITION 2.1.5. (Smooth map between manifolds)
A function F : M — N between two smooth manifolds is differentiable, if for any charts (U, o) on M

and (V, ) , on N, the composite map, ¢y o F o ¢y, ) is differentiable of class C*°. The composite

'l
s(UNV
map above is referred to as the local representative. (see Lee (2002) [18]).

DEFINITION 2.1.6. A diffeomorphism between (differentiable) manifolds M and N is a differentiable
function F' : M — N that has a differentiable inverse. Furthermore, we say that M and N are diffeomor-

phic if there exists a diffeomorphism between them. (see Lee (2002) [18]).

DEFINITION 2.1.7. A differentiable curve (path) on a smooth manifold M is a differentiable function
from an interval to M. Two such paths c1 and ca, defined on a neighborhood of 0 € R are tangent at p if

¢1(0) = ¢2(0) = p and there is a chart (U, py) around p such that
(ov 0 ¢1)'(0) = (v 0 2)'(0)
(see Patrangenaru and Ellingson (2015) [21])

With the definition of differential curves we can now give a definition of tangent spaces which is more

useful for object data analysis.

DEFINITION 2.1.8. (Tangent vectors and tangent space)

11



(i) The set of all paths tangent at p is called tangent vector vy, at p = ¢(0), and is labeled v, = %(O) =
d
o
(ii) The tangent space T, M at a point p of a manifold M is the set of all tangent vectors v, = % | o fo
curves ¢ : (—e,e) — M with p = ¢(0).
We will use the notations (p,v), vp, and v for a tangent vector in T, M, depending on how much emphasis

we wish to give to the point p. (see Patrangenaru and Ellingson (2015) [21])

Example of tangent vectors

(El) If ey, -, e is the usual basis of M = R™ and p € M the following partial derivatives
9 9
ozt|,’ 0z,
are tangent vectors in T,R™. For¢ = 1,...,m, % ’ is the tangent vector
dCi 8
€; = 7( ) = o
dt oz’ »
where ¢;(t) = p + te;.
(E2) Similarly, if (U, ¢) is a chart on M, around p, a?ci f is the tangent vector
dc; o 1%
dt Ox »

where ¢;(t) = ¢~ 1 (o(p) + te;).

(E3) In another example, consider M = S™ regarded as a subset of R™*!  then the tangent space atp € S™
can be described as
T,8™ = {(p,v), v € R™™ |vTp = 0} (2.1)

(E4) Let RP™ be identified with antipodal points (spherical representation) then if [z] = {z, —x} € RP™,

the tangent space at [z] is described as
TiRP™ = {([z],v), v € R™ [vTz =0} (2.2)
(see Patrangenaru and Ellingson (2015) [21]).

PROPOSITION 2.1.1.  Let (U, ) be a chart on M. Then T,(M) has a basis of tangent vectors

% PR Mim ‘p where (z',...,2™) is the system of local coordinates associated with the chart (U, 1)).
Each vector v, € T, M can be written uniquely as a linear combination of %L} St azim}p and we
have v, = Y V! % » with any choice of charts on M and the numbers (v*, V2, ....,v™) are called the

components of v, with respect to the given coordinate system. ( see Lee (2002) [18])
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DEFINITION 2.1.9. (Tangent Bundle).

The tangent bundle T M of an m-dimensional manifold M is the disjoint union of the tangent spaces at all
points of M ; it has a 2m-dimensional manifold structure. The tangent bundle is often represented by the
triple (T M, 11, M) where 11 is a natural projection map and Il : TM — M is a differentiable map which
associates to each tangent vector its base point, I1((p, vp,)) = p. (see Lee (2002) [18] or Patrangenaru and
Ellingson (2015) [21]).

DEFINITION 2.1.10 (Vector Fields). If M is a smooth manifold, a vector field on M is a smooth section
of the projection map 11, that is a smooth map Y : M — T M usually written p — Y (p), with the property
that

MoY = Idp, 2.3)

or equivalently, Y (p) € T,M for eachp € M. (see Lee (2002) [18] or Patrangenaru and Ellingson (2015)
[21])

One may think of a vector field on M in the same way we think of vector fields in Euclidean spaces: as an
arrow attached to each point of M, chosen to be tangent to M and to vary smoothly from point to point.

The value of a smooth vector field at the point p is a tangent vector at each point p € M.

Example 2. If (U, (z')) is any smooth chart on M, the assignment

p—

ol (2.4)

BZ_ ( see Lee

determines a smooth vector field on U, called the ith coordinate vector field and denoted by 5~

(2002) [18])

The set of all smooth vector fields on M often denoted by 7 (M) is an infinite-dimensional vector space

under point wise addition and scalar multiplication:
(@Y +bZ)(p) = aY (p) + bZ(p)

( see Lee (2002) [18])

DEFINITION 2.1.11. Let U C M be an open subset of an m-dimensional smooth manifold. A local frame
field is a system of m vector fields (V1. .., Vy,) of T M over U whose values V1 (p), . . ., Vin(p) are linearly
independent in T, M for each p € U ( see Lee (2002) [18] or Patrangenaru and Ellingson (2015) [21]).
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Recall that for any smooth m-manifold M, the tangent bundle has a natural topology and smooth structure
that makes it into a smooth 2m-dimensional manifold such that IT : TM — M is a smooth map. We can
therefore have maps from one tangent bundle 7'M to another tangent bundle T'A/. We now define a special

map below.

DEFINITION 2.1.12. (Tangent Map)

(i) If f : M1 — Mo is a differentiable function between manifolds, its tangent map is the function
df : TMy1 — T Mo, given by
i de _ d(foc)
dt o(0) dt

for all differentiable curves c defined on an interval containing 0 € R.

f(c(0))

(ii) The differential of f at the point p is the restriction of the tangent map, regarded as a linear function

dpf : TpM1 — Tf(p)./\/lz

df(j? >: d(foc)

dt
For the definition above please refer to Patrangenaru and Ellingson (2015) [21]. Note that the restriction

(2.5

f(p)

of df at the point p is a linear function that sends a tangent vector of M; to a corresponding tangent vector
of M. Such a linear map is also referred to as a push forward see Lee (2002) [18].
Data analysis on embedded manifolds will be the focus of our study. On such manifolds we can define a

distance with very useful properties.

DEFINITION 2.1.13. (Embedding)
An embedding of a manifold M in a Euclidean space R is a differentiable one-to-one function j : M —

R, for which
(i) the differential d,j is a one-to-one function from T, M to Tj(p)Rk at any point p € M, and
(ii) j is a homeomorphism from M to j(M) with metric topology induced by the Euclidean distance.

(see Patrangenaru and Ellingson (2015) [21])

REMARK 2.1.1. Given an embedded manifold M with embedding j : M — j(M) C RF, we will,
throughout this manuscript, consider the corresponding metric space (M, p;) with the distance p; being

the chord distance defined in (1.2).
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Example 3. The unit sphere S™ is a already embedded in R™ and the embedding is given by the inclu-

sion, 1 : S™ — R™ given by 1(z) = z, Vo € S™ with usual Euclidean metric pt(z,y) = ||z — y||?

Example 4. The projective space RP™ is embedded in the space of symmetric (m+ 1) x (m+ 1) matrices,

via the Veronese-Whitney embedding

j:RP™ = S(m+ 1,R),

j([z]) = za” (2.6)

with the following metric on Sym(m + 1) given by p3(A, B) = Tr((A — B)?), where Tr denotes the trace
of the matrix (A — B)2. (see Patrangenaru and Ellingson (2015) [21]) and Crane and Patrangenaru (2011)
[71)

The definition below will allow us to set up a correspondence between a basis of tangent vectors in 7, M

and an m-tuple of linearly independent tangent vectors in 7} (p)RF.

DEFINITION 2.1.14. (Adapted frame field)

Assume p — (f1(p), ..., fm(p)) is a local frame field on an open subset of M such that, for each p €
M, (dpj(f1(p)), s dpj(fm(p))) are orthonormal vectors in RE. A local frame field (e1(y), ...,ex(y))
defined on an open neighborhood U C R” is adapted to the embedding j if it is an orthonormal frame field

and
er(j(p) = dpi(fr(p)), r=1,...,m, ¥p € j7H(U) 2.7)

( Patrangenaru and Ellingson (2015) [21])

2.2 Extrinsic means and sample means

The Fréchet function on a complete metric space is the main tool by which we will introduce means on em-
bedded manifolds. It was introduced by Fréchet in 1948 [11]. Let X be a random vector from a probability
measure ) on R with mean vector x. The mean vector is also the value of R™ for which the expression
E[||X — pl||?] (viewed as a function of p) is minimized. This function of p is none other than the Fréchet
function on the metric space (R™, pg). Furthermore, for X7, ..., X,, iid random vectors from the distribution

@ on R™ the sample mean is given by X = 1 ™" | X; with X —, y1. One thing we must note is that in the
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case of probability measures on Euclidean spaces we can easily estimate asymptotically the true mean via
the sample mean as defined above. This will not be the case for most metric spaces we will encounter such
as the sphere and the projective space, until we have a notion of mean, that is also a point on such object
spaces . We must hence revisit the definition of the mean and sample mean and it will start with us thinking
of it solely as the minimizer of some function, called Fréchet function. We will later give a more general
definition of a Fréchet function but first we must mention that for this section, the reader may assume that a
definition, an example, a theorem, property and most results can be found in the book by Patrangenaru and

Ellingson (2015) [21].

2.2.1 Extrinsic mean

Let M be an m-dimensional manifold and let B, be the Borel o-algebra generated by open sets of M.
Let (2,.A, Pr) be a probability space. A random object (r.0.) on M is a function X : 2 — M, such that
for any Borel set B € By, X !(B) € A. To each r.o. X we associate a probability measure ) = Px on
B given by Q(B) = Pr(X~!(B)). In general, a natural index of location for a probability measure Q
associated with a r.o. X on a complete metric space M with the distance metric p is the Fréchet mean. It is

the unique minimizer of the Fréchet function (see Fréchet(1948) [11]), defined by

F(p) =E [p*(p,z)] = / p*(p, ) Q(dz), (2.8)

whenever such a unique minimizer exists. Generally two types of distance on a manifold M are considered:

1. A geodesic distance or arc distance. It is the Riemannian distance p, associated with Riemannian

structure g on M.

2. A chord distance p; associated with an embedding j : M — R*. (see Patrangenaru and Ellingson
(2015) [21])

These two distances give rise to two types of statistical analysis on manifolds: an intrinsic analysis using an

arc distance and an extrinsic analysis based on a chord distance. We will focus on the latter.

From this point on, we will assume that (M, p;) is a complete metric space.

DEFINITION 2.2.1. Let Q) be a probability measure on M with a distance p;. If F in (2.8) has a unique
minimizer, this minimizer is called the extrinsic mean of @) and it is denoted 11; £(Q) or simply pg. If the
minimizer is not unique, the set of all minimizers is the extrinsic mean set.

(see Patrangenaru and Ellingson (2015) [21])
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DEFINITION 2.2.2. Let X1, Xo, ..., X,, be independent random variables with a common distribution ()

n
on the metric space (M, p;), and consider their empirical distribution Q,, = — Z d(Xk)-
n
k=1
The extrinsic sample mean (set) is the extrinsic mean (set) of Qy, i.e. the (set of ) minimizer(s) p of Fn(p) =

% Z?Zl p?(ijp). (see Patrangenaru and Ellingson (2015) [21])

DEFINITION 2.2.3. Assume pq is the Euclidean distance in R¥. A point x of R¥ such that there is a unique
point p in M for which po(x,j(M)) = po(x, j(p)) is called j-nonfocal. A point which is not j-nonfocal is
said to be j-focal.(see Patrangenaru and Ellingson (2015) [21])

The only focal point of S™ with the inclusion in R™*1 is 0,,,, 1. Note that the probability measure () induces

a probability measure j(Q) on R”.

DEFINITION 2.2.4. A probability measure () on M is said to be j-nonfocal if the mean p of j(Q) is a
j-nonfocal point. If x is a j-nonfocal point, its projection on j(M) is the unique point y = Pj(z) € j(M)
with po(x, j(M)) = po(x,y).(see Patrangenaru and Ellingson (2015) [21])

THEOREM 2.2.1. If ;1 is the mean of j(Q) in R, Then
(a) the extrinsic mean set is the set of all points p € M, with po(u, j(p)) = po(, j(M) and
(b) If 1j B (Q) exists then y exists and is j-nonfocal and p; (Q) = 71 (Pj(1)).

(see Patrangenaru and Ellingson (2015) [21])

THEOREM 2.2.2. The set of focal points of a sub-manifold M of R¥ is a closed subset of R¥ of measure
0. (Patrangenaru and Ellingson (2015) [21])

The 2D sphere and the 3D projective space are manifolds of interest to us. Their extrinsic means will appear

and be used at various points in our study.

Example 5. (Spheres) Lets assume that we have a random object X from a j-nonfocal probability measure

Qon S™ = {x € R™*! . ||z|| = 1} an m-dimensional sphere. For this particular space, the j-nonfocal

condition which guarantees the existence of a unique extrinsic mean is equivalent to requiring that the true

mean i, # 0 € RMTL,

The embedding and its corresponding projection are two functions that are essential in finding and express-
L2 S™ — R

ing our extrinsic mean. For S™ the embedding is the inclusion map { (2) and the projection
x) ==
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P, : F¢ — 1 (S™
map is { ’ () where F¢ = R™T1\{0} is the set of .-nonfocal points in R™t. Now, if u is

P(y) = HZ*”
the mean of .(Q) then the extrinsic mean is given by

e = (P(p) = (2.9)
4]
Example 6. (Real projective spaces) We now assume that [ X] is a random object from a j-nonfocal pro-
bability measure (Q on RP™. Much like in the example above we must have a clear expression of an em-
bedding and its corresponding projection and for real projective spaces the embedding of choice is the VW
(Veronese-Whitney) embedding mentioned in (2.6). With this choice of embedding

(i) The set F of focal points of j(RP™) € S;(m + 1, R) is the set of matrices in Sy (m + 1, R)( space

of positive semi-definite symmetric matrices) whose largest eigenvalues are of multiplicity at least 2.

(ii) The projection P; : Si(m + 1, R)\\F — j(RP™) assigns to each positive semi-definite matrix A
with a highest eigenvalue of multiplicity 1, the matrix j([m]), where m is a unit eigenvector of A

corresponding to its largest eigenvalue.( see [6] or [21]. )

If XTX =1, and in the ambient space the mean |1 = E [X X T} exists, then the VW mean is

pie = (Pi(p) = 5 (G([y(m + 1))

e = [y(m+1)] (2.10)

where A(a) andvy(a), a = 1,--- ,m+1 are eigenvalues in increasing order and corresponding eigenvectors

of £ [XXT] . (see Patrangenaru and Ellingson (2015) [21])

In particular:

Example 7 (Extrinsic sample means for S and RP™.). (i) Assume Q) is a nonfocal probability measure
on the manifold S™ and X = {Xy, ..., X,,} are i.i.d.ro’s from Q. Then the extrinsic sample mean is
given by -

X, =
[ Xl

@.11)

(2

— 1
where X, = =31 1 X;
n

(ii) Now let () be V-W nonfocal probability measure on the manifold RP™ and [X| = {[X1], ..., [X,]} are
i.id.ro’s from Q. Then the V-W sample mean is given by;

(X0 = lg(m +1)] (2.12)
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where d(a) and g(a), a = 1,--- ,m + 1 are eigenvalues in increasing order and corresponding unit
. (R
eigenvectors of J = - Z X X;

i=1
( Patrangenaru and Ellingson (2015) [21])

PROPOSITION 2.2.1. Consider an embedding j : M — RF. Assume (X1, ..., X,,) is a random sample

from a j-nonfocal probability measure (Q on M, and the sample mean vector (j(X)) is j-nonfocal. Then

this extrinsic sample mean is given by

Xp=j"(P((X)) (2.13)
(see Patrangenaru and Ellingson (2015) [21])

Remark: At this point it is important to note that for an embedded smooth manifold M into j(M) C R¥,
one can analyze data from an unknown probability distribution @), with help of the various widely known

multivariate techniques and conduct inferences for extrinsic means, variances, etc.

THEOREM 2.2.3. Assume Q is a j-nonfocal probability measure on the manifold M and X = {X1, ..., Xy, }
are i.i.d.r.o’s from Q, then the extrinsic sample mean X g is a strongly consistent estimator of the 1ie(Q).

( see Patrangenaru and Ellingson (2015) [21])

2.3 Central limit theorem for extrinsic sample means

A Central Limit Theorem for extrinsic sample means was given in Bhattacharya and Patrangenaru(2005)[6].
Let’s assume () is a j-nonfocal probability measure on the manifold M and X = { X}, ..., X,,} are i.i.d.r.o’s
from (). Consider the embedded random variables j(X) = {j(X1), ..., 7(X,,)} as random vectors from the
probability measure j(Q) with mean vector  and assume j(() has finite moments of order four. We can
apply the usual (multivariate) Central Limit Theorem for our sample of embedded random objects and get

the following convergence in distribution:
n!/2 (3(X) = 1) =a N(O, %) (2.14)

where j(X) = L 3" | j(X;). Given the formula of the extrinsic sample mean, we will need to understand

the asymptotic behavior of P;(j(X)) = j(X,,r). We do so by relying on the following theorem.
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THEOREM 2.3.1 (Cramer’s Delta Method). Let Y;, j > 1 be i.i.d k-dimensional random vectors with
mean vector | and covariance matrix ¥ = (oy5). For H : R* — RP a vector-valued and continuously

differentiable function in a neighborhood of |1 we have the following asymptotic behavior

ValH(Y) = H(u)| —q D H -V ~ N, (0, D,HY D,HT) (2.15)

with D, H = < 81—8[;52,) ( see Patrangenaru and Ellingson (2015) [21], Theorem 2.8.5)

Z:'LL> 1:177k)]:17ap
Using the Cramer’s Delta method for the real-valued and continuously differentiable function P; we get the

following for the random vectors j(X) = {j(X1), ..., J(Xn)}
w2 (PG = Py()) —a Dby -V ~ Ni (0, ). (2.16)

where ¥, = D, P; ¥ D, P]'. Here P; : F¢ — j(M) where F is the set of focal points in j(M). Note
that since F is a closed subset of R¥ thus F°¢ is an open subset of R a smooth k-manifolds and is itself
a smooth k-manifold. Let e1, es, ..., e, be the canonical basis of R* and assume that (e1(y), ..., ex(y)) is
an adapted frame field around Pj(p) = j(ug) ie e-(Pj(n)) = er(j(pr)) = dupi(fr(p)), r=1,...,m
where p — (f1(p), - -, fm(p) is our local frame field of interest. Then d, Pj(ep) € Tp,(,,)j(M) and we can
now represent this vector as a linear combination of e1(Pj (1)), ..., em (Pj (1)) € Tpy( H)Rk;

m

duPj(er) = Y [duPj(es) - ea(Pi(1))] ea( P (1), Vb =1,...k 2.17)
a=1

duPj(ey) =Y aap ea(Pj(1)) where aqp = [dyPj(er) - ea(Pi(1))]
a=1

Recall that using Cramer’s Delta Method we have that n!/2 <Pj (J(X)) — P](,u)) converges weakly to a
random vector D, P; - V ~ Nj;(0,%,), with ¥, = D,P; ¥ DMP]T where 3 is the covariance matrix
of j(X1) w.r.t the canonical basis e1, ..., e,. We can now express our covariance matrix >, using the new

representation of vectors d,, Pj(ep), Yb=1,...,k

T

%, = 2.18)

D aap ea(Py()
a=1

by [Z b €a(Pj (1))
a=1

b=1,..k b=1,...k

And note that

dyPj(ep) - ea(Pj(p)) =0, for a=m+1,..k
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It is important to remember that n'/? <Pj (X)) — Pj( u)) is a vector in R* with origin at Pj(p) = j(ug)
and as such it can be decomposed into component in the tangent space 7,7 (M) and component of the
orthogonal complement of the tangent space at j(ug). If we take the component in the tangent space then
asymptotic distribution we obtain is a distribution on Tp, (,,)j (M), alinear space. To illustrate this point we
start by defining tangential components which corresponds to tangent vectors in Tka and are dependent on

the choice of basis elements of the tangent space of interest.

