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ABSTRACT

This dissertation considers optimization problems on a Riemannian matix manifold M RM N
with an additional rank inequality constraint. A novel technique for b uilding new rank-related
geometric objects from known Riemannian objects is developed and useak the basis for new
approach to adjusting matrix rank during the optimization process.

The new algorithms combine the dynamic update of matrix rank with state-of-the-art rapidly
converging and well-understood Riemannian optimization algorithms. Arigorous convergence anal-
ysis for the new methods addresses the tradeo s involved in achieng computationally e cient and
e ective optimization. Conditions that ensure the ranks of all iterate s become xed eventually are
given. This guarantees the desirable consequence that the new dynacarank algorithms maintain
the convergence behavior of the xed rank Riemannian optimzation algoritrm used as the main
computational primitive.

The weighted low-rank matrix approximation problem and the low-rank approximation ap-
proach to the problem of quantifying the similarity of two graphs are used to empirically evaluate
and compare the performance of the new algorithms with that of existing méhods. The experi-
mental results demonstrate the signi cant advantages of the new algorithns and, in particular, the
importance of the new rank-related geometric objects in e ciently determining a suitable rank for

the minimizer.
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CHAPTER 1

INTRODUCTION

In recent years, substantial progress has been made on the theory, dgai and e cient imple-
mentation of e ective algorithms to solve optimization problems with constraints that specify a
Riemannian manifold. Such problems are found in a wide variety of areas, Wi of particular in-
terest in this dissertation are those involving matrix manifolds, eg., the Grassmann manifold, the
compact Stiefel manifold, symmetric positive de nite matrices, symmetric positive semide nite
matrices with xed rank, along with associated products and quotient manifolds. There are many
important matrix-based optimization problems that have an additional constraint related to the
rank of the optimal solutions [Marll]. These problems have been solvedpff the most part, in an
ad hoc manner. This dissertation investigates optimization problems hat involve a rank inequality
constraint on a union of Riemannian manifolds. New algorithms are proposed, tl theoretical prop-
erties that in uence their convergence are analyzed and the e cieny and e ectiveness of careful
implementations on selected problems are demonstrated.

This chapter is organized as follows. In Section 1.1, an overview of optiraation problems with
rank constraints and a brief history of research on methods for solvingank-constrained optimiza-
tion are given. Rank-constrained matrix approximation in two common constained optimization
problems is presented in Section 1.2. The chapter closes in Section3lwith an overview of the

remainder of the dissertation.

1.1 The Problem of Rank-constrained Optimization
Euclidean rank-constrained matrix optimization problems have the fom
minf (X) subjectto X 2M ; (1.1

wheref : R™ "I R is a smooth objective function andM | = fX 2 R™ "jrank(X) kg,
i.e., the set of matrices of rank at mostk, In general, (1.1) is an NP-hard problem [VB94]. There

are special cases, though, where an exact solution can be found, e.g., upithe singular value



decomposition (SVD) [HJ90]. However, for many applications where the dimesionsm and n are
large or where there are signi cant time constraints, e.g., real-time ornear real-time problems,
calculating the SVD is impractical. Hence, a number of algorithms have dcused on approaches
that are faster than the SVD-based algorithm and require less memory, makig them more suitable
for such applications, see [DM05, DV06, DKM06, AMO7].

Recently, optimization on manifolds has attracted signi cant attention as a general approach
to reduce the dimension of optimization problems compared with solvig the original problem in
their ambient Euclidean space. Attempts have been made to undetand (1.1) by considering a
related but simpler problem

in £ (X): (1.2)

whereM ¢ = fX 2 R™ Mjrank(X ) = kg, [Ye05, ABGO7, MMBS13, JBAS10b, LKLS13]. SinceM
is a submanifold of R™ " of dimension (m + n  k)k, (1.2) can be solved using techniques from
Riemannian optimization applied to matrix manifolds [AMSO08].

However, a disadvantage of (1.2) is that the manifoldM y is not closed inR™ ", which com-
plicates considerably the convergence analysis and performance of anrié#ion. The solution may
be on the boundary ofM y, e.g., a singular matrix; or a convergent sequencéX,g generated by
some optimization algorithm may include a singular matrix. Furthermore, simply approaching the
boundary causes the smallest singular values become very small, leadito numerically unde ned
Hessian matrices precluding the use of some algorithms with superl@ar or quadratic convergence,
e.g., RTR-Newton algorithm [ABGO07, BakO08].

Fortunately, the di culty of (1.2) disappears when we consider the optimization problem (1.1)
since the setM  is the closure of the setM . However,M | is not a manifold, the gradient is
not de ned at singular points with rank( X) < k since the setM  is no longer smooth at those
points. Hence, algorithms for smooth manifolds are not applicable orM  directly.

To overcome this problem, alternating between xed-rank optimization and a simple update to
the rank has been employed in many papers [JBAS10a, MS13, MV14]. The optimizain scheme
is most often started with a rank-1 problem and after solving the assodited local optimization on
the xed-rank manifold, a new problem is considered on a xed-rank marifold with rank, typically,
incremented by 1. However, this scheme is usually not e cient. Soling the optimization on each

xed-rank manifold is often computationally demanding if simple manifold algorithms are used



and nding an optimal point on the current xed-rank manifold may not be r equired or useful if
the optimal for the problem is considerably distant from that point. A combined perspective on
applying a state-of-the-art Riemannian optimization algorithm to su ci ently reduce the local cost
function and altering rank appropriately and rigorously is needed.

A family of random multistart-type algorithms, called Alternating Proj ections with Backtrack-
ing and Randomization, has been developed to solve the structured lowank approximation prob-
lems arising in computational statistics [GZ13, GZ14]. This method can le viewed as a global
random search extension of the alternating projection method. Howewe it has some shortcom-
ings. First, it targets speci cally the structured low-rank appro ximation problems. Second, there
is no rigorous understanding of how to choose the values of parameters (backtracking) and g
(randomization) in the algorithm. Third, it does not increase the rank.

Very recently, a more global view of a simple basic line-search metltbon M ¢ along with
a convergence analysis has developed independently in [SU14]. The arg/ generalizes ideas
from the Euclidean projected gradient algorithm combined with an ideainspired by retraction on
Riemannian manifolds in a manner similar to the discussion later in ths dissertation. It is shown
that the tangent cone of M | at the problematic singular points has a useful characterization, that
supports the de nition of line-search schemes using gradient-relted search directions on tangent
cones to achieve linear or sublinear convergence. Based on the exglicharacterization of tangent
cones, they extend the Riemannian optimization techniques from thesmooth manifold of xed rank
to its closure. In [UV14], a rank-adaptive optimization strategy where loal optimal solutions of
some smaller rank are used as a starting point for an improved approximatin with a larger rank
is proposed. However, the rank increment is still a small xed numker each time, i.e. the rank is
increased by 1 or 2 each time, which is not e cient and a convergence angsis is not given.

This dissertation addresses combining rank inequality constraintsvith a matrix manifold con-
straint in a problem of the form

X5an k f(X) (1.3

whereM ¢ = fX 2 Mj rank(X) kg and M is a submanifold ofR™ ". Typical choices forM
are the entire setR™ ", a sphere, symmetric matrices, elliptopes, as well as spectrahezhs. The

approach developed provides a more sophisticated use of higher orderfanmation, the geometry of



the manifolds involved, and extensions to recent advances in Riemargn optimization algorithms

[Hual3].

1.2 Motivation and Applications

The rank-constrained optimization problems in the form of (1.1) have nunerous applications
and arise in diverse areas such as signal and image processing [MK97, JHSX1%ktem identi cation
[FHBO4, Mes98], computational nance [Wu02, ZWO03], low dimensional embeddig [LLR95]. Brief

introductions to two common constrained optimization problems are given in the following sections.

1.2.1 Weighted Low-rank Approximation

Approximating a given data matrix with a matrix of acceptably low-rank i s an important
problem in data analysis. It is widely used for mathematical modelingand data compression. The
rank constraint is related to a constraint on the complexity of a model that ts the data. In some
cases, the deviation between the observed matrix and the low-rank appximation is measured
relative to a weighted norm. Zero weights can be taken into account whe some entries of the data
matrix are missing or unknown. More generally, weights may be introdiced in response to some
external estimate of the noise variance associated with each measurente For a 2-D Iter design
problem [LPW97], the matrix to be approximated is obtained via a sampling procedure and the
number of samples and/or the expected variance vary among the entries. efting the weights can
discriminate between the important and unimportant elements of the data.

Finding a low-rank matrix which is an approximation to the given matri x with respect to a
certain weighted norm is an optimization problem calledweighted low-rank approximationand is
formulated as: given a real matrix R 2 R™ ", a positive de nite symmetric weighting matrix
W 2 R™ M and a positive integerk < min(m;n), ndan m by n matrix X with rank at most
k that approximates R as closely as possible

X = argmin kR Xk&; (1.4)
X2RM Mirank(X) k

where the weighted norm of anm by n matrix A is de ned as kAk\ZN = vecf Ag' Wved Ag and
ved Ag stands for the vectorized form ofA, i.e., a vector constructed by stacking the consecutive

columns of matrix A in one vector. If the weight matrix W is an identity matrix, then the problem



(1.4) reduces to the well-known unweighted low-rank approximationproblem. In practice, X is
not always required. It is often the case that a matrix X that approximates R well-enough with
rank even lower than that of X is taken as the solution to the problem. The methods discussed
in this dissertation are motivated, in part, by this practical consideration.

Unlike the unweighted low-rank approximation problem, the weighted low-rank approximation
problem has received less attention in the literature. The few reasnable algorithms available at
present are the alternating projection algorithm of [LPW97], gradient-based optimization methods
developed in [MMHO03] and a method due to Brace and Manton [BMO06] that was presnted as
a heuristic but that is derived and analyzed rigorously in this dissetation using recent advances
from [Hual3]. There are some algorithms for speci ¢ weighting matrices. Foexample, EW-TLS
[PRO2b] and GTLS [VV89] are used to solve weighted low-rank approximation prokem when the

weighting matrix W has a speci ¢ block diagonal structure.

1.2.2 Graph Similarity

When studying graphs and their structures, a common requirements the ability to compare two
graphs and quantitatively assess their similarity, i.e., given two gaphs, answer the questions\How
similar is each vertex in the rst graph to each vertex in the second gaph?" and \What is the best
match for each vertex in the rst graph to a vertex in the second graph?". One solution to these
problems is the computation of a similarity matrix S. Graph similarity has applications in diverse
elds such as image processing, biological networks, social networks arghemical compounds.

Certainly, the meaning of \similarity" is particular to the applicati on. Many kinds of similarities
have been considered, see [PDGM10] for more details about classi catioof similarity metrics. A
large class of similarity algorithms take a very local perspective on siifarity; namely, two nodes
of two di erent graphs are considered \similar" if their neighboring n odes are \similar". This is a
cyclic de nition, and very naturally leads to iterative updates by w hich similarity scores between
graph elements propagate to neighboring elements on each iteration. Blomd et al. in [BGH™* 04]
give such an iterative method to de ne a similarity matrix. However, when the graphs are large,
their algorithm becomes computationally expensive.

The use of low-rank approximation to estimate the similarity matrix h as been considered.

Ideally, the problem would be formulated as: given adjacency matriceA 2 R™ M andB 2 R" "



of two graphs Ga and Gg with m and n nodes respectively, nd anm by n matrix S with rank
at most k that approximates the real similarity matrix SB'°"d! a5 closely as possible

S = argmin kS gBlondel (1.5)
S2RM n:kSkg =1;rank(S) k

where kAkr = | i21  j=1 i&j j? denotes theFrobenius norm of a matrix A 2 R™ ". However,
the similarity matrix SB'°"del js not known and this formulation is not possible. Therefore, alternate
de nitions that in some sense are consistent with the similarity matrix SB'°"d%! gre proposed and
associated algorithms derived. In [FNDO8], Fraikin et al. approach the sinlarity matrix de ned

by Blondel et al. by a rank k matrix with k identical singular values. Cason et al. in [CAD13]
consider two kinds of low-rank approximations of the similarity matrix by using truncated SVD
with either k nonzero identical singular values or at mostk nonzero, not necessarily identical,

singular values. More detail on these approaches is given in Chapter 5.

1.3 Research Overview and Thesis Statement

The main goal of this dissertation is the development, analysis and evalua&bn of a novel ap-
proach to optimization problems with rank inequality constraints combined with matrix manifold
constraints, i.e., with constraint set M . This approach exploits the fact that M  is the union
of xed-rank manifolds, i.e.,

M =fX 2Mjrank kg= M ; (1.6)
0r k
whereM [ = fX 2 Mj rank(X) = rg is assumed to be a manifold, and so each major step of the
approach can exploit state-of-the-art rapidly converging Riemannian optmization algorithms on
M ; and a dynamic update of the rankr using a line search.

This dissertation asserts the following thesis:
1. The geometric structure of the setM  supports the

identi cation of speci ¢ relevant geometric objects on each xed-rank manifold M ;

development of a novel rank-related vector that de nes a search diretion on tangent
cones;

de nition of a novel rank-related retraction that facilitates the chan ge from one xed-
rank manifold to another one.



2. These objects, direction and retraction can be used to develop a nel approach to solve
optimization problems with rank inequality constraints.

3. The approach can exploit existing Riemannian optimization algorithms andthe associated
superlinear convergence and e ciency.

4. A systematic convergence theory for this approach can be developed thatlates the behavior
of the algorithms with respect to rank and cost function value, the parameer choices, con-
vergence rate for solving the exact optimization problem, and convergererate for solving an
associated approximate optimization problem.

5. The e ciency and e ectiveness of the approach can be demonstrated usg two key applica-
tions of rank-inequality constrained optimization.

The remainder of this dissertation is organized as follows. Chapter 2 r@ews important concepts
for Riemannian manifolds and key optimization algorithms. In Chapter 3, a nev approach to
solve optimization problems with rank constraints is proposed and theor&cal support is given.
Chapter 4 discusses the application of the algorithms based on the new apmach to weighted
low-rank approximation problems of the form (1.4). In Chapter 5, the application of low-rank
approximation of graph similarity matrix is discussed. Finally, Chapt er 6 formulates the conclusions

of this dissertation, summarizes the main contributions and indicates avenues for future research.



CHAPTER 2

REVIEW OF RIEMANNIAN OPTIMIZATION
BASICS

This chapter reviews some important de nitions and concepts of Riemaran manifolds that are
extensively used in the dissertation. Additionally, the Riemannian optimization algorithms of

interest are identi ed and characterized brie y.

2.1 Riemannian Geometry

Optimization on Riemannian manifolds (also calledRiemannian optimization) concerns nding
an optimum (global, or more reasonably, local) of a real-valued functiorf de ned over a (smooth)
manifold, and appears in a wide variety of computational problems in sciene and engineering.
Roughly speaking, a manifold is a set endowed with coordinate patchesat overlap smoothly.

Optimization on manifolds is usefully thought of as unconstrained optimization on a constrained
space. The ideas of algorithms for unconstrained optimization on a Eucliden space have been
adapted for optimization on manifolds. This required the careful recongleration of many basic
de nitions, constructs and algorithmic techniques that cannot be extended simply from Euclidean
space to a manifold. For example, addition of two points in Euclidean spae is well-de ned but
does not extend to two points on manifold, in general.

A manifold is a topological space that resembles Euclidean space near each point. Mqgoee-
cisely, each point of and-dimensional manifold has a neighborhood that is homeomorphic to the
Euclidean space of dimensiord. In Riemannian geometry, a smooth manifold of dimensiond is
de ned as a setM that locally looks like a d-dimensional Euclidean space but can be very di er-
ent globally. Since optimization generally requires taking derivatives and gradients of a function,
calculus onM must be performed. Therefore, a smooth structure orM that allows us to do the
calculation is required. A Riemannian manifold is a real smooth manifold equipped with an inner

product on the tangent space at each point that varies smoothly from point © point.



In this chapter, some ingredients of Riemannian manifolds and associatebasic computations
are reviewed followed by a summary of key Riemannian optimization algoritms. More detail can

be found in [AMSO08] and [Hual3].

2.1.1 Tangent Space and Tangent Vector

For a smooth manifold M , the most intuitive way to de ne tangent vectors, i.e., direction s of
motion, is to use curves. Let (t)
RIM ot 7 (t):

be a smooth curve onM . Given a smooth functionf on M, the function f St E( (D) is
a smooth function from R to R with a well-de ned classical derivative. This approach, combining
curves and smooth functions on di erentiable manifolds, allows the @ nition of a tangent vector.

Let Fx(M ) be the set of smooth functions de ned on a neighborhood ok 2 M , a tangent vector

is de ned as follows.

De nition 1.  ( Tangent vector). A tangent vector , to a manifold M at a point x is a mapping

from F4(M ) to R such that there exists a curve on M with (0) = x, satisfying

£= o = XLO)

t=0
forall f 2 Fy(M). Such a curve is said to realize the tangent vector x. The point x is called

the foot of the tangent vector .

The tangent spaceto M at x, denoted by TyM , is the set of all tangent vectors toM at x. It
is a linear space, i.e., closed under linear combination, with the saendimension as the manifold.

The tangent bundleTM is de ned as the union of the tangent spaces at all elements df1 :

[
™ := TyM :

x2M
A smooth vector eld is a smooth mapping : M! TM that assigns to each pointx 2M a

tangent vector 4 2 TxM , i.e.,
M TM X7V 2 TM:

The set of all smooth vector elds on M is denoted by (M ).



2.1.2 Riemannian Metric

The tangent space can be viewed as a vector space that approximates the mi#oid locally. A
Riemannian metric de nes angles and vector length in any tangent space a1 .
A Riemannian metric g is a correspondence between each point2 M and an inner product

o : TxM TxM! R. The following equivalent notation is used throughout this dissertation
&(; )=9(; )=h; ix=h;i

to denote the inner product of two elements ; of TyM and the subscript x is dropped when

context makes it clear. The notation, at [, is also used in the later sections. [ denotes a function

from TyM to Rthatis [ = g(; )forall 2 T4M . This inner product, de ned at each point

on the manifold, turns each tangent space into an abstract Euclidean spaceapable of supporting

a wide variety of algorithms. A Riemannian manifold is the combination (M ; g).

Since a Riemannian metric provides an inner product on the tangent gace, the norm induced

by this inner product can be used to de ne a distance metric onM as follows:
Z g Z,

d(x;y) = inf . g 1) ((1); (t))dt =inf , k_()kg ,dt

where is a curve onM with (0) = x and (1) = y. This de nition of distance on the manifold
allows a de nition of neighborhoods on the manifold. The open ball of radits around x, denoted
B (x), is:

B(X)=fy2M :d(x;y)< g

Finally, the idea of a neighborhood is used to de ne local minimizes for a function on a manifold.
Given a function f : M! R, a point x is a strict local minimizer if there exists some > 0 such
that
f(x)<f(y) forally2B (x):
2.1.3 A ne Connection, Geodesics, Exponential Mapping and Parallel
Translation

Many algorithms in optimization require second-order information. In gereral, this second-

order information is obtained by taking the derivative of one vector eld with respect to another.

In a Euclidean space, taking the derivative of one vector eld along anotler one, i.e.,

D ([ +] = lim. (x+t i) (). 2.1)

10



always returns a vector eld. On a general Riemannian manifoldM , however, for vector elds ;
on M, (2.1) need not be a vector eld on M even if all the operations in the expression of the
limit are well-de ned. Therefore, the principle of taking deriv atives of vector elds on manifold is

generalized to the so-called a ne connection.

De nition 2. (A ne Connection ). Let Fx(M ) be the set of all smooth functions inx 2 M ,
(M) be the set of all smooth vector elds orM . Then the a ne connection is a smooth mapping,
denoted by
r. (M) MY MmM): (; )7r

that satis es the following properties: for allf;g 2Fx(M );a;b2 Rand ;; 2 «(M),
Lr¢sg =fr +gr :F(M)-linearity in the rst argument ;
2.r (a+b)=ar +hbr : R-linearity in the second argument ;

3.r (f)=(f) +fr . Product rule/Leibniz's law.

Note that f denotes the application of the vector eld to the function f. For any smooth
manifold M , there are an in nite number of a ne connections. For a Riemannian manifold (M ; g),

there exists a unigue a ne connection that satis es two additional conditions:
1. symmetry: (r r = (f) (f)
2. compatibility with Riemannian metric: g(; )=9g(r ; )+9(;r ),

forall ;; 2 4(M). This ane connection r , called the Riemannian connection or Levi-Civita
connection of M .

A straight line in Euclidean space can now be generalized to a geodesim a manifold. Let
(M ;g) be a Riemannian manifold with connectionr . The parameterized curve :(a;b!'M s

called geodesicif and only if it is a curve with zero acceleration:

DZ

r (t) _(t) = @ (t) =0
for all t in the domain of . Note that di erent a ne connections produce dierent geodesics.
When the a ne connection is the Riemannian connection, by virtue of its compatibility with the
metric g, one of geodesics is also a length minimizing curve. This is consisit with the straight

line in Euclidean space. In this dissertation, we only consider theRiemannian connection.
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Given a point x 2 M and a tangent vector 2 TxM, there is a unique geodesic (t;x; )
satisfying (0) = x and (0) = . In addition, the geodesic also satis es the homogeneity property

(t;x;a )= (at;x; ). This unique curve de nes the mapping
Exp, : TXM!'M o TVEXpy = (L;x )

called the exponential mappingat x. If the domain of Exp, is all of TxM for all x 2 M , the
manifold M (endowed with the a ne connection r ) is termed geodesically complete Exponential
mapping gives a method to relate tangent vectors ok to elements in the neighborhood ofx. For
optimization algorithms, that may move around in the tangent space TxM in order to select its
next point in M , the Exponential mapping is one way to map the chosen tangent vector backo
manifold.

In many situations, e.g., for some Riemannian optimization algorithms, it is necessary to com-
pare or combine tangent vectors in di erent tangent spaces. Since the ane connection provides
the idea of di erentiating tangent vectors in di erent tangent space s, it can also be used to de ne
moving a tangent vector from one tangent space to another. In a Euclideanmace the simplest
such motion is parallel translation that is simply moving the root of the given vector to any other
point in the space to yield a parallel vector eld. For a Riemannian manifold parallel translation
produces a suitably generalized notion of a parallel vector eld along aiagle curve. A vector eld

on a curve satisfying % =r =0 is called parallel. Given a2 R in the domain of and
@ 2 T (@M, there is a unique parallel vector eld on suchthat (a)= (5. The operator

PP asending (a)to (b is called parallel translation along . In other words, we have

D a — .
(P * @)=0:

If r is the Riemannian connection, the resulting parallel translation is anisometry.
2.1.4 Riemannian Gradient and Riemannian Hessian

Gradient-based optimization requires the notion of a gradient as the diection of steepest ascent
of an objective function. Newton's method, requires additionally seond-order information, the
Hessian. In case of manifolds, these concepts have been generalizedhe Riemannian setting as

follows.
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De nition 3.  (Riemannian gradient). Let f be a function de ned on a Riemannian manifold
(M ;g). The Riemannian gradient of f at x, denoted asgradf (x), is the unique tangent vector in
TxM satisfying

hgradf (x); ix =Df(X)[ ], 8 2 TxM; (2.2)
where the directional derivative is denotedDf and the de nition of a tangent vector identi es

Df(X)[ ]= f .

De nition 4.  ( Riemannian Hessia. Given a real-valued functionf on a Riemannian manifold
(M ; g), the Riemannian Hessian off at a point x in the direction of 2 TxM , denotedHess (X)[ ],
is the unique linear mapping

Hesg (x) : TyM! TyM

that satis es

Hess$ (x)[ ] = r gradf (x); (2.3)
forall 2 TyM, wherer is the Riemannian connection chosen forM .

From the symmetric property of Riemannian connection, we know Hessians a self-adjoint

operator with respect to the Riemannian metric, i.e.,
Hess (X)[ 1; ix = h; Hess (X)[ Jix;

forall ; 2TxM.

2.1.5 Retraction and Vector Transport

Computationally e cient Riemannian optimization algorithms have been d erived, analyzed and
implemented in recent years by generalizing the notions of the Expoantial mapping and parallel
translation to retraction and vector transport respectively. The idea of retraction used here and in
the analysis of the Riemannian optimization algorithms of interest is dueto Shub [Shu86] (see also

[ADM * 02]).

Denition 5.  ( Retraction). A smooth mappingR : TM! M is said to be a retraction onM if,

for every x 2 M , let Ry denote the restriction of R to TxM with the following properties.

1. Rx(0x) = x, where O denotes the zero element of yM .

13



2. With the canonical identi cation To, TxM ' TxM ;Ryx satises DRx(0x) = idt,m , Where
idt,m denotes the identity mapping onTxM .

Retraction provides a potentially more e cient way to map a tangent ve ctor in TxM to an
element in a neighborhood oix than the more constrained special case of the Exponential mapping.
By creating a correspondence between the manifold and the tangent plan a retraction also can

be used to "lift" a function f de ned on a manifold to the tangent plane as follows:
i :TxM! R: 7' f(Ry()):

A vector transport is a map from one tangent space to another tangent space thais potentially

more e cient than parallel translation.

De nition 6.  (Vector Transport). Vector transport on a manifold M is a smooth mapping
TM TM!I TM :((x; ) 7T (x)2TM

satisfying the following properties for allx 2 M .

