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Abstract 

 Conceptualizations of developmental trends are driven by the particular method used to 

analyze the period of change of interest. Various techniques exist to analyze developmental data, 

including: individual growth curve analysis in both observed and latent frameworks, cross-

lagged regression to assess interrelations among variables, and multilevel frameworks that 

consider time as nested within individual. In this paper, we report on findings from a latent 

change score analysis of oral reading fluency and reading comprehension data from a 

longitudinal sample of approximately 16,000 students from first to fourth grade. Results 

highlight the utility of latent change score models compared to alternative specifications of linear 

and non-linear quadratic latent growth models, as well as implications for modeling change with 

correlated traits. 

 

Keywords: latent change score, latent growth models, reading comprehension, oral reading 

fluency  
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Modeling the Development of Correlated Processes with Longitudinal and Cross-Construct 

Effects 

Measuring change over time is not only ubiquitous to developmental research, it is 

essential. A scan of the developmental literature demonstrates that a plethora of models are 

available to researchers, yet McArdle (2009) rightly notes that all “repeated measures analyses 

should start with the question, ‘What is your model for change?’” (p. 601). The answer to this 

question is predicated on several facets of one’s data, including: the number of data waves in the 

study, whether the scale of measurement is discrete or continuous, and the nature of 

distributional characteristics of the scores. When the number of data waves is three, the class of 

longitudinal models is maximally restricted to linear growth models. With more available time 

points comes the ability to model curvilinear trends--with the caveat that the increased 

complexity of nonlinear models based on more time points often also requires more individuals. 

The scale of measurement for the data impacts the type of model that can be used to estimate 

one’s developmental trajectory; for example, ordinal data have more restrictive conditions for the 

identification of growth models than interval data (Hishinuma, Chang, McArdle, & Hamagami, 

2012; O’Connell, Logan, Pentimonti, & McCoach, β01γ). Though ordinal data are less 

frequently observed with fluency outcomes, the number of time points and the nature of the 

distributions of scores are particularly germane to conversations about appropriate models for 

fluency change. 

When extended to longitudinal data, reduced between-time correlations may impact 

developmental relations such that a mean trajectory for a sample may not best capture change 

over time. Linear latent growth models include an estimate of average change via the slope, yet it 

is possible that the mean obfuscates differential change which may occur between two points of 

time within the period when longitudinal data were collected.  It is plausible that in the presence 
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of floor or ceiling effects, change between the first two time points for longitudinal data may 

significantly differ from change between two later points. The focus of this paper is to introduce 

the reader to a relatively new latent variable technique, latent change score (hereafter referred to 

as LCS) modeling (McArdle, 2009), which can be applied to longitudinal data. LCS models 

differ from traditional individual growth curve analysis. The LCS model estimates trajectories 

based on an average, latent slope across all time points as well as multiple latent change scores 

that represent the change between two succeeding time points. The individual linear growth 

curve model, which is more familiar to developmental psychologists, only estimates a single 

latent slope. A distinct advantage of the LCS model is that by estimating both an average slope 

and latent change, one is theoretically able to use latent change scores as a source of 

understanding individual differences in a more nuanced manner than is allowed by individual 

growth curve analysis (Grimm, An, McArdle, Zonderman, & Resnick, 2012).  

Developmental Contexts 

 Utilizing LCS modeling to estimate change trajectories for important psychological and 

educational outcomes has the potential for yielding more theoretically interesting findings about 

how individuals change. For example, Ahmed, Wagner, and Lopez (2014) used LCS to 

understand relations between reading and writing from first to fourth grade. The authors noted 

that the literature was conflicted pertaining to whether the relation between the constructs was 

uni- or bi-directional and used LCS to test whether cross-lag effects on change scores between 

constructs were stronger for the uni-directional or bi-directional specifications. Results pointed to 

a uni-directional model providing the best fit. In a study of the influence of race and divorce on 

change in child behavior problems (Malone et al., 2004), LCS models revealed that divorce had a 

greater influence on boy’s change in externalizing behavior problems in middle school but not in 
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elementary school. The magnitude of the effect of divorce was more readily observed by 

modeling its relation via the latent change score compared to its effect on the average slope 

factor. Lastly, Moon and Hofferth (2016) used LCS models to test the relation between parental 

involvement and child effort with growth in reading and math skills for immigrant children. The 

LCS model was chosen in order to examine specific effects of covariates at different change 

points over the course of kindergarten to fifth grade. Among the findings reported by the authors, 

it was observed that parental involvement in kindergarten had a stronger association with change 

in reading for boys from kindergarten to first grade compared to change from first to third grade, 

and that involvement in first grade had a greater association with change from first to third than 

it did on change from third to fifth grade. 

Such studies represent a sample of applications of LCS in the literature (see Hawley, 

Zuroff, Ho, & Blatt, 2006; Hertzog, Dix, Hultsch, & MacDonald; and Quinn, Wagner, Petscher, 

& Lopez, 2015 for examples related to depression outcomes, memory outcomes, and reading 

outcomes, respectively), each of which identify how covariates or parallel, developmental 

changes can be more comprehensively studied using the LCS model for simultaneously 

measuring average, latent growth across all time points and latent change between two time 

points of development. Despite the emerging applications of LCS models across various 

disciplines, a relatively small literature base exists on unpacking the latent change model 

specification, the potential advantages it may hold in modeling compared to other statistical 

models for developmental analysis, and highlighting how to use the results for understanding 

individual growth and sources of influence on change. 

In this paper we present the conceptual and mathematical underpinnings of LCS models, 

how such models compare and contrast with other applications of latent growth/direct effects 



6 Longitudinal Model Applications 

 

 

models, and illustrate how they may be used to model individual differences in change over time 

using data pertaining to the development of reading comprehension and oral reading fluency. 

Applying the LCS to these constructs helps to unpack the developmental relations for a few 

reasons. Although oral reading fluency is a critical skill to develop related to reading 

comprehension, prior research has demonstrated that floor effects in fluency in the beginning 

years of reading instruction are common (e.g. Catts et al., 2009) and that the technical adequacy 

of scores requires further study (Petscher, Cummings, Biancarosa, & Fien, 2013). Thus, 

estimating oral reading fluency trajectories, even with non-linear models, may mask nuanced 

trends in both the developmental and individual differences aspects of the model due to the 

impact of measurement error. Reading comprehension, like other developmentally important 

outcomes, is a complex skill, influenced by multiple constructs and skills (Kim, Wagner, & 

Foster, 2011). Oral reading fluency is an excellent predictor of reading comprehension, 

especially in the early elementary years (Kim, Wagner, & Foster, 2011).  Estimating the LCS 

model to examine the developmental, bidirectional effects of oral reading fluency and reading 

comprehension, as well as comparing it to other latent growth model specifications, serves a 

potentially useful example by which to understand the benefits and deficiencies of various 

longitudinal model specifications. 

Perspectives on Growth Models 

When presented with longitudinal data, two broad frameworks emerge as conventional 

methodologies for individual growth curve modeling, namely, multilevel regression and latent 

variable analysis. Many studies use one of these two approaches, yet as long as the same 

assumptions are met, the models will yield identical results (Hox, 2000). This observation is due 

to the fact that the terminology of growth models (e.g., random effects growth models, 
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hierarchical linear growth models, latent growth, mixed effects growth models) muddies the 

point that the model specification and estimation are often the same (Mehta & Neale, 2005). For 

example, a multilevel, linear growth model is typically expressed as:                                     ௧ܻ ൌ ߨ  ଵሺܺ௧ሻߨ  ݁௧                        Eq. 1                                                                 ߨ ൌ ߚ   ଵߨ                                                                  ݎ ൌ ଵߚ    ଵݎ
 

where ௧ܻ is the observed score for student i at time t on measure y, ߨ and ߨଵ represent the 

initial status and slope, respectively, for which ߚ and ߚଵ are the means corresponding to the 

status and slope. ܺ௧ represents time and is coded in a manner to reflect the measurement 

occasions (e.g., 0, 1, 2 for three time points centered at time 1, or -2, -1, 0 for centering at time 

3). The ݎ and ݎଵ coefficients are random effects associated with the initial status and slope 

parameters, and ݁௧ is the measurement-level residual. In a similar vein, consider the 

specification of the same linear growth model expressed in a latent variable framework:                              ௧ܻ ൌ ߟ௧ߣ  ଵߟଵ௧ߣ  ߟ                                                                ௧                  Eq. 2ߝ ൌ ߥ  ଵߟ                                                                              ߞ ൌ ଵߥ  ଵߞ Ǥ 
 

