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¥! "!  C1 !  in electronic density of states as material goes from superconducting to normal metal state  

¥! Superconductor = zero electrical resistance  
¥! Two types: 

I.! Follows BCS theory of superconductivityÑFermi metal liquid (non-inte racting electrons)  

II.! Unknown mechanism behind superconductivityÑNon-Fermi liquid behavio r near optimal doping (correlated electrons) 

¥! BaFe2(As(1-x)Px)2 !  type II superconductor 

¥! High Tc ~ 38K at optimal doping [Fig. 1] 
¥! Exhibits strange behavior near optimal doping  

¥! Previous studies with quantum oscillations in other type II superconductor, cuprates, found mass divergence near optimal 
doping [fig. 2] 

¥! Quantum oscillations is a transport experimentÑinfluenced by scatte ring  
¥! In this experiment we will use heat capacity because it is a thermodynamic experiment to measure the effective mass of the 

electrons at the Fermi surface [Fig. 3] of BaFe2(As(1-x)Px)2  as it evolves with doping 
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¥! We were able to successfully find !" =11.92mJ/mol"K2 which is 
proportional to the density of states by suppressing 
superconductivity with magnetic field  

¥! This graph is part of a series of graphs that measure the change 
in !#  at different temperatures and dopings to see how it evolves 
along the superconducting transition phase at optimal doping 

¥! From these graphs we will be able to measure the effective mass 
of the electrons at the Fermi surface to see if the mass diverges 
as we approach optimal doping  
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¥! Heat capacity = amount of heat required to raise a certain amount of substance by 1K   
¥! Specific heat = amount of heat require to raise one mole of a substance by 1K  

¥! Heat capacity = sum of contributions from everything in material that has a heat capacity  
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¥! Measure heat capacity as a function of magnetic field 
¥!                      has no magnetic field (H) dependence [Fig. 5]  

¥! Kill superconductivity around 10T, well within range of magnet  

¥! We will know the material is in normal state when C/T stops 
changing (no longer has field dependence)  

¥! Much easier to determine change in !#  on Fermi surface 
because phonons do not have field dependence 
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¥! This experiment was performed using a sample with a doping x = 0.53 (over-
doped) 

¥! Sample is mounted on calorimeter [Fig. 6] which is then attached to a probe 
and placed in cryogenic magnet  

¥! Constant temperature = 1.75K 

¥! Increase magnetic field in increments and measure heat capacity at each 
step 

¥! We use dual slope relaxation method to measure heat capacity 

¥! Subtract heat capacity at each measured field from heat capacity at zero 
magnetic field [C(H)-C(0)] 

¥! This gives us the heat capacity of just the sample  
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¥! Suppressing superconductivity with temperature is difficult because 
the phonon contribution to heat capacity changes with temperature 
[Fig. 4]  

¥! Because the Tc of BaFe2(As(1-x)Px)2 is relatively high it is hard to get 
accurate results 
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