1. (Associated retraction) There exists a retraction R, called the retraction associated withT,
such that the following diagram commutes

( x x)—T’Tx( x)

R (T(x)

where (T ,( x)) denotes the foot of the tangent vectol , ( x).
2. (Consistency) To, x = x forall x 2 TyM .

3. (Linearity) T,(a x+ byx)=aT (x)+ BT ( x).

Vector transport is called isometric if it also satis es

IR (T, T x)= &( x5 x):

14



An important class of vector transports is vector transport by di erenti ated retraction which is
a vector transport given by
T, x =DRx( ) xI;

d
TxxzaRx(x*‘tx) ;
t=0

whereR is a retraction.

2.2 Riemannian Optimization Algorithms

The concept of optimization on manifolds can be traced back to the work of Lueherger [Lue72,
Lue73] in the early 1970s and earlier where he views equality constraints aseaing a surface in
R" and describes an idealized line search along geodesics on the surfaklawever, this approach
is not computationally feasible, in general, and was not pursued largely fothat reason. More
importantly however, as has been shown recently in great detail, for rany optimization algorithms
on manifolds, an approximation of the geodesics is enough to guarantee the sieed convergence
properties.

The idea of carefully considering e cient computation has been investigated in several spe-
ci c contexts. Gabay [Gab82] proposed a Newton method on embedded subméald of R" in
1982. He uses projective methods to compute a gradient vector tangent tohe submanifold,
computes a minimum in R" along this direction, then projects the minimum point back onto
the submanifold. Smith [Smi93] analyzed the optimization of di erentiable functions on general
Riemannian manifolds in 1993, generalized three algorithms (steepest deent, Newton's method
and conjugate gradient method) onto Riemannian manifolds and proves theiconvergence. Many
other e orts have also attempted to keep the computation required at aceptable levels, see
[DPMO02, EAS98, MM02, OW00, Man02, HT04].

While Riemannian Newton-like algorithms are able to achieve superlinar and quadratic con-
vergence, there are some disadvantages: rst, the Newton iteration reqtes the exact solution of a
linear system at each step, which increases the computational cost. 8end, there is ho guarantee
that the algorithm will converge to a local minimum. Without appropriate checks, it will converge

to the closest critical point, which might be a local maximum, local minimum, or a saddle point.
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Finally, the method may not even converge to stationary points, unles it satis es some strong
conditions, like the convexity of the cost function.

In 2008, the dissertation of C. Baker tames Riemannian Newton-like methodéy developing a
complete convergence theory, implementing a numerical library andanalyzing the performance of
a Riemannian trust-region family of methods (RTR-Newton) [Bak08] and [ABGO07]. Riemannian
trust-region methods construct a quadratic model of the objective tinction f around the current
iterate and produce a candidate new iterate by (approximately) minimizing the model within a
region where it is "trusted".

Baker's approach follows the "lift-solve-retract” procedure to solve the constrained problem.
First, a retraction R is chosen on the Riemannian manifoldM and used to "lift" the cost function
f on M to a cost function fx = f Ry on the tangent space M for any point x 2 M . Since
T«xM is an Euclidean space, a quadratic model (trust-region subproblem)si then de ned on TxM
and a minimizer of the subproblem (or at least a point that su ciently r educes the cost function)
is computed by the "inverse-free" truncated conjugate-gradient mehod [Ste83]. This minimizer
is then retracted back from TxM to M using Rx. This point is a candidate for the new iterate,
which will be accepted or rejected depending on the quality of the agrement between the lifted
cost function f* and the function f itself. The approach requires the exact second-order term,
i.e., the Hessian off , or more usefully the action of the Hessian on a tangent vector (or a very
good approximation) which may not be acceptable in terms of computationalcost. Huang's work
described below provides a solution to this computational cost di culty.

The book by Absil et al. [AMSO08] provides an excellent introduction to the area including
a computationally-oriented description of the geometry of manifolds through the dissertation of
Baker.

More recent e orts have concentrated on considering generalizing nteods based on line-search-
based Euclidean algorithms that achieve superlinear and quadratic convgence to a Riemannian
setting in a systematic manner. For example, besides the Newton mhabds, quasi-Newton methods
are extensively used on optimization problems in Euclidean spaces. hey achieve superlinear con-
vergence without computing the Hessian or a good approximation of the lirar system de ned by
the Hessian. One of the most successful of these is the Broyden-Eher-Goldfarb-Shanno (BFGS)

method and the associated restricted Broyden Family of methods.
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In 2011, C.-H. Qi proposed and analyzed an approach to generalize BFGS method ond®an-
nian manifolds and developed the convergence analysis in her dissertan [Qill]. The Riemannian
generalization of the BFGS method combines the retraction-based ideagbove with vector trans-
port, which is used to connect di erent tangent spaces. The basic sp is the following: given a
smooth cost function on a Riemannian manifoldM with Riemannian metric g, the Riemannian
BFGS (RBFGS) de ned the search direction px 2 Ty, M at iteration k as the solution to the
equation Bxypx = gradf (xx), where By is a linear operator that approximates the action of the
Hessian in an appropriate direction and that is updated on each iteration. (Aswith Euclidean
BFGS a version that propagates the inverse oBy is also developed.) The new iterate pointXy.1
is generated by an appropriate line search method with step sizey, i.e., Xk+1 = Ry, ( «Px)-

The most important aspect of the Riemannian BFGS algorithm is the manner n which By
is updated since the classical update formulas used in Euclidean spag have no meaning in a
Riemannian manifold setting. Qi proposes the following update formulafor By based on the vector
transport T with associated retraction R to de ne a linear operator By+q : Tx,,, M!  Ty,,, M,

Bisk(Bj.sk)! N iYL
(Bs)lsk Vs«

Bik+1 = Bk

where al denotes the at of a and A denotes the adjoint operator ofA, s, = T ok kPR)s Yk =

gradf (Xk+1) T pc(gradf (xk))and By =T ,p, Bk T 1 . The update formula for, Hy = By Lis

k Pk

(Feyi)tse  sk(Fiyk) N skyk (e yi) sk N sksk .

Hew = H ,
LT T s skyk (Yksk)2 sl.yk

Hyx T 1. This approach o ers the advantage that it is not necessary to solve

whereHy =T WP

k Pk
a system of equations. Qi's dissertation includes a generalization oht Dennis and Moe condition
to the Riemannian setting. However, Qi's convergence analysis is regted the approach of BFGS
on Riemannian manifold based on exponential mapping and parallel transport.

Ring and Wirth [RW12] improved on Qi's work with an approach to generalize BFGS to a
Riemannian manifold in 2012. They consider an in nite dimensional manifoldand prove superlinear
convergence under some speci ¢c assumptions [RW12, Corollary13]. Whileohrequiring exponential
mapping and parallel vector transport, the analysis requires the use o# di erentiated retraction

as the vector transport which is usually computationally expensive.
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Most recently, W. Huang's dissertation [Hual3] takes a very large step forwat in the un-
derstanding and design of Riemannian quasi-Newton methods and computainal e ciency for
both line-search based algorithms and trust-region-based algorithms. Huanproposes a systematic
generalization of three well-known unconstrained optimization approaclks from Euclidean spaces
to Riemannian manifolds: the Broyden family of methods, the symmetic rank-one trust region
method and the gradient sampling method for both continuous and partly snooth cost functions.
The dissertation includes a complete convergence theory, a comprehsive implementation strat-
egy for library design (demonstrated by an implementation to support the empirical studies of the
dissertation) and strategies for large scale problems for an appropriate sget of the methods.

As in the Euclidean case, the Riemannian Broyden family is de ned bytaking a linear com-
bination of the Riemannian Davidon-Fletcher-Powell (DFP) and the Riemannian BFGS methods

based on a parameter . Huang gives the formula of the important updates step as follows

Bicsk (Bjcsk)! N YiYk N

Bk+1 = Bk
' (B.s)lsc  yksk

k9(Sk; Bicsk) Vi Vk;

Yk Bl Sk -
a(yk:sk)  g(sk:Bisk) and By = Ts

When =0, the Riemannian Broyden family of methods reduce to Riemannian BRGS methods.

where vy = Bk Tg 1p , Ts is an isometric vector transport.
k Pk

k Pk
The restricted Riemannian Broyden Family is de ned by convex comhbnation and the update
preserves the positive de niteness of the Hessian approximation wdn suitable restrictions are
placed on the step size and vector transport. When the combination is notconvex the family
becomes the entire Riemannian Broyden Family. In the latter case, anvergence behavior and the
choice of i is more involved as in the Euclidean case. The well-posedness of thedgden Family
(restricted and not restricted) and the convergence rate as a functin of  are analyzed.

The convergence theory includes several novel extensions. Riem@an Dennis and Moe condi-
tions are developed that subsume that of Qi and characterizes the reqred correspondence between
the action of Bx and the true Hessian to ensure superlinear convergence for optimizatn problems
and the related, more general, problem of nding zeros of Riemannian vectr elds. The theory also
introduces a key result that allows superlinear convergence of theestricted Riemannian Broyden
Family while avoiding the unacceptably large computational load of the di erentiated retraction
required by Ring and Wirth. This is the notion of the locking condition that speci es the rela-

tionship between the vector transport used to the di erentiated associated retraction. The locking
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condition and Riemannian Wolfe conditions are key to guaranteeing both suprlinear convergence
and well-posedness of the Riemannian Broyden Family. In general, théheory weakens the re-
quirements on retraction and vector transport, thus subsumes the edier Riemannian BFGS work
of [Qill] and [RW12], and extends signi cantly the understanding of Riemannian quasi-Newton
methods.

In Euclidean spaces, the symmetric rank-1 (SR1) method is a membeof the Broyden Family
de ned by a nonconvex combination. The update in SR1 method does not mserve the positive
de niteness and was for a long time considered to be an ine ective miod. However, the SR1,
in fact, has a key di erence from the Broyden Family updates: it provides better approximation
of the action of the Hessian on the entire space, i.e. not just in the singl search direction of
Broyden's methods. As a result, SR1 underwent a revival for Eugtlean optimization. Huang's
dissertation generalizes this to the Riemannian setting and proposesombining Riemannian SR1
with a Riemannian trust-region method that makes use of all the direcional information of Hessian
approximation. The Riemannian symmetric rank-one trust region methads (RTR-SR1) is an e -
cient way to solve the problems. Its convergence analysis in the Rieannian setting when restricted
to the Euclidean setting actually extends the Euclidean resultsin the literature. It also provides a
way to avoid requiring the locking condition since a line-searchapproach is not taken.

For large scale problems, saving storage is required for a practical algohim. Huang develops,
analyzes and empirically evaluates limited-memory versions of RTR-R1 and RBFGS, that only
store a few vectors that implicitly represent the update Bx. The exploitation of these methods for
large problems are crucial when considering the problems in this déertation.

Finally, to solve the optimization of partly smooth functions, Huang also generalized the gra-
dient sampling methods from Euclidean spaces to Riemannian manifokl We do not review this
method here since the functions considered in this dissertatiorand the approaches taken do not
require considering nonsmooth situations. However, as noted belownethods for partly smooth
cost functions may be useful when attempting to exploit higher orde information in ways di erent
than those pursued in this dissertation.

The exploitation of these state-of-the-art optimization algorithms in th e solution of rank-
inequality constrained problems of the form (1.1) introduced in Chapter 1 on the xed-rank mani-

folds is a main motivation for this dissertation.
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CHAPTER 3

RANK INEQUALITY CONSTRAINED
OPTIMIZATION METHODS

The main approach to solving optimization problems with rank inequality constraints and its

analysis are presented in this chapter.

3.1 Problem Statement and the Tangent Cone

Combining rank inequality constraints with a matrix manifold constrai nt results in a problem
of the form

X5an k f(X) (3.1)

whereM | = fX 2 Mj rank(X) Kkg. M is a submanifold inR™ ". The problem (3.1) does not
require the cost function de ned on M , however, it is assumed throughout that it is since many
applications give such a cost function [MMHO03, CAD13].

The Euclidean metric
gf(A;B)= MA;Big :=tr( ATB); forall A;B 2 R™ "; (3.2)

where \tr" denotes the trace of a matrix, is the simplest metric for R™ ". The metric on M is
taken to be endowed fromgF (A; B) to turn the manifold M into a Riemannian manifold (M ;g).
The setM ¢ usually does not have a manifold structure. Generally speaking, anX 2 M ¢
with rank less than k does not have a tangent space (see Section 4.3). However, for every point
in M, a tangent cone, an extension of the tangent space, always exists. The tgant cone T,Z
ofasetZ RYata point x 2 Z consists of all rays that originate from x that can be written as
the limit of a sequence of secants de ned using a sequence of points2 Z nfxg that converges to
X. Speci cally, a sequence of pointsx;j 2 Z n fxg that converges tox de nes a sequence of secants
ri originating at x and passing throughx;. The limit rays of the sequence of secants are elements
of the tangent cone atx. Note that for a given sequence of secants there may be more than one

limit ray. These objects, which are generalizations of tangent spacesotsmooth submanifolds, were
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rst used by Whitney [Whi92] to study the singularities of real analyt ic varieties, and also play a
fundamental role in geometric measure theory. Here they are used to stly the setM .
According to [OWO04], the tangent cone toM  at a point X 2 M | is equal to the set of all

smooth admissible directions forM | at X, i.e.

8

< _(0): is an smooth curve onM | with (0) = X;=
TxM = o

' and t)2M ;forallt O

Given an inner product in M , the normal cone can be de ned. Under the inner producth; ig,
the set

NxM ¢:=f 2TxM :h; ig 0,8 2TxM g;
is the normal cone toM ¢ ata point X 2M .

Remark 7. The tangent cone ofM , k < minfm;ng is not a convex set and it is not closed

under the operation of vector addition, see examples in Chapter 4.

Since a tangent cone at a point in the setM  is not necessarily closed under addition, the
properties of a manifold clearly break down. These points oM  at which there a tangent space
does not exist are those matrices with rankr < k . Note that these matrices are elements of the
manifold M ; = fX 2 Mj rank(X) = rg and the tangent spaceTyx M  is a subset of the tangent
coneTx M . Therefore, general Riemannian optimization algorithms cannot be reliab} applied
directy to M .

The set M is equivalent to Sr M. If M = R™ " then M, is a manifold (see e.g.,
[AAM14]). In order to avoid abusing the notation, R™ " denotesM ; whenM isR™ ". In general,
it is unclear whether M ; is a manifold or not. In this dissertation, the following is assumed forthe

manifold M .

Assumption 1. The Riemannian manifold M R™ M with Riemannian metric h; ig satis es

the following properties:
(A.1) M, =X 2Mj rank(X) = rg is a manifold;

(A.2) the closure of M | is a subset of or equal tavl ;
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(A.1) of Assumption 1, of course, must be checked for any particular problem. tlis true for
all of the problems considered in this dissertation. Note thatM | is the intersection of M and
RM™ ". A sucient condition for M ; to be a manifold is that the pair M and R" " intersect
transversally [GP10, Chapter 1]. (A.2) of Assumption 1 is not a strong assumption. For example,
one frequently encountered situation is thatM is a closed subset oR™ ". (A.2) of Assumption
1 is true since the closure ofM ; is a subset of or equal to the intersection of two closed sets,
R™ "=fX 2 R™ "jrank(X) rgandM [Mun0O].

3.2 A Tangent Cone Descent Algorithm

The literature on optimization on manifolds is large and growing, see Sectin 2.2 in Chapter 2.
Since we assume each xed-ranlM  is a manifold, those algorithms can be applied directly for a
speci ¢ choice ofr. The remaining issue is how to change from one xed-rank manifold to andter
xed-rank manifold. Line-search methods (or steepest descent méitods) on a xed-rank manifold

M M are based on the update formula

Xn+1 = Rx, (taP1y, M ( n)); (3.3)

wheret, O is a step-size, n 2 Tx, M, Prym, i Tx, Ml Tx M, is a projector. Therefore,
Pry,m.( n) is a search direction on the tangent space X, M (. R is a retraction of M , which
takes vectors from the tangent space back to manifold [AMSO08].

For any point X 2 M ¢ with rank less than k, the tangent space does not exist but a tan-
gent cone always does. Although the de nition of tangent cone to a closed $et a point looks
complicated, it has a simple explicit characterization for some partizlar M, see [SU14] (where
M = R™ ") and [CAD13] (where M is a sphere). LetX 2 M | have rankr k. The tangent
cone Tx M contains the tangent space %k M (. What is more, if r < k, it also contains the
curves approachingX by points of rank greater than r, but not beyond k. Therefore, from the

orthogonal decomposition and semi-continuity of matrix rank, we have
TxM (=TxM;+f x ; 2NxM\ TxMjrank( ¢« ;) k rg: (3.4)

Given this structure of tangent cone at points with rank r < k , the projection of a tangent vector

2 Tx M onto it can be calculated. We consider a general line-search method dd M ,

Xn+1 = Rx, (taP1y,m ( n)); (3.5)
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where n 2 Tx,M, Pr, Tx,M 1 Tx,M  is a projector. Therefore, Pty m ,( n)

K
provides a search direction in the tangent cone %, M  at X,, that allows us to move to another
xed-rank manifold. That is, for an iteration X, 2 M ¢ has rankr < k , any search direction
Pry.m ( n) of the form (3.4) will increase, maintain or decrease the rank for the nekiterate by
rank( « ) k r. Rank decrease only happens at intersection points of a curve on thil ; and
the boundary of M (, sayM 1. Therefore, a choice to lower rank results from a decision made in
the selection of the step size for line search methods or trust regiomethods.

A retraction that takes vectors from tangent cone Ty M ¢ back to M ¢ can be dened in a
manner that is rank-related (see Section 3.4). Given an iterateX, 2 M with rank r <k , a rank-
increasing step is taken by determining a rank-related directionvector (see Section 3.4) x .~ with
r< r~ kbased on the projection, and given, e.g., the step size that satis es g@opriate conditions.
The next iterate Xn+1 2M « M ¢ is computed by applying the rank-related retraction.

In [SU14], Schneider and Uschmajew, independently of this disseation, de ned a gradient-
related line search method for problem (1.1). The idea is similar to he approach described above
when M = R™ " They use search directions in the tangent cone at points with rank les than
k and a generalized retraction [SU14, De nition 2.4] to get the next iteration in M . They use
a practical retraction de ned as the best approximation by a matrix of rank at most k in the
Frobenius norm, i.e.

Xn+1 = Rx, () 2 argminkY  (Xp+ )Kg:
YoM

This is signi cantly simpler than the retractions discussed in Section 3.4.

Schneider and Uschmajew prove the convergence of their gradientleged projection methods
on M ¢ based on Lojasiewicz inequality [SU14, Theorem 3.9]. However, the conygmnce result
relies on the assumption, often satis ed in practice, that the limit points have rank k. Under this
assumption, a line-search method oR™, " is ultimately the same as a line-search method oiR}" ".
Linear convergence is nearly always observed in their numerical expenents, but the rates in their
theorem are not explicit, i.e., it is between sublinear and linear.What is more, they do not provide
an e cient way to update the rank. So essentially their algorithm is a steepest descent approach

on M  that ignores rank decreases and does not carefully handle rank increases
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3.3 Motivation for a New Approach

In practice, it is not easy to give a best choice of the constraintk. If k is taken too small,
the resulting minimizer of the optimization problem may not be an accetable solution to the
associated application problem, e.g., the matrix may not be approximate well enough. Therefore,
there is pressure to choose a su ciently largek based on application-related knowledge or intuition.
However, largek may increase unacceptably the computational cost since there is a telency to
use all of the degrees of freedom available to reduce the value of the cdinction, e.g., larger
rank approximations of a matrix tend to be better. This can happen evenif the minimizer of the
optimization problem has a rank signi cantly lower than the constraint k due to nite precision
e ects on rank estimation.

The rst key factor of the e ciency of any algorithm for these optimization problems is therefore
to be able to assess when increasing rank does not suitably increasetquality of the approximation
and similarly to know when decreasing rank does not introduce unaaptable approximation error.
A rigorous rank adaptation strategy must allow both of these considerations tadbe assessed e ciently
and thereby to solve an associated approximate optimization problem.

The second key factor of the e ciency of any algorithm is a superlinear cowergence rate that
is, preferably, provable. Speci cally, the analysis should idenify aspects of the problems (exact
or approximate) and algorithms that prevent or support the exploitation of r ecent algorithmic
and theoretical advances in high-performance Riemannian optimization algathms. Section 3.4

describes a fairly straightforward algorithmic approach that addresses alof these issues.

3.4 A Modi ed Riemannian Optimization Algorithm

As mentioned above, the basic approach has two components per major stefphe rstis, given
a current point X with rank r, apply one of the e cient superlinearly convergent Riemannian
optimization algorithms brie y reviewed in Chapter 2 using the necessary Riemannian geometric
objects (tangent space, Riemannian gradient, retraction, Riemannian Hesian etc.) on the xed-
rank manifold M ; to produce a sequence of rank matrices.

Due to (A.2 ) of Assumption 1, the matrices in the sequence oM ; might indicate convergence
to a lower rank matrix, i.e., on a di erent submanifold. Therefore, the nearness to a lower rank

matrix is monitored while producing the sequence. If a matrix is dose enough to matrices of lower
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rank, the iteration on M , is stopped and a rank adjustment is considered. Otherwise, the segnce
continues until an approximate optimal solution X, on M ; is found, or a matrix at which the cost
function has been reduced su ciently from its value at X . A rank adjustment is then considered in
the second component of the step. Note that the rank adjustment procedre is the same for both
of these cases.

A rank adjustment decision considers the following two functions,one is the extension of (3.1)

on M, the other is the restriction of (3.1) on a xed-rank manifold M ..

fe:MI R:X 7! fe(X); (3.6)
sothatf = fg ) (we assume the extension is well-de ned) and

fr:M, ! R:iX 7! (X); (3.7)

sothatf, = fju ,. Not all functions can be arbitrarily extended, but the extension and restriction
of (3.1) are well-de ned in all applications discussed in this disseation.

Incrementing the rank is based on the angle between the gradient dfg, denoted by grad (X)),
at the approximate optimal point X, on the manifold M and the gradient of f,, denoted by
gradf,(X), at the approximate optimal point X, on the specic rank manifold M ;. The angle

between them is = \ (gradf (X, );gradf,(X,)) = arccos k';;z?fFFé(Xf)L‘fgrfgé;r(ég );k, which is shown

in Figure 3.1. If the angle is greater than some given angleg ( 1 = tan( o)) and the di erence
betweenkgradf (X, )k and kgradf (X, )k is larger than a threshold », the rank is increased but,
of course, not beyond the boundary value ok.

Note the two parameters, ; and », only provide information about increasing rank. The
strategies of rank reduction will be discussed later since in the righborhood of a point, there exists
only points with rank equal to or greater than the rank of current point. Th erefore, the local

information cannot be used to reduce the rank.
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Figure 3.1: The plot of full gradient of a point on M, gradf (X ), and the local gradient of a
point on a xed-rank manifold M ,, gradf(X). is the angle between the two gradients and
gradf (X)) gradf,(X) represents the di erence betweenkgradf (X )k and kgradf , (X )k.

The two parameters 1; » are important for nding the exact/approximate solutions and con-
trolling the computational e ciency of the method. A smaller ; value makes it easier to increase
rank per iteration. The smaller ; is, the stricter the accuracy of the approximate local minimizer
required. In particular, convergence to critical points of (3.1) is obtained if , is set to be zero.

Furthermore, there is a relationship between the two parameters. ; can be seen as, scaled
by the norm of local gradient. Therefore, when , approaches zero, 1 is not necessary approaching
zeros since the norm of local gradient might be also small. Therefore, ireal applications, , can
be chosen small when1 is not.

When the rank is increased, a rank-related retractionR is required to determine the next point

in the iteration.

De nition 8  (Rank-related retraction). Let X 2 M ;. A mapping Rx : TxM! M is a rank-
related retraction if, 8 x 2 Tx M, (i) Rx(0) = X, (i) 9 > Osuchthat[0; )31t7! Rx(t x) is
smooth andRx (t x) 2M forall t 2 [0; ), whereris the integer such thatr r x 2 TxM

and x 2TxM ¢ 1, (i) SRx(t x)jt=0 = x.
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Note Rx is not necessarily a retraction onM since it may not be smooth on the tangent bundle

S
™ = .,y TxM. The following lemma is used to show a rank-related retraction alwgs exists.

Lemma 9. Let X 2M be a matrix of rankr. For any ~that satisesr< r~ Kk, x 2 TxM «
but x 2TxM r 1, there exists a smooth curve (t);t 2 [0; ); > 0 satisfying

1. (0)= X;

2. & 0= x;

3. the rank of (t) is equal torfor all t 2 (0; ).

Sla

Proof. For any point X 2 M ,, assuming there is a matrix X such that rank(X + X) =+ and

X + X 2 M g, consider the di erential equation on the manifold M » M

d —
0= X+ X (3.8)

where Pr T wyM ! T yM s a projector. By the analysis in [HaiO1], there exists a

M -
unique solution (t) 2 M « M to equation (3.8) for a given initial value (0) = X + X and
rank( (t)) = .

Next, we need to show such a X exists. Note that by de nition of x, acurve {t) 2M
exists such that H0) = X; $~(0) = x and x 2 TxM  x 2 TxM . 1. Therefore, there
exists a > 0, such that fort 2 (0; );rank(~(t)) rand there must exist a sequencét;g;ti! 0
such that rank(~(tj)) = +. Obviously, limy; o ~(tj)) =~(0) = X. Set X; =~(tj) X,todenea
sequence X;! O suchthatrank(X + X;)=+.

