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ABSTRACT

Most of the data encountered is bounded nonlinear data. The Universe is bounded, planets are sphere like

shaped objects, and life growing on Earth comes in various shapes and colors that can hardly be represented

as points on a linear space, and even if the object space they sit on is embedded in a Euclidean space,

their mean vector can not be represented as a point on that object space, except for the case when such

space is convex. To address this misgiving, since the mean vector is the minimizer of the expected square

distance, following Fréchet (1948)[11], on a compact metric space, one may consider both minimizers and

maximizers of the expected square distance to a given point on the object space as mean, respectively anti-

mean of a given random point. Of all distances on a object space, one considers here the chord distance

associated with an embedding of the object space, since for such distances one can give a necessary and

sufficient condition for the existence of a unique Fréchet mean (respectively Fréchet anti-mean). For such

distributions these location parameters are called extrinsic mean (respectively extrinsic anti-mean), and the

corresponding sample statistics are consistent estimators of their population counterparts. Moreover one

derives the limit distribution of such estimators around an anti-mean located at a smooth point. Extrinsic

analysis is thus a general framework that allows one to run object data analysis on nonlinear object spaces

that can be embedded in a numerical space. New sample tests for extrinsic means, and a test statistic for

extrinsic MANOVA on manifolds are also developed here. In particular one focuses on Veronese-Whitney

(VW) means and anti-means of 3D projective shapes of configurations extracted from digital camera images.

The 3D data extraction is greatly simplified by an RGB based 3D surface reconstruction algorithm using

the Faugeras-Hartley-Gupta-Chang 3D reconstruction method (see [10],[12]), that is used to collect 3D

image data. In particular one derives two sample tests for face analysis based on projective shapes, and

more generally a MANOVA on manifolds method to be used in 3D projective shape analysis. The manifold

based approach is also applicable to financial data analysis for exchange rates.

vii



CHAPTER 1

OVERVIEW

Due to technological advances in digital imaging, we are now able to collect and quantify a wide variety of

data sets, including 3D surface data from RGB regular digital camera images. Indeed if color pictures of the

same scene are collected under fairly uniform lighting conditions, a correlation based algorithm coupled with

a 3D reconstruction algorithm may help retrieve surfaces of a 3D scene, including texture. One of the task of

this dissertation was to collect such 3D data, and in particular face data including the mid-face of individu-

als that accepted to have their pictures taken, and volunteered, without being compensated for offering their

time. Some of the digital camera data collected this way is posted at stat.fsu.edu/∼vic/Kouadio/collected-by-

Davids. The face surfaces, regarded as 2D manifolds in 3D could be partially retrieved using the technique

mentioned above and are presented in the data analysis for Chapters 3 and 6. Such surface data is infinite

dimensional, thus a drastic data reduction method consisting in landmark coordinate selection post 3D re-

construction was key to speed up the analysis. Moreover, since the camera internal parameters are unknown,

for the landmark configurations considered, one may retrieve only the projective shapes (see Patrangenaru

et. al.(2010))[23]. Therefore, the object spaces we have to consider are projective shape spaces (see Mar-

dia and Patrangenaru(2005)[20]), which are direct products of real projective spaces, thus having in fact a

nonlinear structure of compact smooth manifolds. There are many other examples of object spaces with a

manifold structure, arising from morphometric data, protein and DNA structures, aerial or satellite imaging,

medical imaging outputs (angiography, CT scans, MRI) beside digital camera imaging considered here (see

Patrangenaru and Ellingson (2015)[21]). Fréchet (1948)[11] noticed that for data analysis purposes, in case

a list of numbers would not give a meaningful representation of the individual observation under investiga-

tion, it is helpful to measure not just vectors, but more complicated features, he used to call “elements”, and

are nowadays called objects. A natural way of addressing the problem of analyzing data on such a nonlin-

ear object space, consists of regarding a random object X as a random point on a complete metric space

(M, ρ) that often times has a smooth manifold structure (see Patrangenaru and Ellingson (2015)[21]). The

numerical space R
m is the most elementary example of a manifold arising as an object space in Statistics.

Therefore, multivariate data analysis is the key basic example of data analysis on a manifold.
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Given a random object (r.o.) X on a complete separable metric space (M, ρ), the expected square distance

from X to an arbitrary point p ∈ M defines what we call the Fréchet function associated with X :

F(p) = E(ρ2(p,X)), (1.1)

and its minimizers form the Fréchet mean set.[5]. Unless otherwise specified, throughout this dissertation

we will assume that the object space M can be regarded as a subset of a numerical space via a one to

one map j : M → R
N , and the distance on M is ρj , the chord distance given by

ρj(p1, p2) = ‖j(p1)− j(p2)‖. (1.2)

If, in addition M has a smooth manifold structure (see Lee[18] for a definition), we will assume that j is

an embedding, that is to say that at each point p ∈ M, the differential map dp is a one to one map from the

tangent space TpM to the tangent space TpR
N .

In our case, the Fréchet function becomes

F(p) =

∫

M
‖j(x)− j(p)‖2Q(dx), (1.3)

where Q = PX is the probability measure on M, associated with X, and the Fréchet mean set is called

extrinsic mean set. The complete separable metric space (M, ρj) with chord distance ρj and with an

additional smooth manifold structure, is isometric to (j(M), ρ0) where ρ0 is the Euclidean distance. This

is by definition an isometric embedding ( distance preserving between two points and their images in

the ambient space ), if we consider the chord distance.

In general inference for extrinsic mean sets was never considered yet in literature, none the less, in case

the extrinsic mean set has a unique point, called the extrinsic mean, there is a large body of literature on

this subject (see Patrangenaru and Ellingson (2015)[21], and the related reference therein); this is due to a a

simple condition for the existence and uniqueness of the extrinsic mean (see Bhattacharya and Patrangenaru

(2003)[5]), saying the extrinsic mean exists if and only if the probability measure Q is j-nonfocal. I will

detail this condition in Chapter 2.

1.1 Short summary of results in chapters 3 through 7

In Chapter 3, I use two sample hypothesis testing methods for means of r.o.’s on a Lie group, as developed

by Crane and Patrangenaru(2011)[7], that are applied in the context of 3D projective shape analysis to
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differentiate between faces. I conduct a landmark based analysis on the space of 3D projective shapes of k-

ads (labeled points). The object spaces of interest are often nonlinear spaces, and this poses some challenges

when attemping a two sample testing problem for mean change for random samples of different sizes. For

my statistical testing problems I consider Lie groups, which are smooth manifolds with an additional group

structure (in the algebraic sense) where the mulitplicative operation ⊗ and the inverse operation are both

smooth. With such object spaces I can conduct a two sample hypothesis testing problem for mean change

(see Crane and Patrangenaru (2011) [7].) The 3D projective shape spaces of k-ads containing a projective

frame at five fixed landmark indices, denoted ΣP k
3 can be identified with M = (RP 3)q, q = k − 5

which is a Lie group with multiplicative operation denoted ⊙q. For a = 1, 2, let Ya,1, · · · , Ya,na identically

independent distributed random objects (i.i.d.r.o.’s) from the independent jk-nonfocal probability measures

Qa on (RP 3)q , where jk-nonfocal refers to a probability measure for which there is an extrinsc mean. We

consider the following hypothesis testing problem,

H0 : µ
−1
2,E ⊙q µ1,E = 1(RP 3)q vs. H1 : µ

−1
2,E ⊙q µ1,E 6= 1(RP 3)q (1.4)

were µ1,E , µ2,E are the Veronese-Whitney means on (RP 3)q. We are able to construct an asymptotic p-

value for large samples and 100(1 − α)% bootstrap confidence region as well for small sample size at the

α level. These results were made possible by knowing the asymptotic convergence of the sequence of ran-

dom vectors n1/2
(

ϕq(Ȳ
−1
2,E ⊙q Ȳ1,E)

)

where Ȳa,E are the corresponding VW (Veronese-Whitney) sample

means and ϕq is an affine chart (i.e. a smooth one-to-one and onto function from (RP 3)q to R
3q). The

data analysis was conducted on three human faces. I placed all ten landmarks on all three subjects using

Matlab for all 29 pairs of noncalibrated digital camera images. The reconstruction of the corresponding

3D coordinates was also done in Matlab. I was then able to use the first five reconstructed coordinates to

construct the resulting 5-tuples of projective coordinates represent the 3D projective shapes and are the

elements that make up the random samples. After conducting the analysis I was able to effectively use

hypothesis testing for 3D projective shape mean change to differentiate between faces and also to identify

the same face in cross-validation analysis. The analysis I ran, along with the various results, can be found

in a couple of publications [24] and [26]. Using the Agisoft software I was able to build a couple of 3D

reconstructions of faces with color and texture (see stat.fsu.edu/∼vic/Kouadio/collected-by-Davids/James

and stat.fsu.edu/∼vic/Kouadio/collected-by-Davids/Mingfei). This software has not only a more visually

appealing 3D reconstruction but would also allow for a much faster recovery of the 3D coordinates of our
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landmarks.

The work in Chapter 4 was born out of a question asked by Professor Patrangenaru about the hypothesis

testing technique developed in [7]. More specifically, for a = 1, 2, Xa,1, . . . , Xa,na i.i.d. random objects on

Lie group (G,⊙), and the hypothesis problem given as follows

H0 : µ
−1
2,E ⊙ µ1,E = δ vs. H1 : µ

−1
2,E ⊙ µ1,E 6= δ (1.5)

we would like to have the asymptotic behavior of

tanj(µ−1
2,E⊙µ1,E)

(

j(X
−1
2,E ⊙X1,E)− j(µ−1

2,E ⊙ µ1,E)
)

(1.6)

where µ1,E , µ2,E are the extrinsic means and Σ1,E ,Σ2,E their respective corresponding extrinsic covariance

matrices. The notation in (1.6) signifies the projection of the vector
(

j(X
−1
2,E ⊙X1,E)− j(µ−1

2,E ⊙ µ1,E)
)

onto the tangent space of j(G) at the point j(µ−1
2,E ⊙ µ1,E) and this results is given in Theorem 4.2.2 for

some embedding j : G → R
N where X1,E , and X2,E are our resulting extrinsic sample means. For a

similar hypothesis testing problem as in [7] one of my goals was to take advantage of the CLT (Central

Limit Theorem) framework for extrinsic sample means and the confidence regions one can construct from

the given asymptotic behavior.

I started by giving a variation of the Delta Method [4] used in [7] which differs from the other one as it uses

another extrinsic covariance matrix estimator, and also gives an explicit definition of it (see Lemma 4.1.1.)

Let M and N be respectively, m-dimensional and n-dimensional smooth manifolds and let G : M×M →
N be a smooth function between manifolds. In Theorem 4.2.1 I derived the following result;

n1/2 tanj2(G(µ1,E ,µ2,E))

(

j2
(

G(X1,E , X2,E)
)

− j2 (G(µ1,E , µ2,E))
) L−→ Nn(0,Σ

G
j2,E) (1.7)

for a = 1, 2 let f
(a)
1 , · · · , f (a)m orthonormal basis in Tµa,E

(M). I was then able to have the asymptotic

behavior of any smooth function G (between manifolds) and this is done in TG(µ1,E ,µ2,E)N , the tangent

space on N at the point G(µ1,E , µ2,E) and with the corresponding extrinsic covariance matrix given in

term of the extrinsic covariance matrices Σ1,E ,Σ2,E at µ1,E and µ2,E respectively. Note that it is important

to mention some of the benefits of using the extrinsic analysis framework, especially for computation

purposes and more specifically for the sample extrinsic covariance matrix tied to RPm. For more on the

extrinsic sample covariance matrix on RPm, see [6]. In section 4.3 I apply the new asymptotic results to
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RP 3. For a = 1, 2 let [Xa,1], · · · , [Xa,na ] be independent random samples defined on RP 3 from j-nonfocal

distributions Qa, with extrinsic means µa,E and extrinsic covariance matrices Σa,E I get the following

asymptotic behavior.

n1/2 tanj(µ−1
2,E⊙µ1,E)

(

j(X
−1
2,E ⊙X1,E)− j(µ−1

2,E ⊙ µ1,E)
)

→d Nm(0m,Σ
ιG
E ) (1.8)

where for H(µ−1
2,E , µ1,E) = (µ−1

2,E ⊙ µ1,E),

ΣιH
E =

1

π
(dH(1)) Σι

2,E(dH
(1))T +

1

1− π
(dH(2))Σ1,E(dH

(2))T , (1.9)

where π is the proportion of the first population relative to the total population. I was able to express

GιH
E the consistent estimator of ΣιH

E . This sample covariance matrix is expressed in a way that reduces

the amount of computation by using in its expression the already computationally friendly formula of the

sample covariance matrices G1,E and G2,E (see Battacharya and Patrangenaru (2005) [6]) and ,

GιH
E (j,X1,1, X2,1) =

1

n2
(dΓ(1)) G2,E(dΓ

(1))T +
1

n1
(dΓ(2))G1,E(dΓ

(2))T (1.10)

for dΓ(a), a = 1, 2 are both diagonal matrices with our choice of basis on S(4,R). One must also note that

all the results about RP 3 can be extended to (RP 3)q, the 3D projective shape space.

Chapter 5 is about extrinsic anti-mean. This chapter includes work I have recently published jointly with V.

Patrangenaru and R. Guo (see [27] and [22]). In this chapter I introduce new location parameters, assuming

that the object space (M, ρ) is compact. In particular, if ρ is the chord distance induced by an embedding

j : M → R
N , the extreme values of the Fréchet function are attained at points on M. Note that the

extrinsic mean is defined in fact on any complete metric space that is homeomorphically embedded in R
N ,

therefore this chapter allows also for the situation when the extrinsic mean is a singular point. Let X be a

random object for a distribution Q on M, then we get a distribution for j(X) on j(Q) the ambient space.

And we have an extrinsic mean often denoted µj,E provided we have a unique projection of µ denoted

Pj(µ) onto the j(M) and µ is called a j-nonfocal point. More specifically, µ j-nonfocal implies that we

have ρ0(µ, j(M)) = ρ0(µ, j(µj,E)) where ρ0(µ, j(M)) is the distance between the point µ and the closest

(unique) point on j(M). The notion of anti-mean is motivated by the fact that, even when a distribution

Q might not have an extrinsic mean, it may occur that the extrinsic anti-mean exists, thus an extrinsic

analysis can still be performed. In case the extrinsic mean is a singular point, the asymptotic distributions
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of the extrinsic sample mean behave differently. In the case of a stratified space, such as an open book

the extrinsic sample mean sticks to a lower dimensional stratum (see [3], [13]). The anti-means have a

similar asymptotic behavior, thus offering a way to conduct nonparametric data analysis on not just smooth

embedded manifolds but in a broader sense, on stratified spaces. In this chapter, I introduce the notion of

αj-nonfocal distribution, and it is shown that a distribution has a unique extrinsic anti-mean if and only if

it is αj-nonfocal (see Theorem 5.1.1). As a result, one also proves the existence and consistency of the

extrinsic sample anti-mean set. In section 5.3, the focus is turned to RPm with the VW embedding, and

one gives a necessary and sufficient condition for a random axis [X], XTX = 1 being α-VW-nonfocal in

terms of eigenvalues of the expected matrix E(XXT ). Further, in this chapter I develop a nonparametric

methodology for addressing the hypothesis testing problem

H0 : αµ
−1
2,jq

⊙q αµ1,jq = 1(RP 3)q vs. Ha : αµ−1
2,jq

⊙q αµ1,jq 6= 1(RP 3)q . (1.11)

As it turns out, the framework developed by Crane and Patrangenaru in [7] can be adapted to the case of

anti-means and provided certain general assumption on the VW anti-means αµa,jq , a = 1, 2 I conduct, in

section 5.5 two sample test to compare 3D projective shapes of two lily flowers, based on their digital camera

images.

Chapter 6 is concerned with a new approach of hypothesis testing for the equality of extrinsic means of

g random objects, g ≥ 3. This is an extension of the classical MANOVA (Multivariate Analysis of Variance)

problem (see Johnson and Wichern (2008)[15]), in nonparametric setting. This approach is motivated by

the standard MANOVA hypothesis testing problem

H0 : µ1 = µ2 = ... = µg = µ

Ha : at least one equation does not hold.

given the independent random vectors Xa ∼ Np(µa,Σ), a = 1, . . . , g. We first consider a nonparametric

test, based on the pooled sample mean, by dropping the normality assumption, and assuming that asymp-

totically the ratio between a group size and the total sample size converges to a positive constant, as the

total sample size goes to infinity. I extended the ideas developped in the random variable case to object

data, assuming that that Qa, a = 1, . . . , g, are independent j- nonfocal probability measures on M and

Xa,1, . . . , Xa,na are i.i.d.r. objects from Qa, a = 1, 2, ..., g. The extrinsic mean of Qa if µa,E and corres-

ponding extrinsic sample means is X̄a,E . To test

H0 : µ1,E = µ2,E = ... = µg,E = µE , Ha : at least one equation does not hold,
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in general I consider the pooled mean given by µE = (j−1 ◦ Pj)(λ1j(µ1,E) + · · · + λgj(µg,E)) and the

corresponding sample counterpart X̄E ∈ M given by

X̄E = (j−1 ◦ Pj)
(n1
n
j(X̄1,E) + · · ·+ ng

n
j(X̄g,E)

)

where X̄a,E is the extrinsic sample mean for Xa,1 and n =
∑g

a=1 na and na

n → λa > 0, as n → ∞,

with Σg
a=1λa = 1. From Theorem 6.2.1 I get two candidate statistics for testing (1.12) that have both

asymptotically a χ2
gp distribution. These are used for rejection regions in the large sample case. The small

sample case is also addressed via nonparametric bootstrap in Corollary 6.2.2. In Section 6.3 I address the

extrinsic MANOVA problem on the 3D projective shape space (RP 3)q with the VW embedding. As an

example I consider the equality of mean projective shapes of 3D landmark configurations in a number of

individuals from digital camera images of their faces.

Chapter 7 is concerned with future directions in extrinsic data analysis it will involve using the 3D

face data set I have reconstructed from digital images, to collect landmarks from the remaining faces in

the database. Extend the work done in chapters 4, 5 and 6 to data analysis for VW antimeans including to

MANOVA for such antimeans.

1.2 Description of contributions

In this section I clearly describe what are my contributions to the various research results in this dissertation,

and which of these have been published. I start by recalling all my results that are theorems:

• In Theorem (4.1.1) I developed a new Delta method for a smooth function F : M1 → M2 where

for a = 1, 2 Ma are ma-dimensional smooth manifolds. The aim was for me to express the resulting

covariance matrix in an explicit form.

• Theorem (4.2.1) I develop the asymptotic behavior tied to a smooth function G : M × M → N
between smooth manifolds. This result can certainly be used to get the asymptotic behavior in a case

of a two sample hypothesis testing for extrinsic means because it can give the asymptotic behavior

of a function G of two extrinsic sample means with an explicit expression of the resulting extrinsic

covariance matrix written in term a linear combination of the extrinsic matrices tied to each of the

two random samples whether they are of same size or not.

• For Theorem (4.2.2) I focus on Lie groups with a multiplicative operation ⊙ and an inverse map ι. I

give an asymptotic behavior for the tangential component

tanj(µ−1
2,E⊙µ1,E)

(

j(X
−1
2,E ⊙X1,E)− j(µ−1

2,E ⊙ µ1,E)
)

. For this result, I use Theorem (4.1.1) to get
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the asymptotic behavior of tanj(µ−1
2,E)

(

j(X
−1
2,E)− j(µ−1

2,E)
)

and an explicit expression of its corres-

ponding extrinsic covariance matrix Σι
2,E . I then used the results of Theorem (4.2.1) applied to the

function H : G × G → G and given by H(x2, x1) = x−1
2 ⊙ x1 to get the desired asymptotic behavior

with an explicit expression of the extrinsic covariance matrix.

• In Theorems (5.1.1) and (5.1.2) I give the conditions for existence of the extrinsic anti-mean and the

sample extrinsic antimeans. I applied these to a data analysis for anti-mean 3D projective shapes

extracted from digital camera images.

• Theorem (6.2.1) I give the expression of two test statistic for the hypothesis testing problem of com-

paring multiple extrinsic means. One of the test statistic will be used to handle cases for which the

extrinsic pooled mean is known and the other can be used whenever the extrinsic pooled mean is

unknown.

• For Corollary (6.3.1) I used the results of Theorem (6.2.1) to expressed a couple of test statistic

designed to test the 3D mean projective shape changes between multiple VW means.

And below I give a list of ideas I have developed.

• In chapter 4, I developed an idea that would allow anyone to conduct a two sample hypothesis testing

involving random samples on smooth embedded manifolds whether the samples are of same sizes or

not.

• The extrinsic pooled mean and sample mean inspired by the case for multiple random vectors give

the possibility to develop and create a MANOVA for smooth embedded manifolds, allowing for the

possibility to test for multiple extrinsic means.

My contribution to the data analysis has been in the form of well defined condition of existence of the extrin-

sic anti-mean. I also took advantage of the extrinsic CLT result about antimean developped in Patrangenaru

et al (2016) [22] to conduct a two sample hypotheis testing method for change in antimean and therefore

giving another effective way to differentiate between object via a landmark based approach.

My contribution to the publications listed is

• Patrangenaru, Yao and Guo (2016) [27] I my mork involve the whole of sections 2 through 5.

• Patrangenaru, Guo and Yao (2016) [22] For this publication, my work is featured in the whole of

sections 4 and 5.

• For the paper Patrangenaru, Page, Yao, Qiu and Lester (2016) [24]) my work is featured in the whole

of sections 4 and 5.

• (Patrangenaru et al (2016) [26]) my work is featured in subsections 3.1 and 3.2 and also in the whole

of sections 4 and 5.
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CHAPTER 2

PRELIMINARIES

Most of my analysis will be conducted on object spaces. These spaces consist of features measured from

sample observations that can no longer be viewed as a values of random vectors if one wishes to conduct

a proper statistical analysis on such said spaces. Examples of some object spaces I will consider are the

space of points on a sphere and the space of projective shapes of configurations and for such a data set

the associated object considered are points on the projective shape space. I will regard a random object X

as a random point on a complete metric space (M, ρj) that has a manifold structure. In section 2.1 I give

some relevant definitions and introduce some meaningful concepts we will use throughout the analysis. In

the ensuing section I introduce the extrinsic mean and extrinsic sample mean as the unique minimizer of

Fréchet functions on (M, ρj). Section 2.3 exposes the reader to a Central Limit Theorem for extrinsic

sample means on embedded manifolds. In section 2.4 I present the m-D projective shape space of k-ads

(labeled points, landmarks) in general position, which is denoted PΣk
m. I highlight the fact that for PΣk

3

can be identified with (RP 3)q with q = k − 5. With this particular representation one can now view any

elements of the 3-D projective shape space as a q-tuple of elements from the 3D projective space and

(RP 3)q is embedded via the Veronese-Whitney embedding (see Patrangenaru and Ellingson(2015)[21]).

The final section introduce a two sample hypothesis testing problem for extrinsic means on Lie groups and

the resulting bootstrap confidence region needed to conduct this test.

2.1 Some important concepts and definitions

The focus of our studies will revolve around metric spaces (M, ρ) with an additional smooth manifold

structure. For that purpose we give the following definition of a smooth manifold. We start by giving the

definition of a topological manifold.

DEFINITION 2.1.1. (Manifolds)

A metric space (M, ρ) is a manifold of dimensionm or a topological m-manifold if M is second countable

, i.e. there exists a countable basis for the metric topology of M, and also M is locally Euclidean of
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dimension m, i.e. every point has a neighborhood that is homeomorphic to an open subset of Rm. And the

homeomorphism function ϕU : U → ϕU (U) ∈ R
m is referred to as an m-dimensional chart on M. We

usually denote an m-dimensional chart by the pair (U,ϕU ). (see Lee (2002) [18]).

Given a chart (U,ϕU ) we call the set U a coordinate domain, or coordinate neighborhood of each of its

points. If in addition ϕU (U) is an open ball in R
m, then U is called a coordinate ball. The map ϕU

is also referred to as a local coordinate map, and its components (x1U , · · · , xmU ), defined by ϕU (p) =

(x1U (p), · · · , xmU (p)) are called local coordinates onU.We will sometimes denote a chart by (U, (xiU )i=1,...,m)

if we wish to emphasize the coordinate functions (x1U , · · · , xmU ). (see Lee (2002) [18]).

Note that a homeomorphism is a bijective continuous function with a continuous inverse. The smooth

structure of a manifold is established by a smooth atlas or C∞ atlas.

DEFINITION 2.1.2. A collection A = {(Uα, ϕα)α∈A} of Rm-valued charts on the topological manifold

M is called atlas of class Cr if the following conditions are satisfied:

(i)
⋃

α∈A

Uα = M

(ii) Whenever Uα ∩ Uβ 6= ∅, then the (transition) map between ϕα(Uα ∩ Uβ) and ϕβ(Uα ∩ Uβ)

ϕβ ◦ ϕ−1
α |ϕα(Uα∩Uβ) : ϕα(Uα ∩ Uβ) → ϕβ(Uα ∩ Uβ)

is differentiable. Furthermore, this transition map must also have a differentiable inverse that has

continuous partial derivatives up to order r.

( see Lee (2002) [18]).

DEFINITION 2.1.3. An m-dimensional manifold of class Cr is a manifold M along with an R
m-valued

atlas of class Cr on M. We will refer to a smooth manifold as an m-dimensional manifold of class C∞.

Example 1. (i) Naturally, any open set in the Euclidean space (Rm, ρ0), is an m-dimensional smooth

manifold. Here ρ0(x, y) = ‖x− y‖, where ‖(u1, . . . , um)‖2 =∑i=1,...,m(ui)2.

(ii) The unit sphere S
m = {x ∈ R

m+1 : ‖x‖ = 1} is an example of m-dimensional smooth manifold.

(iii) The product of a p- dimensional manifold with a q- dimensional manifold is a (p + q)- dimensional

manifold.

(iv) The space of 1-dimensional linear subspaces of Rm+1, called the m-dimensional real projective space

and labeled RPm is an example of a m - dimensional manifold that is not a subset of an Euclidean
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space. An element of RPm is often represented by [x] where x ∈ R
m+1. Here [x] = [y] ⇐⇒ y = λx

for some λ 6= 0.

( see Lee (2002) [18]).

Note: A projective point [x] ∈ RPm can also have a spherical representation, when thought of as a pair

of antipodal points on Sm, and [x] = {x,−x}, with ‖x‖ = 1 and x ∈ R
m+1. From this point on when

referring to a projective point we will use this particular representation. (see [2] or [21] )

The definitions of smoothness of diffeomorphism and differentiable curves will be needed for us to introduce

tangent vectors and tangent spaces which are an integral part of the asymptotic analysis we will conduct later.

DEFINITION 2.1.4. (smooth function) Let M be a smooth m-manifold, a function f : M → R
k is said

to be smooth if for every p ∈ M, there exists a smooth chart (U,ϕ) for M whose domain contains p and

such that the composite function f ◦ ϕ−1 is smooth on the open subset ϕ(U) ⊂ R
m. (see Lee (2002) [18]).

DEFINITION 2.1.5. (Smooth map between manifolds)

A function F : M → N between two smooth manifolds is differentiable, if for any charts (U,ϕU ) on M
and (V, φV ) , on N , the composite map, φU ◦ F ◦ ϕ−1

V

∣

∣

φ(U∩V )
is differentiable of class C∞. The composite

map above is referred to as the local representative. (see Lee (2002) [18]).

DEFINITION 2.1.6. A diffeomorphism between (differentiable) manifolds M and N is a differentiable

function F : M → N that has a differentiable inverse. Furthermore, we say that M and N are diffeomor-

phic if there exists a diffeomorphism between them. (see Lee (2002) [18]).

