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ABSTRACT 
 

Background: Skeletal muscle is highly responsive to exercise training stresses, resulting 

in specific performance improvements based on the type of training undertaken (65, 118). Among 

all the variations of exercise training there are two extremes: 1) resistance training (RT) and 2) 

aerobic training (AT). The combination AT and RT is termed concurrent training (CT). This 

combination has been shown to have positive effects on body composition through decreases in 

fat mass (92, 135, 180, 462) and aerobic performance (27, 55, 153, 193, 393, 420, 462). Despite 

these positive outcomes, there have been multiple studies suggesting that the combination of these 

two training modalities hinders increases in strength (27, 180, 222, 419), power (153, 419),  and 

fat free  mass (222, 237, 403, 419). Notably, CT composed of high intensity interval training (HIIT) 

and RT has been shown to positively affect aerobic performance without negatively affecting 

strength in recreationally active men (55, 432, 471) and women (432). In attempts to further 

augment performance, many individuals have looked to nutritional supplementation, consisting of 

both conventional and herbal ingredients. Interestingly, rhodiola rosea (RR) (33, 101, 370) and 

cordyceps sinensis (CS) (60) may have potential to enhance muscle endurance at high intensities. 

Purpose: To determine the effects of CT, composed of HIIT and RT, and Shroom Tech Sporttm 

(SUP), a multi-ingredient performance supplement (MIPS) containing RR and CS, on body 

composition, aerobic and strength performance, cardiometabolic profiles, and hormone 

concentrations in young recreationally active men. Methods: Recreationally active men were 

stratified and matched by age, total strength, relative VO2max, percent body fat, and training years; 

then assigned to take SUP (n=10) or a placebo (PLA) (n=11). Participants completed a 12-week 

CT program (4 days per week; 2 days: total body RT; 2 days: HIIT). Supplements (1 capsule 

(792mg) per 23kg) were consumed 45 minutes before each training and testing sessions and at 

breakfast on non-training days. Body composition, blood draws, and strength, power and aerobic 

performance were tested at week 0, and after weeks six and 12 of training. Additionally, subjects 

completed three-day food logs for dietary intake. Data were reported as mean ± SD. Dependent 

variables were assessed by two-way (group x time) analysis of variance (ANOVA). Significance 

was accepted at p<0.05. Results: There were no differences between groups in any of the 

participant characteristics. There were no significant differences in body mass index, fat free mass 

or percent fat free mass. However, there was a significant time effect for percent body fat, with 
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both groups exhibiting decreases (SUP: pre 15.5 ± 5.8% v mid 14.8 ± 7.2% v post 14.2 ± 6.6%; 

PLA: pre 16.2 ± 6.7% v mid 15.3 ± 6.5%  v post 14.3 ± 6.4%; p=0.0065), with no significant 

differences between groups. There were main group (p= 0.042) and time (p=0.016) effects for fat 

mass but no group x time interactions (SUP: pre 11.92 ± 5.28kg v mid 11.51 ± 6.22kg v post 11.10 

± 6.96 kg; PLA: pre 12.83 ± 6.55kg v mid 12.23 ± 6.61kg v post 11.32 ± 6.49kg). There were no 

significant differences in circumferences or lean mass index (LMI). There were no changes in 

VO2max. Both groups improved bench (SUP: 2.6±3.0%; PLA: 5.4±5.2%) and squat (SUP: 

7.2±6.6%; PLA: 8.8±5.4%) strength. There was a main effect for time in max (p=0.007) and 

average power (p=0.004) but no differences between groups. Notably, significant differences were 

observed between groups in average bench (SUP: 28±1reps v PLA: 25±3, p<0.05) and total (bench 

+ squat) (SUP: 61±4reps v PLA: 57±4; p<0.05) training volumes at “moderate” (72.5-77.5%) 

intensities. Further, SUP also attenuated decreases in average running volume at 100% calculated 

max speed (CMS) when compared to those at 90% CMS versus PLA (SUP:-41±83secs v PLA:-

135±118, p<0.05). There were no group x time interactions in any of the hormone concentrations. 

There were time effects for systolic blood pressure, total cholesterol, LDL, and HDL, with 

decreases in total cholesterol (SUP: Pre: 152 ± 22mg/dL to Mid: 142 ± 23mg/dl to Post: 147 ± 

23mg/dl v PLA: Pre: 154 ± 29mg/dl to Mid: 142 ± 22mg/dl to Post: 143 ± 22mg/dl; p=0.009), 

LDL (SUP: Pre: 83 ± 26mg/dL to Mid: 74 ± 14mg/dl to Post: 80 ± 26mg/dl v PLA: Pre: 82 ± 

24mg/dl to Mid: 70 ± 13mg/dl to Post: 76 ± 18mg/dl; p=0.047) and HDL (SUP: Pre: 48 ± 11mg/dL 

to Mid: 45 ± 10mg/dl to Post: 44 ± 7mg/dl v PLA: Pre: 60 ± 12mg/dl to Mid: 55 ± 12mg/dl to 

Post: 54 ± 10mg/dl; p=0.013). Conclusion: Supplementation with SUP, 45 minutes prior to 

exercise, enhanced moderate intensity resistance exercise performance and max intensity HIIT 

performance in recreationally trained men. Additionally, 12 weeks of CT protocol consisting of 

progressive RT and HIIT improved strength and power performance while decreasing fat mass; 

however, there were no differences between groups. Therefore, use of SUP (792mg per 23kg of 

body weight) for 12 weeks may be beneficial for resistance training at moderate intensities and 

aerobic training at maximal intensity may be beneficial for recreationally active men.  
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CHAPTER 1  

 

INTRODUCTION 

1.1 Background 

 Skeletal muscle is highly responsive to exercise training stresses. Depending on the 

training modality selected, skeletal muscle has been shown to exhibit an array of changes 

including: increases in size, contractile properties, size and number of mitochondrial content, and 

oxidative properties. These changes lead to specific performance improvements based on the 

type of training undertaken (65, 118). Among all the variations of exercise training there are two 

traditional modalities exist: 1) RT, often associated with high intensity (+60% of one rep max 

(1RM)) for short duration (≤ 60 seconds per set of exercise), and 2) AT, consisting of lower 

intensity (< 60% VO2max) repetitive movements for substantially greater durations, traditionally 

lasting longer than 20 minutes. Consequently, both modes of training elicit very different 

physiological adaptions. RT has been shown to stimulate myofibrillar protein synthesis resulting 

in muscular hypertrophy (124, 490) and enhanced muscle cell recruitment (120), leading to 

increases in maximal strength (120, 124, 490). Conversely, AT increases mitochondrial protein 

content (biogenesis) and respiratory enzyme activity, resulting in greater electron transport 

capacity and, thus, a rise in adenosine triphosphate (ATP) production (190). Interestingly, 

endurance trained muscle tissue exhibits altered substrate metabolism by lowering muscle 

glycogen and blood glucose dependency and promoting greater utilization of fat during exercise. 

As a result, aerobically trained muscle has lower lactate production during submaximal exercise 

(191). Together, these adaptations to AT result in increased aerobic capacity (173).   

As the outcomes are vastly different from RT and AT, the molecular pathways that elicit 

skeletal muscle adaptations are also quite different. Interestingly, human skeletal muscle fibers 

exist in multiple phenotypes (Type I, IIa, and IIx), which display various capacities for different 

intensities and durations of physical activity. The expression of these differing phenotypes can be 

further enhanced with continuous bouts of the same modality of exercise, Indeed a single bout of  

either mode cannot elicit significant hypertrophic or mitochondrial biogenesis responses, but the 

accumulation of specific training  overtime will alter muscle phenotypes (106, 118, 389), 

resulting in changes in specific protein expression and functional capacity (322).  
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 CT is the combination AT and RT. Though body composition can be altered through 

either increases in lean mass or decreases in fat mass, CT has been shown to have positive effects 

on body composition through decreases in fat mass (92, 135, 180, 462). Interestingly, CT has 

also demonstrated positive outcomes in aerobic performance such as increases in VO2max (27, 

55, 153, 193, 420, 462) and running economy (393). Despite these positive outcomes in body 

composition and AT, pioneering work by Robert Hickson (180) suggests that the CT hinders 

strength adaptations after 10 weeks of training compared to RT alone (CT: +25% :RT:+ 44%; 

p<0.05). These original data have been corroborated numerous times for muscle mass (222, 237, 

403, 419) and  strength (27, 222, 419) and power (153, 419) performance.   

Conversely, not all research is in agreement that CT does hinder increases in lean body mass 

(27, 153, 222, 314, 315, 432) strength (55, 135, 153, 193, 222, 471) and muscular power (55, 

135). These differences are often due to the differences in training methodology. For example,  

frequency (222, 315) chronological separation between exercise sessions (26, 153, 316), and AT 

modality (315, 316), duration of study (315, 316) and intensity (55, 432, 471) have been shown 

to influence CT outcomes (350).    

Furthermore, dietary supplementation has become prevalent across multiple populations 

including military personnel (256) and all levels of athletics (123, 198, 535) contributing to $32 

billion in annual sales for this market reported in 2012 (290). Performance enhancing 

supplements have become a popular subgroup of dietary supplements. Many of these ingredients 

have been shown in increase strength (15), endurance (189) and recovery (347), which can 

further influence body composition. These common ingredients found in performance enhancing 

supplements are often combined into blends for potential synergistic effects and are commonly 

referred to as multi-ingredient performance supplements (MIPS). Though these products are 

often comprised of a plethora of ingredients, creatine monohydrate, caffeine, beta-alanine, and 

branched-chain amino acids have come to the forefront and are the common ingredients for 

many of these MIPSs. 

 Additionally, herbs such as rhodiola rosea (RR) (33) and cordyceps sinensis (CS) (60) may 

also have potential to enhance performance. Indeed, RR has been shown to influence substrate 

use in favor of fat during submaximal exercise (382) and increase time to exhaustion (RR: 17.2 ± 

0.8min v PLA: 16.8 ± 0.7min; p<0.05)) and VO2 peak (RR: 52.9 ± 2.7ml/kg/min v PLA: 50.9 ± 
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1.8ml/kg/min) (33). Likewise, animals receiving CS supplementation also exhibited increases 

swim time  to exhaustion by 1.79-fold when compared to PLA (287). Additionally, a 

combination of CS and rhodiola crenulata (RC), a herb in the same genus as RR which exhibits 

many of the same characteristics of RR, elicited significantly greater increases in time to 

exhaustion than the placebo intervention (59). The current literature suggests that both of these 

herbal supplements have potential to extend time to exhaustion, albeit in regards to aerobic 

training. These findings may greatly benefit RT and HIIT performance which has the potential to 

enhance body composition and aerobic and strength adaptions. To date, the potential benefits of 

supplementation with RR and CS in a MIPS has yet to be examined in combination with other 

exercise protocols.   

1.2 Purpose 

 The purpose of the present study was to determine the effects of daily supplementation 

with Shroom Tech Sport (SUP) (792mg /23kg), a MIPS containing RR and CS, in combination 

with a 12-week CT protocol, consisting of total body RT and HIIT, on strength, power and 

aerobic performance, hormone concentrations, and cardiometabolic markers in recreationally 

trained collegiate aged men.  

1.3 Specific Aims 

 The following specific aims were tested in the current project: 

1. To what extent 12 weeks (792mg /23kg) of SUP in combination with 12 weeks of 

CT will improve body composition (fat mass and fat free mass) in recreationally 

trained collegiate-aged men?  

2. To what extent 12 weeks (792mg /23kg) of SUP in combination with 12 weeks of 

CT will improve strength (squat and bench), power (Wingate), and aerobic 

(VO2max and lactate threshold) performance in recreationally trained collegiate-

aged men? 

3. To what extent 12 weeks (792mg /23kg) of SUP in combination with 12 weeks of 

CT will alter resting hormonal (total and free testosterone, estrogen, cortisol, 

insulin, insulin-like growth factor-I) and damage marker (creatine kinase) 

concentrations in recreationally trained collegiate-aged men? 
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4. To what extent 12 weeks (792mg /23kg) of SUP in combination with 12 weeks of 

CT will alter cardiometabolic (total cholesterol, triglycerides, high-density 

lipoprotein, low-density lipoprotein and glucose) profiles in recreationally trained 

collegiate-aged men? 

1.4 Research Hypotheses 

 The working hypotheses are as follows: 

1. Collegiate-aged recreationally trained men consuming SUP (792mg /23kg) will 

exhibit greater increases in fat free mass and greater decrements in fat mass 

compared to PLA (792mg /23kg).  

2. Collegiate-aged recreationally trained men consuming SUP (792mg /23kg) will 

exhibit greater increases strength (bench and squat), power and aerobic (VO2max 

and lactate threshold) and demonstrate attenuation of fatigue in anaerobic power 

(Wingate) performance compared to PLA (792mg /23kg).  

3. Collegiate-aged recreationally trained men consuming SUP (792mg /23kg) will 

exhibit greater increases resting anabolic hormone and damage marker 

concentrations compared to PLA (792mg /23kg). 

4. Collegiate-aged recreationally trained men consuming SUP (792mg /23kg) will 

exhibit similar cardiometabolic profiles compared to PLA (792mg /23kg).  

1.5 Assumptions 

 Assumptions for the current study are as follows: 

1. All participants gave full effort during training and performance testing sessions. 

2. All tests were performed in a fasted state. 

3. All participants followed non-training day prescribed supplementation protocol 

regarding SUP or PLA. 

4. All participants accurately reported food consumption for the three day food log. 

5. All participants accurately reported past emotions for the Profile of Mood States 

(POMS) questionnaire. 
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1.6 Delimitations 

 The delimitations of the current study are as follows: 

1. Only collegiate aged men were allowed to participate in the current study. 

2. All subjects are recreationally trained and meet the following criteria: 

a. All subjects had at least two years training experience 

b. All subjects were able to squat their body weight 

c. All participants had a VO2max of at least 40ml/kg/min. 

3. All training was supervised by either certified fitness professionals or 

individual who had received training in regards to exercise protocol and 

expectations 

4. All training day supplementation was monitored by research personnel.  

5. All subjects did not have any prior history of muscular or skeletal 

disorders. 

6. All participants did not have any prior history of anabolic steroid use. 

7. All participants were non-smokers. 

8. All participants using supplements followed a four week wash-out period 

before participation. 

1.7 Limitations 

 The limitations of the current study are as follows: 

1. SUP is composed of a proprietary blend of ingredients. Thus, individual 

ingredients could not be adjusted for differing body masses among 

individuals. 

2. Dosing of SUP was based upon body mass, as directed by the 

manufacturer, which may have resulted in individuals receiving various 

amounts of the ingredients. 

3. Dietary intake was monitored through three-day food logs and not directly 

controlled. Thus, the present study relied on the honesty in recordings. 
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1.8 Definition of Terms 

 Concurrent Training (CT): is the combination of resistance and aerobic training.  

 Resistance Training (RT): Often is associated with high intensity (+60%) for short 

duration (≤ 60 seconds per bout of exercise) with the focus of muscle strength and/or 

hypertrophy. Further, this mode of exercise often uses free weights and machines for 

training specific body parts. 

 Aerobic Training (AT): is training focused on increasing aerobic capacity. Traditionally, 

aerobic training consisting of lower intensity repetitive movements for substantially 

greater durations. 

 High Intensity Interval Training (HIIT): Aerobic training that consists of repeated bouts 

of high intensity (+80% VO2max) efforts. 

 Multi-ingredient Performance Supplement (MIPS): is a nutritional supplement that 

consists of multiple ingredients in order to further augment either aerobic or resistance 

training. 

 Lean Mass Index (LMI): represents the overall positive change in body composition, 

decreases in fat mass and increases in lean mass.  

 One Rep Max (1RM): The maximal amount of weight that can be for one repetition.  
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CHAPTER 2 

 

REVIEW OF LITERATURE 

2.1 Skeletal Muscle Plasticity 

2.1.1 Hypertrophy 
2.1.1.1 Cellular pathway. Though the processes are still not fully understood, protein-kinase 

B (PKB; also known as AKT) is the main effector of mammalian target of rapamycin complex 1 

(mTORC1), which is a pivotal mediator in increasing muscle protein synthesis. Consequently, 

muscle growth is dependent on the activation of this pathway in response to environmental 

stimuli (nutrient and hormonal growth factors, mitochondrial signals and RT) (35, 87, 95). 

Despite conflicting results (67, 86),  there is overall supportive evidence for activation of  PKB-

mTORC1 signaling in anabolic processes from both acute (94) and chronic (297, 536) bouts of 

RT. Further, PKB has been shown to inhibit catabolic signaling (354, 493). Farther down the 

cascade, mTORC1 targets effectors 70kDa ribosomal protein S6 kinase (p70S6k) and eIF4E-

binging protein (4E-BP1) (36, 106). Additionally, it has been suggested that p70S6k applies its 

effects through a multitude of substrate targets and has been implicated in the regulation of cell 

size and protein synthesis (65).  

In addition to the PKB-mTORC1 pathway, RT has been shown to affect the mitogen-

activated protein-kinase (MAPK) pathway, which is a regulator of gene expression, redox status 

and metabolism (279). With respect to RT, MAPK has been shown to link cellular stress in 

myocytes to modulating growth and differentiation responses (424). Continuing down this 

signaling cascade are three signaling proteins that are activated by MAPK, extracellular signal-

related kinases (ERK 1/2), p38 MAPK, and c-Jun NH2-terminal kinase (JNK). Of these three 

proteins, it has been suggested that JNK is the most responsive to mechanical tension and muscle 

damage. Activation of JNK through RT has been correlated to rapid rise in mRNA transcription 

factors that elicit cellular proliferation and DNA repair (11, 12). 

Finally, calciuneurin (Cn) is the primary regulatory protein for a calcium dependent pathway 

for muscular hypertrophy. Cn is a downstream protein associated with PKB activation and is a 

pivotal component of hypertrophy via insulin-like growth factor-I (IGF-I) stimulation in type I 
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muscle fibers (431). Through Cn, myocyte enhancing factor 2, GATA transcription factors and 

nuclear factor of activated T (NFAT) cells, subsequently, promote cellular hypertrophy in type I 

muscle fibers (338).  Additionally, Cn promotes the upregulation of myogenin (MEF) and the 

downregulation of myostatin; allowing for further promotion of muscle cell hypertrophy (431). 

Though muscular hypertrophy is a primary contributor to muscular strength improvements, 

neural mechanisms also influence maximal strength. RT has been shown to elicit increases in 

muscle fiber recruitment (154), firing rate (84), and synchrony (340) resulting in more muscle 

fibers contracting in unison at faster rates and, ultimately, greater contraction strength. These 

neural adaptions have been shown to not only occur at the motor unit, but also in multiple 

locations throughout the entire nervous system including: cortical maps, motor command, 

descending drive, muscle activation, and sensory feedback mechanisms (98). This adaptation 

throughout this nervous system feedback loop allows for greater sensory of muscle contraction 

and limb speed, allowing for the nervous system to adjust efferent signals appropriately. 

Moreover, evidence demonstrates that neural adaptation is the primary mechanism for increases 

in muscle strength in the first five weeks of  RT in untrained limbs, with hypertrophic responses 

becoming more dominant thereafter (344). Indeed, the combination of increased muscle cell 

cross sectional area and neural adaption both contribute to the increases in strength development 

(182).    

2.1.1.2 Satellite cell activation. Skeletal muscle myogenesis is the result of the activation of 

skeletal muscle satellite cells. Initially, satellite cells lay dormant between the basal lamina and 

sarcolemma of their respective muscle fibers. These cells do not elicit any protein synthesis and 

have little gene expression. Additionally, skeletal muscle satellite cells must be activated through 

weight bearing activity, such as exercise, or trauma (143). Briefly, the activation of skeletal 

muscle satellite cells is reliant upon a multitude influences (immune responses, hormonal 

environment, autocrine factors and motor neuron input) (172).   

 Mechanical stretch in myofibers has also been shown to activate intercellular signals 

resulting in hepatocyte growth factor release and subsequent satellite cell activation (541).  

Further, this stretch also facilitates increases in nitric oxide concentrations; ultimately eliciting 

the release of follistatin (396) which has been shown to downregulate myostatin, commonly 

expressed in quiescent satellite cells. This expression may also aid in facilitating the activation of 
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satellite cells from quiescence. Further, fibroblast growth factors (FGF) have been shown to 

elicit MAPK signaling cascades (p38α/ -MAPK) which are necessary for the activation of 

satellite cells (221). Moreover, the bioactive lipid sphinogosine-1-phsophate (S1P) is required for 

the satellite cell to enter the cell cycle and facilitate muscle regeneration (309, 355). S1P 

facilitates the activation of adenylyl cyclase through binding to five G protein coupled receptors 

(321), eventually affecting cell survival, proliferation, migration and intercellular interaction 

(548). Likewise, p38α/  can alternatively be upregulated through the activation of the surface 

protein Cdo through interaction with scaffold protein JLP (484).  

 Once activated, satellite cells move outside the basal lamina, where they enter the cellular 

cycle (mitosis) and begin to coexpress pax7, MyoD (143), and CD56 (477). After multiple 

rounds of division, those cells committed to differentiation will down regulated pax7 and start to 

express myogenin and MyoD. These myocytes then align, fuse together, and form 

multinucleated myofibers (143). Alternatively, some cells will maintain Pax7 and downregulate 

MyoD expression. These cells ultimately leave the cell cycle (376, 552). These cells represent a 

self-renewing fraction of satellite cells.  Interestingly, it has been shown that satellite cells can 

self-renew, replenish depleted pools, and the resultant cells of these processes are also capable of 

regeneration as well (70, 343).  

 Satellite cell myogenic capacity relies on the expression of pax7 and myogenic regulatory 

factors (MRFs; MyoD, Myf5, myogenin, MRF4). Further, the sequential activation and 

suppression of pax3/7 and MRFs mediates the progression of skeletal myoblasts through 

myogenesis (285, 452). While the role of pax7 is still not fully understood, a mouse model has 

shown that the regenerative abilities of satellite cells depends on the expression of pax7 (433). 

Additionally, the roles of MyoD and myf5 have been clearly defined. Foremost, MyoD aids in 

the facilitation of the differentiation potential of skeletal myoblasts (77, 429) while MyF5 

moderates their proliferation rate and homeostasis (129, 500). Finally, Myogen and MRF4 are 

required for the formation of myotubes and fibers (257).  

2.1.2 Skeletal Muscle Degradation  
 Skeletal muscle degradation (atrophy) is more than just the converse of muscle 

hypertrophy. It is characterized by active pathways stimulated by glucocorticoids and 

inflammatory cytokines resulting in reduced fiber cross sectional area, protein content which 
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leads to strength reduction, increased fatigability, and insulin resistance (214, 234). Further, 

multiple models including denervation, high-dose dexamethasone treatment, induction of 

inflammatory cytokines, and limb immobilization have been shown to induce muscle atrophy 

(107). 

 The muscle atrophy pathway is activated through three mediating proteins (Forkhead 

box O (FOXO), nuclear factor kappa light chain enhancer of B cells (NFKB) and p38 MAPK) in 

response to a multitude of upstream stimuli. Notably, the binding of interleukin-1α (IL-1α) and 

tumor necrosis factor alpha  (TNF-α) to their respective receptors initiates the upregulation of 

NFKB-inducing kinase (NIK) and TGF-  activated kinase 1 (TAK1) converge in the 

upregulation of the IKB kinase (IKK) complex which results in the expression of NFKB (3, 176). 

It has been shown that TAK1 is the upstream regulatory protein of mitogen-activated protein 

kinase kinase 4  (MKK4) and subsequent p38 MAPK (497). The translocation of NFKB and p38 

MAPK across the myocyte membrane initiate the upregulation of two pivotal proteins: muscle 

RING finger-containing protein 1 (MuRF1) and muscle atrophy Fbox protein (MAFbx), which 

have both been shown to encode for E3 ubiquitin ligases (34, 138) (Figure 1).  

Additionally, the binding myostatin, growth differentiation factor 11 (GDF11), activin-a 

and transforming growth factor beta (TGF- ) to their respective receptors initiates the 

upregulation of  SMAD2,3 (107) resulting in the inhibition of PKB (498) (Figure 1). It has been 

shown the PKB expression downregulates the expression of FOXO transcription factor member, 

FKHRL1, which has been shown to induce apoptosis when translocated into the myocyte 

nucleus (48). Likewise, the expression of mammalian Ste20-like (MST1) kinase has been shown 

to induce skeletal muscle atrophy through the phosphorylation of FOXO (522). Further, 

translocation of FOXO across the myocyte nucleus has been shown to mediate the upregulation 

of MuRF1 (Figure. 1). Specifically, FOXO3 activation has been shown to be adequate to induce 

atrophy (323, 554). Additionally, the expression of FOXO1 resulted in an atrophic phenotype 

(336, 469). 

MuRF1 elicits atrophy, at least in part, by directly affecting the muscle filament of the 

sarcomere and causes the proteolysis of myosin proteins (myosin light chain and myosin binding 

protein C) (69) and the inhibition of protein synthesis (64). Additionally, MuRF1 has been 

shown to facilitate ubiquitination of myosin heavy and light chains and myosin binding protein C 
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(64, 69). Notably, ubiquitination is the joining of the protein ubiquitin to a given protein; 

resulting in the depletion of the affected proteins. MuRF1 induces the encoding of a protein that 

contains four domains. RING-finger requires MuRF1’s ubiquitin ligase activity to bind to an E2 

protein, which facilitates the transfer of ubiquitin to the substrate (219). The next domain in the 

cascade is a “B-box” which can mediate self-association. The B-box of MuRF1 self-associates in 

dimers with high affinity (348). The third domain is the “coiled-coil” domain, which may be 

necessary for the formation of heterodimers between MuRF1 and itself. Further, it may assist in 

the formation of heterodimers with MuRF2 (540). The final domain of MuRF1, the “MuRF” 

domain is shared among all three MuRF proteins (MuRF1, MurF2, and MuRF3) (145).  

 MAFbx contains an Fbox domain, commonly seen in the family of E3 ubiquitin ligases 

called SCFs (Skp1, Cullin, and Fbox). Fbox containing proteins mediate the binding of the Fbox 

to the Skp1-Cullin complex, ultimately joining substrates to the E2.  Further, Rbx1, a RING-

containing protein activates the E2 (232). Fbox containing proteins normally bind a substrate 

only after that substrate has been posttranslationally altered (539). 

 MAFbx has been shown to be an E3 ligase for a protein initiation factor, eIF3-f (300) and 

eIF3c (81, 288) suggesting that MAFbx activity causes muscle atrophy through the 

downregulation of muscle protein synthesis. Other substrates suggested for MAFbx (MyoD 

(Lagirand- Cantaloube) and calcineurin (299) though it has not been shown whether they are 

ubiquitnated by MAFbx in either skeletal muscle or under atrophic conditions.  