On the other hand, considering X =0, on the full manifold M the equation

has a unique solution o(t) 2 M .

Based on [Haill, Theorem 3.3 (dependence on initial value)] and the constction above, we
have a sequencei(t) 2 M , where ;(t) is the solution of the equation % (t) =P1 M. x,
rank( ;(t)) = ¥ suchthat (t)! o(t) for eacht 2 (0; ), which implies rank( o(t)) & 8t2 (0; ).

Finally, to see the rank of (t) can only be equal tory assume rst that there exists a sequence

ftig (0; ), ti! O, rank( o(ti)) = + and consider the following equation onM » M

& W=P1 M, x
dt(ti) g o(ti)(i) (3.10)
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Based on [Hai01], there is a unique solution (t) 2M « M ;t 2 [tj; ) for eacht; and rank( (t)) =
r Ast;! O, the rank is xed, i.e., rank( (t)) =+, 8t 2 (0; ), which is the desired result.
If the sequenceftjg above does not exist, there must exsit a~ such that for t 2 (0;7),

rank( (1)) < r It must be the case that
d
a (t) 2 TxM 1

and this implies

d
i 0= x2TxM

that contradicts the assumption x 2 Tx M . ;. Therefore, there must exist a curve (t) 2 M

with constant rank + for all t 2 (O; ). O

Remark 10. In fact, care must be taken because the rank of(t) can be any number as long as it is
greater than or equal to the constant-= r + r (assumingr-is less thanmin(m;n)). For example,

: : A B VI
if M = R™ " givenX = UD;V,,] 2M, x = U U-» cE V:T?
obviously, x 2 TxM rbut x 2TxM « 1. The function (t) can be written as follows and its

, Whererank(E) =,

rank is greater than K

82 3 2 3 92 .3
<D, 0O D 0 O ="V,

M= U U, Usp 40 0 ®P+t40 D, 0O+t%y n 4VT5
"0 00 0 0 O VA

The existence of such curves with rank-+ r means that when building the desired retraction it
is necessary to make sure that the minimum rank is used to avoid exssive rank increase. While
using the minimum rank increase is convenient, but not crucial, to poving convergence, it is very

important for the computational e ciency of the resulting algorit hms.

In general, for any x 2 Tx M, there existsr~such that x 2 TyM but x 2TxM (1
since; TxM 3 TxM  mintmng =T x M . We call such a vector a rank¢~related vector
and denote it by x... The choice ofr~is important since we want neither the rank increased
too conservatively, i.e., only increased by a small amount, nor too aggssively, i.e., increased to
the upper bound k directly. A reasonable r~can be obtained such that the angle between the full
gradient, gradf (X ), and the rank-rrelated vector, x.r, iS less than a certain value”. Assume
4 =tan( "), it is related to parameter 1, i.e., it cannot go beyond ;. By adjusting the value of 4,

we are able to control the rank increment. The largerr~we want, the smaller 4 is set.
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Since for any pointX 2 M , the tangent cone always exists, the projection of the full gradient

onto it is well-de ned. This motivates one way to obtain a rank rrelated vector.

De nition 11. Let X 2M be a matrix with rankr r x.risarank - rrelated vector at X

if x.r2 TxM (. Moreover, if x.r2TxM 1, then itis a rank-rrelated vector at X .

Given 2 Tx M, one practical way to obtain a rank- rrelated vector x.r is
x:r2 Prym ()= argmin K ke ; (3.11)
2Ty M ¢
where Pr,m _:TxM! TxM (is a projector.

Schneider and Uschmajew de ne a general retraction from the tangent comto the setM
[SU14, De nition 2.4]. They claim for every tangent vector x 2 Tx M, there exists an analytic
arc :[0; )!M suchthat x = _(0). However, as stated in Remark 10, the arc is not unique.
If M = R™ " the arc is chosen with rankr~and x satisfying Lemma 9, then their de nition is
similar to De nition 8. Furthermore, if M = R™ " and = k, De nition 11 is equivalent to the
de nition in [SU14, Corollary 3.3]. However, as noted earlier for e ciency and numerical exibility
the rank-related retraction and vectors are preferred, especially Wwen k is large.

Figure 3.2 shows the idea of rank--related vector and rank+~related retraction. Given a tangent
vector 2 TxM, x.r2 TxM ris a rank-~related vector satis es De nition 11. Rx ( x:r) iS a
rank-r-related retraction.

Given a rank-related vector and retraction, the next point in the ite ration is taken to be X new =
Rx (t x:r), where x.ris arank rrelated direction vector andt is the step size chosen using

the well-known Riemannian form of Armijo's back-tracking procedure

De nition 12.  (Armijo Point  [AMSO08]) Given a cost function f on a Riemannian manifold M
with retraction R, a point X 2 M , a tangent vector 2 Tx M, and a scalar > 0; ; 2 (0;1),

the Armijo pointis A =tA = ™  wherem is the smallest nonnegative integer such that
f(X) f(Rx(™ ) hgradf (X); ™ ix:
The real t* is the Armijo step size.

When the sequence of matrices produces by the iteration oM , indicates by the rank and

singular values of the matrices in the sequence that should be decreased, a direction vectory: . is
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gradf g(x) 2 TyM

————

Figure 3.2: The plot of rank-related vector and rank-related retraction. M is a submanifold of
R™ " M ;M ¢ are rank-r and rank-~manifolds respectively. X 2 M , gradfg(X) 2 TxM, x«
is a rank-~related vector and Rx ( x:r) 2 M « is a rank-rrelated retraction.

not required. The following two ways are considered for rank redudbn, depending on whether the
rank has been increased or not in any of the previous iteration. If the rankhas not been increased in
any previous iteration, given a new rankr’< r , the next iterate X ey iS constructed by a projection

of X de ned by

Xnew 2 argminkX — Xkg: (3.12)
X2M .

One practical way to nd r is by examining the numerical -rank of thin SVD of X dened in
Algorithm 1 below.

We point out that each iterate is represented by three factors (see Chapter 4). Thus, the
computation of SVD is avoided, which makes the realization of Algorithm 1 moree cient. If the
rank has been increased before, for example, assume the latest rank iament was from X; to
Xi+1, then the next iterate Xew satises f (Xnew) T(Xi) cof (Xi+1) f(Xji)), and the new
rank f = rank( X new). In this case, the iteration is updated based on the earlier informaton, i.e.,
the di erence of the function values when the rank increased, whihk is more e cient than the simple

truncation.
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Algorithm 1 Determine the , numerical rank r
Require: An matrix X 2 R™ " and a threshold .
Ensure: Rankr.
1: Find the singular values 1 2 minfmng O of matrix X;
2:r=1;
3: for i =2; ;min(m; n) do
4: if j= 1> ,then
5
6
7

r r+1;
end if
: end for

The modi ed Riemannian optimization approach is given by Algorithm 2.

For each application problem, the associated cost functions, the partiglar manifolds and, most
importantly, the representations chosen are vital considerations in naking this approach compu-
tationally e cient. For example, there is no need to repeatedly compute the SVD of a series of
matrices. These crucial aspects of the success of the proposed approamte considered in the

discussions of the application problems.

3.5 Convergence Analysis

The convergence properties of the Riemannian optimization algorithms usd on each manifold
M  are understood and well-developed elsewhere [AMS08, Bak08, Hual3, Qill]. Hmwer, given
the added complexity of the rank changing discretely, the task of proing that the superlinear
convergence is maintained for the rank inequality constrained problenrequires additional theory.

This section presents the analysis of the convergence properties of gdrithm 2.

3.5.1 Convergence Analysis for Exact Solution

For the convergence analysis, the concepts of a stationary point oM  and a radially L-C?

function are required.

De nition 13.  (JCAD13, SU14]) A point X 2 M  is a stationary point of the cost function f if

the gradient gradf (X ) belongs toNx M g, the normal cone toM | at X, i.e.,

gradf f(X) 2 NxM :=f 2TxM :h; i 0,8 2TxM o (3.13)
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Algorithm 2 Modi ed Riemannian Optimization Algorithm
Require: A real-valued fuction f de ned on M ; A retraction R on a xed-rank manifold and a
rank-related retraction R, initial iterate Xg2M ¢, 1> 0, 2;2[0;1), 3; 4; 02 (0;1);
Ensure: Sequence of iterates X ,g:
1. Find the rank r by Algorithm 1 with input X and g;
2: Set X to be one of the solutions of argmiy 5 . kKX~ Xok>2.
3: for n=0,1, 2,::: do
4:  Apply a Riemannian algorithm (e.g. one of GenRTR [ABGO07], RBFGS [RW12, Hual3],
RTR-SR1 [Hual3]) for cost function f, over M ; with initial point X, and stopat X, 2 M .,
where eitherkgradf , (Xn)k < 3 (flag 1) or X}, is close toM | ; (flag 0);

5. if flag =1 then

6: if kgradfg(Xy) gradf,(Xn)k > maxf jkgradf, (X,)k; 29 then

7 Setr~and to ber and gradf,(X},) respectively;

8: while kgradf (X}) k> 4k k do

9 Setr~to be ~+1 and  to be a rank-~related vector of grad (X,) at Xp;

10: end while

11 Obtain X,+1 by applying an Armijo-type line search algorithm along  using a rank-

related retraction;

12: else

13: If 3 is small enough, stop. Otherwise, 3 3, Where 2 (0;1);

14: end if

15.  elsefflag =0g

16: If the rank has not been increased on any previous iteration, reduce theank of X, based
on (3.12) while keeping the function value decrease, update, obtain next iterate X1

17: Else reduce the rank ofX}, such that the next iterate X 4+ satises f (Xp+1) f(Xj)

c(f (Xi+1) f(Xj)), where i is such that the latest rank increase was fromX; to Xj41,
O0<c< 1. Setr to be the rank of X 1+1;

18: end if

19: end for
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accumulation points of a sequence is called the limit set of the sequee.

De nition 14.  (JAMS08]) Let " be de ned as the pullback of through a retraction R, i.e.,
f"TM! R: 7'f R():

The function f" is radially Lipschitz continuously di erentiable ( radially L- C! function) if there
existreal gL > 0and gr_ > Osuch that, forall X 2M , forall 2 TM with k k=1, and for
all t< gL, it holds that

Iz oo < met (314

To support the exibility to choose from di erent Riemannian optim ization algorithms on the
xed-rank manifold (see Step 4 in Algorithm 2), it is assumed that all of the conditions in the
relevant convergence analyses that ensure that iterates on the xedank manifold converge globally

are met.

Assumption 2. The algorithm chosen in Step 4 has the property of global convergence. Ither
words, let fZ,g denote the sequence generated by the algorithm amdbe a nonincreasing func-
tion on fX,g. If the limit points of fZ,g are not rank de cient, i.e., ranks stay at r, then
liminf ;1 kgradf,(Z,)k =0.

Additionally, when considering an increase in rank, the analysis is onlie manifold M . There-

fore, it is assumed the lifted function on TM satis es the following property.

Assumption 3. Let f be a continuously dierentiable function bounded below inD = fX 2
M jf (X)  f(Xo)g, Dis compact. f: TM! R: 7! fg R()is a radially L-C* function with
sucient large r_ de ned in De nition 14 such that for any X;Y 2D, kal(Y)k < RL-

Lemmas 15, 16 and 17 are used to show the convergence properties of Algorithmr2Theorems
18 and 19.
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Lemma 15. Let X be a matrix with rank r. Let Rm(rn 1) be the set of all matrices with rank less

than r. Then,
Edist(X ;R™ min kX  Xkg > 0; (3.15)

m n
X2R™ ",

(rnl)) -

where Edist(X ;R™ ") denotes the distance betweeX and R™ " .. in Euclidean space.
(r 1) (r 1)

Proof. It is obvious that R™ is a closed set. Since the rank oK isr, X 2 Rm(r” " Thus,

n
(r 1

Edist(X ;Rm(r”l)) = _min kX  Xkg >0 (3.16)
X2R™ "

where Edist(X ;Rm(r”l)) denotes the distance betweerX and Rm(rnl) in Euclidean space.

O]

Lemma 16. Let X 2M ¢ be a matrix with rank k, then Tx M y =T x M , i.e., on the boundary

the tangent cone is a tangent space.

Proof. Since X 2 M ¢ with rank k is an interior point of the set M , it implies TxM ¢ =
TxM .
O

Lemma 17. Let X 2 M be a matrix with rank r and gradf (X ) be the gradient of a cost function

frat X onM . If x.isarank rrelated vector ofgradf(X) at X with =>r then
h .. gradf (X )i = k x; k2
holds.

Proof. Assume x.. is a rank rrelated vector of grad (X ) at X, it follows from De nition 11
Since the tangent cone is closed under multipliction by positive rals,t x.» 2 TxM ;8t> 0

holds. Furthermore, by De nition 11, x.r2 argmin ,1, y _kgradf ¢(X) ke and therefore
d 2. _o.
akgradf,:(X) t x:rKfji=1 =0;

which implies

h x;mgradf g (X)i = h x.e5 x; 6l = K X;r—k|2::
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The global convergence of Algorithm 2 is given in the following theorem. Itis well-known that
an occasional steepest descent step is su cient to guarantee global coewgence in a Euclidean

setting [NWO0G6, p41]. This idea is adapted to the Riemannian situation.

Theorem 18. Let f X,gbe an in nite sequence of iterates generated by Algorithm 2. Suppose =0
is chosen in Algorithm 2 and Assumptions 2 and 3 hold. Thetiminf iz kPr, m  (gradfg(Xn))k =
0.

Proof. Assumefr,g is the rank sequence associated witliX ,g. If there exists aK > 0 such that
frnOn=k:k +1::: IS @ constant sequence, then the iterates remain on a manifold of matrés with
xed rank, denoted it by r . If r is less thank, then the full gradient, gradf(X,), on M must
converge as grafli-(X,) ! 0. If this were not true, Algorithm 2 would increase the rank since this
would cause descent in the cost function, contrary tof r,gn=k:k +1:::: iS @ constant sequence. The
conclusion holds.

If r reachesk, Algorithm 2 stays on the xed-rank manifold M y and since by Lemma 16,
Tx M ¢ =Tx My, ie., the tangent cone is a tangent space and, based on convergence prapes

of any of the Riemannian optimization algorithms on the xed-rank manifold, it follows that
lim ni!rllf kgradf (X )k =lim r|1r|11f kP, m gradf g (Xn)k
=lim r|]r|11f kPry . m gradf g(Xn)k=0:
Now assumef rpgn=k: +1:: IS not a constant sequence for anK > 0 and let the subsequence
fXn, O, 2x denote the iterates that increase the rank, i.e., rankKy, +1) > rank(Xp,;). According

to Assumptions 2, the latest rank reduce iteration X, satises fg(Xn;) fr(Xm)  fr(Xp))

fE(Xn,,, ). From Step 17 of Algorithm 2, the following holds
ofe(Xn) fr(Xn+1))  Fe(Xn)  fE(Xm)  fE(Xn)  FR(Xn); (3.17)

where ¢ 2 (0;1) is the coe cient de ned in Step 17 of Algorithm 2. Therefore, ffg(Xy,)g is
nonincreasing when the rank reduces and the function is bounded b&v. Thus, the sequence of
dierences fr(Xpn;) fr(Xp,., ) must go to zero. What is more, from (3.17),fe(Xn;) fr(Xn;+1)
must go to zero as well.

By de nition of Algorithm 2 (Step 11),

fF(an) fF(an+1) C1 nj r-gradflz(xnj); njanj:
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where 2 (0;1), f n 9 is an in nite subsequence produced in Step 11 of Algorithm 2.
Contradiction is used to showhgradf £ (X, ); n; ixnj I 0. Suppose thathgradf (X, ); n; ixnj 9

0, then it must be that f n; g, 5! 0, whereK is a subsequence oK. The n,'s are determined

Mmn

from the Armijo rule, and it follows that for all n; greater than somen; , =

] i ,wheremnj is

an integer greater than zero, > 0 is a scalar. This means that the update—- n, did not satisfy

the Armijo condition, hence
fe(Xn)  fr(Rx,, (— o) < —Lhgradfe(Xn,); nixo: 8M 2K

Denoting C K
- N U RN URMS
'”nj - k n: k and "‘nj - 7];

the rank-related retraction R is de ned in De nition 8, the inequality above reads

@ () _

n;

rgradf,:(an);~njixnj; 8n; 2 K;nj n;

wheref™ (t) = fg (Rx (t )) denotes a scalar function oft, forall 2 Tx M . The mean value theorem

ensures that there existsty; 2 [0; ~n, ] such that

d : .
afinj (t)jtztnj < rgradfF(an);~nj|an; 8n; 2 K;nj n; (3.18)

where the di erential is taken with respect to the Euclidean structure on Txnj M . Sincefg 2 C!
is compact in D and k n; k k gradsf (Xn, )k, n; is upper bounded. Also, sincef On, 2k I 0,
the convergencef —, O, 2k I 0 follows. Becausefg 2 C1, the gradient satis es %finj (Djt=0 =

hgradf £ (Xn;); =, ixnj . From (3.18), the inequality

. d, . .
hgrad ¢ (Xn,); =y ix, o7 (et < (L hgradf £(Xn,); yix,, (3.19)

holds. Based on the assumption of the contradiction proof, there exista constant > 0 such that

hgradf £ (Xn;); =, ixnj < . Sincef’is radially L-C1, there exists a constantC > 0 such that

d_ . d_ . . d .
d7f ~hj ( )J :tnj d7f ~hj ( )J =0 = krgradfF(x nj ), ""'nj anj af-:nj (t)]t: tnj k CtnJ

By (3.19), it follows that
Cty; < (1 ):
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However, limy ity

; =0sincety 2 [0;~n;] and ~, ! 0, which implies < 0 and the desired

contradiction. Therefore, the convergence

hgradf £ (Xn,); o ix, ! O

follows. Based on Lemma 17, the convergence dfradf r(Xn,); n; ix, ! O gives n ! 0, which

means liminf,i;  kPr, m | (gradfg(Xn))k = 0. O

The rank of matrices in the convergent sequence must satisfy certaiproperties. Intuitively,
a convergent sequence of matrices cannot have a limit point with rank tgher than the ranks of
all X, beyond a certain point, i.e., it is not convergent if there is such a ymp, this was shown

rigorously in Lemma 15. A sequence of matrices may have a limit point wit lower rank, e.g., the
1 0 . 10
o4 ® 0o
never drops tor for any X, beyond some point in the sequence. Therefore, it is not expected #t

limit pointas n!1 offX,g= : However, note that in this case the rank
the ranks of the X, must eventually achieve the desired rankr . Thus, a local or asymptotic rank
property must hold. Such a local rank property of the convergent sequece of Algorithm 2 to an

isolated local minima is given in Theorem 19.

Theorem 19. Supposefg is a C? function, X is a nondegenerate minimizer offr on M , i.e.,
gradf (X ) = 0 and Hes$ (X ) is positive de nite. Furthermore, it is an isolated minimizer of
f on M . Let the rank of X ber k and denote the singular values oX by 1 2

r > 0. The value > = 0 is used in Algorithm 2 to compute the sequencéX,g. There
exists a neighborhoodJx 2 M such that if fXn g f X,gis a subsequence with rank increasing,
i.e., rank(Xp,+1) > rank(Xp,), and fXy g stay in Ux , then if fXn g is a nite subsequence,
liminfn;  kgradfe(Xn)k =0, elselimjiy  kgradf g (Xy, )k =0.

In addition, there exists K > 0 such that8n >K; rank(X,) r .

Proof. If fXy, gis nite, according to Assumption 2 and following the proof of Theorem 18, the
results can be obtained immediately.
Sincef is a C? function on M , gradfg(X) is a C! vector eld on the Riemannian manifold
M . From [GQA12, Lemma 14.5], there exists a neighborhoodﬂx of X and Cp; C; > 0 such that
forall X 2 Uy ,
Codist(X ;X) k gradfg(X)k Cidist(X ;X): (3.20)
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By Theorem 18, the sequencd Xy, g satis es that liminf ;3 kPr, m ,gradfg(Xn )k = 0.
Since X is an isolated minimizer off on M |, there exists a neighborhoodUyx such that if
Xn, 2 Ox |

jI!ilm dist(X ;Xn;)=0: (3.21)

Thus, taking Uy = Ox \ Oy , from (3.20), we can obtain if X, 2 Ux ,
nIilrln kgradf g (Xn, )k = 0: (3.22)
j H

Furthermore, sinceX is an isolated local minimizer with rankr , taking0 < < Edist(X ;Rmr ”1),

where Edist(X ; Rm(

" 1)) is de ned in Lemma 15, there exists a neighborhood o ,

B(X )= fXjkX X ke< g

such that X, 2B (X ). Ifrank( X,) <r , based on Lemma 15, then it must be thatkX,, X kg >
Edist(X ;R™ " ;). However, X, 2B (X ), which meanskX, X kg < < Edist(X ;R™ ")), a

contradiction. Thus, there exists K > 0 such that 8n > K; rank(Xp) r . O

Theorems 18 and 19 show the global and local convergence analyses for Algorithmwhen
2 = 0. Note that for these theorems because, = 0, it is unlikely to stop updating rank. This is
the consequence when we try to obtain the exact solution. The basic st about the rank of the
matrices in a convergent sequence is generic. If the entire sequee is converging, i.e., not just a
subsequence, then eventually the rank of the matriceX, must remain at or above the rank of X .

The best case, of course, is when rank({,) = rank( X ) for n > n . In this case, the rate of
convergence is inherited from the Riemannian optimization algorithm forthe xed rank manifold
and can therefore be superlinear. When the ultimate convergent sulegiuence does not have rank
equal to that of X , the iteration does not necessarily inherit the convergence rate otte Riemannian
optimization algorithm for the xed rank manifold.

Figure 3.3 gives an intuitive illustration of why the rank might increase while converging. No
matter how close the iterates are to the stationary point X the angle between grad(X;) and
gradf; (X;) is not approaching zero. In other words, only using angle is not enough to guantee
xed rank ultimately. In this case, the full gradient grad f£(X;) is pushing a rank increase based
on locally sound information but clearly globally, i.e., second order, ulimately misleading. Note

that eventually, after possibly repeatedly increasing the rank, grad (X;) points toward X and a
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decrease in rank (possibly only in the limit) must take place. This ndicates the clear danger, from
a complexity point of view, in using exact solution reasoning and only rst order information. As
mentioned earlier, some sort of second order information could help addss the problem. In fact,
if the angle threshold is set correctly relative to the spectrum of he Hessian atX , assuming aC?
cost function, the problem with rank increase can be avoided. Howevemgenerically, at present the
complexity of the Hessian off g is unacceptable and one adapted appropriately to a tangent cone
remains undeveloped and the subject of future work.

In the following convergence analysis, the approach of approximate optiimation, as is done in
practice for virtually all numerical optimization, is shown to restor e the expected result that the
iteration for the rank inequality constrained problem maintains the convergence rate of the xed

rank manifold algorithm.

Figure 3.3: The plot of gradient of points on M , gradf g, and the gradient of points on a xed-
rank manifold M , gradf,. The black dot line represents grad and the red dot line represents
gradf, the curve represents a xed rank manifold M ,, the circles represent the level sets of g,
X represents a stationary point.

3.5.2 Convergence Analysis for Approximate Solution

In practice, the important behavior of the iteration is how quickly and reliably the size of the
gradient can be reduced. In this section, the behavior of the iteratbn when reducing the size of

the full gradient projected to the tangent cone, Pr, m (gradf(Xpn)), is analyzed and shown to
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consistent with the behavior of the Riemannian optimization algorithm on the xed rank manifold.
This allows the iteration to keep the rank of the approximate solution assmall as possible even when
the true rank of the minimizer is larger and deals with the inevitable numerical noise a ecting local
rank. The result is given in Theorem 20. This can be used in concert wit knowledge of the cost
functions for problems discussed later to show that the value of the ast function at the approximate

solution is also acceptably close to the value at the minimizer.

Theorem 20. Let f X g be an in nite sequence of iterates generated by Algorithm 2. If, 0Ois

used in Algorithm 2 and Assumptions 2 and 3 hold then

lim niqu kPry . m (gradf(Xn))k 1+

HN‘H_
)

Proof. If there exists an in nite subsequencef Xn, g from Algorithm 2 where the requirement on
Step 6 does not hold, due tokgradf £ (X7, ) gradf (X, )k > jkgradf ; (X7, )k and kgradf ¢ (X, )
gradf (X, )k 2, then

kgradf £ (X7, )  gradf (X, )k =sin( )kgradf ¢(Xy, )k 2;

where is the angle between gradlr (X7, ) and gradf, (X7, ) and tan( ) 1. Therefore,

s 1 S !
1 1

sin( ) 2 @)

1
kgradf (X p, )k 2 1+ 5 2
1

If the subsequence is nite, then there exists &K such that the sequencd X ,g;n > K does not use
2 and, therefore, by consideringX to be the initial point of the iteration of interest the result

follows by Theorem 18. O

In addition to relating the parameters of Algorithm 2 to the size of the projected gradient, it is
also important to understand the e ect of their values on the rank of the matrices in the sequence

produced by the algorithm.