The structures of the multilevel and latent variable equations are nearly identical. The initial 

status and slope parameters, means, and random effects in the latent framework are characterized 

with ߥ ,ߟ, and ߞ, instead of being represented by the ߚ ,ߨ, and r components, as in Equation 1; ܺ௧ from the multilevel regression is replaced by ߣଵ௧. Although ߣଵ௧ represents factor loadings, it 

is coded in the same manner as ܺ௧ from the multilevel regression (e.g., 0, 1, 2 for three time 

points centered at time 1). ߣ௧ in the latent variable model represents factor loadings for the 

intercept, which are constrained to 1 for each of the time points in a model. As noted previously, 

identical results may be obtained using either the multilevel regression or latent growth curve 

approach (Stoel, van Den Wittenboer, & Hox, 2004). Equation 2 may be expressed as a 
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measurement model (i.e., Figure 1, top), which includes latent intercept and slope factors (ߟ௬ 

and ߟଵ௬ሻ, each of which are indicated by four measurement occasions (Y1-Y4), which in turn are 

associated with a residual error (ߝଵ-ߝସ). The intercept and slope factors have associated means 

 variances (߰ and ߰ଵ, respectively), and a covariance (߰ଵ,). This type ,(ଵ, respectivelyߠ  andߠ)

of model is useful for answering a number of questions pertaining to change over time such as: 

What is the average rate of change in a measured domain for a sample of individuals? To what 

extent do individuals within a sample differ in their rate of change? What is the relation between 

initial status and change over time? 

Although such questions are readily addressed by either multilevel regression or latent 

variable modeling approaches, a number of limitations exist pertaining to traditional multilevel 

regression as implemented in many conventional software packages. Structural modeling (i.e., 

direct and indirect effects) and multivariate longitudinal analysis (e.g., parallel process growth 

models) are often difficult to directly model in a multilevel regression framework. A latent 

variable approach allows for such models to be fit as it overcomes the restrictive univariate 

framework of multilevel regression (Muthén, 2004).  An additional strength of latent variable 

modeling is that multiple constructs may be simultaneously modeled, and each construct may be 

represented as either continuous or categorical factors. Despite such advantages, individual 

growth curve analyses and direct/indirect effects modeling have generally been viewed as 

mutually exclusive approaches to analyzing longitudinal data. That is, although it is possible to 

model longitudinal data with direct and indirect-effects based structural equation models, or 

separately, to estimate individual growth curves, few models exist which allow for the 

simultaneous specification of both for a univariate outcome. 
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The Latent Change Score Model 

Given such limitations, the LCS model (McArdle, 2009; McArdle & Hamagami, 2001; 

McArdle & Nesselroade, 1994) was developed as one method to combine direct/indirect effects 

modeling and individual growth curve analysis. Although traditional latent growth curve and 

multilevel regression analyses are useful in yielding average estimates of change over time, they 

are frequently limited in that direct/indirect effects cannot be simultaneously modeled with 

growth for a univariate outcome (i.e., one frequently models either growth or direct/indirect 

effects) nor can growth be segmented into piecewise “chunks” of change in order to evaluate 

unique effects of average growth or change. In many aspects of developmental research it is 

quite plausible that students may change more or less during particular segments of measured 

growth. When students differentially change, whether due to immediate intensive interventions, 

measurement sensitivity to skills development, or individual student factors, average estimates of 

growth may be insufficient for characterizing the nature of the data.  

The LCS model is sensitive to such types of developmental change; consider the general 

structure of a univariate LCS model in Figure 2. Before providing model equations and 

explication of the underlying components to the model, it is first useful to picture the 

representation of the LCS model and understand the path and latent components. Similar to the 

latent linear growth model in Figure 1, there are latent factors for intercept and slope (ߟ௬ and ߟଵ௬ሻ, observed measures with unique effects for the four time points (Y1-Y4 and ߝଵ-ߝସሻ, as well 

as means (ߠ and ߠଵ), variances (߰ and ߰ଵ), and a covariance (߰ଵ). The unique components of 

the LCS model include latent factors for the observed measures at each time point (y1-y4), 

autoregressive effects for the time-specific latent factors (e.g., y2 on y1), latent change score 

factors (ǻy21, ǻy32, and  ǻy43) with associated loadings (Į), and proportional change effects 
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(ȕ). To decompose the elements of Figure 2, we first evaluate the direct effects portion of the 

model, which includes the relations among, for example, the latent constructs of y1, y2, and 

ǻy21. An underlying mechanism of the LCS model lies in its origins in classical test theory, 

namely, that one’s observed score at a time point ( ௧ܻ) is modeled as a function of an unknown 

latent true score (ݕ௧) and a unique score for the individual (݁௧), expressed as: 

௧ܻ ൌ ௧ݕ  ݁௧. 
In Figure 2, ௧ܻ  is represented by the observed scores Y1-Y4, ݕ௧ is expressed via the latent 

factors y1-y4, and ݁௧ are the errors ߝଵ-ߝସ. A simple difference score between two observed time 

points (ȟ ܻ) is calculated as the difference between a one time point ( ௧ܻሻ and performance at an 

earlier time point ( ሺܻ௧ିଵሻሻ: ȟ ௧ܻ ൌ ௧ܻ െ ሺܻ௧ିଵሻ. 
This observed score equation can be extended to a latent variable model by substituting ݕ௧ for 

௧ܻ: 
  ȟݕ௧ ൌ ௧ݕ െ  ሺ௧ିଵሻ                                         Eq. 3ݕ

which could be rearranged to solve for ݕ௧ instead of the difference score                                                           ݕ௧ ൌ ሺ௧ିଵሻݕ  ȟݕ௧.                                        Eq. 4 

The re-expression of Equation 3 as Equation 4 states that a latent score y for individual i 

at time t (i.e., ݕ௧) is comprised of a latent score from a previous time point (ݕሺ௧ିଵሻ), and the 

amount of change that occurs between the two points (ȟݕ௧). Equation 4 can be viewed in the 

model of Figure 2 via the latent change score. For example, ݕ௧ could be representative of y2 

which is the latent construct at time 2 indicated by observed measure Y2. This latent variable is 

shown as being the sum of the latent variable y1 (i.e., ݕሺ௧ିଵሻ)  as well as ǻy21, that is the latent 

change between y2 and y1 (i.e., ȟݕ௧ ). Note that the LCS of ǻy21 is not directly measured, 
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whereas y1 and y2 are directly measured by Y1 and Y2. Two constraints are included among the 

relations of these three latent constructs. The first constraint  fixes the effect of y1 on y2 at 1.0, 

and the second constraint has the effect of the change score ǻy21 on y2 constrained at 1. Such 

constraints serve to identify the model as well as allow for the estimation of the LCS mean and 

variance. Further, with the constraints, the latent change score is characterized as the portion of 

the y2 score that is not equal to y1 (McArdle and Nesselroade, 1994). 

The proportional change effect of ȕ designates the effect of y1 on ǻy21 and characterizes 

the relation between initial status and change for a selected interval of change. When the mean 

constant change is positive, a positive ȕ coefficient indicates that when accounting for constant 

change (i.e., latent slope) in the model, individuals with higher scores at y1 changed more 

between y1 and y2 compared to individuals with lower y1 scores. Conversely, a negative ȕ 

coefficient when the mean constant change is positive is reflective of individuals with lower y1 

scores experiencing greater change between y1 and y2, compared to higher ability individuals at 

y1. In this way, the ȕ coefficient from Figure 2 represents the direct/indirect effects portion of the 

univariate LCS model. In a different light, the proportional change parameters can also be 

conceptualized as the non-linear portion of a latent growth model. A negative value for ȕ 

indicates, when accounting for constant change (i.e., latent slope) in the model, deceleration in 

growth relative to the previous time point, whereby a positive value for ȕ indicates acceleration 

in growth relative to the previous time point. In instances where the mean constant change is 

negative, individuals can change less in the presence of a positive ȕ. Such interpretational 

nuances of the LCS parameters underscore the need both for caution when evaluating any 

individual resulting coefficient and for empirically testing whether ȕ is leading to more or less 

change based on higher individual scores relative to mean constant change. 



12 Longitudinal Model Applications 

 

 

 The mean constant change portion of the LCS model in Figure 2 is based on the change 

score loadings associated with the latent slope factor (i.e., Į).  Note that, different from Figure 1, 

the latent slope factor ߟଵ௬ is not indicated by the observed measures but rather by the individual 

latent change scores. Subsequently, the growth portion of the LCS model is estimated with: ݕ௧ ൌ ߟ  ȭሺȟݕ௧ሻ.                    Eq. 5 

Eqs. 4 and 5 share similarities in that both include an initial status component, ݕሺ௧ିଵሻ in Eq. 4 

and ߟ in Eq. 5, and both include change scores.  The primary difference between the two 

specifications is that Eq. 5 generalizes the form of Eq. 4 so that the intercept ߟ denotes the 

individuals’ initial status based on centering (much like ߟ in the latent growth model, Eq. 2), 

and ȭሺȟݕ௧ሻ represents the summed LCSs up to time t (Grimm, 2012). Within Figure 2, the three 

LCSs load on ߟଵ௬with Į.  