2.1.3 Mitochondrial Biogenesis 
The skeletal muscle adaptions associated with AT results from training stresses that produce 

significant metabolic challenges within the muscle milieu. In turn, cellular conditions are 

drastically altered with changes in intracellular concentrations of calcium (Ca2+), oxygen, lactate, 

reactive oxygen species (ROS), and an increased adenosine monophosphate: adenosine 

triphosphate (AMP:ATP) and nicotinamide adenine dinucleotide to reduced NAD+ reduced 

nicotinamide adenine dinucleotide ratio( NAD+:NADH) (65). These stresses increase the 

activation of intercellular 5’ adenosine-monophosphate-activated protein kinase (AMPK), Ca2+/ 

calmodium-dependent protein kinase II (CaMK II), and p38 MAPK pathways. All of these 

signals converge to peroxisome proliferator-activated receptor-c coactivator-1 (PGC-1α), 
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ultimately promoting  mitochondrial biogenesis (19, 394, 543) increased capillary density(130), 

and alter substrate utilization (190), resulting in greater aerobic capacity (173).  

 Prolonged moderate-intensity (60-70% of VO2max) exercise increases sarcoplasmic 

reticulum Ca2+ uptake and number of active pumps removing Ca2+ from the cytoplasm (442). 

Accordingly, high intensity (≥100% VO2max) exercise has been shown to provoke 20-50% 

decreases in Ca2+ uptake from the cytoplasm and release back into the cytoplasm with a return to 

basal levels after 60 minutes of recovery (327). These acute changes in cytosolic Ca2+ may 

stimulate secondary events following increases basal concentrations. Likewise, repeated bouts of 

high intensity cycling produce less disturbance in Ca2+ uptake and release, subsequently 

improving resistance to fatigue in untrained men and women (192). Indeed, Cantrell et al. (55) 

demonstrate AT in the form of sprint training elicits increases in VO2max  and increases in time 

to exhaustion.  

 Further, the process of maintaining redox potential (NAD: NADH) is primarily a result of 

the catabolic actions occurring with glycolytic and lipolytic metabolism in the mitochondria (65). 

Maintenance of the redox potential generates ROS, which are then buffered by multiple 

antioxidant systems in skeletal muscle (9). Redox potential and ROS production during and after 

exercise may induce beneficial adaptive responses. First, redox state may have direct effects on 

transcriptional regulation and DNA binding specificity of transcription factors (56, 218). 

Additionally, ROS concentrations have effects on numerous components of cellular events, 

which may indirectly act on signaling via effects on mitochondrial metabolism and a decrease in 

myofilament Ca2+ sensitivity (466).  In summary, increases in ROS concentrations may lead to 

adaptations that increase pivotal enzyme expression and muscle phenotype, ultimately resulting 

in greater aerobic capacity. 

 The resynthesis of ATP from ADP is produced by oxidative phosphorylation and/ or 

glycolysis. Consequently, concentrations of metabolites related to these processes of muscle 

phosphorylation (ATP, ADP and inorganic phosphate (Pi)) provide a feedback signal to balance 

ATP production with depletion (174). Any process that might cause an imbalance in 

concentrations between the three metabolites favoring ADP and Pi increases concentrations of 

intracellular AMP, which is a primary regulator of ATP degradation and synthesis pathways 

(430). This increase in AMP will then shift the AMP:ATP ratio, resulting in the activation of 
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AMPK in response to cellular energy depletions (13). Acute activation of AMPK is associated in 

enhancing ATP concentrations through increasing glucose transporter 4 (GLUT4) expression and 

insulin sensitivity, thus increasing  insulin-dependent glucose uptake (175, 353, 357) and 

increasing fat oxidation (241, 295). Further, increases in contraction-mediated AMP have been 

implicated in activating transcription factors associated with mitochondrial fatty acid oxidation 

(37, 225, 295, 489), subsequently activating AMPK (333) leading to mitochondrial biogenesis. 

 The growth of the mitochondrial reticulum is highly regulated and complex process that 

requires the synchronization of multiple gene expression in both the nuclear and mitochondrial 

genomes (210, 211). While there is no single transcription factor found to be responsible for 

mitochondrial biogenesis, early growth response gene (Egr-1) and nuclear respiratory factor-1 

and -2  (NRF1/2)  appear to be the primary regulators (194). Egr-1 has been associated with 

promoting transcription of the electron transport chain protein cytochrome C oxidase (COX) 

(122), while NRF1 and NRF2 have been linked to the transcriptional control of multiple 

mitochondrial genes, including  mitochondrial transcription factor A (Tfam) and identified 

mitochondrial transcription specificity factors  including (134, 439). Interestingly, Egr-1 and 

NRF1/2 appear to respond to  muscle contraction (72, 134, 211) and endurance training (19, 

461). Additionally, PGC-1α has also been associated with biogenesis due to its apparent 

activation of multiple mitochondrial transcription factors (194). Thus, PGC-1  has been 

considered to be the “master” regulator protein of mitochondrial biogenesis (2, 440). 

Additionally, PGC-1 also mediates Tfam activation acting as a co-activator Tfam, a key 

component to mitochondrial DNA replication and transcription (235, 325).  

 PGC-1α also regulates the peroxisome proliferator activated receptor (PPAR) family 

(374, 503). The three PPAR subtypes regulate lipid homeostasis through the expression of genes 

involved in mitochondrial fatty acid oxidation (115, 293). Increased expression of PPAR 

subtypes has been associated with increased fat utilization during extended periods of exercise 

and may be linked to fast to slow fiber type conversion (317, 521). 

Additionally, CaMKII and IV have been associated with the activation of gene 

expression of both contractile and mitochondrial proteins, respectively (119, 543). CaMKII  

expression has been shown to be the primary CaMK subtype responsive to endurance exercise, 

and is upregulated in an intensity-dependent manner (422). Although there is limited evidence, 
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CaMK activation has demonstrated downstream effects that may be partially mediated through 

NFAT signaling and histone deacetylase nuclear extrusion  through Ca2+
 signaling  (18, 307). 

2.1.4 Fiber Type Shifting 
 In conjunction with hypertrophy and mitochondrial biogenesis, skeletal muscle fibers 

also have the ability to change their type (i.e. from type I to IIa and IIx). Several factors (nerve 

patterns, mechanical loading, and hormonal environment) have been shown to influence muscle 

fiber type expression. Notably fiber-type change requires regulation and coordination of fast and 

slow gene programs. Present research suggests three mechanisms: 1) transcription factors acting 

as both activators and repressors 2) bidirectional promoters generating both sense and antisense 

transcripts and 3) miRNA hosted in Myosin Heavy Chain (MyHC) genes (443). Muscle fiber 

type switching is the consequence of the combination of these three mechanisms along with the 

activation of the associated pathways.  

 Cn is a Ca2+/calmodulin-regulated protein that has been shown to be involved in fiber-

type plasticity and fast-to-slow phenotype transformation (338, 360, 384, 486) through the 

transcription of NFAT (108) (Figure 2). Interestingly, mouse models over expressing Cn have 

been shown to have a higher increased amount of type I fibers (360). Granted, this increase may 

not be due to fiber type shifting but it may reflect inhibition of postnatal disappearance of type I 

fibers. Interestingly, there is also evidence suggesting that overexpression of Cn induces 

increases in myoglobin (360) and enzymes that facilitate mitochondrial oxidative 

phosphorylation and lipid metabolism (428, 549). Further, Cn expression upregulates the 

expression of PPAR /δ and PGC-1α (549), two transcription factors that influence the 

upregulation of oxidative gene programing. Conversely, DSCR1 (aka MCIP1, calcipressin and 

RCAN1) has been shown to inhibit Cn signaling pathways (126, 423), through the binding of 

COOH-terminal domain to the enzyme active site (57).  Further, Oh et al. (375) have shown that 

the overexpression of DSCR1 in mouse skeletal muscle exhibited normal muscle ratios in early 

development stages, but began to lose type I fibers in the soleus muscle at postnatal day seven. 

Further, mice lost all expression of type I by day 14 with all muscle fibers switching to type IIa. 

In summary, Cn is a pivotal protein in the maintenance and programming of type I muscle fibers. 

 Though NFAT transcription is mediated by Cn expression, it also acts as a nerve activity 

sensor in skeletal muscle that controls activity-dependent fiber type specification (443). Indeed, 
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it has been shown that unstimulated mouse flexor digitorum brevis, composed primarily of fast-

twitch muscle types, exhibited NFATc1-GFP localization in the cytoplasm. But when subjected 

to low-frequency stimulation, typical of type I fibers, NFATc1-GCP translocated to the nucleus 

(306).  Interestingly, glycogen synthase kinase 3 beta (GSK3 ) casein kinase 1 and 2, and dual-

specificity tyrosin phosphorylation regulated kinase 1A (DYRK1A) appear to regulate 

NFACTc1 nuclear export after muscle activity in isolated human skeletal muscle (458) and thus 

inhibit myogenic differentiation (319). 

 Additionally, MEF2 transcription factors have been shown to be upregulated by the 

expression of Cn (542). Briefly, MEF2 has multiple splices (MEF2a, MEF2b, MEF2c and 

MEF2d) with further variants are generated by alternative splicing (30). Interestingly, these 

splices exist in equal concentrations in mouse slow and fast twitch muscle fibers (402). Over 

expression of MEF2 was reported to promote the formation of slow twitch muscle fibers in 

mouse muscle (402) and have been shown to be active in activity-dependent muscle fiber type 

remodeling (544). 

 Interestingly, overexpression of MEF2c (MEF2c-VIP) has been shown to upregulate 

PGC-1α, but not PGC-1 , in skeletal muscle. Further, it has been shown that Ca2+ and CaMK 

mediate MEF2 activity through class II histone deacetylases (HDACs). More specifically, Ca2+ 

and CaMK act as kinases for HDAC and cause phosphorylation and the removal of  nuclear 

HDAC (335). Additionally, protein kinase D1 (PKD1) also assists in HDAC removal thus 

allowing for increases in MEF2 expression. Though PKD1 is not directly mediated by Ca2+, it 

can be activated through protein kinase C (PKC) facilitated phosphorylation. PKD1 expression is 

greater in slow twitch muscles than fast twitch. And though over expression of PKD1 did lead to 

significantly reduced muscle size and increased type I and IIa fibers, there was not change in 

PGC-1α concentrations (250) suggesting the importance of PKD1 in fiber type shifting.  

 Interestingly, AMPK may also have mediating effects on MyHC gene expression. When 

compared to wild-type mice, transgenetic mice expressing the inactive subunit AMPKα2 show 

decreases in PGC-1α and citrate synthase activity. However, when these mice were subjected to 

running exercise, fiber type shifts from MyHC-IIb to –IIa and IIx were reduced compared to 

wild-type mice though other metabolic adaptations remained the same (416). Additionally, 
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sedentary transgentic mice expressing AMPK-active mutations exhibited 2.6 fold increases in 

type IIa and IIx fibers, though there were no further increases with the endurance training (416).  

 The presence of PPAR subfamilies have been shown to have influence on skeletal muscle 

fiber type (Figure. 2). Mouse models have shown that over expression of wild-type or mainly 

active PPAR /δ leads to  more oxidative fiber type characteristics with increases in 

mitochondrial DNA, upregulation in slow contractile protein genes, and increased resistance to 

fatigue (317, 521). Notably, Schuler et al.(448) have shown that the absence of PPAR /δ causes 

a slow to fast fiber-type change, characterized by a down regulation of MyHC I and up 

regulation of MyHC IIb transcript concentrations in the gastrocnemius muscle. These changes 

were accompanied by changes in fiber type profiles with a downregulation of PGC-1α, mtTFA, 

and many other genes involved in oxidative phosphorylation, despite no change in mitochondrial 

DNA content. Likewise, the overexpression of PPAR-1α has also been shown to induce 

increases in oxidative fiber types (302, 528).  

 While the influence of the aforementioned proteins have been established to some degree, 

there is also evidence suggesting that the presence of ERK1/2, MyoD family proteins (MyoD 

and myogenin), Six1 and FOXO transcription factors may also contribute to changes in muscle 

fiber types. Despite these findings, there is evidence to the contrary for each of these proteins, 

suggesting a need for further research. Foremost, ERK1/2 activation by Ras mutation in rats can 

facilitate MyHC-slow expression in regenerating denervated soleus muscle (352). These findings 

have been further supported by Higginson  et al. (183) who showed that pharmacological 

inhibition of ERK1/2 pathway decreases MyHC- /slow and increases MyHC-IIx and –IIb. 

Conversely, Ras mutations that selectively activate the PI3K-Akt/PKB pathway, facilitates 

muscle cell hypertrophy but not fiber type specification in the same system (352). Likewise, 

pharmacological inhibition of ERK1/2 pathways in C2C12 muscle cells has shown increases in 

MyHC- /slow promoter/reporter activity (459).  

 Similarly, data suggest MyoD and myogenin expression may contribute to muscle fiber 

type switching. Notably, MyoD has been shown to be prevalent in fast-twitch muscles while 

myogenin is more prevalent  in slow twitch (201, 514), suggesting these two proteins may lead to 

muscle fiber type specification. Indeed, an E-box within MyHC-IIb gene promoter is bound by 

MyoD and is required for gene expression in fast muscle. Further, it has been shown that MyoD 
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activates the MyHC-IIb promoter in an E-box dependent manner, while myogenin activates this 

same promoter to a lesser degree and in an E-box-independent manner (532). Conversely, both 

proteins have been shown to be rapidly upregulated by denervation, which can be slowed by 

electrical stimulation (105). Additionally, changes in fast/slow fiber profiles elicited by 

hypothyroidism or low-frequency stimulation do not closely correlate with the relative 

expression of these proteins (281). 

  Transcription factor Six1 and its transcriptional coactivator, the protein phosphatase Eya 

1, concentrations are greater in the nuclei of fast twitch muscles. Further, the forced expression 

of these proteins in mouse slow-twitch muscles leads to a fiber type switch from type I and IIa to 

IIx and IIb, and upregulation of proteins of the glycolytic pathway (147). Additionally, Richard 

et al. (413) have shown that the absence of Six1 and Six4 elicits the development of myofibers 

lacking the expression of fast-type muscle genes in embryonic mice. Despite these findings, it is 

still unclear if the Six1-Eya 1 system is controlled by activity patterns.  

 Finally, FOXO transcription factors have some supporting evidence that they might 

contribute to muscle fiber type shifting. Foremost, FOXO1 is more abundant in slow twitch 

muscles while FOXO4 is more abundant in fast twitch muscles (253). Indeed, mice 

overexpressing FOXO1 show more muscle atrophy and significant decreases in type I muscle 

fibers (231).  Interestingly, muscle specific FOXO1 knockout C2C12 muscle  exhibited a slow to 

fast fiber type switch (253). Despite this evidence, further research is needed to fully understand 

the relationship between FOXO transcription factors and muscle fiber type expression.   

2.1.5 Evidence Supporting the Interference Theory 
Original work completed by Robert Hickson (180).provided the first evidence of attenuated 

strength increases when RT is  completed simultaneously with AT (which is known as CT)  

Evidence suggests a molecular mechanism associated with AMPK activation is responsible for 

the attenuation in strength performance with CT. Notably, rodent models indicate a negative 

correlation between AMPK activation and  muscle hypertrophy (239, 492). AMPK activation has 

been shown to have significant negative effects on mTORC1 and its effectors (p70S6k and 4E-

BP1), resulting in  attenuated protein synthesis and subsequent hypertrophy (16, 37, 151, 205–

207). This molecular interference is caused by the direct phosphorylation of tuberous sclerosis 

complex 2 (TSC2) (207, 334) and the mTORC1 associated regulator, raptor (492) as a result of 
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AT. Activation of TSC2 by AMPK also has been shown to negatively affect mTORC1, and 

subsequent protein synthesis, through Ras-homologue enriched in brain (Rheb) (37, 94, 207). 

(Figure.2) 

Moreover, AMPK regulation of mTORC1 may be isoform-specific. The AMPK-α1 catalytic 

isoform is acutely responsible for limiting skeletal muscle hypertrophy via mTORC1inhibition 

(334, 345, 346). Conversely, AMPK-α2 mediates metabolic adaptions within skeletal muscle 

(224, 334, 345). When compared to AMPK-α1 knock out mice, control mice subjected to 

chronic mechanical overload exhibited elevated levels of AMPK-α1 and blunted increases in 

hypertrophy to the plantaris  muscle (346), supporting evidence of the selective role of AMPK-

α1. Additionally, in vitro research suggests that AMPK activation  may promote protein 

degradation through both the ubiquitin-proteasome and autophagy-lysosomal systems (435, 436). 

Specifically, AMPK activation elicits FOXO- dependent transcription of  MaFbx and MuRF1 

(435, 494).These factors disrupt the inhibitory effect of mTORC1 on Unc-51-like kinase 1 

(ULK1),while also increasing ULK1 activity, leading to autophagy stimulation (227, 436). 

Taken together, AMPK activation from AT potentially mediates interference with muscle 

hypertrophy from  RT through down-regulating the mTORC1 cascade, and subsequent protein 

synthesis while up-regulating protein degradation (65). (Figure.2) 

Additionally, AT activates eurkaryotic elongation factor 2 Kinase (eEF2K) through the 

CaMK and AMPK pathways (421, 422) and has been shown to deactivate of eukaryotic 

elongation factor 2 (eEF2) through phosphorylation (45). The eEF2 factor is involved with the 

translocation of the ribosome along the mRNA (236). Conversely, in vitro studies suggest the 

activation of the mTORC1 and p70S6K pathways inhibit eEF2K activity, thus allowing for 

activation of eEF2 due to the elimination of its respective kinase. Ultimately, this would allow 

both increases in translation and protein synthesis (44, 46, 520). Activation of eEF2K by AT is 

another potential mechanism for the inhibition of muscle protein synthesis. 

The upstream activation of regulated DNA damage and development 1 (REDD1) in response 

to AT has also been shown to inhibit mTORC1 and subsequent muscle protein synthesis (251, 

468) in both rat (351) and human (96) models. Studies demonstrate that REDD1 prevents 

mTORC1 activity indirectly through releasing the inhibition of TSC2 caused by 14-3-3 protein 

binding (90, 112). REDD1 is activated by a number of stressors including ATP depletion (468) 
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and hypoxia (47, 90, 112). In human models, it has also been shown that REDD1 mRNA is 

reduced three hours after low-intensity (20% one repetition maximum (1RM) performed for a 

total of four sets and 75 repetitions) exercise and blood flow restriction whilst mTORC1 mRNA 

expression increases in healthy males (96). This suggests that REDD1 activation through AT 

may be another furthering mechanism to inhibit muscle protein synthesis and subsequent 

hypertrophy associated with RT. (Figure 3) 

Finally, the sirtuin (SIRT) deacetylase family of proteins are sensitive to metabolic stresses, 

such as increased NAD+ and lactate concentrations, and are active in skeletal muscle during AT 

(391). Of these proteins, SIRT1  is a regulator of mitochondrial biogenesis, partially because it 

has potential to regulate AMPK and PGC-1a activity (392). Further, SIRT1 also has been shown 

to negatively regulate mTORC1 activity through TSC2 activation (131), possibly through the 

inhibition of the upstream mTORC1-activator, Rheb (205). Consequently, the activation of 

SIRT1 is another potential mechanism for the inhibition of mTORC1 during the concomitant 

training of AT and RT. (Figure 3) 

 

 

 

Figure. 1. Signaling Pathways Associated With Muscle Atrophy and Hypertrophy.  

Modified from: Egerman, M and Glass D. Crit. Rev. Biochem. Mol. Biol. 49: 59–68, 2014. 
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Figure 3. Cellular Pathways of Contributing to the Interference Theory. 

Modified from: Fyfe et al. Sports Med (2014) 44:743–762 

Figure 2. Scheme of Signaling.  Solid lines represent established pathways. 

Dotted lines represent less established pathways. Red lines represent inhibition 

pathways. Modified from:  Schiaffino, S et al.  Physiology. 22:269-78, 2007 
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2.2 Influence of Concurrent Training on Body Composition, Performance and 
Hormones 

2.2.1 Body Composition 
 Body composition can be positively influenced through either an increase of lean mass or 

a reduction of fat mass. This section will first focus on the effects of CT on lean mass followed 

by CT’s effects on fat mass. Bone mineral density will not be discussed as it is beyond the scope 

of this review.  

2.2.1.1 Effects of concurrent training on lean mass. The interference theory suggests 

that CT may not elicit the same changes in increases in lean mass as RT alone. Karavirta et al. 

(237) compared three, 21-week training protocols (CT, RT, and AT) in older men (56±7 years). 

Upon completion, the CT group (high intensity RT and AT, both twice a week) demonstrated 

increases (8±35%) in cross-sectional area of type II fibers, although the increase was not 

statistically significant. Moreover, high intensity RT elicited significant increases (26 ±22%) in 

type II muscle fiber types. Likewise, others compared 12 weeks of CT, RT, and AT protocols 

and demonstrated that CT increased only type IIa muscle fiber types (18%; p<0.05) while, RT 

increased both type I (17%) and type IIa (13%) fibers (p<0.05) in both men and women. The 

authors reported that RT resulted in a larger cross sectional area of both fiber types than the AT 

and CT groups (403). These findings suggest that despite the hypertrophic increases with CT, RT 

had the greatest effects on muscle fiber hypertrophy for both Type I and II fibers in young 

women and young and older men.   

 These increases in muscle fibers from RT lead to increases in total cross-sectional area 

of the muscle cell and muscle as a whole. Indeed, muscle cross-sectional area was shown to 

increase significantly in populations with no prior RT experience. After 12 weeks, both RT, 

(consisting of progressive heavy lower body RT (progressed: three sets of 10RM to three sets of 

4RM) and CT (consisting of both heavy lower body RT and 9.9±1.1 hours of cycling per week)) 

provoked significant increases in knee flexors and extensors cross sectional area (p<0.05). 

Further, authors report significantly greater increases in total thigh muscle cross sectional area 

(sum of flexors and extensors) in the RT group (8.0± 0.8%)  compared to the CT group 

(4.3±0.7%) (419). In addition, young men (23±0.6 years) and women (22±09 years) assigned to 

one of four 12-week training protocols (control or three days of AT (two days of cycling for 42 
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minutes and 1 day of high intensity intervals), progressive RT progressive (~70-85% 1RM) or 

CT (six nonconsecutive days consisting of both protocols)) demonstrated greater fast-to-slow 

fiber type transitions and blunted hypertrophy of type I fibers during the CT protocol. It was 

shown that the CT group increased vastus lateralis myosin heavy chain type IIa fibers after the 

12 weeks of training. Moreover, when compared to the RT and AT groups, exhibited the greatest 

reduction in myosin heavy chain IIb at both six weeks and 12 weeks (p<0.05) (403).  In 

summary, AT may attenuate or stop muscular growth in different age groups and physical 

activity levels.   

Interestingly, despite much evidence supporting the blunting effects of CT on increases in 

lean mass associated with RT, not everyone agrees (27, 135, 153). Bell et al. (27)  examined the 

effects of three, 12-week training protocols (AT, RT, and CT) in young  men and women. For 

this study, RT consisted of a progressive total body RT protocol with lifts progressed 4% of 

1RM every three weeks. AT consisted of cycling for 30 minutes at ventilatory threshold and was 

progressed to 42 minutes over the duration of the study. Additionally, the AT protocol had 

interval sessions (four sets of three minutes of work: three minutes active recovery) at power 

outputs equivalent to 90% of VO2max and was progressed one set every four weeks. Finally, the 

CT group underwent both training protocols on alternating days. Interestingly, the RT group 

showed significant size increases in both type I (3250±429 to 4137±386μm2) and II ( 3506±480  

to 4483±570μm2)  muscle fibers, while the CT group exhibited significant increases in type II 

(3542±292 to 4030±379μm2) muscle fibers after 12 weeks (p<.05), with no significant 

differences between the two groups. Further, McCarthy et al. (332) compared results of RT, AT 

and CT protocols lasting ten weeks in sedentary men. Total body, high intensity (6RM) RT took 

place three times a week. AT consisted of 50 minutes of cycling at 70% of heart rate reserve. 

Finally, the CT group completed both training protocols in a single training session. Upon 

completion, RT and CT elicited significant increases (p<.0001) in thigh extensor (12 and 14%, 

respectfully) and flexor/abductor (7% and 6%, respectfully) with no differences between groups. 

Additionally, both RT and CT groups had significant increases in type II fiber are a (24 and 28%, 

respectfully) and mean fiber area (21 and 23%, respectfully).  

Taken together, the effects of CT on muscle fiber hypertrophy are inconclusive. Jones et 

al. (222) proposes that the a mount of exposure to low intensities may be a factor negatively 
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affecting RT outcomes in individuals with over two years experience with RT. Participants were 

assigned to one of three six week protocols. The RT group which completed five sets of six 

repetitions at 80±5% 1RM. Additionally, there were two CT groups. The first group trained 

aerobically (30 minutes at 30% 1RM knee extension) immediately after every RT sessions (1:1 

training ratio). The second trained aerobically immediately after every third RT session (1:3 

training ratio). Only those individuals who experienced the aerobic intervention every third day 

exhibited similar limb girth increases to the RT only group at both mid (1.7±0.9 and 1.7±0.4%, 

respectively) and post training ( 2.5±1.2 and 3.7±2.3%, respectively). Interestingly, the RT group 

also showed significant increases in circumference measurements when compared to the control 

and group that experienced AT every day of their RT. The 1:3 endurance to RT ratio group only 

showed significant increases in girth measurements against the control group (p<.05). These 

results suggest that hypertrophic adaptions elicited by 1:3 endurance to RT ratio group are is 

statistically different from those increases seen in the RT group and thus hypertrophy was not 

attenuated by the AT intervention as it was in the 1:1 endurance to RT protocol.  