DEFINITION 2.1.7. A differentiable curve (path) on a smooth manifold M is a differentiable function

from an interval to M. Two such paths c1 and c2, defined on a neighborhood of 0 ∈ R are tangent at p if

c1(0) = c2(0) = p and there is a chart (U,ϕU ) around p such that

(ϕU ◦ c1)′(0) = (ϕU ◦ c2)′(0)

(see Patrangenaru and Ellingson (2015) [21])

With the definition of differential curves we can now give a definition of tangent spaces which is more

useful for object data analysis.

DEFINITION 2.1.8. (Tangent vectors and tangent space)
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(i) The set of all paths tangent at p is called tangent vector νp at p = c(0), and is labeled νp = dc
dt (0) =

dc
dt

∣

∣

0
.

(ii) The tangent space TpM at a point p of a manifold M is the set of all tangent vectors νp = dc
dt

∣

∣

0
to

curves c : (−ε, ε) → M with p = c(0).

We will use the notations (p, ν), νp, and ν for a tangent vector in TpM, depending on how much emphasis

we wish to give to the point p. (see Patrangenaru and Ellingson (2015) [21])

Example of tangent vectors

(E1) If e1, · · · , em is the usual basis of M = R
m and p ∈ M the following partial derivatives

∂

∂x1

∣

∣

∣

∣

p

, · · · , ∂

∂xm

∣

∣

∣

∣

p

are tangent vectors in TpR
m. For i = 1, . . . ,m, ∂

∂xi

∣

∣

p
is the tangent vector

ei =
dci
dt

(0) =
∂

∂xi

∣

∣

∣

∣

p

,

where ci(t) = p+ tei.

(E2) Similarly, if (U,ϕ) is a chart on M, around p, ∂
∂xi

∣

∣

ϕ

p
is the tangent vector

dci
dt

(0) =
∂

∂xi

∣

∣

∣

∣

ϕ

p

,

where ci(t) = ϕ−1(ϕ(p) + tei).

(E3) In another example, consider M = S
m regarded as a subset of Rm+1, then the tangent space at p ∈ S

m

can be described as

TpS
m = {(p, v), v ∈ R

m+1 |vT p = 0} (2.1)

(E4) Let RPm be identified with antipodal points (spherical representation) then if [x] = {x,−x} ∈ RPm,

the tangent space at [x] is described as

T[x]RP
m = {([x], ν), ν ∈ R

m+1 |νTx = 0} (2.2)

(see Patrangenaru and Ellingson (2015) [21]).

PROPOSITION 2.1.1. Let (U,ϕ) be a chart on M. Then Tp(M) has a basis of tangent vectors

∂
∂x1

∣

∣

p
, · · · , ∂

∂xm

∣

∣

p
where (x1, ..., xm) is the system of local coordinates associated with the chart (U,ψ).

Each vector νp ∈ TpM can be written uniquely as a linear combination of ∂
∂x1

∣

∣

p
, · · · , ∂

∂xm

∣

∣

p
and we

have νp =
∑m

i=1 ν
i ∂
∂xi

∣

∣

p
with any choice of charts on M and the numbers (ν1, ν2, ...., νm) are called the

components of νp with respect to the given coordinate system. ( see Lee (2002) [18])
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DEFINITION 2.1.9. (Tangent Bundle).

The tangent bundle TM of an m-dimensional manifold M is the disjoint union of the tangent spaces at all

points of M ; it has a 2m-dimensional manifold structure. The tangent bundle is often represented by the

triple (TM,Π,M) where Π is a natural projection map and Π : TM → M is a differentiable map which

associates to each tangent vector its base point, Π((p, νp)) = p. (see Lee (2002) [18] or Patrangenaru and

Ellingson (2015) [21]).

DEFINITION 2.1.10 (Vector Fields). If M is a smooth manifold, a vector field on M is a smooth section

of the projection map Π, that is a smooth map Y : M → TM usually written p→ Y (p), with the property

that

Π ◦ Y = IdM, (2.3)

or equivalently, Y (p) ∈ TpM for each p ∈ M. (see Lee (2002) [18] or Patrangenaru and Ellingson (2015)

[21])

One may think of a vector field on M in the same way we think of vector fields in Euclidean spaces: as an

arrow attached to each point of M, chosen to be tangent to M and to vary smoothly from point to point.

The value of a smooth vector field at the point p is a tangent vector at each point p ∈ M.

Example 2. If (U, (xi)) is any smooth chart on M, the assignment

p→ ∂

∂xi

∣

∣

∣

∣

p

(2.4)

determines a smooth vector field on U , called the ith coordinate vector field and denoted by ∂
∂xi.

( see Lee

(2002) [18])

The set of all smooth vector fields on M often denoted by T (M) is an infinite-dimensional vector space

under point wise addition and scalar multiplication:

(aY + bZ)(p) = aY (p) + bZ(p)

( see Lee (2002) [18])

DEFINITION 2.1.11. Let U ⊂ M be an open subset of an m-dimensional smooth manifold. A local frame

field is a system ofm vector fields (V1, . . . , Vm) of TM over U whose values V1(p), . . . , Vm(p) are linearly

independent in TpM for each p ∈ U ( see Lee (2002) [18] or Patrangenaru and Ellingson (2015) [21]).

13



Recall that for any smooth m-manifold M, the tangent bundle has a natural topology and smooth structure

that makes it into a smooth 2m-dimensional manifold such that Π : TM → M is a smooth map. We can

therefore have maps from one tangent bundle TM to another tangent bundle TN . We now define a special

map below.

DEFINITION 2.1.12. (Tangent Map)

(i) If f : M1 → M2 is a differentiable function between manifolds, its tangent map is the function

df : TM1 → TM2, given by

df

(

dc

dt

∣

∣

∣

∣

c(o)

)

=
d(f ◦ c)
dt

∣

∣

∣

∣

f(c(o))

for all differentiable curves c defined on an interval containing 0 ∈ R.

(ii) The differential of f at the point p is the restriction of the tangent map, regarded as a linear function

dpf : TpM1 → Tf(p)M2

df

(

dc

dt

∣

∣

∣

∣

p

)

=
d(f ◦ c)
dt

∣

∣

∣

∣

f(p)

(2.5)

For the definition above please refer to Patrangenaru and Ellingson (2015) [21]. Note that the restriction

of df at the point p is a linear function that sends a tangent vector of M1 to a corresponding tangent vector

of M2. Such a linear map is also referred to as a push forward see Lee (2002) [18].

Data analysis on embedded manifolds will be the focus of our study. On such manifolds we can define a

distance with very useful properties.

DEFINITION 2.1.13. (Embedding)

An embedding of a manifold M in a Euclidean space R
k is a differentiable one-to-one function j : M →

R
k, for which

(i) the differential dpj is a one-to-one function from TpM to Tj(p)R
k at any point p ∈ M, and

(ii) j is a homeomorphism from M to j(M) with metric topology induced by the Euclidean distance.

(see Patrangenaru and Ellingson (2015) [21])

REMARK 2.1.1. Given an embedded manifold M with embedding j : M → j(M) ⊂ R
k, we will,

throughout this manuscript, consider the corresponding metric space (M, ρj) with the distance ρj being

the chord distance defined in (1.2).
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Example 3. The unit sphere S
m is a already embedded in R

m+1 and the embedding is given by the inclu-

sion, ι : Sm → R
m+1 given by ι(x) = x, ∀x ∈ S

m with usual Euclidean metric ρ20(x, y) = ‖x− y‖2

Example 4. The projective space RPm is embedded in the space of symmetric (m+1)× (m+1) matrices,

via the Veronese-Whitney embedding

j : RPm → S(m+ 1,R),

j([x]) = xxT (2.6)

with the following metric on Sym(m+1) given by ρ20(A,B) = Tr((A−B)2), where Tr denotes the trace

of the matrix (A−B)2. (see Patrangenaru and Ellingson (2015) [21]) and Crane and Patrangenaru (2011)

[7])

The definition below will allow us to set up a correspondence between a basis of tangent vectors in TpM
and an m-tuple of linearly independent tangent vectors in Tj(p)R

k.

DEFINITION 2.1.14. (Adapted frame field)

Assume p → (f1(p), ..., fm(p)) is a local frame field on an open subset of M such that, for each p ∈
M, (dpj(f1(p)), ..., dpj(fm(p))) are orthonormal vectors in R

k. A local frame field (e1(y), ..., ek(y))

defined on an open neighborhood U ⊂ R
k is adapted to the embedding j if it is an orthonormal frame field

and

er(j(p)) = dpj(fr(p)), r = 1, ...,m, ∀ p ∈ j−1(U) (2.7)

( Patrangenaru and Ellingson (2015) [21])

2.2 Extrinsic means and sample means

The Fréchet function on a complete metric space is the main tool by which we will introduce means on em-

bedded manifolds. It was introduced by Fréchet in 1948 [11]. Let X be a random vector from a probability

measure Q on R
m with mean vector µ. The mean vector is also the value of Rm for which the expression

E[‖X − p‖2] (viewed as a function of p) is minimized. This function of p is none other than the Fréchet

function on the metric space (Rm, ρ0). Furthermore, for X1, ..., Xn iid random vectors from the distribution

Q on R
m the sample mean is given byX = 1

n

∑n
i=1Xi with X̄ →p µ.One thing we must note is that in the
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case of probability measures on Euclidean spaces we can easily estimate asymptotically the true mean via

the sample mean as defined above. This will not be the case for most metric spaces we will encounter such

as the sphere and the projective space, until we have a notion of mean, that is also a point on such object

spaces . We must hence revisit the definition of the mean and sample mean and it will start with us thinking

of it solely as the minimizer of some function, called Fréchet function. We will later give a more general

definition of a Fréchet function but first we must mention that for this section, the reader may assume that a

definition, an example, a theorem, property and most results can be found in the book by Patrangenaru and

Ellingson (2015) [21].

2.2.1 Extrinsic mean

Let M be an m-dimensional manifold and let BM be the Borel σ-algebra generated by open sets of M.

Let (Ω,A, P r) be a probability space. A random object (r.o.) on M is a function X : Ω → M, such that

for any Borel set B ∈ BM, X−1(B) ∈ A. To each r.o. X we associate a probability measure Q = PX on

BM given by Q(B) = Pr(X−1(B)). In general, a natural index of location for a probability measure Q

associated with a r.o. X on a complete metric space M with the distance metric ρ is the Fréchet mean. It is

the unique minimizer of the Fréchet function (see Fréchet(1948) [11]), defined by

F(p) = E
[

ρ2(p, x)
]

=

∫

ρ2(p, x) Q(dx), (2.8)

whenever such a unique minimizer exists. Generally two types of distance on a manifold M are considered:

1. A geodesic distance or arc distance. It is the Riemannian distance ρg associated with Riemannian

structure g on M.

2. A chord distance ρj associated with an embedding j : M → R
k. (see Patrangenaru and Ellingson

(2015) [21])

These two distances give rise to two types of statistical analysis on manifolds: an intrinsic analysis using an

arc distance and an extrinsic analysis based on a chord distance. We will focus on the latter.

From this point on, we will assume that (M, ρj) is a complete metric space.

DEFINITION 2.2.1. Let Q be a probability measure on M with a distance ρj . If F in (2.8) has a unique

minimizer, this minimizer is called the extrinsic mean of Q and it is denoted µj,E(Q) or simply µE . If the

minimizer is not unique, the set of all minimizers is the extrinsic mean set.

(see Patrangenaru and Ellingson (2015) [21])
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DEFINITION 2.2.2. Let X1, X2, ..., Xn be independent random variables with a common distribution Q

on the metric space (M, ρj), and consider their empirical distribution Q̂n =
1

n

n
∑

k=1

δ(Xk).

The extrinsic sample mean (set) is the extrinsic mean (set) of Q̂n i.e. the (set of ) minimizer(s) p̂ of Fn(p) =

1
n

∑n
j=1 ρ

2
j (Xj , p). (see Patrangenaru and Ellingson (2015) [21])

DEFINITION 2.2.3. Assume ρ0 is the Euclidean distance in R
k. A point x of Rk such that there is a unique

point p in M for which ρ0(x, j(M)) = ρ0(x, j(p)) is called j-nonfocal. A point which is not j-nonfocal is

said to be j-focal.(see Patrangenaru and Ellingson (2015) [21])

The only focal point of Sm with the inclusion in R
m+1 is 0m+1.Note that the probability measureQ induces

a probability measure j(Q) on R
k.

DEFINITION 2.2.4. A probability measure Q on M is said to be j-nonfocal if the mean µ of j(Q) is a

j-nonfocal point. If x is a j-nonfocal point, its projection on j(M) is the unique point y = Pj(x) ∈ j(M)

with ρ0(x, j(M)) = ρ0(x, y).(see Patrangenaru and Ellingson (2015) [21])

THEOREM 2.2.1. If µ is the mean of j(Q) in R
k, Then

(a) the extrinsic mean set is the set of all points p ∈ M, with ρ0(µ, j(p)) = ρ0(µ, j(M) and

(b) If µj,E(Q) exists then µ exists and is j-nonfocal and µj,E(Q) = j−1(Pj(µ)).

(see Patrangenaru and Ellingson (2015) [21])

THEOREM 2.2.2. The set of focal points of a sub-manifold M of Rk is a closed subset of Rk of measure

0. (Patrangenaru and Ellingson (2015) [21])

The 2D sphere and the 3D projective space are manifolds of interest to us. Their extrinsic means will appear

and be used at various points in our study.

Example 5. (Spheres) Lets assume that we have a random object X from a j-nonfocal probability measure

Q on Sm = {x ∈ R
m+1 : ‖x‖ = 1} an m-dimensional sphere. For this particular space, the j-nonfocal

condition which guarantees the existence of a unique extrinsic mean is equivalent to requiring that the true

mean µιE 6= 0 ∈ R
m+1.

The embedding and its corresponding projection are two functions that are essential in finding and express-

ing our extrinsic mean. For Sm the embedding is the inclusion map

{

ι : Sm → R
m+1

ι(x) = x
and the projection
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map is

{

Pι : Fc → ι(Sm)

Pι(y) =
y

‖y‖

where Fc = R
m+1\{0} is the set of ι-nonfocal points in R

m+1. Now, if µ is

the mean of ι(Q) then the extrinsic mean is given by

µιE = ι−1 (Pι(µ)) =
µ

‖µ‖ (2.9)

Example 6. (Real projective spaces) We now assume that [X] is a random object from a j-nonfocal pro-

bability measure Q on RPm. Much like in the example above we must have a clear expression of an em-

bedding and its corresponding projection and for real projective spaces the embedding of choice is the VW

(Veronese-Whitney) embedding mentioned in (2.6). With this choice of embedding

(i) The set F of focal points of j(RPm) ∈ S+(m+ 1, R) is the set of matrices in S+(m+ 1, R)( space

of positive semi-definite symmetric matrices) whose largest eigenvalues are of multiplicity at least 2.

(ii) The projection Pj : S+(m + 1, R)\F → j(RPm) assigns to each positive semi-definite matrix A

with a highest eigenvalue of multiplicity 1, the matrix j([m]), where m is a unit eigenvector of A

corresponding to its largest eigenvalue.( see [6] or [21]. )

If XTX = 1, and in the ambient space the mean µ = E
[

XXT
]

exists, then the VW mean is

µjE = j−1(Pj(µ)) = j−1(j([γ(m+ 1)]))

µj,E = [γ(m+ 1)] (2.10)

where λ(a) and γ(a), a = 1, · · · ,m+1 are eigenvalues in increasing order and corresponding eigenvectors

of E
[

XXT
]

. (see Patrangenaru and Ellingson (2015) [21])

In particular:

Example 7 (Extrinsic sample means for Sm and RPm.). (i) AssumeQ is a nonfocal probability measure

on the manifold Sm and X = {X1, ..., Xn} are i.i.d.r.o’s from Q. Then the extrinsic sample mean is

given by

Xι n =
X̄n

‖X̄n‖
(2.11)

where X̄n =
1

n
Σn
i=1Xi

(ii) Now letQ be V-W nonfocal probability measure on the manifold RPm and [X] = {[X1], ..., [Xn]} are

i.i.d.r.o’s from Q. Then the V-W sample mean is given by;

[X]j n = [g(m+ 1)] (2.12)
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where d(a) and g(a), a = 1, · · · ,m + 1 are eigenvalues in increasing order and corresponding unit

eigenvectors of J =
1

n

n
∑

i=1

XiX
T
i

( Patrangenaru and Ellingson (2015) [21])

PROPOSITION 2.2.1. Consider an embedding j : M → R
k. Assume (X1, ..., Xn) is a random sample

from a j-nonfocal probability measure Q on M, and the sample mean vector ¯(j(X)) is j-nonfocal. Then

this extrinsic sample mean is given by

XE = j−1
(

Pj
¯(j(X))

)

(2.13)

(see Patrangenaru and Ellingson (2015) [21])

Remark: At this point it is important to note that for an embedded smooth manifold M into j(M) ⊂ R
k,

one can analyze data from an unknown probability distribution Q, with help of the various widely known

multivariate techniques and conduct inferences for extrinsic means, variances, etc.

THEOREM 2.2.3. AssumeQ is a j-nonfocal probability measure on the manifold M andX = {X1, ..., Xn}
are i.i.d.r.o’s from Q, then the extrinsic sample mean XE is a strongly consistent estimator of the µj,E(Q).

( see Patrangenaru and Ellingson (2015) [21])

2.3 Central limit theorem for extrinsic sample means

A Central Limit Theorem for extrinsic sample means was given in Bhattacharya and Patrangenaru(2005)[6].

Let’s assumeQ is a j-nonfocal probability measure on the manifold M andX = {X1, ..., Xn} are i.i.d.r.o’s

from Q. Consider the embedded random variables j(X) = {j(X1), ..., j(Xn)} as random vectors from the

probability measure j(Q) with mean vector µ and assume j(Q) has finite moments of order four. We can

apply the usual (multivariate) Central Limit Theorem for our sample of embedded random objects and get

the following convergence in distribution:

n1/2
(

j(X)− µ
)

→d N(0, Σ) (2.14)

where j(X) = 1
n

∑n
i=1 j(Xi). Given the formula of the extrinsic sample mean, we will need to understand

the asymptotic behavior of Pj(j(X)) = j(Xj,E). We do so by relying on the following theorem.
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THEOREM 2.3.1 (Cramer’s Delta Method). Let Yj , j ≥ 1 be i.i.d k-dimensional random vectors with

mean vector µ and covariance matrix Σ = (σij). For H : Rk → R
p a vector-valued and continuously

differentiable function in a neighborhood of µ we have the following asymptotic behavior

√
n[H(Ȳ )−H(µ)] →d DµH · V ∼ Np

(

0, DµH Σ DµH
T
)

(2.15)

with DµH =

(

∂Hj(z)
∂xi

∣

∣

∣

z=µ

)

i=1,·,k;j=1,·,p

( see Patrangenaru and Ellingson (2015) [21], Theorem 2.8.5)

Using the Cramer’s Delta method for the real-valued and continuously differentiable function Pj we get the

following for the random vectors j(X) = {j(X1), ..., j(Xn)}

n1/2
(

Pj(j(X))− Pj(µ)
)

→d DµPj · V ∼ Nk (0, Σµ) , (2.16)

where Σµ = DµPj Σ DµP
T
j . Here Pj : Fc → j(M) where F is the set of focal points in j(M). Note

that since F is a closed subset of Rk thus Fc is an open subset of Rk a smooth k-manifolds and is itself

a smooth k-manifold. Let e1, e2, ..., en be the canonical basis of Rk and assume that (e1(y), ..., ek(y)) is

an adapted frame field around Pj(µ) = j(µE) i.e er(Pj(µ)) = er(j(µE)) = dµE
j(fr(p)), r = 1, . . . ,m

where p→ (f1(p), . . . , fm(p) is our local frame field of interest. Then dµPj(eb) ∈ TPj(µ)j(M) and we can

now represent this vector as a linear combination of e1(Pj(µ)), ..., em(Pj(µ)) ∈ TPj(µ)R
k;

dµPj(eb) =
m
∑

a=1

[dµPj(eb) · ea(Pj(µ))] ea(Pj(µ)), ∀ b = 1, ..., k (2.17)

dµPj(eb) =

m
∑

a=1

αa,b ea(Pj(µ)) where αa,b = [dµPj(eb) · ea(Pj(µ))]

Recall that using Cramer’s Delta Method we have that n1/2
(

Pj(j(X))− Pj(µ)
)

converges weakly to a

random vector DµPj · V ≈ Nk(0,Σµ), with Σµ = DµPj Σ DµP
T
j where Σ is the covariance matrix

of j(X1) w.r.t the canonical basis e1, ..., ek. We can now express our covariance matrix Σµ using the new

representation of vectors dµPj(eb), ∀ b = 1, ..., k

Σµ =

[

m
∑

a=1

αa,b ea(Pj(µ))

]

b=1,...,k

Σ

[

m
∑

a=1

αa,b ea(Pj(µ))

]T

b=1,..,k

(2.18)

And note that

dµPj(eb) · ea(Pj(µ)) = 0, for a = m+ 1, ..., k
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It is important to remember that n1/2
(

Pj(j(X))− Pj(µ)
)

is a vector in R
k with origin at Pj(µ) = j(µE)

and as such it can be decomposed into component in the tangent space Tj(µE)j(M) and component of the

orthogonal complement of the tangent space at j(µE). If we take the component in the tangent space then

asymptotic distribution we obtain is a distribution on TPj(µ)j(M), a linear space. To illustrate this point we

start by defining tangential components which corresponds to tangent vectors in TpR
k and are dependent on

the choice of basis elements of the tangent space of interest.

DEFINITION 2.3.1. The tangential component tan(ν) of ν ∈ R
k w.r.t. the basis ea(Pj(µ)) ∈ TPj(µ)j(M), a =

1, 2, ...,m given by

tan(ν) =







e1(Pj(µ))
T

...

em(Pj(µ))
T






ν = [e1(Pj(µ)) · ν, . . . , em(Pj(µ)) · ν]T (2.19)

( Patrangenaru and Ellingson (2015) [21])

We now get the following asymptotic for the tangential component of Pj

(

j(X)
)

− Pj(µ)

n1/2 tanj(µE)

(

Pj

(

j(X)
)

− Pj(µ)
)

→d Nm(0,Σj,E) (2.20)

where

Σj,E = ATΣµA =







e1(Pj(µ))
T

...

em(Pj(µ))
T






Σµ

[

e1(Pj(µ)) · · · em(Pj(µ))
]

(2.21)

The tangential component of Pj

(

j(X)
)

− Pj(µ) is a tangent vector in Tj(µE)j(M) and therefore its cor-

responding random vector (dµE
j)−1 tan(Pj

(

j(X)
)

− Pj(µ)) ∈ TµE
M converges asymptotically to a

multivariate normal with mean vector 0 and covariance matrix w.r.t. the basis f1(µE), ..., fm(µE) given by

Σj,E = (ATDµPj) Σ (ATDµPj)
T (2.22)

where under the new basis

(ATDµPj)ab = [dµPj(eb) · ea(Pj(µ))] =







dµPj(e1) · e1(Pj(µ)) . . . dµPj(em) · e1(Pj(µ))
...

. . .
...

dµPj(e1) · em(Pj(µ)) . . . dµPj(em) · em(Pj(µ))






(2.23)
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DEFINITION 2.3.2. The matrix Σj,E given by (2.22) is the extrinsic covariance matrix of the j-nonfocal

distribution Q of X1 w.r.t. the basis f1(µE), ..., fm(µE). When j is fixed in a specific context, the subscript

j will be omitted. If in addition, ΣE is invertible (of rank m) we can define the j-standardized mean vector

Zj,n := n
1
2Σ

− 1
2

E

(

X
1
j ...X

m
j

)T
, (2.24)

where
(

X
1
j ...X

m
j

)T
are the coordinates of the tangent component of j(Xj,E)− (µj,E(Q)), w.r.t the basis

ea(Pj(µ)) ∈ TPj(µ)j(M), a = 1, 2, ...,m. ( Patrangenaru and Ellingson (2015) [21])

PROPOSITION 2.3.1. Assume {Xr}nr=1 are i.i.d.r.o’s from the j-nonfocal distribution Q, with finite mean

µ = E(j(X1)), and assume the extrinsic covariance matrix Σj,E of Q is finite. Let (e1(y), ..., ek(y)) be an

orthonormal frame field adapted to j. Then

(a) the tangential component of the difference between j(Xj,E) and the (µj,E(Q)) has asymptotically a

distribution that is approximately multivariate normal the tangent space to M at µj,E(Q) with mean 0

and covariance matrix n−1Σj,E . and

(b) if Σj,E is nonsingular, the standardized mean vectorZj,n given in (2.24) converges weakly to a Nm(0m, Im)-

distributed random vector.

( Patrangenaru and Ellingson (2015) [21])

The CLT for extrinsic sample means stated in Proposition 2.3.1 cannot be used to construct confidence

regions for extrinsic means since the population extrinsic covariance matrix is unknown. In order to define

our confidence regions we will need to have the following consistent estimator for Σj,E .

Sj,E,n =
[

dj(X)Pj(eb) · ea(Pj(j(X)))
]

a=1,...,m
Sj,n

[

dj(X)Pj(eb) · ea(Pj((X)))
]T

a=1,...,m
(2.25)

is a consistent estimator of Σj,E . With

Sj,n = n−1
n
∑

r=1

(

j(Xr)− j(X)
) (

j(Xr)− j(X)
)T

(2.26)

a consistent estimator of Σ the covariance matrix of j(X1) and dj(X)Pj(eb) consistent estimator of dµPj(eb)

and ea(Pj(j(X))) a consistent estimator of ea(Pj(µ)).(see Bhattacharya and Patrangenaru [6] also Pa-

trangenaru and Ellingson (2015) [21]).
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THEOREM 2.3.2. Assume j : M → R
k is a closed embedding of M in R

k. Let {Xr}nr=1 be a random

sample from the j-nonfocal distribution Q, and let µ = E[j(X1)] and assume j(X1) has finite second

order moments and the extrinsic covariance matrix Σj,E of X1 is nonsingular. Let (e1(y), ..., ek(y)) be

an orthonormal frame field adapted to j. If Sj,E,n is given by (2.25), then for n large enough Sj,E,n is

nonsingular (with probability converging to one) and

(a) the statistic

n
1
2S

− 1
2

j,E,n tan(Pj(j(X))− Pj(µ) (2.27)

converges weakly to Nm(0m, Im), so that

n

∥

∥

∥

∥

S
− 1

2
j,E,n tan(Pj(j(X))− Pj(µ)

∥

∥

∥

∥

2

(2.28)

converges weakly to χ2
m and

(b) the statistic

n
1
2S

− 1
2

j,E,n tan
Pj(j(X))

(Pj(j(X))− Pj(µ) (2.29)

converges weakly to Nm(0m, Im), so that

n

∥

∥

∥

∥

S
− 1

2
j,E,n tan

Pj(j(X))
(Pj(j(X))− Pj(µ)

∥

∥

∥

∥

2

(2.30)

converges weakly to χ2
m and

( Patrangenaru and Ellingson (2015) [21])

COROLLARY 2.3.1. Under the hypothesis of Theorem (2.3.2) , a confidence region for µE of asymptotic

level 1− α is given by

(a) Cn,α = j−1(Un,α) where Un,α = {Pj(µ) ∈ j(M) : n

∥

∥

∥

∥

S
− 1

2
j,E,n tan

(

Pj(j(X))− Pj(µ)
)

∥

∥

∥

∥

2

≤
χ2
m,1−α} or by

(b) Dn,α = j−1(Vn,α) where Vn,α = {Pj(µ) ∈ j(M) : n

∥

∥

∥

∥

S
− 1

2
j,E,n tan

Pj(j(X))

(

Pj(j(X))− Pj(µ)
)

∥

∥

∥

∥

2

≤
χ2
m,1−α}

( Patrangenaru and Ellingson (2015) [21])
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For small samples, we use nonparametric bootstrap confidence regions. Now lets recall that if {Xr}nr=1 is

a random sample from an unknown distribution Q, and {X∗
r }nr=1 is a (bootstrap) random sample from the

empirical distribution Q̂n, conditionally given by {Xr}nr=1, then the statistic in Theorem 2.3.2 (a),

T (X,Q) = n

∥

∥

∥

∥

S
− 1

2
j,E,n tan(Pj(j(X))− Pj(µ)

∥

∥

∥

∥

2

(2.31)

has the bootstrap analog

T (X∗, Q) = n

∥

∥

∥

∥

S∗−
1
2

j,E,n tan
Pj(j(X))

(Pj(j(X∗))− Pj(j(X))

∥

∥

∥

∥

2

(2.32)

Where T (X∗, Q), S∗
j,E,n is obtained by substituting {Xr}nr=1 by {X∗

r }nr=1 and also by replacing µ by

j(X). From this point on, we will assume that j(Q), , has finite moment of sufficiently high order. This

result is automatic for compact manifolds such as Sm and RPm. The following theorem addresses the order

of convergence related to our bootstrap statistic.