Theorem 21. Supposef 2 C2 and let X 2 M | be an isolated local minimizer with rankr

and the Riemannian Hessian off g at X , Hes$ (X ), is positive-de nite with minimal eigenvalue
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min > 0. Then for any > 0, there exists a neighborhoodJ of X such that for any X 2 U , the

full gradient is bounded below by
kgradf e (X)ke  ( min YK Kg; (3.23)

where = Expxlx and Exp denotes the exponential mapping o .

In addition, if there exists a ~< qin such that , in Algorithm 2 satises 5 < pﬁ( min
1
~)Edist(X ;N;) for somer r and the sequencd X ,g generated by Algorithm 2 stays inU- for

all n>N , whereN is an integer, then the rank of X, eventually remains at leastr.

Proof. From [AMS08, Lemma 7.4.7], there exists a neighborhood) of X , 8X 2 U,
z 1
PO 'gradfe(X)=Hessfe(X )[ 1+ (P® Hesse( () XA )] Hesse[X [ Dd; (3.24)
0

where PP is the parallel translation, is the unique minimizing geodesic satisfying (0) = X

and (1)= X, = Expxlx = 90). Furthermore, according to [AMS08, Lemma 7.4.8 ],
Z,
k (P® Hesse( () )] Hes$eX ][ Dd ke
0
Z,

=k (P° Hessg( () PO Hes$e[X 1 Dd ke
0

"(dist(X; X )dist( X; X );

(3.25)

where limgisy x;x ) o " (dist(X; X )) =0, dist( X; X ) represents the distance betweerX and X on
M . Based on the de nition of exponential mapping, dist(X; X ) = kExpxl(X)kF = k kg holds
and Z,

k ; (P® Hesspe( ()N A )] Hesse[X I Dd ke "(k ke)k ke; (3.26)

where limy . o"(k ke) = 0. Therefore, forany > 0, there exists an > O suchthat 2U :=
fYjdist(X ;Y) < g implies "(k ke) < . Since the parallel translation is an isometry, (3.24)

implies
Z
kgradf e (X)ke  k Hes$g(X )[ Jke K 1(P° Hes$e( () A ) Hes$eX I[ Dd ke
0

min K K "(K kr)k Kg:
(3.27)

Thus, the following bound holds for any X 2 U :

kgradf e (X)ke  ( min K Ke: (3.28)
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Next, we prove the rank of f X ;g remains at leastr eventually. Assuming for any , the rank

of X,, is less thanr for all n> N , whereN is an integer, Lemma 15 implies

dist(Xn; X ) k X, X kg > Edist(X ;Rm(rnl)); (3.29)

where dist(X ,; X ) denotes the distance betweeiX, and X onM . Since dist(Xp; X ) = kExpxl(Xn)kF =
kK nke, (3.29) implies

k nke > Edist(X ;R"™"})): (3.30)

Let rank(X,) = *. By assumption, " < r . Assume the angle between grafd(X,) and
gradf (Xn) is , then

kgradf e(Xn)  gradf a(Xn)ke = sin( )kgradf g (X n)ke pﬁ( min Edist(X ;R™ " ):
+
1
(3.31)

The rank is increased on Step 6 in Algorithm 2 if

kgradf (X)) gradf a(Xpn)ke > maxf jkgradf (X n)ke; 20:

Thus, there exists a ~2 (0; min) suchthatif X, 2 U-, »in Algorithm 2 satises ;< pﬁ( min
1

~)Edist( X ;Rm(r"l)), then the rank of X, will be increased to at leastr for all n >N . O

Theorem 22 shows that when started close enough t¥ , a nondegenerate minimizer of ¢, the
matrices in a sequence generated by Algorithm 2 with, > 0 remain in a neighborhood ofX and

eventually have xed rank (not necessarily the rank of the X ).

Theorem 22. Let fr be aC? function and X be a nondegenerate minimizer of g on M with
rank r (r k), i.e., gradfg(X ) = 0 and Hessg(X ) is positive de nite. Furthermore, it is an
isolated minimizer of f on M . Suppose » > 0 and Assumption 2 holds. Denote the sequence of
iterates generated by Algorithm 2 byf X g.

There exists a neighborhood oX , Ux , such thatif D = fX 2 Mj f(X) f(Xgo)g Ux ;
D is compact; ff:TM! R: 7 f¢ R( ) is a radially L-C! function with su cient large g
de ned in De nition 14 such that for any X;Y 2 D, kal(Y)k < gL, then there existsN > 0
such that

8nj >N rank (X, )=r and X, 2Ux :
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Proof. AssumefXy, g f X,gisasubsequence with rank increasing, i.e., rank{,, +1) > rank(Xn, )
and f X, g stay in Uy .

If fXy, gis a nite sequence, according to Assumption 2, we can obtain the restd directly.

If f X, gis nota nite sequence, following the proofs in Theorem 19: there ests a neighborhood

Ux of X such that for Xy, 2 Ux ,

_Ililm kgradf £(Xn, )k =0:
IR

Therefore, there exists aN > 0 such that for all an , Nj >N,
1

kgradf (X n, )k 1+ 2
1

Note by Step 6 in Algorithm 2, the ranks of f X, g are not increasing forn; >N . Combined with

Theorem 21 yields the result.
O

So by choosing an approximate solution approach with, > 0,r  r , computational advantages
are gained. (Noter can be smaller or larger thank, the constraint on rank in the optimization

problem.) This is summarized in the the following corollary.
Corollary 23. (Convergence Rate). If all assumptions in Theorem 20 hold and there éts a K
such that all assumptions in Theorem 22 hold fof X ,g, with n > K then

The sequencef X,g enters a neighborhoodUyx and remains in that neighborhood so it is
known that dist(X ;X ) andjf (X ) f(X)j are bounded based;, » and Hesgg(X ).

kKPry M (gradf g(Xn))k where is based on 1 and ».

The sequence converges oM , wherer r ,i.e., X, ! X at the rate of the local Rieman-
nian optimization algorithm.

3.6 Summary of Algorithmic and Analysis Results

This chapter has de ned and analyzed strategies for optimizing a fundbbn with a manifold and

rank inequality constraints. The main results are as follows.

1. The structure of the tangent cone and a related descent-based metkohave been described
and critigued from the point of view of convergence rate and practical peformance.
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2. The dierences in the methods by which rank is increased and deeased in descent-based
methods has been characterized.

3. Objects have been de ned that are used to carefully update the rak, i.e., rank-related vector
and rank-related retraction; Rank-related vector and rank-related retraction support increas-
ing the rank appropriately and avoid excessive increase of rank in ordeo save computations.

4. An algorithmic approach for optimizing a cost function with rank inequality constraint has
been developed. Algorithm 2 provides strategy to update the rank careflly. Parameter - is
crucial in the sense that it provides a trade-o between the accurag of solution and e ciency
of an algorithm. Setting , = 0 results in an algorithm to nd a minimizer to the optimization
problem; setting > > 0 results in an algorithm to nd an approximate solution, i.e., one that
has a small gradient, is near a local minimizer, and has a cost function vak that is close to
that at the local minimizer, most likely with a lower rank than the ne arby local minimizer.

5. A convergence analysis for exact solutions has been completed that shethe following results.
(f Xhg denotes a sequence of iterates generated by Algorithm 2.)

The global convergence analysis shows the in mum limit ofkPt, wm (gradfg(Xn))k
goes to zero as goes tol ;

The local convergence analysis shows lim  kgradf g(Xn; )k = 0 with r k where X
is assumed to be the unique minimizer in the neighborhood oK andr =rank( X ).

The local rank property shows that the ranks of all X, are eventually greater than or
equaltor .

6. A convergence analysis for approximate solutions has been completedatshows the following
results.

The global convergence analysis shows the in mum limit ofkPt, m (gradfg(Xn))k
stays small based on given parameters; and .. By assumption, the minimizer X
should be close to a matrix with low-rank. Therefore, it is desiredto ignore small
singular values and consider approximate solution that has lower rank thanX but is
near X . It follows that kPr, wm ,(gradfg(Xn))k is not expected to converge to zero
if such an approximate solution to the optimization problem is required. The global
convergence analysis shows that Algorithm 2 with , > 0 has the desired property.

The local convergence analysis shows that the ranks dfX,g are xed eventually. Pa-
rameter » is used to determine whether the rank is increased. Theorem 21 siws that
can be used to adjust the accuracy of the approximate solution. Theorem 2@roves that
the iterates in the sequence eventually have a xed rankr. Therefore, the convergence
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rate is dependent on the local Riemannian algorithm. In addition, ifr <r , then ex-
isting local convergence analyses of Riemannian optimization algorithms arapplicable,
e.g., RTR-Newton, RBFGS, RTR-SR1.
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CHAPTER 4

WEIGHTED LOW-RANK APPROXIMATION

In this chapter, the modi ed Riemannian optimization method is adapt ed to the weighted low-rank
approximation problem and its performance evaluated. In Section 4.1, thespeci ¢ formulation of
the weighted low-rank approximation problem of interest is given. Sone relevant existing manifold
algorithms are reviewed in Section 4.2. Section 4.2.3 reviews some algoritis for the unweighted
and weighted problems that have structure. Section 4.3, the Riemanrin geometry of the problem
is presented along with the geometric objects required by the propasd algorithm. Finally, the pro-
posed algorithm is empirically evaluated, including comparisons to competing manifold algorithms,

in Section 4.4.

4.1 Problem Formulation

The weighted low-rank approximation problem determines a matrix apgroximation X of a given
data matrix R that comes as close as possible with respect to a certain weighted norm:

argminkR Xk\ZN; f(X)= kR Xk =vecfR Xg'WvedR Xg (4.1)
X2M ¢

whereR 2 R™ " is given andW 2 R™ ™ js a positive de nite symmetric weighting matrix and
ved Ag denotes the vectorized form ofA, i.e., a vector constructed by stacking the consecutive
columns of A in one vector. The minimizing X in (4.1) is the best rank k; 0 <k < min(m;n), ap-
proximation of R under the normk ky . Note that for this problem M = R™ " not a submanifold.
Given the constraints, this is a nonconvex optimization problem. When the weighting matrix
has signi cant structure, there may be analytical insight into the f orm of the minimizer that can be
exploited algorithmically. For example, for the more common weighted normkX ky =tr fX TMX g,
where trf g is the trace operator andM 2 R™ " is symmetric positive de nite. In this case, the
matrix W is in fact a block diagonal matrix with blocks M. This has another common special

case whenM = |. Such problems can often exploit approaches related to truncated factaations.
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Examples of algorithms for such structured problems are brie y reviaved in Section 4.2.3 but are

not pursued further in this dissertation.

4.2 Related Work and Historical Context

In this section, two manifold-based optimization approaches for ndinglocally optimal solutions,

starting from a given initial approximation are reviewed.

4.2.1 Alternating Projections Method

Since anym-by-n matrix with rank at most k can be expressed as the product of two matrices
of dimension m-by-k and k-by-n, supposeX = UVT, U 2 R™ k:v 2 R" K, then (4.1) turns into
the following parameter optimization problem

argmin kR UVTkd; kR UVTk3 =vecfR UVTg'WvedR UVTg: (4.2)

U2RM k;y2Rn k
A well-known possibility for iteratively solving the weighted low-rank approximation problem is
the alternating projections procedure [LPW97, WAK97]. It is started fr om an initial guess of one
of the parametersU or V. Fix a value for U and minimize overV, then x V, minimize over U,
repeat until the product UVT converges. It can be shown that, in generalX = UVT converges to
a local minimum of (4.1) [Kri06] and that the local convergence rate is linar. In practice, however,

the method can be rather slow.

4.2.2 Double Minimization Method

Manton et al. present in [MMHO3] a novel reformulation of (4.1) and derived ageneral frame-
work for minimizing a cost function on a Grassmann manifold. They reformulate (4.1) as a double

minimization problem

min min kR XKk&: (4.3)
N2RY (M K} x2RM N
NTN = | XN =0

They showed that if N and X are the minimizing arguments of the two minimizations in (4.3),
then X is the solution of (4.1); the restriction XN = 0 enforces the constraint rank(X) Kk since
every column of N must belong to the null space ofX. Moreover, the inner minimization, call it
f(N),

f(N)= min kR XKk& (4.4)

X 2R N
XN =0
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has a closed form solution, given by
f(N)=vecfRg"(N In)I(N Im)™W YN 1) XN 1m)"vedRg; (4.5)

where is the Kronecker product. The cost function f (N) depends only on the range space (i.e.,
the column space) ofN, rather than on the actual value of N. That is, f (NO) = f(N) for any
orthogonal matrix O 2 R ¥ (" k) = The outer minimization can therefore be performed over
a smaller space thanfN : NTN = Ig. In fact it is su cient to minimize f(N) as a function
on the Grassmann manifold (the collection of all subspaces of a certain diension, [EAS98]). A
method that combines steepest descent and a Newton-type algorithm waderived in [MMHO3]
for minimizing f (N). They show that given N that minimizes f (N), the solution to the original

problem (4.1) is the unique matrix X satisfying
vedXg=vecfRg W (N I[N Im)™W YN 1n)] YN In)TvedRg: (4.6)

Later, Brace and Manton [BM06] used the same transformation of the problem and aplied a heuris-
tic version of Riemannian BFGS that was motivated by maintaining low computational complexity
through the suppression of vector transport. An interesting relationship with the Riemannian
Broyden Family [Hual3] and these two methods is discussed later in $8on 4.3.8.

The main problem with the reformulated weighted low-rank approximation is the complexity of
the form and computation of the cost function f (N ) in (4.5) and recovering the nal approximating

matrix X in (4.6).
4.2.3 Some Algorithms for Structured w

There are many methods that address matrix approximation problems whee the matrix W has
signi cant structure. An important theoretical tool for some of these pr oblems is the truncated
factorization. The (generalized) singular value decomposition, when tuncated to the leading k
terms, provides an optimal approximation in terms of Frobenius norm andthe matrix 2-norm.
This is referred to the Eckart-Young-Mirsky Theorem [EY36] (see for «kample the GTLS algorithm
of van Hu el and Vandewalle [VV89]). These methods have an advantage when the atrix is not
too large and most of the singular values / vectors are needed.

In [ZSJC12], the authors parameterize the approximation matrix X = LRT, with L anm  k

matrix, R ann k matrix. An iterative algorithm based on least-squares estimation is proposd
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and has been successfully used for exploiting structure, such as Heel and Toeplitz matrices, and
positive semide niteness. While this e ectively lowers the dimension of the search space, it su ers
from linear convergence. Second-order methods like Newton's methedcannot be applied easily.
This is essentially the method of Section 4.2.1 applied to a problem tiereW = 1I.

For W = |, a dynamical system low-rank approximation has been proposed by Koch ahLubich
[KLO7]. This method consists of nding a low-rank matrix on the xed-r ank manifold M , for which
the authors derive di erential equations for the factors that de ne th e rank-k approximation. By
numerically integrating this set of di erential equations, the rank can be dynamically reduced.
However, the large-scale systems involving PDEs are usually expere to solve and they did not
provide a way to increase the rank.

The total least square problem with elementwise weighting (EW-TLS) [PR02a], is the weighted

low-rank approximation problem with the weighting matrix W has block diagonal structure

2
W,
w=4 . £
Wh
whereW; 2 R™ ™ and the approximation matrix X satis es X A 0, where B 2 Rk (0 k),

In k
This weighted low-rank approximation problem can be rewritten as follbws:
!
X T 1
min min R X)W YR X)) 47
B2Rk (n k) X2Rm n i-1( I ') i ( i |) ( )

where Rj; Xj 2 R™ are the i-th column of R and X, respectively, W; is the i-th block in the
weighting matrix W. The problem (4.7) can be solved partially by minimizing analytically with

respect to X . In this way the following equivalent unconstrained optimization problem is derived
B =argmin g(B); (4.8)
B
where
X
gB)= RfzT(zwiz") 'zR;; z= BT I : (4.9)

i=1
Given an optimal solution B , X can be obtained using the expression:
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where 3
RIzT(zwizT) zw,

2
xT= § :
RIzT(zwnzT™) zw,

Premoli and Rastello proposed an iterative algorithm [PR02a] to solve this pecial case. The
algorithm is proven to be locally convergent with a super linear convegence rate [MRP" 06]. How-
ever, it is not globally convergent and simulation results suggest that the region of convergence to
a minimum point can be rather small.

For many applications where the data matrix is large, calculating the SVD @n be impractical
and other approximate methods must be considered. Baker et al.[BGV12]ansidered the problem of
restricting explicitly the amount of storage available to store an appracimate factorization based on
a dominant space that is updated as new information becomes available. Thican be applied in the
generic situation where new columns of the \matrix" correspond to obsevations of an environment
over time that are not stored or where an extremely large matrix is availalle on very slow, very
remote storage and the restricted storage is relatively small and associadl with the computational
platform used to compute the approximation. The latter case is clearlyrelevant to the analysis
of large-scale data analysis and has the signi cant advantage of allowing mulgile read-only passes
through the stored data.

An alternative to Baker et al. for large data is given by randomized or stochasic algorithms
that select a subset of the rows and/or columns of the large data matrix, posibly by taking
multiple passes through the data. The appropriate decomposition, e.g.,igenvalue or SVD, is used
to approximate that of the large data matrix, see the recent survey by Hako et al. [HMT11].

Baker et al., Halko et al. and related approaches are all motivated by very largedata and
the resulting storage constraint. For this dissertation, it is assumal that, while possibly large, the
matrices involved are not large enough to restrict access to read-only.

The modi ed Riemannian optimization method provides another way to solve low-rank approx-
imation problem. The algorithm has the following potential advantages: rst, the problem can be
solved without considering reformulation; second, the computation tme required is often less than
other algorithms, especially whenm and n are large, due to the exploitation of state-of-the-art
Riemannian optimization algorithms; third, even when the rank constraint k is chosen too large,

the algorithm allows an approximate solution of the optimization problem with a reasonable rank.
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4.3 Dierential Geometry

In this section, the di erential geometric objects used in the mod ed Riemannian optimization
method applied to the weighted low-rank approximation problem are corsidered. Speci cally, the
tangent and normal spaces, the Riemannian metric, the orthogonal projectins, retraction, rank-
related retraction and the Riemannian Hessian are characterized. Thesebjects are the building
blocks of the modi ed Riemannian optimization methods described n Chapter 3.

Recall, the Riemannian manifold comprisingm n matrices is denotedM = R™ ", the sub-
manifold of matrices with rank r is denotedM , and M | = Sr « M | is the set of manifolds
de ned by the rank inequality constraint. Using the SVD, each xed-r ank manifold M ; has the

equivalent characterization
M,=fubDVvV'T:U?2 St(m;r);V 2 St(n;r); D =diag( 1;:::; ¢); 1 r > 0g;

where St(m; k) = fX 2 R™ kjXTX = Igis the compact Stiefel manifold,l 2 R¥ ¥ is an identity
matrix and diag( i1;:::; r) denotes a diagonal matrix with 1; ; ; on the main diagonal.

The representationX = UDV T;X 2 M , is not unique. The factorization X = (UP)(PTDQ)(VQ)T,
for any orthogonal matricesP;Q 2 R" " whereP " DQ is a real nonnegative diagonal matrix is also
an SVD. Therefore, the e ect of the choice ofU, V and D on the representation of the tangent
vector X- and the determination of the factors U:, V. and D, for the next iteration X+ = Rx (X)
must be considered. The bene t of representingX using the factor U, V and D and updating them

directly is avoiding the need to compute an SVD of the iterate X when moving onM ..

4.3.1 The Tangent Cone

The tangent cone is characterized in Proposition 24 in a manner that is comgptationally advan-
tageous for the algorithms of interest in this dissertation. The tangent ®ne has been considered
when the embedding space iR™ " independently in [SU14] and their characterization is the same
as the one used here. Cason et al. in [CAD13] considered the special caselaf tinit sphere de ned

by the Frobenius norm in R™ ",
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Proposition 24. Let X 2M ( withrank r Kk, the tangent cone toM ¢ at a point X is

8 9
< UAV,T + UBV,S + U, CV.T + U, EV,), =
TX M kK -= .
'8 A;B;C;E are arbitrary matrices, rank(E) k rg
> A B V =
= U U ¢ E AN

> >
* A;B;C;E are arbitrary matrices, rank(E) k r’

In general, the tangent cone is not closed under the operator of addition. Foexample, suppose

a matrix X = Ug 1 VkT ; has rankk 1, then the tangent cone toM ¢ at X has the following

structure
A B V|T<T 1
C E V!,

where A 2 Rk D (k D:g 2 Rk D (0 k#1).c 2 RM k#) (k D.E 2 R(M k1) (0 k+1) gpg

Uc 1 Uk 12

rank(E) 1. Construct the following two matrices,

A B VA

Z1= U1 Uee diag(1;0;:::;0) VT ;, !

A B V[
C diag(0;:::;0;1) V! 4,
While both Z;1 and Z, are in the tangent cone Tx M ¢, Z1 + Z> is not.

Z= U 1 Ug 12

It is not di cult to show that the normal coneto M | ata point X is

8 9
< U Eo V) =
NxM g:=_ o
8 E, =0if r<k;E , arbitrary if r = k:'9
2 o 0 V' =

_ UoUr 9 E, vI T
> - - - ’ >
" E, =0if r<k;E , arbitrary if r = k:
4.3.2 Gradients of Interest

M | is a smooth xed-rank manifold and the tangent space is8 X = U;D,V," 2M ; [Van13],

8 9
< UAV," + UBV,S + U, CV,T =

TX M r L= . .
A;B;C are arbitrary matricesg"
2 A B VT =
= U U2 ¢ o VAN
’ >

>
* A;B;C are arbitrary matrices’
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and the normal space toM ; at the point X = UrDrVrT 2M | is

8 9

< Us EV,} =
NxM,:= s
E is an arbitrary matrix ;’9

> 0 0 VI =

- U Ue g VAN

> ) >

E is an arbitrary matrix °

where U;» and V;, are any orthogonal complements olJ; and V; respectively.
M , becomes a Riemannian manifold with the choice of a Riemannian metrichithis case, the

metric is inherited from M and is
ox(; ):=h; ig =vecf gTved g withX 2M and ; 2TxM;,:

The resulting Riemannian gradient is the orthogonal projection onto the tangent space of the
gradient of f seen as a function orR™ ",

The orthogonal projection onto the tangent space atX = U;D,V," 2M , is

PxZRm n Tx M,

Z! PxZ=U\Ulzv, V" + U U zV,» VL + Ua UL ZV VT
(4.10)
= U U z+zv,v.\! uUyTzv, v
and the orthogonal projection onto the normal space atX = U,D,;V," 2M , is
P :R™ "1 NxM;,
Z! P{Z=(lm UUHZU, VVT): (4.11)

Note the simpli cation in notation in that the subscript X indicates the element of the manifold
that de nes the tangent space.

Consider the following two function f¢ and f,:
fe:M! R:X 7'kR XKk ;

fr:M,! R:X 7'kR XKk&:

The cost function for the rank inequality constrained problem is thenf = fgjy , and f, =

feim, = fim, .
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Since the Euclidean gradient of the cost functionfr is 5fg = 2vec {(WvedR Xg), the
projection of the gradient onto tangent space, i.e., the Riemannian gradint on xed-rank manifold
M, is

gradf; .= Px( 5 fg):

Note that WvedR X g is a vector, and it must be reshaped as a matrix. The expression
vec {(WvedR Xg) is used to represent this matrix formation, where the mapping ve¢A) 7! A

is dentoed by vec 1.

4.3.3 Retraction onto a Fixed-rank Manifold

Two kinds of retraction are required for the proposed Riemannian optimkation algorithm:
retraction onto the xed-rank manifolds and a rank-related retraction. In this section, retractions
on the xed-rank manifold M ; and their relationship to the representation using the three factors
(U;D;V) for X 2M , are discussed.

Given a specic triple (U;D;V) for an X 2 M ;, according to [KLO7, Proposition 2.1], there
exists a unique representation {;D; \.) of any X-2 Tx M ; that can be computed e ciently and
satis es

X.=UubvT+unv'™+ UDV; (4.12)

utTu=o0;vTv=0: (4.13)

A method for computing (U;D; \V) is discussed in Section 4.3.4.

Once the matricesU; D; \L are known, a retraction can be applied to determineX .. There are
several retractions related to the compact Stiefel manifold and projetions that can be considered
as a building block for a retraction on M ; based on the three-factor representation oX [AO13].
Three retractions on M , are considered: thethree-factor SVD-type retraction , the three-
factor QR-type retraction and the three-factor polar-type retraction

The three-factor SVD-type retraction is a projective retraction de ned as

Rx (X)) =argmin kY (X + X)Kg;
Y2M .

wherek kg denotes the Frobenius norm [AM12]. Let 1(A); ; min(mn)(A) denote the singular

values of anm n matrix A in decreasing order. By Proposition 6 of [AM12] wheneverX_ is
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su ciently small for kXk < (X)=2 to hold, Rx (X)) exists, is unique, and

X
Rx (X_) = iUjVi, (4.14)
i=1
: T,
whereX + X_= ug Umin(m:ny diag( 15 ;5 min(mn)) V2 Vmin(m:n) 1S the SVD. Van-

dereycken [Van13, Algorithm 6] shows that the SVD-type retraction can be omputed e ciently as

follows:
Rx (X) = Us D2V, (4.15)
where
UD = QuRy;
VLD = QyRy;
D+D R/
UsDsVs = R, d/ ;

U= U Qu Us(:;1:r);

D:=Ds(l:r;1:r);

Ve= V. Qu Vs(:;1:1);
The algorithm requires the computation of two QR factorizations (one of anm r matrix and
one of ann r matrix) the SVD of a 2r-by-2r matrix and 4mr?2 + 4nr? operations in two matrix
multiplications yielding O((m + n)r2) + O(r3) operations where the coe cient of the rst term
depends on the method used to determine th&R factors.

