Some of the material in is restricted to members of the community. By logging in, you may be able to gain additional access to certain collections or items. If you have questions about access or logging in, please use the form on the Contact Page.
In this thesis, based on an orthonormal series expansion, we propose a new nonparametric method to estimate copula density functions. Since the basis coefficients turn out to be expectations, empirical averages are used to estimate these coefficients. We propose estimators of the variance of the estimated basis coefficients and establish their consistency. We derive the asymptotic distribution of the estimated coefficients under mild conditions. We derive a simple oracle inequality for the copula density estimator based on a finite series using the estimated coefficients. We propose a stopping rule for selecting the number of coefficients used in the series and we prove that this rule minimizes the mean integrated squared error. In addition, we consider hard and soft thresholding techniques for sparse representations. We obtain oracle inequalities that hold with prescribed probability for various norms of the difference between the copula density and our threshold series density estimator. Uniform confidence bands are derived as well. The oracle inequalities clearly reveal that our estimator adapts to the unknown degree of sparsity of the series representation of the copula density. A simulation study indicates that our method is extremely easy to implement and works very well, and it compares favorably to the popular kernel based copula density estimator, especially around the boundary points, in terms of mean squared error. Finally, we have applied our method to an insurance dataset. After comparing our method with the previous data analyses, we reach the same conclusion as the parametric methods in the literature and as such we provide additional justification for the use of the developed parametric model.
A Dissertation submitted to the Department of Statistics in partial fulfillment of the requirements for the degree of Doctor of Philosophy.
Bibliography Note
Includes bibliographical references.
Advisory Committee
Marten Wegkamp, Professor Directing Dissertation; Robert A. van Engelen, Outside Committee Member; Xufeng Niu, Committee Member; Fred Huffer, Committee Member.
Publisher
Florida State University
Identifier
FSU_migr_etd-3929
Use and Reproduction
This Item is protected by copyright and/or related rights. You are free to use this Item in any way that is permitted by the copyright and related rights legislation that applies to your use. For other uses you need to obtain permission from the rights-holder(s). The copyright in theses and dissertations completed at Florida State University is held by the students who author them.