THEOREM 2.3.3. Let {Xr}nr=1 be a random sample from he j-nonfocal distribution Q which has a

nonzero absolutely continuous component w.r.t. the volume measure on M induced by j. Let µ = E[j(X1)]

and assume the covariance matrix Σ of j(X1) is defined and the extrinsic covariance matrix Σj,E is non-

singular and let p → (e1(p), . . . , eN (p)) an orthonormal frame field adapted to j. Then the distribution

of

n

∥

∥

∥

∥

S
− 1

2
j,E,n tan(Pj(j(X))− Pj(µ)

∥

∥

∥

∥

2

can be approximated by the bootstrap extrinsic Hotelling distribution of

n

∥

∥

∥

∥

S∗−
1
2

j,E,n tan
Pj(j(X))

(Pj(j(X∗))− Pj(j(X))

∥

∥

∥

∥

2

with a coverage error Op(n
−2). ( Patrangenaru and Ellingson (2015) [21])

We will encounter cases when Sj,E,n is difficult to compute and for such situations,we will rely on the

following result.

PROPOSITION 2.3.2. on the asymptotic distribution of n
∥

∥

∥tan(Pj(j(X))− Pj(µ)
∥

∥

∥

2
can be approxi-

mated uniformly by the bootstrap distribution of

n
∥

∥

∥tan(Pj(j(X∗))− Pj(j(X))
∥

∥

∥

2
(2.33)

to provide a confidence region for µE with coverage error no more than Op(n
− m

m+1 ). ( see Patrangenaru

and Ellingson (2015) [21])
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REMARK 2.3.1. For bootstrap confidence regions in Theorem 2.3.3 the bootstrap analog of Corollary

6.2.1 (a) is preferable. The corresponding 100(1− α)% confidence region is C∗
n,α := j−1(U∗

n,α) with U∗
n,α

given by

U∗
n,α = {Pj(ν) ∈ j(M) : n‖S−1/2

j,E,n tan(Pj(j(X))− Pj(µ)‖2 ≤ c∗1−α}, (2.34)

where c∗1−α is the upper 100(1− α)% point of the values

‖S∗−1/2
j,E,n tanPj(j(X)

(Pj(j(X∗))− Pj(j(X)‖2 (2.35)

among the bootstrap re samples. And the region given by 2.34 has a coverage error Op(n
−2).

2.4 Projective shape space

The bulk of our analysis will directly involve PΣk
3 the 3D projective shape space of k-ads (landmarks)

in general position. We will conduct a landmark based analysis which will involve recovering the 3D

coordinates of our labeled points.

2.4.1 Representation of projective shapes

We associate a shape to a configuration of k labeled points. We are interested in conducting our analysis on

projective shapes but first we start with defining the a projective transformation of elements in a Euclidean

space.

DEFINITION 2.4.1. Generally, a projective transformation ν of Rm is defined in terms of a matrix A =

(aji ) ∈ GL(m+ 1,R), via ν(x1, . . . , xm) = (y1, . . . , ym),

yj =

∑m
i=1 a

j
ix

i + ajm+1
∑m

i=1 a
m+1
i xi + am+1

m+1

=
Aj · u

Am+1 · u , ∀j = 1, . . . ,m. (2.36)

where Aj is the j-th column of A and u = (x1, . . . , xm, 1)T .

( Patrangenaru and Ellingson (2015) [21])

REMARK 2.4.1. Two configurations of points in R
m have the same 3D shape if they differ by a projective

transformation of R3. However, in applications, such projective transformations act only on subsets of R3

and consequently they do not have a group structure under composition.
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Note that if one multiplies the matrix A by a nonzero constant, then the equation (2.36) does not change;

therefore the group PGL(m) of projective transformations of Rm has dimension (m+ 1)2 − 1 = m(m+

2). Furthermore, Rm can be identified with an open affine subset of RPm, any configuration of points

{x1, . . . , xk} in R
m can be regarded as a configuration projective points {p1, . . . , pk} in RPm. An example

of such an identification is the affine embedding h : Rm → RPm given by

h(x) = h((x1, . . . , xm)) = [x1 : · · · : xm : 1] (2.37)

(see Patrangenaru and Qiu (2014) [25]).

The pseudo group action by projective transformations on open dense subsets of Rm is extended to a group

action of the projective group PGL(m). And the group action is given by

α : PGL(m)× RPm → RPm

α([A], [x]) = [Ax], ∀A ∈ GL(m+ 1,R), ∀ x ∈ R
m+1 (2.38)

Note that given the matrix A in the projective transformation ν in 2.36 and u we have the following vector

ũ = Au = ((A1 · u), . . . , (Am · u), (Am+1 · u))T we now get the following equality

[Au] = [ũ1 : · · · : ũm : ũm+1] =

[

ũ1

ũm+1
: · · · : ũm

ũm+1
: 1

]

(2.39)

where ũi

ũm+1 = yi for i = 1, . . . ,m.And we refer to (y1, . . . , ym) as the inhomogeneous (affine) coordinates

of the point [ũ] ∈ RPm.

Therefore, rather then considering projective shapes of configurations in R
m we consider projective shapes

of configurations in the projective space RPm.

DEFINITION 2.4.2. Two sets of labeled points {[xa,1], . . . , [xa,k]} ⊂ RPm, a = 1, 2 have the same pro-

jective shape if there is a projective transformation β : RPm → RPm, such that β([x1,j ]) = [x2,j ], ∀ j =
1, . . . , k. (see Patrangenaru and Qiu (2014) [25]).

In projective shape analysis it is preferable to employ coordinates invariant with respect to the group

PGL(m). To create such coordinates we will need to use a projective frame.

DEFINITION 2.4.3. A projective frame π = (p1, . . . , pm+2) in RPm is an ordered set of m+2 projective

points in general position. Note that k points in RPm are in general position if their linear span is RPm.

For pi, i = 1, . . . ,m+ 2 with the spherical representation pi = {xi,−xi} xi ∈ R
m+1, this means that for
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{x1, . . . , xm+2} any subset of size m+1 form a linear span of Rm+1. ( Patrangenaru and Ellingson (2015)

[21])

An example of projective frame in RPm is the standard projective frame π0 = ([e1], . . . , [em+1], [e1+ ...+

em+1]).

PROPOSITION 2.4.1. Given two projective frames π1 = (p1,1, . . . , p1,m+2) and π2 = (p2,1, . . . , p2,m+2),

there is a unique β ∈ PGL(m) with β(p1,j) = p2,j , j = 1, . . . ,m + 2. (see Mardia and Patrangenaru

(2005) [20]).

A projective transformation takes a projective frame to a projective frame, and its action on RPm is deter-

mined by its action on a projective frame.

DEFINITION 2.4.4. The projective coordinate(s) of a point p = [x1 : · · · : xm+1] ∈ RPm w.r.t. a

projective frame π = (p1, . . . , pm+2) as being given by

pπ = β−1(p) (2.40)

where β is a projective (transformation) map taking the standard projective frame π0 to π, these coordinates

have automatically the invariance property. ( Patrangenaru and Ellingson (2015) [21])

PROPOSITION 2.4.2. Assume u1, . . . , uk are points in R
m. We then identify the first m + 2 points with

ũ1, . . . , ũm+2 in RP 3 where ũi = [ui1 : u
i
2 : · · · : ui3 : 1] for i = 1, . . . ,m+ 2. If we consider the m+ 1 by

m+ 1 matrix Um = [ũT1 , . . . , ũ
T
m+1], the projective coordinate of [ũ] with respect to π are given by

pπ = [y1(u) : . . . : ym+1(u)],

where yi(u) =
vi(u)

vi(um + 2)
with v(u) = U−1

m ũT (2.41)

( Patrangenaru and Ellingson (2015) [21])

DEFINITION 2.4.5. A projective shape of a k-ad (configuration of k labeled points) is the orbit of that

k-ad under projective transformations. If the k-ad is regarded as a point on (RPm)k, then such a trans-

formation acts at the same time on each point of the k-ad; therefore the action of PLG(m) is the diagonal

action of this group on (RPm)k,

αk(p1, ..., pk) = (α(p1), ..., α(pk))

( Patrangenaru and Ellingson (2015) [21])
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Now, lets consider the set G(k,m) of k-ads (p1, ..., pk) with k > m + 2 for which π = (p1, ..., pm+2)

is a projective frame. Once the first m + 2 points are used to create a projective frame, we now use the

remaining projective coordinates (pπm+3, . . . , p
π
k) to uniquely represent our projective shape of k-ads with

respect to its projective frame π. The m-dimensional projective shape space of a generic k-ad is determined

by the projective coordinates (pπm+3, ..., p
π
k) of k − m − 2 of its points, relative to other (m + 2) of its

points that form a projective frame. Using the projective coordinates (pπm+3, . . . , p
π
k) on can show that PΣk

m

is a manifold diffeomorphic to (RPm)k−m−2. The drawback of this representation is that the resulting

analysis may depend on the projective frame selection. But on the other hand the projective shape space has

a manifold structure allowing us to use the asymptotic theory for means on manifolds we introduced in the

previous subsections.

REMARK 2.4.2. We will now use interchangeably the notation PΣk
m and (RPm)k−m−2 to refer to the pro-

jective shape space of k-ads in m-dimensions. Furthermore, we will now represents an element y ∈ PΣk
m

by y = ([x1], . . . , [xq]) where q = k − m − 2 and [xi] = pπj is a projective coordinate with respect to

π = (p1, . . . , pm+2).

2.4.2 VW mean and sample mean on (RP 3)k−5

We will look at samples of random projective shapes of k-ad (k ≥ 5) in general position including a

projective frame in RP 3. The corresponding 3D projective space of k-ad is given by PΣk
3 = (RP 3)k−5 and

is an embedded manifold. The embedding of choice is the Veronese-Whitney embedding on (RPm)q with

q = k−m− 2 and the embedding is denoted jk. But before we formally define this map, we will recall the

VW embedding on RPm is defined by

j : RPm → S+(m+ 1,R)

j([x]) = xxT , ‖x‖ = 1, and x ∈ R
m+1

j maps RPm into a
(

1
2(m+ 1)(m+ 2)

)

-dimensional Euclidean hypersphere in the space S(m + 1,R),

where the Euclidean distance between two symmetric matrices A and B is

ρ0(A,B) = Tr((A−B)2) (2.42)

(see Bhattacharya and Patrangenaru (2005) [6]).
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PROPERTY 2.4.1. The VW embedding on RPm is an equivariant embedding. It means that the special

orthogonal group SO(m+1) of orthogonal matrices with determinant +1 acts as a group of isometries on

RPm and it also acts on the left on S+(m + 1,R), the set of nonnegative definite symmetric matrices with

real coefficients. This left action is given by W ·A =WAW T for W ∈ SO(m+1) and A ∈ S+(m+1,R)

(see Bhattacharya and Patrangenaru (2005) [6]). Also

j(W · [x]) =W · j([x]), ∀W ∈ SO(m+ 1), ∀ [x] ∈ RPm (2.43)

DEFINITION 2.4.6. The VW embedding on (RPm)q is an equivariant embedding given by

jk : (RPm)q → (S+(m+ 1,R))q

jk(y) = (j([x1]), ..., j([xq])), y = ([x1], . . . , [xq]) (2.44)

where [xs] ∈ RPm for s = 1, . . . , q with ‖xs‖ = 1 and xs ∈ R
m+1 and j is the VW embedding on

RPm. This function embed the manifold (RPm)q in the Euclidean space E = ((S(m+ 1,R))q, 〈〈 , 〉〉)
with scalar product and metric given by

〈〈A,B〉〉 =
q
∑

i=1

Tr(AiBi)

dq0(A,B) =

q
∑

i=1

Tr((Ai −Bi)
2) (2.45)

with A = (A1, . . . , Aq) and B = (B1, . . . , Bq). ( see Crane and Patrangenaru (2011) [7].)

For our Extrinsic analysis we will require a definition of the projection of the VW embedding of the projec-

tive shape space.

DEFINITION 2.4.7. Let Fq ⊂ (S+(m+ 1,R))q be the set of focal points of jk ((RP
m)q), the projection

Pjk : (S+(m+ 1,R))q\Fq → jk (RP
m)q) is given by

Pjk(A) = (Pj(A
1), ..., Pj(A

q)) = jk([m1], ..., [mq]) (2.46)

where for i = 1, . . . , q the projection Pj : S+(m + 1, R)\F → j(RPm) assigns to each positive semi-

definite matrix Ai with a highest eigenvalue of multiplicity 1, the matrix j([mi]), where mi is a unit eigen-

vector of Ai corresponding to its largest eigenvalue. And F ⊂ S+(m + 1,R) is the set of focal points of

j(RPm). ( see Crane and Patrangenaru (2011) [7].)
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Now that we have properly, define an embedding jk and its corresponding projection Pjk we will introduce

the Extrinsic mean and sample mean on the projective shape space.

DEFINITION 2.4.8. Let Y = ([X1], . . . , [Xq]) with be a random object from a jk-nonfocal probability

measure Q on (RPm)q where q = k −m− 2. The corresponding VW mean is given by

µjk = ([γ1(4)], ..., [γq(4)]) (2.47)

∀ s = 1, .., q, (λs(a), γs(a)), a = 1, ...,m + 1 are eigenvalues in increasing order and corresponding

eigenvectors of E(Xs(Xs)
T ). ( see Crane and Patrangenaru (2011) [7].)

DEFINITION 2.4.9. Let {Yr}nr=1 be an i.i.d. random sample defined on (RPm)q from Veronese-Whitney-

nonfocal distribution Q. The corresponding sample mean extrinsic projective shape, in the multi-axial rep-

resentation, is given by

Y jk,n = ([g1(4)], ..., [gq(4)]) (2.48)

where for s = 1, . . . , q (ds(a), gs(a)), a = 1, ..., 4 are the eigenvalues in increasing order and correspon-

ding eigenvectors of Js =
1

n

n
∑

r=1

Xs
r (X

s
r )

T . ( see Crane and Patrangenaru (2011) [7].)

2.4.3 Lie group structure of the 3D projective shape space

In this section we introduce a very useful feature of the 3D projective shape space under our usual projective

frame representation. Unlike in other dimensions, the 3D real projective space RP 3 has a Lie group struc-

ture. This additional property is important and will allows to perform useful binary operations we would not

generally have for most smooth manifolds. we now define this group structure on manifolds.

DEFINITION 2.4.10. A Lie group is a smooth manifold G that is also a group in the algebraic sense, with

the property the the multiplication map ⊙ and the inversion map i : G → G are both smooth. (see Lee

(2002) [18]

Note that under our spherical representation, RP 3 is the quotient S3/{x ∼ −x} and if x, y ∈ S
3(a group

of quaternions of norm one) then if follows that the multiplication

[p1]⊙ [p2] = [p1 · p2], for p1, p2 ∈ S
3. (2.49)
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where (·) is the quaternion multiplication is a well defined Lie group multiplication on RP 3. For more on

the quaternion multiplication please refer to Crane and Patrangenaru (2011) [7]. And for [pi] = [x1 : y1 :

z1 : t1], i = 1, 2 an explicit formula for our Lie group multiplication is given by

[p1]⊙ [p2] = [(t1x2 − x1t2 + y1z2 − z1y2) : (t1y2 − y1t2 + z1x2 − x1z2)

: (t1z2 − z1t2 + x1y2 − y1x2) : (t1t2 − x1x2 − y1y2 − z1z2)] (2.50)

Also for [p] = [x : y : z : t] ∈ RP 3 with ‖p‖ = 1, its conjugate is [p̄] = [−x : −y : −z : t] ∈ RP 3, the

inverse map on RP 3 is given by

[p]−1 = [p̄], (2.51)

and the identity of this Lie group is 1RP 3 = [0 : 0 : 0 : 1]. Recall that the projective shape space is

diffeomorphic to (RP 3)q, (q = k − 5) . Therefore with this identification, PΣk
3 inherits a Lie group

structure from the group structure of RP 3. The Lie group multiplication in (RP 3)q is given by

([p1], . . . , [pq])⊙q ([p
′
1], . . . , [p

′
q]) = ([p1]⊙ [p′1], . . . , [pq]⊙ [p′q]) (2.52)

And the identity element of this group is given by

1(RP 3)q = ([0 : 0 : 0 : 1], . . . , [0 : 0 : 0 : 1]), (2.53)

and given p = ([p1], . . . , [pq]) the inverse is

p−1 = p̄ = ([p̄1], . . . , [p̄q]) (2.54)

( see Crane and Patrangenaru (2011) [7].)

2.5 Homogeneous spaces and two sample means tests for unmatched pairs

The benefits of an added Lie group structure have been exploited especially in hypothesis testing for two

sample means of matched pairs see Crane and Patrangenaru (2011) [7]. Recall that for a large sample of

observations from a matched pair (X,Y ) of random vectors in R
m, one may estimates the difference vector

D = Y −X to eliminate much of the influence of extraneous unit to unit variation without increasing the

dimensionality. Crane and Patrangenaru extended this technique to paired r.o.’s on an embedded Lie group

31



that is not necessarily commutative. Assuming X and Y are paired r.o.’s on a Lie group (G,⊙). The change

from X to Y was defined to be C = X−1 ⊙ Y. And a test for no mean change from X to Y is one for the

null hypothesis

H0 : µj = 1G

where 1G is the identity of G and µj is the extrinsic mean of C with respect to the embedding j (see

Patrangenaru and Qiu (2014) [25] and Crane and Patrangenaru (2011) [7]). In Mathematical Statistics it

makes sense to consider the equality of means on a smooth object space M, with an action of a Lie group

G, only for those means that lie on the same orbit ( see Patrangenaru and Ellingson (2015) [21], Chapter 3),

which a good reason of considering smooth object spaces made of one orbit only.

For pairs of unmatched random objects X and Y on Lie groups we cannot use the new random object

C mentioned above. To circumvent this difficulties, we look to homogeneous spaces.

DEFINITION 2.5.1. (see Patrangenaru and Qiu (2014) [25])

A left action of a group G on a M, is a function α : G ×M → M such that

α(1G , x) = x, ∀ x ∈ M,

α(g, α(h, x)) = α(g ⊙ h, x), ∀ g ∈ G, ∀x ∈ M (2.55)

DEFINITION 2.5.2 (Homogeneous space). (see Patrangenaru and Qiu (2014) [25])

Assume α : G ×M → M is a left action of a group G on M and define the orbit G(x) of a point x ∈ M
as the set {α(k, x), k ∈ K}. Then M is a G- homogeneous space if there is a point x s.t. G(x) = M.

In the case M is a manifold, we assume in addition that (G,⊙) is a Lie group and the action α is smooth. A

Lie group (G,⊙) is automatically a G-homogeneous space, for the action α = ⊙. Examples of object spaces

that are homogeneous spaces:

• spaces of directions ( M = S
m,m = 1, 2), spaces of dihedral angles (M = (S1)k),

• the spaces of shapes of planar k-ad’s (M = CP k−2. (see [16])

• spaces of shapes 2D contours (M = (P (H), H Hilbert space), spaces of cell filaments (M = RP 2×
(0,∞) (see Huckemann [14].)

DEFINITION 2.5.3. (see Patrangenaru and Qiu (2014) [25])

M has a simply transitive Lie group G, if there is a Lie group action α : G ×M → M, with the property

that given x ∈ M, for any object y ∈ M, there is a unique g ∈ G such that α(g, x) = y.
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Let M be a G-homogeneous space, where M is an embedded manifold and (G,⊙) a Lie group that acts

simply transitively on M via a smooth left action α : G × M → M. For a = 1, 2, let Xa,1, · · · , Xa,na

be independent random samples defined on M, from a distribution Qa, with the extrinsic means µ1,j , µ2,j

and with the corresponding extrinsic covariance matrices Σ1,j ,Σ2,j , where j : M → R
N is the embedding.

Then, a two-sample hypothesis testing problem can be formulated as follows

H0 : µ1,j = α(µ2,j , δ) vs. H1 : µ1,j 6= α(µ2,j , δ),

for δ ∈ G. Now for a fixed object µ2,j the mapping αµ2j : G → M, αµ2j (g) = α(µ2j , g), ∀ g ∈ G is

one-to-one, and we can now rewrite the hypothesis problem from above as follows

H0 : (α
µ2,j )−1(µ1,j) = δ vs. H1 : (α

µ2,j )−1(µ1,j) 6= δ, (2.56)

(see Patrangenaru and Qiu (2014) [25]) We recall the following

THEOREM 2.5.1. (see Patrangenaru and Qiu (2014) [25])

For a = 1, 2, let Xa,1, · · · , Xa,na identically independent distributed random objects (i.i.d.r.o.’s) from the

independent ja-nonfocal probability measures Qa with finite extrinsic moments of order s, s ≤ 4 on the m

dimensional manifold M on which the Lie group G acts simply transitively. Let n = n1 + n2 and assume

limn→∞
n1
n → π ∈ (0, 1). Let ϕ be an affine chart defined on an open neighborhood of 1G with ϕ(1G) = 0g,

and Lδ the left translation by δ ∈ G. Then under H0 (2.56),

(i) The sequence of random vectors n1/2
(

ϕ ◦ L−1
δ (H(X̄1,E , X̄2,E))

)

converges weakly to Nm(0m,ΣJ),

for some covariance matrix ΣJ that depends linearly on the extrinsic covariance matrices Σ1,E ,Σ2,E .

(ii) If (i) holds and Σ is positive definite, then the sequence

n
(

ϕ ◦ L−1
δ (H(X̄1,E , X̄2,E))

)T
Σ−1
J

(

ϕ ◦ L−1
δ (H(X̄1,E , X̄2,E))

)

converges weakly to χ2
m distribu-

tion.

Furthermore, assuming that ΣJ is positive definite, given that Σ̂J is a consistent estimator for ΣJ , the

asymptotic p-value for the hypothesis testing problem H0 is given by p = P (T ≥ t2δ) where

t2δ = n
(

ϕ ◦ L−1
δ (H(X̄1,E , X̄2,E))

)T
Σ̂−1
J

(

ϕ ◦ L−1
δ (H(X̄1,E , X̄2,E))

)

(2.57)

and T has a χ2
m distribution. (see Patrangenaru and Qiu (2014) [25] )

If the distributions are unknown and the samples are small an alternative nonparametric bootstrap technique
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(see [8]) may be used. If max(n1, n2) ≤ m
2 , the pulled sample covariance Σ̂J in 2.57 does not have an

inverse, and pivotal nonparametric bootstrap methodology can not be applied. In this case one can use

non pivotal bootstrap methodology for the two sample problem H0 which involves a bootstrap confidence

region.

THEOREM 2.5.2. (see Patrangenaru and Qiu (2014) [25])

Under hypothesis of Theorem 3.1(i), assume in addition, that for a = 1, 2 the support of the distribution

of Xa,1 and the extrinsic mean µa,E are included in the domain of the chart ϕ and ϕ(Xa,1) has absolutely

continuous component and finite moments of sufficiently high order. Then the joint distribution of

V = n1/2
(

ϕ ◦ L−1
δ (H(X̄1,E , X̄2,E))

)

(2.58)

can be approximated by the bootstrap joint distribution of

V ∗ = n1/2
(

ϕ ◦ L−1
δ (H(X̄∗

1,E , X̄
∗
2,E))

)

(2.59)

with an error Op(n
−1/2), where, for a = 1, 2 X̄∗

a,E are the extrinsic means of the bootstrap re samples

X∗
a,ra , ra = 1, . . . , na. given Xa,ra , ra = 1, . . . , na.

COROLLARY 2.5.1. The large sample p-value for the hypothesis testing problem H0 (2.56) is given by

p = Pr(T > nV T Σ̂JV ) where T has a χ2
m) distribution and V is given by equation (2.58) and Σ̂J is

consistent estimator of the extrinsic covariance matric of H(X̄1,E , X̄2,E).

When the sample size is small, we use Efron’s bootstrap , and the hypothesis problem in (2.56) can be solved

by using the following 100(1− α)% bootstrap confidence region for ϕ ◦ L−1
δ (H(µ1,j , µ2,j)).

The concepts presented in sections 2.2 through 2.4 are essential to our statistical analysis in object spaces.

We will be able to take advantage of the asymptotic theory developed in section 2.3 (i.e CLT for extrinsic

sample means and confidence regions) to conduct hypothesis testing problems on manifolds. Recall from

section 2.4 that this space has a Lie group structure with the multiplication operation inherited from the

quaternion multiplication on S
3 ⊂ R

4. Therefore a 3D object analysis based on landmarks can make use of

the recently developed nonparametric techniques for two sample tests on Lie groups (see [25, 21]). We em-

phasize that the reconstructed configuration of 3D landmarks obtained from pairs of non calibrated camera

images, is unique up to a projective transformation in 3D, as noticed in [23]; this allows to analyze without
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ambiguity the projective shapes of such configurations (see [23]). The developed statistical analysis is per-

formed for samples of pictures of faces, without making any distributional assumption for the corresponding

3D projective shapes of human facial surfaces.
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CHAPTER 3

TWO SAMPLE TEST FOR UNMATCHED PAIRS OF 3D

PROJECTIVE SHAPES

In this chapter I use the two sample hypothesis testing method for extrinsic means, to differentiate between

two 3D scenes of the same kind ( faces, flowers, etc...), within the framework of 3D projective shape analysis

as developed in [7, 21, 25], based on small samples of digital camera images. The analysis is conducted on

the space of 3D projective shapes of k-ads in general position PΣk
3 that contain a projective frame at given

landmarks labels, which is homeomorphic to M = (RP 3)k−5 (see Mardia and Patrangenaru [20]).

In section 3.1 I apply the theory presented in section 2.5 to conduct a two sample test for unmatched pairs

on (RP 3)k−5, viewed as a Lie group. In section 3.2 I perform the statistical analysis for sets of pictures of

faces along with conveniently selected anatomical landmarks. I make no distributional assumptions for our

hypothesis testing methods . The data consist of three sets of images, one female face and two male faces.

In Section 3.3 I discuss the process involved in collecting the data sets via MATLAB and introduce a new

data collection tool named Agisoft which offers significant benefits and improve the speed and accuracy

involved in data collection.