Since the decomposition ofX = UDVT is not unique, ideally the result of retraction, i.e.,
U+ D+ V] = Ry (X)), should not depend on the particular (U; D;V) triple used. The three-factor
SVD-type retraction is clearly invariant with respect to the choice of factors.

If the assumptions onD in the triple (U; D;V) are relaxed to require only nonsingularity and
X_ is speci ed by the associated unique triple J; D;V) then a retraction that is independent of
the choice of UU;D;V) can be de ned in terms of the polar decomposition [AO13, MS13]. The

retraction is de ned as
Rx (X) = U+D+V+T; U =uf(U+W; Dy=D+D; Ve=uf(V+\

where uf f g denotes the orthonormal factor of the polar decomposition. This retraction equires

the computation of two QR factorizations (one of anm r matrix and one of ann r matrix)
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and SVD's of twor r matrices for O((m+ n)r2)+ O(r®) operations with coe cients smaller than
the three-factor SVD-type retraction. So there is some bene t with respect to computational cost,
however, this is only true on steps where estimates of the singularalues ofD . are not needed for
rank adjustment, e.g., while the iteration remains onM ..

If the matrices D and D. are required to be nonnegative diagonal matrices the retraction must
be modied. If this can be done with an acceptable increase in computabnal complexity then
rank adjustment using Algorithm 1 can be done more often.

The three-factor Polar-decomposition-type retraction that imposes the diagonal require-
ment is de ned

Rx (X) = UyDs V)] (4.16)

where

UsDsV4d = D + D using SVD;

Us = uf (U+ WUs;

D+ = Dg;

V, = uf (V + \L)Vs
and the symboluf ( ) denotes the orthogonal component of the polar decomposition. This retractn
requires the computation of two QR factorizations (one of anm r matrix and one of ann r
matrix) and SVD's of three r r matrices, and 2nr 2+2 nr 2 operations in two matrix multiplications
yielding O((m + n)r?) + O(r3) operations.

Three-factor retractions that require fewer computations but that are not guaranteed to be
invariant to the choice of (U;D;V) are also possible. Empirical evidence presented later in this
dissertation demonstrates that this invariance is not necessary to adeve superlinear convergence
but su cient conditions on a three-factor retraction for superlinear convergence are not yet known
and is the subject of future research.

The three-factor QR-type retraction | is de ned as

Rx (X) = UsD: V. : (4.17)
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where
UsDsVe = D + D using SVD;

U: = gf (U + WUs;
D+ = Ds;
Vi = gf(V + L) Vs;
and the symbol gf () denotes the Q-factor of the thin QR decomposition of its matrix argument

This saves SVD's of twor r matrices. Note that D and D, are diagonal matrices.

A second three-factor QR-type retraction can be de ned that avoids the SVD. The QR-type

retraction Il is de ned as
Rx (X) = U+D+V, : (4.18)
where
Us = gf (U + W);
Dy =D+ [y

Ve = gf(V + \V);
and the symbol gf () denotes the Q-factor of the thin QR decomposition of its matrix argument
Note that this de nes a retraction even if D and D, are not diagonal matrices. If they are
constrained to be diagonal thenD must then also be a diagonal matrix. This is discussed in

Section 4.3.4.
4.3.4 Computing (U;D;\)
Given the triple (U; D; V), the triple (U;D; \.) that satis es
X.= UDV'+uDnv'T+ UDV;

can be computed e ciently [KLO7, Proposition 2.1] and, if necessary, can beconstrained so that
D is a diagonal matrix.
SinceU 2 St(m;r);V 2 St(n;r) and the form of the tangent space at a pointS is
TsSt(n;r)=fS+ S,K: T=  ;K2RM" g
it follows that
X.=(U g+ UKy)DVT+UDVT + UD(V v + VuKy)T

(4.19)
=U( yD+D+D {)V'+ U, KyDVT + UDK |V, ;

57



where [ = u; v = v, Ky 2 RM 1 r-ky, 2 R(™ ") T agre arbitrary matrices, and the
subscript ? indicates a matrix with the maximum number of columns orthogonal to the matrix
argument.

In order to get explicit forms of W and \/, the matrices y, v, Ky, and Ky are needed. By

equation (4.19), the following hold

uD+D+D | =U"xXv; (4.20)
Ky=UJXxvD 1 (4.21)
Ky =D UTXV,: (4.22)

If U= U, Ky and L = V, Ky then I is unique but not necessarily diagonal [KLO7]. This is
easily derived from (4.21) and (4.22) it follows that

U=U,Ky=UUJXxXVvD t=(1 uuTxvD ?

V=VoKy =VoVoXTUD T=(1 vvh)xXTuD ?
and from (4.20)
D= UTXV:

So given them n matrix X the triple (U;D; \.) is uniquely de ned [KLO7].

If D is assumed diagonal therD ; must be diagonal if D is required to be diagonal. This can be
achieved using nonzero y and . Specically, if D and D are diagonal thenlUW and \_ are unique
and easily computed. In the following, we seek the expression ofJ;D; \.) with D is a diagonal
matrix.

Since y and v are skew matrices their main diagonals are 0 and from (4.20) a diagondh
follows

D =diag(U™ XV ); (4.23)

and therefore

Z:= yD+D {=UTXV L (4.24)
Multiplying (4.24) on the right by D 1, yields

uv+D D t=2zD % (4.25)
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Adding (4.25) to its transpose, since y+ [ =0and | = v, yields
D vD'+D?!'!yD=D 1z"T+2zD %

SinceD and D ! are diagonal matrices, assuming diadd) = fa;g;diag(D 1) = fiy g, the element
in the i;j position of matrix D D lis [D vD 1]ij = aih( v)j. Using vp to represent the
vector comprising the diagonal elements oD, vp 1 to represent the vector comprising the diagonal
elements ofD !, thenD yD *=(vwpv) ,) vandD ' yD=(vp 1v}) v,where denotes

the Hadamard product of two matrices. It follows that

(Vo 1V Vv, i) v=D'zT+2zD % (4.26)

and by similar analysis for

(Vo 1v§ VpV) i) uv=D1'z+z™D % (4.27)

Explicit expressions for  and v follow from these equations. Therefore, giverxX, solving (4.27)
and (4.26) gives y and v respectively andU; D; \., can be computed from (4.21), (4.22), (4.23).

These approaches to computing the triple L; D; \L) assumeX- is computed explicitly. It is an
open question if the triple can be computed without forming X-. This of course depends on the
de nitions used by the various Riemannian optimization algorithms on M | for the direction vector
X

4.3.5 Rank-related Retraction

In order to change the rank, a rank-related retraction that satis es the properties in De nition
8 of Chapter 3 is required. This is discussed in this section by st, constructing a rank-rrelated
vector and then using it to generalize the xed-rank retractions.

Consider the manifoldM = R™ ", the full gradient gradf(x ) of a point x = U;D;V,” on M

can written as
A B VT
C E VrT?

From the structure, the increased rank depends on the termE. Given r according to De nition

gradfe(x )= U U

11 in Chapter 3, the search direction is chosen to be

= argmin kgradf g(x ) ko: (4.28)
2TM
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Note that  is not unique.
An example of a choice that satis es (4.28) can be de ned by taking the SVD ofE, nding the

largest r terms, and writing  as

2 32
A B; B A

U U, U(r+ r)? 4Cl E 054 VTr S

3

C: 0 0 Vi (4.29)
_ A B, VT
= U Ue C, 0 V]

wherer~= r + r k. Based on this construction, it is clear that gradfg(x ) and are not
approximately orthogonal to each other. Furthermore, since have the structure shown in (4.29),

for X = U,D;V,", it can be written

2 4 g o g o 32 v 3
X=U U, Up mp 4077 07 r orn54 vi 5
om B r ommMy r omH (0 V(I+ 02

D. o~ (n B VJ

= U Ue om ® = gm H (n 1 VJ?

Therefore, givenX 2 M ; and , the rank-related retractions versions of the three-factor retractons
discussed earlier can be constructed.

Since can be written
= UDpVS + U VT + UD (4.30)
UlU-=0;VJ\, =0: (4.31)
and the decomposition (4.30) is given by
U-= U UL, VD '=(Im UUl) VD%
De= Ul Vi (4.32)
Ve= VoV, TUD,."=(1n W) TudD,T;

the Polar-decomposition-type rank-related retraction is de ned

Ry( )= 0,D.V; (4.33)
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where
0 = uf (U + Ur)Us;

D+ = Ds;
Vi = uf (Ve + Vo) Vs;
Dr+ Dy = UsDsVd ;

where the symboluf () denotes the orthogonal component of the polar decomposition.

The SVD-type rank-related retraction is de ned as
X
Rx( )= iUiVi; (4.34)
i=1
. T . .
whereX + = ug Umin(m:n) diag( 1; ; min(min)) V1 Vmin(min) IS the SVD with

singular values in decreasing order.

Dening U, = 0, D and V, = V, D allows to be rewritten in the form
= UpVd + UeDeVT + Uy, (4.35)
Ul0,=0;V] v, =0 (4.36)
and the decomposition (4.35) rewritten as
Op=U2UL Ve=(lm UUl) Vg
D= Ul Vi (4.37)

Vo= Vo Vi, TUe=(ln VeVJ) TUe

Therefore, the retraction (4.34) can be e ciently computed by

RX ( ) = U+ D+ \7+ , (438)
where
QuRu = UOp;
QvRy = Vp;
De+ R
UDsve = Prp B T

U: = Ue Qu Us(:;1:1);
D, =Ds(1:r1:8m);

Vi = Ve Qv Vs(i;1:1);
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D, o

andr=r+ r,Uc= U U, , 6 De= orr o or t s Ve V0 V.
Similarly, given in the form of (4.30), the QR-type rank-related retraction | is de ned
as
RX ( ) = U+ D+ \7+ ; (439)
where

O: = gf (Ur + Ur)Us;
D: = Ds;
Vi = qf (Ve + ) Vs;
D+ Dr = UsDsVq ;
where the symbolgf () denotes the Q-factor of the thin QR decomposition of its matrix argument.

If  is given in the form of
= WDV + UeDeV, + UD e\ (4.40)
where D« is a diagonal matrix, then we have the theQR-type rank-related retraction Il
Rx( )= U0:D+V; (4.41)

where
O: = gf (Ue + Up);
D+ = De+ Dy
Ve = gf (Ve + \b);
where the symbolqf () denotes the Q-factor of the thin QR decomposition of its matrix argument

The computation of U;D; \L in (4.40) is the same as discussed in Section 4.3.3.

4.3.6 Vector Transport on Fixed-rank Manifold

Vector transport is critical to the success of Riemannian optimization algorithms such as Rie-
mannian quasi-Newton methods. It is used to compare tangent vectors inicerent tangent spaces
and to transport operators on one tangent space to another tangent space. Vectdransport can
be represented by a matrix. Given two pointsX 1 and X, on a xed-rank manifold M ,, the cor-

responding tangent spaces are ¥,; Tx,. Huang in [Hual3] proposes some methods to construct
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isometric vector transports T from X1 to X as the direct rotation [DK70] from T x ,M ; to Tx,M ,
restricted to act on Tx,M . This section presents the application of those techniques td/ ;.

Note that the tangent space on the xed-rank manifold has the following structure,
8 9
< UAV," + U;BV,, + U, CV,T :=
A2R "B2R (™ nD.c2RrM™n

Itisa(m+ n r)r-dimensional subspace oR™ . An orthonormal basis of Tx M ; denoted by Bx

is given by

fU(eg)V:i=1; ;rj=1; ;rg

[f U(ge )V, :i=1; n rj=1;, ;rg

[f U,(&g)VT:i=1 m 1rj=1; ;rg
where (e;; ;&) is the canonical basis ofR", (&;; ;&yw () is the canonical basis ofR™ " and
(e1; ;en r)is the canonical basis ofR" ". The columns of Bx are thus chosen as the "vec" of

the basis elements.
Let Bx, and By, be orthonormal bases of k,M ; and Tx,M ;. The direct-rotation vector

transport from X1 to X, is then given by
T = Bx,Up Bx,; (4.42)

where B>T(1BX2 = UpPy, is the unique polar decomposition. The operator de ned by (4.42) is called
a vector transport by direct-rotation based on tangent space.

If the codimension, (m r)(n r), is su ciently smaller than the dimension, (m+ n r)r, an
orthonormal basis for normal space N M ; can be e ciently constructed. The normal space on

the xed-rank manifold M ; has the following structure,
n o}
NxM,;= Up»E>V} :E, 2 RM D (0 1)
Using Nx to denote the orthonormal basis of N¢ M , it is given by

fU?e.éJV?T:izl; m nj =1, ;n rg

The columns of Nx are thus chosen as the "vec" of the basis elements.
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Let Nx,;Nx, be orthonormal basis of N¢(,M ; and Nx,M (. The direct-rotation vector trans-

port from X1 to X5 is then given by
T=(lm Qx;Q%,)+ Qx,Uq QX,; (4.43)

where Q>T<1QX2 = UqPq is the unique polar decomposition,Qx,;Qx, are orthonormal basis of
Tx,My (Tx;M\ Tx,M)and Tx,M, (Tx,M\ Tx,M ), which can be obtained by or-
thonormalizing (I Nx,Ng )Nx, and (I Nx,Ny, )Nx, respectively. The operator de ned by
(4.43) is called a vector transport by direct-rotation based on normal space.

For weighted low-rank approximation, it is often assumedk << min(m;n) and vector transport
by direct-rotation based on normal space is not computationally reasonable sdirect-rotation by
tangent space is the preferred form in the remainder of the discussi.

Vector transport by the di erentiated retraction of (4.16) and (4.18) can also be derived. Similar
to the idea in [MS13, Section 3.4], the following Proposition states thedi erentiated retraction of

(4.16).

Proposition 25. Let X = UDVT 2M,, ; 2 TxM,. Assuming and have the following
structure

WDV T+ UV + UD\;

WDV T + UDpV' + UD\)

then the vector transport by the di erentiated retraction of (4.16) is

T = Ty, (Wa)(D+Do)(uf (V+\e)) T+ uf (U+ Up)Dauf (V+ V)T + uf (U+ Up)(D + Do)(Ty, (M) T
(4.44)
where T, (Us) is a vector transport by di erentiated retraction of (4.16) on the Stiefel manifold

[Hual3, Lemma 10.2.1] anduf () denotes the orthogonal factor of the polar decomposition.
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Proof. Based on the de nition of the vector transport by di erentiated retrac tion and the polar-

decomposition-type retraction (4.16), the following hold

T = SRe( + i
= (;jt[uf (U+ Up+ tWy)(D + Do+ tDy)uf (V + b + t\a) " Jjt=0
= (;jt[uf (U+ Us + tW)](D + Dy + tD)uf (V + b + t\Va) Tji=o (4.45)
+ uf (U+ Up + tui);[(o + Dy + tDy)]uf (V + \b + t\4) Tji=o
+ uf (U+ Up+ tUy)(D + Dy + tal)gt[uf (V + o + t\4)] Tji=o

SinceU 2 St(m;r);V 2 St(n;r) according to the vector transport by di erentiated retraction on

the Stiefel manifold [Hual3, Lemma 10.2.1], folds; Uy, 2 Ty St(m;r), it follows that

1ot U+ W+ U)o = T, (W) (4.46

and for \4;\s 2 Ty St(n;r),
d .
a[uf (V+ e+ t\a)ji=0 = Ty, (Ma); (4.47)

where
Ty, (W) = D Ry(Up)[ W]
=D uf (U + Up)[Us]
= Ru(U) +( 1 Ry(U)(Ru(U) HUWs((Ru(U) T (U + W) 4

and R is (4.16), ved g = ((Ru(U2))T(U + Up) (Ru(U))T(U + Up)) ‘ved (Ry(Us)) "W
Uf Ry(Up)g, is the Kronecker sum,i.e, A B=A 1+ B.
Substituting (4.46) and (4.47) into (4.45), yields

T = Ty, (W)(D + Do)uf (V + Vo) + uf (U+ Up)Dauf (V + Vo)™ + uf (U+ Up)(D + Do)(T, (V) "
]

Similarly, the following proposition derives the vector transport by di erentiated retraction of

(4.18).
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Proposition 26. Let X = UDVT 2M,, ;: 2 TxM,. Assuming and have the following

structure
WDV T+ UDyvT + UD\;

WDV T + UDpV' + UD\)

then the vector transport by the di erentiated retraction of (4.18) is

T =Ty, (U)(D + Do)af (V +\o) " + gf (U + Up)Dagf (V + \o) T + gf (U + Up)(D + Do)(Ty, (Ma)) T

(4.48)
whereT,, (Us) is a di erentiated retraction on the compact Stiefel manifold [AMS08, Example 8.1.5]
and gf () denotes the Q factor of the QR decomposition with nonnegative elemenbn the diagonal

of R.

Proof. Based on the de nition of the vector transport by di erentiated retrac tion and the QR-type

retraction (4.18), the following hold
d .
T = aRx( + 1 )it=0
d .
= Slaf (U+ U + tUa)(D + Do+ tD4)af (V + \o + 1) jtco

= %[qf(u + Uy + tW)](D + Dy + tD)gf (V + \o + t\4) Tji=o (4.49)

+

d )
af (U + Up + tUs) [(D + Do+ tD)]qf (V + o + tVa) Tji=o

d ,
+qf (U + Up+ tUs)(D + Do+ tDa) 2af (V + Vo + 1V4)] o
SinceU 2 St(m;r);V 2 St(n;r) according to the vector transport by di erentiated retraction on

the compact Stiefel manifold [AMSO08], forUs; Uy, 2 Ty St(m;r), it follows that

%[qf(u + Up + tUs)]ji=0 = Ty, (Ua); (4.50)

and for \4;\b 2 Ty St(n;r),

St (v + e+ )i = T, () (@51)

where
Ty, (U1) = D Ry (Up)[UWs]
=D qf (U + Up)[Wi]
= Ru(Uz) skew(Ru(Uz) UWs(Ry(U)" (U + Up)) 1)
+(1 Ru(U2)Ru(Uz)Us(Ry(U2)T (U + Up))
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and gkew(B) denotes the skew-symmetric term of the decomposition of a square max B into the

sum of a skew-symmetric term and an upper triangular term, i.e.,

8 o
< Bi;j if i >
( skew(B))i;j = 0 ifi=j
' Bj;i if i<j:

Substituting (4.50) and (4.51) into (4.49), yields
T = Ty, (W)(D + Do)gf (V + Vo) + gf (U + Up)Dagf (V + \o) T + gf (U + Up)(D + Dp)(Ty, () "
O
4.3.7 Action of the Hessian on a Fixed-rank Manifold
To use the second order information, the action of the Hessian on a vector iequired.

Proposition 27. For any X = UDVT 2 M, and 2 TxM,, the action of the Riemannian

Hessian of a cost functionf at X on the direction vector satis es
Hessf,(X)[ 1= 5 grad f(X) =P x (Dgrad f,(X)[ ];
where
Dgrad f,(X)[ 1= 2[U,(UJ vD HuT + U] vD HTullvec Y(WvecR X))
2(UUT)vec Y(WvecR )) 2vec {(WvecR ))VV'
2vec Y(WvecR  X))[V-(D UT V,)TVT + V(D U V,)V,]
+2[U; (U3 VD HuT + U] vD YHTuljvec Y(WvecR X))V VT
+2UUTvec Y(WvecR ))VVT
+2UUTvec {(WvecR X)[V-(D UT V,)TVT + v(D UT Vo)V,
Proof. The gradient of f at X on M ; is given by:
gradf, (X)=P x ( 2vec }{(WvedR Xq))

= 2UUT(vec Y(WvedR Xg) 2(vec '(WvedR Xqg)VV' (4.52)
+2UUT (vec Y(WvedR Xqg)VVT

where vec Y(WvedR X g) represents reshaping the vectoWvedR X gas anm n matrix.

SinceM ; is a Riemannian submanifold of a Euclidean space, according to [AMSO08, (5.15)

Hesd$,(X)[ 1= r gradf,(x) =P «(Dgradf,(x)[ 1); (4.53)
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where Dg(x)[H] is a directional derivative of g at x along H. Di erentiating (4.52) according to
(4.53) yields a matrix representation of the action of the Hessian of , at X along .
Dgradf,(x)[ 1= 2(UU")Yvec (WvedR Xg) 2UUT(vec '(WvedR ()
2(vec Y(WvedR @)V VT
2(vec Y(WvedR X g)(VVT)o+2(UUM)qvec (WvedR Xg)VV'

+2UUT (vec Y(WvedR  g)VVT +2UU" (vec {(WvedR Xg)(VVT)e
(4.54)

Next, (UUT)%and (VVT)? must be derived. SinceU 2 St(m;r), L= U y + U, Ky, where

L= u;Ku2RM Dt follows that

(UUN= uUT + UUT = (U g+ U Ky)UT + UU y+ U Ky)T

U( u+ HUT+ U, KyUT + UK + UJ

(4.55)
= U, KyUT + UKJUJ
= U, (U;xvD HuT + uulxvybp HTul:
Similarly, (VVT)Cis ,
(VVHo= v(D UTXV, )V, + Vo (D UTXV,)TVT: (4.56)

Substituting (4.55) and (4.56) into (4.54), yields
Dgradf,(X)[ 1= 2[U>(UJ VD HUT + UU] vD HTudlvec {(WvecR X))
2(UUT)vec Y(WvecR ) 2vec {(WvecR ))VVT
2vec Y(WvecR  X))[V-(D UT V,)TVT + V(D UT V,)V,)]
+2[U; (UJ VD HuT + U] vD YHTuljvec Y(WvecR X)VVT
+2UUTvec Y(WvecR ))VVT
+2UUTvec Y(WvecR X)[V-(D UT V,)TVT + v(D UT Vo)V,

Finally, the action of the Hessian of a cost functionf at X in the direction of satis es

Hessf(X)[ 1= 5 grad f;(X) =P x (Dgradf . (X)[ ]):
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4.3.8 Some Observations and Improvements on the Methods using the Double
Minimization Modi cation
In Section 4.2.2, the novel reformulation of the weighted low-rank appraimation problem (4.1)
as a double minimization problem (4.3) by Manton et al. [MMHO03] was given. Thisreformula-
tion allows them to minimize an associated cost function (4.5) on a Grassenn manifold. Two
algorithms are discussed in [MMHO3]: a linearly convergent steepest deent algorithm [MMHO03,
Algorithm 11] and a quadratic convergent Newton step algorithm [MMHO3, Algorithm 14]; and the
Riemannian gradient and Hessian required by the algorithms are also dered. The gradient of the
cost function f (N) is
gradf =2NJ (R B)TA; (4.57)
where A 2 R™ (™ K) and B 2 R™ " are the unique matrices that satisfy
vedAg=[(N In)™W (N Iy)] vedRNg:;
(4.58)
vedBg= W lvedAN Tg:
The Hessian off (N) is
H=2f(h « (R BN?)TIIN 1m)™W XN 1m)] Yo« (R B)N7)
(In k. (R B)N2)T[(N  1m)™W (N 1) (N Im)™W *(N, A)C
CT(N2 AW XN 1m)(N  Im)™W (N 1m)] *(In k (R B)N»)

C" (N> ATW ' W XN 1IN Im)™W YN In)] XN 1m)™W (N> A)Cg
(4.59)

where C 2 RK(n k) k(n k) s the unique matrix satisfying for all K 2 Rk (" k)
vedK Tg= CvedKg: (4.60)

In the numerical study section [MMHO03, Section VI], since the Newton mehod is locally conver-
gent, its initial point is generated by several iterations of the globally convergent steepest descent
algorithm. For the steepest descent, they use a Riemannian version dfie Armijo step-size rule.

Newton's method requires the solution of a linear equationHved K g = ved gradf g for the
matrix K 2 R (" ) where grad and H are given by (4.57) and (4.59), respectively. No details
were given on the method used to solve this system. In order to prade the best possible per-

formance data for the Newton method of Manton et al., a version that employsthe \inverse-free"
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truncated conjugate gradient method [Ste83] in the experiments presnted below. The truncated
conjugate gradient method has been used extensively in Riemannian optization algorithms, for
details see [Bak08] and [Hual3].

To use the truncated conjugate gradient, the action of the Hessian on the Gassmann manifold
Gr(n;n k) must be characterized in a computationally e cient manner as done in the following

Proposition.