2.2.1.2 Effects of concurrent training on fat mass. Fat mass reduction is another important 

variable to consider when altering body composition. CT has been shown to significantly reduce 

fat mass in untrained (135) and active young men (92) and in middle-aged and elderly women 

(180).  Healthy women (39 to 64years old) were assigned to one of three 21-week training 

groups (RT, AT, or CT). The RT protocol was divided into three seven-week training focuses, all 

consisting of periodized and progressed total body RT. The first section focused on muscular 

endurance with high repetition ranges (15-20 repetitions) and low loads (40-60% 1RM). The 

second focused hypertrophy with moderate repetition ranges (10-12 repetitions) and moderate 

loads (60-80%). The final section consisted of low repetition ranges (6-8 repetitions) and high 

loads (70-90%). The AT was also divided into three seven-week sections. Participants cycled 

twice a week for all sections of training. The first section consisted of 30-minute training 

sessions twice a week with varying intensities above and below aerobic threshold. The second 

section included 45-minute training sessions consisting of with varying intensities below aerobic 

threshold and above anaerobic threshold and 60-minute training sessions below aerobic 

threshold. Finally, the third section included varied durations of 60-to 90-minute sessions with 

constant intensity (under aerobic threshold) for 90-minute training sessions and 60-minute 

training sessions with varying intensities CT protocol included both of these training protocols 
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and were completed on different days. Upon completion of the training protocols, CT  induced a 

significant reduction of fat mass (-4.8%) and trunk fat mass (-375±750g) as measured with body 

dual energy X-ray absorptiometry (DXA) scans and  waist circumference measurements (-

1.6±2,1cm)  (462).  

Moreover, Dolezal et al. (92) examined  the effects of 10 weeks of AT, RT and CT protocols 

on metabolic rate. AT included a progressed AT program in both intensity (65 to 85% of age-

derived maximum heart rate) and duration (25 minutes to 40 minutes). RT protocol included 

progressive and periodized total body RT. The CT protocol included both training protocols 

completed on the same day with the RT protocol always completed first. After the ten weeks, the 

CT provoked significant decreases in body fat (-3.5±1.8%), and fat mass (-2.6±1.8kg). 

Interestingly, these changes in fat mass and body fat were more significant than those in the AT 

and RT groups. Further, CT also significantly increased basal metabolic rate (7,455±964 to 

7,802±981 kJ/day; 1,781.79±230.4 to 1,864.72±234.2kcal/day). While there is still conflict over 

CT’s effects on lean mass, CT may aid in the increase of calories burning potential, aiding in fat 

mass reduction.  

2.2.2 Performance 
AT’s blunting effects on skeletal muscle hypertrophy would also infer that AT may also 

hinder anaerobic muscle performance. This section will first focus on the effects of CT on 

strength followed by power performance.  

2.2.2.1 Effects of concurrent training on muscular strength. Hickson et al. (180) were 

the first to compare strength changes among three training protocols (AT, RT, and CT). The 

aerobic protocol required participants to exercise six times per week, alternating progressive 

continuous running as fast as possible (30 minutes to 35 minutes to 40 minutes) and interval 

training session (six five-minute bouts separated by two minutes of rest) on an ergometer. The 

RT protocol consisted of lower body exercises performed three times a week. The CT protocol 

consisted of completion of both RT and AT protocols on the same day separated by two hours of 

rest. The authors reported CT induced significant improvement in leg strength in mix gender 

groups after week seven (+30kg, 34%) with a subsequent plateau then decrease at weeks nine 

and 10. It was further reported that the RT group continued to improve through week ten (+42kg, 

44%). These findings for mix gender groups are further supported by Bell et al. (27) through 
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comparison of three training protocols (AT, RT and CT) in methods described above. Upon 

completion, RT and CT elicited significant increases in knee extension and leg press strength in 

both men and women (p<0.05), with RT eliciting significantly greater increases than CT. Both 

RT and CT increases were significantly greater than those in the AT group. Moreover, cyclist 

exposed to a previously described CT protocol exhibited strength increases in the CT group 

(109±5 to 147±6kg; p<0.05) but were significantly lower than that of the RT group (108±3 to 

159±3kg) (p < 0.05). It was further reported that increases in average training load in leg 

exercises from week one to 12 was significantly greater in the RT group than the CT group in 

both absolute and relative measures (419). These findings support earlier work comparing circuit 

training protocols to two different circuit and AT combinations in male college physical 

education students. The circuit training protocol included a 12-week progressive program with a 

focus on total body strength endurance and power training. The CT groups completed the circuit 

training protocol but also completed AT which consisted of five high-intensity interval runs 

separated by active recovery at 60% VO2max. Upon completion, circuit training produced 

greater strength increases (17%) than AT completed before (12.2%) and after (10.6%) circuit 

training  (p<0.01) (62). Taken together, these studies suggest that though it is possible to increase 

maximal strength through CT, AT blunts the extent of these strength increases.  

As with muscular hypertrophy, the amount of AT added to RT may also dictate if 

strength increases are hindered. As previously mentioned, Jones et al. (222) compared strength 

outcomes in three groups. The first underwent RT protocol. The other two included either AT 

after every completion of RT (1:1) or every third completion of RT (1:3). After three weeks, the 

RT only group displayed an increase (+12.4±3.9%; p=0.016) in maximal voluntary contractions 

of the knee extensor muscles while the two other groups did not. Moreover, the increase in the 

RT group was19.0±2.4% greater than the control group, while the groups with added AT were 

not different from the control group. Additionally, upon completion of the six- week training 

protocols, RT resulted in 22.7±5.9% (p=0.005) and 41±2.4% (p<0.001) increases in maximal 

voluntary contraction compared to both 1:1 endurance to RT and control groups, respectively 

Likewise, the 1:3 endurance to RT protocol group also had greater increases in maximal 

voluntary contractions compared to 1:1 endurance to RT and control groups (p=0.024 and 

p<0.001, respectively). Moreover, the authors report a 24.6±8.5 (“most likely”) mean affect for 

the 1:3 endurance to RT group while 1:1 endurance to RT group exhibited a 7.2±6.1 (“likely”) 
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effects on the increase in maximum voluntary contraction increases. Finally, upon completion of 

the six weeks of training, 1:3 endurance to RT group exhibited no difference from the RT group. 

These authors further report no increases from baseline in either the control or 1:1 endurance to 

RT ratio group in maximal voluntary contraction. These findings suggest the amount of exposure 

to low intensity AT may be a contributing factor to the blunting of strength increases. 

 Depending on intensity, aerobic based training may also elicit critical acute effects on 

strength when performed before strength testing sessions. For example, it has been shown that 

when exercise at low intensity (90% of anaerobic threshold for five kilometers) is undertaken 10 

minutes before strength and strength-endurance testing, there is no significant effect on either 

1RM in leg press or in repetitions to failure at 80% 1RM. But when strength and strength-

endurance measures were assessed after intermittent exercise performed at VO2max (1 minute:1 

minute; running to rest ratio) for five kilometers, strength-endurance measures suffered as 

compared to strength and strength-endurance performance measures without running 

interventions beforehand (10.8±2.5 to 8.0±2.2 repetitions; p=0.03), though 1RM strength did not 

(470). These results suggest that lower (<90% anaerobic threshold) intensities of AT do not 

affect long term training outcomes 1RM for those exposed to CT. While training at higher 

intensities before RT may have further detrimental effects on strength performance due to 

decreased training volumes.  

It has also been suggested that the blunting of strength increases from RT only happens in 

muscle experiencing both modes of exercise. Cadore et al. (52) studied elderly men, and reported 

that while lower-body strength increases were experienced in both CT and RT groups (+41.3±8.2 

v +67.6±17.1%, respectively), the increases was significantly greater (p<0.001) in the RT group. 

The AT protocol consisted of cycling for a duration lasting 20 minutes at 80% of heart rate at 

ventilatory threshold and was progressed to 30 minutes at 90% of heart rate at ventilatory 

threshold (weeks 1-10).  The last two weeks of AT (weeks 11-12) consisted of six sets of four 

minute intervals at 100% of heart rate at ventilatory threshold. Interestingly, participants in both 

groups exhibited significant increases in upper-body strength (RT: 32.6±10.8% v CT: 

33.7±8.1%), with no significant difference between the two groups. These findings support 

earlier work conducted in men (18-40 years) exhibiting increases in upper-body strength in AT, 
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RT and CT groups. Despites these increases, RT and CT were both significantly higher than the 

endurance group (135).  

In contrast, it has also been shown that after 10 weeks of CT or RT, RT still elicited 

greater improvements than CT in both bench press (24 v 19%; p<0.05) and back squat (23 v 

12%; p<0.0.5)  in active healthy young men. These findings suggest that CT may still inhibit 

increases in both upper and lower body strength though only the lower body experienced both 

endurance and RT interventions. Further research is needed to fully understand the outcomes of 

CT on all strength measures in all muscle groups.  

Finally, though there is mounting evidence supporting the interference theory, data 

support that low intensity AT may not blunt strength increases elicited by RT. After 12 weeks, 

untrained men in the CT group exhibited no significant differences to the RT group in increases 

between in both leg press (40.8 v 39.4%) and bench press (21.2 v 30.5%) (135). These findings 

were later supported by Holviala et al. (193) suggesting that CT showed significant increases in 

single leg press measures compared to the control group, without significant difference from the 

RT only group in elderly men.   

2.2.2.2 Effects of concurrent training on muscular power. Power output appears to 

also be hindered by CT, corresponding with attenuated strength increases as previously 

discussed. Skeletal muscle adaptations were compared in two 21-week training protocols. The 

first was protocol was comprised of progressive and periodized total body RT with a focus on leg 

extensors. The second was a CT protocol which included the aforementioned RT protocol and 

AT which progressed in both duration and intensity. The final weeks of the AT consisted of 

varying interval training, focusing on cycling speed and maximal endurance. Only RT resulted in 

significant increases in rate of force development and average force in first 500ms (p<0.01) in 

isometric knee extension, while CT groups had no changes (153). Likewise, the assessment of a 

progressive periodized RT protocol and the combination thereof with 9.9±1.1 hours of cycling 

per week in individuals with no prior RT six month prior to starting experimentation (12 well-

trained cyclists and nine recreationally active individuals) revealed no increases in rate of force 

development in the CT group while the RT intervention elicited a 15±5% (p<0.05) improvement 

in peak rate of force development during isometric half squat measures. Moreover, these authors 

reported that the increases were reported to be significantly greater with RT than CT. Likewise, a 
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significantly higher percent increase in squat jump performance in the RT group (13±2.0%) was 

reported compared to the CT group (6.2±1.6%) (p<0.05)  (419).  

Conversely, power performance was assessed after three 12-week progressive training 

protocols (RT, AT, and CT). RT included, periodized total body RT protocol. The AT protocol 

progressed in both duration and intensity (percent of heart rate reserve). Finally, the CT consisted 

of the combination of both aforementioned protocols. Upon completion, only RT was shown to 

elicit significant increases in jump power (+5.7%) despite no differences in vertical jump height. 

However, the increase in the RT group was not significantly different from the CT group 

(+1.6%) but was significantly greater than the AT group (+0.4%). Though the RT group 

displayed significant changes in power in isokinetic knee flexion at 60°/sec (+10.1%), the CT did 

not. Despite the changes in RT group there were no significant difference between the two 

groups (135). 

As with muscular hypertrophy and strength, there is also evidence suggesting that intensity of 

AT may be a factor in the development in power. As previously stated with muscular strength, 

many CT interventions using aerobic protocols consisting of either low intensity exercise for 

long durations (419) or a combination of low intensity exercise and high intensity interval 

training (62, 153) have reported attenuation of power outcomes compared to RT alone. 

Interestingly, after 12 weeks of CT, consisting of high intensity sprints and RT protocols, or RT, 

the authors reported a main effect for time with increases in average power in both groups 

(p=0.028) (55). These results suggest that the combination of high intensity sprints and RT may 

not blunt power increases.  

2.2.2.3 Effects of concurrent training on aerobic performance. CT appears to have 

positive effects on aerobic performance by promoting improvements in VO2peak (153), VO2max 

(27, 55, 193, 462), mean power output (420) and running economy (393). Men and women were 

assigned to a progressive total body RT (three days/week), an AT (including both continuous and 

intermittent interval training (three days/week)) or CT (the combination of the two groups (six 

days/week)) for a total of 12 weeks. Upon completion, both CT and AT provoked significant 

improvements VO2max in both men (4.27±0.18 to 4.54±0.22 l/min and 4.32±0.23 to 4.53±0.24 

l/min, respectfully; p<0.05) and women (2.79±0.10 to3.00±0.09 l/min and 2.71±0.34 to 

3.05±0.30 l/min, respectfully; p<0.05), without significant differences between the two groups. 
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Further, authors report that these improvements were significantly greater than the RT an control 

groups in both men and women (p<0.05) (27). Likewise, 12-week CT (combination of sprint 

interval training and RT) promoted significant increase in VO2max (40.9±8.4 to 42.3±7.1 

ml/kg/min; p < 0.05) while progressive RT had no effect. Further, it was reported that VO2maxes 

were increased (42.3±7.1 v 36.0±3.0ml/kig/min; p<0.05) after the CT intervention (55). 

Recently, Rønnestad et al. (420) reported that 10 weeks of heavy RT in combination with 

continuous riding at various intensities provoked 6.5±5.7% (p<0.01) increase in mean power 

output in a 40-minute all out sprint, while continuous riding elicited no change in trained 

cyclists. This change was significantly larger than the continuous riding group (p<0.05). Though 

there is substantial evidence suggesting benefits of CT on aerobic performance, not everyone 

agrees (92, 135). Interestingly, despite CT’s inability to elicit significant increases in VO2peak 

(+2.8%), Glowacki et al. (135) reported that this response was not significantly different from 

the increases provided by the aerobic treatment (8%). Moreover, CT elicited significant increases 

strength measures. These findings are mimicked in Dolezal et al. (92) with no significant 

differences between AT and CT groups in VO2max measures but significant increases in 

maximal strength measures for the CT group. Overall, findings suggest that CT protocols may be 

beneficial to aerobic performance with similar increases in aerobic performance with increases in 

maximal strength.      

In summary, it would appear as if desired outcome is important when deciphering results in 

CT protocols. Indeed, CT has been shown to have multiple beneficial effects on aerobic 

performance and decreases in fat mass. In contrast, AT may elicit negative effects on increases in 

lean mass and strength and power performance, which may be due to many confounding 

variable. Of these factors, intensity of the AT during CT appears to be the primary determinant 

on strength and power outcomes. Exposure to low intensity AT negatively influences strength 

and power, while exposure to high intensity sprint protocols does not. Further, it can be 

suggested that the amount of exposure to low intensity training sessions affects strength and 

power performances, with one to one ratio of AT to RT exposure showing negative effects on 

strength performance while one to three did not. Despite these data, there is still evidence 

suggesting that exposure to low intensity AT does not affect strength or power performance at 

all. Interestingly, many of the studies reporting interference in strength and power performance 

had five or more total (combination of both RT and AT) training sessions per week (27, 62, 180) 
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while those that  did not display attenuation of strength had less (222, 332). This suggests that 

outside factors such as depleted muscle glycogen or increased exposure to catabolic states from 

prolonged exercise causes the attenuation of strength and power typically observed with RT 

alone and lends support to the interference theory. These outside variables warrant further 

investigation into the interference theory of CT.  

2.2.3 Hormonal Responses  
This section will review the potential mechanisms that elicit acute and chronic responses 

in anabolic and catabolic hormone concentrations in regards to RT, AT and CT. Notably, this 

section will focus on responses in healthy individuals. Confounding factors such as overtraining 

or hormonal abnormalities will not be taken into consideration because they are beyond the 

scope of this review. 

2.2.3.1 Testosterone. In men, testosterone is primarily produced in the leydig cells of the 

testes in response to luteinizing hormone from the pituitary (339). Notably, luteinizing hormone 

has been shown to fluctuate in pulse rate and amplitude in response to androgen concentrations 

in both animal (475) and men (505). In women, testosterone is produced in the ovaries and the 

adrenal glands. The primary precursor to testosterone production in the ovaries is 

androstrenedione. Then main precursors for the adrenal gland is dehydroepiandrosterone 

(DHEA) and dehydroepiandrosterone sulfate (DHEA-S) (148). Serum testosterone levels have 

been shown to be positively linked to performance outcomes (519) through both androgenic and 

anabolic effects on muscle cells (179). Additionally, testosterone interacts with the nervous 

system with receptors on neurons to increase neurotransmitter release, regenerate nerves, 

increase cell size and dendrite length and diameter (43, 356). Additionally, testosterone has been 

shown to enhance other hormonal interactions such as the secretion of growth hormone and the 

subsequent release of insulin-like growth factor (133). Finally, testosterone concentrations in the 

blood have been inversely linked to fat mass. Indeed, 18 months of testosterone replacement 

therapy (100mg/week) elicited a decrease in subcutaneous fat (-13±4%) in hypogonadal men 

(240) Interestingly, RT is identified as an effective means to elicit increases in total testosterone 

concentrations in men  (58, 157, 181, 266, 278, 495, 525) and untrained women (326). The 

mechanism for RT to increase testosterone is multifaceted but may be due to adrenergic 

stimulation by the sympathetic nervous system and circulating catecholamine (217), lactate 
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stimulated secretion of testosterone, and adaptations in testosterone synthesis and production 

processes (125).  

Despite these rises in total testosterone following RT, only a finite amount is readily 

available for androgen receptor interaction. Total testosterone is partially bound to sex-hormone 

binding globulin (SHBG). Only the unbound, or “free”, testosterone is available to interact with 

androgen receptors. Concentrations of free testosterone are also dependent upon age. In healthy 

males between the ages of 20 and 50 years, the normal range of free testosterone is 5.5-20ng/100 

ml and decreases with age (506). Testosterone (both free and total) has been shown to acutely 

rise for up to 15 minutes after RT sessions in both young and older men (270). The responses of 

free testosterone to RT have been shown to mimic those of total testosterone (6, 102, 270, 495), 

though there is evidence to the contrary (158, 160). These contradictions may lie in the length of 

study, level of training status of subject or the variance of training throughout the study (158, 

160). Further, it has been shown that these responses may be augmented by chronic training. 

Kreamer et al. (270) suggests that after 10 weeks of periodized RT, free testosterone 

concentrations increased in both young and elderly men compared to pre-training levels. 

Likewise, resistance trained men exhibit a greater acute response to single sessions of RT than 

endurance trained men, further supporting this concept of augmented responses of testosterone to 

RT due to chronic training (495). RT has also been shown to elicit acute elevations of 25% in 

free testosterone levels in young women after six sets of 10RM squats with two minutes rest 

intervals (366), though this increase was not exhibited in middle-aged and elderly women (163).  

Acute responses of testosterone to resistance training. Interestingly, evidence suggests 

that several factors impact acute elevation of total testosterone responses to RT. Foremost, 

exercise selection involving larger muscle groups such as those used in Olympic lifts (267), jump 

squats (512) and deadlifts (109) can potentially dictate testosterone responses. Perhaps obvious, 

these exercises have been shown to be metabolic stressors (409) which may be a stimulus for 

testosterone secretion (311). When comparing upper body training only and the combination of 

lower and upper body training, Hansen et al. (169) report acute increases of testosterone in 

response to a single bout of RT prior to chronic training (p< 0.05). Further, a trend towards 

significance was reported in acute testosterone response after nine weeks of RT (p=0.07) in the 

group that trained upper and lower body, where the group that only trained the upper body did 
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demonstrated no change in testosterone concentrations. This evidence suggests that the 

combination of lower- and upper-body exercises produce the greatest acute testosterone response 

and this has been confirmed in a later study comparing low and high endogenous hormone 

training environments produced by lower body exercises (529).  

Additionally, volume, and rest duration between RT sets, have both been shown to 

acutely affect testosterone concentrations. Schwab et al. (449) reported that testosterone 

concentrations did not increase during the squat exercise until the completion of the fourth set, 

when intensity was held constant at 90-95% of their 6RM. These data are later supported in 

multiple studies that suggest that testosterone levels increase with greater total number of sets 

and thus an increase in training volume (40, 140, 409). Indeed, weightlifters performing larger 

training volume demonstrated significant increases in testosterone concentrations (2.56±1.03 to 

3.65±0.66ng/ml; p<0.01) while weightlifters performing lower training volumes experienced no 

change (40).  

Likewise, if volume is held constant, it has been shown that higher intensities provoke 

greater acute increases in testosterone concentrations. When working at 100% of their 3RM for 

back and front squats and their 6RM for knee extension, participants exhibited significant acute 

increases in testosterone levels (17%; p<0.01) as compared to 70%  of their 6RM-where no 

change was demonstrated. Further, when analyzed for area under the curve, from baseline to 

three hours post training, the higher intensity exhibited a greater area under the curve (p= 0.02) 

(405). Similar results were found in a weightlifting population when subjected to high intensity 

protocols with testosterone concentrations increasing from 2.56±1.03 to 3.65±0.66ng/ml 

(p<0.01). Despite these findings, the same study also reported significantly decreased levels of 

testosterone immediately after the RT session in male sprinters (40).  

Moreover, rest interval length between sets of RT has been show to effect levels of 

testosterone responses. Rahimi et al. (407) had resistance trained men undergo one of three RT 

protocols consisting of four sets of squat and bench press to failure with 85% 1RM. Each session 

was differentiated with a rest interval of 60, 90, or 120 seconds. Interestingly, serum testosterone 

concentrations were significantly greater immediately after the exercise bout with rest intervals 

of 120 seconds (+65%) and 90 seconds (+76%) when compared to 60 seconds (p≤0.05). 

Similarly, Kraemer et al. (271) reported significantly greater serum testosterone concentrations 
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after 5RM at when three minutes of rest between exercise was utilized compared to only one 

minute. Thus, rest intervals longer than 90 seconds may provoke greater increases in testosterone 

concentrations than short rest intervals (≤60 sec).  

Additionally, acute responses of testosterone levels have been shown to be affected by 

age, training experience, starting baseline testosterone levels and gender. College-aged men 

(20±0.7 years) exhibit significant acute increases in testosterone levels (+1.1±.96ng/ml) while 

high-school (16±0.8 years) counterparts reported no significant changes in response to a single 

RT session (109). In addition, basal testosterone levels have been shown to be lower in mature 

men (62±3.2 years) when compared to younger counter parts (29.8±5.3 years). Moreover, mature 

men showed significantly lower responses to RT. Despite these blunted responses, the older 

population still attained significant increases in total testosterone concentrations in response to 

acute bouts of RT (~4.04 to ~4.61; p<0.05) (270).  

RT experience also affects acute increases in testosterone concentrations in response to 

RT. Kraemer et al. (267) showed marked acute increases in testosterone (16.2±16.2 to 

21.4±7.9nmol/l; p<0.05) in junior weightlifters (17.3±1.4 years) with two or more years lifting 

experience when exposed to a moderate to a high intensity lifting protocol  as compared to lifters 

who had less than two years experience, who did not show any significant increases (15.7±5.1 to 

16.7±6.0nmol/l). Likewise, testosterone concentrations only increased following acute RT after 

10 weeks of training with weights in older men (269). Later findings suggest that 10 weeks of 

training in active older men result in greater acute responses to RT as compared to pre training 

values. Despite these data, there is evidence suggesting that chronic training does not promote 

acute responses in testosterone concentrations in young age groups, 29.8±5.3 years (270) and 

34.4±4.4 years (5).  

Finally, the gender of the individual could potentially influence acute testosterone 

responses to RT, though there appears to be some discrepancy with evidence suggesting limited 

(40, 157, 265, 478) and significant increases (82, 366) in women.  Interestingly, despite 

hypertrophic and strength increases in response to RT protocols (162, 164),  women do not 

demonstrate an acute increase in testosterone levels like their men counter parts upon completion 

of the same lifting (157, 303, 525), suggesting women may rely on a different hormonal 

mechanism for hypertrophy and strength development.  
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Testosterone responses to chronic resistance training. The impact of chronic RT on 

basal serum testosterone concentrations has been inconsistent or absent in both men and women 

(7, 162, 164, 401). Some studies suggest that RT will increase basal testosterone concentrations 

(5, 159, 270, 277, 326, 474) while others have shown no change (7, 160, 161, 163, 181, 329) or a 

reduction (5). It appears that training status does influence resting testosterone concentration 

(478). Conversely, volume may have significant effects on resting testosterone concentrations in 

untrained women who completed a 12-week high-volume protocols as compared to untrained 

women who completed single-set circuit training protocols (326). Similarly, Ahtianien et al. (5) 

reported resting total testosterone and free testosterone concentrations were significantly 

increased in male strength athletes when subjected to higher training volumes in the first 14 

weeks of the training protocol. However, testosterone concentrations lowered with a decrease in 

training loads over the last seven weeks of the 21-week training protocol. Further, when young 

men were subjected to a two-week “heavy” phase after five weeks of normal training, they 

exhibited a 12±5% decrease in resting testosterone concentrations at day eight. Interestingly, 

these levels returned to baseline levels by the fourth day after completion of the heavy training 

protocol (406).  

Acute responses of testosterone to aerobic training. While testosterone’s anabolic 

properties often associate it with RT, there is potential that these properties may also prove 

beneficial to AT. Further, testosterone is acutely elevated following AT in both men (515) and 

women (73, 75). These responses have been made evident through multiple AT protocols (515). 

Further, these acute elevations in total testosterone to AT have been made evident in sedentary 

(496), recreationally active (216) and endurance trained individuals (515) across various modes 

of exercise (216, 515). Conversely, there is also evidence suggesting that AT causes acute 

decreases in both total and free testosterone concentrations in men (238) and no changes in 

women (73). These discrepancies may lie in differences in training volume.  

Two training models are most common in AT protocols, high volume training, often 

associated with lower intensities and long durations, and interval training, which is the 

combination of low intensities and high intensities. High volume training is considered to be the 

more traditional protocol. When examining acute effects in women, 40 minutes of cycling at 

75% of maximum heart rate elicited significant increases in testosterone concentrations 
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(+2nmol/l) (p<0.001) immediately post AT and returned to basal concentrations by 30 minutes 

post exercise (75). These findings were later supported by Wahl et al. (515), exhibiting evidence 

suggesting 120 minutes of cycling at 55% of peak power output elicits significant increases 

testosterone concentrations both immediately after and 30 minutes post (p<0.05) exercise 

compared to pre-exercise in triathletes and cyclist. Additionally, intermittent training (four sets 

of four minutes of cycling at 90-95% of peak power output) and sprint training also elicited 

significant increases in testosterone concentrations (p<0.01) as compared to baseline values. 

Moreover, intermittent training exhibited higher testosterone concentrations both immediately 

after and 180 minutes after exercise when compared to 120 minutes of continuous cycling (both 

p<0.01) and 60 minutes and 180 minutes after the all-out sprint training (both p<0.001). Though 

these two studies have used cycle ergometer protocols, results using treadmill running protocols 

have been shown to elicit similar acute responses  in testosterone concentration (495).  