3.1 Two sample test for VW means for unmatched pairs on (RP 3)q

For a statistical analysis of 3D projective shapes, we are lead into considering r.o.’s Y on (RP 3)q that have a

VW-mean ( have an extrinsic mean w.r.t. the VW-embedding jk). And since M = (RP 3)q, q = k− 5 has a

Lie group structure (see Chapter 2), and that a Lie group is a homogeneous manifold with a simply transitive

Lie group action, we can take advantage of the methodology introduced in the previous chapter. The large

sample distribution of the tangential component of the mean change between the extrinsic sample means of

two random objects on an embedded Lie group M can be found in [25]. The probability measure PY on

(RP 3)q, associated with such a r.o. is said to be VW-nonfocal probability measure on (RP 3)q. The VW-

mean of a VW-nonfocal probability measure PY , Y = ([X1], ..., [Xq]), (Xs)TXs = 1, ∀ s = 1, . . . , q,

is given by

µjk,E = (γ1(4), . . . , γq(4)), (3.1)
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where (λs(a), γs(a)), a = 1, 2, 3, 4 are the eigenvalues in increasing order, and the corresponding unit

eigenvectors of the matrix E[Xs(Xs)T ], respectively (see [23], [20]). In particular, given a random sample

of 3D projective shapes y1, . . . , yn, with yi = [xi], x
T
i xi = 1, ∀i = 1, . . . , n, their sample VW-mean is

ȳjq = (g1(4), . . . , gq(4)), (3.2)

where (ds(a), gs(a)), a = 1, 2, 3, 4 are the eigenvalues in increasing order, and the corresponding unit

eigenvectors of the matrix

1

n

n
∑

i=1

xix
T
i .

The particular smooth Lie group action we will use in our analysis is α ≡ ⊗, the Lie group multiplication

on (RP 3)q, and if for simplicity we label the VW-means of the two populations by µ1,E , µ2,E , the null

hypothesis in (2.56) can be expressed,

H0 : µ1,E = µ2,E vs. H1 : µ1,E 6= µ2,E (3.3)

where for a = 1, 2, µa,E are extrinsic means from VW distributions Qa on (RP 3)q. We can rewrite the

hypothesis in (4.1) as follows

H0 : µ
−1
2,E ⊗ µ1,E = 1(RP 3)q vs. H1 : µ

−1
2,E ⊗ µ1,E 6= 1(RP 3)q (3.4)

We further define the smooth map H : M2 → M by H(x1, x2) = (αx2)−1(x1). We now have (4.2)

expressed as follow that the expression found in the hypothesis above

H0 : H(µ1,E , µ2,E) = 1(RP 3)q vs. H1 : H(µ1,E , µ2,E) 6= 1(RP 3)q (3.5)

For a = 1, 2, let Ya,1, · · · , Ya,na be independent random samples from VW distributions Qa on (RP 3)q

with the extrinsic means µ1,E , µ2,E and the corresponding extrinsic covariance matrices Σ1,E ,Σ2,E . We are

led into characterizing the asymptotic behavior of Ȳ −1
2,E ⊗ Ȳ1,E , where Ȳ1,E , Ȳ2,E are the sample extrinsic

mean estimators corresponding to the two random samples.

DEFINITION 3.1.1. The affine chart ϕq defined on an open neighborhood U of 1(RP 3)q with ϕq(U) ⊂
(R3)q and it is given by

ϕq([x1], . . . , [xq]) = (ϕ([x1]), . . . , ϕ([xq])). (3.6)

where ϕ is an affine chart defined on an affine open neighborhood of 1RP 3 , given by ϕ([(x1, x2, x3, x4)T ]) =

(x
1

x4 ,
x2

x4 ,
x3

x4 ).
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Note that ϕq

(

1(RP 3)q
)

= (03, . . . , 03) in R
3q From Patrangenaru et al.(2016)[26] we have the following

PROPOSITION 3.1.1. For a = 1, 2, let Ya,1, · · · , Ya,na identically independent distributed random ob-

jects (i.i.d.r.o.’s) from the independent jk-nonfocal probability measures Qa. Let n = n1 + n2 and assume

limn→∞
n1
n → π ∈ (0, 1). Then under H0 in (3.4),

(i) The sequence of random vectors n1/2
(

ϕq(Ȳ
−1
2,E ⊗ Ȳ1,E)

)

converges weakly to N3q(03q,ΣJk), for

some covariance matrix ΣJk that depends linearly on the extrinsic covariance matrices Σ1,E ,Σ2,E .

(ii) If (i) holds and ΣJk is positive definite, then the sequence

n
(

ϕq(Ȳ
−1
2,E ⊗ Ȳ1,E)

)T
Σ−1
Jk

(

ϕq(Ȳ
−1
2,E ⊗ Ȳ1,E)

)

converges weakly to χ2
3q distribution.

(iii) If (i) holds and assume in addition, that for a = 1, 2 the support of the distribution of Ya,1 and the

extrinsic mean µa,E are included in the domain of the chart ϕq and ϕq(Ya,1) has absolutely continuous

component and finite moments of sufficiently high order. Then the joint distribution of

D = ϕq(Ȳ
−1
2,E ⊗ Ȳ1,E)

can be approximated by the bootstrap joint distribution of

D∗ = ϕq(Ȳ ∗−1
2,E ⊗ Ȳ ∗

1,E) (3.7)

with an error Op(n
−1/2), where, for a = 1, 2 Ȳ ∗

a,E are the extrinsic means of the bootstrap resamples

Y ∗
a,ra , ra = 1, . . . , na. given Ya,ra , ra = 1, . . . , na.

COROLLARY 3.1.1. For a = 1, 2, let Ya,1, · · · , Ya,na identically independent distributed random ob-

jects (i.i.d.r.o.’s) from the independent VW probability measuresQa. Form random resamples with repetition

(Y ∗
a,1, · · · , Y ∗

a,na
) from (Ya,1, · · · , Ya,na), for a = 1, 2. The corresponding approximate 100(1− α)% boot-

strap confidence region for ϕ−1
q (θ) = ϕq(µ

−1
2,E ⊗ µ1,E) is C∗

α = ϕ−1
q (U∗

α), where U∗
α ∈ (R3)q is the Carte-

sian product of 3q intervals at 100(1− α
3q )% confidence level for the components of θ = ϕq(µ

−1
2,E ⊗ µ1,E).

This simultaneous confidence intervals yield a confidence region of at least 100(1− α)% level, of coverage

error OP (n
−1/2). We reject our null hypothesis if 03q /∈ U∗

α, that is, if at least one of these intervals does

not contain 0.

3.2 Data set and hypothesis testing results

In this section we analyze the 3D projective mean shape changes to differentiate between faces (see Pa-

trangenaru et.al.(2016)[24]). We conduct two sample hypothesis testing on unmatched pairs (i.e different

sample sizes n1 6= n2.) The analyzed data set consists of images of the faces shown below
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Figure 3.1: Faces used for analysis

For our landmark based analysis we first recover a 3D configuration of k = 10 landmarks from each pairs

of uncalibrated pictures of the same face (see Ma et. l.(2005)[19]). This will result, for the female face,in

8 projective shapes (3-D configurations of labeled points), for the first male we have 10 projective shapes

and finally for the last data set we have 11 projective shapes. The collections and reconstructions of all of

our landmark configurations were done in Matlab. The landmarks are shown in figure 3.2:

Figure 3.2: Landmark placements for all faces

For a given face, and a single set of landmarks {u1, . . . , u10} the first five labeled points u1, . . . , u5 are

used to construct a projective frame π = (ũ1, . . . , ũ5) where ũi = [ui1 : ui2 : ui2 : 1]. Throughout the data

we use the same landmarks for our projective frame and they are, in increasing order; pronasale, right and

left Endocathion, Labiale Superius, left Crista Philtri. The resulting k − 5-tuple of projective coordinates

(pπ6 , . . . , p
π
10) ∈ (RP 3)5 represents one observation used in our analysis. The resulting k − 5-tuple of

projective coordinates (pπ6 , . . . , p
π
10) ∈ (RP 3)5 represents one observation used in our analysis. In other
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word, the projective shape of the 3D 10-ad, is determined by the 5 projective coordinates of the remaining

landmarks of the reconstructed configurations.

3.2.1 2 sample test for facial data

Given two faces, we assume that the sets Y1,1, . . . , Y1,n1 and Y2,1, . . . , Y2,n2 of 3D projective shapes recov-

ered from data sets consisting of n1 and n2 pairs of images respectively are coming from a VW Q1 and Q2

distribution on (RP 3)5.We statistically differentiate between faces if we reject the following null hypothesis

;

H0 : µ
−1
1,E ⊗ µ2,E = 1(RP 3)5

For our result we used the simultaneous confidence intervals mentioned in Corollary (3.1.1). We failed

to reject the null hypothesis if all of our confidence intervals contain the value 0.

Results for comparing Male faces:

For the two male faces with data sets of sizes n1 = 10 and n2 = 11 we conduct our two sample hypothesis

testing and we get the following simultaneous intervals

Simultaneous confidence intervals for changes between the

2 mean projective shapes of the two faces landmarks 6 to 8
LM6 LM7 LM8

x (−1.111498, 0.805386) (−1.117512, 1.099536) (−1.296547, 0.966296)
y (−1.215218, 0.710931) (−1.355167, 1.336021) (−0.635282, 1.372627)
z (−1.161234, 1.150762) (−1.432217, 1.349541) (−1.394141, 1.349442)

Simultaneous confidence intervals for changes between the

2 mean projective shapes of the two faces landmarks 9 and 10
LM9 LM10

x (0.952164, 0.996354) (−0.962541, 1.005917)
y (−0.760124, 1.129782) (−1.070631, 0.982195)
z (−0.817503, 1.319117) (−1.319374, 1.089272)

Another good set of visual tools we use in our analysis are the Bootstrap marginals boxes which can be

found in figure 3.3.

We notice that one of the simultaneous confidence intervals for landmark 9, corresponding to the right Exo-

canthion, does not contain 0. We then reject the null hypothesis, showing that there is significant projective

shape change between the two male faces. And for the bootstrap marginal boxes we notice that the first

three landmarks have a pretty dense concentration around the center, indicating no significant mean change

which is not the case for the last two boxes.
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Figure 3.3: Bootstrap projective shape marginals for male face data

Result for cross gender comparison:

For samples of sizes n1 = 11 (male) and n2 = 8 (female) conduct the following null hypothesis H0 :

µ−1
1,11 ⊗ µ2,8 = 1(RP 3)5 , and in the figure below 3.4 we indicate the two faces being analyzed.

Figure 3.4: Faces used in cross gender analysis

We then get the following bootstrap marginals boxes (figure 3.5) for our cross gender analysis along with
the simultaneous confidence intervals.

Figure 3.5: Bootstrap projective shape marginals for cross gender data

Simultaneous confidence intervals for cross gender landmarks 6 to 8

LM6 LM7 LM8

x (−1.251984, 1.202986) (−1.228628, 1.234229) (−1.273092, 1.332798)
y (−0.633834, 0.902621) (−0.928523, 0.995304) (−0.226587, 0.865510)
z (−0.231190, 0.432009) (−0.684483, 1.045302) (−0.590623, 1.132418)

Simultaneous confidence intervals for cross gender landmarks 9 and 10

LM9 LM10

x (0.998446, 1.028374) (−0.988191,−0.931250)
y (−0.702335, 0.540613) (−1.162803, 1.008259)
z (−1.057821, 0.849069) (−0.118635, 0.969739)
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The landmarks 9 and 10 corresponding to the right and left Exocanthion have intervals not containing 0. We

reject the null hypothesis, and conclude that there is a significant projective shape change between the two

faces.

Results for cross validation:

We separate the original sample into two smaller data sets of sizes n1 = 5 and n2 = 6. They are displayed

in Figs ( 3.6).

Figure 3.6: Cross validation samples

The bootstrap axial marginals (Fig 3.7) and simultaneous confidence regions for cross validation are given

below.

Simultaneous confidence interval for cross validation face 2 for landmarks 6 to 8

LM6 LM7 LM8

x (−17.496785, 3.552070) (−4.027879, 4.860970) (−1.990796, 7.497709)
y (−10.967285, 4.340129) (−3.776026, 9.830274) (−7.558584, 0.865119)
z (−2.724184, 13.093615) (−3.006049, 5.891478) (−0.698745, 4.293201)

Simultaneous confidence intervals for cross validation face2 for landmarks 9 and 10

LM9 LM10

x (−2.459882, 1.230096) (−3.264292, 1.036499)
y (−1.631839, 0.983147) (−1.387133, 2.942318)
z (−1.451487, 1.196335) (−0.916768, 1.658124)

Figure 3.7: Bootstrap marginals for crossvalidation of male face 2
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Figure 3.8: Landmark placements in Matlab

All the simultaneous intervals (affine coordinates) contain 0. We fail to reject the null hypothesis; there no

statistically significant mean projective shape change. Furthermore, the bootstrap marginals all show values

that are concentrated around 03.

3.3 Landmark coordinates from ideal non calibrated camera images

Our data sets are built from sets of digital camera images of faces and other objects. The 3D face analysis

we are conducting is a landmark based analysis. Our landmarks are composed of reconstructed 3D points

in a particular configuration and the collection of our landmarks in Matlab is done in a few stages.

3.3.1 Matlab data set

For any one reconstruction of a particular 3D object (faces, flowers, leaves, etc...) two pictures from two

different angles are needed. Once the pair of pictures are stored and saved in the an appropriate window

within the Matlab platform, the digital images are loaded using the imread command in Matlab. The

landmarks are manually selected using the function cpselect(). We illustrate a set of landmarks in Fig 3.8.

Generally, a finite configuration of eight or more points in general position in 3D can be reconstructed,

by using the fundamental matrix of the coordinates of the images of these points provided by two ideal

non calibrated digital camera views. We assign the same landmarks throughout our whole data sample; the

images from below show the placement of our matching points.

By this method we usually get very reliable 3D coordinates for our landmarks. However, one drawback

associated with this technique is that it is hard to visualize the reconstructed 3D configurations. In fact, to

get a descent visualization of our reconstruction may require the collection of a large amount of landmarks,

which can be time consuming.
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To illustrate this particular situation we have the following 3D reconstruction involving 80 landmarks placed

on a pair of pictures of an oak leaf and resulting in the following 3D images without color and/or texture.(see

Fig 3.9)

Figure 3.9: Oak leaf reconstruction with midriff

3.3.2 Advanced 3D data collection methods from digital camera outputs

Recently for our data analysis we started using a professional version of Agisoft, which extracts the 3D

image of a surface from two or more non-calibrated digital camera views, based on RGB texture matching

followed by a 3D reconstruction algorithm. This software gives us a much better visualization of our recon-

structed data set without relying on landmark collection and the use of an eight point algorithm to estimate

the fundamental matrix (see Ma et al.(2005)[19]).

Although the reconstruction could be done with just two uncalibrated camera images, we get a better res-

olution and complete reconstruction of the surface of a head or face, by increasing the number of im-

ages of the same individual. A training data set of fifteen surfaces of faces including texture was col-

lected from digital images (see ani.stat.fsu.edu/∼vic/Davids-PhDs). An additional sample of three sam-

ples of 3D faces was collected along with facial landmark coordinates; this will be used in Chapter 6 (see

ani.stat.fsu.edu/∼vic/Davids-PhDs/MANOVA) We illustrate this fact we use set of pictures in Fig. 3.10.

After the reconstruction is done, we may visualize our result and also indicate the relative camera placement

in Fig. 3.11. The Agisoft output then gives us the 3D coordinates of our ten landmarks in Figs. 3.12-3.13.

In this chapter we took advantage of the fact the M = (RP 3)q being a Lie group acts simply transitively

on itself with the action being the left multiplication ⊗. We can then use the recent work on asymptotic

behavior on homogeneous space to have an expression of the convergence of
(

ϕ ◦ L−1
δ (H(X̄1,E , X̄2,E))

)

.

This allows us to perform hypothesis testing on random samples of different sizes defined on M. The theory
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Figure 3.10: Pictures used for 3D reconstruction

Figure 3.11: 3D face reconstruction with camera placement

Figure 3.12: Landmark placement and coordinates
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Figure 3.13: Pictures for 3D reconstructions

involves applying a Cramer’s delta method for functions between manifolds that will depend heavily on the

choice of a convenient chart ϕ. The expression of the covariance matrix ΣJ we obtain depends linearly on

the extrinsic covariance matrices Σ1,E ,Σ2,E .. Recall that an extrinsic matrix ΣE is always defined with

respect to a basis f1(µE), ..., fm(µE) of local frame field referred to as orthoframe (see definition 2.3.2).

In the next chapter we will work on developing an asymptotic theory that builds on the work in [25] but is

not dependent on the choice of a chart. The work in this chapter led to a couple of publications “ 3D face

analysis from digital camera images“ (see [26]) and “Projective shape analysis of contours and finite 3D

configurations from digital camera images “(see [24]).
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CHAPTER 4

A TWO SAMPLE TEST FOR MEAN CHANGE BASED ON A

DELTA METHOD ON MANIFOLDS

I introduce a new method of two sample tests for 3D mean projective shapes. This method builds upon the

various results of the two sample hypothesis testing methods, as developed in Patrangenaru et al. (2010)[23],

Crane and Patrangenaru et al.(2011) [7], and Patrangenaru et al.(2014) [25].

In section 4.1 I start by expressing a version of the Cramer’s delta method for a function F : M1 → M2

that depends on a compositions of functions involving the embeddings of both the domain and co domain

space. In section 4.2 I will use the results of our new version of the Cramer’s delta method to construct

an asymptotic behavior for µ−1
2,E ⊙ µ1,E with explicit definition of the corresponding extrinsic covariance

matrix.The result in this section can also be applied to any smoth function between manifolds. In the last

section I express the some asymptotic behaviors for the space RP 3.

4.1 Cramer’s delta method for data on manifolds

Recall that (G,⊙), a Lie group is a manifold with a group structure and for which the multiplication map

(g, h) → g ⊙ h and the inverse map g → g−1 are smooth as maps between manifolds.

We consider the following null hypothesis

H0 : µ1,E = µ2,E ⊙ δ (4.1)

H1 : µ1,E 6= µ2,E ⊙ δ

Since for a = 1, 2, Xa,1, . . . , Xa,na i.i.d. random objects on G we can rewrite the hypothesis in (4.1) as

follows

H0 : µ
−1
2,E ⊙ µ1,E = δ vs. H1 : µ

−1
2,E ⊙ µ1,E 6= δ (4.2)

For that we will need to know the asymptotic behavior of X̄−1
2,E ⊙ X̄1,E , where X̄1,E , X̄2,E are the sample

extrinsic mean estimators corresponding to the two random samples. To address this problem, we are first

considering an extension of Cramer’s delta method, in the context of manifold valued data. An initial
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extension can be found in Patrangenaru et al.(2014)[25]. Here we are interested in a method which applies to

embeddings ja : Ma → R
Na , a = 1, 2. Let X1, . . . , Xn be i.i.d. random objects on (Ma, ρja) and assume

µE ,ΣE are respectively the extrinsic mean, and extrinsic covariance matrix of X1 (see Bhattacharya and

Patrangenaru (2005)). Let F ⊂ R
N1 be the set of j1-focal points then Pj1 is the corresponding projection

with Pj1 : Fc → j1(M1) ⊂ R
N1 .

THEOREM 4.1.1. (Delta method for embedded manifolds). Assume F : M1 → M2 is a differentiable

function between manifolds, and let (f
(a)
1 , . . . , f

(a)
ma) be orthonormal bases in Tµa,E

(Ma), where µ1,E =

µE , µ2,E = F (µE). For a = 1, 2, assume dimMa = ma with j1 and j2 as previously defined. Let

X1, . . . , Xn be a sequence of random objects on M1 such that

n1/2 tanj1(µE) (j1(Xn)− j1(µE)) →d Nm1(0,ΣE).

Then

n1/2 tanj2(F (µE)) (j2 (F (Xn))− j2 (F (µE))) →d Nm2(0,Σ
F
j2,E)

where ΣF
j2,E

= dF ΣE (dF )T with dF given by

dF = [(dF )ab] =
[

dµF̃12(eb) · ẽa(F̃12(µ))
]

, for a = 1, ...,m2; and b = 1, ...,m1.

where j2 ◦ F ◦ j−1
1 ◦ Pj1 = F̃12.

Proof. Now recall from Bhattacharya and Patrangenaru (2005)[6] that

ΣE = ATΣµA =







e1(Pj1(µ))
T

...

em1(Pj1(µ))
T






Σµ

[

e1(Pj1(µ)) · · · em1(Pj1(µ))
]

(4.3)

where Σµ = (DµPj1) Σ (DµPj1)
T and Σ is the covariance matrix of j1(X1) with respect to the standard

basis e1, ..., eN1 of RN1 . By the CLT, we have

n1/2 (j1(Xn)− j1(µE)) →d NN1(0,Σµ).

Let us define the following map F̃ = j2 ◦F ◦ j−1
1 ; this is a map from j1(M1) → j2(M2) and acts as follows

F̃ (j1(x)) = F̃ (Pj1(j1(x))) = j2 (F (x)) , ∀x ∈ M1.
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Note that F̃ ◦Pj1 is a smooth function from Fc ⊂ R
N1 to j2(M2) ⊂ R

N2 . We can now apply the Cramer’s

delta method and get

n1/2 (j2 (F (Xn))− j2 (F (µE))) →d NN2(0,Σj2)

where Σj2 = (Dµ(F̃ ◦ Pj1)) Σ (Dµ(F̃ ◦ Pj1))
T = (DPj1

(µ)F̃ ) Σµ (DPj1
(µ)F̃ )

T .

Now assume that V2 is an open neighborhood of F (µE) in M2, and V1 = F−1(V2). Assume U2 ⊂ R
N2 , is

an open subset, such that U2 ∩ j2(M2) = j(V2), and p2 → (ẽ1(p2), . . . , ẽN2(p2)) is an orthonormal frame

field on U2,which is adapted to the embedding j2.Define the local frame field y → (f2,1(y)), . . . , f2,m2(y))

on V2, such that

∀ y ∈ V2, ẽs(j2(y)) = dyj2(f2,s(y)), s = 1, . . . ,m2.

Now let
(

ẽ1(F̃ (p1)), . . . , ẽN2(F̃ (p1))
)

be the value of this adapted frame field at a point F̃ (p1) on

j2(V2) around j2 ◦ F (µE) and for p1 ∈ j1(M1) ⊂ R
N1 . Note that dµ(F̃ ◦ Pj1)(eb) ∈ T

F̃ (Pj1
(µ))
j2(M2),

while (e1, . . . , eN1) is the standard basis in R
N1 .

To ease notation we let F̃ ◦ Pj1 = F̃12 and F̃12 : Fc → j2(M2), where Fc represents j1-nonfocal set,

and we now have:

dµF̃12(eb) =

m2
∑

a=1

[(

dµF̃12(eb)
)

· ẽa(F̃12(µ))
]

ẽa(F̃12(µ)) (4.4)

And, for eb ∈ R
N1 with b = 1, . . . , N1, we have

Σj2 = (DPj(µ)F̃ ) Σµ (DPj(µ)F̃ )
T

Σj2 =





[

m2
∑

a=1

dµF̃12(eb) · ẽa(j2(F (µE))ẽa(j2(F (µE))
]

b=1,..,N1



 Σµ





[

m2
∑

a=1

dµF̃12(eb) · ẽa(j2(F (µE))ẽa(j2(F (µE))
]

b=1,..,N1





T

Note that Σj2 ∈M(N2, N2,R), while Σµ ∈M(N1, N1,R).

If we set ν = j2(F (µE)), then the tangential component tan(ν) of ν ∈ R
N2 = TF̃12(µ)

j2(M2) ⊕
(TF̃12(µ)

j2(M2))
⊥, w.r.t the basis ea(F̃12(µ)) ∈ TF̃12(µ)

j2(M2) has the following asymptotic behavior

tan
j2(F (µE))

(

F̃12(j1(Xn1)− F̃12(µ)
)

→d Nm2(0,Σ
F
j2,E)

tan
j2(F (µE))

(j2 (F (Xn1))− j2 (F (µE))) →d Nm2(0,Σ
F
j2,E) (4.5)
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with

ΣF
j2,E =







ẽ1(F̃12(µ))
T

...

ẽm2(F̃12(µ))
T






(DPj(µ)F̃ ) Σµ (DPj(µ)F̃ )

T
[

ẽ1(F̃12(µ)) · · · ẽm2(F̃12(µ))
]

ΣF
j2,E = B ΣµB

T

were B =







ẽ1(F̃12(µ))
T

...

ẽm2(F̃12(µ))
T







[

[

∑m2
a=1 dµF̃12(eb) · ẽa(F̃12(µ))ẽa(F̃12(µ))

]

b=1,..,N1

]

B =











(

dµF̃12(e1)
)

· ẽ1(F̃12(µ)) ...
(

dµF̃12(eN1)
)

· ẽ1(F̃12(µ))

...
(

dµF̃12(e1)
)

· ẽm2(F̃12(µ)) ...
(

dµF̃12(eN1)
)

· ẽm2(F̃12(µ))











(4.6)

Note that,ATA = IN1 and

ΣF
j2,E

= BA AT Σµ A ATBT = (BA) ΣE (BA)T , and

BA =











(

dµF̃12(e1)
)

· e1(F̃12(µ)) ...
(

dµF̃12(em1)
)

· e1(F̃12(µ))

...
(

dµF̃12(e1)
)

· em2(F̃12(µ)) ...
(

dµF̃12(em1)
)

· em2(F̃12(µ))











(4.7)

and letting B A = dF we have our desired result.

4.2 Asymptotic behavior for Lie group

For a = 1, 2, let Xa,1, · · · , Xa,na be independent random samples defined on G, a Lie group, from a distri-

bution Qa, with the extrinsic means µ1,E , µ2,E and corresponding extrinsic covariance matrices Σ1,E ,Σ2,E .

Let j : G → R
N be an embedding. We are interested in the asymptotic behavior of

tanj(µ−1
2,E⊙µ1,E)

(

j(X
−1
2,E ⊙X1,E)− j(µ−1

2,E ⊙ µ1,E)
)

Recall that the map (g1, g2) → g1 ⊙ g2, for g1, g2 ∈ G is a smooth map from G × G → G. Theorem

4.2.1 below, focuses on a more general case involving manifolds M and N along with their corresponding

embedding j1 : M → R
N1 and j2 : N → R

N2 and corresponding chord distances ρj1 and ρj2 .
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THEOREM 4.2.1. Let M and N be respectively, m-dimensional and n-dimensional smooth manifolds

with embeddings j1 : M → R
N1 and j2 : N → R

N2 .Let G : M×M → N be a smooth function between

manifolds. For a = 1, 2 let f
(a)
1 , · · · , f (a)m be orthonormal basis in Tµa,E

(M) where µa,E are extrinsic

means of j1-nonfocal probability distribution Qa on M with corresponding extrinsic covariance matrices

Σa,E and Xa,E are their respective extrinsic sample means.

(i) Let n = n1 + n2, if n1
n → π as na → ∞, and for a = 1, 2 we have the following asymptotic behavior,

n1/2a tanj1(µa,E)

(

j1(Xa,E)− j1(µa,E)
) L−→ Nm(0,Σa,E)

Then

n1/2 tan
j
(2)
1 (µ1,E ,µ2,E)

(

j
(2)
1 (X1,E , X2,E)− j

(2)
1 (µ1,E , µ2,E)

)

L−→ N2m(0,Σ
(2)
j1,E

), (4.8)

where Σ
(2)
j1,E

=

(

1
πΣ1,E 0m
0m

1
1−πΣ2,E

)

and j
(2)
1 : M×M → j1(M)× j1(M) .