Proposition 28. Forany N 2 Gr(n;n k) and 2 TnGr(n;n k), the action of the Riemannian
Hessian of a cost functionf at N on the direction vector satis es
Hess (N)[ ]=(1n NN 2(NT+ N T)Y(X B)TA 2(, NNT)(vec }(dvedBg))A
+2(1, NNTYX B)T"(vec (dved Ag))]:
where
dvedAg=[(N In)"™W XN 1) ‘[ved(R B) g (N Im)™W vedA Tg];

dvedBg=W (N Iy,)dvedAg+ W lvedA Tg:
Proof. The vertical space of a Grassmann manifoldsr(n;n k) is given by [AMS08]
TnGr(n;n k)= fN,K :K 2 Rk (" K
and the orthogonal projection onto the vertical space ofGr(n;n k) at N is
PvZ=NoNJZ=(I NNT)Z; 8Z2RM™ M

Since the Euclidean gradient of the cost functionf is5f (N)=2(R B)TA, where ved Ag;ved Bg
are de ned in (4.58). The projection onto the vertical space of the Rienannian gradient onGr(n; n
k) is

gradf =2(1, NNT)R B)TA: (4.61)

The Riemannian Hessian is then computed by
Hess$ (N)[ 1= Pn(Dgradf (N)[ ]: (4.62)

Di erentiating (4.61) according to (4.62) yields a matrix representati on of the action of the Hessian

of f at N along .
Dgradf (N)[ ]= 2(N T+ N T)X B)'A 2(, NNT)vec (dvedBg)A

+2(1, NNT)YX B)T(vec (dvedAg)):
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where
dvedAg=[(N 1m)™W YN 1) Yfved(R B) g (N Im)™W vedA Tg;
dvedBg=W (N Iy,)dvedAg+ W lvedA Tg:

O]

The e cient version of the Newton algorithm of Manton et al. with truncated conjugate gradient

is given in Algorithm 3.

Algorithm 3 Manton's Newton Method with Truncated CG
Require: Data matrix R 2 R™ ", weighting matrix W 2 R™ ™" "rank speci cation k. Conver-
gence tolerance > 0. Scalars > 0,c; ; 2 (0;1).
1: Choose starting pointN; 2 R (™ X andN;, 2 R" K suchthat N; Ny TNy Nio =1.
Seti =1.

2: while kgrad fik do
3:  Obtain K; 2 Rk (" k) py (approximately) solving
Hessf (N;)K = grad f (N;) (4.63)
wheref is given by (4.5).
4:  SelectNj+1 such that
FND)  f(Niew)  c(f(ND) - F (R, (67 KD)); (4.64)
where t# is the Armijo step-size for the given ; ; . The retraction R is renormalizing

Ni+1 Nijs1» by setting Nis1 Nis12 = gf (N; + tiANi;? Ki), where the symbol gf ()
denotes the Q-factor of the QR decomposition of its matrix argument.

end while

: Compute

@ g

vedXg=vecfRg W YN 1[N Im)"™W YN 1) %N 1) vedRg:

Since the computation of the Riemannian Hessian of this cost function is»@ensive, a Rieman-
nian BFGS-type algorithm for minimizing f (N) on the Grassmann manifold was derived by Brace
and Manton in 2006 [BMO06]. As in the Euclidean case, the advantage of a BFGS algorith is
that, compared with the Newton method, is lower computational complexity. While BFGS has

superlinear convergence rather than quadratic, it is often signi canty better than Newton in terms
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of total computation time. An outline of the the Riemannian BFGS algorithm cal led the Improved

BFGS by Brace and Manton [BM06, Algorithm 2] is given in Algorithm 4.

Algorithm 4 Manton's Improved BFGS

Require: data matrix R 2 R™ ", weighting matrix W 2 R™ ™" " rank speci cation k, conver-
gence tolerance > 0. Scalars > 0,c; ; 2 (0;1).

1: Choose starting pointN; 2 R" (" ) andN3» 2 R" K suchthat N7 Ny TNy No =1.
Set the initial Hessian estimate toB; = | 2 Rk(M k) k(n k) getj =1,

2: while kgrad gk > do

3: Obtain p; by solving Bipi = grad g;, where gradg; is de ned in (4.57).

4:  SelectNj+1 such that

f(Ni)  f(Njs1)  c(f(N)) f(Rn, (tp0)); (4.65)

where tiA is the Armijo step-size for the given ; ; . The retraction R is renormalizing
Ni+1 Njs1» by setting Ni+x1 Nijw2 = gf (Nj + tAN;.» p;), where the symbol gf ()
denotes the Q-factor of the QR decomposition of its matrix argument.
5. Set g=vecfgrad g+1 Nijs129radgg, s=vecfNji1.,tipg.
Compute the BFGS update

g g B s s'B.

Bivy = B + :
1 ! sT g sTB; s

7. Seti=i+1;
8: end while
9: Compute

vedXg=vecfRg W YN I )N Im)™W YN 1) AN 1m)TvedRg:

Note that the algorithm does not use any explicit vector transport. This is motivated by Brace
and Manton heuristically in order to reduce the complexity of the iteration and its e ectiveness was
explored only empirically. The Improved BFGS algorithm of Brace and Marton, also only requires
satisfying Riemannian Armijo conditions in the line search procedue, which does not guarantee
the search directionsp; are descent directions.

Recent advances in the theoretical understanding of vector transporthowever, allow an expla-
nation of this heuristic approach. The Improved BFGS algorithm of Brace ard Manton is equivalent

to the intrinsic dimensional approach discussed in Huang's dissertén [Hual3, Section 9.5], where
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the matrix representations of the vector transport in Step 6 of Algorithm 4 is an identity matrix.
So, in fact, vector transport is done implicitly since the bases of thetangent spaces are in fact
moved continuously and therefore transport by parallelization is perbrmed.

Furthermore, in [Hual3, Algorithm 3], Huang also considered Riemannian Wolfeconditions in

the line search procedure, i.e.

d _ d ,
G ROP DI =t Cgf R(P I =0 (4.66)

where 0< c, < 1 is a constant, and shows that convergence of the Riemannian RestriadeBroyden
Family, including RBFGS, can be guaranteed when they are used.

So Brace and Manton's heuristic reduction of the computational complexiy of their Riemannain
BFGS algorithms can be analyzed rigorously. More importantly for this dissrtation, the rigorously
analyzed and e ciently implemented RBFGS algorithm of Huang's dissertation [Hual3, Algorithm
3] with intrinsic dimensional approach and the speci c \gf" retraction [Hual3, Equation (10.2.3)]

in each iteration can be used on the reformulated cost function of Manton eal. in the experiments.

4.4 Experiments
441 Test Problems

This section provides numerical experiments illustrating the performance of the modi ed Rie-
mannian optimization algorithm compared with the other approaches. The resilts presented are
obtained by implementing the di erent algorithms in Matlab (Version 7.10.0) on a Mac platform
with 2.4 GHz and 4 GB memory.

In Section 4.4.2, the default values of some parameters are given. In Seati 4.4.3, the per-
formance for di erent values of parameters 1 and , when approximating matrices with singular
values that have a clear gap and those that have an exponential decay are pented. In particular,
the choice of the parameters for solving the optimization problem to get ose to the true rank of
the data matrix and for nding a lower rank but acceptable approximation . In practice, an upper
bound, k, on the rank of the approximating matrix is often given. The e ect of di erent choices
of k are shown in Section 4.4.4 for low-rank data matrices and the results ofictrent methods are
compared. In Section 4.4.5, structured weighting matrices, i.e., digonal and block-diagonal, are
considered. The in uence of the retraction and its invariance to theparticular factors in the decom-

position X = UDV T, or lack of invariance, is presented in Section 4.4.6. Finally, the pedrmance
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of di erent rank reduce methods are shown in Section 4.4.7 and the péormance of di erent inner
algorithms are shown in Section 4.4.8.

As reviewed in previous sections, some of the other approaches reformatd the original problem
(4.1), the cost function used for each method is listed in Table 4.1. Thechoice of algorithm for

each approach is discussed below.

Table 4.1: Cost function used by the approaches.

Alternating Projections Method (APM) cost function (4.1)
Double Minimization Method (DMM) cost function (4.5)
EW-TLS Method cost function (4.9)
Schneider and Uschmajew's Line-search Method (SULS) cost function (4.1)
Modi ed Riemannian Optimization Method (MROM) cost function (4.1)

4.4.2 Algorithm Parameters and Notations

The parameters in the modi ed Riemannian optimization method (MROM ), i.e., Algorithm
2, are set as follows. The Riemannian trust-region method (RTR-Newton)[Bak08] is used as the
inner algorithm in Algorithm 2. Unless stated otherwise, the parameters ; and » are P 3and 10 4
respectively. Parameter 4 is --. The initial stopping criterion, 3, on the xed-rank manifold is 1
and the initial parameter for the rank detection in Algorithm 1is ¢ =10 °. Both the parameters

1and , are 01. In order to avoid the e ects of noise and get rid of small singular values10 & is
used as an upper bound of . The polar-decomposition-type retraction and rank-related retraction
(4.16), (4.33) are used in the tests in Sections 4.4.3-4.4.5 since they arevamiant to the choice of
factors in the decomposition ofX = UDV T and e cient in computation.

Manton's Newton method with truncated CG (Algorithm 3) has been observedto be consis-
tently faster than Manton's improved BFGS method (Algorithm 4). Ther efore, in the following,
Algorithm 3 is used when testing the Double Minimization Method (DM M). Additionally, the eval-
uation of cost function (4.5) in Algorithm 3 involves the inverse of the weighting matrix W. In
order to avoid the computation of the inverse, the Cholesky decompositn of the weighting matrix
W is computed in preprocessing and the e ect of the inverse deterined by the solution of two
triangular systems.

The truncated CG iteration [AMS08, Section 7.3.2] algorithm is used in both Algorithm 3 and

the inner iteration of the RTR-Newton method in Algorithm 2. The parameters and in the
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truncated CG iteration stopping criteria [AMSO08, (7.10)] are 1 and Q.1 respectively. The parameters
1 and » in the trust region update are 0:25 and 2 respectively. The initial trust region radius is
1. The Accelerated line search algorithm [AMSO08, Algorithm 1] is used in Algorihm 2, Algorithm
3, and SULS. The constants and in the Armijo conditions for the line search in these methods
are 001 and Q99 respectively.

For numerical simulated data, two default cases are used: (1) fully randm m n matrices
R of rank r, R = R1RJ, whereR; 2 R™ " and R, 2 R" ' are each generated according to a
Gaussian distribution with zero mean and unit standard deviation (with Matlab's RANDN); (2)
random low-rank matrices with chosen singular valuesR = U;SUJ , where S is a diagonal matrix
with chosen singular values,U; 2 R™ ";U, 2 R" " are orthogonal matrices generated by Matlab's
ORTH and RANDN. The initializations of each method are as follows. Algorithm 2 and SULS are
started with a randomly generated rank-1 matrix de ned by [Ug; Do; Vo], where Dg is a random
number obtained by Matlab's RAND and Ug 2 R™ 1:V, 2 R" 1 are obtained by Matlab's ORTH
and RAND. Algorithm 3 is started with a random n (n k) matrix and APM is started with a
randomm (m k) matrix. Both are generated by Matlab's QR and RAND. Other data generation
choices are explicitly noted when used.

Algorithm 2 and SULS, are stopped when the norm of the nal gradient on the xed-rank
manifold over the norm of initial full gradient is less than 10 & while Algorithm 3 and APM are
stopped when the norm of nal gradient over the norm of initial gradient is less than 10 7.

The reported time are wall clock times. Some machine independentalues are also reported

including nal value of the cost function (4.1), the relative error, which is computed as k'T(Rf((V'V‘W

and the error kR X kg. All computations are in IEEE double precision. The notation used when

reporting the experimental results is given in Table 4.2.

4.4.3 Performance of Di erent Parameters

4.4.3.1 Performance of High Probability of Finding True Rank. The rst set of ex-
periments evaluates the ability of MROM, implemented in Algorithm 2, to nd the rank of a matrix
and an associated approximation for matrices where the spectrum has aezdr separation de ning
the rank. Of particular interest is the e ect of the initial matrix on the rank and approximation

found.
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Table 4.2: Notation for reporting the experimental results.

R_err | relative error kFIiR)k(vI;W

err error KR X kg

SVerr | error between the givenr singular values and ther singular values found by algorithm
f nal value of the cost function (4.1)

of, The norm of the nal gradient on the xed-rank manifold M ,
gfg 0 | The norm of the initial full gradient

nf number of function evaluations

ng number of gradient evaluations

nH number of operations of the formH

nv number of vector transports

nR number of retraction evaluations

nR, number of rank-related retraction evaluations

time | average time (seconds)

The data matrices R are chosen as random 5050 matrices with rank 5. The weighting matrices
W = U UT, whereU 2 R?50 2500 gre random orthogonal matrices generated by Matlab's QR
and RAND. The 2500 singular values of the weighting matrix are generated by Mathb function
LOGSPACE with condition number 100 and multiplying, element-wise, by a uniform distribution
matrix on the interval [0:5; 1:5]. The upper bound on rank, k, is 50. Several initial rank i matrix
X = uPpPvENT, where Ul 2 RS0 1y 2 RS0 i are random matrices generated with
Matlab's RAND and ORTH, Dg) is a randomi i diagonal matrix with uniformly distributed
diagonal elements.

Results reported in Table 4.3 and 4.4 are the average of 50 runs for di erdrdata matrices R,
weighting matrices W and initial points realizations with upper bound of rank detection =10 8
and =0 respectively.

When =10 8, the results show that for all initial points the true rank is eventu ally discovered.
When = 0, the notion of numerical rank is essentially ignored which is m uch more restrictive
than is done in practice. While not all runs result in a rank of 5, all of the ranks accepted are
greater than or equal to 5, as desired when =0, and a high probability of ndi ng 5 is seen over
all of the runs.

Therefore, = 10 8 is a reasonable value when nding the true rank while allowing some

in uence of numerical rank. Also, although the value of the boundk is 50 (the highest possible),
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the rank does not increase to 50 for any iteration of any run. When the inital rank is less than 5,
the rank of any iterate usually only increases to 7 (a small number of tines to 9 or 10) and then
drops back quickly to 5. This implies even the value ok is chosen large, the rank is not destined to
increase to the upper boundk if the true rank is small, as often happens with other more simplistic

rank selection heuristics, and time and space e ciency is maintainel.

Table 4.3: Approximation with di erent rank initial conditions. = 10 8. The subscript k
indicates a scale of 10X,

rank  R_err err f time(s) of, of =gfg 0
xW 5 4872 15 4494 o5 1:153 1, 34450, 1:289 g5  1:640 o

xW 5 1332 3; 2284 05 3957 1, 3784gp 6:479 o7  8:406 oo
XP 5 282605 3913 o5 6:896 190 1:005.00 1:107 o5 1:438 o7
X® 5 335135 4:646 o5 1:148 13 273500 1:294 g5 1:680 og
X85 1:921 g9 5:673 o5 1:514 15 4:256i00 1:597 g5 1:980 og
Table 4.4: Approximation with dierent rank initial conditions. = 0. Th e number in the

parenthesis indicates the ratio of the numerical rank equals the tre rank. The subscript k
indicates a scale of 10X,

rank R_err err f time(s) of, gfr=gfg 0
X" 504 (49/50) 4872 15 4:496 o5 1:153 13 343%+00 1:290 g5 1:641 og
Xx¥  51(47/50) 1:332 1, 2293 g5 3:957 15 38139 6517 o7  8:456 oo
x 5 2826 o3 3913 o5 6:896 10 1:00000  1:107 o5 1:438 o7
X% 506 (47/50) 3351 15 4:655 g5 1:148 11 27309  1:297 g5 1:684 gg
X9 504 (49/50) 1:921 g9 5673 o5 1:514 13 426700  1:598 g5 1:980 og

Next the advantages of the dynamical rank updating are demonstrated. The daa matrices are
randomly generated 100 100 matrices with rank 17. The weighting matrix W = diagf W1;  ; W1000.
EachW; = U; ;U] is a positive de nite symmetric matrix, where U; 2 R 100 s random orthog-
onal matrices generated with Matlab's ORTH and RANDN, ; are diagonal matrices with singular
values generated with Matlab's function LOGSPACE with condition humb er 100 and multiplying,
element-wise, by a uniform distribution vector on the interval [0:5; 1:5]. The rank upper bound, kK, is
100. The deterministic rank increment strategy used in many papers aktrnates between xed-rank

optimization and a xed rank change. To avoid over-estimating the rank, the xed rank change
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is usually a rank change of 1 or 2. In the following, MROM is compared with xed rank changes
of 1, 2 and 4. All of xed rank changes hit 17 exactly, so the rank change of 4, usuafl avoided
in practice, is an optimistic approach that is suitable for this problem. If MROM is competitive
or superior to the rank change of 4 then it is clear evidence of the robusiess and e ectiveness of
MROM.

For MROM, di erent values of 1 are tested. For the xed rank changes, a local minima on each
xed-rank manifold is sought and the local iteration stopped when the nom of xed-rank manifold
gradient is less than 10 °.

Results reported in Table 4.5 are the average of 50 runs for di erent datamatrices R, weighting
matrices W and initial matrices. Figure 4.1 shows the rank changes as a function of # iteration
numbers and the computational times for a representative single run.The results demonstrate that
di erent values of 1 give di erent rank update patterns for MROM but all reach the same nal
rank of 17 as desired. When reaching almost the same relative error and @m, the computational
times of MROM are always less than than the practical xed rank changes of land 2. Furthermore,
when ; = tan(70°), MROM increases the rank more aggressively than the optimistic xedchange
by 4. However, MROM does not require nding the an approximate minimizer on each xed-rank
manifold and therefore does not expend unnecessary computational e ort Table 4.5 shows the
relative errors and absolute errors of the di erent methods are almost he same, but computational
cost of MROM with ; = tan(70°) is signi cantly less than the practical xed rank changes of 1

and 2, and less than the optimistic xed rank change of 4.

Table 4.5: Approximation with di erent rank update. > =10 % =10 2. The number in the
parenthesis indicates the ratio of the rank increases to 17 is 44 out of 50. e subscript k indicates
a scale of 10K,

method rank f R_err err time(s) ofr ofr=gfg 0
1= tan(60 0) 17:18(44250) 5:.955 13 9:165 17 1:246 06 5:42&00 3:317 07 1:135 09
1 =tan(70°) 17 7.833 14 3:247 13 6110 o7 2:092.00 1:262 o7 4:397 19
1 = tan(80°) 17 1613 14 1347 11 1971 o7 3:343.p 4114 o5 1:430 19
rank-1 update 17 5724 14 3299 13 1.676 g7 1:316,9;7 3:854 g3 1:354 19
rank-2 update 17 8459 13 4455 15 1917 g 7:497:00 3:966 g7 1:374 9
rank-4 update 17 1148 15, 1:246 15 21975 o5 42599 6:992 o7 2:1431 g9
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Figure 4.1: Di erent rank update.

4.4.3.2 Performance of Rank Approximation. In this set of experiments, data matrices
R with an exponential decay of singular values are considered. For such mates, nding the rank
of R computationally is challenging. Although it is dicult to nd the true r ank, MROM, as
implemented in Algorithm 2, gives an e cient way to get a rank approximat ion consistent with
the precision speci ed by the choices of 1 and ». Consider a random 100-by-100 data matrixR
with singular values 2 ;i = 1:2;  ;100. This matrix has full rank analytically but it is very
ill conditioned and the numerical rank with singular values greater than 10 8 is 27. In order to
compare the numerical error with the theoretical error, the weighting matrix W is taken as the
identity. The value of the upper bound, k, is 100, which is the size of the data matrixR. Since the
norm of initial full gradient is always between 2 and 10, » is initialized at 10, and decreased by a
factor of 10 for each experiment. For each,, three di erent values of 1 {0:5, 1, P 3 { are tested.

Figures 4.2, 4.3 and Table 4.6 show the average of results for eachi{ ») pair run 100 times

with dierent R, W, and initial X. The true error is kR X kr = min aox) r KR Xkg =

P 2 N2+  +(2 992 and is matched well by the computed errors. Furthermore, the rank es-
mation is as expected given the design of Algorithm 2. When is small, the algorithm is expected
to determine a rank close to the true numerical rank as determined § . Approximate optimiza-

tion results when , is increased and an approximation is found that requires less space andhte

at the cost of an increase, hopefully small, in the approximation error.
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In the results, for each ; and », the same rank is obtained over the 100 runs except when
2 is very small. The results demonstrate that as desired when; is large, increasing the rank of
the approximation is made di cult. As the value of , decreases, the rank of the approximation
increases. Meanwhile, the values of relative error, error and cost fuation decrease. The rank
stops at 27 when ; reaches 108. Therefore, di erent values of , can be chosen depending on the

accuracy/time/space tradeo s required in speci c applications.

L 1 1 1 1 L L L L
0 5 10 15 20 25 a0 0™ 10° 10* w0 107 0’
ranks relalive error

Figure 4.2: , versus rank approximation Figure 4.3: , versus relative error

4.4.4 Test of Dierent Values of the Bound k

Most of the current methods for weighted low-rank approximation are highly dependent on the
value of k. In the following, the performance of MROM, DMM as implemented in Algorithm 3,
SULS and APM for di erent values of k.
In [MMHO3], one of the advantages of DMM over APM is for low-rank approximation with singu-
lar values closely spaced. The rst test in this section considers trices of this type. The data ma-
trix R is chosen as a random 1010 matrix with chosen singular valuesf 1; 1; 1; 1; 1; 0:99; 0:99; 0:99; 0:99; 0:99.
The weighting matrix is chosen to be an identity matrix. All algorithms are required to nd the
best approximation of R with rank r k =5.
The average results of 100 runs with di erent initial points are reported in Table 4.7. MROM
and DMM have similar times and signi cant time advantages compared with SULS and APM. So

MROM is competitive with DMM for such problems.
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Table 4.6: Best rank approximation of modi ed Riemannian optimization method with RTR for
dierent 1and ,. 3=10 3; =10 &. The number in the parenthesis indicates the ratio of the
rank increases to 27 are 85 out of 100. The subscript k indicates a scale of 10X.

2 1 rank R_err err Sverr f time
10 0.5 1 5000 g1 5:774 91 1950 g7 3:333 g1 8:454 o
pl 1 5000 01 5774 o1 1:950 07 3:333 o1 8:436 02
3 1 5000 01 5774 o1 1:950 07 3:333 01 8:558 01
1 0.5 4 6250 02 7217 02 2:295 14 5:208 03 1:339 01
p]L 3 1250 01 1:443 01 5:633 14 2:083 02 1:160 01
3 2 2500 01 2:887 01 7:434 13 8:333 o1 1:063 01
101 05 7 7813 o3 9:021 g3 2:645 15 8138 o5 1:737 01
p]; 5 3125 02 3:608 02 2:486 15 1:302 03 1:522 01
3 5 3125 g2 3:608 g2 2:488 15 1:302 o3 1:768 o1
102 05 10 9766 o4 1:128 o3 2:724 15 11272 g 2:240 o1
p]; 9 1:953 03 2:255 03 2:614 15 5.086 06 2:218 01
3 8 3906 g3 4511 o3 2:618 15 2:035 g5 2:539 o1
103 05 13 1221 o4 1:410 o4 2748 15 1:987 g5 2:649 o
p]; 13 1221 o4 1:410 g4 3:228 15 1:987 g  2:979 o1
3 12 2441 o4 2:819 o4 3:485 15 7947 g 3.690 o1
10 4 0.5 16 1526 05 1:762 05 3:196 15 3:104 10 3:102 01
pl 15 3052 o5 3:524 o5 3201 15 1:242 o9 3:348 1
3 15 3052 g5 3524 o5 4:600 15 1:242 o9 4525 o1
10 5 0.5 19 1907 06 2:202 06 3.:673 15 4:851 12 4:209 01
pl 19 1907 g6 2:202 g 4555 15 4:851 12 4762 o1
3 18 3815 g5 41405 g 6:433 15 1:940 11 6068 o1
10 6 0.5 22 2384 07 2:753 07 4:506 15 7:579 14 5:238 01
pl 23 1192 07 1:377 07 5:795 15 1:895 14 6:140 01
3 22 2384 g7 2753 o7 8977 15 7579 14 7:868 01
10 ’ 0:5 25 2980 08 3:441 08 4:916 15 1:184 15 6:390 01
pl 25 2980 gg 31441 g3 6:253 15 1:184 15 7:216 01
3 25 2980 g 3441 g3 1:126 14 1:184 15 9:448 o1
10 8 0.5 28 3725 09 4:302 09 5:814 15 1:850 17 7:630 01
pl 27 7451 o9 8603 g9 7:246 15 7:401 17 7707 o1
3 26.85(85100) 8568 g9 9:894 o9 1:207 14 21073 15 1:0219
10° 05 28 3725 g9 4302 g9 5814 15 1:850 17 7:589 o1
p1 27 7451 o9 8603 g9 7:246 15 7:401 17 7673 01
3 26.85(85100) 8568 09 9:894 09 1:207 14 1:073 16 1:019...00
0 0.5 28 3725 g9 4:302 g9 5:814 15 1:.850 17 7:630 o1
p1 27 7451 o9 8603 g9 7:246 15 7:401 17 7707 o1

é 2685(8&100) 8568 09 9:894 09 1:207 14 1:073 16 1:021;.00

81



Table 4.7: Rank 5 approximation of a closely spaced data matrix. The subsgut k indicates a
scale of 10k,

method f R_err err t

MROM 4:901.q9 7:035 g1 2:214,09 6:285 o2
DMM 4:901g9 7:035 g1 221499 6:029 oo
SULS 490199 7:035 7 221499 5739
APM 4:901g0 7:035 g1 2:214.00 8:405 o1

The next experiment considers 80 10 data matrices with rank 5. The weighting matrices
W = U UT, whereU 2 R™ ™ js a random orthogonal matrix generated by Matlab's QR
and RANDN. The mn singular values of the weighting matrix is generated by Matlab function
LOGSPACE with condition number 100 and multiplying, element-wise, by a uniform distribution
matrix on the interval [0 :5; 1.5]. Three values ofk are considered for each method, one is less than
true rank, one equals the true rank and the other is greater than true rank

Results shown in Table 4.8 are the average of 100 runs for di erent data maices R, weighting
matrices W and initial points. The data show that when k is chosen less than the true rank, all
methods reach almost the same relative error and absolute error, but théime required by MROM
is less than the other three. As the value ofk increases, MROM shows signi cant advantages.
It achieves good accuracy in the approximation with less computational ime. Furthermore, for
MROM, as it is iterated based on the three factorsU;D;V, the singular values are immediately
available while, for the other three methods, an additional SVD is reqired.