  Conversely, it would appear that duration may have significant negative effects on acute 

testosterone concentrations. When non-elite, middle aged, male marathon runners were tested 

immediately after running a marathon, it was found that both free (10.45 to 7.9ng/dl; p=0.05) and 

total testosterone levels (4.85 to 3.4ng/ml; p=0.013)  were significantly reduced (238). These 

findings have been replicated in kayak races of 19km and 42km distances, though  durations of 

this exercise intervention was roughly 4.4 hours, two-fold other  high volume training studies 

(75, 515). This suggests that there may be a threshold of duration that may influence increases or 

decreases in testosterone concentrations. Earlier studies have suggested that this decrease in 

testosterone is in response in decreases in luteinizing hormone concentrations, amplitude and 

pulse rate (320, 454). Moreover, rodent model investigations in to this phenomenon suggest that 

testosterone levels decrease in order to limit amino acid use in muscle protein synthesis to spare 

serve as a gluconeogenic substrate (149). Interestingly, both total and free testosterone have been 

reported to return back to normal basal concentrations one week after completion of a marathon 

race, (238) possibly reflecting the return of glucose homeostasis.   

Testosterone responses to chronic aerobic training. Chronic AT typically results in 

lower serum testosterone concentrations. Indeed, when compared against sedentary individuals, 

high mileage (108.0±4.5km/wk) endurance athletes have been shown to have a lower basal total 

(15.3±1.3nmol/l) and free testosterone (60.2±5.1pmol/l) concentration than sedentary individuals 
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(19.5±0.9nmol/l and 75.9±3.6pmol/l, respectively) (p<0.05) (472). Additionally, volume may 

provoke significant responses in testosterone concentrations as high volume runners exhibited 

lower total (15.3±1.3 nmol/l) and free (60.2±5.1pmol/l) testosterone levels than even the 

moderate volume (54.2±7.3km/wk) runners (21.4±1.6nmol/l and 86.0±6.1pmol/l, respectively) 

(p<0.05). No differences were exhibited between the moderate mileage and sedentary groups in 

total and free testosterone (472). When these findings are considered with data from MaConnie 

et al. (320) it is speculated that there is an upper threshold of endurance training duration 

decreases in both pulse and amplitude of luteinizing hormone as seen in runners who ran 125 to 

200km/week. Indeed, Wheeler et al. (530) report no change in luteinizing hormone levels in 

individuals who ran an average of 56km/week. Together, these results support earlier data 

suggesting that men who ran an average of 64km/week exhibited significantly lower testosterone 

concentrations than sedentary men (531). 

Conversely, evidence shows that after 12 weeks of one AT session per week of 60% 

VO2max for 50 minutes, sedentary individuals did not exhibit a decrease in total testosterone 

concentrations as has been shown with high volume training protocols (184). More recently, 

Grandys et al. (144) reported that five weeks of the combination of interval (two times/week) and  

continuous (two times/week) aerobic protocols may be able to elevate resting total (18.84±5.73 

to 22.03±6.61nmol/l, p = 0.0004)  and free (374±116 to 470±153pmol/ l, p = 0.00005) 

testosterone concentrations in healthy young men. These effects may be gender specific as 

volume does not seem to affect basal testosterone levels in women, even in overtrained 

subgroups (501). Therefore, an upper- threshold of AT volume may elicit decreases in both 

luteinizing hormone and testosterone concentrations (320, 472, 530, 531), while training 

protocols with shorter mileages, have shown no change or increased  testosterone concentrations 

in men (144, 184) . 

Androgen receptors. Briefly, androgen receptors are nuclear receptors that bind to 

androgenic hormones such as testosterone in the cytoplasm of the cell and tanslocate into the 

nucleus (310). After translocation into the nucleus, androgen interaction with proteins within the 

nucleus promote either the upregulation or down regulation of  gene transcription (177). 

Androgen receptor content is affected by muscle fiber type, contractile activity and testosterone 

concentration in animal models (42, 93). In rodent models, RT provokes significant increases in 
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androgen binding capacity in the extensor digitorum longus muscle but reduces androgen 

binding capacity in the soleus. Notably, the extensor digitorum longus is mostly comprised of 

type II fibers while the soleus is mostly made of type I fibers (104). Conversely, after AT, a 

significant increase in androgen binding capacity in soleus muscle but not the extensor digitorum 

longus muscle is reported (89). These findings suggest a fiber-type specific adaptation depending 

on training modality. Moreover, when subjected to electrical stimulation (to simulate RT), rat 

muscle exhibited a 25% increase in androgen receptor content at day three of the experiment that 

later plateaued at day five. This increase was associated with increases in muscle mass (208). 

Conversely, two weeks of both electrical stimulation and administration of androgen receptor 

antagonist treatment resulted in a significantly lower degree of  rat muscle hypertrophy 

(102.30%)  compared to the control group (107.41%) who did not receive the antagonist 

treatment (209). In summary, these findings demonstrate the importance of the interaction 

between testosterone and its respective receptor for optimal muscle hypertrophy.  

 In humans, RT also results in a muscle up-regulation of androgen receptor content. Both 

eccentric (110% 1RM) and concentric (85% 1RM) squats have been shown in elicit significant 

increases in androgen receptor mRNA in the vastus lateralis (63% and 102%, respectively) 48 

hours after eight sets of eight repetitions (21). Further,  Kadi et al. (228) suggests that androgen 

presence may significantly increase androgen receptor content, as power lifters who self-

administered anabolic steroids exhibited higher percentage of androgen receptor positive 

myonuclei compared with untrained control subjects (p<0.05) and drug-free powerlifters 

(p<0.05). Additionally, Ratamess et al. (409) has shown significant correlations between 

androgen receptor content in the vastus lateralis and  1RM, further suggesting that androgen 

receptor content may assist in facilitating strength changes during RT. Interestingly, the same 

study suggests that training volume may also elicit changes in androgen receptor content as a 

single set of squats for 10 repetitions did not elicit any changes within the following hour. 

However, exercise consisting of six sets of 10 repetitions for squat exercises provoked significant 

decreased of 46% in androgen receptor content (28). This reduction in androgen receptor 

expression may be in response to catabolic environments within muscle protein milieu, which 

may occur once adequate training volume is reached. Muscle protein degradation has been 

shown up to three hours after high volume (five sets of 10 repetitions at 12RM and four sets of 

10RM), total body RT (21) despite reported increases in testosterone concentrations (269), 
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suggesting there is a down-regulation in androgen receptors in response to exercise. These 

findings still warrant further investigation as the relationship between the initial down-regulation 

and subsequent up-regulation that occurs following exercise has not been fully explored (273).  

 Finally, age may hinder androgen receptor response to any type of exercise training. For 

example, after 21 weeks of  RT, AT or CT protocols did not provoke any change in androgen 

receptor concentration in aged men (61±5 years) (4). Likewise, seven days of functional hind 

limb overload in aged rats (25 months) did not elicit significant hypertrophy nor increase soleus 

muscles androgen receptor expression (296). Thus, data suggest that age may have detrimental 

effects on androgen receptor response to exercise. Further research is warranted in this specific 

population as muscle wasting and strength loss are problems in older populations.  

Sex hormone-binding globulin. Sex hormone-binding globulin (SHBG) predominantly 

acts as a transport protein for androgens circulating through the body. Concurrently, SHBG may 

also influence binding capacity of androgens to select binding sites and thus influence the 

magnitude of influence of the circulating androgens (229). In addition, SHBG controls the 

amount of free testosterone available to cross the cellular membrane and influence the intra-

cellular mechanisms. Moreover, SHBG receptors have been identified on cellular membranes 

that possibly mediate the androgen actions through a cyclic adenosine monophosphate (cAMP) 

mechanism (229).  

To date, SHBG responses to RT have been inconsistent. Acute elevations have been 

reported in men (409) and women (277) but not all studies agree (158). For example, chronic 

reductions and no change in SHGB following RT has been documented (160, 162–164, 329). 

Though inconsistent, these data suggest that increases in total testosterone and the stagnant levels 

of SHBG may further assist in the increased androgenic and anabolic effects of testosterone. It 

has been suggested that increases in maximal strength correlate to increased testosterone/SHBG 

ratios (p<0.05) (161).  

 The responses of SHBG to AT is much more consistent, as multiple studies have 

suggested no significant changes in SHBG concentrations in response to acute (110, 454) and 

chronic (152, 531) exercise, though not all agree (144). Indeed, there is data suggesting chronic 

AT (four times/week for five weeks), consisting of continuous cycling at 90% of lactate 
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threshold twice per week and intermittent training (consisting of four sets of  six minutes of 

unloaded cycling and three minutes of loaded cycling which corresponded to a 50% change in 

power output) induced a significant decrease in resting SHBG concentrations (34.45±11.26 to 

31.95±10.40nmol/l, p = 0.01)  in healthy young men (144). Though not significantly, Remes et 

al. (411) reported that six months of activity required for military training elicited a 10% 

decrease in SHBG concentrations (29±1.6 to 26±1.5nmol/l). Additionally, when subjects were 

divided into two groups (poorly conditioned and well-conditioned), authors report a non-

significant 16% decrease in the “poorly conditioned” subgroup (31±2.1 to 26±2.5nmol/l), but no 

change was reported in the well-conditioned group. These inconstancies in both AT and RT 

warrant further investigation.   

2.2.3.2 Growth hormone. Growth hormone (GH) is produced by somatotroph cells in 

the anterior pituitary in response to growth hormone releasing hormone (GHRH) secretion from 

the hypothalamus and/or the reduction of somatostatin secretion. Upon entering the blood 

stream, GH interacts both directly and indirectly (via somatomedins produced by the liver) with 

body tissue resulting in altered body composition and energy metabolism through lipolytic, 

protein anabolic, and antinatriuretic mechanisms (186, 437). 

Multiple peptides make up the super family of human growth hormone. The most 

commonly examined of these peptides is the 22kD molecule, consisting of 191 amino acids 

(125).  There are also biologically active peptides such as a 20kD isoform, 5kD isoform and a 17 

kD isoform. Further, the super family includes many other monomeric, dimeric, protein-bound 

and other combinations of GH. Though further research is needed, these variants seem to have 

similar physiological effects to those of the 22kD isoform  (275).     

Circulating GH is bound to proteins that extends the half-life and may have implications 

of both physiological impact and target destination. Two growth hormone-binding protein 

(GHBP) subtypes have been identified as high- and low-affinity GHBP with the high affinity 

binding protein considered to be the primary GHBP in circulation (400). Once bound to GH, 

GHBP  complexes extend GH half-life, limit GH distribution through the body, and mediate 

GH’s binding to tissue receptors (23). GHBP is produced through proteolytic cleavage of the 

extracellular domain of GH receptors (551). It is thought that the primary site for this process 

occurs in the hepatocytes, as it contains the most GH receptors, however, this process could 
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occur anywhere in the body that has growth hormone receptor sites. Further, recent studies 

suggest body mass index and adiposity (116, 417), leptin (29, 114, 280, 308) and intense RT 

(379, 426) and AT (418) can influence circulating of GHBP concentrations. Because of these 

confounding factors, GHBP concentrations are often difficult to interpret.  Additionally, research 

concerning GHBP manipulation and exercise is scarce. As such, this section will focus on total 

GH concentrations.  

Acute responses of growth hormone to resistance training.  Muscle activation (330, 

331, 518), particularly resistance exercise has been shown to elevate serum GH in both men and 

women (367). Using a large volume protocol, six set of 10RM, Hymer et al. (203) showed 

significant increases in three classifications of GH (> 60 kDa, 30-60 kDa, and < 30 kDa), in 

women. Interestingly, these GH responses may be dictated by muscular strength as Kraemer et 

al. (276) reported blunted responses in low molecular weight (<30kD) GH in stronger untrained 

women as compared to weaker participants, while both exhibited similar responses in the heavier 

molecular weight GH variants  (>30kD). The 22kD GH will be the focus of the rest of the acute 

section.  

 As previously stated, RT has been shown to elevate GH levels up to 30 minutes following 

resistance exercise in men (1.47 to 25.0 ng/ml) and women  (4.0 to 25.4 ng/ml) (367) with 

significantly higher basal concentrations found in women than men (187). Moreover, the extent 

of response seems to be mediated by exercise selection, and subsequently, amount of muscle 

mass recruited (169, 267), muscle action (102), intensity (6, 404, 502), volume (140, 188), rest 

interval length (268, 272, 407), and training status, as individuals with greater training status 

show a greater acute GH response to training (5, 426). 

 Similar to testosterone, the amount of muscle mass recruited during the exercise mediates 

the magnitude of elevation in plasma GH concentrations. When levels were measured after  

exercise, groups training both upper-and lower-body muscle groups exhibited higher plasma GH 

level than those training upper-body groups only (P<0.05) (169, 529). Indeed, an Olympic lifting 

protocol, which involves large muscle groups of the entire body, with high intensity and low 

volume provoked significant increases in GH (p<0.05) (267). Together, these findings suggest 

the recruitment of large muscle mass will elicit acute increases in GH.  
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 Interestingly, the type of muscle contraction also has potential to elicit changes in acute 

GH response. When comparing concentric and eccentric movements, Durand et al. (102) 

reported that concentric only movements in a total body workout, elicit significant acute 

increases in GH (p<0.05) while the eccentric movement protocol did not. Authors further 

indicated that 37% of the variance in GH could be explained by the concentric intervention. 

Likewise, Kraemer et al (262), who found that after 19 weeks of RT, groups that trained only the 

concentric exhibited greater acute GH increases to the concentric exercise testing than the group 

that trained both eccentric and concentric muscle contractions, even when equated for volume 

(p<0.05). These findings imply a neuro-hormonal connection such that the anterior pituitary is 

stimulated by muscle contraction. It has been shown there are multiple nerve fibers in close 

proximity to endocrine gland cells, some even forming synapses with the glands and may 

regulate the secretions of the selected glandular secretions (226). Together, the concentric muscle 

contraction may act as a stressor and further stimulate the neuro-hormonal pathway, provoking 

acute increases in GH concentrations.  

Exercise intensity also appears to regulate GH responses. Recreationally trained men 

underwent two different protocols: a maximal repetition protocol, where participants worked at 

their 12RM for four sets of multiple lower-body exercises and a forced repetition protocol, where 

participants worked at intensities 15% greater than their 12RM, requiring assistance to complete 

each of the four sets. Upon completion, both protocols stimulated significant increases in serum 

GH concentrations (maximal: 1.0±1.9 up to 23.6±15.2μg/l; p<0.001 and forced: 0.3±0. up to 

28.6±16.2μg/l; p<0.001). Relative changes in GH concentrations were greater after forced 

repetitions compared to maximal repetitions across all time points (6). Further, these responses 

are shown in both  men and women as the heavy RT protocol (five sets of ten at 10RM) elicited 

significant increases in GH as compared to  lower intensities (five sets of 10 repetitions at 70% 

and 40% 10RM) (303).  

Once again, age may have a blunting effect on GH responses to RT. After undergoing 

training protocols at 60%, 70% and 85% of 1RM, young subjects (27±1.6 years) exhibited non-

significant increases in GH at 60% of their 1RM and progressively increased responses at 70% 

and 85% whereas, older subjects (72±0.8 years) did not exhibit any responses (404). 

Interestingly, later findings suggest that moderate intensity, high repetition protocols may be 
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enough to elicit significant increases in GH in elderly men (69±5 years) (463). Therefore, greater 

intensities stimulate increases in GH concentrations, though confounding factors such as age 

may inhibit his response.  

In conjunction with training intensity, volume also appears to significantly affect acute 

serum GH concentrations. When compared against each other, lighter intensity with higher 

volume (four sets of 15 repetitions at 60% 1RM) elicited greater increases in serum GH 

concentrations as compared to high intensity bouts with less volume (four sets of four repetitions 

at 90% 1RM (p<0.05) (188). These findings support earlier work exhibiting significant increases 

in GH (0.16±0.07 to 27.7±17.8μg/l; p<0.001) following a high volume fatiguing protocol (10 

sets of ten at 70% 1RM) as compared to low volume protocols (20 sets of one at 100% 1RM) 

(from 0.31± 0.39 to 1.43± 0.89μg/l, p<0.01) (156). Moreover, when two, four, and six sets were 

compared against each other across three different protocols, maximum strength (five repetitions 

at 88% 1RM), muscular hypertrophy (ten repetitions at 75% 1RM), and muscular endurance (15 

repetitions at 60% 1RM), four or more sets elicited significantly greater GH responses than two 

sets in all three training protocols (464).  

 Additionally, rest interval manipulation is another variable in RT sessions that influence 

GH responses. When compared with varying loads and rest interval times, a rest interval of 1 

minute with a load of the participant’s 10 repetition maximum was shown to elicit the  greatest 

response at all time points and in area under the curve throughout the training session (271). 

Rahimi et al. (407) confirmed these findings by showing that a rest interval of 60 seconds 

elicited significantly greater GH responses than that of 90 or 120 seconds when completing four 

sets to failure at 85% 1RM.  

Finally, training status appears to be another confounding factor in acute GH responses to 

RT. After 21 weeks of heavy RT, strength athletes exhibited significantly greater elevations in 

GH concentrations than untrained men 30 minutes after executing five sets of 10RM (p<0.05). 

Additionally, mean acute responses were also significantly greater in strength athletes 15 

minutes after the training protocol (5). These findings were replicated in women by Taylor et al. 

(488) who found weight trained women had increased GH concentrations immediately, five and 

60 minutes after a full body exercise protocol with each exercise consisting of three sets of 

10RM than women who had no RT at least six months prior to testing. 
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 It appears that lifting protocols that elicit high blood lactate responses also provoke 

greater GH responses (265). Indeed, multiple-set protocols produce greater lactate responses than 

single set protocols (79, 140, 265, 349). For example, 10 sets of 10 repetitions at 70% 1RM 

elicited significant increases in GH (0.16±0.07 to 27.7±17.8μg/l; p<0.001) in conjunction with 

significant increases in lactate (1.4±0.3 to 15.0±0.4mmol/l; p<0.001) (156). Gordon et al. (139) 

found that the GH response is attenuated during high-intensity cycling following induced 

alkalosis through ingestion of decaffeinated tea solution containing 0.3g Sodium bicarbonate/kg. 

Also, administration of sodium l-lactate while running at low intensities has resulted in elevated 

GH concentration (312). Moreover, hypoxia (485), acid-base shifts, and protein catabolism have 

been purported to stimulate GH release (265). Therefore, as long as proper workloads (as a 

product of rest interval, intensity, and volume) are met, RT could be considered a proper 

stimulus for acute GH increases (502).   

Responses of growth hormone to chronic resistance training. RT does not appear to 

significantly affect resting GH levels as no changes have been shown in both men and women of 

differing ages (163, 270, 326, 329). Interestingly, it appears that women have a higher resting 

GH concentration than men (268). Likewise, training status does not significantly affect resting 

GH concentrations as strength athletes did not exhibit differences as compared to trained males 

men (5) or women (478). These findings suggest that GH concentrations only increase in acute 

instances, in response to exercise in order to aid in muscle tissue hypertrophy as significant 

correlations exist between muscle hypertrophy and mean GH concentration increases for both 

type I (r=0.70, mid exercise and r=0.74, post exercise) and type II (r=0.71,post exercise) muscle 

fibers (p<0.05) (329). Further, changes in GH receptor sensitivity, feedback loop mechanisms, 

insulin-like growth factor potentiation, and daily routines may also influence GH concentrations 

(275). 

Acute responses of growth hormone to aerobic training. GH appear to have a much 

more immediate response to AT than RT as evidence suggests significant GH response 15 

minutes into AT with concentrations peaking at or near the end of exercise (291, 410, 483). The 

intensity of exercise may also dictate the GH response (113). When  duration was held constant 

(10 minutes of cycling) low intensity (below lactate threshold) elicited non-significant increases 

(1.5±2.0μgrams/L) in GH concentrations while high intensities (above lactate threshold) 
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provoked a significant increases (+7.7±2.4μgrams/L) (p<0.05) (113). It would appear as if an 

intensity between 40% and 60% VO2max   is required to stimulate GH secretion (83, 111, 359). 

This shows that GH secretion is consistent with lactate threshold (136) and mimics responses in 

RT with significant elevations in GH concentrations reflect elevations of in lactate (79, 140, 

349). 

 Moreover, when intensity is held constant, duration of exercise also seems to elicit 

significant responses in GH (113, 533). Wideman et al. (533) suggests that when intensity is held 

constant at 70% of peak oxygen consumption longer duration of exercise provoked increases in 

both men and women with 120 minutes provoking the greatest response, followed by 60 minutes 

then 30 minutes. Additionally, it has been shown that the minimum amount of time required for 

significant GH concentrations is 10 minutes when intensity is held about lactate threshold (113). 

Together, these studies suggest that duration and intensity significantly affect GH secretion, 

supporting early work suggesting that workload stands as a reliable predictor for GH response 

(50).  

 Moreover, age appears to blunt GH response to exercise compared to younger individuals 

(132, 526). Young men (27.2±1 years) have exhibited up to a 3.6-fold values were reported 

during exercise whereas older men (64.1±2.2 years) only exhibited a 1.89- fold increase in GH 

(526). Additionally, older men and women have shown a delay in GH response until exercise 

intensities reached 125%of lactate threshold compared to young men, who exhibited significant 

increases at 75% of lactate threshold and above. Further, young women demonstrated significant 

increases at 25% of lactate threshold and above (526). These studies suggest that aging blunts 

GH response in response to exercise at given intensities. Moreover, these studies suggest that 

greater intensity of exercise is required to elicit these responses.   

 Interestingly, the impact of AT status on the acute GH response to AT is not consistent. 

Data supports increases (32), decreases (50), and no impact (254) of training status on GH 

response to AT. When compared to controls who did not participate in regular physical activity, 

trained individuals demonstrated significantly higher GH concentrations after working for eight 

minutes at t 30%, 45%, 60% and 75% of maximal work rate (32). Likewise, Bunt et al. (50) 

report conflicting data suggesting that trained male runners had significantly higher GH 

responses to exercise after running 30 minutes ( p < 0.01) as well as 3 and 15 minutes (p < 0.05) 
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post exercise than moderately active control participants. Interestingly, results suggest no 

significant differences between trained and untrained women (50). These discrepancies may be 

due to the both protocol designs, including mode of exercise and duration at higher intensities.  

Growth hormone responses to chronic aerobic training. Chronic AT seems does not 

affect resting GH values in both men (32, 50) and women (50). Despite mounting data 

supporting chronic training’s inability to impact on GH concentrations, Weltman et al. (527) 

report that three weeks of  high intensity AT (20 minutes per session) blunts  GH responses. It 

has further been suggested that chronic training may result in increased sensitivity to GH in a 

similar fashion as increased sensitivity to insulin, which has been shown to occur after several 

weeks of training (195, 196).   

Despite these findings in both aerobically and resistance trained individuals, the 

pulsatility of GH concentrations makes the measurement of “resting” concentrations almost 

meaningless (479). Indeed, Kanaley et al. (233) examined the impact of AT on GH 

concentrations over 24 hours using frequent sampling (every 10 minutes). This study reported 

that AT had no impact on total GH secretion in the 24 hours compared to the controls. Likewise, 

heavy RT was reported to have no impact on12 hour total GH concentrations compared to 

controls who did not exercise prior to overnight (365).  

2.2.3.2 Insulin-like growth factor-I. Insulin-like-growth factor-I (IGF-I) is a 

somatomedin produced in the hepatic cells in response to GH secretion. GH interacts with 

heptatic cells to produce IGF-I and IGF-II both of which have been shown to have systematic 

action in provoking whole body growth and anabolism (373). Due to very similar structure to 

proinsulin, IGF’s has a very high affinity for insulin receptors (298, 373). After secretion, IGF-I 

influences multiple anabolic actions in bodily tissue such as: lipogenesis in adipocytes (441), 

protein synthesis in muscle cells (504) and bone growth (358). Though IGF-II still elicits some 

anabolic effects in adults, it has been shown to predominately affect fetal growth (168), Thus, the 

focus of this section will pertain to only IGF-I. 

 Once IGF-I binds to cellular receptors, it is spliced into three different isoforms, IGF-IEa, 

IGF-IEb, and IGF-IEc (mechano-growth factor; MGF). Interestingly IGF-IEa appears to be more 

GH responsive, while MGF is relatively GH insensitive (167) but shows significant response to 
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muscle stretch stimuli (545). These reactions may mirror their respective physiological roles as it 

has been suggested that the IGF-IEa splice is required for muscle maintenance and MGF is 

required for satellite cell activation (167). It has further been shown that MGF does not enter the 

blood stream and its E domain works independently of IGF-I receptors (546). Moreover, 

evidence suggests that these peptides respond primarily to muscle damage (21, 137). The rest of 

this section will solely focus on mature IGF-I hormone concentrations.  

Circulating IGFs bind to insulin like growth factor binding proteins (IGFBP), which are 

abundant in most bodily tissue and act as mediators as IGF-I and IGF-II activity (220). When 

bound together, the complex not only serves as a reservoir for IGF-I release, but also increases 

the half-life to12-15 hours (150, 425). Additionally, the binding of IGF-I to IGFBP may assist in 

preventing cross-binding of IGF-I to insulin receptors (408). Moreover, it has been hypothesized 

that different forms of IGFBP are significant factors in carrying IGF-I to target tissues where 

IGF-I are released by proteolysis of IGFBP or the binding of the IGFBP to the extra cellular 

compartment (49, 383). These actions together likely regulate the actions of IGF-I through 

manipulation of IGFBP concentration levels in target tissues (97, 342). 

There are an abundance of IGFBPs subtypes with an array of functions (128) which have 

been shown to have varying responses to different exercise interventions and training statuses.  

High intensity interval exercise has been shown to increase both IGF-I and IGFBP-3 

concentrations. Despite this finding, only IGFBP-3 area under the curve was significantly greater 

than that of the resting control (76). An hour after heavy RT, participants exhibited significant 

differences in only IGFBP-3 after the first hour and increases in IGFBP-2 and decreases in acid-

labile subunit concentrations in the overnight response compared to resting conditions (368). 

Together these studies suggest that IGFBP subtypes respond to high intensity, though the 

responses are not uniform. Finally, prolonged exercise elicited increases both during and after 

diet and 60-minute AT interventions (362). Despite these seemingly uniform findings, the 

mechanism is still unclear as there is not an evident trend among these responses to different 

types of exercise or within the same types of exercise.  

Further, chronic training also seems to have mediating effects on binding protein levels as 

16 weeks of AT elicited increases in IGFBP-3 in exercisers while controls over this time period 

showed decreases (39), while IGFBP-3 fragmentation and IGFBP-1 were both increased in 



47 
 

response to ultra-endurance exercise over six days (369). Conversely, participants exhibited 

significant decreases in IGFBP-3 after eight weeks of exercise training and diet restrictions 

(364). Moreover, research comparing RT single set and three set interventions exhibited 

decreases in only the three set intervention at 13 and 25 weeks. It was also shown that there were 

not significant changes in IGFBP-1 in either training session (324). In summary, chronic exercise 

has been shown to manipulate the IGFBP family but without uniformity. This section will be 

further dedicated to total circulating IGF-I concentrations.  