(ii) Let (g1, · · · , gn) be an orthonormal basis in TG(µ1,E ,µ2,E)N , if the result in (i) holds we have

n1/2 tanj2(G(µ1,E ,µ2,E))

(

j2
(

G(X1,E , X2,E)
)

− j2 (G(µ1,E , µ2,E))
) L−→ Nn(0,Σ

G
j2,E) (4.9)

with

ΣG
j2,E =

1

π
(dG(1)) Σ1,E(dG

(1))T +
1

1− π
(dG(2))Σ2,E(dG

(2))T (4.10)

and dG
(1)
ab = dµ1,µ2G̃(êb) · ẽa(G̃(µ1, µ2); dG

(2)
ab = dµ1,µ2G̃(êN1+b) · ẽa(G̃(µ1, µ2) for a = 1, ..., n

and b = 1, ...,m. And G̃ = j2 ◦G ◦ j−1
1 (Pj1)× j−1

1 (Pj1).

Proof. For part (i), it follows from Bhattacharya and Patrangenaru (2005) [6] that

n1/2a

(

Pj1(j(Xa,1))− Pj1(µa)
)

→d NN1 (0,Σµa) , (4.11)

where, for a = 1, 2 Σµa = (DµaPj1) Σa (DµaPj1)
T and Σa is the covariance matrix for the random vector

j1(Xa,1) ∈ j1(M). And the projection Pj1 : Fc → j1(M) where F is the set of j1-focal points. Since

n1/n→ π as n1 → ∞ it then follows that

n1/2
(

Pj1 × Pj1(j(X1,1), j(X2,1))− Pj1 × Pj1(µ1, µ2)
)

→d N2N1(0,Σ
⋆) (4.12)

with Σ⋆ =

(

1
πΣµ1 0N1

0N1
1

1−πΣµ2

)

since the samples are independents.

Recall that from Bhattacharya and Patrangenaru (2005) [6] , that for a = 1, 2 Σa,E are the extrinsic

covariance matrices of the j-nonfocal distributions Qa of Xa w.r.t. (f
(a)
1 (µa,E), . . . , f

(a)
m (µa,E)) the special
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orthonormal frame fields around µa,E . For each of these local frame fields there is a corresponding adapted

frame field (e
(a)
1 (Pj1(µa)), . . . , e

(a)
N1

(Pj1(µa)) aroundPj1(µa) = j1(µa,E) (for a definition see section (2.2)).

Now from the two local frame fields we have above, we can construct the following local frame field in

M×M around the point (µ1,E , µ2,E);

[f1(x1, x2), . . . , fm(x1, x2), fm+1(x1, x2), . . . , f2m(x1, x2)]

=
[(

f
(1)
1 (x1), ζ(x2)

)

, . . . ,
(

f (1)m (x1), ζ(x2)
)

,
(

ζ(x1), f
(2)
1 (x2)

)

, . . . ,
(

ζ(x1), f
(2)
m (x2)

)]

, (4.13)

where ζ(x) is the zero section of TpU with U ∈ M and U contains µa,E for a = 1, 2.

For ease of notation we let j be the embedding j ≡ j
(2)
1 : M × M → j1(M) × j1(M) then we get, for

the local frame field in equation (4.13) on an open subset of M×M containing (µ1,E , µ2,E), the following

vectors in R
N1 × R

N1

[

dµ1,E ,µ2,Ej(f1(x1, x2)), . . . , dµ1,E ,µ2,Ej(fm(x1, x2)), dµ1,E ,µ2,Ej(fm+1(x1, x2)), . . . , dµ1,E ,µ2,Ej(f2m(x1, x2))
]

which is expressed in more details as follow;

[(

dµ1,Ej1(f
(1)
1 (x1)), dµ2,Ej1(ζ(x2))

)

, . . . ,
(

dµ1,Ej1(f
(1)
m (x1)), dµ2,Ej1(ζ(x2))

)

,
(

dµ1,Ej1(ζ(x1)), dµ2,Ej1(f
(2)
1 (x2))

)

, . . . ,
(

dµ1,Ej1(ζ(x1)), dµ2,Ej1(f
(2)
m (x2))

)]

, (4.14)

where dµa,E
j1(ζ(xa)) is the zero section of Tj1(p)j1(U) which corresponds to the zero vector in R

N1.

It follows that the expression in (4.14) represents a set of orthonormal vectors in R
N1 × R

N1 and they are

represented below as follow;

[

dµ1,Ej1(f
(1)
1 (x1))

0N1

]

,

[

dµ1,Ej1(f
(1)
2 (x1))

0N1

]

. . . ,

[

dµ1,Ej1(f
(1)
m (x1))

0N1

]

, . . .

[

0N1

dµ2,Ej1(f
(2)
1 (x2))

]

, . . .

[

0N1

dµ2,Ej1(f
(2)
m (x2))

]

For ê1, ê2, . . . , ê2N1 be the canonical basis of RN1 ×R
N1 , let (ê1(p1, p2), ê2(p1, p2), . . . , ê2N1(p1, p2)) be a

local frame field on an open neighborhoodU ⊂ R
2N1 containing (j1(µ1,E), j1(µ2,E)) such that ∀ (x1, x2) ∈

j−1(U)

êr(j(x1, x2)) = dµ1,E ,µ2,Ej(fr(x1, x2)), for r = 1, ...,m (4.15)

and

êN1+r(j(x1, x2)) = dµ1,E ,µ2,Ej(fm+r(x1, x2)), for r =, ...,m (4.16)
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Note that these vectors are orthonormal to each other by results of equation (4.14). Since the other elements

of the local frame field (ê1(p1, p2), ê2(p1, p2), . . . , ê2N1(p1, p2)) can be orthogonalized and normalized,

we may now assume that (ê1(p1, p2), ê2(p1, p2), . . . , ê2N1(p1, p2)) is an orthonormal frame field with ele-

ments ranging from 1 to m and from N1 + 1 to N1 + m defined as in (4.15) and (4.16). It then follows

that for p = (p1, p2), (ê1(p), ê2(p), . . . , ê2N1(p)) is an adapted frame field around (j1(µ1,E), j1(µ2,E)) =

(Pj1(µ1), Pj1(µ2)) = Pj(µ1, µ2) = Pj(µ̂). The vectors

ê1(Pj(µ̂)), ê2(Pj(µ̂)), . . . , êm(Pj(µ̂)), êN1+1(Pj(µ̂)), . . . , êN1+m(Pj(µ̂)) are represented below as follow;

[

e
(1)
1 (Pj1(µ1))

0N1

]

,

[

e
(1)
2 (Pj1(µ1))

0N1

]

. . . ,

[

e
(1)
m (Pj1(µ1))

0N1

]

, . . .

[

0N1

e
(2)
1 (Pj1(µ2))

]

, . . .

[

0N1

e
(2)
m (Pj1(µ2)).

]

(4.17)

Then

dµ1,µ2Pj(êb) = (dµ1Pj1(eb), 0N1) ∈ TPj(µ1,µ2)j(M,M), for b = 1, · · · , N1

and

dµ1,µ2Pj(êN1+b) = (0N1 , dµ2Pj1(eb)) ∈ TPj(µ1,µ2)j(M,M), for b = 1, · · · , N1

are linear combinations of ê1(Pj(µ̂)), ê2(Pj(µ̂)), . . . , êm(Pj(µ̂)), êN1+1(Pj(µ̂)), . . . , êN1+m(Pj(µ̂))

Note that

(dµ1Pj1(eb), 0N1) · êa(Pj(µ̂)) = 0

for a = m+ 1, · · · , 2N1 and b = 1, · · · ,m

(0N1 , dµ2Pj1(eb)) · êa(Pj(µ̂)) = 0

a = N1 +m+ 1, · · · , 2N1 and a = 1, ..., N1 and b = 1, · · · ,m
It then follow that the tangential component of

(

Pj(j(X1,1), j(X2,1))− Pj(µ1, µ2)
)

∈ R
2N1 with re-

spect to the basis ê1(Pj(µ̂)), ê2(Pj(µ̂)), . . . , êm(Pj(µ̂)), êN1+1(Pj(µ̂)), . . . , êN1+m(Pj(µ̂)) has the follow-

ing asymptotic behavior;

n1/2 tanPj(µ̂)

(

Pj(j(X1,1), j(X2,1))− Pj(µ1, µ2)
)

→d N2m(02m,Σ
(2)
j1,E

), (4.18)

where

Σ
(2)
j1,E

= [A(2)]TΣ⋆ A(2)
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where A(2) is a 2N1 × 2m matrix given by;

A(2) =







e
(1)
1 (Pj1(µ1)) · · · e

(1)
m (Pj1(µ1)) | 0N1 · · · 0N1

−− −− −− | −− −− −−
0N1 · · · 0N1 | e

(2)
1 (Pj1(µ2)) · · · e

(2)
m (Pj1(µ2))






(4.19)

A(2) =
(

A1 | A2

)

And we have

Σ
(2)
j1,E

=

(

1
πΣ1,E 0m
0m

1
1−πΣ2,E

)

(4.20)

For part (ii), we will rely on colorblue Theorem (4.1.1) with f1(x1, x2), . . . , f2m(x1, x2) defined in (4.13),

as our orthonormal basis in T(µ1,E ,µ2,E)(M2) and its corresponding embedding is j : M2 → R
2N1 . We

will also let (g1, · · · , gn) be an orthonormal basis in TG(µ1,E ,µ2,E)(N ) with embedding j2 : N → R
N2 and

(ẽ1(G̃(µ1, µ2)), · · · , ẽn(G̃(µ1, µ2))) is adapted to the embedding j2 on N and is such that;

ẽs(G̃(µ1, µ2)) = dyj2(gs), with y = G(µ1,E , µ2,E), and s = 1, ...n, with G̃ = j2◦G◦j−1
1 (Pj1)×j−1

1 (Pj1)

With our result in part (i) we now appeal to the Theorem and we get the following asymptotic behavior;

n1/2 tanj2(G(µ1,E ,µ2,E))

(

j2
(

G(X1,E , X2,E)
)

− j2 (G(µ1,E , µ2,E))
) L−→ Nn(0,Σ

G
j2,E)

and ΣG
j2,E

= (B⋆A(2)) Σ
(2)
j1,E

(B⋆A(2))T with B⋆A(2) = [B(1)A1 | B(2)A2] and for

G̃ = j2 ◦G ◦ j−1
1 (Pj1)× j−1

1 (Pj1) : Fc ×Fc → j2(N )

where Fc is the set of j1-nonfocal points. Let ê1, ..., ê2N1 be the canonical basis of R
2N1 . And for

ẽ1(p2), ..., ẽn(p2), for p2 ∈ j2(V2).

B(1)A1 =











(

dµ̂G̃(ê1)
)

· ẽ1(G̃(µ̂)) ...
(

dµ̂G̃(êm)
)

· ẽ1(G̃(µ̂))
...

(

dµ̂G̃(ê1)
)

· ẽn(G̃(µ̂)) ...
(

dµ̂G̃(êm)
)

· ẽn(G̃(µ̂))











and

B(2)A2 =











(

dµ̂G̃(êN1+1)
)

· ẽ1(G̃(µ̂)) ...
(

dµ̂G̃(êN1+m)
)

· ẽ1(G̃(µ̂))
...

(

dµ̂G̃(êN1+1)
)

· ẽn(G̃(µ̂)) ...
(

dµ̂G̃(êN1+m)
)

· ẽn(G̃(µ̂))











(4.21)
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Letting dG(1) = B(1)A1 and dG(2) = B(2)A2 we have

ΣG
j2,E =

1

π
(dG(1)) Σ1,E(dG

(1))T +
1

1− π
(dG(2))Σ2,E(dG

(2))T (4.22)

DEFINITION 4.2.1. The matrix ΣG
j2,E

given in (4.22) is the extrinsic covariance matrix of the j2-nonfocal

distribution Q2 (of G(X1,1, X2,1)) w.r.t the orthonormal basis g1(G(µE,1, µE,2)), . . . , gn(G(µE,1, µE,2))

written in term of the extrinsic covariance matrices Σ1,E and Σ2,E of X1,1 and X2,1 respectively and where

for a = 1, 2 Σa,E is expressed w.r.t the orthonormal basis f
(a)
1 (µa,E), . . . , f

(a)
m (µa,E).

THEOREM 4.2.2. For a = 1, 2, let Xa,1, · · · , Xa,na be independent random samples defined on G, an

m-dimensional Lie group, from a distribution Qa, with the extrinsic means µ1,E , µ2,E and corresponding

extrinsic covariance matrices Σ1,E ,Σ2,E and respective extrinsic sample mean X1,E and X2,E . Let ĵ :

G → R
N be an embedding on G and for a = 1, 2 let f

(a)
1 , · · · , f (a)m be orthonormal basis in Tµa,E

(G).
Furthermore for n = n1 + n2, if n1

n → π as na → ∞. Let g1, · · · , gm be an orthonormal basis in

Tµ−1
2,E⊙µ1,E

(G) we have the following

n1/2 tanĵ(µ−1
2,E⊙µ1,E)

(

ĵ(X
−1
2,E ⊙X1,E)− ĵ(µ−1

2,E ⊙ µ1,E)
)

→d Nm(0m,Σ
ιH
E ) (4.23)

were H : G × G → G and is given by H(X
−1
2,E , X1,E) = X

−1
2,E ⊙X1,E , then we have,

ΣιH
E =

1

π
(dH(1)) Σι

2,E(dH
(1))T +

1

1− π
(dH(2))Σ1,E(dH

(2))T (4.24)

where

dH(1) =
(

dH
(1)
a,b

)

=
(

dµ̂Ĥ(êb) · ẽa(Ĥ(µ̂))
)

dH(2) =
(

dH
(2)
a,b

)

=
(

dµ̂Ĥ(êN1+b) · ẽa(Ĥ(µ̂))
)

, for a, b = 1, ...,m

where Ĥ ≡ ĵ ◦H ◦ ĵ−1(ι̃ ◦ Pĵ)× ĵ−1(Pĵ) : Fc ×Fc → ĵ(M).

Proof. Recall that for X1,1, · · · , X1,n1 independent random samples defined on G we have the following

asymptotic behavior

tanĵ(µ1,E)

(

ĵ(X1,E)− ĵ(µ1,E)
)

→d Nm(0m,Σ1,E) (4.25)

and for the other independent random samples, X2,1, · · · , X2,n2 we have, after applying Theorem (4.1.1),

the following asymptotic behavior;

tanĵ(µ−1
2,E)

(

ĵ(X
−1
2,E)− ĵ(µ−1

2,E)
)

→d Nm(0m,Σ
ι
2,E) (4.26)
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Σι
2,E = (dI) Σ2,E (dI)T

and

dI =







(dµ2 ι̃ ◦ Pj(e1)) · ẽ1(ι̃ ◦ Pj(µ2)) ... (dµ2 ι̃ ◦ Pj(em)) · ẽ1(ι̃ ◦ Pj(µ2))
...

(dµ2 ι̃ ◦ Pj(e1)) · ẽm(ι̃ ◦ Pj(µ2)) ... (dµ2 ι̃ ◦ Pj(em)) · ẽm(ι̃ ◦ Pj(µ2))







Not that for a = 1, 2 µa is the mean of j(Qa) and where ĵ ◦ ι ◦ ĵ−1 = ι̃ and the new covariance matrix

Σι
2,E is the extrinsic covariance matrix with respect to the local frame field (f ι1, ...., f

ι
m) defined on W2 ∈ G.

Note that W2 is an open neighborhood of ι(µ2,E) = µ−1
2,E and V2 = ι−1(W2) is the open neighborhood

of µ2,E on which the local frame field (f
(2)
1 , ...., f

(2)
m ) is defined. Furthermore, for points p1 ∈ ĵ(V1), and

p2 ∈ ĵ(V2), with ι̃(p2) ∈ ĵ(W2), we have

e
(1)
1 (p1), · · · , e(1)N (p1)

e
(2)
1 (ι̃(p2)), · · · , e(2)N (ι̃(p2))

respectively the adapted frame field around ĵ(µ1,E) and ĵ(µ−1
2,E).

We then get the following combined asymptotic behavior;

n1/2 tanĵ(2)(µ−1
2,E ,µ1,E)

(

ĵ(2)(X
−1
2,E , X1,E)− ĵ(2)(µ−1

2,E , µ1,E)
)

L−→ N2m(0,Σ
(2)
E )

where Σ
(2)
E =

( 1
πΣ

ι
2,E 0m

0m
1

1−πΣ1,E

)

Here, Σ
(2)
E is the extrinsic covariance matrix with respect to the local frame field f1(y2, x1), · · · , f2m(y2, x1)

around (µ−1
2,E , µ1,E) ∈ G × G. And (ê1(ι̃(p2), p1), ê2(ι̃(p2), p1), . . . , ê2N (ι̃(p2), p1)) is the adapted frame

field around (ĵ(µ−1
2,E), ĵ(µ1,E)). And now for P ι

ĵ
= ι̃◦Pĵ with ê1, ..., êN , ..., ê2N the canonical basis in R

2N

we have,

dµ2,µ1P
ι
ĵ
× Pĵ(êb) = (dµ2 ι̃ ◦ Pj1(eb), 0N ) = (dµ−1

2,E
ĵ(f ιb(y2)), 0N ) ∈ TP ι

ĵ
×P

ĵ
(µ21)ĵ

(2)(G,G),

and

dµ2,µ1P
ι
ĵ
× Pĵ(êN1+b) = (0N , dµ1Pĵ(eb)) ∈ TP ι

ĵ
×P

ĵ
(µ21)ĵ

(2)(M,M), for b = 1, · · · , N
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And eb, b = 1, · · · , N represent the canonical basis for RN . These tangent vectors in TP ι

ĵ
×P

ĵ
(µ2,µ1)ĵ

(2)(M,M)

are linear combinations of the vectors

ê1(P
ι
ĵ
× Pĵ(µ2, µ1)), . . . , êm(P ι

ĵ
× Pĵ(µ2, µ1)), êN+1(P

ι
ĵ
× Pĵ(µ2, µ1)), . . . , êN+m(P ι

ĵ
× Pĵ(µ2, µ1))

Now we may use the results from part (ii) of Theorem (4.2.1). Let g1, · · · , gm be an orthonormal basis in

Tµ−1
2,e⊙µ1,E

(G) and a local frame field ẽ1(Ĥ(µ̂)), · · · , ẽN (Ĥ(µ̂)) adapted to the embedding ĵ with

ẽs(Ĥ(µ̂)) = dµ−1
2,E⊙µ1,E

ĵ(gs), s = 1, · · · ,m

We have the following asymptotic behavior,

n1/2 tanĵ(µ−1
2,E⊙µ1,E)

(

ĵ(X
−1
2,E ⊙X1,E)− ĵ(µ−1

2,E ⊙ µ1,E)
)

→d Nm(0m,Σ
ιH
E ) (4.27)

ΣιH
E =

1

π
(dH(1)) Σι

2,E(dH
(1))T +

1

1− π
(dH(2))Σ1,E(dH

(2))T (4.28)

And for Ĥ = ĵ ◦H ◦ ĵ−1(ι̃ ◦ Pĵ)× ĵ−1(Pĵ) : Fc ×Fc → ĵ(M).

dH(1) =
(

dH
(1)
a,b

)

=
(

dµ̂Ĥ(êb) · ẽa(Ĥ(µ̂))
)

dH(2) =
(

dH
(2)
a,b

)

=
(

dµ̂Ĥ(êN1+b) · ẽa(Ĥ(µ̂))
)

, for a, b = 1, ...,m

Recall the following hypothesis testing problem,

H0 : µ
−1
2,E ⊙ µ1,E = δ vs. H1 : µ

−1
2,E ⊙ µ1,E 6= δ

we get the following corollary.

COROLLARY 4.2.1. Under the assumptions of Theorem 4.2.2 and also assuming that j(Xa,1) for a =

1, 2 have finite second order moments and the extrinsic covariance matrices Σa,E are nonsingular, then

for n = n1 + n2 large enough the sample extrinsic covariance matrices Sa,E,na are nonsingular (with

probability converging to one) and

(a) The statistics

n‖S−1/2
ι,H tanj(δ)

(

j
(

X
−1
2,E ⊙X2,E

)

− j(δ)
)

‖2 L−→ χ2
n (4.29)

n‖S−1/2
ι,H tan

j2(X
−1
2,E⊙X2,E)

(

j
(

X
−1
2,E ⊙X2,E

)

− j(δ)
)

‖2 L−→ χ2
n (4.30)
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(b) and a confidence region for µ−1
2,E ⊙ µ1,E of asymptotic level 1− α is given by

(i)Cι,H
n,α := j−1(U ι,H

n,α ),

where U ι,H
n,α = {ν ∈ j(G) : n‖S−1/2

ι,H tanν

(

j
(

X
−1
2,E ⊙X2,E

)

− ν
)

‖2 ≤ χ2
n,1−α}.

Another such confidence region can also be given by

(ii)Dι,H
n,α := j−1(V ι,H

n,α ) where

V ι,H
n,α = {ν ∈ j(G) : n‖S−1/2

ι,H tan
j(X

−1
2,E⊙X2,E)

(

j
(

X
−1
2,E ⊙X2,E

)

− ν
)

‖2 ≤ χ2
n,1−α}.

where Sι,H = 1
n2

(dH
(1)
e ) Gι

2,E(dH
(1)
e )T + 1

n1
(dH

(2)
e )G1,E(dH

(2)
e )T and

dH(1)
e =

(

dx̂
ĵ
Ĥ(êb) · ẽa(Ĥ(x̂ĵ))

)

dH(2)
e =

(

dx̂
ĵ
Ĥ(êN1+b) · ẽa(Ĥ(x̂ĵ))

)

For a, b = 1, ...,m and x̂ĵ =
(

j(X2), j(X1)
)

4.3 3D real projective space RP
3

For [Xr], ‖Xr‖ = 1, r = 1, ..., n, a random sample from a VW-nonfocal probability measure Q on RP 3 ,

let µE be the VW mean and [XE ] its VW sample mean with the corresponding extrinsic covariance matrix

ΣE . We have the following asymptotic behavior

tanĵ(µ−1
E

)

(

ĵ([XE ]
−1)− ĵ(µ−1

E )
)

→d Nm(0m,Σ
ι
E)

where Σι
E = (dI) ΣE (dI)T and dIa,b = (dµι̃ ◦ Pj(eb)) · ẽb(ι̃ ◦ Pj(µ)) a, b = 1, 2, 3. And ι is the inverse

map of the Lie group RP 3.

PROPOSITION 4.3.1. Assume [Xr], ‖Xr‖ = 1, r = 1, ..., n, is a random sample from a VW-nonfocal

probability measure Q on G = RP 3 a 3-dimensional Lie group. Also let ι : RP 3 → RP 3 be the inverse

map on that manifold. The sample covariance matrix Gι
E(j,X), which is the consistent estimator of Σι

E ,

has entries given by;

Gι
E(j,X)a,b = n−1(η4 − ηa)

−2(η4 − ηb)
−2 ×

∑

r

(ma ·Xr)(mb ·Xr)(m4 ·Xr)
2 (4.31)

where ηa, a = 1, .., 4 are eigenvalues of K = n−1
∑n

r=1XrX
T
r in increasing order and ma = 1, ..., 4, are

corresponding linearly independent unit eigenvectors.
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Proof. Note that since j([X]) is a consistent estimator of µ the mean of j([X1]) ∈ S(4,R). Also for the

orthonormal frame field (e1(Pj(µ)), e2(Pj(µ)), e3(Pj(µ))) on a subset of RP 3 with Pj(µ) = j(XE) we

have that for a = 1, 2, 3, ea(Pj(j([X])) is a consistent estimator of ea(Pj(µ)). Similarly, d
j([X])

Pj is a

consistent estimator of dµPj .

For the orthonormal frame field (ẽ1(ι̃◦Pj(µ)), ẽ2(ι̃◦Pj(µ)), ẽ3(ι̃◦Pj(µ))) we also have the corresponding

consistent estimator (ẽ1(ι̃ ◦ Pj(j([X]))), ẽ2(ι̃ ◦ Pj(j([X]))), ẽ3(ι̃ ◦ Pj(j([X])))). And dµι̃ ◦ Pj has the

following consistent estimator d
j([X])

ι̃ ◦ Pj

Now recall that

Σι
E = (dI) ΣE (dI)T

(dI)a,b = dµι̃ ◦ Pj(eb) · ẽa(ι̃ ◦ Pj(µ))

for a, b = 1, 2, 3. And ΣE is the extrinsic covariance matrix. Let j([XE ]) = Pj(j([X])) then we would

like to first investigate the case for which j([X]) = D be a diagonal matrix. If this matrix is diagonal we get

[m4] = [e4] = [XE ] and we get the consistent estimator of ΣE denoted GE(j,X) and with entries given by

GE(j,X)ab = n−1(η4 − ηa)
−1(η4 − ηb)

−1
∑

r

Xa
rX

b
r(X

4
r )

2 (4.32)

where ηa, a = 1, .., 4 are eigenvalues of K = n−1
∑n

r=1XrX
T
r in increasing order and ma = 1, ..., 4,

are corresponding linearly independent unit eigenvectors. We can now express our consistent estimator

Gι
E(j,X) as follow

Gι
E(j,X) = (dψ) GE(j,X) (dψ)T

where dψ is a matrix with entries

dψa,b = dD ι̃ ◦ Pj(eb) · ẽa(ι̃ ◦ Pj(D))

for a, b = 1, 2, 3. S(4,R) has the orthonormal basis F b
a , b ≤ a, where, for a < b, the matrix F b

a has all

entries zeros except for those in the positions (a, b), (b, a) that are equal to 2−1/2; also F a
a = j([ea]). Recall

from proposition 4.2 in Battacharya and Patrangenaru 2005, that we have

dDPj(F
b
a) = 0, ∀ b ≤ a < 4

=⇒ dD ι̃ ◦ Pj(F
b
a) = dPj(D)ι̃ dDPj(F

b
a) = 0, ∀ b ≤ a < 4
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Note that [XE ] = [m4] = [e4] and the other unit eigenvectors of D = j([X]) are ma = ea, ∀ a = 1, 2, 3.

Since j([XE ]
−1) = ι̃ ◦ Pj(D), we want to evaluate dD ι̃ ◦ Pj(F

b
a) ∈ Tι̃◦Pj(D)j(G). But given that

[XE ]
−1 = [e4]

−1 = [ē4] = [e4] = [XE ]

we then have the following choice of orthonormal frame

ẽa(ι̃ ◦ Pj(D)) = ẽa(j([XE ]
−1)) = dXE

j(ea) = d[e4]j(ea)

We will now compute the remaining 3 tangent vectors in TPj(D)j(RP
3) of interest, namely;

dD ι̃ ◦ Pj(ea) = dD ι̃ ◦ Pj(F
a
4 ), for a = 1, 2, 3.