When both the growth and direct/indirect effects portions of Į and ȕ are estimated in the 

LCS model, it is referred to as a dual change score model; dual in the sense that both constant 

change (i.e., average change across the change scores) via the Į coefficients and proportional 

change via the ȕ coefficients are simultaneously estimated. When a dual change score model is 

specified, Eq. 3 is extended to: 

                        ȟݕ௧ ൌ ߙ כ ଵߟ  ߚ כ  ሺ௧ିଵሻ ,              Eq. 6ݕ

and states that LCS ǻy at time t for individual i is estimated as a function of the average latent 

change slope (ߙ כ ߚ) plus the proportional change ,(1= ߙ ଵ, whereߟ כ  ሺ௧ିଵሻ). It should be notedݕ

that even within Eq. 6 it is possible to solely estimate either constant change or proportional 

change given one’s research interests. Should a primary research question be associated with 

constant change over time, the ȕ coefficients in Eq. 6 can be fixed to 0. This reduces the dual 

change model from Eq. 6 to what is termed a constant change model and is estimated with: 
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ȟݕ௧ ൌ ߙ כ  ଵǤߟ
When this occurs, the result of a LCS constant change model will be identical to the latent linear 

growth curve model in Figure 1. Conversely, when only the proportional change component of 

the dual change score model is of interest, the Į coefficients are fixed to 0, as are the mean and 

the variance of the latent slope. In this instance, Eq. 4 reduces to: 

         ȟݕ௧ ൌ ߚ כ  . ሺ௧ିଵሻݕ
 An alternative approach to the univariate LCS in modeling both autoregressive effects 

and constant change is known as the autoregressive latent trajectory model (ALT; Figure 1; 

Bollen & Curran, 2004). Similar to a more traditional latent growth curve model, the ALT 

specification includes latent intercept and slope factors, and similar to the LCS model, the ALT 

model includes direct effects between an earlier and a later observation. A few primary 

distinctions and similarities between the ALT and LCS specifications are worth noting. First, the 

ALT model is more similar to a basic latent growth curve in the average slope portion of the 

model. Note that both models in Figure 1 estimate growth as a function of the observed 

measures. Second, the ALT and LCS models both include autoregressive effects in the model. 

The ALT does this via the direct paths between time points (ȡ) whereas the LCS estimates the 

autoregressive effects via the ȕ parameter. The differences between ALT and LCS can be viewed 

in how data at the first time point is treated. In the LCS model of Figure 2, Y1 is viewed as an 

observed variable indicating the latent variable y1. Moreover, latent variable y1 serves an 

indicator of the latent intercept ߟ௬, maintains direct effects on yβ and the change score ǻyβ1, 

and also informs the slope factor ߟଵ௬ through its influence on ǻyβ1. In the ALT model of Figure 

1, Y1 has a direct effect on Y2 but does not directly inform either the latent intercept or slope 

factors. Rather, it is specified as covarying with latent intercept and slopes (i.e., ߟ௬ and ߟଵ௬). 
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Latent Change Score Multivariate Considerations 

The univariate specification of the LCS model from Figure 2 and Eq. 6 can be extended 

to simultaneously model multiple outcomes. Although one outcome of early literacy skills, such 

as vocabulary (Quinn et al., 2015) could be modeled in the univariate LCS framework, data on 

multivariate developmental data such as vocabulary and reading comprehension can be fit in a 

bivariate LCS model.  Figure 3 presents the basic specification for the bivariate dual change 

score model that was used in this study. The primary difference between it and the univariate 

specification is the inclusion of coupling or cross-lag effects (i.e., ߛ௬௫ and ߛ௫௬).The coupling 

effect in the bivariate LCS equations extends Eq. 6 to:                             ȟݕ௧ ൌ ௬ߙ כ ଵ௬ߟ  ௬ߚ כ ሺ௧ିଵሻݕ  ௧ݔሺ௧ିଵሻ  and         Eq. 7 ȟݔ௬௫ߛ ൌ ௫ߙ כ ଵ௫ߟ  ௫ߚ כ ሺ௧ିଵሻݔ   .ሺ௧ିଵሻݕ௫௬ߛ
As with the univariate LCS model in Eq. 6, Eq. 7 includes subscripts for the constant and 

proportional change coefficients that are specific to the outcome for which the LCS is estimated. 

Further, the insertion of the coupling effect (e.g., ߛ௬௫ሻ denotes the influence of one of the 

outcomes from a previous time point (e.g., x1 in Figure 3) on a change score for the other 

outcome (i.e., ǻy21). The flexibility of the bivariate model is that it can extend to more than two 

outcomes and the limitations to the generalization of this model include sample size and one’s 

computing power. Just as in the univariate context, a bivariate LCS model is flexible such that 

the constant change, proportional change, or coupling effects may be freed for estimation or 

fixed based upon the primary question of interest. An ancillary consideration when fitting the 

multivariate model is the extent to which this offers improvement above other SEMs which 

model growth and direct effects. Similar to the univariate example, whereby latent growth curve, 

LCS, and ALT models are available, the multivariate context presents with other possible SEMs. 
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For example, Figure 4 shows a parallel process SEM. This specification allows for individual 

growth models to be fit to separate processes, such as vocabulary and reading comprehension, 

but also to test the direct effect of intercepts on one outcome (e.g., the intercept ߟ௫) on the slope 

for another outcome (i.e., ߟଵ௬).  

Univariate and multivariate model building for the latent growth, ALT, and LCS models 

are quite flexible so that one may evaluate nested versions of univariate or bivariate outcomes, 

and test the extent to which constrained or freed ߚ ,ߙ, and ߛ parameters result in the most 

parsimonious but well-fitting model applied to the data. As with most latent variable models, 

criterion-based fit indices such as the comparative fit index (CFI), Tucker-Lewis index (TLI), 

root mean square error of approximation (RMSEA), and standardized root mean residual 

(SRMR) may be used to evaluate fit. Further, AIC and BIC indices can be used for instances 

where tested models are not nested. 

Present Study – Applied Example 

 To build a better understanding of how these models may be specified and evaluated to 

describe change over time, we illustrate the differential fit of various latent change score models 

(i.e., constant change, proportional change, and dual change score models) along with linear and 

non-linear (i.e., quadratic) latent growth curve models, ALT models (for univariate analysis), and 

the parallel process SEM (for the multivariate analysis).  

As a segue to the model testing and explication, we note the following. First, 

conventional approaches to growth curve models, specifically multilevel software, frequently 

assume that the residual variances of the observed variables are constrained to be equal, thereby 

sufficing the assumption of homoscedasticity. More recent evaluation of this assumption in the 

latent variable framework has suggested that such a constraint does not contribute much to the 
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understanding of important model estimates, including latent factor means and variances, yet it 

does contribute to substantial misfit and estimation of the variances and covariances of the model 

(see Grimm & Widaman, 2010). Second, the application of LCS models across various studies 

(e.g., Reynolds & Turek, 2012) constrains the auto-proportion effects to be equal over time. 

Researchers often do this from a theoretical standpoint, where it is assumed that the dynamic 

relation for the developmental phenomena does not change over the developmental period. 

Although this constraint can be useful, one could also empirically test whether the auto-

proportion effect is the same across all measured time points. Thus, in the context of the present 

application, four dual change score models were tested to evaluate differential constraints on the 

proportional change coefficients and freed/fixed error variances: 1) constrained error variances 

and auto-proportions; 2) freed error variances and constrained auto-proportions; 3) constrained 

error variance and freed auto-proportions; and 4) freed error variances and auto-proportions.  