For k = 7, the numerical rank of singular values greater than 10 & indicates MROM can obtain
the true rank more reliably than the other three methods. Therefore MROM is more robust nding

the true rank with respect to the bound k.

4.4.5 Test of Di erent Weighting Matrices

Thus far all experiments have considered the weighted low-rank apximation with a full
weighting matrix W. In practice, asm and n grow, the complexity of the matrix W must reduce.
Two special cases: element-wise weighting, i.eW is a diagonal, and column-wise weighting, i.e.,
W is block diagonal with blocks of dimensionm m, are considered.

DMM as implemented in Algorithm 3 does not scale well computationally asm and n grow

while k stays relatively small due to the fact that it works in a space of dimersion min(m k;n k).
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Table 4.8: Approximation of 80-by-10 rank 5 matrices of di erent k. The number in the parenthesis
indicates the ratio of the nal rank equals the true rank. The subscript k indicates a scale of
10 k.

k method rank f R_err err t
k=3 MROM 3 8:846,91 3513 g1 3:257:01 4:823 o1
DMM 3 8:846.91 3513 g1 3:257:01 470600

SULS 8846,01 3513 o1 3:257:01 2:190:00
APM 8:846,01 3513 g1 3:257;01 5:000:00
k=5 MROM 2:191 19 1:557 11 2:304 09 6:890 01

3
3
5
DMM 5 1:606 15 1:324 o9 1:754 o7 4:351liqo
5
5
5

SULS 2147 12 4:874 08 9:914 06 1:045;.00
APM 7:611 g9 2:895 g5 4:308 g4 3:585:q9
k=7 MROM 1:799 1 1:346 1o 1913 19 4:730 o1
DMM 5 1:915 18 4:407 11 7:880 09 2:182+00
SULS 7(0=100) 1401 1o 3:780 os 1:029 o5 2:316:00
APM 7(0:100) 2349 10 4:865 07 9:074 05 7:002+00

This is independent of the structure of W. Therefore, DMM is not included in the discussion of
these experiments. The algorithm EM-TLS is added to the discussiorsince it speci cally targets

block diagonal W.

4.45.1 Diagonal Weighting Matrix. The data matrices R are random 80 80 matrices
with rank r = 3;4;5. The weighting matricesW are random diagonal matrices with singular values
drawn from a normal distribution having a mean O and variance 1. The boundk is set tor.
Table 4.9 shows the average results of 50 runs with di erent data matrcesR, weighting matrices
W and initial points. The results demonstrate MROM and SULS have signi cant computational
advantages over APM. Furthermore, within almost the same computational time, MROM produces
a more accurate approximation than SULS.

Next, the experiments are repeated for data matrices with exponentlly decaying singular
values. The data matrix R is a randomm n matrix with rank 10. The chosen singular values are
f1,4 ;4 2, .4 °g. The weighting matrix W is a diagonal matrix with singular values drawn
from a normal distribution having a mean 0 and variance 1. Table 4.10 showshe average results
with 100 initial points realizations.

The SULS method is clearly not robust. It cannot reach the stopping criterion for some initial

points (the number in the bracket shows the successful runs out 0£00). The reported results are
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Table 4.9: Approximation of random data matrix with diagonal weighting matrix. The subscript
k indicates a scale of 10K.

r method f R_err err t

3 MROM 4:800 15 5:410 10 3:842 08 1:196 01
SULS 1580 13 7:967 g9 5:817 o7 1:302 o1
APM 1:954 09 7:640 07 5:619 05 1:935+00

4 MROM 2:334 20 1:992 12 1:.912 10 1:335 01
SULS 3141 ;3 8512 o9 8743 o7 11425 o1
APM 6:136 09 1:059 06 1:033 04 3:08&00

5 MROM 1:924 15 2:814 10 3:475 08 1:499 01
SULS 5862 13 9:639 o9 1:287 o5 1:516 o1
APM 2:545 09 4:499 07 5:579 05 4:722+00

the average of the successful runs. MROM achieves an accurate approxation in less time than

the ALS or SULS, especially for large matrices.

4.45.2 Block Diagonal Weighting Matrix. The method EW-TLS is speci cally de-
signed to e ciently solve the matrix approximation problem with a bl ock diagonal weighting matrix
W =diagfWy1; ;Wnrg. A key part of the success of EW-TLS is the generation of a particular
initial condition for the iteration to optimize the transformed cost fu nction. In this section, MROM
is compared with EW-TLS and the two general methods SULS and APM.

In the experiments, eachW; = U; iUiT is a positive de nite symmetric matrix, where U; 2
R0 10 js random orthogonal matrices generated with Matlab's ORTH and RAND, each ; is a
diagonal matrix with singular values generated with Matlab's function LOGSPACE with condition
number 100 and multiplying, element-wise, by a uniform distribution vector on the interval [0:5; 1.5].
The data matrix R is a random generated 10 80 matrix with rank 4. The four methods are tested
for the values of the upper boundk = 3;4;5 which are respectively less than, equal to and greater
than the true rank. For the EW-TLS approach, the Matlab library function F MINUNC is used
to nd the local minima. The termination criterion for FMINUNC require s that the norm of
nal gradient over the norm of initial gradient less than 10 7. For eachk and each method, the
experiment is repeated 100 times for di erent initial matrices geneated randomly by Matlab's
RAND and ORTH. Additionally, each method is run using the custom initial matrix generated by

the GTLS approximation [VV89].
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Table 4.10: Approximation of data matrix with exponential decay singular values and the weighting
matrix is diagonal. 1 =1; =10 5. The number in the parenthesis indicates the successful runs
out of 100. The subscript k indicates a scale of 10K.

m n method f R_err err t
20 20 MROM 9:.935 30 4:370 15 4:343 15 7628 01
SULS 8038 15 3:760 gg 1:104 o7 9:062 o1
APM 1:596 16 1:568 08 4:503 08 3:038 01
30 20 MROM 3:094 29 7:588 15 7:985 15 6:706 01
SULS 6909 15 31419 g 8873 pg 1:013:g9
APM 5.785 17 8:731 09 2:092 08 6:772 01
30 30 MROM 5:335 30 2:526 15 2:624 15 6:993 01
SULS 4804 15 21937 og 6:683 pg 9:606 o1
APM 5:365 17 8:916 09 1:850 08 12209+00
40 30 MROM 1:591 30 1:325 15 1:320 15 6:320 o1
SULS 5734 15 3:291 og 7:527 o3 8:192 o1
APM 1:314 17 4426 o9 8535 g9 1:950:00
40 40 MROM 4942 30 1801 15 1:916 15 8053 o1
SULS (70=100) 3537 15 21492 o3 4:948 og 1:147.0
APM 1:430 17 4:292 09 7:519 09 228674.00
50 40 MROM 3388 3p 1:890 15 1946 15 7:021 o1
SULS (93=100) 3331 15 2:1420 g3 4:460 og 1:8929
APM 7:233 13 3:086 g9 4:939 g9 4:041.0
50 50 MROM 1:455 59 3578 15 3:699 15 8:044 o1
SULS (96=100) 2453 15 2:063 pg 3:562 pg 1:836.00
APM 1:260 17 4:131 o9 6:318 g9 6:159 09
60 50 MROM 3598 o9 8:077 15 8333 15 7:137 01
SULS (78=100) 7917 14 6493 g3 2:738 o7 1:852qp
APM 4:058 15 2:299 g9 31473 g9 8:0190
60 60 MROM 3117 39 2:043 15 2:121 15 7:504 o1
SULS (93=100) 2059 13 1:298 o7 5:608 o7 1:653:00
APM 5:193 15 2:431 99 3:584 g9 1:087:01
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Table 4.11: MROM, SULS, EW-TLS and APM for block diagonal weighting matrix W with good
initial points and without noise. The subscript  k indicates a scale of 10X,

method  k f R_err err time(s)
MROM 3 2:931 01 8:545 02 2:534;-00 1:263 01

4 3563 9 9422 15 2:027 14 1:058 @2
5 7026 29 1:323 15 2:556 14 9:779 03
SULS 3 2931 g1 8545 g, 253490 8573 01
4 3563 9 9422 15 2:027 14 2:529 @2
5 4275 29 1:032 15 2:846 14 2:477 02
EW-TLS 3 2:931 01 8:545 02 2:534;-00 8:392 01
4 3743 6 3:054 14 1:323 15 3195
5 1366 5o 1:845 1, 1:049 19 31172 2
APM 3 2:931 g1 8545 gp 253450 6:610 ¢
4 4355 59 1:042 15 2:292 14 5582 2
5 6274 29 1:250 15 2:688 14 7:522 02

The average results are presented in Table 4.11 and Table 4.12. From the tads, it is clear that
the EW-TLS approach is sensitive to the initial matrix and not only bene ts from the use of the
GTLS-based initial matrix but often diverges when the GTLS-based initial matrix is not used. Even
for the EW-TLS successful runs, for anyk, MROM produces as good or better approximations using
approximately the same or less computational time and is therefore moreabust and as e cient as
EW-TLS. Furthermore, since EW-TLS solves the original problem based orthe local optimization
on a rank-k manifold, it is highly dependent on the upper boundk. If we want to use the algorithm
to nd the true rank, we need to test di erent k, which is computationally costly. As with MROM,
SULS and APM are not designed speci cally for this problem and the consistetly produce less
accurate approximations and require more computational time than MROM. Clearly, of the four
methods MROM using the GTLS-based initial condition is the prefered method.

In practice, a desirable additional property is robustness in the pesence of noisy data. The
next set of experiments tests the performance of the MROM and EW-TLSin this situation. The
data matrices all have 10 rows, with the number of columns varying from 20 to 200 in increments
of 10. Each data matrix R is generated by adding a noise matrix to a rank-4 matrix, i.e., a
10 n matrix of uniform distributed random numbers with mean O and variance 0:0001 is added
to the noise-free data matrix Ry to construct a full rank noisy matrix. The weighting matrix

W =diagfWi; ;Wng. EachW; = U; U, where U; 2 R 10 is a random orthogonal matrix
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Table 4.12: MROM, SULS, EW-TLS and APM for block diagonal weighting matrix W with random
initial points and without noise. The ratio in the parenthesis indic ates the percentage of successful
runs. The subscript k indicates a scale of 10K.

method k f R_err err time(s)
MROM 3 2:931 g1 8545 o 2:534.0p 1:.972 o1

4 4464 21 1:055 11 4475 19 2:274 01

5 4464 21 1:055 11 4:476 10 2:266 01
SULS 3 2931 o1 8545 g2 2:5349 7:828 o1

4 2002 14 1:569 o5 1:037 os 1:055;00

5 1233 13 5516 08 4:775 06 12495+00
EW-TLS 3 2:931 g1 8545 g2 253400 7:299 41(84=100)

4 6209 1o 2:043 g7 5586 g6 1:181ig9 (482100)

5 4899 g5 21430 g4 7:168 o3 1:577:00 (47=100)
APM 3 2:931 g1 8545 o 2:534.0p 6:208 o1

4 5295 08 2:979 05 9:242 04 6:641 01

5 5402 pg 3101 o5 1:021 o3 9:447 o1

generated by Matlab's QR and RAND. The 10 singular values ofW; are generated by Matlab
function LOGSPACE with condition number 100 and multiplying, element-wise, by a uniform
distribution matrix on the interval [0 :5; 1:5]. The upper bound on the rank isk = 4. The relative
error W and absolute errorkRp X kg are presented in Table 4.13. The data are the
average execution times over 100 runs for di erent noise realizations.

The data show MROM to be more robust with respect to the choice of infial approximation.
The EW-TLS data all use the good GTLS-based initial approximation matrix with true rank (i.e.
rank-4) but a signi cant number of the runs do not satisfy the stopping criterion while MROM con-
verges for all problems for any initial approximation (i.e. rank-1,2,3,4). The errors are comparable
for MROM with di erent rank initial approximations and EW-TLS when it  converges. In general,
MROM with the true rank good initial condition results in the best e rror and computational time
combination. Given that the computational complexity of producing the GTLS-based good ini-

tial condition is not signi cant, MROM using it is the robust and e cie nt method of choice. Its

advantage in e ciency is seen, in particular, for the data sets of size 10 n with 10 <<n .
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Table 4.13: GTLS-based initial points. The ratio in the parenthesis indcates the percentage of
successful runs. The subscript k indicates a scale of 10K,

MROM with di erent rank initial

m n R_err err rank-1 rank-2 rank-3 rank-4 EW-TLS

10 20 6037 o5 8416 o4 1:834 o1 1:648 o1 1:116 o1 8:821 o2 4:193 1(95=100)
10 30 6115 o5 1:020 03 1:930 o1 1:466 o1 1:564 o 9:448 > 5.697 01(962100)
10 40 6199 o5 1:209 o3 1:809 o1 1:808 o1 1:865 o1 1:023 g1 7:270 (1(97=100)
10 50 6043 o5 1:324 o3 2:059 o1 1:798 01 1:491 o1 1:101 o1 9:351 ¢1(96=100)
10 60 5985 g5 1:456 o3 1:673 g1 1:398 o1 1:416 o1 1:206 o1 1:058.090(98=100)
10 70 5842 o5 L1577 o3 2:411 o1 1:615 01 2:162 o1 1:352 01 11220+00 (982100)
10 80 6007 g5 1.685 g3 2077 o1 2:055 o1 1:726 o1 1:469 o1 1:416.00(98=100)
10 a0 5943 05 1:801 03 2:620 01 2:505 01 2:703 01 1:594 01 1250&-00 (94=100)
10 100 5919 g5 1:900 g3 1:857 g1 2:470 o1 2:017 o1 1:513 91 1:597:00 (972100)
10 110 5830 05 1:.975 03 2:072 01 2:783 01 2:565 01 1:726 01 11860+00 (96:100)
10 120 5900 g5 2:066 o3 2:271 o1 2:283 01 2:089 o1 1:562 o1 1:910.00 (96=100)
10 130 5855 05 2:176 03 2:817 01 2:403 01 2:418 01 1:780 01 2:156+00 (97=100)
10 140 6021 g5 2:227 o3 21463 g1 2:735 01 2:382 o1 1:814 o1 2:276.00 (95=100)
10 150 6022 05 2:343 03 2:672 o1 2:677 01 2752 o1 2:008 01 2:3914-00 (94:100)
10 160 6075 g5 2:389 g3 3120 o1 2:781 o1 2726 o1 2:051 o1 2:518,99 (92=100)
10 170 6072 g5 21462 o3 3:166 g1 2:957 o1 3:622 o1 2:200 g1 2:660.99 (97=100)
10 180 6026 05 2:545 03 2:723 01 2:760 01 3737 01 2:125 01 2:76&00 (982100)
10 190 6090 05 2:611 03 3:330 o1 2:855 01 2:966 o1 2:320 01 3:050+00 (96:100)
10 200 6021 g5 2:680 g3 4:200 o1 3:093 01 3:869 o1 2:489 o1 3:056.99 (95=100)

4.4.6 Choice of Retraction and Performance

Four types of retractions on xed-rank manifolds have been proposed for ensideration along
with the rank-related retractions: SVD-type retraction (4.15), (4.38), p olar-decomposition-type
(PD-type) retraction (4.16), (4.33) and QR-type retraction | (4.17), (4.39) and QR-type retraction
I1(4.18), (4.41). As noted earlier, the last two types are not invariant to factors in the decomposition
X = UDV . They are included in the experiments to produce initial evidence as to whether or not
this lack of invariance is important to the e ectiveness of the algorithm. Each data matrix R is a
random m n matrix with rank 4. Each weighting matrix is W = U UT, whereU 2 R™ ™" js a
random orthogonal matrix generated by Matlab's QR and RAND. The mn singular values of each
weighting matrix are generated by Matlab function LOGSPACE with condit ion nhumber 100 and
multiplying, element-wise, by a uniform distribution matrix on t he interval [0:5;1:5]. The upper

bound on rank, k, is 4.
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Table 4.14: Rank-4 approximation by di erent retractions. The subscript

k indicates a scale of

10 k.
m n Retraction f R _err err time(s) of, of =gfr 0 nf ng nH nR nR;
6 6 SVD-type 8213 17 2754 19 2475 o 1:910 o1 2:525 o9 1:619 g9 28.080 28.080 222.220 21.320 1.820
PD-type  1:042 17 5921 11 5032 o9 2:028 o1 1:259 g9 8556 10 38.300 38.300 245.300 31.640 1.820
QR-type | 6:819 13 2405 15 2:830 o9 2:159 o1 9:323 19 4:885 19 38.540 38.540 246.440 31.780 1.820
QR-type Il 1:922 17 9:902 1o 8:258 o9 2:288 o1 1:490 g9 9:129 19 39.520 39.520 254.160 32.780 1.820
6 12 SVD-type 3683 17 61988 1o 1:423 g8 2:028 g1 2:090 o9 81494 ;o 23.180 23.180 204.860 17.940 1.200
PD-type 2:619 17 7:210 13 7:045 09 2:113 01 1:847 09 6:716 10 31.260 31.260 216.760 26.000 1.200
QR-type | 2:669 17 8605 14 7:946 o9 2:224 o1 2:152 o9 8:224 ;0 31.500 31.500 216.340 26.280 1.200
QR-type Il 3:820 17 9:028 11 1:288 g 2:312 o1 3:116 g9 1:311 o9 32.120 32.120 215.200 26.920 1.180
12 12 SVD-type 1513 16 5755 17 2:201 og 1:813 o1 3:802 g9 1:038 g9 20.400 20.400 155.120 15.800 1.000
PD-type  5:152 17 8057 12 9493 g9 1:963 o1 2:717 o9 7:942 19 26.560 26.560 167.780 22.040 1.000
QR-type | 8:736 17 2:227 10 1507 og 1:925 o1 3540 o9 1:007 o9 26.760 26.760 166.260 22.320 1.000
QR-type Il 2:782 17 3:152 14 6:318 o9 2:043 o1 2:038 g9 6:281 19 28.400 28.400 173.980 23.740 1.000
12 24 SVD-type 9087 17 4276 15 1:337 o5 1:682 o1 2:615 g9 5577 10 19.540 19.540 134.140 15.120 1.000
PD-type  1:348 1 1:728 17 1:721 gg  1:838 o1 4:547 g9 9:539 35 23.960 23.960 148.300 19.540 1.000
QR-type | 1:147 15 1:476 11 1:332 08 1:923 01 3:788 09 7:290 10 24.000 24.000 147.700 19.580 1.000
QR-type Il 1:306 16 4:983 117 1:973 gg  1:966 o1 6:156 g9 1:255 g9 25.660 25.660 149.280 21.300 1.000
24 24 SVD-type 2222 15 1:233 15 1:557 g3 2:466 o1 2:770 o9 4169 10 19.560 19.560 116.980 14.860 1.000
PD-type  7:721 15 2:799 19 4576 og 2:458 o1 1:209 gg 1:664 o9 22.460 22.460 119.920 18.060 1.000
QR-type | 6:310 15 1:726 10 3:880 o 2:632 o1 1:026 o5 1:338 o9 22.860 22.860 121.780 18.420 1.000
QR-type Il 2:465 15 1:470 16 1:614 og 2:810 o1 5:159 o9 7:350 10 25.080 25.080 128.660 20.680 1.000
24 48 SVD-type 2672 15 5506 11 1:449 o8 4:603 o1 3:851 g9 31942 1o 19.440 19.440 99.140 15.320 1.000
PD-type  4:100 15 1:587 10 2:167 g 4:688 o1 51993 g9 5854 10 21.940 21.940 102.600 17.940 1.000
QR-type | 3:788 16 1:453 10 2:081 08 4:812 01 5:701 09 5:576 10 21.960 21.960 102.900 17.960 1.000
QR-type Il 4:076 15 1:314 15 2:713 og 4948 o1 8174 o9 8187 10 22.120 22.120 105.400 17.920 1.000
48 48 SVD-type G711 19 4:341 1o 91230 10 111750 2:740 10 1:974 ;17 20.220 20.220 88.280 16.200 1.000
PD-type  2:278 15 2:510 10 8800 og 1:129.9 2:675 g8 1871 o9 21.620 21.620 83.080 17.580 1.000
QR-type | 2:735 15 2511 19 9:634 og 1:147.00 2:926 g8 2:034 o9 22.120 22.120 84.000 18.100 1.000
QR-type Il 3:216 15 2:245 19 1:.007 o7 1:177:.00 3:204 g8 2:232 g9 22.100 22.100 86.360 18.000 1.000
48 96 SVD-type 2686 15 1:203 1o 2:019 g8 3:70%0 6:660 g9 3:337 10 20.860 20.860 79.180 16.860 1.000
PD-type  5:878 15 1:070 15 1:094 o; 4:202.00 3:343 g8 1:626 o9 23.560 23.560 89.520 19.140 1.000
QR-type | 6:809 15 1:.055 15 1:182 g7 4:168.00 3:628 gg 1:764 o9 23.560 23.560 89.500 19.140 1.000
QR-type Il 7:385 15 6:091 15 1:219 g7 4:204,00 4:022 g 1:963 o9 23.800 23.800 89.800 19.480 1.000
96 96 SVD-type 3367 15 5:028 19 3:720 gg 1:485.; 1:358 g 4568 19 22.130 22.130 81.522 17.870 1.000
PD-type  5:468 13 3:240 13 2:606 g9 1:509%01 9:273 10 3:246 11 23.826 23.826 81.565 19.826 1.000
QR-type | 5:740 15 3189 13 2:647 g9 1:50%01 9430 10 3299 17 23.826 23.826 81.565 19.826 1.000
QR-type Il 3:281 15 1:318 19 1:793 g 1:537:.01 6:435 o9 2:218 19 24.478 24.478 82.652 20.478 1.000

Table 4.14 shows the average results of 100 runs for each retraction with drent data and

weighting matrix realizations. All nd an approximation with rank the sam e as the true rank of 4.

The nal cost function value, relative error and error are all very small. Note that the two QR-type

retractions without guaranteed invariance also work well in terms of quaity of approximation and

computational time.

4.4.7 Performances of Di erent Rank Reduction Methods

The usual way to reduce the rank is to compute the SVD decomposition of anatrix, set the

smallest singular values to zero. This method has been widely usedh&n considering the low-rank
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approximation. However, when the sizes of the matrices get large, theotnputation of the SVD is

impractical. We employ the three-factor representation, which awids the computation. Therefore,

the rank reduction can be realized through the truncation of the smalles singular values. However,
if we start from a rank-1 matrix, in the process of estimation, the rank might be increased rst,

then reduce to the true rank. The information obtained in the rank increment can be used to make
the rank reduction more e cient as proposed in Algorithm 2.

Table 4.15 shows the average results of rank reduction by truncation congred with the way
using the rank increment information. The data matrices R are random m n matrices with
rank 5. The weighting matrices W are block diagonal matrices. Each block is a positive de nite
symmetric matrix. The upper bound k is set to bem and the initial starting point is a random
generated rank-1matrix. From the table, it is clear that using the rank increment information for

rank reduction is more e cient than the simple truncation, especially when the sizes get larger.

Table 4.15: Rank-5 approximation by di erent rank reduction methods. T he subscript k indicates
a scale of 10K,

m n Rank Reduce Method Rerr err f time(s) of; of =gfe 0
10 10 Truncation-type 2213 15 1:163 g7 2:528 15 2:741 o1 1:710 gg 8:850 19
New-type 7833 13 1:104 o7 1673 15 2:712 57 1:606 gg 8:783 19
20 20 Truncation-type 8864 1, 3625 g7 1552 14 3:139 g1 4:286 gg 1:297 o9
New-type 6:125 1o 3:044 o7 1:133 14 3:044 o1 3656 gg 1:068 g9
30 30 Truncation-type 1.500 19 4:053 g7 2402 14 3131 g1 5231 g 9:753 19
New-type 1.875 11 51491 g7 3:921 14 3:093 o7 6:895 gg  1:393 o9
40 40 Truncation-type 3025 16 5678 g7 4:850 14 7:164 g1 9:158 g3 1:370 g9
New-type 6121 11 4:909 07 3428 14 5:.022 01 4:136 08 6:576 10
50 50 Truncation-type 1.654 13 2059 g7 1733 14 1.055p 1:992 o5 2:311 19
New-type 1:928 15 4:034 o7 2:369 14 7725 91 4:089 g3 5:225 19
60 60 Truncation-type 1:060 11 4717 o7 3:790 14 1:74&00 4:204 08 4:204 10
New—type 4061 17 5:622 o7 4:602 14 107099 7:125 g 8:000 19
4.4.8 Performances of Other General Riemannian Optimization Algori thms

As mentioned earlier, any other optimization methods can be used as thenner algorithm
in MROM. In this section, performances of six Riemannian optimization algorithms are illus-
trated. The six algorithms are Riemannian steepest descent with lie search (RTR-SD), Riemannian

trust region with symmetric rank-one update (RTR-SR1), Limited-me mory RTR-SR1 (LRT-SR1),
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general Riemmanian trust-region method (RTR-Newton), Riemannian Broyden-Fletcher-Goldfarb-
Shannon (RBFGS) and limited-memory RBFGS (LRBFGS).