DEFINITION 2.3.1. The tangential component tan(v) of v € RF w.r.t. the basis e,(P;(1)) € Tp,(wi(M),a=

1,2,...,m given by

tan(v) = : v=1[er(Pi(p) - vy em(Pi(p)) - v|* (2.19)
em(Pj(N))T

( Patrangenaru and Ellingson (2015) [21])

We now get the following asymptotic for the tangential component of P; ( J(X )) — Pj(p)

n'/? tanj, ) (Pj (m) - Pj(ﬂ)) g N (0,5;.1) (2.20)
where
61(Pj(,u))T
Tip=ATS,A= : Sp lePi(n) - em(Pi(w)] 2.21)
6m(Pj(M))T

The tangential component of P; ( J(X )) — Pj(p) is a tangent vector in Tj(,,,1j(M) and therefore its cor-

responding random vector (d, 7) " tan(P; (j (X )) — Pj(n)) € T,,M converges asymptotically to a

multivariate normal with mean vector 0 and covariance matrix w.r.t. the basis fi(ug), ..., fm(uE) given by

Y5 = (ATD,P;) ¥ (A"D,P))" (2.22)
where under the new basis
duPj(er) -er(Pi(p) ... duPj(em) - e1(Pj(p))
(AT DyPj)ay = [duPj(er) - ea(Pi(n)] = : : (2.23)
duPj(er) - em(Pj(p)) .. duPj(em) - em(Pj(p))
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DEFINITION 2.3.2. The matrix ¥; g given by (2.22) is the extrinsic covariance matrix of the j-nonfocal
distribution Q) of X1 w.rt. the basis fi1(ug), ..., fm(E). When j is fixed in a specific context, the subscript
7 will be omitted. If in addition, X is invertible (of rank m) we can define the j-standardized mean vector

— [ A R T
Zin =iy (X557 (2.24)

__ T _
where (X;Y;n) are the coordinates of the tangent component of j(X ; g) — 1(pj,5(Q)), w.r.t the basis

ea(Pj(n)) € Tpy(yi(M),a = 1,2,...,;m. ( Patrangenaru and Ellingson (2015) [21])

PROPOSITION 2.3.1. Assume {X,}]'_, arei.i.d.r.o’s from the j-nonfocal distribution @), with finite mean
pw = E(j(X1)), and assume the extrinsic covariance matrix ¥; g of Q is finite. Let (€1(y), ..., ex(y)) be an

orthonormal frame field adapted to j. Then

(a) the tangential component of the difference between j(X ; g) and the j(1j £(Q)) has asymptotically a
distribution that is approximately multivariate normal the tangent space to M at i; 5(Q) with mean 0

and covariance matrix nflEj, E.and

(b) if X, g is nonsingular, the standardized mean vector 7j7n given in (2.24) converges weakly t0 a Ny (0, I, )-

distributed random vector.
( Patrangenaru and Ellingson (2015) [21])

The CLT for extrinsic sample means stated in Proposition 2.3.1 cannot be used to construct confidence
regions for extrinsic means since the population extrinsic covariance matrix is unknown. In order to define

our confidence regions we will need to have the following consistent estimator for X; g.

_ _ T
Sjen = [z Pile) alBUXN)| _ Sin [diPie) - wlP0E))| 0 @25)
is a consistent estimator of X; . With
Sin=n"1Y" ((X,) — (X)) ((X,) —5(X))" (2.26)

r=1
a consistent estimator of 3 the covariance matrix of j(X1) and d,; ) Pj(ep) consistent estimator of d,, P; (eb)
and e, (P;j(j(X))) a consistent estimator of e,(P;j(u)).(see Bhattacharya and Patrangenaru [6] also Pa-
trangenaru and Ellingson (2015) [21]).
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THEOREM 2.3.2. Assume j : M — R¥ is a closed embedding of M in R*. Let {X,}"_, be a random

sample from the j-nonfocal distribution Q, and let v = E[j(X1)] and assume j(X1) has finite second

order moments and the extrinsic covariance matrix ¥ g of X1 is nonsingular. Let (e1(y), ..., ex(y)) be

an orthonormal frame field adapted to j. If Sj g p is given by (2.25), then for n large enough S; g, is

nonsingular (with probability converging to one) and

(a) the statistic

converges weakly 10 Ny, (O, Iy,), so that

2

n ||S; 3, tan(P(GX)) - Pi(n)

converges weakly to x2, and

(b) the statistic

1
S;En tanp o) (P (5(X)) = Pj(p)

J

N[

n

converges weakly 10 Ny, (O, Iy,), so that

1
n Sjﬁn tanpj(m)(Pj(j( ) — Pji(w)

converges weakly to x2, and

( Patrangenaru and Ellingson (2015) [21])

2.27)

(2.28)

(2.29)

(2.30)

COROLLARY 2.3.1. Under the hypothesis of Theorem (2.3.2) , a confidence region for g of asymptotic

level 1 — « is given by

_1

(a) Cn,a = j_l(Un,a) where Un,oe = {‘ZDJ(N) € ](M) Lon

Xoni—a) OF by

(b) Dn,a = j_l(Vn,a) where Vn,a = {Pj(ﬂ) € J(M) n

X?n,l—oa}

( Patrangenaru and Ellingson (2015) [21])
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For small samples, we use nonparametric bootstrap confidence regions. Now lets recall that if { X}, is
a random sample from an unknown distribution @), and { X} ; is a (bootstrap) random sample from the

empirical distribution Qn, conditionally given by { X, }""_;, then the statistic in Theorem 2.3.2 (a),

2

T(X,Q) =n ||S; 2, tan(P;(i(X) — Ps(1) @31

has the bootstrap analog
2

T(X"Q) = n |77, tany, o (B GOE)) — P (GEX)) (2.32)

Where T'(X*,Q), S*j gn is obtained by substituting {X,.}I'_; by {X;}"'_, and also by replacing u by
j(X). From this point on, we will assume that j(Q), , has finite moment of sufficiently high order. This
result is automatic for compact manifolds such as S and RP". The following theorem addresses the order

of convergence related to our bootstrap statistic.

THEOREM 2.3.3. Let {X,}_, be a random sample from he j-nonfocal distribution Q) which has a
nonzero absolutely continuous component w.r.t. the volume measure on M induced by j. Let p = E[j(X1)]
and assume the covariance matrix ¥ of j(X1) is defined and the extrinsic covariance matrix ¥; g is non-

singular and let p — (e1(p),...,en(p)) an orthonormal frame field adapted to j. Then the distribution

of

2

n ||S; 3, tan(PG(X)) - Py(s)

can be approximated by the bootstrap extrinsic Hotelling distribution of
2

l . .
S% . Bm ta0p Gy (B (X)) = P55 (X))

with a coverage error Op(n*Q). ( Patrangenaru and Ellingson (2015) [21])

We will encounter cases when S; g 5, is difficult to compute and for such situations,we will rely on the

following result.

2
PROPOSITION 2.3.2. on the asymptotic distribution of n Htan(Pj (J(X)) — Pj(,u)H can be approxi-

mated uniformly by the bootstrap distribution of

n [Jtan(P G — 2G| 233)

__m
to provide a confidence region for g with coverage error no more than Op(n~ m+1). ( see Patrangenaru

and Ellingson (2015) [21])
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REMARK 2.3.1. For bootstrap confidence regions in Theorem 2.3.3 the bootstrap analog of Corollary
6.2.1 (a) is preferable. The corresponding 100(1 — &) % confidence region is Cy; , := j~ (U} ) with Uy: ,
given by

Ur o = {Ps(v) € j(M) : n1S} 32 tan(P (X)) = ()] < ¢i_a}, (2.34)

where ¢ _, is the upper 100(1 — )% point of the values

|5 o tan, ) (P (GXT)) = PG X)|1? (2.35)

among the bootstrap re samples. And the region given by 2.34 has a coverage error Op(n_Q).

2.4 Projective shape space

The bulk of our analysis will directly involve PZ’§ the 3D projective shape space of k-ads (landmarks)
in general position. We will conduct a landmark based analysis which will involve recovering the 3D

coordinates of our labeled points.

2.4.1 Representation of projective shapes

We associate a shape to a configuration of k labeled points. We are interested in conducting our analysis on
projective shapes but first we start with defining the a projective transformation of elements in a Euclidean

space.

DEFINITION 2.4.1. Generally, a projective transformation v of R™ is defined in terms of a matrix A =
(a!) € GL(m+ 1,R), viav(z!,...,a™) = (y',...,y™),

)

j Yy alat +al,,, Al -u Vi— 1 (2.36)
= : = ,Vi=1,...,m. .
Yy Z;il a;n-&-lxz 4 amii Am+l . g4 J
where A7 is the j-th column of A and u = (z*,...,z™ 1)T.

( Patrangenaru and Ellingson (2015) [21])

REMARK 2.4.1. Two configurations of points in R™ have the same 3D shape if they differ by a projective
transformation of R3. However, in applications, such projective transformations act only on subsets of R3

and consequently they do not have a group structure under composition.
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Note that if one multiplies the matrix A by a nonzero constant, then the equation (2.36) does not change;
therefore the group PG L(m) of projective transformations of R™ has dimension (m + 1)? — 1 = m(m +
2). Furthermore, R™ can be identified with an open affine subset of RP", any configuration of points
{z1,..., 2} in R™ can be regarded as a configuration projective points {p1, ..., px} in RP™. An example

of such an identification is the affine embedding ~ : R™ — RP™ given by
h(z) = h((zt, ..., 2™)) = [xl seeenx™ 1] (2.37)

(see Patrangenaru and Qiu (2014) [25]).
The pseudo group action by projective transformations on open dense subsets of R is extended to a group

action of the projective group PG L(m). And the group action is given by

a: PGL(m) x RP™ — RP™

a([A4], [z]) = [Az], VA € GL(m + 1,R), ¥V x € R™! (2.38)

Note that given the matrix A in the projective transformation v in 2.36 and u we have the following vector

a=Au=((A'-u),...,(A™ - u), (A" . u))T we now get the following equality

~1 ~m , ~m+1 ﬁl u™
[Au]=[a" :---:a™ . a™" ] = ﬁerl:~--:W:1 (2.39)
where % =yifori=1,...,m. And wereferto (y',...,y™) as the inhomogeneous (affine) coordinates

of the point [a] € RP™.
Therefore, rather then considering projective shapes of configurations in R we consider projective shapes

of configurations in the projective space RP".

DEFINITION 2.4.2. Two sets of labeled points {[x41],...,[xqr]} C RP™, a = 1,2 have the same pro-
Jjective shape if there is a projective transformation 3 : RP™ — RP™, such that 5([x1 ;]) = [x24], Vj =

1,..., k. (see Patrangenaru and Qiu (2014) [25]).

In projective shape analysis it is preferable to employ coordinates invariant with respect to the group

PGL(m). To create such coordinates we will need to use a projective frame.

DEFINITION 2.4.3. A projective frame m = (p1, ..., Ppm+2) in RP™ is an ordered set of m + 2 projective
points in general position. Note that k points in RP™ are in general position if their linear span is RP™.

Forp;, i = 1,...,m + 2 with the spherical representation p; = {x;, —x;} z; € R™ L this means that for
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{21, ..., Tma2} any subset of size m + 1 form a linear span of R™+1. ( Patrangenaru and Ellingson (2015)

[21])
An example of projective frame in RP™ is the standard projective frame mo = ([e1], ..., [em+1], [e1 + ... +
em-l—l])'

PROPOSITION 2.4.1. Given two projective frames 11 = (P11, . .., P1,m+2) and w3 = (p2,1, - - -, D2,m+2),
there is a unique § € PGL(m) with B(p1j) = p2j, 7 = 1,...,m + 2. (see Mardia and Patrangenaru
(2005) [20]).

A projective transformation takes a projective frame to a projective frame, and its action on RP™ is deter-

mined by its action on a projective frame.

DEFINITION 2.4.4. The projective coordinate(s) of a point p = [zt : -+ : 2™F1] € RP™ wrt a
projective frame ™ = (p1, ..., Pm+2) as being given by
p"=5""(p) (2.40)

where 3 is a projective (transformation) map taking the standard projective frame g to , these coordinates

have automatically the invariance property. ( Patrangenaru and Ellingson (2015) [21])

PROPOSITION 2.4.2. Assume u1, ..., ux are points in R™. We then identify the first m + 2 points with

U1y Umyo in RP3 where @; = [uf cud : -+ :ud : 1) fori=1,...,m+ 2. If we consider the m + 1 by
m + 1 matrix Uy, = [4] , ..., 4L, ], the projective coordinate of [] with respect to T are given by
=) )
where y'(u) = UZ(Z;EUJ)rQ) with v(u) = U, a® (2.41)

( Patrangenaru and Ellingson (2015) [21])

DEFINITION 2.4.5. A projective shape of a k-ad (configuration of k labeled points) is the orbit of that
k-ad under projective transformations. If the k-ad is regarded as a point on (RP™)F, then such a trans-
Sformation acts at the same time on each point of the k-ad; therefore the action of PLG(m) is the diagonal

action of this group on (RP™)*,

Oék(pl, ...,pk) = (a<p1)7 x) a(pk))

( Patrangenaru and Ellingson (2015) [21])
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Now, lets consider the set G(k,m) of k-ads (p1, ..., pr) with k& > m + 2 for which 7 = (p1, ..., Dm+2)
is a projective frame. Once the first m + 2 points are used to create a projective frame, we now use the
remaining projective coordinates (pJ;,, 3, ..., pj) to uniquely represent our projective shape of k-ads with
respect to its projective frame 7. The m-dimensional projective shape space of a generic k-ad is determined
by the projective coordinates (pf;, . s, ...,p;) of k —m — 2 of its points, relative to other (m + 2) of its
points that form a projective frame. Using the projective coordinates (p;, . 3, ..., P} ) on can show that PYF
is a manifold diffeomorphic to (RP™)¥~™=2_ The drawback of this representation is that the resulting
analysis may depend on the projective frame selection. But on the other hand the projective shape space has
a manifold structure allowing us to use the asymptotic theory for means on manifolds we introduced in the

previous subsections.

REMARK 2.4.2. We will now use interchangeably the notation PZlfn and (]RPW)’“_"‘_2 to refer to the pro-
Jjective shape space of k-ads in m-dimensions. Furthermore, we will now represents an element y € PEfn
byy = ([z1],...,[xq]) where ¢ = k —m — 2 and [z;] = p] is a projective coordinate with respect to

™= (pl, s apm+2)-
2.4.2 VW mean and sample mean on (R P3)F—5

We will look at samples of random projective shapes of k-ad (K > 5) in general position including a
projective frame in RP3. The corresponding 3D projective space of k-ad is given by PZ’§ = (RP3)*=3 and
is an embedded manifold. The embedding of choice is the Veronese-Whitney embedding on (RP™)? with
q = k —m — 2 and the embedding is denoted jj,. But before we formally define this map, we will recall the
VW embedding on RP™ is defined by
j:RP™ = Si(m+1,R)
j([z]) = z2T, ||z| =1, and z € R™!

j maps RP™ into a ($(m + 1)(m + 2))-dimensional Euclidean hypersphere in the space S(m + 1,R),

where the Euclidean distance between two symmetric matrices A and B is
po(A, B) = Tr((A - B)?) (2.42)

(see Bhattacharya and Patrangenaru (2005) [6]).
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PROPERTY 2.4.1. The VW embedding on RP™ is an equivariant embedding. It means that the special
orthogonal group SO(m + 1) of orthogonal matrices with determinant +1 acts as a group of isometries on
RP™ and it also acts on the left on S+ (m + 1,R), the set of nonnegative definite symmetric matrices with
real coefficients. This left action is given by W - A = WAWT forW € SO(m+1)and A € S;(m+1,R)
(see Bhattacharya and Patrangenaru (2005) [6]). Also

JW - [z]) =W - j([z]), VW € SO(m + 1), V[z] € RP™ (2.43)
DEFINITION 2.4.6. The VW embedding on (RP™)? is an equivariant embedding given by

gkt RP™)? — (S (m+ 1,R))?

e(y) = G([z1])s s 5 ([2g))s vy = ([11], - [2g]) (2.44)

where [x5] € RP™ for s = 1,...,q with ||| = 1 and x5 € R™! and j is the VW embedding on
RP™. This function embed the manifold (RP™)? in the Euclidean space E = ((S(m + 1,R))%,{{, )))
with scalar product and metric given by

q

((A,B)) =) Tr(A;B)
=1
dj(A,B) = Zq:TT((Ai — By)?) (2.45)
i=1

with A = (Ay,...,Aqg) and B = (By,. .., By). ( see Crane and Patrangenaru (2011) [7].)

For our Extrinsic analysis we will require a definition of the projection of the VW embedding of the projec-

tive shape space.

DEFINITION 2.4.7. Let F7 C (S4+(m + 1,R))? be the set of focal points of ji (RP™)?), the projection
Pj, : (S4(m+ 1,R))N\F? — ji, (RP™)9) is given by

Pj (A) = (Pi(A"), ..., Pi(AT)) = ji([mal, ..., [mq)) (2.46)

where for i = 1,...,q the projection P; : S;(m + 1, R)\F — j(RP™) assigns to each positive semi-
definite matrix A; with a highest eigenvalue of multiplicity 1, the matrix j([m;]), where m; is a unit eigen-
vector of A; corresponding to its largest eigenvalue. And F C Si(m + 1,R) is the set of focal points of
J(RP™). ( see Crane and Patrangenaru (2011) [7].)
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Now that we have properly, define an embedding jj, and its corresponding projection P;, we will introduce

the Extrinsic mean and sample mean on the projective shape space.

DEFINITION 2.4.8. Let Y = ([Xi],...,[X,]) with be a random object from a jj-nonfocal probability

measure Q on (RP™)% where ¢ = k — m — 2. The corresponding VW mean is given by

pi, = ()], 5 [g(4)]) (2.47)

Vs=1,.,q (As(a),vs(a)), a = 1,...,m + 1 are eigenvalues in increasing order and corresponding

eigenvectors of E(X (XS)T). ( see Crane and Patrangenaru (2011) [7].)

DEFINITION 2.4.9. Let {Y,}"_, be an i.i.d. random sample defined on (RP™)? from Veronese-Whitney-
nonfocal distribution Q. The corresponding sample mean extrinsic projective shape, in the multi-axial rep-

resentation, is given by

Yjen = ([91(4)]; -, [94(4)]) (2.48)

where for s = 1,...,q (ds(a),gs(a)), a=1,...,4 are the eigenvalues in increasing order and correspon-
n

1
ding eigenvectors of J; = — Z X;?(X;f)T. ( see Crane and Patrangenaru (2011) [7].)
n

r=1
2.4.3 Lie group structure of the 3D projective shape space
In this section we introduce a very useful feature of the 3D projective shape space under our usual projective
frame representation. Unlike in other dimensions, the 3D real projective space RP? has a Lie group struc-

ture. This additional property is important and will allows to perform useful binary operations we would not

generally have for most smooth manifolds. we now define this group structure on manifolds.

DEFINITION 2.4.10. A Lie group is a smooth manifold G that is also a group in the algebraic sense, with

the property the the multiplication map ©® and the inversion map i : G — G are both smooth. (see Lee

(2002) [18]

Note that under our spherical representation, RP3 is the quotient S3/{z ~ —z} and if z,y € S3(a group

of quaternions of norm one) then if follows that the multiplication

[p1] ® [p2] = [p1 - 2], forpi,p2 €SP (2.49)
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where (-) is the quaternion multiplication is a well defined Lie group multiplication on RP3. For more on
the quaternion multiplication please refer to Crane and Patrangenaru (2011) [7]. And for [p;] = [z1 : y1 :

21 : t1], © = 1,2 an explicit formula for our Lie group multiplication is given by

p1] ® [p2] = [(tiz2 — z1ta + Y122 — 2192) & (t1ye — yite + 2122 — T122)

(tize — z1te + 1y2 — y1x2) : (tite — 1172 — Y12 — 2122)] (2.50)

Also for [p] = [x : y : z : t] € RP3 with ||p|| = 1, its conjugate is [p] = [~z : —y : —z : ] € RP3, the
inverse map on RP3 is given by

[Pl =[], 2.51)

and the identity of this Lie group is 1gps = [0 : 0 : 0 : 1]. Recall that the projective shape space is
diffeomorphic to (RP3)4, (¢ = k — 5) . Therefore with this identification, PY% inherits a Lie group

structure from the group structure of RP3. The Lie group multiplication in (RP3)4 is given by
([pal; - [pal) @ ([1], - [pg]) = ([p1] © I4], -, [P] © [pG)) (2.52)
And the identity element of this group is given by
Lwpsye = ([0:0:0:1],...,[0:0:0:1]), (2.53)
and given p = ([p1], ..., [p4]) the inverse is
p' =p=([p---, [Pg)) (2.54)

( see Crane and Patrangenaru (2011) [7].)