Acute responses of insulin-like growth factor-I to resistance training. IGF-I has 

exhibited conflicting data in immediate response to RT, as  some studies have shown no response 

(58, 261, 278) while others have suggested acute elevations both during and after RT exercise 

(268, 271, 426). Rodent models using GH-deficient lit/lit dwarf mice showed that there was a 

distinct time delay in IGF-I splice mRNA expressions after GH administration. It was after four 

hours that both IGF-IEa and (MGF) expression had increased in the liver but only MGF was 

expressed in the muscle. But 12 hours after treatment, hepatic concentrations of both IGF splices 

had returned to baseline, while expression in the muscle had increased for both splices (204) 

further implying that once GH is secreted into the blood, there is still a time delay in IGF-I 

response. Kreamer et al. (268) has reported similar results in the both men and women in 

response to RT with initial increases in GH concentrations followed by increases in IGF-I.  

Insulin-like growth factor-I responses to chronic resistance training. The effects of 

chronic RT have shown conflicting results in alteration of resting IGF-I, suggesting either no 

alteration in resting IGF-I concentrations during extended RT protocols (271, 329) or increases 

in both  women (326) and men (259). Training status also alter resting IGF-I concentrations, as 

strength trained men have been shown to have higher resting concentrations (426). Moreover, 

training volume seems elicit significant effects in these responses as  progressive swim training 

has shown to increase resting IGF-I concentration levels by 76% (p<0.05) as compared pre-

training values (259). Furthermore, single sets of circuit training only increased IGF-I levels after 

12 weeks while  multiple sets increased resting levels at both 12- and 24-weeks (326). These 

results were later supported by Borst et al. (39), who reported resting IGF-I concentrations 

increased by nearly 20% (p=0.041) after 13-weeks of training for both single and multiple set 
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programs. Despite conflicting data, volume of training and training status may also influence in 

chronic levels of circulating IGF-I concentrations.  

Acute responses of insulin-like growth factor-I to aerobic training. While research 

examining the acute effects of AT on IGF-I concentrations in the blood is scarce, current 

literature has shown conflicting results as increases (379, 451) and no changes (75, 313) have 

both been reported in men and women.  De Palo et al. (379) has shown evidence of increased 

IGF-I concentrations to both long duration (40 minutes exercise consisting of a ten minute warm-

up, 15 minutes at 70-80% of VO2max followed by 15 minutes of increasing workloads until 

exhaustion) and short duration (25 minute exercise consisting of the ten minute warm-up and 15 

minutes of exercise at exhaustion) AT (66±10 to70±10nmol/l; p<0.05 and  55±14 to 

61±15nmol/l; p<0.005, respectively). These results support earlier works suggesting that exercise 

performed at both high intensities and low intensities for 10 minutes can elicit increases in IGF-I 

concentrations (7.7±2.7%; p <0.05 and 13.3±3.2%; p < 0.002, respectively) (451) .  

 Conversely, evidence has suggested that 40 minutes of cycling at 75% of maximal heart 

rate did not provoke significant increases in IGF-I concentration levels in women regardless of 

age (75). Likewise, Wideman et al. (534) suggested that 30 minutes of constant load AT does not 

provoke significant increases in IGF-I concentration as compared resting concentrations. It 

would appear as if the differences in training protocols could be the possible reason for the 

differences in the aforementioned results. As such, the intensity of the AT is the potential key 

factor in provoking increases in IGF-I concentrations, though these responses may be unrelated 

to GH secretion (451). 

Insulin-like growth factor-I responses to chronic aerobic training. While most of the 

literature suggests that chronic training has no effect on resting levels of IGF-I (10, 509, 550), 

conflicting data still exist suggesting both increases (259) and decreases (212, 361, 369). Most 

recent evidence of was reported in young sedentary women who underwent AT intervention for 

16 weeks. Subjects were asked to exercise five times per week at a specific intensity based upon 

their age predicted heart rate maximum which was increased every four weeks. Despite showing 

slight decreases in IGF-I concentrations (-11.1±5.5ng/ml), no significant differences were 

observed compared to baseline or control measures (10).  These data mimic earlier results in 

young and mature male cyclists, once again suggesting a slight, non-significant decrease in IGF-I 
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concentrations (274.4±78 to 227±23.2ng/mL and 149.5±14.1 to 123.4±16ng/mL, respectively; 

p>0.05) (550). 

 Other factors such as age (75, 550), health status (212, 361) and activity level (369) may 

contribute to the effects of chronic AT on IGF-I concentrations. As with many of the other 

hormone profiles, older individuals seem to exhibit lower IGF-I concentrations in both men 

(550) and women (75). Notwithstanding these decreased levels, most studies suggest that chronic 

AT does not elicit IGF-I changes in in aged populations (75, 509, 550), though there conflicting 

results exist (398).  

 Interestingly, evidence in obese population suggestions that chronic AT for 60 minutes 

combined with a monitored diet elicited significant decreases (20%; p<0.01) in IGF-I after 11 

days Further, serum IGF-I levels in a long-term (14.2±1.7 years) sub group were 55% lower than 

baseline (p<0.01) (361). Likewise, individuals who had not been active for at least two years 

demonstrated significant decreases in IGF-I concentrations (245±28 to 223±22ng/ml; p<0.05) 

after six weeks of low intensity AT (369). To any extent, it is not clear how the effects of chronic 

AT influence resting IGF-I concentrations and further investigation is required. 

2.2.3.3 Cortisol. When subjected to stressful conditions, neuroendocrine response 

initiates the activation of the hypothalamus-pituitary-adrenal axis; allowing for adaptation to 

increased physiological demands and maintain homeostasis. Under these conditions, the 

hypothalamus secretes corticotropin-releasing hormone (CRH), which stimulates the secretion of 

adrenocorticoptropic hormone (ACTH) from the pituitary gland, ultimately, provoking the 

production of glucocorticoids from the adrenal cortex. The primary glucocorticoid in humans is 

cortisol, of which only 5-10% is unbound in the plasma and is biologically active (286). It has 

also been shown that cortisol has greater effects in type II muscle fibers than type I muscle fibers 

(274).  Cortisol’s catabolic effects on both skeletal muscle (328) and fat tissue (lipolysis) (387) 

make it of interest when considering both acute and chronic tissue remodeling after stressful 

environments such as exercise.   

Acute responses of cortisol to resistance training. Much like GH, RT protocols that 

produce high amounts of lactate also have a strong correlation with creatine kinase (263) and 

cortisol production (264, 409). Indeed, when compared against each other, strength (four sets of 
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five at 88% 1RM with three minutes rest), hypertrophy (four sets of 10 repetitions at 75% 1RM) 

and strength endurance (four sets of 15 repetitions at 60% 1RM), hypertrophy and strength 

endurance protocols provoked significant increases in both lactate (1.17±0.09 to 

3.97±0.41mmol/l and 1.25 ± 0.03 to 4.30 ± 0.31, respectively; p<0.05 ) and cortisol (325 ± 29 to 

449 ± 78nmol/l and 335 ± 28 to  495 ± 54nmol/l, respectively; p<0.05) after 30 minutes of 

exercise in young men (551). Together, these correlations would suggest that cortisol responses 

to the high amounts of total volume common in  hypertrophy protocols compared to strength or 

power training protocols, which have not shown significant changes in acute concentrations in 

cortisol 30 minutes after exercise (464, 551).  

Additionally, manipulation of the factors making up training workload (sets, repetitions, 

and intensity) has been shown to increase cortisol concentration. When set number was held 

constant, higher rep schemes (hypertrophy: 10 repetitions and strength endurance: 15 repetitions) 

seemed to provoke greater acute cortisol responses than low reps schemes (strength: five 

repetitions) (p<0.05). Moreover, authors report that when repetitions were held constant were 

and sets were varied (two, four, and six sets), four and six sets of 10 repetitions elicited greater 

increases in cortisol levels (p<0.05), with now significant differences between the two (464). 

Likewise, manipulation in intensity has been shown to acutely increase cortisol levels. Indeed, 

during a forced repetition protocol with 15% greater training load demonstrated increases in 

cortisol concentrations (0.035±1.1 to 0.65±0.11μmo; p<0.001) (6). Finally, rest interval 

manipulation exhibits significant changes in acute concentrations as Kraemer et al. (265) 

reported rest intervals of one minute provoked greater elevations in cortisol concentrations than 

three minutes when loads were held constant (p<0.05). Despites the convincing evidence of 

relationship between high workloads and cortisol concentration elevation, there is still 

conflicting evidence, though concentration levels were trending post-exercise (p=0.09) (538). 

These acute responses may play a substantial role in the tissue reconstruction in response to 

resistance exercise.  

Cortisol responses to chronic resistance training. Chronic RT has shown no change (5, 

159, 160, 162–164, 401), to decreases (7, 161, 277, 326, 329), to increases (155) which appears 

to mirror long-term training stressors. Hence, it appears that acute responses in cortisol 

concentrations may insinuate previous metabolic stress while chronic elevated cortisol levels 
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may suggest adaptation in tissue homeostasis concerning protein metabolism (274). Further 

investigation is warranted to investigate factors influencing chronic concentrations and the 

implications thereof.  

 Acute responses of cortisol to aerobic training. Cortisol has been reported to 

consistently acutely increase in response to a single session of AT in men (238, 318, 454) and 

women (74). Marathon racing has been reported to significantly increase cortisol concentrations 

30 minutes after race completion (338±147 to 1640±884mmol/l; p<0.01) in healthy males (454). 

Additionally, Karkoulias et al. (238) reports that cortisol concentrations remain elevated 60 

minutes after race completion (13.4 to 24.4 μg/dl) in male non-athletes. Interestingly, authors 

reported cortisol levels were still slightly increased one week after the race (19.2μg/dl), though 

not significantly different from baseline values. Additionally, cortisol has been shown to increase 

with increases in volume. When cortisol levels were compared after 19km and 42km kayak 

races, it was shown that 42km post-race concentrations were significantly higher than 19km 

(0.447±0.110 to 1.005±.410μmol/l v 0.312±0.063 to 0.476±0.124μmol/l, respectfully; p<0.05) in 

elite male kayakers (318). Though the majority of literature suggests that AT elicits significant 

increases, there is evidence to the contrary. When 120 minutes of continuous cycling at 55% of 

peak power output was compared with two high intensity interval exercise protocols (four sets of 

four minute intervals at 90-95% peak power output and four sets of 30 second intervals at 

maximal effort sprints), continuous cycling provoked significantly lower cortisol concentrations 

(p<0.001) (515). Notably, authors suggest that these differences can be attributed to different 

training protocols than other studies. In summary, AT provokes increases in cortisol levels. It is 

possible that these increases are mediated by exercise volume as greater distances have been 

shown to elicit greater responses in cortisol.  

Cortisol responses to chronic aerobic training. Chronic AT has shown to invoke no 

change (32, 152, 171, 184, 472, 496, 501) and increases (499) in basal cortisol concentrations 

which may reflect current long-term training stressors. While most of literature show no changes 

in basal cortisol levels, Tsai et al. (499) studied elite endurance athletes over the course of their 

competitive season and took blood samples at three time points (off season, mid-season, and late 

in the competitive season). Female athletes exhibited significant increases in basal cortisol levels 

from the off season to the third blood draw (p<0.05). Interestingly, authors reported that male 
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athletes did not demonstrate the same trend. Despite this evidence, most of literature suggests 

that cortisol concentrations do not change with chronic AT. 

2.2.3.4 Estrogen. In addition to its primary effects in the body, testosterone also acts as a 

precursor to estrogen production. Though the ovaries differentiate later than the testes, the 

mechanism is still the same, the aromatization of androgens via reactions with the enzyme 5-α-

reductase. Although estrogen does not have the same androgenic and anabolic properties as 

testosterone, it has been shown to have specialized qualities such as reduction in bone 

reabsorption (372) and muscle damage (243), which may insinuate specific consequences in 

terms of adaptations to exercise. Estradiol is considered the most active from of estrogen in 

humans and is often the focus of study when estrogens are studied during exercise. Few studies 

have suggested acute elevations in estradiol concentrations following resistance exercise in 

women (74, 75, 260, 516) and men often experience no change in estradiol concentrations from 

training (161). When examined over time,  evidence suggests that basal estradiol concentrations 

are not altered following 16 weeks of power training (164). In summary, the response and 

subsequent role of estradiol is still not fully understood in regards to muscle performance and 

adaptation. 

2.2.3.5 Erythropoietin. Upon the decrease of oxygen concentrations (oxygen saturation) 

in the blood stream, the kidneys respond with the production and release of a protein hormone 

called erythroproietin (EPO). Further, it has been suggested that the liver may also produce small 

amounts of EPO, as it has been shown to be the main production site for fetal EPO (523). The 

primary role of EPO is to enhance the proliferation of erythrocyte precursor cells in the bone 

marrow into erythroblasts and, subsequently, differentiate erythroblasts into erythrocytes or red 

blood cells (RBC) (252). It has been purported that blood draws of 450ml elicit significant 

increases in EPO concentration within 24 hours of phlebotomy (100). Consequently, this 

elevation of RBC concentrations in the blood causes an increase in the content of the oxygen 

carrying protein, hemoglobin which leads to increases in oxygen carrying capacity to working 

muscle. Further, in order to elicit an increase in EPO, there must be a decline in arterial 

haemomoglobin saturation below 91% (415) compared to normal levels ( ≥95%). Much data 

exists to support the EPO responses to hypoxic environments; however, there is scarce evidence 
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of its responses to both acute and chronic RT protocols. There is however, research regarding 

EPO and AT, which this section will focus of this section. 

Acute responses of erythropoietin to aerobic training. EPO has been studied across a 

multitude of endurance focused sports including cross-country skiing (255), cycling (255, 444), 

long distance running (450, 524)  and biathlon (412).  Among these varied studies, there is not a 

uniform response to AT as studies have shown both increases (100, 444) and no effects (100, 

444). Interestingly, these responses appear to be influenced by outside factors, such as duration 

(450), intensity (415), and environment (100, 444). Though there is conflicting data (524), 

marathon running has been shown to significantly increase EPO concentrations in 15 well 

trained runners up to 30 hours after race completion (450). Conversely, shorter AT interventions 

of 60 minutes or less at moderate intensities have not been able to elicit these same responses 

(255). Together, these studies suggest there may be a duration of activity threshold for eliciting 

an increase in EPO concentration as marathon running takes over two hours to complete and in 

comparison to other interventions lasting only an hour or less. 

 Additionally, intensity appears to influence EPO concentrations as three minutes of 

supramaximal (109±2.8% VO2max) exercise provoked a significant 28% increase in EPO 24 

hours post exercise in male athletes. Further, participants had ≤ 91%  arterial oxyhaemoglobin 

saturation after supramaximal exercise (415). It is suggested that this drop in oxyhaemoglobin 

saturation is required to elicit increases in EPO concentrations (415, 444). Interestingly, maximal 

exercise to fatigue has not been shown to induce significant changes in EPO concentrations 

(444). Again, there appears to be a threshold that must be met in order to manipulate EPO levels 

as supramaximal intensities have been successful while maximal and submaximal intensities 

have not.  

 Finally, the environment in which the exercise is being performed appears to be 

influential in eliciting significant increases in EPO concentrations. Increase in altitude (2005-

2100 meters above sea level) has been shown to stimulate increases in EPO concentrations 

within hours of exposure to hypoxic environments (427). Likewise, blood removal via 

phlebotomy can be considered a hypoxic endogenous environment due to decreases in blood 

oxygen carrying capacity. Thus, phlebotomy of 450 ml has also been shown to elicit significant 

increases in EPO within 24 hours of intervention. Further, during  incremental exercise following 
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phlebotomy there was a tendency for further increase in EPO concentration (p= 0.09) (100). 

These studies suggest as long as oxygen carrying capacity is hindered there will be an increase in 

EPO concentrations.  

Erythropoietin responses to chronic aerobic training. Because tissue hypoxia is the 

primary stimulus for EPO production (415), effects of chronic training on EPO concentration 

levels is very scarce in the literature. Interestingly, male triathletes who swim, bike and run have 

been shown to have lower EPO concentrations (26.3U/ml) compared to distance runners 

(31.6U/ml) (p<0.05). Despite these differences, the mean concentration levels of both groups 

were not different from sedentary controls (26.5-35.3U/ml) (524). After a two-week detraining 

period, athletes who retrained for four weeks saw no increases in EPO concentrations (255). 

Again there is evidence that environmental factors may have substantial influence on EPO 

concentration levels. World class male biathlon athletes exposed to moderate altitude conditions 

(2050m above sea level), demonstrated increases in EPO concentrations after four days of 

exposure. Interestingly, there was no further increase in EPO concentrations over the course of 

training at altitude. Furthermore, 16 days after returning from altitude, EPO concentrations 

returned to those prior to the three-week training period (178). EPO concentrations are 

substantially influence by tissue environment as hypoxic environments have shown to elicit 

chronic increases in EPO concentrations, while current evidence infers that chronic training at 

normoxic conditions does not elicit the same response. 

2.2.3.6 Hormonal Responses to Concurrent Training. Research on the effects of CT’s 

influence on anabolic and catabolic hormonal profiles is very limited. Available research has 

examined an array of protocols including: chronic (27, 52), acute (66) and intra-exercise (51) in 

both men and women (27). However, despite this dearth of evidence, there is little effect of CT 

on anabolic and catabolic hormonal profiles. Bell et al. (27) reports that 12 weeks of CT 

(consisting of continuous exercise at ventilatory threshold and moderate to heavy intensity full 

body resistance) had no significant influence on testosterone, GH, or SHBG in both men and 

women. Ahtiainen et al. (4) further this notion by showing no significant change in serum 

testosterone concentrations after 21 weeks of CT.  

Conversely, acute CT has been shown elicit increases in total testosterone in young (23.5 

±0.9 years) strength-trained men when strength training followed AT for two days. Additionally, 
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cortisol was shown to increase after the initial exercise but returned to resting levels after the 

second modality of exercise, regardless of order (51). Finally, CT has been shown to decrease 

free testosterone in elderly men (52). These studies suggest that there is still not a definite 

finding on CT’s influence on anabolic and catabolic hormones due to confounding factors such 

as training frequency, intensity, and duration; further suggesting a need for future research. 

In conclusion, RT and AT modalities influence very different cellular pathways 

ultimately resulting in different outcomes in both cellular protein make-up and acute and chronic 

hormone levels. Though there is a sufficient amount of evidence to support the interference 

theory, the large number of variables that influence training adaptations (i.e. intensity, duration, 

and volume) still makes it difficult to clearly come to a conclusion. Further research is needed to 

fully explore these variables and the subsequent outcomes. 

2.3 Influence of Nutritional Supplementation on Body Composition, Strength 
and Power 

2.3.1 Primary Ingredients: Creatine Monohydrate, Caffeine, Beta-Alanine and Branch 
Chain Amino Acids 
 As previously mentioned, four ingredients have become very common in most MIPS 

products: creatine monohydrate (CM), caffeine, beta-alanine (BA) and branch chain amino acids 

(BCAAs). These main ingredients have been shown to have positive effects on body composition 

and/or most aspects of performance individually (31, 292, 513)  and in combination (377). 

Briefly, supplementation with CM has been shown to significantly increase lean body mass 

without increases in fat mass (8, 25, 61, 213, 510, 511, 513). Similarly, BCAAs have also been 

shown to enhance increases in fat free mass in young (31, 54) and mature populations (249). 

Interestingly, the BCAA leucine seems to stimulate the activation of mTORC1 (146), one of the 

primary proteins in facilitating muscle protein synthesis. Conversely, caffeine has been shown to 

influence body composition through the loss of fat mass, rather than increasing lean mass (1, 

142, 292). Finally, BA’s effects on body composition are not very well understood as research 

shows conflicting results (244, 246, 284, 465). Overall, these four primary ingredients seem to 

elicit positive effects on body composition through manipulation in increases in lean mass or 

decreases in fat mass.  
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Additionally, these four primary ingredients also seem to also have positive influence on 

exercise performance. Indeed, a  multitude of evidence suggests that CM increases strength 

performance (41, 61, 289, 510).  Moreover, CM has also been shown to help improve aerobic 

performance though the attenuation of blood lactate accumulation (63, 141).  Though BA (24) 

and Caffeine (230) do not have direct effects on maximal strength increases, both have been 

shown to have positive effects on strength and power endurance (88, 189, 230, 246, 480, 482). 

Further, these two ingredients have been shown to improve sprint  performance (99, 446), 

suggesting they may elicit improvements in anaerobic power output. Likewise, caffeine and BA 

have also been shown to have positive influence on duration of AT at submaximal intensities 

(385, 395, 397, 556). This evidence suggests that chronic supplementation of BA and caffeine 

may lead to greater increases in exercise performance through the adaptations caused by 

increases in both AT and an RT volume. Similarly, BCAAs have not been shown to have a direct 

influence on strength performance. Regardless, BCAA’s have been shown to have therapeutic 

effects on exercising muscle through reduction in delayed onset muscle soreness (DOMS) 

measures (197, 215, 371, 455, 460), which may contribute to the strength increases seen in 

BCAA supplementation studies (80, 249).  Additionally, BCAA’s have been shown to extend 

time to exhaustion in both mouse (53) and human models (341).  In summary, supplementation 

with these primary ingredients has been shown to enhance exercise performance and the 

adaptations thereof.  

Rhodiola rosea and Cordyseps sinensis are two other ingredients that may have potential 

in enhancing exercise performance. Despite the sparse research on these ingredients, there is 

evidence suggesting these ingredients may aid in improving endurance performance. The 

mechanisms of action and possible benefits for body composition and exercise performance will 

be focus of the rest of this section.  

2.3.2 Rhodiola Rosea 
2.3.2.1 Mechanism of action. Rhodiola rosea (RR) has been reported to have direct 

effects on the central nervous system. Though the mechanism is still unclear, it has been 

suggested that RR works through a variety of mechanisms in rodent (388) and human (380, 473) 

models. RR is a root that primarily grows in Eastern Europe and Asia (242). Primarily, RR is 

part of the adaptogen family, which has been found to have chemical phenolic compounds 
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(phenylpropanoids and phenthylethane derivatives) structurally similar to catecholamines. RR, 

specifically, contains monoterpene glucoside rosiridin, which an in vitro study has suggested to 

inhibit monoamine oxidases A and B (91), which have been shown to deactivate 

neurotransmitters (438). Additionally, RR also contains the active compound tyrosol which has 

been shown to increase the phosphorylation of eNOS and FOXO3 and induces extended 

expression of SIRT1 (434), which has been shown to increase mitochondrial biogenesis through 

activation of AMPK and PGC-1α. Further, this activation hinders protein synthesis through 

negatively regulating mTORC1 through TSC activation (392). Moreover, evidence in an animal 

model suggests that tyrosine, a precursor to tyrosol synthesis, alleviates stress-associated 

depletion of brain catecholamines, norepinephrine and dopamine, resulting in improved task 

performance (completion of a task related skill) and reduced fatigue (378). Further, a few 

reviews reference Russian studies suggesting rhodiola rosea enhances the effects of these 

neurotransmitters by increasing the permeability of the blood brain barrier to precursors of 

dopamine and 5-HT (242, 248).  

 Likewise, extracts of RR have been shown decrease genes involved in adipocyte 

function, SLC2A4 and adipogenic factor FGF2, and significantly increase in the expression of 

genes involved in the inhibition of adipogenesis, GATA3, WNT3A, and WNT10B (399). 

Additionally, RR extracts have been shown to down-regulate PPAR-  which is responsible for 

adipogenesis (399). These data suggest that RR may have both lipolytic and anti-adipogenetic 

properties. 

2.3.2.2 Body composition. The effects of RR supplementation on body composition are 

quite scarce in the literature. Most recently, an in vitro study using two commercial extract from 

RR (salidroside and rosavines) in primary human visceral pre-adipocytes exhibited evidence 

suggesting rosavines extract was more effective in regulating the mechanisms of adipogenesis 

while salidroside induced lipolysis and the loss of differentiating cells by apoptosis (399). 

Further, when used in combination with citrus aurantium (bitter orange), RR provoked 

significant decreases in feeding (10.5%) in rats compared to RR or citrus aurantium alone. 

Additionally, animals ingesting this combination when on a high-fat diet for 13 weeks exhibited 

significantly lower visceral fat compared to paired fed animals and  animals receiving RR or 

citrus aurantium alone (p<0.05). Further,  differences between the RR and citrus aurantium group 

and the vehicle approached significance (p=0.09) (508). Moreover, it was shown that four weeks 
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of 170mg RR supplementation in trained male athletes (25±5 years of age) resulted in 

significantly reduced serum free fatty acid concentrations levels at the immediate cessation of 

exercise (7.31±1.31mg/dl; p<0.05) and 30 minutes after maximal endurance exercise 

(7.01±1.16mg/dl; p<0.01) compared to a placebo group (12.86±1.62 mg/dl and 11.41±0.56 

mg/dl, respectively) (382), suggesting the ability to alter substrate utilization during maximal 

AT. Conversely, when recreationally active young men supplemented with RR (3mg/kg body 

mass), no change in substrate utilization was shown during a 30-minute submaximal cycling trial 

(101). Due to this limited amount of evidence, the conclusion is still unclear as to RR effects on 

body composition and warrant further investigation. 

2.3.2.3 Performance. Traditionally, RR is often used in combination for endurance 

related activity (33, 71, 103, 200, 370). De Bock et al. (33) reported that an acute dose of RR 

(200mg) significantly increased time to exhaustion (16.8±0.7 v 17.2± 0.8min) and VO2peak 

(50.9±1.8 v 52.9±2.7ml/kg/min) on a cycle ergometer, compared to placebo. Interestingly, 

chronic (four weeks) supplementation without training did not provoke any differences in 

maximal aerobic capacity from PLA. These results have been mimicked in a rat model with 

rodents receiving chronic (two and four weeks) RR supplementation of varying doses (5mg, 

25mg and 125mg). Indeed, after two weeks, 25mg and 125mg of RR supplementation elicited 

significantly increased swimming time to exhaustion 22.5% and 42.95, respectfully (p<0.05). 

Further, four weeks of 5mg, 25mg and 125mg RR supplementation increased swimming time  by 

20.9%, 49.9% and 65.0%, respectfully (p<0.05) (294). Additionally, chronic (four weeks) RR 

supplementation (170mg)  has been shown to reduce lactate and creatine kinase concentrations in 

well-trained aerobic athletes (382). Conversely, there is evidence of RR supplementation having 

no significant effects on aerobic performances (71, 103, 382). Additionally, there is evidence 

suggesting that RR has no significant effect on isometric muscle contraction strength measures in 

either the acute (60 minutes prior) or chronic (four weeks) supplementation protocols (33).This 

limited, equivocal evidence merits further research into RR supplementation in combination with 

different training protocols.  