Method 

Participants 

Data for the following set of examples were obtained from the Progress Monitoring and 

Reporting Network at the Florida Center for Reading Research. Participants in this study were a 

longitudinal cohort that was followed from first to fourth grades. Individuals were assessed four 

times a year on the Dynamic Indicators of Basic Early Literacy Skills (DIBELS; Good, 

Kaminski, Smith, Laimon, & Dill, 2001) assessments as part of Florida’s assessment system 

during the federal Reading First initiative which occurred from 2003-2009, and were also 

administered the Stanford Achievement Test – 10th Edition (SAT-10; Harcourt Brace, 2003). The 

present data were comprised of 16,074 second-grade students who had available data on the 

DIBELS oral reading fluency (ORF) assessment and the SAT-10 at the end of each academic 
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year (i.e. approximately April of each year). No data were missing on the oral reading fluency 

assessment, as these data were required of all students during the Reading First initiative. SAT-

10 administration was not required in grades 1 and 2, but was required in grades 3 and 4. As 

such, in grade 1 data were missing for 34% of students, compared to 20% in grade 2, and 1.7% 

in grades 3 and 4. The data for SAT-10 in grades 1 and 2 were evaluated for patterns of 

missingness and it was determined they were missing at random. Subsequently, multiple 

imputation was conducted with methods outlined by Lang & Little (2014). 

Measures 

DIBELS Oral Reading Fluency (ORF; Good, Kaminski, Smith, Laimon, & Dill, 

2001). DIBELS ORF is a measure that assesses oral reading rate and accuracy in grade-level 

connected text. This standardized, individually administered test was designed to identify 

students who may need additional instructional support in reading and to monitor progress 

toward instructional goals. During a given administration of ORF, students are asked to read 

three previously unseen passages out loud consecutively, for 1 minute per passage. Students are 

given the prompt to “be sure to do your best reading” (Good et al., 2001, p. 30). Between the 

administration of each passage, students are given a break, in which the assessor simply reads the 

directions again before the task resumes. Words omitted, substituted, and hesitations of more 

than 3 seconds are scored as errors, although errors that are self-corrected within 3 seconds are 

scored as correct. Errors are noted by the assessor, and the score produced is the number of 

words correctly read per minute (wcpm). Research has demonstrated adequate to strong 

predictive validity of DIBELS ORF for reading comprehension outcomes (r = .65 to .80; 

Petscher & Kim, 2011; Roehrig, Petscher, Nettles, Hudson, & Torgesen, 2008). 
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Stanford Achievement Test- 10th edition (SAT-10; Harcourt Brace, 2003). The SAT-

10 is a standardized test of reading comprehension which may be administered in a group format. 

This assessment was given by classroom teachers as part of Reading First and was scored by the 

test publisher. Students were required to respond to 54 multiple choice questions assessing 

critical analysis, initial understanding, interpretation, and usage of reading strategies for 

informational and literary text. Reliability for the SAT-10 for a nationally representative sample 

was .88. Construct and criterion validity with other assessments of reading comprehension have 

been evaluated in multiple studies (Harcourt Brace, 2003). 

Procedure1 

Most commonly used software packages, such as Mplus and R, maintain flexibility to 

estimate LCS models (i.e., RAMpath in R; Zhiyong, McArdle, Hamagami, & Grimm, 2013). For 

the present illustrations, all statistical models were run in Mplus and graphs were generated via 

R. The goal of this illustration is to highlight the LCS model as well as its comparison to various 

specifications of other latent growth curve models. The sequence of univariate model tests 

applied to both ORF and SAT-10 were: 1) a linear latent growth curve model using a fixed 

loading structure [i.e., time coded as 0, 1, 2, 3] and constrained errors; 2) a linear latent growth 

curve model using a fixed loading structure [i.e., time coded as 0, 1, 2, 3] and unconstrained 

errors; 3) a linear latent growth model with a freed loading structure [i.e., time coded as 0, *, *, 

1, where * denotes freed estimation at time-points 2 and 3] and with correlated errors; 4) a linear 

latent growth model with a freed loading structure [i.e., time coded as 0, *, *, 1, where * denotes 

freed estimation at time-points 2 and 3] and with uncorrelated errors; 5) a non-linear, quadratic 

                                                           
1 The estimated covariance matrix for analyses as well as the Mplus syntax for the final bivariate dual change score 

model is included in the supplemental materials. Additional scripts are available from the first author upon 

request. 
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growth model with constrained errors; 6) a non-linear, quadratic growth model with 

unconstrained errors; 7) a proportional change LCS model; 8) a constant change LCS model; 9) 

an autoregressive latent trajectory model; and 10-13) a dual change score model with 

differentially constrained/unconstrained errors and auto-proportion coefficients (see Table 2 for 

specifications). Following the univariate models, a set of multivariate models were then 

estimated to compare alternatives to a bivariate dual change LCS model, including: 1) a parallel 

process growth model with a fixed loading structure, 2) a parallel process growth model with a 

freed loading structure, and 3) a parallel process SEM with intercepts [centered at time 1] 

predicting cross-construct slopes. From the larger sample we randomly selected ten students in 

order to highlight differences in the observed and estimated trends across selected models. 

The CFI, TLI, and RMSEA were used to compare the models. CFI and TLI values of at 

least .95 are considered acceptable, and RMSEA up to .10 also provide evidence of acceptable 

model fit. Between-model comparisons were made by using either a Ȥ² difference test when 

models were nested or using the sample-sized adjusted BIC to evaluate model parsimony when 

models were non-nested. Raftery (1995) demonstrated that between-model BIC differences 

between 10 and 100 are sufficient to indicate a practically important difference in model fit. 

Results 

Descriptive Statistics 

Sample statistics for the oral reading fluency and reading comprehension measures across 

the four time points are provided in Table 1. Both measures demonstrated relatively normal score 

distributions, yet some skew and kurtosis existed for the ORF measures. Graphing the 

descriptive statistics as violin plots (Figure 5) better displays the statistical summary from Table 

1, where it may be observed that ORF was more likely to include scores further from the mean 



20 Longitudinal Model Applications 

 

 

compared to the SAT-10. Violin plots are a useful mechanism for simultaneously evaluating the 

distribution of scores and the interquartile range of scores. The plots for both measures highlight 

that average performances increased across the four testing periods. 

Growth Models 

Prior to fitting the growth models, it was of interest to plot the raw data to evaluate 

whether the scores for each of the measures demonstrated a linear or curvilinear trend. Ten 

students were randomly selected and their plotted scores for ORF and SAT-10 are presented in 

Figures 6a and 6b. Both within and across the measures it is clear that individual differences in 

trends exist. Although some of the randomly selected students demonstrated a linear growth 

pattern, most individuals’ growth could be characterized as non-linear. Individual differences 

across the time points were larger for ORF compared to SAT-10, with several students 

demonstrating a drop off in performance between the third and fourth time points. Such 

differences in the sample plots suggested it may be valuable to test a curvilinear growth model in 

addition to the linear latent growth and LCS models.  

 Model comparison. In Table 2, results are presented for the fit of the latent growth 

model for ORF and SAT-10. As can be seen for both the SAT-10 and ORF outcomes, neither the 

linear model with constrained or unconstrained errors, nor the quadratic growth models provided 

acceptable fit to the data. Although the quadratic model with constrained errors fit statistically 

better than the linear model with constrained errors for SAT-10 [ǻȤ² (4) = 110,248, p < .001] and 

ORF [ǻȤ²(4) = β0,0γ7, p < .001), the CFI, TLI, and RMSEA failed to meet typically accepted 

thresholds for model fit. The proportional change and constant change LCS models did not 

improve upon model fit compared to either the linear or quadratic growth models, nor did the 

ALT  provide acceptable fit to the data. Conversely, the freed loading linear growth models and 
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the dual change LCS models provided excellent fit to the data. Relative fit for the first dual 

change score model (i.e., constrained auto-proportion and error variances; dual change 1; BIC = 

603511) showed a marked improvement compared to either the linear growth model with 

unconstrained errors (BIC = 611639) or the non-linear growth model (BIC = 604747). This 

observation was replicated for ORF as well, whereby the dual change 1 model (BIC = 568513) 

fit better than the linear, constrained errors (BIC = 586377) and non-linear specifications (BIC = 

570953). Not only did the dual change 1 model provide improved relative fit compared to linear 

or quadratic specifications, the criterion fit for this model was also acceptable  for SAT-10 

[Ȥ²(1β55, N=16,074) = 7, CFI = .97, TLI = .98, RMSEA = .105 (95% CI = .100, .110)] and ORF 

[Ȥ²(16β5, N=16,074) = 7, CFI = .98, TLI = .98, RMSEA = .120 (95% CI = .115, .125)]. 

Alternative specifications of the dual change score model yielded additional improved fit. The 

freed error variance-constrained auto-proportion model (i.e., dual change 2) and the constrained 

auto-proportion freed error variance model (i.e., dual change 3) provided better fit than the fully 

constrained dual-change model (p < .001; Table 2). When both error variances and auto-

proportion parameters were freed for estimation (i.e., dual change 4), this model provided the 

best fit to the data and fit significantly better than the other three dual change model 

specifications. Note that although the freed loading specifications of the linear growth model 

provided better fit to the data compared to most models, the dual change 4 model still provided 

the best relative fit compared to the freed loading growth model with unconstrained errors for 

both ORF (ǻBIC = 155) and SAT-10 (ǻBIC = γγ). 