2.5 Homogeneous spaces and two sample means tests for unmatched pairs

The benefits of an added Lie group structure have been exploited especially in hypothesis testing for two
sample means of matched pairs see Crane and Patrangenaru (2011) [7]. Recall that for a large sample of
observations from a matched pair (X, Y’) of random vectors in R, one may estimates the difference vector
D =Y — X to eliminate much of the influence of extraneous unit to unit variation without increasing the

dimensionality. Crane and Patrangenaru extended this technique to paired r.0.’s on an embedded Lie group
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that is not necessarily commutative. Assuming X and Y are paired r.0.’s on a Lie group (G, ®). The change
from X to Y was defined to be C = X! ® Y. And a test for no mean change from X to Y is one for the
null hypothesis
Ho:pj=1g

where 1g is the identity of G and p; is the extrinsic mean of C' with respect to the embedding j (see
Patrangenaru and Qiu (2014) [25] and Crane and Patrangenaru (2011) [7]). In Mathematical Statistics it
makes sense to consider the equality of means on a smooth object space M, with an action of a Lie group
G, only for those means that lie on the same orbit ( see Patrangenaru and Ellingson (2015) [21], Chapter 3),
which a good reason of considering smooth object spaces made of one orbit only.

For pairs of unmatched random objects X and Y on Lie groups we cannot use the new random object

C mentioned above. To circumvent this difficulties, we look to homogeneous spaces.

DEFINITION 2.5.1. (see Patrangenaru and Qiu (2014) [25])
A left action of a group G on a M, is a function o : G X M — M such that

a(lg,z) =z, Vo e M,
a(g,alh,z)) =al¢g©h,x), Vg € G, Vo € M (2.55)
DEFINITION 2.5.2 (Homogeneous space). (see Patrangenaru and Qiu (2014) [25])

Assume o : G X M — M is a left action of a group G on M and define the orbit G(x) of a point x € M
as the set {a(k, x),k € K}. Then M is a G- homogeneous space if there is a point x s.t. G(x) = M.

In the case M is a manifold, we assume in addition that (G, ®) is a Lie group and the action « is smooth. A
Lie group (G, ®) is automatically a G-homogeneous space, for the action &« = ©®. Examples of object spaces

that are homogeneous spaces:
e spaces of directions (M = S™, m = 1, 2), spaces of dihedral angles (M = (S1)¥),
e the spaces of shapes of planar k-ad’s (M = CP*~2. (see [16])

e spaces of shapes 2D contours (M = (P(H), H Hilbert space), spaces of cell filaments (M = RP? x
(0, 00) (see Huckemann [14].)

DEFINITION 2.5.3. (see Patrangenaru and Qiu (2014) [25])
M has a simply transitive Lie group G, if there is a Lie group action « : G x M — M, with the property

that given x € M, for any object y € M, there is a unique g € G such that o(g,z) = y.
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Let M be a G-homogeneous space, where M is an embedded manifold and (G, ®) a Lie group that acts
simply transitively on M via a smooth left action &« : G x M — M. Fora = 1,2, let Xy 1, -+, Xan,
be independent random samples defined on M, from a distribution (), with the extrinsic means 1 ;, f2,;
and with the corresponding extrinsic covariance matrices X1 j;, X2 j, where j : M — RY is the embedding.

Then, a two-sample hypothesis testing problem can be formulated as follows

Ho:pj = alpay,6) vs. Hyi:pj# a(pey, o),

for 6 € G. Now for a fixed object p1o ; the mapping o/% : G — M, o2 (g) = au2;,9), Vg € Gis

one-to-one, and we can now rewrite the hypothesis problem from above as follows

Hy: (a"3) (i) =6 vs. Hi:(a9) () # 6, (2.56)
(see Patrangenaru and Qiu (2014) [25]) We recall the following

THEOREM 2.5.1. (see Patrangenaru and Qiu (2014) [25])

Fora = 1,2, let X, 1, , Xan, identically independent distributed random objects (i.i.d.r.o.’s) from the
independent j,-nonfocal probability measures QQ, with finite extrinsic moments of order s, s < 4 on the m
dimensional manifold M on which the Lie group G acts simply transitively. Let n = ni + ng and assume
limy, 00 - — 7 € (0,1). Let  be an affine chart defined on an open neighborhood of 1g with p(1g) = Og,
and L the left translation by 6 € G. Then under Hy (2.56),

(i) The sequence of random vectors n*/? (¢ o Ly '(H(X1 g, Xo,p))) converges weakly to Ny, (0, X.1),

for some covariance matrix X j that depends linearly on the extrinsic covariance matrices Y1 g, 22 E.

(ii) If (i) holds and ¥ is positive definite, then the sequence
n (po Ly Y (H (X1 p, Xz,E)))T ;! (o Ly Y (H (X1 p, Xs,1))) converges weakly to x?2, distribu-

tion.

Furthermore, assuming that 3. is positive definite, given that 37 is a consistent estimator for ¥, the

asymptotic p-value for the hypothesis testing problem Hj) is given by p = P(T > tg) where
_ > > T o _ > >
ti=n (po Ly (H(X1,p Xop)) £5' (po Ly (H(X1,p, X2.5))) (2.57)

and T has a X72n distribution. (see Patrangenaru and Qiu (2014) [25] )

If the distributions are unknown and the samples are small an alternative nonparametric bootstrap technique
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(see [8]) may be used. If max(nj,ng) < the pulled sample covariance )y 7 1n 2.57 does not have an

m
2 9
inverse, and pivotal nonparametric bootstrap methodology can not be applied. In this case one can use
non pivotal bootstrap methodology for the two sample problem Hy which involves a bootstrap confidence

region.

THEOREM 2.5.2. (see Patrangenaru and Qiu (2014) [25])
Under hypothesis of Theorem 3.1(i), assume in addition, that for a = 1,2 the support of the distribution
of Xq,1 and the extrinsic mean |1, i are included in the domain of the chart ¢ and ¢(X, 1) has absolutely

continuous component and finite moments of sufficiently high order. Then the joint distribution of
V=n'?(po Ly (H(X1,p, Xo.5))) (2.58)
can be approximated by the bootstrap joint distribution of
V*=n'? (po Ly (H(X] g, X3 1)) (2.59)

with an error Op(nfl/ %), where, for a = 1,2 X; g are the extrinsic means of the bootstrap re samples

* _ . —
Xfaras Ta=1,...,nq. given Xo v, 7¢ = 1,...,n4.

COROLLARY 2.5.1. The large sample p-value for the hypothesis testing problem Hy (2.56) is given by
p = Pr(T > nVTS;V) where T has a x?2,) distribution and V is given by equation (2.58) and 3 is

consistent estimator of the extrinsic covariance matric of H (X 1L.E, )7(2’ E)-

When the sample size is small, we use Efron’s bootstrap , and the hypothesis problem in (2.56) can be solved

by using the following 100(1 — a))% bootstrap confidence region for ¢ o Lgl(H(,ul,j, 12.5))-

The concepts presented in sections 2.2 through 2.4 are essential to our statistical analysis in object spaces.
We will be able to take advantage of the asymptotic theory developed in section 2.3 (i.e CLT for extrinsic
sample means and confidence regions) to conduct hypothesis testing problems on manifolds. Recall from
section 2.4 that this space has a Lie group structure with the multiplication operation inherited from the
quaternion multiplication on S? C R*. Therefore a 3D object analysis based on landmarks can make use of
the recently developed nonparametric techniques for two sample tests on Lie groups (see [25, 21]). We em-
phasize that the reconstructed configuration of 3D landmarks obtained from pairs of non calibrated camera

images, is unique up to a projective transformation in 3D, as noticed in [23]; this allows to analyze without
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ambiguity the projective shapes of such configurations (see [23]). The developed statistical analysis is per-
formed for samples of pictures of faces, without making any distributional assumption for the corresponding

3D projective shapes of human facial surfaces.
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CHAPTER 3

TWO SAMPLE TEST FOR UNMATCHED PAIRS OF 3D
PROJECTIVE SHAPES

In this chapter I use the two sample hypothesis testing method for extrinsic means, to differentiate between
two 3D scenes of the same kind ( faces, flowers, etc...), within the framework of 3D projective shape analysis
as developed in [7, 21, 25], based on small samples of digital camera images. The analysis is conducted on
the space of 3D projective shapes of k-ads in general position PE’§ that contain a projective frame at given
landmarks labels, which is homeomorphic to M = (RP3)¥=5 (see Mardia and Patrangenaru [20]).

In section 3.1 I apply the theory presented in section 2.5 to conduct a two sample test for unmatched pairs
on (RP3)*=5 viewed as a Lie group. In section 3.2 T perform the statistical analysis for sets of pictures of
faces along with conveniently selected anatomical landmarks. I make no distributional assumptions for our
hypothesis testing methods . The data consist of three sets of images, one female face and two male faces.
In Section 3.3 I discuss the process involved in collecting the data sets via MATLAB and introduce a new
data collection tool named Agisoft which offers significant benefits and improve the speed and accuracy

involved in data collection.

3.1 Two sample test for VW means for unmatched pairs on (R P?)¢

For a statistical analysis of 3D projective shapes, we are lead into considering r.0.’s Y on (RP3)¢ that have a
VW-mean ( have an extrinsic mean w.r.t. the VW-embedding j;). And since M = (RP3)?, g = k —5has a
Lie group structure (see Chapter 2), and that a Lie group is a homogeneous manifold with a simply transitive
Lie group action, we can take advantage of the methodology introduced in the previous chapter. The large
sample distribution of the tangential component of the mean change between the extrinsic sample means of
two random objects on an embedded Lie group M can be found in [25]. The probability measure Py~ on
(RP3)4, associated with such a r.o. is said to be VW-nonfocal probability measure on (RP3)4. The VW-
mean of a VW-nonfocal probability measure Py, Y = ([X1],...,[X9]), (X5)TX*=1, Vs=1,...,q,
is given by

Wi, B = (11(4), -, 74(4)), (3.1)
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where (A\s(a),vs(a)), a = 1,2,3,4 are the eigenvalues in increasing order, and the corresponding unit
eigenvectors of the matrix E[X*(X*)T], respectively (see [23], [20]). In particular, given a random sample

of 3D projective shapes y1, . . ., yn, With y; = [z;], 27 ; = 1,V¥i = 1,.. ., n, their sample VW-mean is

Yjg = (91(4), - -, 94(4)), (3.2)

where (ds(a), gs(a)), a = 1,2,3,4 are the eigenvalues in increasing order, and the corresponding unit

eigenvectors of the matrix
n
1 Z T
n
i=1

The particular smooth Lie group action we will use in our analysis is & = ®, the Lie group multiplication
on (RP3)4, and if for simplicity we label the VW-means of the two populations by 11 g, pi2 g, the null

hypothesis in (2.56) can be expressed,

Hy: pip=poe Vvs. Hi: pip# poE (3.3)

where for a = 1,2, u, g are extrinsic means from VW distributions (), on (RP3)9. We can rewrite the

hypothesis in (4.1) as follows
Ho: pyp®pe=1gpsye vs. Hi: pyp® e # lwpsy (3.4)

We further define the smooth map H : M? — M by H(z1,72) = (a®)~!(x1). We now have (4.2)

expressed as follow that the expression found in the hypothesis above

Hy: H(pe,p2,p) = Lmpsya  vs. Hi: H(ui g, p2,e) # Lmpsy (3.5)

Fora = 1,2, let Y, 1,---,Y, , be independent random samples from VW distributions @), on (RP3)4
with the extrinsic means ji1 g, pt2 g and the corresponding extrinsic covariance matrices X1 g, Yo g. We are
led into characterizing the asymptotic behavior of Y{é ® Yl, E, Where Yl B, Y27 g are the sample extrinsic

mean estimators corresponding to the two random samples.

DEFINITION 3.1.1. The affine chart @4 defined on an open neighborhood U of 1(gpsys with 0q(U) C
(R®)4 and it is given by
(Pq([xl], ) [xq]) = (90([371])7 cee 790([379‘!]))' (3.6)

where  is an affine chart defined on an affine open neighborhood of 1y ps, given by p([(x!, 22, 23, 2*)T)) =

(ai z? ﬁ)
.1‘47$4’334 .
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Note that ¢, (1(R P3)q) = (03,...,03) in R3? From Patrangenaru et al.(2016)[26] we have the following

PROPOSITION 3.1.1. Fora = 1,2, let Y, 1, , Yy, identically independent distributed random ob-
jects (i.i.d.r.o.’s) from the independent ji-nonfocal probability measures (Q,. Let n = nq + ny and assume
limy, 00 - — 7 € (0, 1). Then under Hy in (3.4),
(i) The sequence of random vectors n'/? <<pq(172_b£ ® Y, E)> converges weakly to N3q(034,% 7, ), for
some covariance matrix X 5, that depends linearly on the extrinsic covariance matrices X1 g, X2 .
(ii) If (i) holds and X j, is positive definite, then the sequence
_ _ T _ _
n (goq (Y, p @Y7, E)) Z}kl (@q(ygié ® Y1, E)) converges weakly to ng distribution.
(iii) If (i) holds and assume in addition, that for a = 1,2 the support of the distribution of Y, 1 and the

extrinsic mean [, ; are included in the domain of the chart o, and ©4(Yq 1) has absolutely continuous

component and finite moments of sufficiently high order. Then the joint distribution of
D= 9061(572,_131 ® Y1,r)
can be approximated by the bootstrap joint distribution of
* Fx 1 %
D* = py(Y*5 p ® Y*1 p) (3.7)
with an error Op(n_l/ 2), where, fora = 1,2 Ya*, p are the extrinsic means of the bootstrap resamples
Y iras Ta=1,...,nq.8ivenYg r., 7o = 1,...,n4.
COROLLARY 3.1.1. Fora = 1,2, let Y1, ,Y,n, identically independent distributed random ob-
Jjects (i.i.d.r.0.’s) from the independent VW probability measures Q). Form random resamples with repetition
(Yo, Yo ) from (Yo, -+, Yan,), for a = 1,2. The corresponding approximate 100(1 — «)% boot-
strap confidence region for @51(9) = (s 1 @ p1p) is Ct = cp;l(Uc’;), where U’ € (R3)4 is the Carte-
sian product of 3q intervals at 100(1 — 3%)% confidence level for the components of 0 = pq(ji5 ]15 ® p1.E)-
This simultaneous confidence intervals yield a confidence region of at least 100(1 — )% level, of coverage

error O p(nfl/ 2). We reject our null hypothesis if 03¢ ¢ Uy, that is, if at least one of these intervals does

not contain 0.

3.2 Data set and hypothesis testing results

In this section we analyze the 3D projective mean shape changes to differentiate between faces (see Pa-
trangenaru et.al.(2016)[24]). We conduct two sample hypothesis testing on unmatched pairs (i.e different

sample sizes n1 # ns.) The analyzed data set consists of images of the faces shown below
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Figure 3.1: Faces used for analysis

For our landmark based analysis we first recover a 3D configuration of £ = 10 landmarks from each pairs
of uncalibrated pictures of the same face (see Ma et. 1.(2005)[19]). This will result, for the female face,in
8 projective shapes (3-D configurations of labeled points), for the first male we have 10 projective shapes
and finally for the last data set we have 11 projective shapes. The collections and reconstructions of all of

our landmark configurations were done in Matlab. The landmarks are shown in figure 3.2:

Figure 3.2: Landmark placements for all faces

For a given face, and a single set of landmarks {u1,...,u1p} the first five labeled points uy, ..., us are
used to construct a projective frame © = (@1, . . ., u5) where @; = [u} : ub : ub : 1]. Throughout the data
we use the same landmarks for our projective frame and they are, in increasing order; pronasale, right and

left Endocathion, Labiale Superius, left Crista Philtri. The resulting k — 5-tuple of projective coordinates

Pg,---,pl) € (RP3)> represents one observation used in our analysis. The resulting k — 5-tuple of
projective coordinates (p,...,pT,) € (RP?)5 represents one observation used in our analysis. In other
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word, the projective shape of the 3D 10-ad, is determined by the 5 projective coordinates of the remaining

landmarks of the reconstructed configurations.

3.2.1 2 sample test for facial data

Given two faces, we assume that the sets Y7 1,...,Y7,, and Ya1,...,Y5 ,, of 3D projective shapes recov-
ered from data sets consisting of 11 and ns pairs of images respectively are coming from a VW Q1 and Q-

distribution on (RP3)5. We statistically differentiate between faces if we reject the following null hypothesis

bl

Hy: Mf}; ® p2,E = Lrps)s
For our result we used the simultaneous confidence intervals mentioned in Corollary (3.1.1). We failed
to reject the null hypothesis if all of our confidence intervals contain the value 0.
Results for comparing Male faces:
For the two male faces with data sets of sizes n; = 10 and no = 11 we conduct our two sample hypothesis

testing and we get the following simultaneous intervals

Simultaneous confidence intervals for changes between the

2 mean projective shapes of the two faces landmarks 6 to 8
LM6 LM7 LMS8

x (—1.111498,0.805386) (—1.117512,1.099536) (—1.296547,0.966296)
y (—1.215218,0.710931) (—1.355167,1.336021) (—0.635282,1.372627)
z  (—1.161234,1.150762) (—1.432217,1.349541) (—1.394141,1.349442)

Simultaneous confidence intervals for changes between the

2 mean projective shapes of the two faces landmarks 9 and 10
LM9 LM10

x  (0.952164,0.996354)  (—0.962541, 1.005917)
y (—0.760124,1.129782) (—1.070631,0.982195)
z  (—0.817503,1.319117) (—1.319374, 1.089272)

Another good set of visual tools we use in our analysis are the Bootstrap marginals boxes which can be
found in figure 3.3.

We notice that one of the simultaneous confidence intervals for landmark 9, corresponding to the right Exo-
canthion, does not contain 0. We then reject the null hypothesis, showing that there is significant projective
shape change between the two male faces. And for the bootstrap marginal boxes we notice that the first
three landmarks have a pretty dense concentration around the center, indicating no significant mean change

which is not the case for the last two boxes.
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Figure 3.3: Bootstrap projective shape marginals for male face data

Result for cross gender comparison:

For samples of sizes n; = 11 (male) and ny = 8 (female) conduct the following null hypothesis Hj :

ul_&l ® p2,8 = 1(rps)s, and in the figure below 3.4 we indicate the two faces being analyzed.

Figure 3.4: Faces used in cross gender analysis

We then get the following bootstrap marginals boxes (figure 3.5) for our cross gender analysis along with
the simultaneous confidence intervals.

Figure 3.5: Bootstrap projective shape marginals for cross gender data

Simultaneous confidence intervals for cross gender landmarks 6 to 8
LM6 LM7 LMS8
x  (—1.251984,1.202986) (—1.228628,1.234229) (—1.273092,1.332798)
y (—0.633834,0.902621) (—0.928523,0.995304) (—0.226587,0.865510)
z (—0.231190,0.432009) (—0.684483,1.045302) (—0.590623,1.132418)

Simultaneous confidence intervals for cross gender landmarks 9 and 10
LM9 LM10

x  (0.998446,1.028374)  (—0.988191, —0.931250)

y (—0.702335,0.540613)  (—1.162803,1.008259)

z (—1.057821,0.849069) (—0.118635,0.969739)
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The landmarks 9 and 10 corresponding to the right and left Exocanthion have intervals not containing 0. We
reject the null hypothesis, and conclude that there is a significant projective shape change between the two

faces.
Results for cross validation:

We separate the original sample into two smaller data sets of sizes n; = 5 and ng = 6. They are displayed

Figure 3.6: Cross validation samples

in Figs ( 3.6).

The bootstrap axial marginals (Fig 3.7) and simultaneous confidence regions for cross validation are given

below.

Simultaneous confidence interval for cross validation face 2 for landmarks 6 to 8
LM6 LM7 LMS
x (—17.496785,3.552070) (—4.027879,4.860970) (—1.990796,7.497709)
y (—10.967285,4.340129) (—3.776026,9.830274) (—7.558584,0.865119)
z  (—2.724184,13.093615) (—3.006049,5.891478) (—0.698745,4.293201)

Simultaneous confidence intervals for cross validation face2 for landmarks 9 and 10
LMO9 LMI10

x  (—2.459882,1.230096) (—3.264292,1.036499)

y (—1.631839,0.983147) (—1.387133,2.942318)

z (—1.451487,1.196335) (—0.916768,1.658124)

Figure 3.7: Bootstrap marginals for crossvalidation of male face 2
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Figure 3.8: Landmark placements in Matlab

All the simultaneous intervals (affine coordinates) contain 0. We fail to reject the null hypothesis; there no
statistically significant mean projective shape change. Furthermore, the bootstrap marginals all show values

that are concentrated around Os.