And for a = 1, 2, 3, direct computations

dµι̃ ◦ Pj(F
a
N ) =

d

dt
ι̃ ◦ Pj(D + tF a

N )

∣

∣

∣

∣

t=0

will yield

dD ι̃ ◦ (e1) = (η1 − η4)
−1 ẽ1(Pj(D))

dD ι̃ ◦ (e2) = (η2 − η4)
−1 ẽ2(Pj(D))

dD ι̃ ◦ (e3) = (η3 − η4)
−1 ẽ3(Pj(D))

we then have the following

dψ =





(η1 − η4)
−1 0 0

0 (η2 − η4)
−1 0

0 0 (η3 − η4)
−1





Hence, the matrix Gι
E(j,X) has entries;

Gι
E(j,X)a,b = n−1(η4 − ηa)

−2(η4 − ηb)
−2 ×

∑

r

Xa
rX

b
r(X

4
r )

2

For a = 1, 2 let [Xa,1], · · · , [Xa,na ] be independent random samples defined on RP 3 from j-nonfocal

distributions Qa, with extrinsic means µa,E and extrinsic covariance matrices Σa,E . Also let n = n1 + n2

such that n1/n → π as na → ∞ a = 1, 2. Then using the result of Lemma 4.2.2 we have for, ι : RP 3 →
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RP 3 the inverse map and H : RP 3 × RP 3 → RP 3 the Lie group multiplication, the following asymptotic

behavior.

n1/2 tanj(µ−1
2,E⊙µ1,E)

(

j(X
−1
2,E ⊙X1,E)− j(µ−1

2,E ⊙ µ1,E)
)

→d Nm(0m,Σ
ιG
E ) (4.33)

where for H(µ−1
2,E , µ1,E) = (µ−1

2,E ⊙ µ1,E),

ΣιH
E =

1

π
(dH(1)) Σι

2,E(dH
(1))T +

1

1− π
(dH(2))Σ1,E(dH

(2))T (4.34)

PROPOSITION 4.3.2. For a = 1, 2, let {[Xra ]}na

ra=1, ‖Xra‖ = 1, be independent random samples from j-

nonfocal probability measuresQa on RP 3. Then the consistent estimator of Σι
E is denotedGι

E(j,X1,1, X2,1)

with extrinsic means and covariance respectively µa,E and Σa,E . Also let ι : RP 3 → RP 3 be the inverse

map on that manifold and ◦ denote the Lie group multiplication on RP 3. The sample covariance matrix

Gι
E(X), which is the consistent estimator of Σι

E , has entries given by;

GιH
E (j,X1,1, X2,1)a,b =

n−1
2 (η2,4 − η2,a)

−3(η2,4 − η2,b)
−3 ×

n2
∑

r=1

(m2,a ·Xa
2,r)(m2,b ·Xb

2,r)(m2,4 ·X4
2,r)

2

+

n−1
1 (η1,4 − η1,a)

−2(η1,4 − η1,b)
−2

n1
∑

r=1

(m1,a ·Xa
1,r)(m1,b ·Xb

1,r)(m1,4 ·X4
1,r)

2 (4.35)

where for s = 1, 2 and ηs,a, a = 1, .., 4 are eigenvalues of Ks = n−1
s

ns
∑

r=1

Xs,rX
T
s,r in increasing order and

ms,a = 1, ..., 4, are corresponding linearly independent unit eigenvectors.

Proof. And for Σ1,E and Σι
2,E are the extrinsic covariance matrices of X1,1 and X2,1 respectively. With-

out loss of generality, we now assume that j([Xa,E ]) = Pj(j([Xa,1])) is a diagonal matrix, and lets take

j([Xa,1]) = Da to be a diagonal matrix as well.

We then have the consistent estimators of Σι
2,E and Σ1,E denoted Gι

2,E(j,X2,1) and G1,E(j,X1,1) and

with entries given by .

Gι
2,E(j,X2,1)a,b = n−1

2 (η2,4 − η2,a)
−2(η2,4 − η2,b)

−2 ×
n2
∑

r=1

Xa
2,rX

b
2,r(X

4
2,r)

2

G1,E(j,X1,1)ab = n−1
1 (η1,4 − η1,a)

−1(η1,4 − η1,b)
−1

n1
∑

r=1

Xa
1,rX

b
1,r(X

4
1,r)

2 (4.36)
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where for s = 1, 2 and ηs,a, a = 1, .., 4 are eigenvalues of Ks = n−1
s

∑ns

r=1Xs,rX
T
s,r in increasing order

and ms,a = 1, ..., 4, are corresponding linearly independent unit eigenvectors.

Now the extrinsic covariance matrix

ΣιH
E =

1

π
(dH(1)) Σι

2,E(dH
(1))T +

1

1− π
(dH(2))Σ1,E(dH

(2))T (4.37)

has the following consistent estimator

GιH
E (j,X1,1, X2,1) =

1

n2
(dΓ(1)) Gι

2,E(j,X2,1)(dΓ
(1))T +

1

n1
(dΓ(2))G1,E(j,X1,1)(dΓ

(2))T (4.38)

where dΓ(1) and dΓ(2) are matrices with entries given by

dΓ
(1)
a,b =

(

d(D2,D1)Ĥ(êb) · ẽa(Ĥ(D2, D1))
)

dΓ
(2)
a,b =

(

dD2,D1Ĥ(êN1+b) · ẽa(Ĥ(D2, D1))
)

, for a, b = 1, 2, 3

where D̂ = (D2, D1) and for a = 1, 2 Da ∈ S(4,R). Recall that S(4,R) has the orthonormal basis

F b
a , b ≤ a, where, for a < b, the matrix F b

a has all entries zeros except for those in the positions (a, b), (b, a)

that are equal to 2−1/2; also F a
a = j([ea]). We have that D̂ ∈ S(4,R)× S(4,R) and a convenient basis for

such a manifold is (F b
2,a, 04×4) for a, b = 1, ...4 and (04×4, F

b
1,a) For the entries of dΓ(1) we consider the

following basis elements, (F b
2,a, 04×4) and the following element d(D2,D1)Ĥ((F b

2,a, 04×4)) where,

Ĥ((F b
2,a, 04×4)) = j ◦H ◦ (j−1)(2)(ι̃ ◦ Pj(F

b
1,a), Pj(04×4)) (4.39)

We first look at the following derivatives

d(D2,D1)Ĥ((F 1
2,4, 04×4)) =

d

dt
Ĥ(D2 + tF 1

2,4, D1)

∣

∣

∣

∣

t=0

=⇒ d

dt
Ĥ(D2 + tF 1

2,4, D1)

∣

∣

∣

∣

t=0

= (η2,1 − η2,4)
−1 d[e4]j(e1) = (η2,1 − η4)

−1 e1(Pj(µ))

and

d(D2,D1)Ĥ((04×4, F
1
1,4)) =

d

dt
Ĥ(D2, D1 + tF 1

1,4)

∣

∣

∣

∣

t=0

(4.40)

= (η1,4 − η1,1)
−1 d[e4]j(ẽ1) = (η1,4 − η1,1)

−1 ea(Ĥ(D2, D1))
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dΓ(1) =





(η2,4 − η2,1)
−1 0 0

0 (η2,4 − η2,2)
−1 0

0 0 (η2,4 − η2,3)
−1





dΓ(2) =





(η1,4 − η1,1)
−1 0 0

0 (η1,4 − η1,2)
−1 0

0 0 (η1,4 − η1,3)
−1





[

(dΓ(1)) Gι
2,E(j,X2,1)(dΓ

(1))T
]

a,b
= n−1

2 (η2,4 − η2,a)
−3(η2,4 − η2,b)

−3 ×
n2
∑

r=1

Xa
2,rX

b
2,r(X

4
2,r)

2

[

(dΓ(2)) G1,E(j,X1,1)(dΓ
(2))T

]

a,b
= n−1

1 (η1,4 − η1,a)
−2(η1,4 − η1,b)

−2
n1
∑

r=1

Xa
1,rX

b
1,r(X

4
1,r)

2

PROPOSITION 4.3.3. For a = 1, 2, let {[Xra ]}na

ra=1, ‖Xra‖ = 1, be independent random samples from j-

nonfocal probability measuresQa on RP 3. Then the consistent estimator of Σι
E is denotedGι

E(j,X1,1, X2,1).

(i)

n1/2 Gι
E(j,X1,1, X2,1)

−1/2 tanj(µ−1
2,E⊙µ1,E)

(

j(X
−1
2,E ⊙X1,E)− j(µ−1

2,E ⊙ µ1,E)
)

→d Nm(0m, Im)

(4.41)

so that

(ii)

n
∥

∥

∥ Gι
E(j,X1,1, X2,1)

−1/2 tanj(µ−1
2,E⊙µ1,E)

(

j(X
−1
2,E ⊙X1,E)− j(µ−1

2,E ⊙ µ1,E)
)∥

∥

∥

2
(4.42)

converges weakly to χ2
m and the
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CHAPTER 5

EXTRINSIC ANTI-MEAN

In this chapter Icontinue to focus on extrinsic analysis, which is the statistical analysis performed relative

to ρj a chord distance on M induced by the Euclidean distance in R
N via an embedding j : M → R

N ,

with an emphasis on compact object spaces. Most of the results in this section are due to the author of

this dissertation, were presented at the second Conference of the International Society of Nonparametric

Statistics, in Cadiz, Spain in 2015, and appeared in the peer reviewed publication [27]. Recall that the

expected square distance from the random object X to an arbitrary point p defines what we call the Fréchet

function associated with X and in extrinsic analysis it is given by;

F(p) =

∫

M
‖j(x)− j(p)‖20Q(dx), (5.1)

where Q = PX is the probability measure on M, associated with X. In this case the Fréchet mean set

is called the extrinsic mean set (see Bhattacharya and Patrangenaru (2003)[5]), and if we have a unique

point in the extrinsic mean set of X, this point is the extrinsic mean of X, and is labeled µE(X) or simply

µE . Also, given X1, . . . , Xn i.i.d random objects from Q, their extrinsic sample mean (set) is the extrinsic

mean (set) of the empirical distribution Q̂n = 1
n

∑n
i=1 δXi

. Recall that the existence of an extrinsic mean

is tied to the existence of a unique projection of the mean µ of j(Q) from the ambient space R
N onto

the space j(M) ⊂ R
N . In the section 5.1 I introduce a new location parameter which is viewed as the

(unique) maximizer of the Fréchet function given in (5.1) and is referred to as the extrinsic anti-mean (

see Patrangenaru and Ellingson (2015)[21]) and I also express its corresponding sample anti-mean viewed

as the maximizer of the Fréchet function associated with the empirical distribution Q̂n. In section 5.2 I

give explicit formulas of the Veronesee-Whitney (VW) anti-mean on RPm. The following section involves

inference problems for extrinsic means and anti-means on the 3-D projective shape space (RP 3)q. Section

5.4 using the results from the previous section, I perform a two sample test on a set of data consisting of

digital images of flowers.
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5.1 Geometric description of the extrinsic anti-mean

We assume that (M, ρ) is a compact metric space, therefore the Fréchet function is bounded, and its extreme

values are attained at points on M. We are now introducing a new location parameter for X.

DEFINITION 5.1.1. The set of maximizers of the Fréchet function, is called the extrinsic anti-mean set. In

case the extrinsic anti-mean set has one point only, that point is called extrinsic anti-mean of X, and is

labeled αµj,E(Q), or simply αµE , when j is known.

Let (M, ρj) be a compact metric space, where ρj is the chord distance via the embedding j : M → R
N ,

that is

ρj(p1, p2) = ‖j(p1)− j(p2)‖ = ρ0(j(p1), j(p2)), ∀(p1, p2) ∈ M2,

where ρ0 is the Euclidean distance in R
N .

REMARK 5.1.1. Recall that a point y ∈ R
N for which there is a unique point p ∈ M satisfying the

equality,

ρ0(y, j(M)) = inf
x∈M

‖y − j(x)‖0 = ρ0(y, j(p))

is called j-nonfocal. A point which is not j-nonfocal is said to be j-focal. And if y is a j-nonfocal point, its

projection on j(M) is the unique point j(p) = Pj(y) ∈ j(M) with ρ0(y, j(M)) = ρ0(y, j(p)).

With this in mind we now have the following definition.

DEFINITION 5.1.2 (αj-nonfocal). (a) A point y ∈ R
N for which there is a unique point p ∈ M satisfying

the equality,

sup
x∈M

‖y − j(x)‖0 = ρ0(y, j(p)) (5.2)

is called αj-nonfocal. A point which is not αj-nonfocal is said to be αj-focal.

(b) If y is an αj-nonfocal point, its farthest projection on j(M) is the unique point z = j(p) =PF,j(y) ∈
j(M) with

sup
x∈M

‖y − j(x)‖0 = ρ0(y, j(p)).

For example if we consider the unit sphere Sm in R
m+1, with the embedding given by the inclusion map

j : Sm → R
m+1, then the only αj-focal point is 0m+1, the center of this sphere; this point also happens to

be the only j-focal point of Sm.
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DEFINITION 5.1.3. A probability distribution Q on M is said to be αj-nonfocal if the mean µ of j(Q) is

αj-nonfocal.

The figures below illustrate the extrinsic mean and anti-mean of distributions on a one dimensional topo-

logical manifold M where the distributions are j-nonfocal and also αj-nonfocal. Note that in the smooth

case, given a family of distributions, for which the mean vector in the ambient space, slightly moves in a

direction perpendicular on the tangent space j(µE), the extrinsic mean stays the same, while the extrinsic

anti-mean may change; this shows that the extrinsic anti-mean is a new location parameter, that detects cer-

tain global aspects of a distribution, that are not captured by the extrinsic mean. On the second line of Figure

5.1, one displays the stickiness phenomenon in case of both the extrinsic mean and anti-mean. Recall that

a sticky family of distributions is a family of distributions for which any small perturbation does not affect

the location of the Fréchet mean; this phenomenon may occurs in case the Fréchet mean happens to be a

singular point in both extrinsic analysis ( see [9]) and intrinsic analysis (see [13]).

Figure 5.1: Extrinsic mean and extrinsic anti-mean on a 1-dimensional topological manifold (up-

per left: regular mean and anti-mean, upper right: regular mean and sticky anti-mean, lower left:

sticky mean and regular anti-mean, lower right : sticky mean and anti-mean
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THEOREM 5.1.1. Let µ be the mean vector of j(Q) in R
N . Then the following hold true:

(i) The extrinsic anti-mean set is the set of all points x ∈ M such that supp∈M ‖µ−j(p)‖0 = ρ0(µ, j(x)).

(ii) If αµj,E(Q) exists, then µ is αj-nonfocal and αµj,E(Q) = j−1(PF,j(µ)).

Proof. For part (i), we first rewrite the following expression;

‖j(p)− j(x)‖20 = ‖j(p)− µ‖20 − 2 〈 j(p)− µ, µ− j(x) 〉+ ‖µ− j(x)‖20 (5.3)

Since the manifold is compact, µ exists, and from the definition of the mean vector we have

∫

M
j(x) Q(dx) =

∫

RN

yj(Q)(dy) = µ. (5.4)

From equations (5.4), (5.3) it follows that

F(p) = ‖j(p)− µ‖20 +
∫

RN

‖µ− y‖20j(Q)(dy) (5.5)

Then, from (5.5),

sup
p∈M

F(p) = sup
p∈M

‖j(p)− µ‖20 +
∫

RN

‖µ− y‖20 j(Q)(dy) (5.6)

This then implies that the anti-mean set is the set of points x ∈ M with the following property;

sup
p∈M

‖j(p)− µ‖0 = ‖j(x)− µ‖0. (5.7)

For Part (ii) if αµj,E(Q) exists, then αµj,E(Q) is the unique point x ∈ M, for which equation (5.7) holds

true, which implies that µ is αj-nonfocal and j(αµj,E(Q)) = PF,j(µ).

DEFINITION 5.1.4. Let x1, ...., xn be random observations from a distribution Q on a compact metric

space (M, ρ), then their extrinsic sample anti-mean set, is the set of maximizers of the Fréchet function F̂n

associated with the empirical distribution Q̂n = 1
n

∑n
i=1 δxi

, which is given by

F̂n(p) =
1

n

n
∑

i=1

‖j(xi)− j(p)‖20 (5.8)

If Q̂n has an extrinsic anti-mean, its extrinsic anti-mean is called extrinsic sample anti-mean, and it is

denoted aX̄j,E .

THEOREM 5.1.2. AssumeQ is anαj-nonfocal probability measure on the manifold M andX = {X1, ...., Xn}
are i.i.d random objects from Q. Then,
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(a) If j(X) is αj-nonfocal, then the extrinsic sample anti-mean is given by aX̄j,E = j−1(PF,j(j(X))).

(b) The set (αF )c of αj-nonfocal points is a generic subset of RN , and if αµj,E(Q) exists, then the extrinsic

sample anti-mean aX̄j,E is a consistent estimator of αµj,E(Q).

Proof. (Sketch). (a) Since j(X) is αj-nonfocal the result follows from Theorem 5.1.1, applied to the em-

pirical Q̂n, therefore j(aX̄j,E) = PF,j(j(X)).

(b) All the assumptions of the SLLN are satisfied, since j(M) is also compact, therefore the sample mean

estimator j(X) is a strong consistent estimator of µ, which implies that for any ε > 0, and for any δ > 0,

there is sample size n(δ, ε), such that P(‖j(X) − µ‖ > δ) ≤ ε, ∀n > n(δ, ε). By taking a small enough

δ > 0, and using a continuity argument for PF,j , the result follows.

REMARK 5.1.2. A CLT for extrinsic sample anti-means is given in a paper I have coauthored (see Pa-

trangenaru et. al.(2016)[22]).

5.2 VW anti-means on RP
m

In this section we consider the case of a probability measure Q on the real projective space M = RPm,

which is the set of axes ( 1-dimensional linear subspaces ) of Rm+1. Here the points in R
m+1 are regarded

as (m + 1) × 1 vectors. RPm can be identified with the quotient space Sm/{x,−x}; it is a compact

homogeneous space, with the group SO(m+1) acting transitively on (RPm, ρj), where the distance ρj on

RPm is induced by the chord distance on the sphere Sm. There are infinitely many embeddings of RPm

in a Euclidean space, however for the purpose of two sample mean or two sample anti-mean testing, it is

preferred to use an embedding j that is compatible with two transitive group actions of SO(m+1) on RPm,

respectively on j(RPm), that is

j(T · [x]) = T ◦ j([x]), ∀ T ∈ SO(m+ 1), ∀ [x] ∈ RPm, where T · [x] = [Tx]. (5.9)

Such an embedding is said to be equivariant (see Kent (1992)[17], where the equivariance was used in

the context of a VW embedding of a planar direct similarity shape space). For computational purposes, the

equivariant embedding of RPm that was used so far in the axial data analysis literature is the VW embedding

j : RPm → S+(m + 1,R), that associates to an axis the matrix of the orthogonal projection on this axis (

see Patrangenaru and Ellingson(2015)[21] and references therein ):

j([x]) = xxT , ‖x‖ = 1, (5.10)
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Here S+(m + 1,R) is the set of nonnegative definite symmetric (m + 1) × (m + 1) matrices, and in this

case

T ◦A = TAT T , ∀ T ∈ SO(m+ 1), ∀ A ∈ S+(m+ 1,R) (5.11)

REMARK 5.2.1. Let N = 1
2(m+ 1)(m+ 2). The space E = (S(m+ 1,R), 〈 , 〉0) is an N -dimensional

Euclidean space with the scalar product given by 〈A, B〉0 = Tr(AB), where A, B ∈ S(m + 1,R).

The associated norm ‖ · ‖0 and Euclidean distance ρ0 are given by respectively by ‖C‖20 = 〈C, C〉0 and

ρ0(A,B) = ‖A−B‖0, ∀C,A, B ∈ S(m+ 1,R).

With the notation in Remark 5.2.1 we have

F([p]) = ‖j([p])− µ‖20 +
∫

M
‖µ− j([x])‖20 Q(d[x]), (5.12)

and F([p]) is maximized ( minimized ) if and only if ‖j([p])−µ‖20 is maximized ( minimized ) as a function

of [p] ∈ RPm.

From Patrangenaru and Ellingson (2015, Chapter 4)[21] and definitions therein, recall that the extrinsic

mean µj,E(Q) of a j- nonfocal probability measure Q on M w.r.t. an embedding j, when it exists, is given

by µj,E(Q) = j−1(Pj(µ)) where µ is the mean of j(Q). In the particular case when M = RPm, and j

is the VW embedding, Pj is the projection on j(RPm) and Pj : S+(m+ 1,R)\F → j(RPm), where F is

the set of j-focal points of j(RPm) in S+(m + 1,R). For the VW embedding, F is the set of matrices in

S+(m + 1,R) whose largest eigenvalues are of multiplicity at least 2. The projection Pj assigns to each

nonnegative definite symmetric matrix A with highest eigenvalue of multiplicity 1, the matrix mmT , where

m is a unit eigenvector of A corresponding to its largest eigenvalue.

Furthermore, the VW mean of a random object [X] ∈ RPm, ‖XTX‖ = 1 is given by µj,E(Q) = [γ(m+ 1)]

and (λ(a), γ(a)), a = 1, ..,m+ 1 are eigenvalues and unit eigenvectors pairs (in increasing order of eigen-

values) of the mean µ = E(XXT ). Similarly, the VW sample mean is given by x̄j,E = [g(m + 1)] where

(d(a), g(a)), a = 1, . . . ,m + 1 are eigenvalues and unit eigenvectors pairs (in increasing order of eigen-

values) of the sample mean J = 1
n

∑n
i=1 xix

T
i associated with the sample ([xi])i=1,n, on RPm, where

xTi xi = 1, ∀i = 1, n.

Based on (5.12), we get similar results in the case of an αj-nonfocal probability measure Q :

PROPOSITION 5.2.1. (i) The set of αVW -nonfocal points in S+(m + 1,R), is the set of matrices in

S+(m+ 1,R) whose smallest eigenvalue has multiplicity 1.
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(ii) The projection PF,j : (αF )c → j(RPm) assigns to each nonnegative definite symmetric matrix A,

of rank 1, with a smallest eigenvalue of multiplicity 1, the matrix j([ν]), where ‖ν‖ = 1 and ν is an

eigenvector of A corresponding to that eigenvalue.

We now have the following;

PROPOSITION 5.2.2. Let Q be a distribution on RPm.

(a) The VW-antimean set of a random object [X], XTX = 1 on RPm, is the set of points p = [v] ∈ V1,

where V1 is the eigenspace corresponding to the smallest eigenvalue λ(1) of E(XXT ).

(b) If in addition Q = P[X] is αVW -nonfocal, then

αµj,E(Q) = j−1(PF,j(µ)) = [γ(1)]

where (λ(a), γ(a)), a = 1, ..,m + 1 are eigenvalues in increasing order and the corresponding unit

eigenvectors of µ = E(XXT ).

(c) Let [x1], . . . , [xn] be observations from a distribution Q on RPm, such that j(X) is αVW-nonfocal.

Then the VW sample anti-mean of [x1], . . . , [xn] is given by

axj,E = j−1(PF,j(j(x))) = [g(1)]

where (d(a), g(a)) are the eigenvalues in increasing order and the corresponding unit eigenvectors of

J =
1

n

n
∑

i=1

xix
T
i , where xTi xi = 1, ∀i = 1, n.

5.3 Two-sample test for VW means and anti-means projective shapes in 3D

Recall that the space PΣk
3 of projective shapes of 3D k-ads in RP 3, ([u1], ..., [uk]), with k > 5, for

which π = ([u1], . . . , [u5]) is a projective frame in RP 3, is homeomorphic to the manifold (RP 3)q with

q = k − 5 (see Patrangenaru et. al.(2010)[23]). Recall from Section 2.5 that RP 3 has a natural structure

of Lie group. This multiplicative structure turns the (RP 3)q into a product Lie group (G,⊙) where G =

(RP 3)q (see Crane and Patrangenaru (2011)[7], Patrangenaru et. al. (2014)[25]). For the rest of this section

G refers to the Lie group (RP 3)q. The VW embedding jq : (RP
3)q → (S+(4,R))

q (see Patrangenaru et al.

(2014)[25]), is given by

jq([x1], . . . , [xq]) = (j([x1]), . . . , j([xq])), (5.13)

with j : RP 3 → S+(4,R) the VW embedding given in (6.19), for m = 3 and jq is also an equivariant

embedding w.r.t. the group (S+(4,R))
q.
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Given the product structure, it turns out that the VW mean µjq of a random object Y = (Y 1, . . . , Y q) on

(RP 3)q is given by

µjq = (µ1,j , · · · , µq,j), (5.14)

where, for s = 1, q, µs,j is the VW mean of the marginal Y s.

Assume Ya, a = 1, 2 are r.o.’s with the associated distributions Qa = PYa , a = 1, 2 on G = (RP 3)q.

We now consider the two sample problem for VW means and separately for VW-anti-means for these ran-

dom objects. Note that the asymptotic results leading to nonparametric bootstrap confidence regions for

VW-mean change are presented in Section 2.5. For VW anti-means we will simply use nonpivotal boot-

srap computations, since for the sample VW-antimeans on (RP 3)q for our data, involve sample covariance

matrices that are degenerate.

5.3.1 Hypothesis testing for VW means

Assume the distributions Qa, a = 1, 2 are in addition VW-nonfocal. We are interested in the hypothesis

testing problem:

H0 : µ1,jq = µ2,jq vs. Ha : µ1,jq 6= µ2,jq , (5.15)

which is equivalent to testing the following

H0 : µ
−1
2,jq

⊙ µ1,jq = 1(RP 3)q vs. Ha : µ−1
2,jq

⊙ µ1,jq 6= 1(RP 3)q (5.16)

1. Let n = n1 + n2 be the total sample size, and assume limn→∞
n1
n → λ ∈ (0, 1). Let ϕq be the affine

chart defined in a neighborhood of 1(RP 3)q (see definition 3.1.1), with ϕq(1(RP 3)q) = 0. Then, under

H0

n1/2 ϕq(Ȳ
−1
jq ,n2

⊙ Ȳjq ,n1) →d N3q(03q,Σjq) (5.17)

Where Σjq depends linearly on the extrinsic covariance matrices Σa,jq of Qa.

2. Assume in addition that for a = 1, 2 the support of the distribution of Ya,1 and the VW mean µa,jq
are included in the domain of the chart ϕq and ϕq(Ya,1) has an absolutely continuous component and

finite moment of sufficiently high order. Then the joint distribution

V = n
1
2ϕq(Ȳ

−1
jq ,n2

⊙ Ȳjq ,n1) (5.18)

can be approximated by the bootstrap joint distribution of
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V ∗ = n1/2 ϕq(Ȳ ∗−1
jq ,n2

⊙ Ȳ ∗
jq ,n1

)

From Patrangenaru et. al.(2010)[23], recall that given a random sample from a distribution Q on RPm, if

Js, s = 1, . . . , q are the matrices Js = n−1
∑n

r=1X
s
r (X

s
r )

T , and if for a = 1, . . . ,m+ 1, ds(a) and gs(a)

are the eigenvalues in increasing order and corresponding unit eigenvectors of Js, then the VW sample mean

Ȳjq ,n is given by

Ȳjq ,n = ([g1(m+ 1)], . . . , [gq(m+ 1)]). (5.19)

REMARK 5.3.1. Given the high dimensionality, the VW sample covariance matrix is often singular. There-

fore, for nonparametric hypothesis testing, non-pivotal bootstrap is preferred. For details, on testing the ex-

istence of a mean change 3D projective shape, when sample sizes are not equal, using non-pivotal bootstrap,

see Patrangenaru et al. (2014).

5.3.2 Hypothesis testing for VW anti-means

Unlike in the previous subsection, we now assume that for a = 1, 2, Qa are αVW-nonfocal. We are now

interested in the hypothesis testing problem:

H0 : αµ1,jq = αµ2,jq vs. Ha : αµ1,jq 6= αµ2,jq , (5.20)

which is equivalent to testing the following

H0 : αµ
−1
2,jq

⊙ αµ1,jq = 1(RP 3)q vs. Ha : αµ−1
2,jq

⊙ αµ1,jq 6= 1(RP 3)q (5.21)

1. Let n = n1 +n2 be the total sample size, and assume limn→∞
n1
n → λ ∈ (0, 1). Let ϕq be the affine

chart with ϕq(1(RP 3)q) = 03q. Then, from Patrangenaru et al. (2016)[26], it follows that under H0

n1/2 ϕq(aȲ
−1
jq ,n2

⊙ aȲjq ,n1) →d N3q(03q, Σ̃jq), (5.22)

for some covariance matrix Σ̃jq .