2.3.3 Cordyceps Sinensis 
2.3.3.1 Mechanism of action. Codryceps sinensis (CS) is a fungus that has long been 

used in traditional Chinese medicine for increased longevity, medical treatment, improvement of 
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quality of life and increases in athletic performance (386, 555). The fungus consists of many 

active components including adenosine, cordycepin, cordycepic acid, d-mannitol, 

polysacchardies, vitamins and other trace elements (287). Supplementation with CS have shown 

positive effect on endurance related exercise in both animal (287) and human models (60). 

Further investigation in animal models suggest that CS supplementation upregulates AMPK-1α, 

peroxisome proliferator-activated receptor- delta (PPAR-δ) and PGC-1α, key regulators in 

glycogen break down, glycolysis, glucose uptake and fatty acid oxidation metabolic processes 

(287). Both AMPK and PGC-1α proteins contribute significantly to the enhancement of 

endurance capacity. Further, PPAR-δ has been shown in muscle-specific transgenetic (PPAR-δ) 

rodent models to increase muscular fatty acid oxidation and glucose uptake and storage and 

mitochondrial pyruvate oxidation (127). Interesting, the same model suggests that increases in 

PPAR- δ result in lower lactate levels post high intensity exercise as compared to wild-type 

controls (127). Moreover, Wang et al. (521) suggest that increases in PPAR- δ muscle expression 

can lead to increases in oxidative enzyme concentration, mitochondrial biogenesis and 

production in type I fiber contractile proteins; the three trademarks of muscle fiber type 

switching. 

 Additionally, animal model evidence suggests CS supplementation enhances expression 

of monocarboxylate transporter 1, which is a sub group protein of monocarboxylate transporters 

responsible for the transportation of molecules consisting of one carboxylate group across 

cellular membranes, such as lactate (287). Indeed, reports of increased metabolic threshold, the 

moment when hydrogen ions stimulate ventilation, in human models further support this notion 

(60). Healthy mature (50-75 years of age) adults were divided into either a CS supplementation 

(999mg) or placebo group for 12 weeks. Upon completion of the study, CS supplementation 

resulted in improvements in metabolic threshold (+10.5%; 0.83±0.06 to 0.93±0.08 l/min 

(p =0.022)), while placebo exhibited no changes in maximal incremental exercise on a cycle 

ergometer (60).   

 Evidence also suggest that CS supplementation significantly increases glucose transporter 

4 (GLUT4) expression in both sedentary and exercised CS animal groups  compared to a control 

group, but were not different from animals in the exercise only group (287). These findings 

support earlier findings exhibiting lowered basal blood glucose and insulin levels with CS 
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supplementation suggesting enhanced glucose metabolism through improved insulin sensitivity 

(553). 

 Finally, CS supplementation in both sedentary and exercising animal models increased 

vascular endothelial growth factor (VEGF) (287) which is responsible for capillary angiogenesis 

(245). Consequently, increased expression of VEGF could lead to increases in capillary density, 

allowing for greater delivery of blood and subsequently oxygen to working muscles. Though 

many of these mechanisms have yet to be supported by human models, the evidence of purported 

responses to CS supplementation in animal models would accumulate into greater work capacity 

through both manipulation of metabolic mediating proteins and delivery systems.  

2.3.3.2 Body Composition and performance. CS is another supplemental ingredient 

that has inadequate evidence supporting its efficacy in body composition measures as a primary 

supplement intervention or in combination with exercise interventions. Additionally, CS has 

primarily been studied in endurance exercise protocols (59, 71, 103, 287). Interestingly, Chen et 

al. (59) combined RC (1400 mg) and CS (600 mg) into a MIPS. Further, chronic 

supplementation was combined with high altitude training for two weeks. The authors reported 

that supplementation with the MIPS elicited increases in run time to exhaustion (5.7%) compared 

to the placebo (2.2%; p<0.05) in young male long distance track athletes (19.7±0.2 years). These 

findings support earlier results in an animal model suggesting CS supplementation extends time 

to exhaustion while swimming in rats (287). These scarce data warrant further investigation into 

the possible performance outcomes of supplementation with CS as a primary intervention and in 

combination with exercise protocols.  
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CHAPTER 3 

 

RESEARCH DESIGN & METHODOLOGY 

3.1 Experimental Approach to the Problem 
 The present study had a double-blind, randomized, placebo-controlled design. The 

supplement Shroom Tech Sport TM
  was chosen due to its main active ingredients, rhodiola rosea 

and cordyceps sinensis, which have been shown to individually attenuate fatigue in aerobic 

performance (33, 287). Despite these results, it is still unknown if these ingredients can improve 

anaerobic performance when combined with a high intensity CT protocol. For this reason, 

strength, and power performance will also be measured in conjunction with aerobic measures. 

Likewise, it is unknown whether this combination of ingredients improves overall health; 

therefore blood lipids and glucose markers will be tested. 

3.2 Subjects 
 Thirty-four college-aged men were recruited to participate in this study. Participants were 

required to have at least two years of recreational exercise three times a week. Participants were 

not be admitted to the study if they had prior history of pre-existing skeletal muscular disorders 

or anabolic steroid use. Likewise, participants were non-smokers. Participants using supplements 

(with the exception of protein or multivitamins) were required to undergo a three-week wash out 

period prior to beginning this study. Participants were required to sign the written informed 

consent document and complete a medical history questionnaire prior to beginning the study. All 

procedures were approved by the Florida State University Human Subjects Institutional Review 

Board in accordance with the Helinski Declaration.  

3.3 Procedures 

3.3.1 Laboratory Testing 

 All testing procedures, except circumference measurements, took  place at the Institute of 

Sports Science and Medicine (ISSM) at Florida State University in the morning (0500 to 1000 

hours) under fasted conditions (≥8 hours after last meal). Circumferences were measured in the 

afternoon (1400 to 1700 hours) in William Johnson building at Florida State University. Each 

test was completed three times (baseline, mid-point, and post-training) (Figure. 1). Performance 
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testing began with strength and power testing no less than 72 hours after the final training session 

in order to avoid residual soreness from the final training session.  

 

 

 

 

 

 

 

 

 

3.3.2 Questionnaires 
 Mood state was assessed via Profile of Mood State questionnaire, which is used to 

quantify tension, depression, anger vigor, fatigue and confusion based upon responses to 65 

descriptors recalled over the past seven days (337). Participants completed this questionnaire in a 

fasted state, in a quiet room, during baseline and post-training testing periods. Subject did not 

take their respective supplement until after the blood draw on this day. 

Figure 4. Timeline of Performance Test and Blood Draws  

Table 1: Weekly Testing Schedule 
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3.3.4 Blood Pressure and Heart Rate 
 Fasted, resting heart rate, systolic (SBP) and diastolic (DBP) blood pressures were 

measured in the supine position after five minutes of undisturbed supine rest in a quiet room. 

Heart rate was measured using the radial artery. Blood pressures was measured using the 

guidelines previously established (121). Briefly, the blood cuff was placed 2.5 cm above the 

elbow crease and inflated to about 30mmHg above estimated SBP. Cuff pressure was then be 

released at a consistent rate until the last Korotkoff sound is heard. Blood pressure was taken by 

the same researcher during the entirety of the study. 

3.3.5 Anthropometrics and Body Composition 
 Measurements of height (Seca, Chino, CA) were recorded without shoes and rounded to 

the closest 0.1cm. Body mass was also recorded without shoes using the scale associated with 

the Bod Pod (COSMED, Chicago, IL). Body composition was measured using the Bod Pod 

(COSMED, Chicago, IL) with subjects seated in the pod in accordance with manufacturer’s 

instructions. Circumference measurements was taken via TC2-19 three dimensional body 

scanner ([TC]2 , Cary, NC). In accordance to instructions set forth by the manufacturer, subjects 

were asked to wear light colored tight fitting underwear. Subjects did not be fasted for this 

measurement 

3.3.6 Blood Sampling and Analysis 
 Fasted venous blood samples were collected (20 ml) from an antecubital vein and then 

allowed to clot at – 4 °C for 20 minutes. Samples collected in EDTA were then be centrifuged 

(Thermo Fischer Scientific, Waltham, MA) for 15 minutes at 3,500 rpm at four degrees Celsius, 

with the resultant supernatant aliquoted into multiple microtubes and stored at -80 degrees 

Celsius until analysis. Serum was analyzed for total cholesterol (TC), triglycerides (TG), high-

density lipoprotein (HDL), low-density lipoprotein (LDL) and glucose (Cholestech LDX, 

Hayward, CA). Additionally, serum was analyzed for total (TT) and free (FT) testosterone, 

estrogen, cortisol, insulin, insulin-like growth factor-I (IGF-I), and creatine kinase (CK). All of 

which will be analyzed using commercially available ELISA kits (VWR International, Radnor, 

PA). 

3.3.7 Strength Testing 
 Subjects reported to the ISSM to complete maximal strength tests for squat and bench 

press in a fasted state, only having taken their supplement 45 minutes prior to testing. One 
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repetition maximum (1RM) was defined as the maximum amount of weight lifted one time 

through the full range of motion using proper form, according to the National Strength and 

Conditioning Association (NSCA) (20). Participants followed a warm-up specific to each lift as 

designated by the NSCA (20). Participants first completed the squat protocol, rest five minutes, 

and then completed the bench press protocol. For the squat exercise, participants performed five, 

three, two and one repetition at 50%, 70%, 90% and 100% of their most recently recorded 1RM 

(either during familiarization or previous testing period). Participants were given one, two, and 

four minutes of rest between each set, respectively. Likewise, participants completed five, three, 

two, one and one repetitions with 50%, 60%, 80%, 90% and 100% of previously recorded 1RM. 

Sets were separated by one, two, four and four minutes of rest. Upon successfully achieving 

100% of most recently recorded 1RM, participants attempted higher weight after four minutes of 

rest. This process continued until participants failed to successfully complete the movement. 

Proper execution of the squat required the participant’s hip crease will be required to be lower 

than that of the level of the knee (557). Similarly, proper execution of the bench required the 

participant’s feet to remain on the floor, while hips, shoulders and head must remain flat on the 

bench (557).  

Participants were allowed to use lifting equipment (i.e. shoes, belts, and wrist wraps); 

however, the equipment was required for training and all strength tests for the duration of the 

study. Participants were allowed to choose their personal lifting style for each of the tested lifts 

as long as each technique followed the USA Power Lifting (USAPL) rules (557). In addition, if 

the requirements for proper lift movement were not met, the lift was not accepted. Each lift was 

assessed by a certified strength and conditioning specialist (CSCS). If a maximal lift was 

unsuccessful, subjects were given the option to lower the weight or attempt the same weight 

again. Outside influences were controlled, such as music, which were prohibited during testing. 

Each participant was given equal verbal encouragement by researchers. Testing sessions 

occurred 72 to 96 hours after the final training session in order to reduce the effect of the last 

training session at mid-point and post-training testing, though supplementation continued as 

prescribed.  

For each lift, after unracking the bar, the subject were unable to begin the lift until the 

CSCS gave a verbal “start” command. Upon hearing this command, participants completed the 
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movement. The participants were then be able to rerack the bar after a verbal “rack” command. 

The lift was not accepted until the final command is provided and the required protocol was 

followed.  

3.3.8 Power Testing 
 Power output was tested in both strength movements and during a Wingate test. For 

power to be tested during the strength tests, a Tendo unit (Tendo, IRMO, SC) was attached to the 

barbell. Peak power and average power were recorded for each maximal lift. 

 Five minutes after strength testing, participants performed a Wingate test on a Velotron 

cycle ergometer (Racermate, Seattle, WA). Participants were fitted to the cycle ensuring that the 

seat height was lined up with the hip. After mounting the Velotron, the seat and handle bar 

height were further moved to ensure that the participant is comfortable and there is a 25-35 

degree bend in their knee (390). Once comfortable, participants were given 20 seconds of warm 

up followed by a six second acceleration phase, during which they attempted to pedal as fast as 

possible to attain peak cadence. Immediately following the acceleration phase, a load equivalent 

to 7.5% of the participant’s body mass was added to the fly wheel. Participants continued to 

pedal as fast as possible for the remaining 30 seconds (14). Upon completion of this test, peak, 

minimum and average power and fatigue index were recorded.  

3.3.9 Lactate Threshold and VO2max Testing 
 Participants arrived to the ISSM building in a fasted state, only having taken their 

supplement 45 minutes prior to their testing session. First, they performed three minutes of 

walking on the treadmill at three miles per hour (4.8km/hr). Upon completion, the treadmill was 

then fixed at a speed equivalent to the participants’ 10 on the Borg rate of perceived effort (RPE) 

scale for the duration for the lactate threshold and VO2max test. This speed was determined 

during the familiarization session. For the lactate threshold test, the percent grade was increased 

one percent every three minutes. After the sixth stage, inclines were increased two percent every 

three minutes for the remaining stages of the test (stages: 0%, 1%, 2%, 3%, 4%, 5%, 7%, 

9%...).After each stage, the participants were instructed to straddle the treadmill to allow for 

blood collection via finger prick. Before each finger prick, the finger was cleaned with an 

alcohol swab and gauze. Lactate levels were assessed by Lactate Plus (Nova Biomedical, 

Waltham, MA). Participants returned to running at the next stage immediately after blood was 
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collected. A fixed marker of 4.0mmol/l was used to define the onset of blood lactate 

accumulation (OBLA) as it has been shown to be a valid marker for physiological changes in 

regards to endurance performance (363). Upon reaching this value, the test was terminated and 

participants resumed walking at three miles per hour (4.8km/hr) for six minutes to allow for 

active recovery. 

 After the six minutes of active recovery, the treadmill was returned to the given speed 

and grade associated with OBLA and the timer was started to measure time to exhaustion. Every 

minute the treadmill grade was increased two percent. Likewise, heart rate, VO2, and respiratory 

exchange ratio (RER) was measured by a metabolic analysis system (PARVO, Sandy, UT). 

Additionally, participants reported their RPE in accordance to the Borg Scale of RPE. Before 

increasing the grade, the subject was asked if they thought they could run at the next stage. If so, 

the percent grade increased. If not, they were instructed to continue to run at the current stage. 

The test was completed once the participant reached volitional fatigue.  

 VO2max was determined by attainment of at least two of the following: 1) reaching a 

plateau in VO2 (<2.1ml/kg/min increase) in the final stages of the test, 2) Achieving a RER 

≥1.10, 3) reaching an heart rate within five beats per minute of predicted maximal value (220-

age), or 4) reporting an RPE of ≥18 (223). 

 Upon achieving VO2max, the time to exhaustion was recorded. Likewise, the participant 

was sat down for immediate blood collection via finger prick for blood lactate measurements. 

Again, the finger was cleaned with an alcohol swab and gauze before the finger is lanced. This 

process was repeated at five and 10 minutes.  

 After the completion of all measures, treadmill speed and gradient were used to calculate 

maximal flat ground running speed. The equation used for this conversion was S=Sr +(Sr x 

0.045) x i: where S is the calculated flat ground peak speed, Sr is the peak treadmill speed and i is 

the treadmill inclination (22).  

3.3.10 Dietary Analysis 
 Three-day food records (two weekdays and one weekend day) were completed during 

each testing period. Participants were asked to maintain a normal dietary intake during the study. 
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Dietary analysis using The Food Processor Version 10.13.1 dietary software (ESHA Research, 

Salem, OR) was performed by the same research technician for all participants.   

3.3.11 Training Protocol 
 Participants were closely monitored by either a CSCS or by individuals who had been 

thoroughly trained in training session requirements for all training sessions and four days per 

week (Table 2). Participants trained either individually or in groups of no more than three during 

designated times throughout the day at the local Gold’s Gym. Before each workout, participants 

confirmed that they had ingested their supplement 45 minutes prior to the training session. 

Further, before each workout, participants were allowed to perform their own individual warm 

ups to ensure that they are mentally and physically prepared for each training session. However, 

these warm-ups were kept constant throughout all training and testing.  

 

 

Sunday Monday Tuesday Wednesday Thursday Friday Saturday 

Rest Resistance HIIT Rest Resistance HIIT Rest* 

 

 

During each lifting session, participants completed the designated workout for the given 

day. The final set of each exercise was performed as a “plus” set, where the participant 

completed the maximal amount of repetitions to volitional fatigue (Table 3). This allowed the 

participants to increase repetition volume while working towards exhaustion. These extra 

repetitions were recorded and used for calculation of total workload (weight x reps)set1+(weight x 

reps)set2+(weight x reps)set3 for all lifts. Music was permitted during training and all participants 

received verbal encouragement by all researchers and other subjects. Each lifting session lasted 

about an hour. 

Table 2. Weekly Training Timeline 

*; Reserved for a make-up session if required.  
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During each running session, participants completed the designated workout for the given 

day (Table 4). All running intensities were based off calculated flat ground running speed found 

at the end of each VO2max test. All running time was recorded for total running time during each 

training session. Running volume was assessed as time (s) x intensity (percent of calculated flat 

ground speed at VO2max). The acceptable compliance margin was ≥ 80% for both training 

modalities during each of the six week training periods.  

 
Table 3. Resistance Training Protocol 

The first number under each week is the set number and the second number is the 

number of repetitions. The final set for each exercise is done to volitional fatigue. UH: 

underhand, RDL: Romanian deadlift. Seated Rows are performed with a neutral grip. 
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3.3.12 Supplementation Protocol 
 Following baseline testing, all participants were stratified by the sum of total weight 

lifted (squat + bench), VO2max, percent body fat, and years of training experience and randomly 

assigned to one of two groups that consumed either the supplement (SUP; Shroom Tech Sport, 

Onnit Labs, Austin, TX) or an isocaloric placebo (PL; dextrose, Onnit labs, Austin, TX) (Table 

5). Supplements were dispersed in containers of 90 pills. Participants were required to return the 

empty bottles, in order to ensure compliance. Further, subjects were asked before each training 

session if and when they ingested the pills. Both groups will follow the dosing recommendations 

daily as prescribed by the manufacturer: >68.2 kg will consume three pills, ≥68.2kg to ≤90.9kg 

will consume four pills, and >90.9kg will consume five pills. All pills were consumed 45 

minutes before each training session on an empty stomach, which is determined to be at least one 

hour after the participants’ last meal. On non-training days, subjects were instructed to consume 

their given doses at breakfast. Finally, SUP will also be consumed before mid-point and post-

training testing sessions. The acceptable compliance margin for supplementation was ≥ 80% for 

supplementation. SUP was third party tested for validity of contents and anabolic steroids by 

Chromadex, Inc (Irving, CA). 

 

 

 

Week 1 Week 2 Week 3 Week 4 Week 5 Week 6 Week 8 Week 9 Week 10 Week 11 Week 12 Week 13

1:01 2:01 2:01 2:01 2:01 2:01 2:01 2:01 2:01 2:01 2:01 2:01

@85 @85 @85 @85 @85 @85 @85 @85 @85 @85 @85 @85

1:01 2:01 2:01 2:01 2:01 2:01 2:01 2:01 2:01 2:01 2:01 2:01

@90 @90 @95 @100 @105 @110 @115 @120 @120 @120 @120 @120

Day 1

Day 2

Ratios are work: rest in minutes. Intensity is set at percent of maximal flat ground speed 

calculated from intensity eliciting VO2max. Each bout will be repeated 10 times.   

Table 4. HIIT Protocol  
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3.4 Statistical Analysis 

 Based on an prior CT study (55) and an anticipated mean difference in strength 

performance measures of 33kg, power analysis indicated 10 subjects per group would be 

required to yield a power of 0.8 with a significance level of p < 0.05. However, because of the 

multitude of variables examined in the current study, 34 participants were recruited for the 

present study to ensure that small changes could be detected in all of the measured variables, as 

well as to account for subject attrition.  

 JMP software (Cary, NC) was used for all statistical analysis. POMS records was 

compared using two-tailed t-tests. Hormone and blood profiles, performance measures, body 

composition, and circumference measures was compared across all testing time points (baseline, 

mid-point and post-testing) using two-way ANOVAs to measure main. All ANOVAs were 

confirmed with a Student’s T post-hoc analysis. Statistical significance was set at p<0.05. 

Shroom Tech Sporttm (3 capsules)  

  

Ingredients  Amount (mg) 

Cordyceps Sinensis 1500 

Green Tea Leaf 525 

Rhodiola Rosea 150 

Ashwagandha  150 

Astragalus 50 

Vitamin B-12 3 

Placebo (3 capsules) 

  Dextrose 2375 

Table 5: The Contents of Shroom Tech Sporttm and the Placebo 
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CHAPTER 4 
 

RESULTS  

4.1 Participants and Compliance 
 There were no statistical differences in baseline subject characteristics (Table 6). Of the 

34 volunteers that were recruited, two volunteers did not meet the strength requirements for 

participation. Of those that did meet the performance requirements, four dropped out due to 

reasons of time commitment before beginning the study. In addition, seven were removed from 

the study (SUP: n= 5; PLA: n=2) and excluded from data analysis due to the inability to meet 

time requirement (n=3), injuries sustained outside of the research study (n=1), hormonal 

deficiencies (hypogonadism) (n=1), and inability to complete 80% of the scheduled training 

sessions (n=2).  Additionally, one subject (SUP) did not complete the mid-point testing protocol 

due to personal scheduling conflicts. Finally, data points that were greater than three standard 

deviations from the mean were removed before analysis. 

 

 

 

 

  

 

 

 

4.2 Mood State Questionnaire 
 No group x time interactions were observed for the POMS variables. However, both 

groups reported increased fatigue from pre to post testing (SUP: Pre 2.6 ± 2.59 to Post 4.90 ± 

P-value

0.315

0.640

0.801

0.907

0.562

Total Strength (kg) 223 ± 30 218 ± 30

PLA (n=11)SUP (n=10)

Age 22.5 ± 2.721.5 ± 1.2

Training Years 5.8 ± 2.76.4 ± 2.8

VO2max (ml/kg/min) 54.3 ± 6.754.2 ± 6.1

Body Fat (%) 15.1 ± 7.115.4 ± 6.7

*There were no statistical differences between groups or 

categories SUP: supplement; PLA: placebo 

 

Table 6. Subject Characteristics* 
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3.96 v PLA:  Pre 3.63± 3.53 v post 5.45 ± 4.61; p=0.045). Additionally, there was a main group 

effect for tension (p=0.039) (SUP: pre 4.8 ± 4.23 to post 6.3 ± 6.21 v PLA:  pre 3.09 ± 2.00 v 

post 4.09 ± 3.65) with SUP demonstrating higher values.  

4.3 Anthropometrics 
 There were no group, time, or group x time interactions for body mass index, fat free 

mass, or percent fat free mass. However, despite no significant time or group x time interactions, 

there was a main group effect for body mass (p=0.040) with SUP exhibiting lower values (SUP: 

pre 76.17 ± 8.74kg v mid 77.01 ± 9.27kg v post 76.82 ± 9.03kg; PLA: pre 77.32 ± 8.36kg v mid 

77.54 ± 8.47kg v post 76.63kg). There was a significant effect of time for percent body fat 

(%BF) as both groups exhibited decreases (SUP: pre 15.5 ± 5.8% v mid 14.8 ± 7.2% v post 14.2 

± 6.6%; PLA: pre 16.2 ± 6.7% v mid 15.3 ± 6.5%  v post 14.3 ± 6.4%; p=0.0065), with no 

differences between groups. There were main group (p= 0.042) and time (p=0.016) effects for fat 

mass but no group x time interactions (SUP: pre 11.92 ± 5.28kg v mid 11.51 ± 6.22kg v post 

11.10 ± 6.96 kg; PLA:  pre 12.83 ± 6.55kg v mid 12.23 ± 6.61kg v post 11.32 ± 6.49kg).  

 Main group effects were demonstrated in shoulder, average biceps, waist, abdominal, and 

hip circumferences. PLA exhibited greater circumferences in shoulder, waist full, abdominal and 

hip measures, while SUP exhibited greater measures in the average biceps circumference. There 

were no group, time, or group x time effects for average thigh or chest circumferences (Table 7).  

 There were no statistically significant differences between groups for change in lean mass 

index (Figure 5).     

 

 

 

 

Pre Mid Post Pre Mid Post Group Time Group x Time

Shoulder (cm) 40.9 ± 1.6 40.9 ± 1.7 41.3 ± 1.9 42.0 ± 2.8 42 ± 2.9 41.4 ± 2.7 0.005 0.763 0.213

Chest (cm) 104.3  3.3 104.4 ± 2.9 108.6 ± 8.7 106.8 ± 6.6 107.6 ± 7.0 106.9 ± 7.6 0.163 0.122 0.074

Average Biceps (cm) 34.9 ± 2.0 34.7 ± 2.3 35.1 ± 2.4 34.6 ± 1.9 34.8 ± 2.2 34.2 ± 2.0 0.004 0.521 0.149

Waist Full (cm) 83.3 ± 6.4 82.8 ± 7.5 83.0 ± 6.5 85.2 ± 6.3 84.5 ± 7.7 83.3 ± 7.5 0.003 0.118 0.242

Abdomen Full (cm) 84.9 ± 5.6 85.6 ± 8.2 87.2 ± 9.3 89.9 ± 9.2 94.5 ± 9.7 89.2 ± 8.9 <0.001 0.306 0.101

Hips (cm) 101.4 ± 5.3 101.7 ± 5.0 100.8 ± 5.5 103.4 ± 4.6 104.2 ± 4.9 102.6 ± 5.6 <0.001 0.219 0.71

Average Thigh (cm) 59.7 ± 5.3 60.3 ± 5.2 60.1 ± 5.1 59.2 ± 2.4 59.8 ± 3.5 59.0 ± 3.0 0.509 0.894 0.9263

SUP PLA P-value

*: Significant different than pre in the same group; ^: significant different between groups in 

same time point. SUP: supplement; PLA: placebo 

Table 7. Body Segment Circumferences 
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4.4 Testing Performance 

4.4.1 Strength and Power Performance. 
 There were no group x time interactions for any of the strength variables. However, there 

was a main time (p<0.0001) and group (p<0.0001) effect for squat, with both groups increasing 

over time and SUP exhibiting higher values. Likewise, total strength demonstrated main effects 

for time (p<0.0001) and group (p=0.0439) with both groups increasing over time and SUP 

having greater values. Conversely, bench only demonstrated main effects for time (p<0.0001), 

with both groups increasing (Table 8). 

There were no group, time, or group x time effects for average or peak power for either 

squat or bench. 