3.3 Landmark coordinates from ideal non calibrated camera images

Our data sets are built from sets of digital camera images of faces and other objects. The 3D face analysis
we are conducting is a landmark based analysis. Our landmarks are composed of reconstructed 3D points

in a particular configuration and the collection of our landmarks in Matlab is done in a few stages.

3.3.1 Matlab data set

For any one reconstruction of a particular 3D object (faces, flowers, leaves, etc...) two pictures from two
different angles are needed. Once the pair of pictures are stored and saved in the an appropriate window
within the Matlab platform, the digital images are loaded using the imread command in Matlab. The
landmarks are manually selected using the function cpselect(). We illustrate a set of landmarks in Fig 3.8.
Generally, a finite configuration of eight or more points in general position in 3D can be reconstructed,
by using the fundamental matrix of the coordinates of the images of these points provided by two ideal
non calibrated digital camera views. We assign the same landmarks throughout our whole data sample; the
images from below show the placement of our matching points.
By this method we usually get very reliable 3D coordinates for our landmarks. However, one drawback
associated with this technique is that it is hard to visualize the reconstructed 3D configurations. In fact, to
get a descent visualization of our reconstruction may require the collection of a large amount of landmarks,

which can be time consuming.
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To illustrate this particular situation we have the following 3D reconstruction involving 80 landmarks placed

on a pair of pictures of an oak leaf and resulting in the following 3D images without color and/or texture.(see

Fig 3.9)

5
=5 |

e

I /

Figure 3.9: Oak leaf reconstruction with midriff

3.3.2 Advanced 3D data collection methods from digital camera outputs

Recently for our data analysis we started using a professional version of Agisoft, which extracts the 3D
image of a surface from two or more non-calibrated digital camera views, based on RGB texture matching
followed by a 3D reconstruction algorithm. This software gives us a much better visualization of our recon-
structed data set without relying on landmark collection and the use of an eight point algorithm to estimate
the fundamental matrix (see Ma et al.(2005)[19]).

Although the reconstruction could be done with just two uncalibrated camera images, we get a better res-
olution and complete reconstruction of the surface of a head or face, by increasing the number of im-
ages of the same individual. A training data set of fifteen surfaces of faces including texture was col-
lected from digital images (see ani.stat.fsu.edu/~vic/Davids-PhDs). An additional sample of three sam-
ples of 3D faces was collected along with facial landmark coordinates; this will be used in Chapter 6 (see
ani.stat.fsu.edu/~vic/Davids-PhDs/MANOVA) We illustrate this fact we use set of pictures in Fig. 3.10.
After the reconstruction is done, we may visualize our result and also indicate the relative camera placement

in Fig. 3.11. The Agisoft output then gives us the 3D coordinates of our ten landmarks in Figs. 3.12-3.13.

In this chapter we took advantage of the fact the M = (RP3)? being a Lie group acts simply transitively
on itself with the action being the left multiplication ®. We can then use the recent work on asymptotic
behavior on homogeneous space to have an expression of the convergence of (o Ly (H (X1, 5, X2.5))) -

This allows us to perform hypothesis testing on random samples of different sizes defined on M. The theory
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Figure 3.10: Pictures used for 3D reconstruction
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Figure 3.11: 3D face reconstruction with camera placement
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Figure 3.12: Landmark placement and coordinates
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Figure 3.13: Pictures for 3D reconstructions

involves applying a Cramer’s delta method for functions between manifolds that will depend heavily on the
choice of a convenient chart . The expression of the covariance matrix X ; we obtain depends linearly on
the extrinsic covariance matrices Y1 g, 22 g.. Recall that an extrinsic matrix X is always defined with
respect to a basis f1(ug), ..., fm(ug) of local frame field referred to as orthoframe (see definition 2.3.2).
In the next chapter we will work on developing an asymptotic theory that builds on the work in [25] but is
not dependent on the choice of a chart. The work in this chapter led to a couple of publications “ 3D face
analysis from digital camera images* (see [26]) and “Projective shape analysis of contours and finite 3D

configurations from digital camera images “(see [24]).

46



CHAPTER 4

A TWO SAMPLE TEST FOR MEAN CHANGE BASED ON A
DELTA METHOD ON MANIFOLDS

I introduce a new method of two sample tests for 3D mean projective shapes. This method builds upon the
various results of the two sample hypothesis testing methods, as developed in Patrangenaru et al. (2010)[23],
Crane and Patrangenaru et al.(2011) [7], and Patrangenaru et al.(2014) [25].

In section 4.1 I start by expressing a version of the Cramer’s delta method for a function F' : M; — Mo
that depends on a compositions of functions involving the embeddings of both the domain and co domain
space. In section 4.2 I will use the results of our new version of the Cramer’s delta method to construct
an asymptotic behavior for piy }E © p1,r with explicit definition of the corresponding extrinsic covariance
matrix.The result in this section can also be applied to any smoth function between manifolds. In the last

section I express the some asymptotic behaviors for the space RP3.

4.1 Cramer’s delta method for data on manifolds

Recall that (G, ®), a Lie group is a manifold with a group structure and for which the multiplication map

1

(g,h) = g ® h and the inverse map g — ¢~ are smooth as maps between manifolds.

We consider the following null hypothesis

Hy: pip=p2e®46 4.1)

Hy: pgp# pop®©9

Since fora = 1,2, X,1,..., X4, 1i.d. random objects on G we can rewrite the hypothesis in (4.1) as

follows

Hy : /1'2_115 O upip=0vs Hi: ,ug_,lg Ouip #9 4.2)

For that we will need to know the asymptotic behavior of X, 1, ® X1 s, where X1 , Xo  are the sample
extrinsic mean estimators corresponding to the two random samples. To address this problem, we are first

considering an extension of Cramer’s delta method, in the context of manifold valued data. An initial
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extension can be found in Patrangenaru et al.(2014)[25]. Here we are interested in a method which applies to
embeddings j, : M, — RMe a =1,2.Let X1,..., X, bei.id. random objects on (M,, p;,) and assume
wE, 2 are respectively the extrinsic mean, and extrinsic covariance matrix of X; (see Bhattacharya and
Patrangenaru (2005)). Let F C R be the set of j;-focal points then Pj, is the corresponding projection
with Pj, : F¢ — ji(My) C RN,

THEOREM 4.1.1. (Delta method for embedded manifolds). Assume F : M1 — My is a differentiable
function between manifolds, and let ( l(a), ey fr(r?(z) be orthonormal bases in T, ,(M,), where ji1 p =
pe,p2.r = F(pg). For a = 1,2, assume dimM, = m, with j1 and jy as previously defined. Let

X1,..., X, be a sequence of random objects on My such that

n'? tang, ) (1(Xn) = j1(pe)) —a N, (0, 2).

Then

n!? tan, (p(upy) (G2 (F(Xn)) = j2 (F(ur))) —+a Ny (0,5, )

where Ef;E = dF Yg (dF)" with dF given by

dF = [(dF)w) = |duFia(ep) - éa(Fi2(p)|, fora=1,...,me; andb=1,...,mj.
where jo o F ojl_1 oPj = 13’12.

Proof. Now recall from Bhattacharya and Patrangenaru (2005)[6] that

e1 (P, ()"
Y= ATE#A = Xy [el(Pj (1)) T Emy (Pj (:U’))] (4.3)
€my (P] (:U’))T

where ¥, = (D, P},) & (D, P;,)" and ¥ is the covariance matrix of j1(X1) with respect to the standard

basis ey, ..., ey, of RN, By the CLT, we have
n'2 (j1(Xn) = j1(1B)) —a Nn, (0,5).
Let us define the following map F' = jy o F o j !; this is a map from j; (M}) — ja(My) and acts as follows

F(ji(x)) = F(P,(1(2))) = j2 (F(x)) Vo € M.
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Note that F' o P;, is a smooth function from F¢ C RV to jo(My) € RN2. We can now apply the Cramer’s

delta method and get

n? (2 (F(Xn)) — j2 (F(1p))) —a Nny (0,55,)

where 33j, = (Dy,(F 0 P;,)) 2 (Du(F o P;,))" = (Dle(u)F) Eu (Dpy, (u)

Now assume that V5 is an open neighborhood of F(pug) in Mg, and Vi = F~1(V3). Assume Uy C RM2, is
an open subset, such that Uy N jo(M2) = j(V2), and po — (é1(p2), - . ., €N, (p2)) is an orthonormal frame
field on Uy, which is adapted to the embedding j». Define the local frame field y — (f2,1(v)), - -, f2,m2(y))
on V5, such that

vy S Vv27 és(jQ(y)) = dyj2(f2,8(y))> s = 1a <., M2,

Now let ( €1(F(p1)),...,ény(F(p1)) ) be the value of this adapted frame field at a point F'(p;) on

j2(Va) around j2 o F(pug) and for p; € j1(My) C RN, Note that d,(F o Pj,)(ep) € TF(Pj (M)jQ(MQ)’
1

while (eq, ..., en,) is the standard basis in R,
To ease notation we let F o P = Fm and Flg : F¢ = ja(Ms), where F€ represents ji-nonfocal set,

and we now have:

ma2

duFra(er) = Y | (duFra(er)) - o Fra() | ea(Fra(n)) (44)

a=1

And, for e, € RM withb =1,..., Ny, we have

%, = (Dp, F) Su (Dpyn F)"

Sia = || D duFia(es) - €alfo(F(1p))ea(ja(F(1s)) X
La=1 4b=1,...N1
L - ] -
> duFis(en) - al(ja(F(1p)Ea(ia(F(1p))
| La=1 4b=1,..,N1 |

Note that 33;, € M (N, Na, R), while £, € M(Ny, Ny, R).
If we set v = jo(F(ug)), then the tangential component tan(v) of v € RN = Ty J2(Mz2) @

(TFIQ(N)jQ(Mg))J-, w.r.t the basis e, (EF12(p)) € T, () J2(M2) has the following asymptotic behavior
tanj2(F(HE)) (F12(.71 (XTLl) - FIQ(M)) _>d Nm2 (Oﬂ E:]FQ‘,E)

tan (J2 (F(Xn,)) = j2 (F(1E))) —a N (0,25, ) (4.5)

J2(F(pg))
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with

é1(Fia(w)" i i )
ween= | || [S dFale) GFa)aFam)], |
Ems (Fi2(w))" ;
(duFH(el)) ce1(Fia(p) .. (duﬁm(em)) - &1(Fra(w))
B = (4.6)
(duFreen)) - e (Fra()) o (duFralen,)) - eony (Fra(p)
Note that,AT” A = Iy, and
»F p=BAATY, AATBT = (BA) X5 (BA)", and
(duFraen)) - er(Pra(u) o (duFhalem)) - ea(Fra(n))
BA— : 4.7)
(duFra(en)) - emy(Pra)) o (duFhalem)) - ems (Fra(p)
and letting B A = dF we have our desired result. O

4.2 Asymptotic behavior for Lie group

Fora =1,2,let X, 1, -+, X, p, be independent random samples defined on G, a Lie group, from a distri-
bution (), with the extrinsic means (i1 g, p12, g and corresponding extrinsic covariance matrices X1 g, X2 g.

Let j : G — RY be an embedding. We are interested in the asymptotic behavior of
e P
a1 o ) (1Ko © X1.8) = iz © 1.6))

Recall that the map (g1,92) — g1 ® go, for g1,g2 € G is a smooth map from G x G — G. Theorem
4.2.1 below, focuses on a more general case involving manifolds M and A along with their corresponding

embedding j; : M — R™ and j, : NV — R™ and corresponding chord distances pj, and pj, .
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THEOREM 4.2.1. Let M and N be respectively, m-dimensional and n-dimensional smooth manifolds
with embeddings j1 : M — RNV and jo : N — RN2 Let G : M x M — N be a smooth function between
manifolds. For a = 1,2 let fl(a), e ,féf) be orthonormal basis in T),, ,(M) where i, are extrinsic
means of j1-nonfocal probability distribution QQ, on M with corresponding extrinsic covariance matrices

Ya,E and X 4 i are their respective extrinsic sample means.

(i) Letn = ny +ng, if ©+ — T as ng — oo, and for a = 1,2 we have the following asymptotic behavior,

. I . L
n(11/2 tanjl(,u,a,E) (jl(Xa,E) - ]1(NQ,E)) — Nm(oa Za,E)
Then

.(2) v~ ~ .(2 L 2
n'/? tan D (1 psin) (]§ (X1, X25) — i )(Ml,E,,uz,E)) - sz(072§1?E), (4.8)
1
@ _ (=X, Om @) . .
where ¥ = ( 0, 11,,22,}3) and j;”' : M x M — j1(M) x j1(M).

(ii) Let (g1, -+ , gn) be an orthonormal basis in Ty N, if the result in (i) holds we have

NI,E7M2,E)

Y2 tan, o g ) (G2 (C(X e, X28)) — 2 (Gluie, po,8)) = Nu(0,55 5)  (49)

with
$6 o = 2 (AGW) By p(dGO)T + g L (dG®)5, (dGA)T (4.10)
£ ™ -

and dGE;R = diy s G (@) - 8a(Gprr, o) dGY) = dyy yGleny ) - €(Glur,piz) for a = 1,.m
andb=1,...m.And G = QoGo]1 Y(P;) x g7 H(Py).

Proof. For part (i), it follows from Bhattacharya and Patrangenaru (2005) [6] that
n/ (P G(Xa)) = Pi(11a) ) —a Ny (0,5, (.11

where, fora = 1,25, = (D, Pj,) Sq (D, Pj,)T and X, is the covariance matrix for the random vector
J1(Xqa1) € ji(M). And the projection P;, : F¢ — j1(M) where F is the set of j;-focal points. Since

ny/m — mas ny — oo it then follows that

w2 (B % Py GOX00), (X)) = Piy X Py (a1, 12) ) —a Now, (0,57) @.12)

1
. > 0 . .
with ¥* = (ﬂ() ey ]\% ) since the samples are independents.
Ny 1—m 12

Recall that from Bhattacharya and Patrangenaru (2005) [6] , that for a = 1,2 X, g are the extrinsic

covariance matrices of the j-nonfocal distributions @), of X, w.r.t. ( fl(a) (Ha,E),---» f,(# ) (ia,E)) the special
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orthonormal frame fields around i, g. For each of these local frame fields there is a corresponding adapted
frame field (ega) (P, (tta))s - - -5 eg\c;l) (Pj, (tta)) around P, (ftq) = j1(tta,r) (for a definition see section (2.2)).
Now from the two local frame fields we have above, we can construct the following local frame field in

M x M around the point (¢1 g, p2.E);

(fi(z1,22), .., (21, 22), g1 (21, 22), - . -, fom (21, 22)]

(A @0.¢) s (£0 @), @) (s f@)) s (G, 1P )] @13

where ((x) is the zero section of T,U with U € M and U contains p, g fora = 1, 2.

For ease of notation we let j be the embedding j = j§2) M X M = j1(M) x j1(M) then we get, for

the local frame field in equation (4.13) on an open subset of M x M containing (u1, g, f12,E), the following

vectors in RV x RM

[dﬂl,E7#2,Ej<f1 (xh xQ))? s 7dl‘1,E7M2,Ej(fm(x17 xQ))? dNI,E:HZ,Ej<fm+1(x17 .732)), EER) dul,E,MQ,Ej(fQW(xh 132))]

which is expressed in more details as follow;

|:(dN1,Ej1( 1(1) ($1>)7 dM2,Ej1(C(x2))) P (dm,Ejl (f?gzl)(xl))a dMQ,Ejl (4(1'2))) ’
(s £ C@)) dy pir (A2 @2))) o (s i (C@1)), s et (D)) | 1)

where d,,, ,j1(C(24)) is the zero section of T}, (71 (U) which corresponds to the zero vector in R!.
It follows that the expression in (4.14) represents a set of orthonormal vectors in RM x R™1 and they are

represented below as follow;

g ot (1 @) | it (5P @0)| Ny pit (B @) | Ony Ony
Oy, ’ 0N, ’ 0N, U it (A2 @2)) |77 |y it (£ (2)

For é1, éa, . .., éan, be the canonical basis of RNt x R let (é1(p1,p2), é2(p1,D2), - - -, éan, (p1,p2)) be a

local frame field on an open neighborhood U C Rt containing (j1(111,), j1 (112,£)) such that ¥ (zy, z2) €
i)

er(J(x1,72)) = dpuy pous 5 (fr(w1,22)), forr=1,...,m (4.15)
and

eny+r(J(21,72)) = dyy popo 53 (frnir (21, 22)), forr =,...;m (4.16)
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Note that these vectors are orthonormal to each other by results of equation (4.14). Since the other elements
of the local frame field (é1(p1,p2),€2(p1,p2),---,€2n, (p1,p2)) can be orthogonalized and normalized,
we may now assume that (é1(p1,p2), é2(p1,p2), - - ., éan, (p1,p2)) is an orthonormal frame field with ele-
ments ranging from 1 to m and from N; + 1 to N1 + m defined as in (4.15) and (4.16). It then follows
that for p = (p1,p2), (€1(p), é2(p), - - -, €an, (p)) is an adapted frame field around (j1(u1,k), j1(p2,E)) =
(Py, (1), Py (12)) = Py(su1, piz) = Py(j1). The vectors

e1(Py(72)): e2(Py()); - em(P5 (1)), 41 (Py())s - €3y (P (1)) are represented below as follow:

1 1 1
e (Pul))| | [e" PG| {ew (P | O O
ON1 0N1 ONl €1 (PJI (MQ)) €m (le(/@))'
4.17)
Then
d#l;ﬂzpj(éb) = (d/llpji(eb)?o]\h) € TPj(ul,ug)j(MvM)7 for b=1,---, N
and

dlil,MQPj(éNl-H)) = (ONUdHQJDjl (eb)) € TPj(yl,ug)j(M)M)v for b - ]-7 te )Nl

are linear combinations of é;(P;(f1)), é2(Pj(f1)), ..., ém(Pi(2)), eny41(Pi (1)), - - s eny+m(Pj(11))
Note that

(dulpjl(eb)7ON1) ’ éa(Pj(:a)) =0
fora=m+1,--- ,2N;jandb=1,---,m

(O, dyuy Pjy (€0)) - €a(Pj(f2)) = 0

a=Ny+m+1,--- ,2Nyanda=1,....Nyandb=1,---,m

It then follow that the tangential component of (P] (1(X1,1),4(X21)) — Pj(pa, m)) € R?V1 with re-

spect to the basis é1(P;(f1)), e2(Pj(f1)), - ., ém(P;(t)), ény+1(Pj([1)), - - - s éNy+m (Pj(f)) has the follow-

ing asymptotic behavior;

nt/? tanp, () <Pj(j(X1,1),j(X2,1)) - Pj(ﬂla/@)) —d sz(Ozm,Ef?E), (4.18)

where

2 *
2 = [AQ]Ts* 4®
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where A is a 2N x 2m matrix given by;

D(P(m) o DPm) | 0w e Oy
AP = T - = | —= —— —— (4.19)

O, On, | P (Pi(pa)) - e (P (n2))

And we have

(4.20)

For part (ii), we will rely on colorblue Theorem (4.1.1) with fi(x1,x2),..., fom(z1, z2) defined in (4.13),
as our orthonormal basis in T(,,, , ., E)(Mz) and its corresponding embedding is j : M? — RZVi. We

will also let (g1, - -, gn) be an orthonormal basis in Ty, ;s ) (N) With embedding ja : N — R™N2 and

(€1(G(u1,p2))s -+ 5 €n(G(u1, p2))) is adapted to the embedding j, on A and is such that;
Es(G 1, p2)) = dyja(gs), withy = G(p1,p, po,p), and s = 1, ..n, with G = joGojy ' (P;,)xj7 ' (P},)
With our result in part (i) we now appeal to the Theorem and we get the following asymptotic behavior;
nM2 tan, G ps ) (2 (G(X 1,8, X2.8)) — j2 (G2, 112,8))) £ Nu(0, D)
and 2§ = (B*A®) 212 (B*A@)T with B*A® = [BM Ay | B® Ay] and for
G =j2oGoji (Py) x i (Py) : F < F* = jo(N)

where F°¢ is the set of jij-nonfocal points. Let éy,...,éan, be the canonical basis of R2M1 And for

é1(p2), ... €n(p2), for pa € ja(Va).

o [en) ac@n - (b))
C (4Ge)) - 20lGl) . (duCen)) - (Gl
o (466 (x10)) - 2alG) - (daGlemm)) - En(G@) o



Letting dG1) = B A} and dG® = B A, we have

1
28 5= (dGM) 2 p(dGT + :

1
p — (dGP)Sy g (dGHT (4.22)

O]

DEFINITION 4.2.1. The matrix EjGZ 1 given in (4.22) is the extrinsic covariance matrix of the js-nonfocal
distribution Q2 (of G(X1,1,X2,1)) w.rt the orthonormal basis g1(G(uE1, bE2)), - - 9n(G(LEL, LE2))
written in term of the extrinsic covariance matrices X1 g and Yo g of X1,1 and X 1 respectively and where

fora =1,23%, g is expressed w.r.t the orthonormal basis fl(a) (Ha,E); - - - ,fr(r?) (Ha,E)-

THEOREM 4.2.2. For a = 1,2, let X, 1, -+, Xqn, be independent random samples defined on G, an
m-dimensional Lie group, from a distribution )4, with the extrinsic means 11 g, [t2,r and corresponding
extrinsic covariance matrices Y1 g, %2 g and respective extrinsic sample mean Yl, E and Y27 E. Let 5 :
G — RY be an embedding on G and for a = 1,2 let fl(a), e ,f}ﬁl) be orthonormal basis in T, ,(G).
Furthermore for n = ny + no, if “- — m as ny — oc. Let g1, -+ ,gm be an orthonormal basis in
Tu

L om . (G) we have the following
2, ,

w1 ~ Y-
n'/? BAI (1 6y ) (J(X2,E ©X1p) — g p© MLE)) —d N (O, ) (4.23)
were H : G X G — G and is given by H(Y;}E,YLE) = Y;}; ® X1 g, then we have,

1 1
Sl = = (dHW) 2 n(dHD)T + I—(dH(”)ELE(dH(?))T 4.24)

7T —

where

where H=joHoj '(io P2) x j"l(Pj) : FCx FC— j(M).