2. Assume in addition that for a = 1, 2 the support of the distribution of Ya,1 and the VW anti-mean

αµa,jq are included in the domain of the chart ϕ and ϕ(Ya,1) has an absolutely continuous component

and finite moment of sufficiently high order. Then the joint distribution

aV = n
1
2ϕq(aȲ

−1
jq ,n2

⊙ aȲjq ,n1) (5.23)

can be approximated by the bootstrap joint distribution of
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aV ∗ = n1/2 ϕq(aȲ ∗−1
jq ,n2

⊙ aȲ ∗
jq ,n1

)

Now, from Proposition 5.2.2, we get the following result that is used for the computation of the VW sample

anti-means.

PROPOSITION 5.3.1. follows that given a random sample from a distribution Q on RPm, if Js, s =

1, . . . , q are the matrices Js = n−1
∑n

r=1X
s
r (X

s
r )

T , and if for a = 1, . . . ,m + 1, ds(a) and gs(a) are the

eigenvalues in increasing order and corresponding unit eigenvectors of Js, then the VW sample anti-mean

aȲjq ,n is given by

aȲjq ,n = ([g1(1)], . . . , [gq(1)]). (5.24)

5.4 Two sample test for lily flowers data

In this section we will test for the existence of 3D mean projective shape change to differentiate between

two lily flowers. We will use pairs of pictures of two flowers for our study.

Our data sets consist of two samples of digital images. The first one consist of 11 pairs of pictures of a single

lily flower. The second has 8 pairs of digital images of another lily flower.

Figure 5.2: Flower 1 image sample

We will recover the 3D projective shape of a spatial k-ad (in our case k = 13) from the pairs of images,

which will allow us to test for mean 3D projective shape change detection.

Flowers belonging to the genus Lilum have three petals and three petal-like sepals. It may be difficult to

distinguish the lily petals from the sepals. Here all six are referred to as tepals. For our analysis we selected

13 anatomic landmarks, 5 of which will be used to construct a projective frame. In order to conduct a proper

analysis we recorded the same labeling of landmarks and kept a constant configuration for both flowers.

The tepals where labeled 1 through 6 for both flowers. Also the six stamens (male part of the flower) ,were
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Figure 5.3: Flower 2 image sample

labeled 7 through 12 starting with the stamen that is closely related to tepal 1 and continuing in the same

fashion. The landmarks were placed at the tip of the anther of each of the six stamens and in the center of

the stigma for the carpel (the female part).

Figure 5.4: Landmarks for flower 1 and flower 2

For 3D reconstructions of k-ads we used the reconstruction algorithm in Ma et al (2005)[19]. The first 5 of

our 13 landmarks were selected to construct our projective frame π . To each projective point we associated

its projective coordinate with respect to π. The projective shape of the 3D k-ad, is then determined by the 8

projective coordinates of the remaining landmarks of the reconstructed configuration.

We tested for the VW mean change, since (RP 3)8 has a Lie group structure (Crane and Patrangenaru

(2011)[7]). Two types of VW mean changes were considered: one for cross validation, and the other for

comparing the VW mean shapes of the two flowers.

Suppose Q1 and Q2 are independent r.o.’s, the hypothesis for their mean change is

H0 : µ
−1
1,j8

⊙ µ2,j8 = 1(RP 3)8

Given ϕ, the Log chart on this Lie group, ϕq(18) = 08, we compute the bootstrap distribution

D∗ = ϕq((Ȳ
∗
j8,11)

−1 ⊙ Ȳ ∗
j8,8)
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We fail to reject H0, if all simultaneous confidence intervals contain 0, and reject it otherwise. We construct

95% simultaneous nonparametric bootstrap confidence intervals. We will then expect to fail to reject the

null, if we have 0 in all of our simultaneous confidence intervals.

5.4.1 Results for comparing the two flowers

We will fail to reject our null hypothesis

H0 : µ
−1
1,j8

⊙ µ2,j8 = 1(RP 3)8

if all of our confidence intervals contain the value 0.

Figure 5.5: Bootstrap projective shape marginals for lily data

Simultaneous confidence intervals for lily’s landmarks 6 to 9

LM6 LM7 LM8 LM9

x (0.609514, 1.638759) (0.320515, 0.561915) (−0.427979, 0.821540) (0.055007, 0.876664)

y (−0.916254, 0.995679) (−0.200514, 0.344619) (−0.252281, 0.580393) (−0.358060, 0.461555)

z (−1.589983, 1.224176) (0.177687, 0.640489) (0.291530, 0.831977) (0.213021, 0.883361)

Simultaneous confidence intervals for lily’s landmarks 10 to 13

LM10 LM11 LM12 LM13

x (0.060118, 0.822957) (0.495050, 0.843121) (0.419625, 0.648722) (0.471093, 0.874260)

y (−0.346121, 0.160780) (−0.047271, 0.253993) (−0.079662, 0.193945) (−0.075751, 0.453817)

z (0.198351, 0.795122) (0.058659, 0.619450) (0.075902, 0.569353) (−0.146431, 0.497202)

We notice that 0 is does not belong to 13 simultaneous confidence intervals in the table above. We then

can conclude that there is significant mean VW projective shape change between the two flowers. This
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difference is also visible with the figure of the boxes of the bootstrap projective shape marginals found in

Figure 5.5. The bootstrap projective shape marginals for landmarks 11 and 12 we can also visually reinforce

our choice of rejection of the null hypothesis.

5.4.2 Results for cross-validation of the mean projective shape of the lily flower in second

sample of images

One can show that, as expected, there is no mean VW projective shape change, based on the two samples

with sample sizes respectively n1 = 5 and n2 = 6. In the tables below, 0 is contained in all of the

simultaneous intervals. Hence, we fail to reject the null hypothesis at level α = 0.05.

Figure 5.6: Bootstrap projective shape marginals for cross validation of lily flower

Simultaneous confidence intervals for lily’s landmarks 6 to 9

LM6 LM7 LM8 LM9

x (−1.150441, 0.940686) (−1.014147, 1.019635) (−0.960972, 1.142165) (−1.104360, 1.162658)

y (−1.245585, 2.965492) (−1.418121, 1.145503) (−1.250429, 1.300157) (−1.078833, 1.282883)

z (−0.971271, 1.232609) (−1.654594, 1.400703) (−1.464506, 1.318222) (−1.649496, 1.396918)

Simultaneous confidence intervals for lily’s landmarks 10 to 13

LM10 LM11 LM12 LM13

x (−1.078765, 1.039589) (−0.995622, 1.381674) (−0.739663, 1.269416) (−1.015220, 1.132021)

y (−1.126703, 1.140513) (−1.210271, 1.184141) (−1.324111, 1.026571) (−1.650026, 1.593305)

z (−1.092425, 1.795890) (−1.222856, 1.963960) (−1.128044, 1.762559) (−1.035796, 2.227439)
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5.4.3 Comparing the sample anti-mean for the two lily flowers

The Veronese-Whitney (VW) anti-mean is the extrinsic anti-mean associated with the VW embedding

The VW anti-mean changes were considered for comparing the VW anti-mean shapes of the two flowers.

Suppose Q1 and Q2 are independent r.o.’s, the hypothesis for their mean change are

H0 : αµ
−1
1,j8

⊙ αµ2,j8 = 1(RP 3)8

Let ϕ be the affine chart on this product of projective spaces, ϕ(18) = 08, we compute the bootstrap

distribution,

αD∗ = ϕq(aY
∗−1
j8,11 ⊙ aY

∗
j8,8)

and construct the 95% simultaneous nonparametric bootstrap confidence intervals. We will then expect to

fail to reject the null, if we have 0 in all of our simultaneous confidence intervals.

Figure 5.7: Eight bootstrap projective shape marginals for anti-mean of lily data

Highlighted in blue are the intervals not containing 0 ∈ R.

In conclusion there is significant anti-mean VW projective shape change between the two flowers, showing

that the extrinsic anti-mean is a sensitive parameter for extrinsic analysis.

In this chapter we introduced a new population parameter, the extrinsic anti-mean. This new location param-

eter is based on a projection unlike the one in the extrinsic mean case, where we focus on projecting µ (the

mean of j(Q) in the ambient space) onto the closest (unique) point j(µE) on j(M); we will instead project

µ onto the farthest (unique) point (j(αµE) on the embedded object space . Just as with the extrinsic mean,
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simultaneous confidence intervals for lily’s landmarks 6 to 9

LM6 LM7 LM8 LM9

x (−1.02,−0.51) (−1.41, 0.69) (−1.14, 0.40) (−0.87, 0.35)

y (0.82, 2.18) (0.00, 0.96) (−0.15, 0.92) (−0.09, 0.69)

z (−0.75, 0.36) (−6.93, 2.83) (−3.07, 3.23) (−2.45, 2.38)

Simultaneous confidence intervals for lily’s landmarks 10 to 13

LM10 LM11 LM12 LM13

x (−0.61, 0.32) (−0.87, 0.08) (−0.99, 0.02) (−0.84,−0.04)

y (−0.07, 0.51) (−0.04, 0.59) (0.06, 0.75) (0.18, 0.78)

z (−3.03, 1.91) (−5.42, 1.98) (−7.22, 2.41) (−4.91, 2.62)

the extrinsic anti-mean captures important features of a distribution on a compact object space. Certainly

the definitions and results extend to the general case of arbitrary Fréchet anti-means.
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CHAPTER 6

MANOVA ON MANIFOLDS

In this chapter I revisit MANOVA for comparing the mean vectors in g populations. I am extending such

considerations to testing for the equality of extrinsic means from g populations on a manifold M embedded

in an numerical space. In section 6.1 I introduce a new approach applied to various mean vectors. The main

difference between this approach and classical MANOVA, is that we do not assume that all populations

have a common covariance matrix Σ, and also we do not make any distributional assumption, except for the

existence of sufficiently high order moments of the g populations. In section 6.2 I extend the work presented

in the previous section to develop a hypothesis testing problem used to compare multiple means on smooth

manifolds, and this test is performed on random samples of various sizes, collected from each of these g

groups. This newly developed MANOVA test is then applied in section 6.3 to populations of 3D projective

shapes.

6.1 Motivations for new MANOVA on manifolds

For a = 1, ..., g, suppose Xa,i ∼ Np(µa,Σa), i = 1, ..., na are p dimensional i.i.d random vectors. To test

if the mean vectors of the g groups are the same, one considers the hypothesis testing problem

H0 : µ1 = µ2 = ... = µg = µ (6.1)

Ha : at least one equation does not hold.

Assuming that the covariance matrix Σa is invertible, by the Central Limit Theorem, for large sample sizes

na, a = 1, . . . , g, we have

√
naΣ

− 1
2

a (X̄a − µ) ∼ Np(0p, Ip), (6.2)

na(X̄a − µ)TΣ−1
a (X̄a − µ) ∼ χ2

p. (6.3)

However, Σa is always unknown, so in practice, one has to use its unbiased estimator Sa, a = 1, ..., g.

na(X̄a − µ)TS−1
a (X̄a − µ) ∼ χ2

p. (6.4)

Let us consider the pooled sample mean X̄ = 1
n(n1X̄1 + ...+ ngX̄g), n =

∑g
a=1 na.
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LEMMA 6.1.1. Under the null, X̄ is a consistent estimator of µ, provided na

n → λa > 0, as n→ ∞, a =

1, ..., g.

Proof. Indeed, for any a ∈ {1, 2, ..., g}, since na

n → λa > 0, as n→ ∞, and X̄a is the consistent estimator

of µ, therefore,

X̄ →p λ1µ+ λ2µ+ ...+ λgµ = µ. (6.5)

THEOREM 6.1.1. The statistic for the hypothesis in (6.1) is

g
∑

a=1

na(X̄a − X̄)TS−1
a (X̄a − X̄) ∼ χ2

gp. (6.6)

So the rejection region at level c, for this test is

g
∑

a=1

na(X̄a − X̄)TS−1
a (X̄a − X̄) > χ2

gp(c). (6.7)

6.2 MANOVA on manifolds

In this section we will focus on the asymptotic behavior of statistics related to means on a manifold M based

on samples of different sizes from different populations on M. Now let’s consider the set Xa,1, . . . , Xa,na

(a = 1, 2, ..., g) of iid random objects on M with common probability measure Qa. We denote the extrinsic

mean of the j- nonfocal probability measure Qa on M by µa,E for ease of notation and because there is

no ambiguity about the embedding used. The corresponding extrinsic sample means are written X̄a,E for

a = 1, · · · , g. From this point on, we will assume that all the distributions are j-nonfocal.

6.2.1 Hypothesis testing and T
2 statistic

Assume Xa,1, . . . , Xa,na are iid random objects on M a p-dimensional manifold, with probability mea-

sure Qa with a = 1, 2, ..., g. We are interested in comparing multiple extrinsic means.

We would like to develop a test similar to (6.1) designed to test the difference between the g extrinsic

means. One challenge that presents itself at the early stage is a proper definition of a pooled mean for

random objects on a p-dimensional manifold M. Linearity becomes an issue when dealing with extrinsic

means. For a proper definition we will focus on the equalities tied to the assumption

A0 : µ1,E = · · · = µg,E
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DEFINITION 6.2.1. Under the assumption A0 and for any a ∈ {1, 2, ..., g}, with na

n → λa > 0, as n →
∞. We define

(i) The extrinsic pooled mean with weights λ = (λ1, . . . , λg), denoted µE(λ) as the value in M given

by

j(µE) = Pj(λ1j(µ1,E) + · · ·+ λgj(µg,E)) (6.8)

Where µa,E is the extrinsic mean of the random object Xa,1 and Σg
a=1λa = 1

(ii) The extrinsic pooled sample mean denoted X̄E ∈ M given by;

j(X̄E) = Pj

(n1
n
j(X̄1,E) + · · ·+ ng

n
j(X̄g,E)

)

(6.9)

Where X̄a,E is the extrinsic sample mean for Xa,1 and n =
∑g

a=1 na

Note that since A0 implies j(µ1,E) = · · · = j(µg,E), and with our definition of the extrinsic pooled mean

we get j(µE) = j(µa,E) for each a = 1, . . . , g. Furthermore, the linear combination λ1j(µ1,E) + · · · +
λgj(µg,E) ∈ j(M). Note that for a = 1, · · · , g X̄a,E is a consistent estimator of µa,E and therefore we get

that j(X̄E) →p j(µE). Since j is a homeomorphism from M to j(M) we also have that X̄E is a consistent

estimator of µE the extrinsic pooled mean. With this definition at hand, we now express the following

hypothesis test, designed to test the difference between extrinsic means and is given by;

H0 : µ1,E = µ2,E = ... = µg,E = µE , (6.10)

Ha : at least one equality µa,E = µb,E , 1 ≤ a < b ≤ g does not hold.

And since the embedding j : M → R
N is one-to-one the hypothesis above can be interchangeably

written

Hj
0 : j(µ1,E) = j(µ2,E) = ... = j(µg,E) = j(µE), (6.11)

Hj
a : at least one equality µa,E = µb,E , 1 ≤ a < b ≤ g does not hold.

In order to test hypothesis (6.10) we will use a T 2 like statistic. The theorem below, gives us the asymptotic

behavior needed to establish such a statistic. For a = 1, . . . , g, we get, from Bhattacharya and Patrangenaru

[6], the following:

(i) Sna = (na)
−1Σna

i=1(j(Xa,i)− j(X̄E))(j(Xa,i)− j(X̄E))
T is a consistent estimator of Σa, and
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(ii) tanj(X̄E) ν is a consistent estimator of tanPj(µ) ν, where ν ∈ R
N .

It follows that GX̄(j,Xa), given by

GX̄(j,Xa) =





[

m
∑

a=1

d
j(p)(X)

Pj(eb) · ei(j(X̄E)) ei(j(X̄E))

]

i=1,...,p



 · Sna





[

m
∑

a=1

d
j(p)(X)

Pj(eb) · ei(j(X̄E))ei(j(X̄E))

]

i=1,...,p





T

where for j(p)(X) = n1
n j(X̄1,E) + · · · + ng

n j(X̄g,E) and is a consistent estimator of µ such that Pj(µ) =

j(µE).One must note that the extrinsic sample covariance matrixG(j,Xa) is expressed in terms of d
j(p)(X)

Pj(eb) ∈
Tj(X̄E)j(M) and not in term of d

j(Xa,1)
Pj(eb) ∈ Tj(X̄a,E)j(M).

THEOREM 6.2.1. Assume j : M → R
N is a closed embedding of M. Let {Xa,i}na

i=1 for a = 1, ..., g be

random samples from the j-nonfocal distributions Qa. Let µa = E(j(Xa,1)) and assume j(Xa,1)’s have

finite second-order moments and the extrinsic covariance matrices Σa,E of Xa,1 are nonsingular. We also

let (e1(p), ...., eN (p)), for p ∈ M be an orthonormal frame field adapted to j.

Furthermore, let na

n → λa > 0, as n→ ∞, with n = Σg
a=1na, and Σg

a=1λa = 1.Then we have the following

asymptotic behavior;

g
∑

a=1

na tanj(µE)(j(X̄a,E)− j(µE))
TΣ−1

a,E tanj(µE)(j(X̄a,E)− j(µE)) →d χ
2
gp.

It follows that the statistics for hypothesis (6.10) have the following behaviors;

(a) the statistic

g
∑

a=1

na tanj(µE)(j(X̄a,E)− j(X̄E))
TGX̄(j,Xa)

−1 tanj(µE)(j(X̄a,E)− j(X̄E)) →d χ
2
gp.

(b) the statistic

g
∑

a=1

na tanj(X̄E)(j(X̄a,E)− j(X̄E))
TGX̄(j,Xa)

−1 tanj(X̄E)(j(X̄a,E)− j(X̄E)) →d χ
2
gp.

Proof. recall that from Bhattacharya and Patrangenaru (2005) [6] we have

√
na tanj(µE)(j(X̄a,E)− j(µE)) →d N(0p,Σa,E), for a = 1, 2, ..., g

where

Σa,E =

[

[

∑

dµPj(eb) · ek(Pj(µ))
]

k=1,...,p

]

Σa

[

[

∑

dµPj(eb) · ek(Pj(µ))
]T

k=1,...,p

]
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where µ = λ1j(µ1,E) + · · · + λgj(µg,E) and the Σa’s are the covariance matrices of the j(Xa,1)’s with

respect to the canonical basis e1, ..., eN . And under the null, from 6.10, the matrices Σa,E are defined with

respect to the basis f1(µE), ..., fp(µE) of local frame fields. We then have for each a = 1, ..., g

na tanj(µE)(j(X̄a,E)− j(µE))
TΣ−1

a,E tanj(µE)(j(X̄a,E)− j(µE)) →d χ
2
p.

and since the random samples are independent we have,

g
∑

a=1

na tanj(µE)(j(X̄a,E)− j(µE))
TΣ−1

a,E tanj(µE)(j(X̄a,E)− j(µE)) →d χ
2
gp. (6.12)

X̄E is the consistent estimator of µE , then the pooled sample mean

j(X̄E) = Pj

(

1

n

g
∑

a=1

naj(X̄a,E)

)

→p j(µE) (by lemma 6.1.1) (6.13)

And since GX̄(j,Xa) consistently estimate Σa and tanj(X̄E) is a consistent estimator of tanj(µE), we have

the following

g
∑

a=1

na tanj(µE)(j(X̄a,E)− j(X̄E))
TGX̄(j,Xa)

−1 tanj(µE)(j(X̄a,E)− j(X̄E)) →d χ
2
gp.

g
∑

a=1

na tanj(X̄E)(j(X̄a,E)− j(X̄E))
TGX̄(j,Xa)

−1 tanj(X̄E)(j(X̄a,E)− j(X̄E)) →d χ
2
gp.

6.2.2 Nonparametric bootstrap confidence regions

From Corollary 3.2 in [6] under the hypothesis
{

H0 : µ1,E = µ2,E = ... = µg,E = µE ,

Ha :∋ (i, j)1 ≤ i < j < g, s.t. µi,E 6= µj,E ,

we have:

COROLLARY 6.2.1. Under the assumptions of Theorem (6.2.1) , a confidence regions for µE of asymptotic

level 1− c is given by C
(g)
n,c and D

(g)
n,c which are defined below

(a) C
(g)
n,c = j−1(Un,c) where

Un,c = {j(ν) ∈ j(M) : n
∑g

a=1 na
∥

∥GX̄(j,Xa)
−1/2 tanj(ν)(j(Xa,E)− j(ν))

∥

∥

2 ≤ χ2
gp,1−c}
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(b) D
(g)
n,c = j−1(Vn,c) where

Vn,c = {j(ν) ∈ j(M) :
∑g

a=1 na

∥

∥

∥
GX̄(j,Xa)

−1/2 tanj(X̄E)(j(Xa,E)− j(ν))
∥

∥

∥

2
≤ χ2

gp,1−c}

where X̄E is the extrinsic pooled sample mean defined in Definition 6.2.1 (ii)

Most of the data we will be focusing on will have value of n relatively small. We will need to use re sam-

pling, in particular bootstrap methods. For a = 1, ..., g, let {Xa,i}na

i=1 be i.i.d.r.o’s from the j-nonfocal

distributions Qa. Let {X∗
a,r}r=1,...,na be random re samples with repetition from the empirical Q̂na condi-

tionally given {Xa,i}na

i=1. The confidence regions C
(g)
n,c and D

(g)
n,c described above have the corresponding

bootstrap analogue C∗(g)
n,c and D∗(g)

n,c which are defined in the corollary below.

COROLLARY 6.2.2. The (1− c)100% bootstrap confidence regions for µE with d = gp are given by

(a) C∗(g)
n,c = j−1(U∗

n,c) and

U∗
n,c = {j(ν) ∈ j(M) :

g
∑

a=1

na

∥

∥

∥GX̄(j,Xa)
−1/2 tanj(ν)(j(Xa,E)− j(ν))

∥

∥

∥

2
≤ c∗

(g)
1−c} (6.14)

where c∗
(g)
1−c is the upper 100(1− c)% point of the values

g
∑

a=1

na

∥

∥

∥GX̄∗(j,X∗
a)

−1/2 tanj(X̄E)(j(X
∗
a,E)− j(X̄E))

∥

∥

∥

2
(6.15)

among the bootstrap re samples.

(b) D∗(g)
n,c = j−1(V ∗

n,c) and

V ∗
n,c = {j(ν) ∈ j(M) :

g
∑

a=1

na

∥

∥

∥GX̄(j,Xa)
−1/2 tanj(X̄E)(j(Xa,E)− j(ν))

∥

∥

∥

2
≤ d∗

(g)
1−c} (6.16)

where d∗
(g)
1−c is the upper 100(1− c)% point of the values

g
∑

a=1

na

∥

∥

∥GX̄∗(j,X∗
a)

−1/2 tanj(X̄∗

E
)(j(X

∗
a,E)− j(X̄E))

∥

∥

∥

2
(6.17)

where X̄∗
E is the extrinsic pooled re sampled mean given by

j(X̄∗
E) = Pj

(n1
n
j(X̄∗

1,E) + · · ·+ ng
n
j(X̄∗

g,E)
)

(6.18)

among the bootstrap re samples. Both of the regions given by (6.16) and (6.14) have coverage erroOp(n
−2).
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Note that GX̄∗(j,X∗
a)

GX̄∗(j,X∗
a) =





[

m
∑

a=1

d
j(p)(X∗)

Pj(eb) · ei(j(X̄∗
E)) ei(j(X̄

∗
E))

]

i=1,...,p



 · S∗
na





[

m
∑

a=1

d
j(p)(X∗)

Pj(eb) · ei(j(X̄∗
E))ei(j(X̄

∗
E))

]

i=1,...,p





T

where S∗
na

= (na)
−1Σna

i=1(j(X
∗
a,i)− j(X̄∗

E))(j(X
∗
a,i)− j(X̄∗

E))
T .

We now express the following test statistics that will be used in our analysis and are tied to the confidence

regions mentioned above.

PROPOSITION 6.2.1. Let {Xa,i}na

i=1 for a = 1, ..., g be random samples from the j-nonfocal distribu-

tions Qa. Let µa = E(j(Xa,1)) and assume j(Xa,1)’s have finite second-order moments and the extrinsic

covariance matrices Σa,E of Xa,1 are nonsingular.

(a) Then the distribution of Tc(X
(g), Q̂(g)) =

∑g
a=1 na

∥

∥Gµ(j,Xa)
−1/2 tanj(µE)(j(Xa,E)− j(µE))

∥

∥

2

can be approximated by the bootstrap distribution function of

Tc(X
∗(g), Q̂(g)) =

∑g
a=1 na

∥

∥

∥GX̄(j,X∗
a)

−1/2 tanj(X̄E)(j(X
∗
a,E)− j(X̄E))

∥

∥

∥

2

(b) Similarly, the distribution of Td(X
(g), Q̂(g)) =

∑g
a=1 na

∥

∥

∥
G(j,Xa)

−1/2 tanj(X̄E)(j(Xa,E)− j(µE))
∥

∥

∥

2

can be approximated by the bootstrap distribution function of

Td(X
∗(g), Q̂∗(g)) =

∑g
a=1 na

∥

∥

∥GX̄∗(j,X∗
a)

−1/2 tanj(X̄∗

E
)(j(X

∗
a,E)− j(X̄E))

∥

∥

∥

2

with coverage error Op(n
−2).

Note that T (X∗(g), Q̂(g)) is obtained from T (X(g), Q̂(g)) by substituting X
(g)
1 = (X1,1, · · · , Xg,1)

T with re

samples X
∗(g)
1 = (X∗

1,1, · · · , X∗
g,1)

T .

Using the bootstrap analogue in the previous Proposition 6.2.1 yields simpler method for finding 100(1 −
c)% confidence regions. We will utilize the tests statistics expressed above to conduct our analysis with

confidence regions C∗
n,c and D∗

n,c as shown in the Corollary 6.2.2.

6.3 MANOVA on (RP 3)q

We start with the 3-dimensional real projective space RP 3. It is a space of 1-dimensional linear subspaces

of R4 and is also a 3-dimensional manifold. A projective point p = [x] ∈ RP 3, is an equivalence class

of x = (x1, · · · , x4) ∈ R
4 and can also be represented by p = [x1 : x2 : x3 : x4] (homogeneous
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coordinates notation). We will identify M = RP 3 with the sphere S3 with the antipodal points identified,

[x] = {x,−x} ∈ RP 3, x ∈ R
4, ‖x‖ = 1. We will often refer to this identification as the spherical

representation of the real projective space. RP 3 is an embedded manifold with the embedding

j : RP 3 → S(4, R)

j([x]) = xxT (6.19)

And for [X] a random object on j-nonfocal probability measureQ on RP 3 the projectionPj : S+(4,R)\F →
j(RP 3) assigns to each nonnegative definite symmetric matrix A with highest eigenvalue of multiplicity 1,

the matrix j([γ]),where γ is a unit eigenvector ofA corresponding to its largest eigenvalue(see Bhattacharya

and Patrangenaru [6]).