Resulting model coefficients for each of the tested models are reported in Table 3. 

Despite dual change 4 for both outcomes demonstrating the best relative fit, dual change model 3 

was selected for the explication of coefficients, as this configuration conforms to more traditional 
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growth modeling (i.e., fixed residual variances). As will be shown later, little difference is 

observed in the estimated latent change scores using either dual change 3 or 4.  

For ORF, results of model 3 showed a mean intercept, or the average initial starting 

values at time one, of 58.20 wcpm and an average yearly constant slope of 68.26 wcpm. This 

mean slope factor is not interpreted in the same way as the slope factor in the linear growth 

models where growth is viewed as the average amount of expected increase in the outcome 

between time-points. Instead, the mean in a latent change model is interpreted as the average 

unique effect that contributed to the estimated LCS above the proportional change coefficients. 

In this model, the proportional coefficients were ȕ = -0.49 (p <.001) for the effect of time 1 ORF 

on the change score between times 1 and β, ȕ = -0.58 (p <.001) for the effect of time 2 on the 

second change score, and ȕ = -0.55 (p <.001) for the effect of time 3 on the third change score. A 

negative proportional change value between time points in the presence of a positive linear slope 

provides two interpretations: 1) when accounting for average ORF change of 68.26 wcpm, 

individuals with lower ORF scores on the previous occasion changed more than individuals with 

higher ORF scores, and 2) change in ORF ability slightly decelerated over time.  

Similarly for SAT-10, dual change model 3 coefficients will be explicated. An initial 

mean score of 566.52 was estimated along with an average yearly slope mean of 361.39. As 

stated previously, this slope mean must be interpreted with caution and in combination with the 

proportional change parameters. The proportional change coefficients for SAT-10 were 

approximately equal with ȕ = -0.57 (p <.001) for the effect of time 1 SAT-10 on the change 

score between times 1 and β, ȕ = -0.55 (p <.001) for the effect of time 2 on the second change 

score, and ȕ = -0.56 (p <.001) for the effect of time 3 on the third change score. Note that even 

though dual change model 3 fit significantly better than dual change models 1 and 2 which had 
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constrained auto-proportion estimates, the coefficients in model 3 were only marginally different 

from each other for the freed auto-proportion coefficient. Such a phenomenon occurs with large 

sample sizes whereby incremental model fit may suggest a better fitting model with little 

difference in the magnitude of parameter estimates. 

Estimating individual latent change scores. Resulting coefficients from the ORF and 

SAT-10 LCS models can subsequently be used to create individual predicted LCSs using Eq. 6. 

The LCSs for ORF would then be estimated with: ȟORFሾݐሿଶଵ ൌ ͺǤʹ  െͲǤͶͻ כ ORFଵ ȟORFሾݐሿଷଶ ൌ ͺǤʹ  െͲǤͷͺ כ ORFଶ ȟORFሾݐሿସଷ ൌ ͺǤʹ  െͲǤͷͷ כ ORFଷǤ 
 

The ORF models show that from the first time point to the second, the predicted LCS 

simultaneously increased by 68.26 points and decreased proportionally by 0.49 points relative to 

the time 1 ORF score. Similarly, while the ORF scores increased by the constant of 68.26 points 

for the other two change scores, the proportion decrease changed from 0.49 points to 0.58 and 

0.55 for the second and third change scores, respectively. The individual LCSs for SAT-10 

would be constructed with: ȟSAT െ ͳͲሾݐሿଶଵ ൌ ͵ͳǤ͵ͻ  െͲǤͷ כ SATͳͲଵ  ȟSAT െ ͳͲሾݐሿଷଶ ൌ ͵ͳǤ͵ͻ  െͲǤͷͷ כ SATͳͲଶ ȟSAT െ ͳͲሾݐሿସଷ ൌ ͵ͳǤ͵ͻ  െͲǤͷ כ SATͳͲଷǤ 
 

The SAT-10 results show that across the assessment periods, students increased their reading 

comprehension scores additively by 361.39 points, but decreased proportionally depending on 

when change was estimated.  

The relation between the mean slope and the auto-proportion in the individual LCS 

models may be tricky to grasp at first, but when related to descriptive means can be seen more 
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clearly. Suppose we take a student whose ORF performance at each time point was at the mean 

reported in Table 1; their estimated LCSs for each occasion would be:  ȟORFሾݐሿଶଵǣ ͵ͻǤͺͳ ൌ ͺǤʹ   െͲǤͶͻ כ ͷͺǤͲ ȟORFሾݐሿଷଶǣ ͳͳǤ͵ʹ ൌ ͺǤʹ   െͲǤͷͺ כ ͻͺǤͳͺ 

                                         ȟORFሾݐሿସଷǣ    ͺǤͳͲ ൌ ͺǤʹ  െͲǤͷͷ כ ͳͲͻǤ͵ͻǤ  
Note that if one were to estimate the LCSs using the coefficients from dual change model 4 

instead of dual change model 3, the estimated change scores would have been ȟORFሾݐሿଶଵ = 

40.34, ȟORFሾݐሿଷଶ=11.28, and ȟORFሾݐሿସଷ = 7.70, all of which closely approximate the values 

from dual change model 3. The predicted LCSs from dual change model 3 indicate that the 

greatest change in ORF was made between times 1 and 2 (i.e., 39.81 between grade 1 and grade 

2), whereas the least amount change of 8.10 occurred between grades 3 and 4. Notice how the 

average calculated change score from grade 1 to grade 2 of 39.81 is very close to the difference 

of the grade 1 and grade 2 observed means from Table 1 (i.e., 98.18 – 58.07 = 40.11), as are the 

other estimated change scores related to the difference in observed means.   

With the individual change scores estimated, an individual growth trajectory can be 

constructed from the predicted LCSs. In this example, with an estimated grade 1 ORF score of 

58.07, at grade 2 it would be the grade 1 value plus the estimated ȟܱܴܨሾݐሿଶଵ (i.e., 58.07 + 39.81 

= 97.88). At grade 3, the estimated ORF score is 97.88 + 11.32 = 109.20, and at grade 4 the 

estimated ORF score is 109.20 + 8.10 = 117.30. Again, notice how in each case the estimated 

ORF score using latent change produces a value that very closely approximates the mean scores 

from Table 1. Because our illustration used mean performance this is within expectation, but 

demonstrates that the average growth and auto-proportion coefficients work in conjunction with 

each other to produce estimated latent scores that can be used to construct an individual 
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trajectory.  In the same way, if we use the mean SAT-10 score at each time point, the estimated 

LCSs are: ȟSAT െ ͳͲሾݐሿଶଵǣ ͶͶǤͳ ൌ ͵ͳǤ͵ͻ  െͲǤͷ כ ͷǤͷ͵ ȟSAT െ ͳͲሾݐሿଷଶǣ ʹͺǤͶͶ ൌ ͵ͳǤ͵ͻ  െͲǤͷͷ כ ͲͷǤ͵ ȟSAT െ ͳͲሾݐሿସଷǣ ǤͲʹ ൌ ͵ͳǤ͵ͻ  െͲǤͷ כ ͵ʹǤͺͲǤ 
 

If the model coefficients from dual change 4 were used, the estimated change scores would be: ȟSAT െ ͳͲሾݐሿଶଵ= 42.39, ȟSAT െ ͳͲሾݐሿଷଶ = 27.19, and ȟSAT െ ͳͲሾݐሿସଷ = 7.08. Similar to the 

ORF example, students changed the most between the first two time points (44.17) and the least 

between the last two time points (7.02). The SAT-10 estimated LCSs, used in a similar manner 

as in the ORF example, show that the estimated grade 1 through grade 4 scores would be: 566.53 

at grade 1, 610.70 at grade 2 (566.53 + 44.17), 639.14 at grade 3 (610.70 + 28.44), and 646.16 at 

grade 4 (639.14 + 7.02). Notice again that these estimated scores closely correspond to the 

observed means in Table 1.  