Proof. Recall that for X1 1,---, X1, independent random samples defined on G we have the following

asymptotic behavior
tans, <§(Y1E) - j(ﬂlE)) —d Nin(Om, £1,E) (4.25)

and for the other independent random samples, Xo1,--- , X2,, we have, after applying Theorem (4.1.1),
the following asymptotic behavior;

. -1 — L
tanj.(“;%) (](XQ,E) - J(/Jz,)lnj)) —d Nen (O, X5 ) (4.26)
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bp=(dl) Sop (dI)"
and

(dusto Pi(er)) - E1(i0 Pi(p2)) - (duylo Pilem)) - é(o P(u2))
dI = :
(dusto Pi(er)) - Em(To Pi(p2)) - (duylo Pylem)) - ém(i 0 Py(pa))

1 — 7 and the new covariance matrix

Not that for @ = 1,2 ju, is the mean of j(Q,) and where j o 10 j~
¥4 i 1s the extrinsic covariance matrix with respect to the local frame field (f7, ...., f;,,) defined on W5 € G.
Note that W5 is an open neighborhood of ¢(jia ) = fi5 1, and Vo = ¢~1(W5) is the open neighborhood
of yio p on which the local frame field ( f1(2), ey 7(3 )) is defined. Furthermore, for points p; € j’(Vl), and

Py € j(Vg), with Z(p2) € j’(Wg), we have

egl)(pl% S 765\11)(1?1)
P (@(p2)), - e (Tp2))

respectively the adapted frame field around j (1 ) and j’(,u?— }E)

We then get the following combined asymptotic behavior;

A -1 < A _ L 2
n'/? bans) (1 1y o) (](2)<X2,E‘7X1,E) - 3(2)(M2,}3=M17E)) £ Nom(0,55)

1y
2 ;2 O
where E%) :< Oi’E 11 7;1 E)
721,

Here, Zg) is the extrinsic covariance matrix with respect to the local frame field f1(y2,x1), - , fom(y2, 1)
around (M;,}EvNLE) € G x G. And (é1(i(p2),p1), é2(2(p2),p1), - - -, éan(Z(p2),p1)) is the adapted frame
field around (j (5 ), 7 (141,))- And now for P; = ioP; withéy, ..., €y, ..., €2y the canonical basis in R2N

we have,

iz P % P5(0) = (dpy 1 © Py (e0), On) = (d,,-1 5 (£ (112)), O) € ijexpj.(um)j@)(g,g),

and

Qi P4 % Py(eny10) = (0N, dyu Py(€0)) € Tpixp, (uanyJ® (M, M), for b=1,-- N
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Andey, b=1,---, N represent the canonical basis for R™V. These tangent vectors in Tp: . p. (42 m)ﬁm (M, M)
3o

are linear combinations of the vectors

e1(Pt x Py(aze 1)), - (P % Py(piz ). én41(P x Pi(jaz i), v (P x Pz, 1))

Now we may use the results from part (i) of Theorem (4.2.1). Let g1, - - , g, be an orthonormal basis in
Tu;iGul,E (G) and a local frame field &, (H (1)), -- ,én(H (/1)) adapted to the embedding j with

éS(H(ﬂ)> - dl‘«;};@,u«l,E'](gS% s = 17 e,

We have the following asymptotic behavior,

A1 < Y B
n'/? BN (ot ) (J(Xz,E ©X1p) — g p© Ml,E)) —d N (O, S (4.27)
s = 1 (dHM) 24 L(dHT + %(dH@))zLE(dH@))T (4.28)
™ ’ —

And for H =jo Hoj~(io P;) x j=H(P;) : F° x F¢ = j(M).
) = (4l (@) - 2l (i)))

= (dﬂH(éNler) : éa( £ (:&’))) ’ fOT a,b=1,...m

an® = (an)

)

aH® = (an)

a,

Recall the following hypothesis testing problem,

Hy : Mi};QMl,E =0 wvs. Hy : Mg_};@/ﬂ,E #0
we get the following corollary.

COROLLARY 4.2.1. Under the assumptions of Theorem 4.2.2 and also assuming that j(X, 1) for a =
1,2 have finite second order moments and the extrinsic covariance matrices Y, g are nonsingular, then
for n = ny + ng large enough the sample extrinsic covariance matrices S, g, are nonsingular (with

probability converging to one) and

(a) The statistics

_ (-1 ~ . L
nll S tans) (7 (Foe © Xap) = i(9) 12 543 (4.29)
—1/2 . (~—1 ~ . L
nll S tan, oo (5 (Kop © Xap) —50) 12 5 G (430)
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(b) and a confidence region for /12_,}3 © p1,E of asymptotic level 1 — « is given by
()Ciia = j~} (Una),
where Uﬁg ={vejG): n||S:é/2 tan, (j (Y;}E ®Y27E> - y) % < ng,l—oz}‘
Another such confidence region can also be given by
(u)Dﬁ[g = j_l(VnL’g) where
Vil = {v €30 nllS 4 tany s o (5 (Kap @ Xap) —v) 2 <0310}

where S, ;7 = L (dH") Gy p(dHM)T + L (aHP)Gp(dHE)T and

Fora,b=1,..,mand %; = (j(XQ),j(Xl))

4.3 3D real projective space RP3

For [X,], || X,|| =1, » = 1,...,n, arandom sample from a VW-nonfocal probability measure () on RP3 ,
let i be the VW mean and [X ] its VW sample mean with the corresponding extrinsic covariance matrix

Y. We have the following asymptotic behavior

tani, ) (3K 6] ™) = 315" —a Non(Om, T)

where 34, = (dI) X (dI)T and dI,p = (duio Pj(ep)) - é(i 0 Pj(p)) a,b=1,2,3. And ¢ is the inverse
map of the Lie group RP3.

PROPOSITION 4.3.1. Assume [X,], || X.|| =1, r = 1,...,n, is a random sample from a VW-nonfocal
probability measure Q on G = RP3 a 3-dimensional Lie group. Also let v : RP3 — RP3 be the inverse
map on that manifold. The sample covariance matrix G'(j, X), which is the consistent estimator of X,

has entries given by;
GG, X)ap =1 (14— na) > (1 — 1) 2 X Z ma - Xp) (my - X)) (mag - X;.)? (4.31)

where 1g, a = 1, .., 4 are eigenvalues of K = n~t Zle X,,X,T in increasing order and mg = 1, ..., 4, are

corresponding linearly independent unit eigenvectors.

58



Proof. Note that since j([X]) is a consistent estimator of x the mean of j([X;]) € S(4,R). Also for the
orthonormal frame field (e1 (Pj(u)), e2(P;(11)), e3(P;(1))) on a subset of RP3 with P;(u) = j(X ) we
have that for a = 1,2,3, e,(P;(j([X])) is a consistent estimator of e,(P;(x)). Similarly, drxp Piis a
consistent estimator of d, P; .

For the orthonormal frame field (€1 (2o P;(u)), é2(Zo Pj(1)), €3(io P;(p))) we also have the corresponding
consistent estimator (é1(Z o Pj(j([X]))),é2(¢ o Pj(5([X]))),€3(¢ o Pj(§([X])))). And d,i o P; has the

following consistent estimator dmb o P;

Now recall that

4 = (dI) Xg (dI)T

(dI>a,b = dHZO Pj(eb) ' éa(zo Pj(:u))

for a,b = 1,2,3. And X is the extrinsic covariance matrix. Let j([Xg]) = P;(j([X])) then we would

like to first investigate the case for which j([X]) = D be a diagonal matrix. If this matrix is diagonal we get

[ma] = [ea] = [X g] and we get the consistent estimator of ¥z denoted G (7, X) and with entries given by
Gu(j, X)ab=n"" (1 —na) " (na —m) "D XEX(X)? (4.32)

where 71,, a = 1,..,4 are eigenvalues of K = n~! Yoy X, X" in increasing order and m, = 1,...,4,
are corresponding linearly independent unit eigenvectors. We can now express our consistent estimator

G%(j, X) as follow
G5, X) = (dy) Ge(j, X) (dp)"

where d) is a matrix with entries

dipap = dpi o Pj(ey) - €q(T 0 Pj(D))

for a,b = 1,2,3. S(4,R) has the orthonormal basis F’, b < a, where, for a < b, the matrix F° has all
entries zeros except for those in the positions (a, b), (b, a) that are equal to 2~1/2; also F = j([e,]). Recall

from proposition 4.2 in Battacharya and Patrangenaru 2005, that we have

dpPj(F?) =0,Yb<a<4

= dpi o Pj(F)) = dp,(p)i dpP;(F.) =0,Yb<a <4
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Note that [X ] = [m4] = [e4] and the other unit eigenvectors of D = j([X]) are mq, = €4, Va =1,2,3.

Since j([Xg] ') = T o Pj(D), we want to evaluate dpi o Pj(F}) € Tiop,(p)j(G)- But given that
[Xp] ™ = lea] ™" = [ea] = [ea] = [XE]
we then have the following choice of orthonormal frame
€a(t0 P(D)) = &(j([XE] ™)) = dg,i(ea) = djey)i(ea)
We will now compute the remaining 3 tangent vectors in Tp, (p)j (RP3) of interest, namely;
dp T o Pj(eq) =dp Lo Pj(Fy), fora=1,2,3.

And for a = 1, 2, 3, direct computations

- d . a
duto Pi(Fy) = &LOPJ'(D +tFY)
=0

will yield

we then have the following

(m —ma)t 0 0
dip = 0 (n2 — ma) ™ 0
0 0 (n3 —na)~?

Hence, the matrix G*;(j, X) has entries;
G, X)ap =n"" (1 —1a) 2 —m) 7% x Y XXX
T
O

Fora = 1,2 let [Xq1], - ,[Xan,] be independent random samples defined on RP3 from j-nonfocal
distributions (), with extrinsic means ji,  and extrinsic covariance matrices X, g. Also let n = ny + ng

such that ny /n — 7 as n, — 00 a = 1,2. Then using the result of Lemma 4.2.2 we have for, ¢ : RP3 —
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R P3 the inverse map and H : RP3 x RP3 — RP3 the Lie group multiplication, the following asymptotic

behavior.
nM? tan. ('(Y*1 ©Xip) —jluyh o )) ot N (0, ) (4.33)
I (kg pOLLE) J\A2E LE J\Ha,p & H1LE d S¥m\Ums SE ’
where for H(uyb. i ) = (i © i 1),

1
S = = (dHW) 24 (dHW)T + 17(ouar@))zl,E(dH@))T (4.34)

1

7 -7

PROPOSITION 4.3.2. Fora = 1,2, let {[X,,]};°_ 1, [|Xr, || = 1, be independent random samples from j-
nonfocal probability measures Q, on RP3. Then the consistent estimator of Y4, is denoted G (j, X1,1, X2,1)
with extrinsic means and covariance respectively |, g and X, g. Also let v : RP3 — RP3 be the inverse

map on that manifold and o denote the Lie group multiplication on RP3. The sample covariance matrix

GjE(X ), which is the consistent estimator of X\, has entries given by;

GH (G, X11, X21)ap =

ng
ny (24 = N2.a) (2.4 = m20) ™2 X Y (Mo - X5, )(map - X5 ,)(maa - X3,)°

r=1

_l’_

ni

ny (a = ma) 2ra = mp) 2D (maa - XT,)(map - XY,) (ma - X1, (4.35)

r=1

Ns
where for s = 1,2 and 15 4, a = 1, ..,4 are eigenvalues of K¢ = ns_l g XSVTX;‘F,T in increasing order and

r=1
Mg q = 1,...,4, are corresponding linearly independent unit eigenvectors.

Proof. And for X1 g and 257  are the extrinsic covariance matrices of X1 and X 1 respectively. With-
out loss of generality, we now assume that j([X, g]) = P;(j([Xa.1])) is a diagonal matrix, and lets take
m = D, to be a diagonal matrix as well.

We then have the consistent estimators of ¥ 5 and ¥ g denoted Gg’E(j,Xg,l) and Gy g(j,X1,1) and

with entries given by .

n2
G 5(J, X21)ap =15 (M24 — n2,a) 2 (N2,4 — M2p) > % ZXéz,ng,r(Xg,r)2

r=1

n1
G5 X11)ab =17 (01,4 — n1a) (g —mp) ZXf,rXfr(XfT)Q (4.36)
r=1
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where for s = 1,2 and 7,4, a = 1, .., 4 are eigenvalues of K, = n;1 Z:};l XS,T,XLZ:T in increasing order
and mg , = 1, ..., 4, are corresponding linearly independent unit eigenvectors.

Now the extrinsic covariance matrix

s = L (qgm) 2 p(dHM)T + %(dH(Q))ZLE(dH(Z))T 4.37)

™ —

has the following consistent estimator

1 . 1 .
— (AT M) G 5 (j, Xo,)(dTD)T + —(dTP) Gy p(j, X11)(dTP)T (4.38)

G4 (5, X141, X91) =
7 (U, X11, X21) - -

where dI'") and dI'(®) are matrices with entries given by

dr iy = <d(D2,D1)f:1(éb) - &(H (D2, D1)))
)

dF((lb = <dD2,D1ﬁ(éN1+b) . éa(ﬁ(DQ,Dl))> y fOT a,b = 1,2,3

where D = (D, D;) and for a = 1,2 D, € S(4,R). Recall that S(4,R) has the orthonormal basis
F?, b < a, where, for a < b, the matrix F?” has all entries zeros except for those in the positions (a, b), (b, a)
that are equal to 27'/2; also F* = j([ea]). We have that D € S(4,R) x S(4,R) and a convenient basis for
such a manifold is (FQI”G, O4x4) for a,b =1, ...4 and (O4x4, Flb,a) For the entries of dI'") we consider the

following basis elements, (FQI’ > 01x4) and the following element dp,. Dl)fl ((F2b,a7 O4x4)) Where,
H((F},,04x4)) = jo Ho (j71)@(i0 Pj(F,), Pj(04x4)) (4.39)
We first look at the following derivatives

) d .
d(py, 00y H((Fy 4, 04x4)) = ZH (D2 + tFy,, D1)

t=0
d - _ . _
= £H(D2 +tFy,, Dy) T (2,1 — n2,4) " die,gi(er) = (n21 — ma) ™" er(Py(p)
t—
and
2 1 d 2 1
A0y, o) H (Ot Fiy)) = - H(Da, Dy + LFL) (4.40)
t=0

= (4 —ma) " diegi(é1) = (ma—ma)~" ea(H(Dy, Dy))
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[(n2.4 — m2,1) 71 0 0 i
art = 0 (2,4 — m2,2) 7" 0

| 0 0 (M2,4 — m2,3) "1

(a4 —ma)~? 0 0 1
ar® = 0 (ma—m2)~ " 0

| 0 0 (Mg —m3) "

n2
[(dr(1)> G§7E(j7 X2,1)(dr(1))T:| ab = ng_l(n2,4 - 772,0,)_3(772,4 - 772,6)_3 X Z X‘QZ,T’XS,T(Xg,T)Z
’ r=1

ni
= ny (= ma) 0 —mp) Y X{, XY (XT,)

r=1

(@) G (i, X1.0) (@0 @) |

a,b
]

PROPOSITION 4.3.3. Fora = 1,2, let {[X,,]};*_ 1, [|Xr, || = 1, be independent random samples from j-

nonfocal probability measures Q, on RP3. Then the consistent estimator of Y4, is denoted G (j, X1,1, X2,1)-
(i)

, _ ol = .
n'’? Giy(j, X1.1, X.1) 1/ bA1 (L 0 ) (J (Xop © X1,5) — il p © uu;)) —d N (0o, L)
4.41)
so that

(ii)

) _ -1 = Lo 2
n H G (4, X11, Xo1)"1/? tan;  ~1 ., 5 (J(Xz,E ©X1g) - j(/'LQ’lE © MLE)) H (4.42)

converges weakly to X,Qn and the

63



CHAPTER 5

EXTRINSIC ANTI-MEAN

In this chapter Icontinue to focus on extrinsic analysis, which is the statistical analysis performed relative
to p; a chord distance on M induced by the Euclidean distance in RY via an embedding j : M — R,
with an emphasis on compact object spaces. Most of the results in this section are due to the author of
this dissertation, were presented at the second Conference of the International Society of Nonparametric
Statistics, in Cadiz, Spain in 2015, and appeared in the peer reviewed publication [27]. Recall that the
expected square distance from the random object X to an arbitrary point p defines what we call the Fréchet

function associated with X and in extrinsic analysis it is given by;

Fp) = /M i) — §()I3Q(dx), 5.1)

where () = Py is the probability measure on M, associated with X. In this case the Fréchet mean set
is called the extrinsic mean set (see Bhattacharya and Patrangenaru (2003)[5]), and if we have a unique
point in the extrinsic mean set of X, this point is the extrinsic mean of X, and is labeled g (X) or simply
wg. Also, given Xy, ..., X, i.i.d random objects from @), their extrinsic sample mean (set) is the extrinsic

LN | O, Recall that the existence of an extrinsic mean

mean (set) of the empirical distribution Qn = =

is tied to the existence of a unique projection of the mean s of 5(Q) from the ambient space RY onto
the space j(M) C RY. In the section 5.1 I introduce a new location parameter which is viewed as the
(unique) maximizer of the Fréchet function given in (5.1) and is referred to as the extrinsic anti-mean (
see Patrangenaru and Ellingson (2015)[21]) and I also express its corresponding sample anti-mean viewed
as the maximizer of the Fréchet function associated with the empirical distribution Qn In section 5.2 1
give explicit formulas of the Veronesee-Whitney (VW) anti-mean on RP™. The following section involves
inference problems for extrinsic means and anti-means on the 3-D projective shape space (RP3)4. Section
5.4 using the results from the previous section, I perform a two sample test on a set of data consisting of

digital images of flowers.
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5.1 Geometric description of the extrinsic anti-mean

We assume that (M, p) is a compact metric space, therefore the Fréchet function is bounded, and its extreme

values are attained at points on M. We are now introducing a new location parameter for X.

DEFINITION 5.1.1. The set of maximizers of the Fréchet function, is called the extrinsic anti-mean set. In
case the extrinsic anti-mean set has one point only, that point is called extrinsic anti-mean of X, and is

labeled aji; £(Q), or simply apg, when j is known.

Let (M, p;) be a compact metric space, where p; is the chord distance via the embedding j : M — RY,

that is

pi(p1,p2) = l7i(p1) — i)l = po(§(p1), 3 (p2)), V(p1. p2) € M?,

where py is the Euclidean distance in RY.