Our analysis will be conducted on PΣk
3 , the projective shape space of 3D k-ads in RPm for which π =

([u1], . . . , [u5]) is a projective frame in RP 3. PΣk
3 is homeomorphic to the manifold

(

RP 3
)k−5

with k−5 =

q (see Patrangenaru et. al (2010)). The embedding on this space is the VW (Veronese-Whitney) embedding

given by

jk :
(

RP 3
)q → (S(4,R))q

jk([x1], . . . , [xq]) = (j([x1]), . . . , j([xq])), (6.20)

with j : RP 3 → S+(4,R) the embedding given in (6.19). Additionally jk is an equivariant embedding w.r.t.

the group (S+(4,R))
q and has the corresponding projection

Pjk : (S+(4,R))
q \Fq → jk

(

RP 3
)q

Pjk(A1, . . . , Aq) = (j([m1]), . . . , j[mq])) (6.21)

wherem1, . . . ,mq are unit eigenvectors ofA1, . . . , Aq (respectively) corresponding to the respective highest

eigenvalues of those nonnegative definite symmetric matrices. Let Y be be a random object from a VW

distribution Q on (RP 3)q, where Y = (Y 1, . . . , Y q), and Y s = [Xs] ∈ RP 3 for all s = 1, q. The VW

mean is given by

µjk = ([γ1(4)], · · · , [γq(4)]), (6.22)

where, for s = 1, q, λs(r) and γs(r), r = 1, . . . , 4 are the eigenvalues in increasing order and the corres-

ponding eigenvectors of E
[

Xs(Xs)T
]

.
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In case of a random object [X] on R
3, let us assume that µE,j = [ν4], where ηr and νr, r = 1, 2, 3, 4,

are eigenvalues in increasing order and corresponding unit eigenvectors of µ = E[XXT ] corresponding to

eigenvalues in their increasing order. The corresponding extrinsic sample mean, for a sample of size n, is

given by XE,j = [g(4)], where d(r) and g(r) ∈ R
4, r = 1, 2, 3, 4, are eigenvalues in increasing order and

corresponding unit eigenvectors of J = 1
n

∑n
i=1XiX

T
i .

We now recall the result from Theorem 4.1 in Bhattacharya and Patrangenaru (2005) [6] well as represent

the statistics

T ([X], Q) = n‖S(j,X)−1/2 tanj(µE,j)

(

j(XE,j)− j(µE,j)
)

‖2

We have for T ([X], Q) = T ([X], [ν4])

T ([X], [ν4]) = n g(4)T [(νr)]r=1,2,3S(j,X)−1[(νr)]
T
r=1,2,3 g(4) (6.23)

This results extends to the statistics

T ([X], Q̂) = T ([X], [g(4)]) = ‖S(j,X)−1/2 tanj(XE,j)

(

j(XE,j)− j(µE,j)
)

‖2

T ([X], [g(4)]) = n νT4 [g(r)]r=1,2,3S(j,X)−1[g(r)]Tr=1,2,3 ν4, (6.24)

where

S(j,X)ab = n−1(d(4)− d(a))−1(d(4)− d(b))−1 ×
n
∑

i=1

(g(a) ·Xi)(g(b) ·Xi)(g(4) ·Xi)
2

and, asymptotically T ([X], [ν4]) and T ([X], [g(4)]) both have a χ2
3 distribution.(see Bhattacharya and

Patrangenaru (2005) [6])

Before we express our statistics of interest, it will be important to note another result from Crane and

Patrangenaru (2011) [7] concerning the statistics

T (Y, µE,jk) = n‖SȲ (jk, Y )−1/2 tanj(Y E,jk
)

(

j(Y E,jk)− j(µE,jk)
)

‖2

And this Hotelling T 2 type statistic is given by

T (Y, ([γ1(4)], · · · , [γq(4)])) = n
(

γ1(4)
TD1 . . . γq(4)

TDq

)

SȲ (jk, Y )−1
(

γ1(4)
TD1 . . . γq(4)

TDq

)T

(6.25)

where for s = 1, . . . , q we have Ds = (gs(1) gs(2) gs(3)) ∈ M(4, 3,R) and for a pair of indices (s, a), s =

1, . . . , q and a = 1, 2, 3 in their lexicographic order we have

SȲ (jk, Y )(s,a),(t,b) = n−1(ds(4)−ds(a))−1(dt(4)−dt(b))−1×
n
∑

i=1

(gs(a)·Xs
i )(gt(b)·Xt

i )(gs(4)·Xs
i )(gt(4)·Xt

i )

(6.26)
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In the next theorem we will take advantage of these results.

H0 : µ1,E = µ2,E = ... = µg,E = µE , (6.27)

Ha : at least one equality µa,E = µb,E , 1 ≤ a < b ≤ g does not hold.

We aim to have an explicit representation of the expressions,

Tc

(

Y (g), µ
(p)
E

)

= na

g
∑

a=1

∥

∥

∥

∥

SȲ (jk, Ya)
−1/2 tan

jk

(

µ
(p)
E

)

(

jk(Y a,E)− jk

(

µ
(p)
E

))

∥

∥

∥

∥

2

(6.28)

Td

(

Y (g), Y
(p)
E

)

= na

g
∑

a=1

∥

∥

∥

∥

SȲ (jk, Ya)
−1/2 tan

jk

(

Y
(p)
E

)

(

jk(Y a,E)− jk

(

µ
(p)
E

))

∥

∥

∥

∥

2

(6.29)

where µa,E = ([νa1 (4)], . . . , [ν
a
q (4)]) are the VW mean from distribution Qa (of Yra) and (ηas (r), ν

a
s (r)),

r = 1, . . . , 4, are eigenvalues and corresponding unit eigenvectors of E(Xs
a,1(X

s
a,1)

T ]. The corresponding

VW sample mean is given byY a,E = ([ga1(4), . . . , [g
a
q (4)]) and for each s = 1, . . . , q we have for r =

1, . . . , 4, (das(r), g
a
s (r)) which are eigenvalues in increasing order and corresponding unit eigenvectors of

Ja
s = 1

na

∑na

i=1X
s
a,i(X

s
a,i)

T . Also µ
(p)
E is the VW pooled mean given by

jk

(

µ
(p)
E

)

= Pjk

(

g
∑

a=1

λa
λ
jk(µa,E)

)

(6.30)

µ
(p)
E = ([γ

(p)
1 (4)], . . . , [γ(p)q (4)]) (6.31)

and Y
(p)
E is the corresponding pooled mean, given by

jk

(

Y
(p)
E

)

= Pjk

(

g
∑

a=1

na
n
jk(Y a,E)

)

(6.32)

Y
(p)
E = ([g

(p)
1 (4)], . . . , [g(p)

q (4)]) (6.33)

where for s = 1, . . . , q, d
(p)
s (r) and g

(p)
s (r) ∈ R

4, r = 1, 2, 3, 4, are eigenvalues in increasing order

and corresponding unit eigenvectors of the matrix J (p) =
∑g

a=1
na

n jk(Y a,E).

We now express the following matrices

Cs = (γ(p)s (1) γ(p)s (2) γ(p)s (3)) ∈ M(4, 3 : R) (6.34)

Ds = (g(p)
s (1) g(p)

s (2) g(p)
s (3)) ∈ M(4, 3 : R) (6.35)
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COROLLARY 6.3.1. Assume jk is the VW embedding of (RP 3)q and {Ya,ra}ra=1,...,na , a = 1, . . . , g

are independent random samples from jk-nonfocal probability measures Qa on (RPm)q that have non

degenerate jk-extrinsic covariance matrices. Then the statistics

(i) Tc

(

Y (g), µ
(p)
E

)

=
∑g

a=1 na
(

(ga1(4))
TC1 . . . (g

a
s (4))

TCq

)

SȲa
(jk, Ya)

−1
(

ga1(4)
TC1 . . . g

a
q (4)

TCq

)T

(ii) Td

(

Y (g), Y
(p)
E

)

=
∑g

a=1 na

[

(γ
(p)
1 (4)− ga1(4))

TD1 . . . (γ
(p)
q (4)− gaq (4))

TDq

]

SȲa
(jk, Ya)

−1

[

(γ
(p)
1 (4)− ga1(4))

TD1 . . . (γ
(p)
q (4)− gaq (4))

TDq

]T
.

where

SȲa
(jk, Ya)(s,c)(t,b) = n−1

a (d(p)
s (4)− d(p)

s (c))−1(d
(p)
t (4)− d

(p)
t (b))−1

×
∑

i

(g(p)
s (c) ·Xs

a,i)(g
(p)
t (b) ·Xt

a,i)(g
(p)
s (4) ·Xs

a,i)(g
(p)
t (4) ·Xt

a,i)

and s, t = 1, . . . , q and c, b = 1, . . . ,m. Both Tc

(

Y (g), µ
(p)
E

)

and Td

(

Y (g), Y
(p)
E

)

have, asymptotically a

χ2
3q distribution.

Proof. For part (i) we note that for each a = 1, . . . g we get a natural extension of the result in theorem 4.1

Bhattacharya and Patrangenaru (2005) [6] as shown in 6.23.For part (ii) recall that

Td

(

Y (g), Y
(p)
E

)

= na

g
∑

a=1

∥

∥

∥

∥

SȲa
(jk, Ya)

−1/2 tan
jk

(

Y
(p)
E

)

(

jk(Y a,E)− jk

(

µ
(p)
E

))

∥

∥

∥

∥

2

we start by rewriting the expression above and we have

Td

(

Y (g), Y
(p)
E

)

= na

g
∑

a=1

∥

∥

∥

∥

SȲa
(jk, Ya)

−1/2 tan
jk

(

Y
(p)
E

)

(

jk(Y
(p)
E )− jk

(

µ
(p)
E

))

− SȲa
(jk, Ya)

−1/2 tan
jk

(

Y
(p)
E

)

(

jk(Y
(p)
E )− jk

(

Y a,E

)

)

∥

∥

∥

∥

2

Td

(

Y (g), Y
(p)
E

)

=

g
∑

a=1

na

∥

∥

∥

∥

SȲa
(jk, Ya)

−1/2
[

(γ
(p)
1 (4))TD1 . . . (γ

(p)
q (4))TDq

]T

− SȲa
(jk, Ya)

−1/2
[

(ga1(4))
TD1 . . . (g

a
q (4))

TDq

]T
∥

∥

∥

2
(6.36)
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If Yra are jk-nonfocal populations on (RP 3)q we can construct an Edgeworth expansion up to order

Op(n
−2) of the pivotal statistics Tc

(

Y (g), µ
(p)
E

)

and Td

(

Y (g), Y
(p)
E

)

. under the hypothesis
{

H0 : µ1,E = µ2,E = ... = µg,E = µ
(p)
E ,

Ha :∋ (i, j)1 ≤ i < j < g, s.t. µi,E 6= µj,E .

COROLLARY 6.3.2. The (1− c)100% bootstrap confidence regions for µE with d = gp are given by

(a) C∗(g)
n,c = j−1(U∗

n,c) and U∗
n,c = {jk(ν) ∈ jk((RP

3)q) : Tc
(

Y (g), ν
)

≤ c∗
(g)
1−c} where c∗

(g)
1−c is the upper

100(1− c)% point of the values

Tc

(

Y ∗(g), Y
(p)
E

)

=

g
∑

a=1

na
(

(g∗a1(4))
TD1 . . . (g

∗a
s(4))

TDq

)

SȲ ∗

a
(jk, Y

∗
a )

−1
(

g∗a1(4)
TD1 . . . g

∗a
q(4)

TDq

)T

(6.37)

among the bootstrap re samples.

(b) D∗(g)
n,c = j−1(V ∗

n,c) and V ∗
n,c = {jk(ν) ∈ jk((RP

3)q) : Tc

(

Y (g), Y
(p)
E , ν

)

≤ d∗
(g)
1−c} where

Td

(

Y (g), Y
(p)
E , ν

)

= na
∑g

a=1

∥

∥

∥

∥

SȲa
(jk, Ya)

−1/2 tan
jk

(

Y
(p)
E

)

(

jk(Y a,E)− jk(ν)
)

∥

∥

∥

∥

2

where d∗
(g)
1−c is

the upper 100(1− c)% point of the values

Td

(

Y ∗(g), Y ∗(p)
E , Y

(p)
E

)

=

g
∑

a=1

na

∥

∥

∥

∥

SȲ ∗

a
(jk, Y

∗
a )

−1/2 tan
jk

(

Y
∗(p)
E

)

(

jk(Y
∗
a,E)− jk(Y

(p)
E )
)

∥

∥

∥

∥

2

(6.38)

among the bootstrap re samples. Both of the regions given by (6.16) and (6.14) have coverage error

Op(n
−2).

Note that here

SȲ ∗

a
(jk, Y

∗
a )(s,c)(t,b) = n−1

a (d∗(p)
s (4)− d∗(p)

s (c))−1(d
∗(p)
t (4)− d

∗(p)
t (b))−1

×
∑

i

(g∗(p)
s (c) ·X∗s

a,i)(g
∗(p)
t (b) ·X∗t

a,i)(g
∗(p)
s (4) ·X∗s

a,i)(g
∗(p)
t (4) ·X∗t

a,i), b, c = 1, 2, 3.

6.4 Application to face data

We will now test for the existence of 3D mean projective shape change to differentiate between three faces

which are represented in Fig 6.4

Our analysis will be conducted on g = 3 individuals. The 3D reconstruction was done using the AGISOFT

software. The images in Fig 6.4 represent 19 facial reconstructions. Each of those reconstruction was created
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Figure 6.1: Faces used in MANOVA analysis

Figure 6.2: Sample of facial reconstructions
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Figure 6.3: Projective frame shown in red

using mostly 4 to 5 digital camera images of a given individual. We are also able to place and recover 7

landmarks which are shown in figure 6.4.

Five of those landmarks (colored in red) will be used to construct a projective frame and the resulting two

projective coordinate will determine our 3D projective shapes. We will compare these faces by conducting

a MANOVA on manifold to compare g = 3 VW-means on PΣ7
3 = (RP 3)2. For n =

∑3
a=1 na = 19 where

n1 = 6, n2 = 6 and n3 = 7 our hypothesis problem will be

H0 : µ1,E = µ2,E = µ3,E = µE ,

Ha : at least one equation does not hold.

Since the true pulled mean is unknown and our data set is relatively small we will reject the null hypothesis

if

Td

(

Y (3), Y
(p)
E

)

=
∑3

a=1 na

∥

∥

∥

∥

SȲa
(jk, Ya)

−1/2 tan
jk

(

Y
(p)
E

)

(

jk(Y a,E)− jk(Y
(p)
E )
)

∥

∥

∥

∥

2

does not belong to

V ∗
n,c = {jk(ν) ∈ jk((RP

3)2) : Tc

(

Y (3), Y
(p)
E , ν

)

≤ d∗
(3)
1−c}, where d∗

(3)
1−c is the (1 − c)100% cutoff of

the corresponding bootstrap distribution.

Using 46800 resamples we obtain a value for Td

(

Y (3), Y
(p)
E

)

= 757260 and for the d∗
(3)
0.95 = 355420 and

we therefore reject the null hypothesis. And we conclude that there exist a statistically significant VW-mean

projective shape face difference between at least two of the individuals.
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CHAPTER 7

FUTURE WORK

In this chapter we explore some of the possible directions for extrinsic data analysis.

7.1 New test statistics for data on (RP 3)q and MANOVA for anti-means

7.1.1 MANOVA cross validation

Although I was able to conclude effectively that there is a statistically significant VW-mean projective

shape difference between at least two of the individuals, this test involved only g = 3. I would like to

significantly increase the number g of samples to be compared in order to find the numerical limits of this

particular method.

I would also like to use the data collected to conduct a cross-validation test. It will mean that I will compare

g samples of the same face in order to verify that this method can in fact be used to properly differentiate

between objects (faces, flours, etc...).

7.2 Anti-mean and MANOVA on manifolds

The results about the asymptotic of the anti-means are part of a joint paper with my colleague Ruite Guo

and professor Patrangenaru (see Patrangenaru et all (2016b) [22]). I include this under future work, as more

credit for this paper should be attributed to Ruite.

7.2.1 CLT for the sample anti-means

Assume j is an embedding of a d-dimensional manifold M such that j(M) is closed in R
k, and Q is a

αj-nonfocal probability measure on M such that j(Q) has finite moments of order 2. Let µ and Σ be the

mean and covariance matrix of j(Q) regarded as a probability measure on R
k. Let F be the set of αj-focal

points of j(M), and let PF,j : Fc → j(M) be the projection on j(M). PF,j is differentiable at µ and has

the differentiability class of j(M) around any αj-nonfocal point.

Assume x→ (f1(x), . . . , fd(x)) is a local frame field on an open subset ofM such that for each x ∈M ,

(dxj(f1(x)), . . . , dxj(fd(x))) are orthonormal vector in R
k. A local frame field p→ (e1(p), e2(p), . . . , ek(p))
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defined on an open neighborhood U ⊆ R
k is adapted to the embedding j if it is an orthonormal frame field

and ∀x ∈ j−1(U), er(j(x)) = dxj(fr(x)), r = 1, . . . , d.

Let e1, e2, . . . , ek be the canonical basis of R
k and assume (e1(p), e2(p), . . . , ek(p)) is an adapted

frame field around PF,j(µ) = j(µαE). Then dµPF,j(eb) ∈ TPF,j(µ)j(M) is a linear combination of

e1(PF,j(µ)), e2(PF,j(µ)), . . . , ed(PF,j(µ)):

dµPF,j(eb) =

d
∑

a=1

(dµPF,j(eb)) · ea(PF,j(µ))ea(PF,j(µ)). (7.1)

By the delta method, n1/2(PF,j(j(X)) − PF,j(µ)) converges weakly to Nk(0k, αΣµ), where j(X) =

1
n

∑n
i=1 j(Xi) and

αΣµ = [

d
∑

a=1

dµPF,j(eb) · ea(PF,j(µ))ea(PF,j(µ))]b=1,...,k

×Σ[

d
∑

a=1

dµPF,j(eb) · ea(PF,j(µ))ea(PF,j(µ))]
T
b=1,...,k

(7.2)

Here Σ is the covariance matrix of j(X1) w.r.t the canonical basis e1, e2, . . . , ek.

The asymptotic distributionNk(0k, αΣµ) is degenerate and the support of this distribution is on TPF,j
j(M),

since the range of dµPF,j is TPF,j(µ)j(M). Note that dµPF,j(eb) · ea(PF,j(µ)) = 0 for a = d + 1, . . . , k.

we obtain the following asymptotic result, our CLT for extrinsic anti-mean, on the tangent space of j(M)

at PF,j(µ) = j(αµE).

tanPF,j(µ)

(

PF,j((j(X)))− PF,j(µ)
)

→d N(0, αΣj,E) (7.3)

Then the random vector (dαµE
j)−1(tanPF,j(µ)(PF,j((j(X))) − PF,j(µ))) =

∑d
a=1X

a
jfa has the fol-

lowing covariance matrix w.r.t. the basis f1(αµE), . . . , fd(αµE) :

αΣj,E = ea(PF,j(µ))
tαΣµeb(PF,j(µ))1≤a,b≤d

= [ΣdµPF,j(eb) · ea(PF,j(µ))]a=1,...,dΣ

×[ΣdµPF,j(eb) · ea(PF,j(µ))]
T
a=1,...,d

(7.4)

The matrix αΣj,E given above is the extrinsic anti-covariance matrix of the αj -nonfocal distribution Q(of

X1) w.r.t. the basis f1(µαE), . . . , fd(µαE).
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7.2.2 MANOVA for anti-means

I will start by considering the following extension to my MANOVA on manifolds method, from Chapter 6.

DEFINITION 7.2.1. Under the assumption αA0 : αµ1,E = · · · = αµg,E and for any a ∈ {1, 2, ..., g},

with na

n → λa > 0, as n→ ∞. We define

(i) The extrinsic pooled anti-mean with weights λ = (λ1, . . . , λg), denoted αµE(λ) as the value in M
given by

j(αµE) = PF,j(λ1j(αµ1,E) + · · ·+ λgj(αµg,E)) (7.5)

Where αµa,E is the extrinsic anti-mean of the random object Xa,1 and Σg
a=1λa = 1

(ii) The extrinsic sample pooled anti-mean denoted ¯aXE ∈ M given by;

j(aX̄E) = PF,j

(n1
n
j(aX̄1,E) + · · ·+ ng

n
j(aX̄g,E)

)

, (7.6)

where aX̄a,E is the extrinsic sample anti-mean for Xa,1 and n =
∑g

a=1 na

With this definition at hand, I can now express the following hypothesis test, designed to test the differ-

ence between extrinsic anti-means and is given by;

H0 : αµ1,E = αµ2,E = ... = αµg,E = αµE , (7.7)

Ha : at least one equality αµa,E = αµb,E , 1 ≤ a < b ≤ g does not hold.

The results in chapter 6 can be adapted to extrinsic anti-means and pooled anti-means as well and I will

take advantage of these results. After some effort I will be able to have an explicit representation of the

expressions,

αTc

(

Y (g), αµ
(p)
E

)

=

g
∑

a=1

∥

∥

∥

∥

aSȲ (jk, Ya)
−1/2 tan

jk

(

αµ
(p)
E

)

(

jk(aY a,E)− jk

(

αµ
(p)
E

))

∥

∥

∥

∥

2

(7.8)

αTd

(

Y (g), aY
(p)
E

)

=

g
∑

a=1

∥

∥

∥

∥

aSȲ (jk, Ya)
−1/2 tan

jk

(

aY
(p)
E

)

(

jk(Y a,E)− jk

(

αµ
(p)
E

))

∥

∥

∥

∥

2

, (7.9)

whereαµa,E = ([νa1,(1)], . . . , [ν
a
q (1)]) are the VW anti-mean from distributionQa (of Yra) and (ηas (r), ν

a
s,(r))

are eigenvalues and corresponding unit eigenvectors of E(Xs
a,1(X

s
a,1)

T ]. The corresponding VW sam-

ple anti-mean is given byaY a,E = ([ga1(1)], . . . , [g
a
q (1)]) and for each s = 1, . . . , q we have for r =

1, . . . , 4, (das(r), g
a
s (r)) which are eigenvalues in increasing order and corresponding unit eigenvectors of
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Ja
s = 1

na

∑na

i=1X
s
a,i(X

s
a,i)

T . Also αµ
(p)
E is the VW pooled mean given by

jk

(

αµ
(p)
E

)

= PF,jk

(

g
∑

a=1

na
n
jk(αµa,E)

)

(7.10)

αµ
(p)
E = ([γ

(p)
1 (1)], . . . , [γ(p)q (1)]) (7.11)

and aY
(p)
E is the corresponding pooled sample anti-mean, given by

jk

(

aY
(p)
E

)

= PF,jk

(

g
∑

a=1

na
n
jk(aY a,E)

)

(7.12)

aY
(p)
E = ([g

(p)
1 (1)], . . . , [g(p)

q (1)]), (7.13)

where for s = 1, . . . , q, d
(p)
s (r) and g

(p)
s (r) ∈ R

4, r = 1, 2, 3, 4, are eigenvalues in increasing order and

corresponding unit eigenvectors of the matrix J (p) =
∑g

a=1
na

n jk(µa,E).

I will then be able to construct confidence regions for αµ
(p)
E of asymptotic level 1−cmuch like in the case of

VW means, and when our sample size is relatively small we will be able to build a (1− c)100% confidence

regions for αµ
(p)
E using nonparametric bootstrap. These confidence regions will be the tool I will use to

differentiate between different objects.

7.3 Dependence on embedded manifolds

We are interested in determining the dependence between the random objects, X on S
2 and Y a

random variable. And for that we start by observing the dependence structure between ι(X) a random

vector in R
3 and Y a random variable. We will call upon copula functions to start this process. At this

point it is important to note that copula functions have been widely used to model the dependence structure

between random vectors which is of importance in the computation of certain financial products such as

VAR (Value At Risk). And the copula framework offers a wide variety of copulas, such as the Gaussian,

student t copula, Frank’s copula, Archimedes family of copula and so on. We will focus on only one type of

copula, the Gaussian copula. We first define a two dimensional copula function.

DEFINITION 7.3.1. The copula function C is a copula for the random vector (X,Y ) with X ∈ R
m and

Y ∈ R
k, if it is the joint distribution of the random vector (U, V ) where U = F1(X), and V = F2(Y ) and

Fa, a = 1, 2, are the marginal distribution functions of X and Y respectively. This implies that

H(x, y) = C(F1(x), F2(y)) = C(u, v) (7.14)

Where H is the joint distribution function of (X,Y ). If F1 and F2 are continuous the copula C is unique.
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Note that

P (X ≤ x, Y ≤ y) = P (F1(X) ≤ F1(x), F2(Y ) ≤ F2(y)) = C(F1(x), F2(y))

The results of the Sklar Theorem (see Rockinger and Jondeau (2001) [29]) show that we may link any

group of univariate distributions, of any type with any copula and we will have defined a valid multivariate

distribution.

DEFINITION 7.3.2. [Gaussian Copula] This copula is given by

CGaussian(u, v) = P (Φ(X) ≤ u,Φ(Y ) ≤ v) = ΦΣ(Φ
−1(u),Φ−1(v)) (7.15)

where Φ is the standard normal cdf and ΦΣ is the joint distribution function of a standard Gaussian random

vector Z = (X,Y )T ∼ N2(0,Σ). Note that Σ can also be viewed as a correlation matrix of Z. And in two

dimensions we have

CGaussian(u, v) =

∫ Φ−1(u)

−∞

∫ Φ−1(v)

−∞

1

2π(1− ρ2)1/2
exp

{−(s21 − 2ρs1s2 + s22)

2(1− ρ2)

}

ds1ds2 (7.16)

(see [28].)

REMARK 7.3.1. It is important to note thatU and V are independent if and only if the correlation matrix Σ

is the identity. Recall that in the case of Gaussian random vector this result holds andCGaussian(u, v) = uv.

PROPOSITION 7.3.1. Let X and Y be random vectors on R
m and R

k respectively then X and Y are

independent if and only if U = F1(X) and V = F2(Y ) (viewed as random variables) are independent.

Proof. Note that X and Y independent implies H(x, y) = P (X ≤ x)P (Y ≤ y) = F1(x)F2(y) =

uv = C(u, v) and we conclude that U and V are independent (recall the cdf of a uniform U(0, 1) is

F (u|(0, 1)) = u). The other direction follows from the same set of equalities. For the direction from left to

right please see [1].

We will now use the proposition above along with the useful property of the Gaussian copula correlation

matrix to design an independence test.
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7.3.1 Test for independence

Now back to our data set made up of X a random object on S
2 and Y a random variable on R. We will

first use the proposition and Gaussian copula to test for independence between the embedded variable ι(X)

(random vector on R
3) and Y a random variable on R. We will also assume that F1 and F2 are, respectively,

the cdf’s of ι(X) and Y. We can now do the following

1. Define U = F1(ι(X)) and V = F2(Y )

2. Find the Gaussian Copula that fit our random vectors U and V. This process is done using Matlab and

the function called copulafit(..., )

3. After fitting, the resulting correlation matrix is used to conclude dependence between U and V

4. Once the dependence is established we draw the necessary conclusion about ι(X) and Y , by relying

on proposition 7.3.1

PROPOSITION 7.3.2. The random object X and the random variable Y are independent if and only if

U = F1(ι(X)) and V = F2(Y ) are independent random variables.

Proof. From the proposition 7.3.1 we have that ι(X) and Y are independent iff U and V are independent.

And since ι is one-to-one we have our desired result. (see [28])

Step one above, requires knowledge of the cdf’s of the marginal distributions of ι(X) and Y which may

not be known at the time. Now assume that (X1, Y1), . . . , (Xn, Yn) are i.i.d random objects from a joint

distribution on (S2,R) with marginal cdf’s F1 and F2 respectively. We can use the corresponding empirical

cdf’s F̂1 and F̂2. We can then use the following steps,

1. Define Û = F̂1(ι(X)) and V̂ = F̂2(Y )

2. Find the Gaussian Copula that fit our random vectors Û and V̂ . This process is done using Matlab and

the function called copulafit(..., )

3. After fitting, the resulting correlation matrix is used to conclude dependence between U and V

4. Once the dependence is established we draw the necessary conclusion about ι(X) and Y , by relying

on proposition 7.3.2
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