Just as estimated scores from the LCS can be done at each time point, they may also be 

plotted. Grouped individual linear latent trajectories and the latent change score trajectories for 

the random sample of students on ORF and SAT-10 are plotted in Figure 6e and 6f. As seen in 

Figure 6c, the results of the ORF latent growth model do not capture the 

acceleration/deceleration in growth over time in ORF as is captured in Figure 6e or 6g via the 

latent change or quadratic growth plots. This sudden deceleration of growth is based on the 

decreasing LCSs just estimated in the example (39.81, 11.32, and 8.10, respectively). The same 

pattern is seen for the SAT-10 data, whereby Figure 6d does not capture the 

acceleration/deceleration in growth captured through the LCSs in Figure 6f (44.17, 28.44, and 

7.02, respectively). 
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 Bivariate dual change scores. The final model illustration of the LCS models is the 

bivariate specification that incorporates lag or coupling effects on the change scores. Prior to 

estimating the bivariate dual change model, a parallel process non-linear growth model with a 

quadratic term was estimated to serve as the baseline comparison. This model estimated the 

growth of ORF and SAT-10, as well as the covariances across intercepts and linear/quadratic 

slopes of both measures. Resulting fit for this model was moderately acceptable criteria [Ȥ² (14, 

N = 16,074) = 4,808, CFI = .96, TLI =.93, RMSEA = .146 (95% CI = .143, .149), BIC = 

1,153,023]. When changing the model to include structural paths from the intercepts to cross-

construct slopes, the model fit declined [Ȥ² (18, N = 16,074) = 5,211, CFI = .96, TLI =.94, 

RMSEA = .134 (95% CI = .131, .137), BIC = 1,153,402]2. Conversely, the bivariate LCS model 

provided good fit to the data based on criterion indices [Ȥ²(15, N = 16,074) =1,441, CFI = .99, 

TLI = .98, RMSEA = .077 (95% CI = .074, .080)], and the BIC (1,149,652) was lower compared 

to the non-linear, parallel process SEM [ǻBIC = γ,750)]. Resulting parameters for the bivariate 

LCS model are provided in Figure 7.  

Similar to the univariate dual change models, the estimated parameters included means 

for the latent intercepts (58.22 and 566.67 for ORF and SAT-10) and slopes (-321.52 and 179.65 

for ORF and SAT-10) as well as the variances, covariances, and proportional change 

coefficients. The inclusion of coupling effects of ORF on SAT-10 change, as well as SAT-10 on 

ORF change, demonstrated the differential contributions each makes to the estimated LCSs. 

                                                           
2 Non-linear parallel process models with constrained errors [ʖϸ ;18, N = 16,074) = 5,211, CFI = .96, TLI =.94 RMSEA 

= .134 (95% CI = .131, .137), BIC = 1,153,402], unconstrained errors [ʖϸ ;13, N = 16,074) = 4,991, CFI = .96, TLI =.92, 

RMSEA = .154 (95% CI = .151, .158), BIC = 1,153216], and within-time/between-construct correlated errors [ʖϸ ;ϵ, N 

= 16,074) = 4,843, CFI = .96, TLI =.89, RMSEA = .183 (95% CI = .178, .187), BIC = 1,153,093] were estimated. None fit 

significantly better than the bivariate dual-change score model. 
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Model coefficients from Figure 7 can be inserted into Eq. 7 to create the estimated scores for 

ORF and SAT-10 as: ȟORFሾݐሿଶଵ ൌ െ͵ʹͳǤͷʹ െ ͲǤ͵͵ כ ORFଵ  ͲǤ כ SATͳͲଵ  ȟORFሾݐሿଷଶ ൌ െ͵ʹͳǤͷʹ െ ͲǤͶͲ כ ORFଶ  ͲǤʹ כ SATͳͲଶ ȟORFሾݐሿସଷ ൌ െ͵ʹͳǤͷʹ െ ͲǤ͵ כ ORFଷ  ͲǤͷͺ כ SATͳͲଷ 
and   ȟSAT െ ͳͲሾݐሿଶଵ ൌ ͳͻǤͷ െ ͲǤ͵͵ כ SATͳͲଵ  ͲǤͺ כ ORFଵ ȟSAT െ ͳͲሾݐሿଷଶ ൌ ͳͻǤͷ െ ͲǤ͵ כ SATͳͲଶ  ͲǤͶ כ ORFଶ ȟSAT െ ͳͲሾݐሿସଷ ൌ ͳͻǤͷ െ ͲǤ͵ כ SATͳͲଷ  ͲǤͷͷ כ ORFଷ. 

 

From these equations several important implications can be seen. When considering 

ORF, note that the average slope coefficient was negative (i.e., -321.52). This phenomenon 

speaks to the nature of change scores; that is, one must account for all the individual components 

predicting the change score coefficient when considering an estimation of individual change 

scores. For example, taking the mean ORF and SAT-10 score at grade 1 (i.e., 58.07 and 566.53, 

respectively) and substituting into the ȟORFሾݐሿଶଵ equation gives an estimated latent change 

score of: ͵ͺǤͷ ൌ െ͵ʹͳǤͷʹ െ ͲǤ͵͵ כ ͷͺǤͲ  ͲǤ כ ͷ. 

As such, an individual who is average with regards to both ORF and SAT-10 in grade 1 is 

estimated to change approximately 39 wcpm between grade 1 and grade 2 for their oral reading 

fluency. In the same way, the mean grade 1 ORF and SAT-10 scores can be substituted into the 

equation for ȟSAT െ ͳͲሾݐሿଶଵ: ͵Ǥͻͻ ൌ ͳͻǤͷ െ ͲǤ͵͵ כ ͷǤͷ͵  ͲǤͺ כ ͷͺǤͲ, 

indicating that students with average grade 1 ORF and SAT-10 scores are expected to change 

37.99 points in their SAT-10 scores from grade 1 to grade 2. Both of these estimated latent 

change scores mapped well onto their descriptive counterparts from Table 1, whereby the mean 

difference between grade 1 and grade 2 ORF was 40.11 points (compared to expected, estimated 
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change of 38.56), and the mean SAT-10 difference between grade 1 and 2 was 38.84 points 

(compared to the expected, estimated change of 37.99 points).  

When considering the individual model parameters, the auto-proportion coefficients for 

ORF and SAT-10 only slightly varied in its strength to the change score over time, ranging from 

-.33 to -.40 for ORF and -.33 to -.37 for SAT-10 when accounting for the other variables in the 

model. The positive coupling coefficient for ORF to SAT-10 and for SAT-10 to ORF indicated 

the presence of a strong leading indicator effect. Herein lies a strength of the LCS model 

compared to parallel process models; typically, growth models would not easily allow for the 

testing of coupling effects for specific change components in the model. Within Figure 7, it can 

be seen that the influence of ORF in grade 1 (i.e., y1) on SAT-10 change between grades 1 and 2 

(ǻx21; .78) is slightly stronger compared to the association between ORF in grade 3 (i.e., y3) 

and SAT-10 change between grades γ and 4 (ǻx43; .55). The unique, simultaneous estimation of 

the coupling and auto-proportion effects allows for a potentially greater understanding of 

individual differences in change that would be obfuscated by using a growth model that averages 

the change over all times points. 

 A limitation of the bivariate LCS models is that constructing individual growth curves 

poses a particular challenge because each outcome is directly influenced by the other. 

Subsequently, a more comprehensive way to view the joint, estimated trajectories of ORF and 

SAT-10 is through a vector field plot (Figure 7, right). The arrows represent the initial values of 

each ORF-SAT-10 combination, and the direction of the arrow shows the type of expected 

change to occur from the initial status combinations in the vector field. For example, arrows in 

the upper left-hand portion of the figure reflect those individuals who start with relatively high 

ORF scores and low SAT-10 scores. Most of the arrows in this section of the graph point 
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downward and to the right, indicating that the expected scores are such that ORF scores decrease 

over time but SAT-10 scores increase over time. Conversely, scores toward the lower, left 

portion of the graph have arrows which are low in both ORF and SAT-10 and point upward, 

indicating that students increase in both ORF and SAT-10. Thus, the vector field is useful for 

identifying individuals who may be growing in both scores over time, growing only based on one 

outcome, or those with an expected decrease in both, such as individuals in the upper right hand 

portion of the graph. A particular nuance of the vector field plots is that they contain the joint 

expectation of growth across the distribution of both scores, which may be somewhat misleading 

in that it could suggest as many students are decreasing in their expected trajectories as those 

who are increasing. A useful mechanism to evaluate where the concentration of student joint 

development in skills occurs is to overlay a scatterplot for a random selection of individuals in 

the sample, as well as a 95% density ellipse. The density of the scatter can better facilitate which 

of the arrows in the vector field reflect actual observed performance. Based on the inclusion of 

these two elements, it can be observed that most students were in the lower middle or lower left 

hand portions of the figure, which is reflective of those students who have expected positive 

growth in both ORF and SAT-10 scores from first to fourth grades. 