REMARK 5.1.1. Recall that a point y € RYN for which there is a unique point p € M satisfying the
equality,

poly, JOM)) = inf ly = j(@)llo = poly: §(p))
is called j-nonfocal. A point which is not j-nonfocal is said to be j-focal. And if y is a j-nonfocal point, its

projection on j(M) is the unique point j(p) = Pj(y) € j(M) with po(y, j(M)) = po(y, j(p))-

With this in mind we now have the following definition.

DEFINITION 5.1.2 (aj-nonfocal). (a) A pointy € RY for which there is a unique point p € M satisfying
the equality,

sup [y — j(z)llo = po(y, j(p)) (5.2)
TeEM
is called aj-nonfocal. A point which is not aj-nonfocal is said to be o j-focal.

(b) If y is an aj-nonfocal point, its farthest projection on j(M) is the unique point z = j(p) =Pr ;(y) €
J(M) with
sup [y —j(2)llo = ro(y, i (p))-
reM

For example if we consider the unit sphere S in R™+!, with the embedding given by the inclusion map
j 8™ — R™*L then the only aj-focal point is 0,1, the center of this sphere; this point also happens to

be the only j-focal point of S™.
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DEFINITION 5.1.3. A probability distribution Q) on M is said to be aj-nonfocal if the mean p of j(Q) is

aj-nonfocal.

The figures below illustrate the extrinsic mean and anti-mean of distributions on a one dimensional topo-
logical manifold M where the distributions are j-nonfocal and also «j-nonfocal. Note that in the smooth
case, given a family of distributions, for which the mean vector in the ambient space, slightly moves in a
direction perpendicular on the tangent space j(u ), the extrinsic mean stays the same, while the extrinsic
anti-mean may change; this shows that the extrinsic anti-mean is a new location parameter, that detects cer-
tain global aspects of a distribution, that are not captured by the extrinsic mean. On the second line of Figure
5.1, one displays the stickiness phenomenon in case of both the extrinsic mean and anti-mean. Recall that
a sticky family of distributions is a family of distributions for which any small perturbation does not affect
the location of the Fréchet mean; this phenomenon may occurs in case the Fréchet mean happens to be a

singular point in both extrinsic analysis ( see [9]) and intrinsic analysis (see [13]).

j(ug)

jlapg)

jlapg)

Figure 5.1: Extrinsic mean and extrinsic anti-mean on a 1-dimensional topological manifold (up-
per left: regular mean and anti-mean, upper right: regular mean and sticky anti-mean, lower left:
sticky mean and regular anti-mean, lower right : sticky mean and anti-mean
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THEOREM 5.1.1. Let pi be the mean vector of j(Q) in RN . Then the following hold true:

(i) The extrinsic anti-mean set is the set of all points x € M such that sup,e p |—5(P)llo = po(p, j()).
(ii) If apj p(Q) exists, then i is aij-nonfocal and oy p(Q) = j~H(Pr (1))
Proof. For part (i), we first rewrite the following expression;
156) — 53 = 13(0) — 13— 24 50) — b = 3(a)) + e — @I 5.3

Since the manifold is compact, p exists, and from the definition of the mean vector we have

/ () Q) = / vi(Q)(dy) = . (5.4)
M RN
From equations (5.4), (5.3) it follows that
Fo) = 1) = nl + | lu=vlBi(Qn) 5.5
Then, from (5.5),
sup () = sup )~ uld + [ ln = wl3(Q)(ay) (5.6)
pEM pEM RN

This then implies that the anti-mean set is the set of points x € M with the following property;

sup [|7(p) — pllo = [|7(x) — wllo- (5.7)
peEM

For Part (i7) if o 5(Q) exists, then oy (@) is the unique point 2 € M, for which equation (5.7) holds

true, which implies that 4 is «j-nonfocal and j (o £(Q)) = Pr (). O

DEFINITION 5.14. Let x1,....,z, be random observations from a distribution () on a compact metric
space (M, p), then their extrinsic sample anti-mean set, is the set of maximizers of the Fréchet function Fo,

associated with the empirical distribution Qn = % Sy Oz, which is given by
1 n
Falp) == i) — i)l (5.8)
i=1

If Q,, has an extrinsic anti-mean, its extrinsic anti-mean is called extrinsic sample anti-mean, and it is

denoted a X j .

THEOREM 5.1.2. Assume Q is an cj-nonfocal probability measure on the manifold M and X = { X1, ...., X, }

are i.i.d random objects from Q). Then,
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(a) If j(X) is aj-nonfocal, then the extrinsic sample anti-mean is given by aX; g = j ' (Pr;(j(X))).

(b) The set (aF)¢ of auj-nonfocal points is a generic subset of RN, and if apu; ;(Q) exists, then the extrinsic

sample anti-mean a X ;. is a consistent estimator of o (Q).

Proof. (Sketch). (a) Since j(X) is aj-nonfocal the result follows from Theorem 5.1.1, applied to the em-
pirical Q,,, therefore j(aX; g) = Pr;(j(X)).

(b) All the assumptions of the SLLN are satisfied, since j(M) is also compact, therefore the sample mean
estimator m is a strong consistent estimator of 1, which implies that for any £ > 0, and for any § > 0,

there is sample size n(d, €), such that P(||7(X) — p|| > ) < ¢,Vn > n(4,¢). By taking a small enough

0 > 0, and using a continuity argument for Pr ;, the result follows. O

REMARK 5.1.2. A CLT for extrinsic sample anti-means is given in a paper I have coauthored (see Pa-
trangenaru et. al.(2016)[22]).

5.2 VW anti-means on R P

In this section we consider the case of a probability measure () on the real projective space M = RP™,
which is the set of axes ( 1-dimensional linear subspaces ) of R™*!. Here the points in R™*! are regarded
as (m + 1) x 1 vectors. RP™ can be identified with the quotient space S™/{x,—=x}; it is a compact
homogeneous space, with the group SO(m + 1) acting transitively on (RP™, p;), where the distance p; on
RP™ is induced by the chord distance on the sphere S™. There are infinitely many embeddings of RP™
in a Euclidean space, however for the purpose of two sample mean or two sample anti-mean testing, it is
preferred to use an embedding j that is compatible with two transitive group actions of SO(m+1) on RP™,

respectively on j(RP™), that is
J(T-[z]) =T oj(jz]), YT € SO(m+1),Y [x] € RP™, whereT - [z] = [Tz]. (5.9)

Such an embedding is said to be equivariant (see Kent (1992)[17], where the equivariance was used in
the context of a VW embedding of a planar direct similarity shape space). For computational purposes, the
equivariant embedding of R P™ that was used so far in the axial data analysis literature is the VW embedding
j:RP™ — S, (m + 1,R), that associates to an axis the matrix of the orthogonal projection on this axis (

see Patrangenaru and Ellingson(2015)[21] and references therein ):

i([2]) = z2”, ||lz]| = 1, (5.10)
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Here S (m + 1,R) is the set of nonnegative definite symmetric (m + 1) x (m + 1) matrices, and in this
case

ToA=TAT", YT € SO(m+1),Y A€ S, (m+1,R) (5.11)

REMARK 5.2.1. Let N = 3(m + 1)(m + 2). The space E = (S(m + 1,R), (,)o) is an N-dimensional
Euclidean space with the scalar product given by (A, B)y = Tr(AB), where A, B € S(m + 1,R).
The associated norm || - ||o and Euclidean distance pqy are given by respectively by ||C|]3 = (C, C)o and

pO(AvB) = ||A_B||07 VO, A, B € S(m+17R)

With the notation in Remark 5.2.1 we have

F()) = 17(le]) — w3 + /M I — ()12 Qdlz]), (5.12)

and F([p]) is maximized ( minimized ) if and only if ||5([p]) — /|3 is maximized ( minimized ) as a function
of [p] € RP™.

From Patrangenaru and Ellingson (2015, Chapter 4)[21] and definitions therein, recall that the extrinsic
mean /i 5(Q) of a j- nonfocal probability measure () on M w.r.t. an embedding j, when it exists, is given
by 15,5(Q) = 77 1(Pj(1)) where i is the mean of j(Q). In the particular case when M = RP™, and j
is the VW embedding, P; is the projection on j(RP™) and P; : S (m + 1,R)\F — j(RP™), where F is
the set of j-focal points of j(RP™) in S (m + 1,R). For the VW embedding, F is the set of matrices in
Sy (m + 1,R) whose largest eigenvalues are of multiplicity at least 2. The projection P; assigns to each
nonnegative definite symmetric matrix A with highest eigenvalue of multiplicity 1, the matrix mm”, where
m is a unit eigenvector of A corresponding to its largest eigenvalue.

Furthermore, the VW mean of a random object [X] € RP™, | X7 X || = 1is givenby 11; p(Q) = [y(m + 1)]
and (A(a),v(a)), a =1,..,m + 1 are eigenvalues and unit eigenvectors pairs (in increasing order of eigen-
values) of the mean p = E(X XT). Similarly, the VW sample mean is given by Z; g = [g(m + 1)] where
(d(a),g(a)), a =1,...,m + 1 are eigenvalues and unit eigenvectors pairs (in increasing order of eigen-

values) of the sample mean J = 13" | 2,27 associated with the sample ([z;]) on RP™, where

i=1,n
2lz; =1,Vi=1,n.

i

Based on (5.12), we get similar results in the case of an «j-nonfocal probability measure () :

PROPOSITION 5.2.1. (i) The set of oV W -nonfocal points in S+ (m + 1,R), is the set of matrices in
St (m + 1,R) whose smallest eigenvalue has multiplicity 1.
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(ii) The projection Pr; : (aF)¢ — j(RP™) assigns to each nonnegative definite symmetric matrix A,
of rank 1, with a smallest eigenvalue of multiplicity 1, the matrix j([v]), where ||v|| = 1 and v is an

eigenvector of A corresponding to that eigenvalue.
We now have the following;

PROPOSITION 5.2.2. Let (Q be a distribution on RP™.

(a) The VW-antimean set of a random object [X], XT X = 1 on RP™, is the set of points p = [v] € V4,
where V7 is the eigenspace corresponding to the smallest eigenvalue \(1) of E(XXT).

(b) If in addition Q) = Px) is VW -nonfocal, then

an5(Q) = j~ (Prg(p)) = [y(1)]

where (A(a),v(a)), a = 1,..,m + 1 are eigenvalues in increasing order and the corresponding unit
eigenvectors of p = E(XXT).

(c) Let [x1],...,[zn] be observations from a distribution Q on RP™, such that j(X) is aVW-nonfocal.
Then the VW sample anti-mean of [x1], ..., [xy] is given by

aTjp = j " (Pr;(j(2)) = [9(1)]

where (d(a), g(a)) are the eigenvalues in increasing order and the corresponding unit eigenvectors of

1 « .
J=— g xi;riT, where x;fwl =1,Vi=1,n.
n
i=1

5.3 Two-sample test for VW means and anti-means projective shapes in 3D

Recall that the space PX% of projective shapes of 3D k-ads in RP2, ([u1], ..., [ug]), with k& > 5, for
which 7 = ([u1],...,[us]) is a projective frame in RP3, is homeomorphic to the manifold (RP3)7 with
q = k — 5 (see Patrangenaru et. al.(2010)[23]). Recall from Section 2.5 that RP3 has a natural structure
of Lie group. This multiplicative structure turns the (RP3)? into a product Lie group (G, ®) where G =
(RP3)q (see Crane and Patrangenaru (2011)[7], Patrangenaru et. al. (2014)[25]). For the rest of this section
G refers to the Lie group (RP3)9. The VW embedding j, : (RP3)? — (5S4 (4,R))? (see Patrangenaru et al.
(2014)[25)), is given by

Jalloils - fogd) = Gl - 3z, (5.13)

with j : RP3 — S, (4,R) the VW embedding given in (6.19), for m = 3 and j, is also an equivariant
embedding w.r.t. the group (S (4,R))9.
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Given the product structure, it turns out that the VW mean p;, of a random object Y = (Y',...,Y% on
(RP3)?is given by
ti, = (H1gs - Hag), (5.14)

where, for s = 1,¢, s ; is the VW mean of the marginal Y*.

Assume Yy, a = 1,2 are 1.0.’s with the associated distributions Q, = Py,, a = 1,2 on G = (RP?)%.
We now consider the two sample problem for VW means and separately for VW-anti-means for these ran-
dom objects. Note that the asymptotic results leading to nonparametric bootstrap confidence regions for
VW-mean change are presented in Section 2.5. For VW anti-means we will simply use nonpivotal boot-
srap computations, since for the sample VW-antimeans on (RP?3)? for our data, involve sample covariance

matrices that are degenerate.

5.3.1 Hypothesis testing for VW means

Assume the distributions (), a = 1, 2 are in addition VW-nonfocal. We are interested in the hypothesis

testing problem:

Ho . ,U,qu = ,U,27jq VS. Ha : Mqu 75 MQqu (515)

which is equivalent to testing the following

Hy : Mi}q © p4, = ]_(RPB)Q vs. H, : ,u;éq © 1,4, # 1(RP3)q (5.16)

1. Let n = n1 + ng be the total sample size, and assume lim,, ”—nl — A € (0,1). Let ¢, be the affine
chart defined in a neighborhood of 1(gpsys (see definition 3.1.1), with ¢, (1(rpsys) = 0. Then, under
Hy

n'/? P (Y1 ® Y ni) —d N3q(034, 25,) (5.17)

jq ;N2
Where ¥;, depends linearly on the extrinsic covariance matrices Y j, of Q.

2. Assume in addition that for a = 1, 2 the support of the distribution of Y, ; and the VW mean p, j,
are included in the domain of the chart ¢, and ¢,(Y5 1) has an absolutely continuous component and

finite moment of sufficiently high order. Then the joint distribution

l — —
V=n2py(Y, |, ©Yj n) (5.18)

q,M

can be approximated by the bootstrap joint distribution of
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V* =nl/? c,oq(};*-_l oY: )

Jq M2 jq7n1

From Patrangenaru et. al.(2010)[23], recall that given a random sample from a distribution () on RP™ if
Js, s =1,...,qare the matrices Js =n~ > " X3(X5)T andiffora =1,...,m+ 1, ds(a) and gs(a)

are the eigenvalues in increasing order and corresponding unit eigenvectors of .J,, then the VW sample mean

qu,n is given by

Yigm = ([n(m + 1)), [gg(m + 1)]). (5.19)

REMARK 5.3.1. Given the high dimensionality, the VW sample covariance matrix is often singular. There-
fore, for nonparametric hypothesis testing, non-pivotal bootstrap is preferred. For details, on testing the ex-
istence of a mean change 3D projective shape, when sample sizes are not equal, using non-pivotal bootstrap,

see Patrangenaru et al. (2014).

5.3.2 Hypothesis testing for VW anti-means
Unlike in the previous subsection, we now assume that for a = 1, 2, (), are «VW-nonfocal. We are now
interested in the hypothesis testing problem:
H() o, = Q2 G, VS. Ha Do g, 7& QL2 5o (5.20)

which is equivalent to testing the following

Hy : OZM?_,Jl'q © apj, = Lrpsya vs. H,: 04/1,2_01-(1 © apj, # Lrp3)a (5.21)

1. Letn = nq + ny be the total sample size, and assume lim,, .o, - — X € (0, 1). Let ¢4 be the affine

n

chart with ¢4 (1(rpsys) = O3q. Then, from Patrangenaru et al. (2016)[26], it follows that under Hy
n'/? @q(a?j;}z? © aYj,m) —ra Nag(03q, X5,), (5.22)
for some covariance matrix f]j .

2. Assume in addition that for a = 1,2 the support of the distribution of Y, 1 and the VW anti-mean
Qflq,j, are included in the domain of the chart ¢ and (Y5 1) has an absolutely continuous component

and finite moment of sufficiently high order. Then the joint distribution

1 — _
aV =n2pq(aY; | ©aYj, ) (5.23)

can be approximated by the bootstrap joint distribution of
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aV* =n'? o, (aY*; " ©aY:

Jas n2 Jas nl)

Now, from Proposition 5.2.2, we get the following result that is used for the computation of the VW sample

anti-means.

PROPOSITION 5.3.1. follows that given a random sample from a distribution Q on RP™ if Js, 8 =
1,...,q are the matrices Js = n= ' > X3(X)T, and iffora =1,...,m + 1,ds(a) and gs(a) are the
eigenvalues in increasing order and corresponding unit eigenvectors of Js, then the VW sample anti-mean
a?qu is given by

0¥, = (91(D],- - [ga(L)]). (5.24)

5.4 Two sample test for lily flowers data

In this section we will test for the existence of 3D mean projective shape change to differentiate between
two lily flowers. We will use pairs of pictures of two flowers for our study.
Our data sets consist of two samples of digital images. The first one consist of 11 pairs of pictures of a single

lily flower. The second has 8 pairs of digital images of another lily flower.

Figure 5.2: Flower 1 image sample

We will recover the 3D projective shape of a spatial k-ad (in our case k¥ = 13) from the pairs of images,
which will allow us to test for mean 3D projective shape change detection.

Flowers belonging to the genus Lilum have three petals and three petal-like sepals. It may be difficult to
distinguish the lily petals from the sepals. Here all six are referred to as fepals. For our analysis we selected
13 anatomic landmarks, 5 of which will be used to construct a projective frame. In order to conduct a proper
analysis we recorded the same labeling of landmarks and kept a constant configuration for both flowers.

The tepals where labeled 1 through 6 for both flowers. Also the six stamens (male part of the flower) ,were
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Figure 5.3: Flower 2 image sample

labeled 7 through 12 starting with the stamen that is closely related to tepal 1 and continuing in the same
fashion. The landmarks were placed at the tip of the anther of each of the six stamens and in the center of

the stigma for the carpel (the female part).

Figure 5.4: Landmarks for flower 1 and flower 2

For 3D reconstructions of k-ads we used the reconstruction algorithm in Ma et al (2005)[19]. The first 5 of
our 13 landmarks were selected to construct our projective frame 7 . To each projective point we associated
its projective coordinate with respect to m. The projective shape of the 3D k-ad, is then determined by the 8
projective coordinates of the remaining landmarks of the reconstructed configuration.

We tested for the VW mean change, since (RP?3)® has a Lie group structure (Crane and Patrangenaru
(2011)[7]). Two types of VW mean changes were considered: one for cross validation, and the other for
comparing the VW mean shapes of the two flowers.

Suppose @)1 and ()5 are independent r.0.’s, the hypothesis for their mean change is
Ho : piyj, © piajs = Lzpoys

Given ¢, the Log chart on this Lie group, ¢,(1g) = 0g, we compute the bootstrap distribution

D. = ,((Yii11) ' OYg)
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We fail to reject Hy, if all simultaneous confidence intervals contain 0, and reject it otherwise. We construct
95% simultaneous nonparametric bootstrap confidence intervals. We will then expect to fail to reject the

null, if we have 0 in all of our simultaneous confidence intervals.
5.4.1 Results for comparing the two flowers
We will fail to reject our null hypothesis
Hy : MI}S O p2,5s = Lrps)s

if all of our confidence intervals contain the value 0.

Landmatk 9

T
P FE T D
—— % h

Landmark 6 _ Landnlark 7

Landmark 13

T~

Figure 5.5: Bootstrap projective shape marginals for lily data

Simultaneous confidence intervals for lily’s landmarks 6 to 9

LM6 LM7 LM8 LM9

x  (0.609514,1.638759) (0.320515,0.561915)  (—0.427979,0.821540)  (0.055007,0.876664)
y (—0.916254,0.995679) (—0.200514,0.344619) (—0.252281,0.580393) (—0.358060,0.461555)
z (—1.589983,1.224176)  (0.177687,0.640489) (0.291530,0.831977) (0.213021,0.883361)
Simultaneous confidence intervals for lily’s landmarks 10 to 13
LM10 LM11 LM12 LM13
x  (0.060118,0.822957) (0.495050, 0.843121) (0.419625, 0.648722) (0.471093, 0.874260)
y (—0.346121,0.160780) (—0.047271,0.253993) (—0.079662,0.193945) (—0.075751,0.453817)
z  (0.198351,0.795122) (0.058659, 0.619450) (0.075902,0.569353)  (—0.146431,0.497202)

We notice that 0 is does not belong to 13 simultaneous confidence intervals in the table above. We then

can conclude that there is significant mean VW projective shape change between the two flowers. This
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difference is also visible with the figure of the boxes of the bootstrap projective shape marginals found in
Figure 5.5. The bootstrap projective shape marginals for landmarks 11 and 12 we can also visually reinforce

our choice of rejection of the null hypothesis.

5.4.2 Results for cross-validation of the mean projective shape of the lily flower in second
sample of images
One can show that, as expected, there is no mean VW projective shape change, based on the two samples
with sample sizes respectively n; = 5 and ne = 6. In the tables below, 0 is contained in all of the

simultaneous intervals. Hence, we fail to reject the null hypothesis at level o = 0.05.