4.4.2 VO2max. 
 There were no time, group, or group x time interactions for relative VO2max.  

Nonetheless, absolute VO2max displayed a main group effect (p=0.008) (SUP: pre 4.1 ± 

0.6L/min to mid: 4.1 ± 0.6L/min to post 4.2 ± 0.6L/min v PLA: pre 4.2 ± 0.5L/min to mid: 4.3 ± 

0.5L/min to post 4.1 ± 0.4L/min) with PLA exhibiting greater values.  

Figure 5. Lean Mass Index No statistical differences between groups 

after 12 weeks of training. SUP: supplement; PLA placebo 
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4.4.3 Wingate Power Output. 
 There were no main group or group x time interactions for any of the Wingate 

performance variables. However, max (p=0.007) and average power (p=0.004) increased over 

time regardless of group. Interestingly, fatigue index increased at midpoint (p=0.006) testing 

then returned to pre-training values. (Table 9)  

 

 

 

 

 

 

 

 

 

 

 

 

4.4.4 Performance during Training  
4.4.4.1 Bench, Squat, and Total Volume. Training volume was assessed as the total 

amount of recorded repetitions for squat and bench exercises. There were no group x time 

interactions for training volume for any of the main lifts (bench or squat) or the combination of 

the two (total).  However, training volume decreased over time for bench, squat, and total as 

Pre Mid Post Pre Mid Post Group Time Group x Time

Squat (kg) 123 ± 16* 128 ± 16*^ 132 ± 15*^† 118 ± 22 123 ± 22 128 ± 24^ <0.0001 <0.0001 0.759

Bench (kg) 100 ± 14 98 ± 12 102 ± 14† 100 ± 20 100 ± 19 105 ± 18^† 0.059 <0.0001 0.382

Total (kg) 223 ± 29* 222 ± 24 234 ± 28^† 218 ± 40 222 ± 39 232 ± 40^† 0.044 <0.0001 0.512

SUP PLA P-value

Pre Mid Post Pre Mid Post Group Time Group x Time

Max Power (W) 924 ± 192 1025 ± 221^ 959 ± 207 916 ± 211 982 ± 118 915 ± 156 0.783 0.007 0.626

Average Power (W) 686 ± 109 739 ± 126^ 714 ± 116 668 ± 121 714 ± 106 686 ± 105 0.537 0.004 0.81

Fatigue Index (W/s) 16 ± 6 20 ± 7^ 17 ± 6* 17 ± 7 18 ± 5 15 ± 4* 0.542 0.006 0.078

SUP PLA P-value

Table 9. Wingate Power Performance 

^: Significantly different than pre *: Significant different than mid; SUP: supplement; PLA: 

placebo 

*: Significantly different than PLA at same time point, ^: Significantly different than pre 

†: Significant different than mid 

Table 8. Strength Performance 
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intensity increased (p<0.001). Interestingly, there was a main group effect in bench (p<0.001) 

and total (p=0.019) training volumes with SUP demonstrating greater total volume. After 

consolidating the lifting intensities into four categories (“low”: 65-70%, “moderate”: 72.5-

77.5%, “high”: 80-85%, and “maximal”:87.5-92.5 significant differences in average repetitions 

completed at “moderate” intensity for bench (SUP: 29 ± 1reps v PLA: 25 ± 3reps; p=0.02) 

(Figure 6) and total (SUP: 62 ± 4reps v PLA: 57 ± 4; p=0.04) (Figure 7) training volumes were 

noted.  There were no significant differences between groups in any squat training volumes.  

4.4.4.2 Workload. Workload (total weight moved x total repetitions completed) was 

analyzed for each individual resistance training day and the combination thereof (total). There 

was a main group effect for day one (p<0.001), day two (p=0.002), and total (p=0.002) 

workloads, with SUP performing greater workloads than PLA. Main time effects also exist for 

squat, bench, and total (p<0.001, p<0.001, and p=0.002, respectfully), with increases in workload 

to week five and subsequent decreases in workload. Depsite these findings, there were no group 

x time effects for any of the any of the workloads analyzed. Upon further analysis, two tailed 

Ttest revealed significant differences in week five day two (SUP: 279,342 ± 26,689kg v PLA: 

251,866 ± 23,985kg; p=0.04) and total (SUP: 464,197 ± 44,325kg v PLA: 412,337 ± 38,988kg; 

p=0.02) workloads (Figure 8). Additionally, week five day one exhibited a trend towards a 

difference in workloads (SUP: 177,864 ± 22,383kg v PLA: 160,470 ± 18,229kg; p=0.07). There 

were no other significant differences between the two groups in daily or total workloads for the 

remaining weeks.   

4.4.4.3 Running Volume. Weekly running volume was first compared across each week 

by day (day one: constant 80% of calculated max flat ground running speed; day two: progressed 

“fast” running day)  and the combination thereof (total). There were main time effects for day 

one (p<0.001), day two (p<0.001), and total running volume (p<0.001). There was also a main 

group effect for the progressed running day (p=0.003) across the entirty of the training program, 

with SUP displaying greating running volumes compared to PLA. Despite these findings, there 

were no group x time interactions for either day or total running volume .  

Due to the repetition of some intensities through the training cycle, running volume was 

further analyzed as average running time at each intensity (total running time at a given intensity/ 

number days programed to that intensity). Again, there were no statistically significant group x 
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time interactions. In spite of this finding, further analysis revealed a main group effect (p=0.03), 

with SUP performing a greater amount of running volume (SUP: 891 ± 41sec v PLA: 863 ± 

36sec). There was also a main time effect (p<0.001) as training volume decreased for both 

groups with increases in intensity. Interestingly, when  average running times were compared to 

those of 90% max calculated flat ground speed, post hoc anaylisis revealed a significant 

differences in running volume starting at 100% max  for PLA. Conversely, this difference was 

first observed at 105% for SUP (Figure 9).   

Upon further analysis, two tailed Ttest revealed a significant difference at 100% max 

(SUP: -41 ± 83sec v PLA: -147 ± 115sec; p=0.028) in the changes in total running volume 

relative to those at 90% of calculated max flat ground running speed (Figure 10). 

 

 

 

 

 

Figure 6. Average Training Volume for Bench*: Significant difference between group 

(p<0.05); (“low”: 65-70%, “moderate”: 72.5-77.5%, “high”: 80-85%, and 

“maximal”:87.5-92.5%); SUP: supplement; PLA: placebo 

* 
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Figure 8. Total Training Workload *: Significant difference (p<0.05) 

between groups at given intensities. SUP: supplement; PLA: placebo 

 

Figure 7. Average Training Volume for Bench and Squat. *: Significant 

difference between group (p<0.05); “low”: 65-70%, “moderate”: 72.5-77.5%, 

“high”: 80-85%, and “maximal”:87.5-92.5%; SUP: supplement; PLA: placebo 

* 
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Figure 9. Total “Fast” Day Running Volume *: Significant difference 

(p<0.05) from 90% max flat ground speed (PLA). **: Significant difference 

from 90% max flat ground speed (SUP). SUP: supplement; PLA: placebo 

Figure 10. Changes in Average Running Time Relative to 90% * 

Significant difference (p<0.05) between groups at given intensities. SUP: 

supplement; PLA: placebo 
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4.5 Blood Profiles and Dietary Intake 

4.5.1 Hormones Profiles and Blood Markers 
 Of the blood variables measured, only dihydrotestosterone (DHT) demonstrated a main 

group effect (p<0.001), with PLA exhibiting higher concentraions compared to SUP. Cortisol 

was the only variable that showed a main time effect (p= 0.018) with both groups decreasing 

over time. Post hoc analysis revealed a significant difference between pre and post cortisol 

concentrations in the SUP (pre: 19.7 ± 5.2µg/dl v post: 16.4 ± 4.5µg/dl; p= 0.01) but not PLA 

(pre: 17.6 ± 4.6µg/dl v post: 16.6 ± 4.3µg/dl; p=0.34). Despite these findings, there were no 

statistically significant group x time interactions among any of the hormones and damage makers 

(Table 10).  

 

 

    

 

 

 

 

4.5.2 Cardiovascular and Cardiometabolic Profiles 
 Main group effects were found for heart rate (p<0.001), systolic blood pressure (p=0.039) 

and HDL levels (p<0.001) with SUP exhibiting greater values that PLA for heart rate and 

systolic blood pressure and lower values for HDL. Further, there were main time effects for 

systolic blood pressure, total cholesterol, LDL, and HDL, with decreases in total cholesterol 

(SUP: Pre: 152 ± 22mg/dL to Mid: 142 ± 23mg/dl to Post: 147 ± 23mg/dl v PLA: Pre: 154 ± 

Pre Mid Post Pre Mid Post Group Time Group x Time

Testosterone (ng/mL) 5.9 ± 1.1 5.2 ± 1.1 5.0 ±  1.8 5.8 ± 1.2 5.7 ± 1.6 5.7 ±  1.4 0.081 0.113 0.281

Cortisol (ug/dL) 19.7 ± 5.2 18.7 ± 4.2 16.4 ± 4.5* 17.6 ± 4.6 17.9 ± 6.1 16.6 ±  4.3 0.16 0.018 0.342

SHBG (nmol/L) 27.0 ± 6.7 29.0 ± 11.8 28.5 ±  7.7 29.0 ± 14.2 30.6 ± 17.3 29.2 ±  14.2 0.299 0.47 0.907

Free Testosterone (pg/mL) 13.9 ± 4.9 14.3 ± 5.8 13.6 ±  4.7 14.0 ± 4.4 14.2 ± 3.9 15.5 ±  4.7 0.9 0.993 0.211

DHT (pg/mL) 917.3 ± 424 718.4 ±  210.1^ 748.3 ± 150.4*^ 1062.9 ± 421.3 939.9 ± 390.8 946.3 ± 748.3 <0.001 0.111 0.373

DHEA (pg/mL) 11.6 ± 4.1 12.2 ± 6.4 11.2 ±  4.8 11.6 ± 5.7 14.6 ± 6.6 10.1 ± 3.4 0.753 0.085 0.293

Insulin (pmol/L) 26.3 ± 6.6 28.9 ±  9.4 27.6 ± 9.1 28.9 ± 11.1 32.4 ±  12.6 27.6 ± 14.1 0.443 0.254 0.965

IGF-I (ng/mL) 87.3 ± 22.8 92.4 ±  15.5^ 94.1 ± 27.1^ 83.9 ± 19.1 82.6 ±  21.4 80.3 ± 20.8 0.004 0.719 0.376

CK (µ/L) 14.4 ± 16.6 11.7 ±  11.2 10.7 ± 6.9 16.4 ± 21.3 8.7 ±  6.5 9.3 ± 7.3 0.859 0.498 0.655

SUP PLA P-value

Table 10.  Hormone and Damage Markers 

*: Significantly different than mid; ^: Significantly different than PLA at same time point. 

SUP: supplement; PLA: placebo; SHBG: Sex hormone binding globulin; DHT: 

Dihydrotestosterone; DHEA: Dehydroepiandrosterone IGF-I: Insulin-like growth factor-I; 

CK: Creatine Kinase 
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29mg/dl to Mid: 142 ± 22mg/dl to Post: 143 ± 22mg/dl; p=0.009), LDL (SUP: Pre: 83 ± 

26mg/dL to Mid: 74 ± 14mg/dl to Post: 80 ± 26mg/dl v PLA: Pre: 82 ± 24mg/dl to Mid: 70 ± 

13mg/dl to Post: 76 ± 18mg/dl; p=0.047) and HDL (SUP: Pre: 48 ± 11mg/dL to Mid: 45 ± 

10mg/dl to Post: 44 ± 7mg/dl v PLA: Pre: 60 ± 12mg/dl to Mid: 55 ± 12mg/dl to Post: 54 ± 

10mg/dl; p=0.013) and increases in systolic blood pressure (SUP: Pre: 128 ± 10BPM to Mid: 132 

± 16 BPM to Post: 138 ± 16 v PLA: Pre: 120 ± 10BPM to Mid: 126 ± 12BPM to Post: 132 ± 

16BPM; p=0.025). Despite these findings, there were no group x time interactions for any of the 

variables (Table 11).  

 

 

 

 

 

 

 

4.6 Dietary Intake 
 There were no statisistcally significant group x time interactions for any of the variables 

assessed through dietary food logs. Despite this finding, there were main time effects for total 

kcals (p=0.001), total protein (p=0.015), and total carbohydrate (p=0.002) ingested, with 

increases in total kcals and total carbohydrate. Interestingly, total protein seemed to increase 

from pre-training to midpoint then return to baseline levels. Further, a main group effect was 

found in caffeine ingestion (0.014), with SUP ingesting more than the PLA (Table 12).  

Pre Mid Post Pre Mid Post Group Time Group x Time

Heart Rate (BPM) 57 ± 14† 55 ± 11† 53 ± 7 49 ± 8 50 ± 9 49 ± 10 <0.001 0.54 0.361

Systolic (mmHg) 128 ± 10 132 ± 16* 138 ± 16*† 120 ± 10 126 ± 12 132 ± 16* 0.039 0.025 0.999

Diastolic (mmHG) 70 ± 10 68 ± 14 70 ± 10 70 ± 12 74 ± 12 76 ± 14 0.14 0.808 0.369

Total Cholesterol  (mg/dL) 152 ± 22 142 ± 23* 147 ± 23 154 ± 29 142 ± 22* 143 ± 22* 0.863 0.009 0.706

LDL (mg/dL) 83 ± 26 74 ± 17 80 ± 26 82 ± 24 70 ± 13* 76 ± 18* 0.272 0.047 0.843

HDL (mg/dL) 48 ± 11† 45 ± 10† 44 ± 7† 60 ± 12 55 ± 12* 54 ± 10* <0.001 0.013 0.505

Glucose (mg/dL) 86 ± 6 88 ± 7 86 ± 6 86 ± 7 88 ± 3 87 ± 9 0.964 0.452 0.977

Triglycerides (mg/dL) 98 ± 45 85 ± 38 96 ± 46 82 ± 22 86 ± 23 88 ± 36 0.156 0.991 0.75

SUP PLA P-value

Table 11.  Cardiovascular and Cardiometabolic Markers 

* Significantly different than pre; † Significantly different than PLA at same time point SUP: 

supplement; PLA: placebo; LDL: low density lipids; HDL: high density lipids 
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Pre Mid Post Pre Mid Post Group Time Group x Time

Total Kcals 2643 ± 713 3285 ± 934 ^ 2955 ± 785*^ 2532 ± 795 2921 ± 838 2965 ± 783 0.198 0.001 0.377

Total Protein (g) 147 ± 45 180 ± 59*^ 134 ± 61 124 ± 57 161 ± 56 144 ± 55 0.21 0.015 0.399

% Protein 22.5 ± 5.3 22.2 ± 5.6 19.2 ± 9.9 20.3 ± 7.3 23.5 ± 9 20.7 ± 9 0.836 0.283 0.478

Total Carbohydrate (g) 272 ± 66 346 ± 116^ 315 ± 129^ 262 ± 120 321.4 ± 130^ 331 ± 154^ 0.861 0.002 0.569

% Carbohydrate 41.9 ± 6.2 41.9 ± 7.2 41.7 ± 8.3 41 ± 10.5 43.4 ± 8.2 43.4 ± 12 0.246 0.44 0.927

Fat (g) 99± 33 126 ± 53 112 ± 31 100 ± 44 107 ± 29 115 ± 34 0.476 0.136 0.264

% Fat 33.4 ± 5.9 339 ± 6 34 ± 4 34.3 ± 7.7 33.4 ± 4.8 35 ± 7 0.699 0.811 0.752

Alcohol (g) 12 ± 19 10 ± 15 10 ± 19 9 ± 13 10 ± 23 1 ± 2 0.426 0.834 0.601

Caffeine (mg) 89 ± 105* 72 ± 141* 67 ± 51 39 ± 39 42 ± 66 17 ± 23 0.014 0.573 0.912

SUP PLA P-value

Table 12.  Dietary Intake 

*: Significantly different than PLA at same time point; ^: Significantly different than Pre;                 

SUP: supplement; PLA: placebo 
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CHAPTER 5 
 

DISCUSSION 

The primary finding of the present study was that SUP demonstrated greater bench and 

total training volumes at “moderate” intensities (72.5 to 77.5% 1RM) and exhibited smaller 

decrements in running volumes at 100% max speed when compared to those achieved at baseline 

(90%). Despite these findings, there were no significant differences between groups in total 

resistance training (65 to 92.5% 1RM) or total running (90 to120%) volumes or workload over 

the entirety of the 12-week training program. Moreover, SUP and PLA demonstrated significant 

increases in strength and decreases in percent body fat, after 12 weeks of CT. Despite these 

findings, there were no statistically significant differences between the two groups in any of the 

strength, power, or aerobic performance tests, body composition, or cardiometabolic markers 

after 12 weeks of training and supplementation.  

5.1 Strength and Power Outcome Performance 
 Both groups exhibited increases in all strength performances and max and average power 

output, without differences between the two groups. These findings support earlier data 

suggesting that resistance training in combination with HIIT (55, 432, 471) and separation of at 

least 24 hours between resistance and aerobic training sessions  (26, 55, 153, 315) do not hinder 

increases in strength. Indeed, the present study found similar results with significant increases in 

all strength performance variables with a protocol that consisted of HIIT occurring 24 hours after 

RT. The reported similarities in strength performance between SUP and PLA supports literature 

questioning the efficacy of multi-ingredient performance supplements (MIPS) on strength 

performance (377, 537). Indeed, Ormsbee et al. (377) reported no differences in strength 

between MIPS (whey protein, casein protein, branch chain amino acids, creatine, beta-alanine, 

and caffeine) and PLA, albeit with different primary active ingredients compared to the present 

study, after six weeks of resistance training. Conversely, there have been multiple studies that 

demonstrate the positive effects of MIPS supplementation on strength (282, 283, 457, 481) and 

power (377) performance. Though the literature is more supportive of MIPS efficacy, direct 

comparison of these interventions is difficult as the type and dosage of ingredients often varies 

from product to product in each study. Despite this limitation, comparison to work conducted 
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with individual ingredients has demonstrated no differences between groups, similar to the 

results in strength performance to the current study. Indeed, De Bock et al. (33) reported 

supplementation with 200mg of rhodiola rosea (RR) extract did not elicit increases in max 

isometric knee extension or maximal limb velocity in acute (60 minutes prior to exercise) 

supplementation in men and women. Moreover, the same study demonstrated four weeks of 

continual supplementation with 200mg of RR without exercise intervention also resulted in no 

change to performance. Notably, research concerning cordyceps sinensis (CS) in combination 

with resistance training is scarce. Nonetheless, Hsu et al. (199) demonstrated no significant 

differences in bench press, leg press, or seated row strength between young men who 

supplemented with CS (2.4g daily for eight weeks) and those who supplemented with PLA in 

combination with eight weeks of resistance training. Again, these data reflect the findings of the 

current study. Nevertheless, the wide variety of supplementation and RT protocols warrant 

further investigation before true conclusions about the effects of cordyceps on strength 

performance can be made. 

5.2 VO2max Outcome Performance 
  There were no significant changes from baseline testing in either relative or absolute 

VO2max among or between groups. This lack in change may be attributed to the subjects’ 

baseline aerobic characteristics. Notably, many of the CT studies using HIIT as the mode of 

aerobic training that demonstrated increases in VO2max exhibited lower baseline values (~ 

40ml/kg/min) (55, 432) than those of the present study (~54ml/kg/min). Previous research 

suggests training status mediates protein expression and, thus, is linked to performance responses 

to different modes of exercise. Indeed, Coffey et al. (68) demonstrated molecular responses to 

aerobic training in experienced strength-trained individuals but not in those who were 

aerobically-trained. Notably, subjects in the current study experienced an average of 30 minutes 

of HIIT per week for 12 weeks with no change in max aerobic performance. In contrast, subjects 

completing a similar model of concurrent training consisting of HIIT (five rounds of three 

minute of cycling at 90-100% VO2max) and RT  (432) demonstrated increases in VO2max, albeit 

from lower baseline VO2max levels, after completing 45 minutes of HIIT per week for 22 weeks. 

Further, 10 weeks of continuous running for an average of 110 minutes per week has been shown 

to significantly increase max aerobic capacity (pre:50.7±5.8ml/kg/min to post: 

57.1±5.0ml/kg/min; p<0.05) in healthy men with a VO2max of ≥50ml/kg/min. Although not 
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significant, the same study demonstrated that concurrent training, consisting of the same aerobic 

program and resistance training, elicited similar increases (pre: 52.3±4.4ml/kg/min to post: 

55.8±5.2ml/kg/min; p>0.05) in healthy men (92). Together, it could be suggested that the 

elevated max aerobic ability in the current subjects may require a greater training stimulus to 

elicit increases in VO2max. Additionally, the present results support earlier reports 

demonstrating no changes in VO2max when utilizing chronic supplementation of combinations 

of CS and RR supplementation in young competitive adult cyclist without an exercise 

intervention and no mention of alterations to exercise habits (71, 103). Interestingly, 

supplementation with rhodiola crenulata (RC) did not further enhance VO2max when combined 

with programmed high altitude aerobic training  in  young men (59). Of note, RC is a plant of the 

same genus as RR. Further, both roots have been shown to be made of the same phytochemical 

and pharmacological characteristics (specifically rosavine and salidroside) with the exception of 

rosarine, which only seems to be a component of RR (1). Interestingly, Chen et al. (59) 

demonstrated that two weeks of chronic supplementation with CS (600mg) and RC (1400mg) 

per day in combination with a structured high altitude aerobic training consisting of multiple 

training modalities (mountain running, fartlek runs, resistance training, HIIT, and speed training) 

did not elicit changes in sea level VO2max in either group in young long-distance track and field 

athletes. Similar results were found in a trained cyclists chronically supplementing with  CS for 

five weeks without a programmed exercise intervention (381). Further, 12 weeks of chronic 

supplementation of only CS and without a programmed exercise intervention did not elicit 

changes in VO2peak in healthy elderly men (60). Together, these findings would suggest that the 

active ingredients, CS and RR, do not have any effect on maximal aerobic capacity. Conversely, 

De Bock and colleagues (33) demonstrated that acute supplementation of  RR (200mg) elicited 

significant differences in VO2peak compared to PLA (52.9 ± 2.7 ml/kg/min v 50.9 ± 1.8 

ml/kg/min; p<0.05, respectively). Of note, there were no changes in VO2peak in groups after 

four weeks of supplementation with either a RR or PLA in the same study.  Though the results of 

the current literature seem equivocal, the current study and the majority of literature suggest that 

while acute supplementation may elicit increases in VO2max, chronic supplementation with CS 

and RR, individually or in combination, does not enhance VO2max. 
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5.3 Training Performance 
In the present study, there were no statistically significant differences between groups in 

total resistance training volume or workload over the entirety of the 12-week training program 

consisting of four total training days, two allocated to RT and two to HIIT. Despite these 

findings, there were portions of the training program in which SUP outperformed PLA. Notably, 

during RT, SUP performed more repetitions than PLA at prescribed weight considered to be 

“moderate” (72.5-77.5% 1RM) intensities in both bench and total volume (the combination of 

bench and squat). These findings are further supported within the current study with SUP 

performing greater workloads on day two and in total (the combination of day one and two) than 

PLA during week five, which consisted of high volumes of moderate intensities for all lifts 

programmed. Notably, although not significant, SUP trended to have greater a workload on day 

one during the same week. Moreover, during HIIT, supplementation with SUP attenuated 

decrements in “fast day” running volume relative to 90% max. Indeed, PLA displayed significant 

differences from 90% max at 100% max while SUP did not exhibit these differences until 105% 

max. These findings were supported by significant differences between groups at 100% max in 

change in running volume relative to baseline (90%).  

When taken together, these reported differences in RT and HIIT volumes maybe the 

result of the active ingredients RR and CS in SUP. One plausible mechanism is CS’s reported 

ability to aid in the buffering of hydrogen ions that associate with lactate to form lactic acid 

through increased MCT1 expression (287). Markedly, RT with high volumes of moderate 

intensity  (551) and running at max intensities (467) have been shown to elicit elevated blood 

lactate levels. Further, it is well documented that as lactate accumulates, associated hydrogen 

ions, which lower intracellular and blood pH, negatively affect exercise performance (85, 117). 

While the true relationship between lactate and cellular acidosis still unclear (165), there is 

evidence demonstrating MCT1’s ability to transport lactic acid (lactate + hydrogen ion) across 

the cellular membrane (414). Though the present findings cannot directly support MCT1 

upregulation with SUP use, when taken in consideration with previous research demonstrating 

increases in metabolic threshold with chronic supplementation (≥6 weeks) in elderly populations 

(60, 547) and time to exhaustion in animal swimming (258, 287), upregulation of MCT1 

expression due to CS supplementation seems to be one plausible mechanism of the extended 

running times.  
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 Notably, RR has also been shown to extend time to exhaustion in animal swimming (294, 

388) and human running models (33). De Bock et al. (33) demonstrated significant increases in 

running time (RR: 17.2 ± 0.8min v PLA: 16.8 ± 0.7min; p<0.05) after one acute supplementation 

(200mg) with RR 60 minutes prior to VO2max testing on a motorized treadmill. Additionally, 

RR may influence perception of exercise intensity. Two studies (101, 370) have demonstrated 

that acute supplementation of RR (3mg/kg (~200mg)) elicited lowered rating of perceived 

exertion (RPE) during continuous exercise on a bicycle ergometer. Indeed, Duncan et al. (101) 

demonstrated decreases in RPE at the conclusion of a 30 minute cycling trial at 70% VO2max in 

young men. Similarly, Noreen et al. (370) demonstrated decreased RPE in a six-mile cycling 

time trial in young active women. Further, the same study demonstrated that RR elicited faster 

trial times (RR: 25.4 ± 2.7min v PLA: 25.8 ± 3.0min; p=0.037). Conversely, Walker et al. (517) 

demonstrated that supplementation with 1500mg of RR over three days did not elicit significant 

changes in duration of exhaustive wrist flexion exercise in trained men (RR: 10.60 ± 0.36 

minutes  v PLA: 10.48 ± 0.68 minutes, p<0.05) or RPE. Originally, De Bock et al. (33) proposed 

that the RR’s effects on endurance exercise lie in its high concentrations of chemical phenolic 

compounds phenylpropanoids and phenthylethane derivatives, which have been shown to be 

structurally similar to catecholamines. Specifically, RR contains monoterpene glucoside, which 

has been shown to inhibit monoamine oxidases A and B (91), which have been shown to 

deactivate neurotransmitters (438). Further, these compounds have been shown to increase 

opioid receptors  and peptides such as -endorphins in animal models (304, 305). More recently, 

Chen et al. (59) suggested that two weeks of chronic supplementation with RC (1400mg) and CS 

(600mg) may be acting through alterations in autonomic nervous system. The authors go credit 

the supplementation of  RC for the attenuation of in reduction of parasympathetic nervous 

system activity, compared to PLA (RC: - 41.30± 4.37 % v PLA: -51.76– 3.97%; p<0.05) after 

two weeks of altitude training. These findings are further supported by work by De Bock et al. 