Discussion 

 The goal of this article was to introduce the reader to latent change score modeling and 

highlight its complexities and the information it yields in the context of traditional latent growth 

models. Modeling individual trajectories in educational research presents several complex issues 

that have previously been evaluated using either structural or dynamic modeling. Each has its set 

of distinct advantages and disadvantages, yet the strengths of both may be combined in the LCS 
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model. Such a framework enables one to understand the nature of change for a given assessment, 

as well as the determinants of such change (McArdle & Grimm, 2013).  

A distinct advantage of using the LCS model with developmental data is that it allows 

one to disaggregate growth into multiple change scores, which can be useful in isolating where a 

student is likely to change the most. The model coefficients from Figure 5a highlight that the 

direct/indirect effect portions of the model are useful in understanding the effects on change. The 

auto-proportion coefficient for both SAT-10 (-.33, -.36, -.37) and ORF were negative (-.33, -.40, 

-.36), suggesting that when accounting for the average growth rate, individuals who start low 

change more. The positive and significant coupling effects for both SAT-10 to ORF (.67, .62, 

.58) and ORF to SAT-10 (.78, .64, .55) demonstrate the tendency for students with higher scores 

at previous time points on one skill to change more positively over time on the other. This 

potential Matthew Effect (Stanovich, 1986), whereby “the rich get richer and the poor get 

poorer,” shows an increasing gap in higher performing and lower performing students over time. 

This would not have been captured in traditional growth models to the same extent as LCS 

models. 

Moreover, not only are the dynamic growth and direct/indirect effect portions of the 

model useful to understanding change, but the coupling effects may assist in identifying which 

predictors yield the most useful information about change. In the current illustration it was found 

that prior ORF performance was a strong, positive predictor of change in SAT-10 in addition to 

the strong, negative effect of the SAT-10 auto-proportion coefficient. This finding, in line with 

previous studies showing the large effect of fluency on reading comprehension (e.g., Kim, 

Wagner, & Foster, 2011), may assist in yielding new understanding about reciprocal causation 

when predicting individual differences in fluency type outcomes. At the same time, it is worth 
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noting that the interpretation of model coefficients requires more focus compared to traditional 

growth curve models. Because the LCS model includes latent slope and auto-proportion effects, 

the interpretation of each is in reference to the other. As such, the LCS model can be viewed 

similarly to a non-linear, quadratic latent growth model such that it is necessary to account for 

multiple parameters in the model when attempting to understand change over time. Just as the 

non-linear model requires a first-order derivative of growth to estimate instantaneous change 

(Raudenbush & Bryk, β00β), so does the LCS model require a “plug-and-chug” in the vein of 

Eq. 6 and 7 to obtain the full benefit of interpreting model results. 

Model Considerations 

In the present design, the LCS model was selected based on both traditional criterion and 

relative fit indices, as well as for theoretical reasons. It is worth noting at this point that when 

evaluating Table 2, both the dual change and the freed loading models provided acceptable fit to 

the SAT-10 and ORF outcomes. An implication of this finding is that just as the differential 

constraints on auto-proportion and error variances led to better or worse fit in the dual-change 

LCS models, so does differential treatment of loadings and error variances in other model 

specifications lead to better fitting models. The difference in fit between the linear and freed 

loading model sets, both constrained and unconstrained error conditions, was due to how the 

loadings themselves were treated (i.e., fixed in the linear model and estimated in the freed 

loading model). The difference between the proportional change and constant change models 

also lies in what portions of the model were fixed and freed (i.e., constant change was fixed in 

the proportional change model, and proportional change was fixed in the constant change 

model).  



32 Longitudinal Model Applications 

 

 

Within the LCS applications here, the selection of using dual change 4 versus dual 

change 3 for both SAT-10 and ORF was guided by achieving the best model fit compared to 

other specifications. When comparing linear, non-linear, auto-regressive, latent change, and 

other longitudinal models and selecting the “most appropriate” model, one should do well to 

look beyond just fit, as a good-fitting model can be achieved based on combinations of relaxing 

or restricting model constraints. As many of the models tested are nested versions of each other, 

it is important to study the connection each model has with each other to understand the common 

and unique aspects each one provides when understanding developmental trends. 

Extensions and Limitations 

The univariate and bivariate examples both illustrated how the LCS model can be applied 

to data when there is one measured variable per construct at each measurement occasion. 

Researchers frequently have access to multiple measures of a given construct such as multiple 

passages for ORF, which allows a common factor to be estimated as a function of the shared 

variance across the individual passages. McArdle and Prindle (2008) used a common-factor LCS 

model to evaluate the impact of cognition training on the elderly. Similarly, Calhoon and 

Petscher (2013) used a common-factor LCS model to test the impact of different reading 

interventions for middle and high school students, and Quinn et al. (2015) used a common-factor 

LCS model to examine the bidirectional influences between vocabulary knowledge and reading 

comprehension. A notable difference between the examples presented here and the common-

factor LCS model is that there is a strict requirement for invariance of the factor loadings across 

the measurement occasions (McArdle & Hamagami, 1998). As with many longitudinal 

applications of structural equation modeling (SEM) using common factors, strict invariance is 

often not tenable (Millsap, 2012), with many models meeting requirements for partial 
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measurement invariance; thus it is important that one carefully evaluates the invariance of the 

loadings prior to proceeding with a common-factor LCS model. 

Further, previous changes predicting future changes can be estimated in these models, 

whereby the change scores can be considered leading indicators of levels of or change in another 

variable. This adds an additional component to the change score equations above, whereby a new 

predictive component comprises the change score. Grimm et al., (2012) consider this the 

changes-to-changes portion of the model, whereby recent changes can be used to predict 

subsequent changes. The ࢥ coefficient is introduced as an autoregressive component of the latent 

change score, and changes-to-changes pathways are added to the equations with the ȟ coefficient 

(Grimm et al., 2012, p. 279) to add an additional predictive component. These are not without 

limitations, though, as one is limited by computing power and sample size. Additionally, Grimm 

et al. (2012) mention the increased difficulty in interpreting the system of change by adding in 

more components to the change scores, often resulting in impractical growth curves given the 

theories regarding the construct(s) of interest.  

Additional aspects of the LCS model that may be useful for researchers working with 

fluency data are multiple-group, multilevel, and multivariate change models. As with many 

SEMs, questions about invariance of means, variances, and loadings are of interest when one has 

collected data where multiple groups are involved. Several studies have used the multiple group 

approach to evaluate how different auto-proportion and coupling effects differ between males 

and females (McArdle & Grimm, 2013), as well as whether an intervention had a different effect 

in the treatment or control groups (Calhoon & Petscher, 2013; McArdle & Prindle, 2008). We 

note that while the focus on this paper has made comparisons to several models, it is by no 

means comprehensive, and other growth specifications (e.g., piecewise, freed-loading) could be 
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compared. It is also important that in prospective planning for using the LCS, one is sensitive to 

sample-size planning and potentially use Monte Carlo simulation. 

Because fluency and comprehension data may often retain distributional properties which 

may restrict individual differences (e.g., Catts et al., 2008), or more appropriately, may mask 

differences from estimated means effects, growth models may be inefficient in capturing the 

developmental nature of change. The LCS model demonstrated equal or better model fit to the 

data compared to other models that are appropriate for longitudinal data, and displayed predicted 

individual growth curves from the change scores which were not too dissimilar from the 

observed fluency and comprehension scores or the predicted non-linear individual growth 

curves. At the same time, it should be noted that a transformation of the observed measures could 

also have improved model fit of the latent growth model. The flexibility to fit dual change, 

constant change, or proportional change models allows for researchers with longitudinal data to 

potentially obtain a richer understanding of change over time and it is our hope that these 

models, which are gaining great flexibility in software such as Mplus and R, will allow users to 

better study individual differences over time. 
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Table 1 

Descriptive statistics for oral reading fluency (ORF) and reading comprehension (SAT-10). 

 Minimum Maximum Mean SD Skew Kurtosis 

Grade 1 ORF 0 294 58.07 31.67 .80 .87 

Grade 2 ORF 0 253 98.18 33.33 .07 .63 

Grade 3 ORF 0 268 109.39 33.52 .14 .74 

Grade 4 ORF 0 294 116.98 36.31 .13 .38 

Grade 1 SAT-10 423 753 566.53 42.84 .17 -.08 

Grade 2 SAT-10 476 729 605.37 36.46 -.04 .32 

Grade 3 SAT-10 486 768 632.80 35.83 -.03 .23 

Grade 4 SAT-10 512 781 641.38 32.49 -.18 .03 

Note. ORF = DIBELS Oral Reading Fluency, SAT-10 = Stanford Achievement Test. 
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Table 2 

Model fit for differential specifications of growth models. 