Landmark 6 Landmark 7 Landmark 8 Landmark 9

E o
Lo

Lax\dlﬁfk 12 Landmark 13

i

Figure 5.6: Bootstrap projective shape marginals for cross validation of lily flower

Simultaneous confidence intervals for lily’s landmarks 6 to 9

LM6 LM7 LM8 LM9

(—1.150441,0.940686) (—1.014147,1.019635) (—0.960972,1.142165) (—1.104360,1.162658)

(—1.245585,2.965492) (—1.418121,1.145503) (—1.250429,1.300157) (—1.078833,1.282883)

(—0.971271,1.232609) (—1.654594,1.400703) (—1.464506,1.318222) (—1.649496,1.396918)

Simultaneous confidence intervals for lily’s landmarks 10 to 13

LM10 LM11 LM12 LM13

(—1.078765,1.039589) (—0.995622, 1.381674) (—0.739663, 1.269416) (—1.015220, 1.132021)

(—1.126703,1.140513)  (—1.210271,1.184141) (—1.324111,1.026571) (—1.650026, 1.593305)

(—1.092425,1.795890) (—1.222856,1.963960) (—1.128044,1.762559) (—1.035796,2.227439)
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5.4.3 Comparing the sample anti-mean for the two lily flowers

The Veronese-Whitney (VW) anti-mean is the extrinsic anti-mean associated with the VW embedding
The VW anti-mean changes were considered for comparing the VW anti-mean shapes of the two flowers.

Suppose 1 and ()5 are independent r.0.’s, the hypothesis for their mean change are
Hy : a“l_,gl'g O apgjs = Lrps)s

Let ¢ be the affine chart on this product of projective spaces, p(1g) = 0g, we compute the bootstrap

distribution,

—5x—1 —%
aD, = gpq(aY jg,11 © ay jS,S)
and construct the 95% simultaneous nonparametric bootstrap confidence intervals. We will then expect to

fail to reject the null, if we have 0 in all of our simultaneous confidence intervals.

Landmark & Landmark 7 Landmark 8 Landmark 9

Figure 5.7: Eight bootstrap projective shape marginals for anti-mean of lily data

Highlighted in blue are the intervals not containing 0 € R.
In conclusion there is significant anti-mean VW projective shape change between the two flowers, showing

that the extrinsic anti-mean is a sensitive parameter for extrinsic analysis.

In this chapter we introduced a new population parameter, the extrinsic anti-mean. This new location param-
eter is based on a projection unlike the one in the extrinsic mean case, where we focus on projecting p (the
mean of j(Q) in the ambient space) onto the closest (unique) point j(u ) on j(M); we will instead project

 onto the farthest (unique) point (j(cug) on the embedded object space . Just as with the extrinsic mean,
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simultaneous confidence intervals for lily’s landmarks 6 to 9

LM6 LM7 LMS LM9
(—1.02,—0.51) | (—1.41,0.69) | (—1.14,0.40) | (—0.87,0.35)
(0.82,2.18) | (0.00,0.96) | (—0.15,0.92) | (—0.09,0.69)
(—0.75,0.36) | (—6.93,2.83) | (—3.07,3.23) | (—2.45,2.38)

Simultaneous confidence intervals for lily’s landmarks 10 to 13

LM10 LMI1 LMI2 LM13
(—0.61,0.32) | (—0.87,0.08) | (—0.99,0.02) | (—0.84,—0.04)
(=0.07,0.51) | (—0.04,0.59) | (0.06,0.75) | (0.18,0.78)
(—3.03,1.91) | (=5.42,1.98) | (—7.22,2.41) | (—4.91,2.62)
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the extrinsic anti-mean captures important features of a distribution on a compact object space. Certainly

the definitions and results extend to the general case of arbitrary Fréchet anti-means.




CHAPTER 6

MANOVA ON MANIFOLDS

In this chapter I revisit MANOVA for comparing the mean vectors in g populations. I am extending such
considerations to testing for the equality of extrinsic means from g populations on a manifold M embedded
in an numerical space. In section 6.1 I introduce a new approach applied to various mean vectors. The main
difference between this approach and classical MANOVA, is that we do not assume that all populations
have a common covariance matrix 3., and also we do not make any distributional assumption, except for the
existence of sufficiently high order moments of the g populations. In section 6.2 I extend the work presented
in the previous section to develop a hypothesis testing problem used to compare multiple means on smooth
manifolds, and this test is performed on random samples of various sizes, collected from each of these g
groups. This newly developed MANOVA test is then applied in section 6.3 to populations of 3D projective

shapes.

6.1 Motivations for new MANOVA on manifolds

Fora =1, ..., g, suppose X, ; ~ Np(fta, Xq),@ = 1,...,n, are p dimensional i.i.d random vectors. To test

if the mean vectors of the g groups are the same, one considers the hypothesis testing problem

Ho: pp=pe=...=pg=p (6.1)

H, : atleast one equation does not hold.

Assuming that the covariance matrix ., is invertible, by the Central Limit Theorem, for large sample sizes

ng,a=1,...,g, we have
_1
VNa2a * (Xq — 1) ~ Np(0p, Ip), (6.2)
Na( Xy — ,u)TZgl(Xa — ) ~ X;QJ- (6.3)

However, ¥, is always unknown, so in practice, one has to use its unbiased estimator S,, a =1, ..., g.
na(Xy — ,u)TSa_l(Xa —p) ~ X}%. (6.4)

(M X1+ ... +nyXy), n=>9_,na.

Let us consider the pooled sample mean X = %
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LEMMA 6.1.1. Under the null, X is a consistent estimator of j, provided e — N >0, asn — 00, a=

1,...,q.

Proof. Indeed, forany a € {1,2,..., g}, since 2 — X\, > 0, asn — oo, and X, is the consistent estimator
of u, therefore,

X —=p Mp+ dap+ oo+ Mg = pu (6.5)

O

THEOREM 6.1.1. The statistic for the hypothesis in (6.1) is
g — — — —
D na(Xa = X)T5, N (Xa = X) ~ x5y (6.6)
a=1
So the rejection region at level c, for this test is

g9
D na(Xa — X)X — X) > x5 ). 6.7)

a=1

6.2 MANOVA on manifolds

In this section we will focus on the asymptotic behavior of statistics related to means on a manifold M based
on samples of different sizes from different populations on M. Now let’s consider the set X, 1,..., Xqn,
(a=1,2,..., g) of iid random objects on M with common probability measure (J,. We denote the extrinsic
mean of the j- nonfocal probability measure ), on M by 1, g for ease of notation and because there is
no ambiguity about the embedding used. The corresponding extrinsic sample means are written )_(a, g for

a=1,---,g. From this point on, we will assume that all the distributions are j-nonfocal.

6.2.1 Hypothesis testing and 7 statistic

Assume X, 1, ..., X4 n, are iid random objects on M a p-dimensional manifold, with probability mea-
sure (), with a = 1,2, ..., g. We are interested in comparing multiple extrinsic means.
We would like to develop a test similar to (6.1) designed to test the difference between the g extrinsic
means. One challenge that presents itself at the early stage is a proper definition of a pooled mean for
random objects on a p-dimensional manifold M. Linearity becomes an issue when dealing with extrinsic

means. For a proper definition we will focus on the equalities tied to the assumption

Aot g =" = lgE
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DEFINITION 6.2.1. Under the assumption Aqg and for any a € {1,2, ..., g}, with %= — X\, > 0, asn —
0. We define
(i) The extrinsic pooled mean with weights A\ = (\1,...,\,), denoted j1p(\) as the value in M given
by
J(ne) = Pi(Aj(p1,e) + - + Agi(pg,p)) (6.8)

Where |1, E is the extrinsic mean of the random object X, and Egzlx\a =1

(ii) The extrinsic pooled sample mean denoted Xr € M given by;

3(Xp) = Py (SHi(Kum) + -+ 22(%y ) (6.9)

Where X&E is the extrinsic sample mean for X, 1 and n = Zgzl Mg

Note that since Ag implies j(u1,r) = -+ = j(uqg,E), and with our definition of the extrinsic pooled mean
we get j(pug) = j(ia,r) for each a = 1,..., g. Furthermore, the linear combination A\j(u1 g) + -+ +
Agi(pig.) € j(M). Note that fora = 1, -+ ,g X, g is a consistent estimator of 11, gz and therefore we get

that j(Xg) —p j(1g). Since j is a homeomorphism from M to j(M) we also have that X g is a consistent
estimator of pg the extrinsic pooled mean. With this definition at hand, we now express the following

hypothesis test, designed to test the difference between extrinsic means and is given by;

Ho: pi,p = p2p=...= lgr = UE, (6.10)

H, : atleast one equality pa,p = pn,r,1 < a < b < gdoes not hold.

And since the embedding j : M — RY is one-to-one the hypothesis above can be interchangeably

written

H): j(pp) = j(pa.e) = .. = j(pg.) = j(pe), (6.11)

Hg . at least one equality piq.p = py,E,1 < a < b < g does not hold.

In order to test hypothesis (6.10) we will use a T2 like statistic. The theorem below, gives us the asymptotic
behavior needed to establish such a statistic. Fora = 1, ..., g, we get, from Bhattacharya and Patrangenaru

[6], the following:

() Sne = (10) 12, (5(Xas) — §(XE))((Xasi) — §(XE))T is a consistent estimator of X, and
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(i1) tan; g,y v is a consistent estimator of tan P;(p) Vs where v € RV,

It follows that G ¢ (j, X,), given by

Cx (g Xa) = [ A bilen) e <'<XE>>ei<j<XE>>] - Su,
a=1 i=1,....,p

T

m

[Z oy i(j(XE))ei(j(XE))]
a=1 i=1,....p

where for jP)(X) = ™j(Xy g) + -+ + 22j(X, g) and is a consistent estimator of y such that P;(p) =

j(ug). One must note that the extrinsic sample covariance matrix G(j, X, ) is expressed in terms of dj Pj(ep) €

iP(xX)
T}(x,)d (M) and not in term of d5 . 55Pj(es) € Ty, ,)d (M)

THEOREM 6.2.1. Assume j : M — R is a closed embedding of M. Let {Xaitie, fora=1,...,gbe
random samples from the j-nonfocal distributions Q. Let p, = E(j(X4,1)) and assume j(X,1)’s have
finite second-order moments and the extrinsic covariance matrices Y., g of X4 1 are nonsingular. We also
let (e1(p), ....,en(p)), for p € M be an orthonormal frame field adapted to j.

Furthermore, let % — XAg > 0,asn — oo, withn = Egzlna, and Egzl)\a = 1.Then we have the following

asymptotic behavior;

Z ng tanjg, ) (j(Xe,g) — j(ME))TE;}E tan(,.) (1 (Xa,z) = J(1E)) —d Xop-

It follows that the statistics for hypothesis (6.10) have the following behaviors;

(a) the statistic

g
Zna tan(,) (1 (Xa,z) — §(XE) G (5, Xa) ™" tan;(,,) (7(Xar) — §(XE)) —d Xop-

(b) the statistic

g
D e tang,) (1(Xep) = §(Xp) Gx (7, Xa) ™ tany g, (1(Xap) = 5(XE)) —a Xop-

Proof. recall that from Bhattacharya and Patrangenaru (2005) [6] we have

Vi tan(,,) (1(Xa,e) — j(1E)) =4 N(0p, Sa5), fora=1,2,..g

where

Sor = [{Zdﬂpj(@))'ek(Pj(u))}k:7 JJ sz Pilev) - ex(Ps(p ))E:l,.“,p]
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where 1 = Aj(p1,E) + -+ + Agj(ig,E) and the X,’s are the covariance matrices of the j(X, 1)’s with
respect to the canonical basis e, ..., enx. And under the null, from 6.10, the matrices X, r are defined with

respect to the basis fi(ug), ..., fp(1r) of local frame fields. We then have for eacha =1, ..., g

na tan(, ) (7(Xa,z) — 5(1e)" S, b tan (., (G(Xer) — i (1E) —=d X;-

and since the random samples are independent we have,

g
Zna tanj(uE)(j(Xa,E) — j(uE))TE;lE tanj(uE)(j(Xa,E) —](,U,E)) —d X?]p. (6.12)
a=1

X is the consistent estimator of yf, then the pooled sample mean

. IS~ 5 _
i(Xg)=P; (n Zna](Xa,E)> —p j(pg) (bylemma6.1.1) (6.13)
a=1
And since G 5 (j, X,) consistently estimate X, and tan, g, is a consistent estimator of tan;,, ), we have
the following
g — — — —
> tanu (7(Xa,p) = §(Xp) G (i, Xa) ™ tanu (7(Xa,p) — §(XE) —a X5p
a=1
g

> na tan x,)(1(Xap) = §(Xe) Gx (4, Xa) " tan . (1(Xaz) = §(XE)) =4 Xop-
a=1

6.2.2 Nonparametric bootstrap confidence regions

From Corollary 3.2 in [6] under the hypothesis
Hy : pig=pop=..=lgE=UE,
H, 2 (i,j)1 <i<j<g,stpp# uE,

we have:

COROLLARY 6.2.1. Under the assumptions of Theorem (6.2.1), a confidence regions for pg of asymptotic
level 1 — c is given by C}fg and D,(lg% which are defined below

(a) Cy(fg = j 1 (Un,c) where
] ) : - e . 2
Un,c = {j(l/) € ](M) n Zg:l Ngq HG}'{(]7XQ) 1/2 tanj(y)(j(Xa’E) — j(V))H < X;p,lfc}
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(b) Dngg = _1(Vn,c) where
n,c = {](V) € ](M) : Zgzl Na

2
G (G, Xa) V2 tany ) (/(Xap) = 50| <3G}

where X is the extrinsic pooled sample mean defined in Definition 6.2.1 (ii)

Most of the data we will be focusing on will have value of n relatively small. We will need to use re sam-
pling, in particular bootstrap methods. For a = 1,...,g, let {X,;}!*; be i.i.d.r.o’s from the j-nonfocal
distributions Q,. Let {X ;ﬁr},«zlwna be random re samples with repetition from the empirical Qna condi-
tionally given {X,;};*,. The confidence regions Cj, (o 2 and DSM); described above have the corresponding

bootstrap analogue C' *( ) and D*(g ) which are defined in the corollary below.

COROLLARY 6.2.2. The (1 — ¢)100% bootstrap confidence regions for g with d = gp are given by

(a) C*9) = j=1(U ) and

= {iv Z N

_ 2
Gx(j, Xa) ™% tan;() (j(Xa,p) —j(’/))H <P} (6.14)

where c* gg_) . is the upper 100(1 — ¢)% point of the values

9

2_na

=1

_ 2
(. X*0) ™2 tan o, ((XFa,) = 3 (X6))| 6.15)

among the bootstrap re samples.

(b) D*Y) = j=Y(V*, ) and

)

V*n,c = {] Zna

2
G, Xa) V2 tanyx, (1K) — )| < a7} 616)

where d* gg_)c is the upper 100(1 — ¢)% point of the values

9 _ 2
DG G X072ty (K ae) - i(Xe)| 6.17)
where XE is the extrinsic pooled re sampled mean given by
ok nl ., o« Ng ., S«
3XE) = By (S5 (X p) 4+ 2i(X; ) (6.18)

among the bootstrap re samples. Both of the regions given by (6.16) and (6.14) have coverage erro Op(n_z).
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Note that G 5. (7, X})

Gy (7. X3) = [ b Pilen) - eali(X3) ez-<j<Xi§>>] S,
a=1 i=1,...,p

[Z a— T ei<j<XfE>>ei<j<Xz>>]
a=1 i=1,....p

where S5 = (na) 7 272 (7(X2 ) — 5(XE)G(X5,) — §(XE)"
We now express the following test statistics that will be used in our analysis and are tied to the confidence

regions mentioned above.

PROPOSITION 6.2.1. Let {X,;}*, for a = 1,...,g be random samples from the j-nonfocal distribu-
tions Qq. Let pg = E(j(X4,1)) and assume j(Xq1)’s have finite second-order moments and the extrinsic
covariance matrices Y, g of X4 1 are nonsingular.

(a) Then the distribution of T.(X9),Q¥) = Y9_ n, |Guld, Xa)~ 1/2 tan; () (§(Xa,E) —j(,uE))H2

can be approximated by the bootstrap distribution function of
. . o 2
T(X"9, QW) = S0y ma |G (5, X2) 72 tan(5, (X, ) = 5(Xp))|

. 2
(b) Similarly, the distribution of Ty(X9),Q9)) = 3°9_, n, HG(j,Xa)*l/2 tan; g, (j(Xa,p) — j(,u,E))H
can be approximated by the bootstrap distribution function of
A 2
Ty(X*9,Q"9) =379 _ na |G- (5, X5) ™% tan; ¢ (X ap) —J(XE))H

with coverage error Op(n=2).

Note that (X *©) Q) is obtained from T'(X @), Q(9)) by substituting ng) = (X11, -+, Xg1)T withre
samples Xf(g) =(X{1, ,X;,l)T.

Using the bootstrap analogue in the previous Proposition 6.2.1 yields simpler method for finding 100(1 —
¢)% confidence regions. We will utilize the tests statistics expressed above to conduct our analysis with

confidence regions C7, . and Dy, . as shown in the Corollary 6.2.2.

6.3 MANOVA on (RP3)?

We start with the 3-dimensional real projective space RP3. It is a space of 1-dimensional linear subspaces

of R* and is also a 3-dimensional manifold. A projective point p = [z] € RP3, is an equivalence class

1 1 2 3 .

of z = (z%,---,2%) € R?* and can also be represented by p = [z : 2% : 23 : 2%] (homogeneous
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coordinates notation). We will identify M = RP?3 with the sphere S* with the antipodal points identified,
[#] = {x,—2} € RP3,2 € R* |z|| = 1. We will often refer to this identification as the spherical

representation of the real projective space. RP? is an embedded manifold with the embedding

j:RP?® = S(4, R)

j([z]) = za” (6.19)

And for [X] a random object on j-nonfocal probability measure  on R P? the projection P; : S, (4, R)\F —
j(RP3) assigns to each nonnegative definite symmetric matrix A with highest eigenvalue of multiplicity 1,
the matrix j([]), where ~ is a unit eigenvector of A corresponding to its largest eigenvalue(see Bhattacharya
and Patrangenaru [6]).

Our analysis will be conducted on PX%, the projective shape space of 3D k-ads in RP™ for which 7 =
([u], ..., [us]) is a projective frame in RP3. PX% is homeomorphic to the manifold (RP?) "7 with k—5 =
q (see Patrangenaru et. al (2010)). The embedding on this space is the VW (Veronese-Whitney) embedding
given by

gk o (RP?)? = (S(4,R))*

e[zl s [xg]) = (i), - - 5 (), (6.20)

with j : RP3 — S, (4, R) the embedding given in (6.19). Additionally jy, is an equivariant embedding w.r.t.

the group (S5 (4,R))? and has the corresponding projection

Pt (S+(4,R)I\F, — ji (RP3)?

ij(Alv"‘7Aq) = (]([ml])aa][mq])) (6.21)

where my, ..., m, are unit eigenvectors of Ay, ..., A, (respectively) corresponding to the respective highest
eigenvalues of those nonnegative definite symmetric matrices. Let Y be be a random object from a VW
distribution @ on (RP3)?, where Y = (Y!,...,Y%), and Y* = [X®] € RP3 for all s = 1,q. The VW
mean is given by

Hjy, = ([’Yl (4)]7 B ['Yq(4)])7 (6.22)

where, for s = 1,q, As(r) and v5(r),r = 1,...,4 are the eigenvalues in increasing order and the corres-

ponding eigenvectors of £ [ X*(X*)T].