(33) and Noreen et al. (370) that demonstrated lower heart rates with the supplementation of RR 

during the first six minutes of exhaustive running exercise (33) and during warm-up before a six 

mile running time trial (370) in active young men and women. Notably, there is a very close 

linear relationship between heart rate and RPE (38). It is plausible to suggest that if 

supplementation with RR can attenuate increases in heart rate, even during the first minutes of 

exercise, it would result lower RPE. Though training RPE was not measured in the current study, 
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lowered perception of exercise intensity may account for the attenuated decrements in running 

volume at 100%.  

 Finally, when taken in combination, CS and RR have demonstrated conflicting results in 

exhaustive exercise performance (59, 71, 103). Chen et al. (59) demonstrated significant 

increases in time to exhaustion during sea-level Bruce VO2max testing protocol in young track 

athletes supplementing with CS (600mg) and RC (1400mg) per day in combination with two 

weeks of  high altitude aerobic training (863.44 ± 40.34sec to  908.89 ± 34.74sec; p<0.05) while 

the PLA did not (852.22 ± 39.7sec to 870.67 ± 40.05sec). Conversely, Earnest et al. (103) 

demonstrated that four days of preloading with CS (2000mg) and RR (600mg) followed by an 

11-day maintenance phase (CS: 1000mg; RR 300mg) did not elicit any changes in time in 

cycling to exhaustion between groups or compared to baseline testing (treatment 38.47 ± 1.7min; 

PLA 36.95 ±1.8min; p>0.05). Likewise, Colson et al. (71) found similar results in trained cyclist 

(18 to 50 years old) reporting no significant differences between the two groups after 

supplementing with the same blend and dose of ingredients. Interestingly, of the three studies, 

Chen et al. (59) is the only study that controlled for physical activity by having a structured 

exercise program. The other studies instructed their participants to maintain exercise training and 

dietary patterns (103) or to simply refrain from strenuous activity 24 hours prior to the cycle 

ergometer testing (71). These methodological differences could be confounding factors that may 

lead to discontinuity in the literature.  

 Interestingly, these methodological differences in supplement ingestion may call attention 

to supplementation protocol of the active ingredients in SUP. Indeed, the aforementioned studies 

demonstrated supplementation within an hour prior to the testing protocol demonstrated 

significant impacts on aerobic performance (33, 370), heart rate (33, 370), and RPE (101, 370), 

while those that made mention of a chronic “loading phase” but no mention of supplementation 

prior to exercise or testing did not report any significant changes in performance (71, 103, 517). 

Additionally, supplementation varied between each of the studies as subjects were instructed to 

ingest their supplement during the morning hours (71), made no mention of specific chronic 

supplementation instructions (103, 517) or instructed subjects to ingest their supplement the 

morning of testing with no mention of chronological proximity to testing (517). These 

differences must be considered when interpreting the results. The present study was highly 
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regulated in every aspect, strictly controlling for supplementation and supervised exercise 

training. Subjects in the current study ingested the supplement daily, 45 minutes prior to exercise 

and testing sessions and during breakfast on non-training days which elicited increases in relative 

muscular endurance at “moderate” intensities during RT and attenuated decrements in running 

volume when running at max intensities. Albeit small, these data strengthen support for pre-

exercise consumption of the active ingredients found in SUP. Notably, supplementation occurred 

daily over the course of 12 week training program in the current study, which may lend support 

to “loading” protocols of the active ingredients. However, the reported significant differences 

between supplementation with active ingredients and PLA in protocols with supplementation 

occurring within 60 minutes of exercise (33, 101, 370), combined with specific time points in 

training in the current study at which SUP out performed PLA without differences in aerobic, 

strength or power test performances may advocate that the active ingredients of SUP do not 

“load” like beta-alanine (170) and creatine (202), which would suggest that changes in 

performance may be strictly based in acute responses.   

5.4 Body Composition 
 Regardless of group, subjects in the present study had a significant decrease in percent 

body fat with no difference between SUP and PLA. This suggests that CT consisting of RT and 

HIIT reduces fat mass and improves body composition. Despite lack of evidence of CT’s effects 

on body fat, many of these studies report increases in lean (55) and muscle mass (432, 471) and 

leg circumferences (432), which were not demonstrated in the current study. These differences 

may be attributed to the differences in training programs. For example, De Souza et al. (471) had 

subjects complete eight weeks of hypertrophy-focused strength training that emphasized high 

training volumes (6-12RM) and lean mass increased as anticipated. Conversely, the present study 

consisted of a progressive resistance training protocol with a focus in strength performance with 

a decrease in workload over the last six weeks; again, no change was observed in lean mass. 

Indeed, a recent review by Schoenfeld et al. (447) demonstrated a dose-relationship between 

training volume and increases in muscle hypertrophy, suggesting that the greater training volume 

in De Souza et al. (471) would elicit greater increases in lean mass than the present study. 

Despite these findings, our CT model still elicited significant decreases in percent body fat and 

fat mass without significant differences between the two groups. These findings support earlier 

work by De Bock et al. (33) who demonstrated no significant changes in body mass after four 
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weeks of RR supplementation (200mg) without exercise intervention. Further, despite 

differences at specific time points in RT (“moderate” intensities) and HIIT (100% max), there 

were no significant differences among groups for total training workloads or total running 

volume across the entirety of the 12-week study. This could further contribute to the lack of 

changes in body composition between SUP and PLA. Indeed, when comparing creatine 

supplementation to PLA in division 1A football players, Kreider et al. (282) demonstrated 

significant increases in total working volume for bench, squat, and power clean exercises in 

those that supplemented with creatine that coincided with significantly different increases in lean 

mass (Creatine: 71.5 ± 12 to 73.9 ± 11.9kg v PLA: 69.8 ± 8.7 to 71.2 ± 9.9kg, p=0.04). These 

findings were not replicated in the current study, albeit creatine was not an active ingredient in 

SUP. Additionally, despite differences at 100% max, when observed over the entirety of the 12-

week training protocol, no differences were observed in total running volume. This may also 

factor into the lack of change in body fat between groups as it has been shown that greater 

running duration at comparable intensity elicits increased energy expenditure (453). Further, no 

significant differences were observed between groups in macro nutrient or caloric intake. It is 

plausible that alterations in energy expenditure or energy intake would lead to alterations in fat 

or lean mass, although not necessarily. Thus, the lack of differences in changes in body fat and 

percent body fat may be due to no differences in running volumes or macronutrient selection and 

caloric intake.  

5.5 Resting Hormone Responses 
 The resting hormonal responses to the training reflect those of the literature (4, 27, 52). 

Indeed, Bell et al. (27) reported on changes in testosterone, sex hormone binding globulin and 

growth hormone in both young men and women after 12 weeks of concurrent training consisting 

of three continuous exercise sessions and three progressive RT sessions. Interestingly, Bell et al. 

(27) reported that concurrent training did not elicit changes in urinary cortisol levels in young 

men, despite changes in young females (45.32 ± 14.32 nmol/24hours to 38.75 ± 

6.79nmol/24hours to 83.13 ± 15.35 nmol/24hours; p<0.05). The lack of a time effect in the 

present study for free testosterone, testosterone, SHBG, DHT, DHEA, insulin, or IGF-I indicates 

that our concurrent training model did not have any effects on these resting concentrations. 

Despite different aerobic training modalities, the current study supports the current literature 

suggesting that CT does not affect resting hormonal concentrations. Interestingly, post hoc 
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analysis revealed a significant differences in final resting cortisol levels compared to baseline 

(pre: 19.7 ± 5.2μg/dl to mid: 18.7 ± 4.2μg/dl to post: 16.4 ± 4.5μg/dl; p<0.05). This may be due 

to another active ingredient in SUP, ashwagandha. Indeed, chronic supplementation with 

ashwagandha (500mg/day and 1000mg/day) elicited significant decreases in serum cortisol 

concentrations (-14.5%, -24.2%, and 30.5%, respectively) in men and women (18 to 60 years 

old) demonstrating a chronically stressful lifestyle with a mHAM-A score of 24 to 42 (17). 

Together, these results support possible benefits to ashwagandha supplementation on decreasing 

resting cortisol concentrations, which may blunt the effects of catabolic environments and aid in 

recovery techniques.  

5.6 Resting Health Markers 
 Neither SUP nor PLA influenced triglyceride or glucose concentrations. While studies 

concerning RR and CS effects on blood lipid profiles are scarce, these results reflect previous 

work conducted with herbal based MIPS (283) and more traditional MIPS (445, 456). Indeed, 

the present study showed decreases in total cholesterol, LDL, and HDL (though remaining 

among healthy recommendations). Interestingly, a recent meta-analysis surveyed eight studies 

regarding  CT’s effects on blood profiles revealing improvements in LDL, total cholesterol, 

triglyceride, and HDL concentrations in men and women (487). Of those studies examined, one 

(507) demonstrated that 12 weeks of HIIT (one minute 80-95% max heart rate) combined with  

active recovery (four minutes 75-85% max heart rate) and upper-body resistance training did not 

elicit significant changes in triglycerides, total cholesterol, HDL and LDL in healthy elderly 

men. Interestingly, these findings do not support those of the current study or the rest of 

literature. Overall, the results of the current study and the majority of literature suggest that 

concurrent training may elicit positive outcomes on blood lipid profiles.  

Finally, there was an increase in systolic blood pressure over the 12-week training 

protocol, with no significant differences between SUP (138 ± 16mmHg) and PLA (132 ± 

16mmHg). Interestingly, research concerning concurrent training’s effects on resting blood 

pressure is limited, especially in CT models utilizing high intensity running and progressive 

resistance training. Nevertheless, Sillanpää et al. (462) demonstrated that 21 weeks of CT (two 

days of progressed continuous cycling  and two days of resistance training) did not exert any 

effects on systolic blood pressure in middle-aged and older women. As independent factors, 
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resistance training (78) and high intensity interval training (247) have been shown to reduce 

systolic blood pressure. These findings were not reflected in the current study. Regardless of 

these contradictions, it should be noted that midpoint and post-training resting blood pressure 

was attained during two high stress periods in the academic calendar (mid-terms and finals). 

Notably, mental stress has been shown to increase systolic blood pressure (185) which may stem 

from a state of excess sympathoadrenal activation (491). Ultimately, these findings suggest that 

the tested supplement does not affect disease factors differently than concurrent training alone. 

5.7 Profile of Mood States 
  In regards to psychological profiles, there were no differences between the two groups. 

However, there was an increase in ratings of fatigue in both groups. This change may be due to 

the high intensity of which the study consisted. These findings support previous work showing 

that high intensity exercise significantly increases POMS scores of fatigue (166, 476). Notably 

when comparing the dietary intake on fat oxidation in competitive endurance athletes, Stepto et 

al. (476) demonstrated increased POMS scores after eight rounds of five minutes of cycling at 86 

± 2% VO2peak in both high carbohydrate (42 ± 21) and high fat (35 ± 20) groups immediately 

after high intensity bouts. Notably, the increase in fatigue scores for both groups would suggest 

that HIIT elicits elevated levels of fatigue. Thus, it is reasonable to suggest that the 12-week 

training protocol in the current consisting of two RT sessions and two HIIT sessions would also 

elicit elevated fatigue scores in both groups.  

5.8 Adverse Effects 
 Of note, headache (PLA: n=1), dry-mouth (PLA: n=1) and difficulty sleeping (SUP: n=1) 

were reported over the 12-week study. Though side effects are rare, when supplementing with 

RR (1.5g to 2g) insomnia and irritability have been reported in previous review (242), which is 

much higher the average consumption of the current study (~200mg). 

5.9 Limitations 
 There were several limitations to this study that must be addressed. Primarily, the 

amounts of individual ingredients in SUP were combined into a proprietary blend, and thus were 

not able to be adjusted to accommodate for the differing body masses among individuals. 

Further, dosing was dependent upon the body mass of each subject, suggesting that subjects took 

varying amounts of ingredients, which may have resulted in differences in outcomes for differing 
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weight groups. As previously mentioned, RR supplementation with 3mg/kg of body weight 

elicited significant improvements in cycle ergometer time trial performance (370). Nonetheless, 

these groups were too small to make accurate assessments. Additionally, the varying amounts 

and ingredients in MIPS make direct comparison quite difficult. Moreover, the variation in 

concurrent training models, even those utilizing HIIT protocols, is quite broad, which makes 

even direct comparison to training models challenging. Compared to the literature, the current 

study demonstrated extreme lengths to ensure training and supplementary compliance, through 

supervised training and monitored supplement consumption. Despite these efforts, dietary intake 

may have been another limitation to the current study. Dietary intake was monitored through 

food logs and there may have been some discrepancies between recorded and actual caloric and 

macronutrient intake as has been reported previously (301). Finally, though the current study 

successfully stratified subjects by percent body fat, the range within groups to achieve similar 

means between groups may have affected the outcomes of this study. Indeed, though the average 

percent body fat of each group was considered to be “lean”, subject’s percent body fat ranged 

from “very lean” to “obese” in each group, which, when combined with dietary recall data, is 

indicative of a wide array of lifestyles which may have affected this study.  

5.10 Conclusion 
In conclusion, supplementation with SUP, 45 minutes prior to exercise, enhanced moderate 

intensity resistance exercise performance and max intensity HIIT performance in recreationally 

trained men. Additionally, 12 weeks of CT protocol consisting of progressive RT and HIIT 

improved strength and power performance while decreasing fat mass; however there were no 

differences between groups. Therefore, use of SUP (792mg per 23kg of body weight) for 12 weeks 

may be beneficial for resistance training at moderate intensities and aerobic training at maximal 

intensity may be beneficial for recreationally active men.  
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APPENDIX B 
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APPENDIX C 
 

MEDICAL HISTORY FORM 

Strength and Conditioning Laboratory  

Florida State University  

Nutrition, Food and Exercise Sciences  

Medical History Questionaire 
 

This is your medical history form, to be completed prior to your first training session. All information will be 

kept confidential. This information will be used for the evaluation of your health and readiness to begin our 

exercise program. The form is extensive, but please try to make it as accurate and complete as possible. 

Please take your time and complete it carefully and thoroughly, and then review it to be certain you have not 

left anything out. Your answers will help us design a comprehensive program that meets your individual 

needs. 

 

If you have questions or concerns, we will help you with those after this form is completed. We realize that 

some parts of the form will be unclear to you. Do your best to complete the form. Your questions will be 

thoroughly addressed afterwards. It might be helpful for you to keep a written list of questions or concerns as 

you complete the medical history form. 

 

Name:  ___________________________________________________________________________________________________________  

Date:  ___________________________________________________________________________________________________________  
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MEDICAL HISTORY AND SCREENING FORM 

General Information 

Participant: 

Name   _______________________________________________________________________________________________________  

Address  _______________________________________________________________________________________________________  

Contact phone numbers  _______________________________________________________________________________________  

Birth date / Age  ________________________________________________________________________________________________  

Phone Number__________________________________________________________________________________________________ Personal Physician’ Name ____________________________________________ Phone Number_______________________ 

 Address: _____________________________________________________________________________________________ 

  _______________________________________________________________________________________________________  

Marital Status: 

 Single  Married  Divorced  Widowed 

Sex: 

  Male  Female 

Height _______  in. ________cm      Weight_________lbs_________kg 

Race____________ 

Education: 

 Grade School  Jr. High School  High School 

 College (2-4 years)  Graduate School  Degree _______________ 

Occupation: 

Position   _______________________________________________  Employer  ________________________________________  

Address   _______________________________________________________________________________________________________  

Phone  _______________________________________________________________________________________________________  

 

What is (are) your purpose (s) for participation in this Fitness Program? 

 To determine my current level of physical fitness and to receive recommendations for an exercise 

program. 

 Other (please explain)  ___________________________________________________________ 

 ______________________________________________________________________________ 

 ______________________________________________________________________________ 

 ______________________________________________________________________________ 

 ______________________________________________________________________________ 
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Nutritional Supplements and Medications 
 
Please list all vitamins, minerals and herbs and other nutritional (performance) supplements as 
well as medications you are currently taking.  (examples: creatine monohydrate, nitric oxide, 
hydroxy-beta-methylbutyrate (HMB), androsterone derivatives, pharmacological agents 
including steroids) 
____________________________________________________________________________
____________________________________________________________________________
____________________________________________________________________________
____________________________________________________ 
 
 
How frequently? ______ 
 
 
If you are currently taking any of these supplements are you willing to stop taking them for a 
period of one month and through the duration of the six-week study and through pre and post 
testing?  Yes  No 
 
 

Exercise 
 
How often do you participate in resistance training a week? _______x week 
 
How many years have you been participating in resistance training? ________years 
 

Present Medical History 

Check those questions to which you answer yes (leave the others blank). 

Has a doctor ever said your blood pressure was too high? 

Do you ever have pain in your chest or heart? 

Are you often bothered by a thumping of the heart? 

Does your heart often race? 

Do you ever notice extra heartbeats or skipped beats? 

Are your ankles often badly swollen? 

Do cold hands or feet trouble you even in hot weather? 

Has a doctor ever said that you have or have had heart trouble, an abnormal electrocardiogram (ECG 

or EKG), heart attack or coronary? 

Do you suffer from frequent cramps in your legs? 

Do you often have difficulty breathing? 
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Do you get out of breath long before anyone else? 

Do you sometimes get out of breath when sitting still or sleeping? 

Has a doctor ever told you your cholesterol level was high? 

Has a doctor ever told you that you have an abdominal aortic aneurysm? 

Has a doctor ever told you that you have critical aortic stenosis?  

Comments:  ____________________________________________________________________  
_____________________________________________________________________________  
_____________________________________________________________________________  
_____________________________________________________________________________  

Do you now have or have you recently experienced: 

Chronic, recurrent or morning cough? 

Episode of coughing up blood? 

Increased anxiety or depression? 

Problems with recurrent fatigue, trouble sleeping or increased irritability? 

Migraine or recurrent headaches? 

Swollen or painful knees or ankles? 

Swollen, stiff or painful joints? 

Pain in your legs after walking short distances? 

Foot problems? 

Back problems? 

Stomach or intestinal problems, such as recurrent heartburn, ulcers, constipation or diarrhea? 

Significant vision or hearing problems? 

Recent change in a wart or a mole? 

Glaucoma or increased pressure in the eyes? 

Exposure to loud noises for long periods? 

An infection such as pneumonia accompanied by a fever? 

Significant unexplained weight loss? 

A fever, which can cause dehydration and rapid heart beat? 

A deep vein thrombosis (blood clot)? 

A hernia that is causing symptoms? Foot or ankle sores that won’t heal? 

Persistent pain or problems walking after you have fallen? 

Eye conditions such as bleeding in the retina or detached retina? 

Cataract or lens transplant? 

Laser treatment or other eye surgery? 

Comments:  ____________________________________________________________________  
_____________________________________________________________________________  
_____________________________________________________________________________  
_____________________________________________________________________________  

Women only answer the following. Do you have: 

Menstrual period problems? 

Significant childbirth - related problems? 

Urine loss when you cough, sneeze or laugh? 
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Date of the last pelvic exam and / or Pap smear  ___________________________________________  

Comments:  ____________________________________________________________________  
_____________________________________________________________________________  
_____________________________________________________________________________  
_____________________________________________________________________________  

Are you on any type of hormone replacement therapy? _____________________________________________________________   

 

Men and women answer the following: 

List any prescription medications you are now taking:  _____________________________________________________________  

_____________________________________________________________________________  
_____________________________________________________________________________  

List any self-prescribed medications, dietary supplements, or vitamins you are now taking: ___________________  

_____________________________________________________________________________  
_____________________________________________________________________________  

List any other medical or diagnostic test you have had in the past two years:  ____________________________________  

_____________________________________________________________________________  
_____________________________________________________________________________  

List hospitalizations, including dates of and reasons for hospitalization: __________________________________________  

_____________________________________________________________________________  
_____________________________________________________________________________  

List any drug allergies: ____________________________________________________________  
_____________________________________________________________________________  
_____________________________________________________________________________  

Past Medical History 

Check those questions to which your answer is yes (leave others blank). 

Heart attack if so, how many years ago? ________ 

Rheumatic Fever 

Heart murmur 

Liver complications _____________________________________________________________________________ 

Kidney complications_____________________________________________________________________________ 

Diseases of the arteries 

Varicose veins 

Arthritis of legs or arms 

Diabetes or abnormal blood-sugar tests 

Phlebitis (inflammation of a vein) 

Dizziness or fainting spells 

Epilepsy or seizures 

Stroke 

Diphtheria 

Scarlet Fever 
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Infectious mononucleosis 

Nervous or emotional problems 

Anemia 

Thyroid problems 

Pneumonia 

Bronchitis 

Asthma  

Abnormal chest X-ray 

Other lung disease 

Injuries to back, arms, legs or joint 

Broken bones 

Jaundice or gall bladder problems 

Comments:  ____________________________________________________________________  
_____________________________________________________________________________  
_____________________________________________________________________________  
_____________________________________________________________________________  

 

Have you ever been Hospitalized? Yes  No, if yes please explain 
________________________________________________________________________
________________________________________________________________________
________________________________________________________________________
______________________________________________ 

 

Family Medical History 
Father: 
 Alive Current age __________ 
My father's general health is: 

  Excellent  Good  Fair  Poor 
Reason for poor health: ____________________________________________________________  
 Deceased  Age at death _____________ 
Cause of death: __________________________________________________________________________________________________________  

Mother: 
Alive Current age __________ 
My mother's general health is: 

  Excellent  Good  Fair  Poor 

Reason for poor health:_____________________________________________________ 
 Deceased  Age at death _____________ 
Cause of death:  _________________________________________________________________________________________________________  

 
Siblings: 

Number of brothers ______ Number of sisters ______ Age range  ________________________________________________  

Health problems  _______________________________________________________________________________________________________  
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Familial Diseases 

Have you or your blood relatives had any of the following (include grandparents, aunts and uncles, but exclude 

cousins, relatives by marriage and half-relatives)? 

Check those to which the answer is yes (leave other blank). 

Heart attacks under age 50 

Strokes under age 50 

High blood pressure 

Elevated cholesterol 

Diabetes 

Asthma or hay fever 

Congenital heart disease (existing at birth but not hereditary) 

Heart operations 

Glaucoma 

Obesity (20 or more pounds overweight) 

Leukemia or cancer under age 60 

Comments:  ____________________________________________________________________  
_____________________________________________________________________________  
_____________________________________________________________________________  
_____________________________________________________________________________  

 

 

Other Heart Disease Risk Factors 

Smoking 

Have you ever smoked cigarettes, cigars or a pipe? 

 Yes  No 

 (If no, skip to diet section) 

If you did or now smoke cigarettes, how many per day?   ____________________  Age started  ____________________  

If you did or now smoke cigars, how many per day?   ___________ Age started  

If you did or now smoke a pipe, how many pipefuls a day? ____________________  Age started  ____________________  

If you have stopped smoking, when was it?  __________________________________________________________________________  

If you now smoke, how long ago did you start?  ______________________________________________________________________  

Diet 

What do you consider a good weight for yourself?  __________________________________________________________________  

What is the most you have ever weighed (including when pregnant)?  ____________________________________________  

How old were you?  ____________________________  

My current weight is:  _________________________  

One year ago my weight was: _________________  



106 
 

Number of meals you usually eat per day: ________________________________________ 

Do you ever drink alcoholic beverages? 

 Yes  No 

If yes, what is your approximate intake of these beverages? 

Beer: 

 None  Occasional  Often   If often, _____ per week 

Wine: 

 None  Occasional  Often   If often, _____ per week 

Hard Liquor: 

 None  Occasional  Often   If often, _____ per week 

Comments:  ____________________________________________________________________  
_____________________________________________________________________________  
_____________________________________________________________________________  
_____________________________________________________________________________  

 
 
 
 
 
By signing this document I agree that the above information is accurate to the best of 
my knowledge. 
 
Participant’s Signature_______________________________Date___________ 
 
Participant’s Printed Name __________________________________________ 
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APPENDIX D 
 

PROFILE OF MOOD STATES
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APPENDIX E 
 

THREE DAY FOOD LOG

 



109 
 

 



110 
 



111 
 



112 
 

 

  



113 
 

APPENDIX F 
 

DATA COLLECTION SHEET 

Shroom Tech Sport Data Tracking Sheet 

Subject Number:________ 

Baseline Testing 

Height (cm): _______ 

Body Mass (Kg):_______ 

BMI (kg/cm2):_________ 

Blood Pressure              Systolic (mmHg): _______                  Diastolic (mmHg):__________ 

Max Strength            Bench: _______lbs   ________Kg                   Squat: _______lbs  ________Kg                   

Wingate     Max Power Output:__________ Min. Power Output__________       Fatigue Rate:________ 

VO2max (ml/kg/min):___________       Lactate Stage: ___________   Lactate (mmol):___________ 

                Lactate 5min:___________   Lactate 10min:_____________ 

Time to Exhaustion (Sec) : _______________ 

Total Cholesterol: _________        LDL:_______ HDL:_____   Glucose:_______    Triglycerides:________ 

Mid-training Testing 

Height (cm): _______ 

Body Mass (Kg):_______ 

BMI (kg/cm2):_________ 

Blood Pressure              Systolic (mmHg): _______                  Diastolic (mmHg):__________ 

Max Strength            Bench: _______lbs   ________Kg                   Squat: _______lbs  ________Kg               

Wingate     Max Power Output:__________ Min. Power Output__________       Fatigue Rate:________     

VO2max (ml/kg/min):___________       Lactate Stage: ___________   Lactate (mmol):___________ 

                Lactate 5min:___________   Lactate 10min:_____________ 

Total Cholesterol: _________        LDL:_______ HDL:_____   Glucose:_______    Triglycerides:________ 
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Post-training Testing 

Height (cm): _______ 

Body Mass (Kg):_______ 

BMI (kg/cm2):_________ 

Blood Pressure              Systolic (mmHg): _______                  Diastolic (mmHg):__________ 

Max Strength            Bench: _______lbs   ________Kg                   Squat: _______lbs  ________Kg           

Wingate     Max Power Output:__________ Min. Power Output__________       Fatigue Rate:________         

VO2max (ml/kg/min):___________       Lactate Stage: ___________   Lactate (mmol):___________ 

                Lactate 5min:___________   Lactate 10min:_____________ 

Total Cholesterol: _________        LDL:_______ HDL:_____   Glucose:_______    Triglycerides:________ 
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