Outcome Model  Ȥ² df CFI TLI BIC RMSEA  LB UB ǻȤ² ǻdf p 

ORF Linear constrained error 24085 8 .65 .73 590964 .433 .428 .738    

 Linear unconstrained error 19479 5 .71 .66 586377 .492 .486 .498    

 Freed loading constrained error 1039 6 .98 .98 567930 .103 .098 .109    

 Freed loading unconstrained error 203 3 .99 .99 567114 .064 .057 .072    

 Quadratic constrained error a 4048 4 .94 .91 570953 .251 .244 .257 20037 4 <.001 

 Proportional Change 32802 10 .52 .71 599667 .452 .448 .456    

 Constant Change 24085 8 .65 .73 590964 .433 .428 .738    

 Autoregressive LT 12353 7 .82 .84 579538 .331 .326 .336    

 Dual Change 1 1628 7 .98 .98 568513 .120 .115 .125    

 Dual Change 2 677 4 .99 .99 567581 .102 .096 .109 951 3 <.001c 

 Dual Change 3 745 5 .99 .99 567643 .096 .090 .102 883 2 <.001d 

  Dual Change 4 42 2 .99 .99 566959 .035 .026 .045 1586 5 <.001e 

SAT-10 Linear constrained error 112718 8 .74 .81 613468 .295 .291 .300 
   

 Linear unconstrained error 9369 5 .79 .74 611639 .341 .336 .347    

 Freed loading constrained error 681 6 .99 .99 602944 .084 .078 .089    

 Freed loading unconstrained error 310 3 .99 .99 602593 .08 .072 .087    

 Quadratic constrained error b 2470 4 .94 .92 604747 .196 .189 .202 110248 4 <.001 

 Proportional Change 15211 10 .65 .79 617449 .308 .303 .312 
   

 Constant Change 112718 8 .74 .81 613468 .295 .291 0.3 
   

 Autoregressive LT 14765 7 .66 .71 617022 .362 .357 .367    

 Dual Change 1 1255 7 .97 .98 603511 .105 .100 .110 
   

 Dual Change 2 919 4 .98 .97 603196 .119 .113 .126 336 3 <.001c 

 Dual Change 3 476 5 .99 .99 602746 .077 .071 .082 779 2 <.001d 

  Dual Change 4 61 2 .99 .99 602350 .043 .034 .052 858 1 <.001e 
Note. Dual Change 1 = Constrained error variances and auto-proportion, Dual Change 2 = Freed error variances and constrained auto-proportions, Dual Change 3 = Constrained error 

variances and freed auto-proportion, Dual Change 4 = Freed error variances and auto-proportion. a A non-linear model for SAT-10 was estimated with freed error variances but resulted in a 

non-positive definite and model non-convergence. b A non-linear model for ORF was estimated with unconstrained error variances but resulted in worse model fit compared to constrained 

error variances.c comparison made to constant change model, d comparison made to dual change 1, e comparison made to dual change 2 



41 Longitudinal Model Applications 

 

 

Table 3 

Model coefficient results for univariate model specifications. 

Parameter Linear Non-linear Proportional Constant DC1 DC2 DC3 DC4 

ORF Fixed          

   Intercept 67.46 59.33 72.58 67.46 58.33 58.08 58.20 58.07 

   Linear Slope 18.79 43.19 - 18.79 75.56 77.33 68.26 80.99 

   Non-Linear Slope - -8.13 - - - - - - 

   Proportional Change - - - - - - - - 

   D1->T1 - - 0.19 - -0.63 -0.66 -0.49 -0.70 

   D2->T2 - - 0.19 - -0.63 -0.66 -0.58 -0.71 

   D3->T3 - - 0.19 - -0.63 -0.66 -0.55 -0.67 

ORF Random          

   Intercept 773.68 866.28 485.29 773.68 874.92 992.82 850.97 1042.72 

   Linear Slope 11.69 104.05 - 11.69 453.61 478.33 357.12 534.61 

   Non-Linear Slope - 2.48 - - - - - - 

   Error variance G1 288.58 151.39 363.6 288.58 144.42 9.93 139.27 0* 

   Error variance G2 288.58 151.39 363.6 288.58 144.42 148.26 139.27 151.38 

   Error variance G3 288.58 151.39 363.6 288.58 144.42 100.95 139.27 97.73 

   Error variance G4 288.58 151.39 363.6 288.58 144.42 206.53 139.27 200.55 

SAT-10 Fixed         

   Intercept 573.72 566.53 574.92 573.72 566.03 566.03 566.52 566.52 

   Linear Slope 25.2 42.4 - 25.2 297.26 294.50 361.39 38.09 

   Non-Linear Slope - -3.56 - - - - - - 

   Proportional Change - - - - - - - - 

   D1->T1 - - - - -0.45 -0.45 -0.57 .002 

   D2->T2 - - - - -0.45 -0.45 -0.55     -.018 

   D3->T3 - - - - -0.45 -0.45 -0.56 -.047 

SAT-10 Random          

   Intercept 1307.45 1512.14 821.38 1307.45 1505.75 1423.66 1544.50 1252.12 

   Linear Slope 26.59 390.72 - 26.59 173.42 169.53 268.67 36.25 

   Non-Linear Slope - 18.1 - - - - - - 

   Error variance G1 440.37 323.17 510.89 440.37 311.15 434.51 301.89 558.91 

   Error variance G2 440.37 323.17 510.89 440.37 311.15 320.15 301.89 282.84 

   Error variance G3 440.37 323.17 510.89 440.37 311.15 317.53 301.89 304.71 

   Error variance G4 440.37 323.17 510.89 440.37 311.15 251.37 301.89 228.49 

Note. Linear = linear latent growth model; Non-linear = non-linear latent growth model; Proportional = proportional 

change model; Constant = constant change model; DC1 = Constrained error variances and auto-proportion; DC2 = 

Freed error variances and constrained auto-proportions, DC3 = Constrained error variances and freed auto-

proportion; DC4= Freed error variances and auto-proportion; D1->T1 = proportional change coefficient of the first 

difference score on time 1; D2->T2 = proportional change coefficient of the second difference score on time 2; D3-

>T3 = proportional change coefficient of the third difference score on time 3. *Error variance was fixed at 0 due to a 

negative residual variance.
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Figure 1. Sample latent linear growth model (top) and autoregressive latent trajectory model 

(bottom). ߟ௬= latent intercept, ߟଵ௬= latent slope, ߰= latent intercept variance, ߰ଵ=slope variance, ߰௫௬= 

latent covariances,  ߠ= latent intercept mean, ߠଵ= latent slope mean, ߳ଵିସ = observed score residuals, ߪଵିସଶ  

= residual variances.. 
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Figure 2. Sample univariate dual change score model. ߟ௬= latent intercept, ߟଵ௬= latent slope, ߰= 

latent intercept variance, ߰ଵ=slope variance, ߰ଵ= latent covariance, ߠ= latent intercept mean, ߠଵ= latent 

slope mean, ߳ଵିସ = observed score residuals, ߪଵିସଶ  = residual variances, Į = mean constant change, ȕ = auto-

proportion coefficient, ߱ଵ= change score variances, ǻyt = latent change scores, y1-y4 factor variances not 

included in figure. 
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Figure 3. Sample bivariate dual change score model. ߟ= latent intercept, ߟଵ= latent slope, ߰= latent intercept variance, ߰ଵ=slope variance, ߰ǡǢǡଵǡ= latent covariances among factors, ߠ= latent intercept mean, ߠଵ= latent slope mean, ߳ଵିସ = observed score residuals, ߪଵିସଶ  = residual 

variances, Į = mean constant change, ȕ = auto-proportion effect, Ȗ= coupling effect, ǻxt,yt = latent change scores, x1-x4 and y1-y4 factor variances 

not included in figure. 
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Figure 4. Sample parallel process structural equation model. ߟ= latent intercept, ߟଵ= latent slope, ߰= 

latent intercept variance, ߰ଵ=slope variance, ߰ǡǢǡଵǡ= latent covariances among factors, ߠ= latent intercept 

mean, ߠଵ= latent slope mean, ߳ଵିସ = observed score residuals, ߪଵିସଶ  = residual variances, Ȗ = latent variable 
regressions. 
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Figure 5. Violin plots for ORF (left) and SAT-10 (right). 
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(a)                                      (b)                                                (c)                                                (d)                                       

                      
 

               

                        (e)                                             (f)                                                         (g)                                            (h) 

    

Figure 6. Observed (a/b), Linear (c/d), Non-Linear (e/f), and Latent Change (g/h) individual growth for ORF/SAT-10 for n=10 

selected students. 
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Figure 7.  Bivariate dual change score model (left) and vector plot results (right) for ORF and SAT-10.  

 