86



In case of a random object [X] on R3, let us assume that e = [va], where ), and v, = 1,2,3,4,
are eigenvalues in increasing order and corresponding unit eigenvectors of 1 = E[X X 7] corresponding to
eigenvalues in their increasing order. The corresponding extrinsic sample mean, for a sample of size n, is
given by X g ; = [g(4)], where d(r) and g(r) € R*, r = 1,2, 3,4, are eigenvalues in increasing order and
corresponding unit eigenvectors of J = 1 3" | X; X T

We now recall the result from Theorem 4.1 in Bhattacharya and Patrangenaru (2005) [6] well as represent
the statistics

T((X),Q) = nllS(, X) ™ tanj, ) (1(Xey) = i(ke) |I°

We have for T'([X], Q) = T([X], [v4])

T(1X], [va)) = 7 g(4)" [(0)]r=1,238 (7, X) " (vr)]i=1 2.5 9(4) (6.23)

This results extends to the statistics

T(1X],Q) = T(X]. [g@)) = 1SG. X) ™2 tam, ¢, ) (1K) — i) IP

T([X], [g@)]) = nvi [g(r)lr=12350, X) " [g(r)]iZ1 25 vas (6.24)
where
S0, X)ap = (d(4) — d(a) " (d(4) — d(0) ™ x 3 (9(a) - Xi)(g(b) - X)(g(4) - X,)?
i=1

and, asymptotically T'([X], [v4]) and T'([X], [g(4)]) both have a X3 distribution.(see Bhattacharya and
Patrangenaru (2005) [6])
Before we express our statistics of interest, it will be important to note another result from Crane and

Patrangenaru (2011) [7] concerning the statistics

T(Y, ppjy) = nll Sy Gk, Y)*l/Qtanj(YE,jk) (1Y Eg) = i(upg) P

And this Hotelling 77 type statistic is given by

T, ()], [a(@D) =n (@7 Dr %) Dg) Sy (G Y) ™ () Di .. 74(4)7Dg)"
(6.25)
where for s = 1,...,q we have D; = (g5(1) g5(2) gs(3)) € M(4,3,R) and for a pair of indices (s, a), s =
1,...,qand a = 1, 2, 3 in their lexicographic order we have
Sy (ks Y ) sy (1) = 17 (ds(4) =ds (@) (e (4)=de(b)) 7 %D (g5 (a)-X7) (90(0)-X7) (95(4)-X7) (90(4)-X7)
i=1

(6.26)
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In the next theorem we will take advantage of these results.

Hy: p1g = pog = ... = ligE = IE, (6.27)

H, : atleast one equality pap = py,r, 1 < a < b < gdoes not hold.

We aim to have an explicit representation of the expressions,

g
T (YO, 1) = na Y || Sy (s Ya) /2 tan, 5o (h2) (36 (Va) = e (1)) H (6.28)
a=1
(») ’ (»)
(P . _ . .
Ty (Y(g),YE ) = nazl SY(Jk,Ya) 1/2 tanjk (?g)) (]k(Ya,E> — Jk (/LEp >> H (6.29)
where o5 = ([V1(4)],...,[vg(4)]) are the VW mean from distribution Q, (of Y;.,) and (ng(r), v5(r)),
r =1,...,4, are eigenvalues and corresponding unit eigenvectors of E(X a, 1(X 5 )T]. The corresponding

VW sample mean is given byY, p = ([¢¢(4),..., [99(4)]) and for each s = 1,...,q we have for r =
1,...,4, (d%(r), g2(r)) which are eigenvalues in increasing order and corresponding unit eigenvectors of

Jg = L §~ta, X5 (X;Z)T Also ug) is the VW pooled mean given by

g
i (u(é’)) = P}, <Z A;jk(ua,E)> (6.30)

a=1

1P = (P @ P @) 6.31)

and 7%)) is the corresponding pooled mean, given by

g
Jk ( (é’)) = Pj, <Z %jk(Ya,E)> (6.32)

a=1
Vi = (g @), [ @) (6.33)
where for s = 1,...,q, da® )( ) and g(p)( ) € RY, r = 1,2,3,4, are eigenvalues in increasing order
and corresponding unit eigenvectors of the matrix J (P) = v 1 2 (Yap).

We now express the following matrices

C, = (/P (1) 7P (2) 7P (3)) € M(4,3 : R) (6.34)
D, = (g (1) g (2) g (3)) € M(4,3: R) (6.35)
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COROLLARY 6.3.1. Assume jy, is the VW embedding of (RP3)? and {Yar, ra=1, sy @ = 1,...,9
are independent random samples from ji-nonfocal probability measures QQ, on (RP™)4 that have non

degenerate jp-extrinsic covariance matrices. Then the statistics
. _ T
(i) T (YO, 0) = X0 ma (98 (4)7Cr . (95(0)7Cy) Sy, (i Ya) ™ (95(4)7Cr - g3 (4)7C,)

(ii) Ta (YO, VE) = X0 na |67 (4) = g1(4) Dy (o4 (4) = g5(4))7D,
SY (]ka) ! .
(@) = g (4) D1 (5 (@) - g3(4)TD, |

where

Sy (ks Ya) (st = 1 (AP (4) — P ()1 (dP (4) — d (b))~

S (€P(e) - X2 (& (b) - XE) (P () - X2 (& (4) - XL,)

%
and s,t =1,...,qand c,b=1,...,m. Both T, (Y(g),yg)) and Ty < Yy (9) Y(p)> have, asymptotically a

X?’)q distribution.

Proof. For part (i) we note that for each a = 1, ... g we get a natural extension of the result in theorem 4.1

Bhattacharya and Patrangenaru (2005) [6] as shown in 6.23.For part (i) recall that

T, (Y( 9 Y(”)) - nazg:

a=1

2

Sy, (i, Yo) 12 tan_ (v2) (jk(?a,E) — Jk (M%)))

we start by rewriting the expression above and we have

T, (Y@),Y%’)) —n, Zg:

a=1

e YoV am, sy (V) — e (')

2

— Sy, (i, Ya) /2 fan (¥%) (jk(?g)) — Jk (?a,E)>

(Y(g Y ) Zna

Sy, (e Ya) 72 [0 (@)™ Dy (1P ()™ D, ]

- 85,0 Y 2 [0 @) ™Ds @)D 636
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If Y,a are ji-nonfocal populations on (RP3)7 we can construct an Edgeworth expansion up to order

Op(n~2) of the pivotal statistics 7. (Y(g), u%’)) and Ty (Y(g) , ?g)) . under the hypothesis

{Ho D ULE = P2 E = e = g B = Mg)7

H, 2 (i,j)1 <i<j<g,stpip# e

COROLLARY 6.3.2. The (1 — ¢)100% bootstrap confidence regions for g with d = gp are given by
(a) C*q(lg’l = NU; ) and Uy . = {ji(v) € ju(RP?)7) : T, (Y(g), v) <c* }where c g 9 s the upper
100(1 — ¢)% point of the values
* *a - *\ — *Q *a T
T (v 0. 7)) = Zna 9)'Dy ... (g"4(4) ' Dy) Sy (i, Y1) (974(4) Dy ... g"2(4)TD,)

(6.37)

among the bootstrap re samples.

)

T, <Y< 9, 7® ) = a0,
the upper 100(1 — ¢)% point of the values

T, (Y*@),W%)y%)) _ Zg:n
a=1

(b) D) = 7NV 0e) and Voo = (o) € jr(RPY)) : T, (YO, V1) < a{?} where

Sy, Gk, Ya) =12 tanjk(7g>) (r(Ya,E) —jk(V))H where d*{?), is

2
Sy (i, Vi) 712 tanjk(yg(lﬂ)) (jk(YZ,E) —jk(Yg))> (6.38)

among the bootstrap re samples. Both of the regions given by (6.16) and (6.14) have coverage error
Op(n~2).

Note that here
S+ Gies Y ) (s.0y ) = 1 (5P (4) — dZ0)(0)) "L (d; P (4) — @y (b))
S (@ (e) - X2 (el P (0) - X2 (5P (4) - X2l (4) - X3h),bye = 1,2,3.
6.4 Application to face data

We will now test for the existence of 3D mean projective shape change to differentiate between three faces
which are represented in Fig 6.4
Our analysis will be conducted on g = 3 individuals. The 3D reconstruction was done using the AGISOFT

software. The images in Fig 6.4 represent 19 facial reconstructions. Each of those reconstruction was created
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Figure 6.1: Faces used in MANOVA analysis

Figure 6.2: Sample of facial reconstructions
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Figure 6.3: Projective frame shown in red

using mostly 4 to 5 digital camera images of a given individual. We are also able to place and recover 7
landmarks which are shown in figure 6.4.

Five of those landmarks (colored in red) will be used to construct a projective frame and the resulting two
projective coordinate will determine our 3D projective shapes. We will compare these faces by conducting
a MANOVA on manifold to compare g = 3 VW-means on PX] = (RP?)2. Forn = Zi:l ng = 19 where

n1 = 6, ne = 6 and n3 = 7 our hypothesis problem will be

Hy: p1p = pop = U3, g = U,

H, : at least one equation does not hold.

Since the true pulled mean is unknown and our data set is relatively small we will reject the null hypothesis
if
Ty (Y(?’),?g)) = Yacia ||y, ik, Ya) 71/ tan, (¥%) (jk(?a,E) - jk(?g)))

Ve = Un() € ju((RP3)2) : T, (Y<3>,?‘§), y) < d*? }, where d*(_is the (1 — ¢)100% cutoff of

2
does not belong to

the corresponding bootstrap distribution.
Using 46800 resamples we obtain a value for T, (Y(?’),?g)) = 757260 and for the d*((f'35 = 355420 and
we therefore reject the null hypothesis. And we conclude that there exist a statistically significant VW-mean

projective shape face difference between at least two of the individuals.
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CHAPTER 7

FUTURE WORK

In this chapter we explore some of the possible directions for extrinsic data analysis.

7.1 New test statistics for data on (RP?)? and MANOVA for anti-means
7.1.1 MANOVA cross validation

Although I was able to conclude effectively that there is a statistically significant VW-mean projective
shape difference between at least two of the individuals, this test involved only ¢ = 3. I would like to
significantly increase the number g of samples to be compared in order to find the numerical limits of this
particular method.

I would also like to use the data collected to conduct a cross-validation test. It will mean that I will compare
g samples of the same face in order to verify that this method can in fact be used to properly differentiate

between objects (faces, flours, etc...).

7.2 Anti-mean and MANOVA on manifolds

The results about the asymptotic of the anti-means are part of a joint paper with my colleague Ruite Guo
and professor Patrangenaru (see Patrangenaru et all (2016b) [22]). I include this under future work, as more

credit for this paper should be attributed to Ruite.

7.2.1 CLT for the sample anti-means

Assume j is an embedding of a d-dimensional manifold M such that j(M) is closed in R¥, and Q is a
aj-nonfocal probability measure on M such that j(Q) has finite moments of order 2. Let 1 and X be the
mean and covariance matrix of j(Q) regarded as a probability measure on R¥. Let F be the set of aj-focal
points of j(M), and let Pp; : F¢ — j(M) be the projection on j(M). P ; is differentiable at 1 and has
the differentiability class of j(M) around any «j-nonfocal point.

Assume z — (f1(x),..., f4(x)) is alocal frame field on an open subset of M such that for each x € M,

(dej(f1(z)),...,dzj(fi(x))) are orthonormal vector in R¥. A local frame field p — (e1(p), e2(p), .. ., ex(p))
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defined on an open neighborhood U C R* is adapted to the embedding j if it is an orthonormal frame field
and Yz € jH(U), e, (j(x)) = daj(fr(2)), 7 = 1,....d.
Let ey, ea,..., e, be the canonical basis of R* and assume (eq(p),ea(p),...,exr(p)) is an adapted

frame field around Pp;(n) = j(par). Then d,Prj(ep) € Tp, ()J(M) is a linear combination of
e1(Prj(n), e2(Prj(p)), - - ea(Prj(p)):

d
duPrj(es) =Y (duPrj(es)) - ea(Prj(n))ea(Prj(n). (7.1)
a=1
By the delta method, n'/?(Pr;(5(X)) — Pr;(u)) converges weakly to N (0, aX,,), where j(X) =
% >ie1 J(Xi) and
d
%y = Y duPrj(es) - ea(Prj(i))ea(Prg(i)lomt..k
! (7.2)
XZ[Y " duPrj(es) - ea(Prj(1))ea(Prg ()it
a=1
Here ¥ is the covariance matrix of j(X7) w.r.t the canonical basis e, ea, . . . , €.

The asymptotic distribution Ny (0, oX,,) is degenerate and the support of this distribution is on 7’ Pe,J (M),
since the range of d, Pr,; is Tp,. ;(,)J(M). Note that d, Pp,j(ep) - €q(Pp,j(1)) = 0fora =d+1,... k.
we obtain the following asymptotic result, our CLT for extrinsic anti-mean, on the tangent space of j(M)

at Prj(u) = j(opir).

tanp ) (Pra(GX0) = Prj(0) =4 N(0,a%;.p) (13)

Then the random vector (da#Ej)_l(taon,j(M) (Pr;((4(X))) — Prj(p)) = 22:1 Y?fa has the fol-
lowing covariance matrix w.r.t. the basis fi(aug),..., fo(laur) :
aXjp = ea(Prj(1)) aSyues(Prj(1))1<ab<d
= [XduPrj(ep) - €a(Prj(1)]a=1,...a% (7.4)
X [SdyPrj(es) - ea(Prj())azt,...q
The matrix a3J;  given above is the extrinsic anti-covariance matrix of the cj -nonfocal distribution Q(of

X1) w.rt. the basis f1(pag); - - -, fa(tar)-

94



7.2.2 MANOVA for anti-means

I will start by considering the following extension to my MANOVA on manifolds method, from Chapter 6.

DEFINITION 7.2.1. Under the assumption oAy : op,p = -+ = apgg and for any a € {1,2,...,g},

with 22 — A\q > 0, as n — oo. We define

(i) The extrinsic pooled anti-mean with weights A = (\,..., \,), denoted ajip(\) as the value in M
given by
jlapr) = Prj(hj(apm,p) + -+ Agi(apg g)) (7.5)

Where oiq, E is the extrinsic anti-mean of the random object X, 1 and Ei:l)‘a =1

(ii) The extrinsic sample pooled anti-mean denoted aXp € M given by;
- n.,oo Ng . o
j(aXE) = Pp (;](GXLE) +- ;](CLXQ,E)) ; (7.6)
where a)_(a, E 18 the extrinsic sample anti-mean for X, 1 and n = Zgzl Mg

With this definition at hand, I can now express the following hypothesis test, designed to test the differ-

ence between extrinsic anti-means and is given by;

Hy: apip=auop=..=au,gp = aug, (7.7)

H, : at least one equality apia g = apy g, 1 < a < b < gdoes not hold.

The results in chapter 6 can be adapted to extrinsic anti-means and pooled anti-means as well and I will

take advantage of these results. After some effort I will be able to have an explicit representation of the

expressions,
@), ) = S / AN
g p _ . —-1/2 . e s p
ot <Y Ul ) = (; aSy (jk: Ya) taﬂjk<a#g)) (Jk(aYa,E) Jk <06ME >>H (7.8)
g 2
@ qy®) = (i, Y,) 12 (Y ) — ()
oy (Y ,aV ) = > Sy Gie o) tam, ) (3(Tar) = b (e ))‘ . a9
where apiq g = ([v (1)], ..., [vg(1)]) are the VW anti-mean from distribution Q, (of Y;,) and (ng(r), v5 (1))

are eigenvalues and corresponding unit eigenvectors of F(X 571(X 2,1)T}- The corresponding VW sam-
ple anti-mean is given byaY, g = ([¢%(1)],..., [97(1)]) and for each s = 1,...,q we have for r =

1,...,4, (d%(r), g%(r)) which are eigenvalues in increasing order and corresponding unit eigenvectors of
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= n% Do X (XS ) . Also oz,u(p) is the VW pooled mean given by

g
i () = Pry, (Z.yk uaE> (7.10)

a=1

ap® = (P ), ... P ) (7.11)
(p)

and aY ), is the corresponding pooled sample anti-mean, given by

g

a=1
v (p)
Vg = (g ()], [ (1), (7.13)
where for s = 1,...,q, dgp) (r) and ggp) (r) € R, r = 1,2,3,4, are eigenvalues in increasing order and

g 1 Gk (pa,B)-

(p)

corresponding unit eigenvectors of the matrix J () =

I'will then be able to construct confidence regions for aji,” of asymptotic level 1 —c much like in the case of

VW means, and when our sample size is relatively small we will be able to build a (1 — ¢)100% confidence
(p)

regions for auy,’ using nonparametric bootstrap. These confidence regions will be the tool I will use to

differentiate between different objects.

7.3 Dependence on embedded manifolds

We are interested in determining the dependence between the random objects, X on S? and Y a
random variable. And for that we start by observing the dependence structure between «+(X) a random
vector in R? and Y a random variable. We will call upon copula functions to start this process. At this
point it is important to note that copula functions have been widely used to model the dependence structure
between random vectors which is of importance in the computation of certain financial products such as
VAR (Value At Risk). And the copula framework offers a wide variety of copulas, such as the Gaussian,
student ¢ copula, Frank’s copula, Archimedes family of copula and so on. We will focus on only one type of

copula, the Gaussian copula. We first define a two dimensional copula function.

DEFINITION 7.3.1. The copula function C'is a copula for the random vector (X,Y) with X € R™ and
Y € RE, if it is the joint distribution of the random vector (U, V) where U = Fy(X), and V = Fy(Y') and

F,, a = 1,2, are the marginal distribution functions of X and Y respectively. This implies that
H(z,y) = C(Fi(z), Fa(y)) = C(u,v) (7.14)

Where H is the joint distribution function of (X,Y). If F1 and F5 are continuous the copula C'is unique.
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Note that
P(X <Y <y) = P(F(X) < Fi(z), 2(Y) < Fa(y)) = C(Fi(x), Fa(y))

The results of the Sklar Theorem (see Rockinger and Jondeau (2001) [29]) show that we may link any
group of univariate distributions, of any type with any copula and we will have defined a valid multivariate

distribution.

DEFINITION 7.3.2. [Gaussian Copula] This copula is given by

CGaussian(U,v) = P(®(X) < u, ®(Y) < v) = & (d 1 (u), @ 1 (v)) (7.15)

where ® is the standard normal cdf and ®y is the joint distribution function of a standard Gaussian random
vector Z = (X,Y)T ~ Ny(0,%). Note that ¥ can also be viewed as a correlation matrix of Z. And in two

dimensions we have

o) pd1(v) 1 —(s2 -2 2
B 1 —2ps152 + s5)
Ceaussian(u,v) = /_OO /_OO 2n(1— )12 exp{ 51— ) } dsi1dss (7.16)

(see [28].)

REMARK 7.3.1. It is important to note that U and V' are independent if and only if the correlation matrix ¥

is the identity. Recall that in the case of Gaussian random vector this result holds and Cqussian (U, v) = uv.

PROPOSITION 7.3.1. Let X and Y be random vectors on R™ and R* respectively then X and Y are
independent if and only if U = Fy(X) and V = F5(Y) (viewed as random variables) are independent.

Proof. Note that X and Y independent implies H(z,y) = P(X < 2)P(Y < y) = Fi(z)Fx(y) =
uv = C(u,v) and we conclude that U and V' are independent (recall the cdf of a uniform U(0, 1) is
F(u|(0,1)) = w). The other direction follows from the same set of equalities. For the direction from left to

right please see [1]. O

We will now use the proposition above along with the useful property of the Gaussian copula correlation

matrix to design an independence test.
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7.3.1 Test for independence

Now back to our data set made up of X a random object on S? and Y a random variable on R. We will
first use the proposition and Gaussian copula to test for independence between the embedded variable ¢(X)
(random vector on R?) and Y a random variable on R. We will also assume that F; and F; are, respectively,

the cdf’s of +(X') and Y. We can now do the following

1. Define U = Fi(¢(X)) and V = F5(Y)

2. Find the Gaussian Copula that fit our random vectors U and V. This process is done using Matlab and

the function called copulafit(..., )
3. After fitting, the resulting correlation matrix is used to conclude dependence between U and V'

4. Once the dependence is established we draw the necessary conclusion about (X ') and Y, by relying

on proposition 7.3.1

PROPOSITION 7.3.2. The random object X and the random variable Y are independent if and only if
U=Fi((X))andV = F»(Y) are independent random variables.

Proof. From the proposition 7.3.1 we have that «(X) and Y are independent iff U and V' are independent.

And since ¢ is one-to-one we have our desired result. (see [28]) ]

Step one above, requires knowledge of the cdf’s of the marginal distributions of +(X) and Y which may
not be known at the time. Now assume that (X1, Y7),...,(X,,Y,) are i.i.d random objects from a joint
distribution on (S?, R) with marginal cdf’s Fy and F; respectively. We can use the corresponding empirical

cdf’s F} and Fy. We can then use the following steps,
1. Define U = F1(1(X)) and V = F5(Y)

2. Find the Gaussian Copula that fit our random vectors U and V. This process is done using Matlab and

the function called copulafit(..., )
3. After fitting, the resulting correlation matrix is used to conclude dependence between U and V'

4. Once the dependence is established we draw the necessary conclusion about +(X) and Y, by relying

on proposition 7.3.2
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