Each data matrix R is a randomm n matrix with rank 4. Each weighting matrix is W =
U UT, whereU 2 R™ ™ js g random orthogonal matrix generated by Matlab's QR and RAND.
The mn singular values of each weighting matrix are generated by Matlab function L&5SPACE
with condition number 100 and multiplying, element-wise, by a uniform distribution matrix on the
interval [0:5; 1:5]. The upper bound on rank,k, is m.

Figure 4.4 shows the average computational time of 5 runs for each methodith di erent data
and weighting matrix realizations. All nd an approximation with rank the same as the true rank
of 4. The gure shows RTR-Newton has time advantages when the sizes of matres, i.e.m n, are
not too large. As the sizes increase, limited-memory RTR-SR1 and RBES show signi cant time
advantages compared with the other methods. Therefore, we can choose atient inner algorithm

based on the size of the matrices and the e ciency required in spea applications.

10° ; .
(]
n e ]
ol
RTR-SD
RTR-SR1
LRTR-SR1
RTR-Mewhon
REFGS
LRBFGS
1|:|2 1 1
0 5 10 15

tirmes

Figure 4.4: Average computational time versus the size of matrix for each méiod.
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45 Conclusion

The modi ed Riemannian optimization algorithm with RTR on the weighted low-rank approx-
imation problem has been explored in this section. First, the e ectof the parameters ; and
on rank estimation for problems with the di cult exponential decay of s ingular values was tested.
MROM was demonstrated to be e ective in computing the appropriate numerical rank approxima-
tion of the data matrix given the values of 1 and » even when the upper bound on the rankk,
was taken to be large and therefore potentially allowing an approximation hat was unnecessarily
ine cient in terms of space and computational time. For data matrices with a clear gap in their
singular values, the algorithm demonstrated a high probability of nding the true rank indepen-
dently of initial conditions. For the practical situation of a structur ed weighting matrix and data
with and without noise, MROM consistently outperformed, in terms of computational time and
approximation quality, the general methods SULS and APM as well as the EWTLS method that is
speci cally designed for such problems. Finally, the performance oMROM was seen to be consis-
tent across all choices of the xed-rank and rank-related retractions irdependently of the invariance
of those retractions with respect to the particular factors in the decomposition of the matrix X .
This is for moderate problem sizes and RTR as the inner xed-rank algorihm. For large problems,
limited-memory Riemannian optimization methods as the inner xed-rank algorithm demonstrated

signi cant time advantages.
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CHAPTER 5

LOW-RANK APPROXIMATION ON GRAPH
SIMILARITY MATRIX

The node-to-node similarity measure introduced by Blondel et al.[BGH™ 04] has been used in many
practical problems. They de ned the similarity matrix as a xed poin t of an iterative process, and
prove that their measure is equivalent to the solution of an eigenvalugroblem of a dimension that is
the product of the number of nodes in the two graphs. In this chapter the e cient determination
of a low-rank approximation approximation of the similarity matrix is con sidered. Section 5.1
reviews the similarity measure of Blondel et al. Two low-rank approxmations of the similarity
matrix introduced by Cason et al. [CAD13] are discussed in Section 5.2. Soenobservations are
made and new e cient methods of the low-rank approximations of the similarity matrix based
on the Riemannian approach to rank inequality constraints are derived inSection 5.3. In Section
5.4, Riemannian optimization methods reviewed in Chapter 2 are compareavith Cason's iteration
method for low-rank approximation with k identical singular values. Finally, comparisons between
the new rank-related algorithm and Cason's iteration method on low-rank agroximation with rank

at most k are presented in Section 5.5 and the results are summarized in Seati 5.6.

5.1 The Similarity Measure of Blondel et al.

In [BGH * 04], the node-to-node similarity measure considers two nodes of dérent graphs \sim-
ilar" if their neighboring nodes are \similar". For example, the simil arity score between node 2 of
Ga in Figure 5.1 and node 4 ofGg in Figure 5.2 is determined by the similarity score between
their neighbors:

s(ag;by)  s(a1; br) + s(ag; bs) + s(as; bs):
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G

Figure 5.1: Graph Ga with three nodes.

Figure 5.2: Graph Gg with ve nodes

In general, given two arbitrary graphs Ga and Gg with na and ng vertices and edge set&a
and Eg, the similarity score between nodei in Ga and nodej in Gg is updated according to the

following equation:

X X
Sij Srs + Srs:

r:(ri)2Eg ;si(s;j)2Ea r:(i;r )2Eg ;s:(j;s)2Ea

This can be written in a more compact matrix form

Sis1 ASKBT + ATS B = M (Sy); k=0;1; (5.1)

where A and B are the adjacency matrices ofGp and Gg, and S isthe na  nhg matrix of entries
Sj at iteration K.

Note that the updating function M (Si) is a linear map on the matrix Sk. This can be explicitly
seen by applying the ve€g operation to the above equation, which concatenates the columns of a

matrix into one column vector, to obtain
vedSi:1g (B A+ BT AT)vecfSyg: Mved Scg: (5.2)

Since only the relative score of each pair of nodes is of interest, not éhvalue of S, the entire

similarity matrix S is normalized using

M ved Skg

ved S 9= (N Ved Sk’

k=0:;1; : (5.3)

This also avoids over- or under- ow.
The matrix M := (B A+ BT AT)is symmetric and non-negative, and therefore the non-

negative vector ved Sg is a Perron vector ofM , corresponding to the Perron root (i.e. the spectral

94



radius) =max x=mx ] j. SinceM is symmetric, its eigenvalues are real and hence it can have
only two extremal eigenvalues: and possibly . M?2 is also non-negative and its extremal
eigenvalue is 2, which is unique but its geometric multiplicity can be larger than 1. Let be the
orthogonal projector onto the space of eigenvectors ol 2 with eigenvalues 2, then is a non-
negative map and any vector ve€Sg = vec f Spg, with vecf Spg non-negative, is a non-negative
solution of 2ved Sg= M ?ved Sg.

It was shown in [BGH* 04] that the even iterates of the following recurrence

Mved Scg
kM ved Skgks’

converge to the unique non-negative vector with the largest possible horm (the sum of the mag-

ved Sopg= 1mn; vedSk+1g9= k=0;1,; X (5.4)

nitudes of all entries), wherel,, denotes a vector whose entries are all equal to 1. Therefore, the
de nition of the similarity matrix S is the non-negative solution corresponding toSp = 1., Of the

following system:
2S=M2(S)= M (M (S)); M(S):= BSAT + BTSA: (5.5)

Two additional properties of the matrix to which iteration (5.4) converges are also presented in
[BGH™ 04]:
The self-similarity matrix of a path graph (a undirected tree with t wo leaves and internal

nodes all with a node degree of 2) is a diagonal matrix.

When either of the graphs Ga or Gg is regular (a graph isregular if the in-degrees of all
vertices are equal and the out-degrees of all vertices are equal) or has @mal adjacency
matrix (a matrix A is normal if it satises AAT = ATA), then the similarity matrix S has
rank 1.

The cyclic de nition very naturally leads to iterative updates, in which similarity scores between

elements propagate along edges to neighboring elements on each iteration.

Algorithm 5  Blondel's Algorithm
Require: Graph Ga and Gg respectively of orderm and n
: SO 1=klkg 2 R™ "

for t=1;2; itmax do
st ASt 1BT+ATSt 1B
KASt IBT+ATSt 1Bk

S st

1
2
3
4: end for
5
6: wheretmax IS an even number that is "su ciently large".
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The application of this similarity scoring method to the graphs in Figures 5.3 and 5.4 results

in the similarity score shown in Table 5.1.

O OO

Figure 5.3: Graph Ga with three nodes.

®

Figure 5.4: Graph Gg with ve nodes.

Table 5.1: Similarity Scores betweenGa and Gg.

Nodes 1 2 3

1 0.443| 0.104 0
2 0.280| 0.396| 0.086
3 0.086 | 0.396| 0.280
4 0.222| 0.049| 0.222
5 0 0.104 | 0.443

5.2 Low-rank Approximation of Similarity Matrix by Cason et
al.

As the size of the graphs increases, Algorithm 5 becomes computationally pgnsive. To save
storage space and computation time, a low-rank matrix is considered to apximate the similarity
matrix. The low-rank approximation is known to be reasonable for some cass. For example, we
know the similarity matrix de ned in [BGH * 04] can have low-rank structure, see details in Section
5.1. Furthermore, in the expriments, low-rank structure is also olserved when considering the
similarity between a noisy graph and a given graph, i.e., the similariy between a graphG and
G+ G, where G represents \noise" in edge weights (which includes adding edges lghanging
weights with value 0) added to the graph G. It is still an open question as to whether or not
a low-rank approximation of a similarity matrix that does not have exact or numerical low-rank

contains any useful information.
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In [CAD13], Cason et al. proposed two low-rank iterative schemes that corerge to two ap-
proximations of the Blondel et al. similarity matrix with respectiv ely either k nonzero identical
singular values or at mostk nonzero (not necessarily identical) singular values. In this sectin,
these methods are reviewed.

Cason et al. rst show that the similarity matrix de ned by Blondel et al. is the solution of an
optimization problem. The iteration in Algorithm 5 is such that

St 2 argmaxtS; M (St big =tr(ST™M (St 1)): (5.6)
kSkF =1

Moreover, they prove that S?! is a solution of

L (S); (S):=MM;M?S)ie =tr(STM *(S)); (5.7)
whereM 2(S)= M (M (S)) and [M (S)]j =[ASBT + ATSB];j, S(m;n) := Norm(1;m;n) = fS 2
R™M N : kSkg = 1g. This problem maximizes a continous function on a compact domain S(m;n).
Hence, according to the rst order optimality condition, if S2 is a maximizer, then S?* is a
stationary point of the iteration. They then proposed the following two low-rank approximations

and gave two iterative algorithms.

Approximation with k Identical Singular Values.. In this case, they replace the set
S(m; n) by Sc(m;n), which is the set of rank-k matrices with Frobenius norm 1 with k identical

singular values, i.e.
8 9
< UMVT2R™ ":U 2 St(m;k);V 2 St(n;k);=

Sk(m;n) = (5.8)

: I'\k = |k=k|kk|: = |k=p R;

where St(m; k) is Stiefel manifold which denotes the set of allm  k orthonormal matrices, i.e.
St(m;k):= fX 2 R™ X: XTX = I\q; (5.9)

and | ¢ denotes thek k identity matrix. They propose an iteration algorithm, Algorithm 6, to nd
an approximation of the similarity matrix de ned by Blondel et al. and pr ove that it converges to

a stationary point of maximization problem (5.7) .
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Algorithm 6  Cason's Algorithm 1
Require: Graph Ga and Gg respectively of orderm and n
1: SO  1=klkg 2 R™ N
2. for t=1;2; itmax do
3:  Compute S!' 2 Si(m;n) according to
4 S'(= UMVYT)  f(S' )= argmaxsys, (mn)SiM 4(S' Yir
5
6
7

: end for
S st
: whereM 2(S) = M (M (S)) and [M (S)]j =[ASBT + ATSB]J;

Approximation of rank at most k:. The second method they propose is replacing the set

S(m;n) by S ¢(m;n), the set of matrices of norm 1 with rank at mostk, i.e.

8 9
<UDVT 2R™ ":U 2 St(m;k);V 2 St(n; k);=

S k(m;n) = (5.10)

D is a diagonal matrix; kDkg = 1

They give another iteration algorithm, Algorithm 7, to nd an approximation of t he similarity
matrix de ned by Blondel et al. and they prove that it also converges to a stationary point of the

maximization problem (5.7).

Algorithm 7 Cason's Algorithm 2

Require: Graph G and Gg respectively of orderm and n
1: 89 1=klkg 2 RM™ N
2: for t=1;2; ‘tmax do

3:  Compute S' 2 S (m;n) according to

4: SY= U'D'VYT) f(S' 1) = argmaxg,g

5

6

7

((mn) PS:M “(S' hir
: end for
S st

: whereM 2(S) = M (M (S)) and [M (S)]j =[ASBT + ATSBJ;

Note that at every iteration Algorithm 7, is exactly the same as Algorithm 5, except taking only
the rst k dominant singular values, assumingk < min(m;n). The case when they are equivalent

is easy to characterize.

Proposition 29. If k =min( m;n), then Algorithm 7 is equivalent to Algorithm 5.
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Proof. Let M 2(S) have an ordered singular value decomposition

M2S)=P Q"= P, P, 01 02 8% ; (5.11)

with Py 2 R™ K;p, 2 RM (M K:Q 2 RN K;Q 2 R (M K, 2 Rk Kand , 2 RM k) (0 1),
Then the next iteration is determined by
St(= U'D'IVY")  (S' Y= argmax hS;M (St Yig (5.12)
S2S ¢(m;n)
and

hS;M 2(S)ig =tr(STM ?(S)) =t r(VDU'M 2(S)) =t r(DU "M 3(S)V)

X X
((DUTM 2(S)V) (D) (UTM %(S)V) i(D) i( 1) (5.13)

i=1 i=1 i=1
tr("1 1)
where "1 = 4—. Thus,
1
St= P 1 5.14
K ket 1Q1 (5.14)
If k = min( m;n), without loss of generality, let us assumem < n, then P, = P; 1 = and
Qu=Q T 2
1 P Q M £(S)
gt = T _ = : 5.15
k kg Q kP QTke kM 2(S)kg ( )
which is the same as the iteration in Blondel's Algorithm 5 (take even iteration). O

5.3 Some Observations and Proposed Methods

Algorithm 5 is, in fact, a power method, so the rate of convergence depels on the ratioj 2j5 1]
the largest two eigenvalues oM 2 with j 1j > j »j. Algorithm 7 is equivalent to Blondel's Algorithm
5 whenk = min( m;n). For low-rank approximation, Algorithm 7 exhibits linear convergence as
well, although this is not proven in [CAD13]. To avoid this de ciency, second-order information
about the cost function can be used to get higher rates of convergence.

The feasible sets (5.8) and (5.10) in the low-rank approximation proposedypCason et al. have
either manifold structure or manifold-like structure. For the appr oximation with k identical singular
values, the set (5.8) has a manifold structure. The general optimizationalgorithms introduced in

Chapter 2 can be used to solve the optimization problem (5.7) on the set (8). For the second
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kind of approximation with at most k possibly not equal singular values, set (5.10) does not have
a manifold structure, but it can be seen as the union of several xed-ank manifolds. Thus, the
modi ed Riemannian optimization methods (MROM) proposed in Chapter 3 can be applied to
solve (5.7) on the set (5.10).

For (5.7) on the set (5.10) when the geometric multiplicity of the extremal eigenvalue ofM 2 is
more than 1, the eigenspace associated to the extremal eigenvalue has @nsion greater than 1.
MROM can only guarantee convergence to an eigenvector, not necessarily éhunique one with the
largest 1-norm.

Since it is not necessarily known a priori if the geometric multipicity is greater than 1, it is nec-
essary to develop algorithms to handle, in a seamless fashion, problemdth geometric multiplicity
greater than 1 as well as those with multiplicity 1. The following three modi cations to MROM

will be investigated:
1. Add a penalty term on the cost function (5.7), i.e., a new cost function
2(S):=tr( STM 2(S))+ 17S1; (5.16)
where is a penalty coe cient and 1 is a vector of all 1 and solve using MROM.
2. Using MROM, solve the following Augmented Lagrangian cost function
3(S)= 17S1  kgrad r(S)kZ + kgrad g (S)kg; (5.17)
where is a Lagrange multiplier.

3. Find the optimal solution S for the cost function (5.7) using MROM. Then using a second
application of MROM with S as an initial condition optimize the cost function with an
additional penalty term

4(S)=17S1  kgrad p(S)kE; So=S; (5.18)
where grad (S)=2M 2(S) 2tr(STM %(S))S is the full gradient of cost function (5.7).

Note that all three default to MROM for problems with geometric multipl icity 1.

A geometric multiplicity greater than 1 appears only under certain condtions and appears to
be uncommon. It follows from Perron-Frobenius Theorem that the eigengaces associated with
the Perron-Frobenius eigenvalue is one-dimensional if the non-negag matrix M is primitive, i.e.,
M h)ij > 0 for some powerh. For (5.7), the following proposition shows if A and B satisfy a

certain condition, there exists a pair (j;j ) such that (M h)ij = 0 for some powerh.
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Theorem 30. Let Q = fgja sequence of lengtlh with elements that are eitherl or Tg and A9 =
P
i, A% whereA% = Aor AT. Let M" =(B A+BT A= ,(BY AY. Then the
(k 1)ng + h;(j 1)na + i)-th element of M " is equal to zero if and only if the product of the

(h;i)-th element of A9 and the (k;j)-th element of B9 is equal to zero for alla2 Q.

Proof. The (k 1)ng + h;(j 1)na + i)-th element of M " can be represented by

X
veclenk) "M Mvec(g ) = vec(en)T  (BY  A%vec(e); (5.19)
g2Q

wherees 2 R" "8 represents a basis element matrix with ¢; s)-th entry equal to 1, and all others
equal to 0.
SinceA and B are non-negative matrices, B9 AY) is also a non-negative matrix and therefore,

the (k 1)ng + h;(j 1)na + i)-th element of M " is equal to zero if and only if8q2 Q,
vecenk) (B9 A%vec(gj ) =tr ¢l A%,; (B)T =0: (5.20)

Sinceel A%is anng na matrix with the k-th row equal to the h-th row of A9 and all other rows
zero and, similarly, e; (B 9Tis anna ng matrix with the i-th row equal to the j-th column of
B9 and all other rows zero, it follows that tr e, Ad; (BT =0 if and only if the product of the

(h;i)-th element of A% and the (k;]j)-th element of B9 is 0. O

5.4 Approximation with k ldentical Singular Values

We rst look at the feasible set (5.8) in [CAD13] with k identical singular values
9

8

< URVT 2R™ ":U 2 St(m;k);V 2 St(n; k);=
Sk(m;n) = p_. -
) I"k: [ =klke = 1= k’

This set has a manifold structure [CAVD11]. In this case, the general Remannian optimization
algorithms reviewed in Chapter 2 can be used directly to solve probia (5.7). In the following, the
crucial ingredients needed in the general Riemannian optimization algathms to this feasible set

are introduced rst. Then some experimental results are used to Bow the e ciency.
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5.4.1 Riemannian Gradient

The tangent space to the feasible seBx(m;n) at a point S = UNVT 2 Se(m;n) is

TsSk(m;n) = é‘ _(0):  curve onSk(m;n) with (0) = Sg
< U VT + UKJV + U, KyVT siti= (5.21)

2 Sskew(K); Ky 2 R(M k) k-, 2 R(" K K;
whereU- ; V> are any orthogonal complements olJ; V and Sskew (k) denotes the set of skew matrices
of order k, skew@d) = A4

The normal space to the feasible sef;(m;n) at a point S = Ul VT 2 Si(m;n) is

NsSk(m;n):=f :h; ig=0;8 2 TsSk(m;n)g
n

0 (5.22)
= UHVT + UKV sitt H 2 Sgym(k);K 2 R(M K (0 k)

with Sgym(k) denotes the set of symmetric matrices of order k, symg) = At

By restricting the Euclidean inner product on R™ ",
hA;Bi =tr( ATB) with A;B 2 R™ ":
to the tangent space,Sg(m; n) is a Riemannian manifold with the Riemannian metric
gs(: ):=h; i=tr( T ) withS 2S(m;n)and ; 2 TsSc(m;n) (5.23)

where the tangent vectors ; are seen as matrices irR™ ",

Once the metric is de ned, the notation of gradient of an objective fundion can be introduced.
SinceSk(m; n) is embedded inR™ ", the Riemannian gradient is given as the orthogonal projection
of the gradient of cost function ( S), which is a function on R™ ", onto the tangent space atS,
given by

Presymn) : R™ "1 TsSe(m;n)

UskewUTZV)VT + UUTZV5)V, + Us (UJ ZV)VT

Z! PsZ
(5.24)
UsysUTzV)VT + UUTZ + ZzvVvT UUTzvV':

Similarly, the orthogonal projection of the gradient of cost function ( S) onto the normal space at
Sis

Pngsc(mn) : R™ "1 NgSe(m;n)

Z! PSZ=UsymU'ZV)VT +(In UUDHZ(, VV): (5.25)
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Since the (Euclidean) gradient of the cost function (S)is 2M 2(S), whereM 2(S) = M (M (S)) and

M (S)]j = [ASBT + ATSB]U , projecting the Euclidean gradient onto tangent space &Sk(m;n),

yields the Riemannian gradient

grad ( S) := P s2M (S)

UT2M 2(S)V + VT2M 2(S)Tu
2

3UUTM 2(S)VVT  UVTM %(S)TUVT +2UUTM 2(S)+2M ?(S)V VT:

U VT +2UUTM 2(S)+2M 2(S)VVT  2UuU™M 2(S)v VT

(5.26)
5.4.2 Riemannian Retraction

Given S 2 Si(m;n) and S 2 TsSk(m;n), similar to Section 4.3.3, we give the following three
ways of retractiing onto the manifold Sx(m; n): the SVD-type retraction , the QR-type retrac-
tion and the polar-type retraction

Let S= UVT 2 Si(m;n), the S2 TsSc(m;n) can be computed as
S=uvh+Uu\v: (5.27)

The expression of (;\.) can be derived as follows. Sinc&J 2 St(m;k);V 2 St(n; k), in view of the

form of the tangent space to the Stiefel manifold Stf; p) at a point X,

TxSt(n;p)= fX + XoK: T= :K2RMP Pg (5.28)
we have
U=U y+ U Ky;
(5.29)
L=V yv+ VWVKy;
where [ = y; 1= v,Ky2RMK kK, 2RMK Kk |t follows that
S=(U u+ UKy)VT+ UV v+ VoKy)T
(5.30)
=U( y+ VVI+UKyVT+U VT
Multiplying both sides by UT from the left and V from the right, we get
ut v =UTsv: (5.31)
Similarly, we have
Ky = U] SV;
(5.32)
Ky =UTSVW:
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Since y; vy are skew matrices, y + \T, is a skew matrix. There are many possibilities, but for
convenience, we take y and v as follows:

}uTsv;

2
Lyreut (5.33)
2

u

T
Y
Therefore, we have the explicit expression otl and \L:
1o T 1T
U=U y+ U Ky= EUU SV+ U,U, SV =8V §UU SV, (5.34)

VL=V v+ WKy= %VVTSTU+V?V?TS.TU=STU %VUTSV vvTsTu: (5.35)

The SVD-type retraction is a projective retraction ([AM12]):
1 T
Rs(S) = P*EUka ; (5.36)

where U; D; V] =svd(S+ S) is (ordered) singular value decomposition (SVD), andUy; Vi are rst
k columns ofU; V respectively.

The QR-type retraction is de ned as

Rs(S) = p%u+ v, (5.37)
where
Us = gf(U+ W);
(5.38)

Ve = gf(V +\Y);

where U, \L are de ned in (5.34), (5.35) and gf (A) denotes the orthogonal Q factor of the QR
decomposition of a matrix A = QR.

An alternative choice is the polar-type retraction

1
Rs(S) = pUs AK (5.39)
where
Uy = uf (U + W);
(5.40)

Ve = uf (V + \L);

and the symbol uf () denotes the orthogonal component of the polar decomposition.
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5.4.3 Vector Transport

In our framework, vector transport can be represented by anm by n matrix. Given two
points S; and Sy in Sx(m;n), the corresponding tangent spaces are denotedg[, Ts,. We choose
the isometric vector transport T from S; to S, to be the direct rotation from T s Sc(m;n) to
Ts,Sk(m; n), restricted to act on Ts, Sx(m;n).

E cient implementations of the direct rotation vector transport are con structed following
Huang's approach [Hual3]. LetBs, and Bs, be an orthonormal basis of Ts, Sy (m; n) and Ts, Sx(m; n)
respectively. HenceBs, and Bs, can be viewed aann by d matrices (d is the intrinsic dimension)

and B Bs, = B Bs, = 4. The direct-rotation transport from S; to S; is then given by
T = Bs,VU'Bsg, (5.41)

whereB{ Bs, = U VT is a singular value decomposition (SVD).

If the codimension, mn  d, is su ciently smaller than the dimension, d, and if, moreover,
orthonormal basesNs, and Ng, are available, then the following vector transport becomes compu-
tationally advantageous,

T=(1 QsQ%)+ Qs,VU'QL,; (5.42)
whereQ¢ Qs, = U VT isan SVD andQs, ; Qs, are obtained by orthonormalizing I Ns,N{ )Ns,
and I Ns,N{)Ns,.

If smoothness is imposed, i.eB :S! BsandN :S! Ngare smooth functions to build basis

of TsSk(m; n) and NsSk(m;n), then we have a simpler form of isometric vector transports:
T = Bg,BS; (5.43)

T=1 QSngl QsnglI (5.44)
Using this idea, we must c%nstruct the functions to build the bases Note tgat since
) U VT + UKJV + U KyVT siti=
TSSk(m; n) = I
2 Sskew(K); Ky 2 R(m k) k;KV 2 RN K k;

an orthonormal basis of TsSx(m; n), denoted by Bs, is given by

fial—ZU(e-,e]T ge)V:i=1; kj=i+1; ;kg
[f U(geV, :i=1; ;n kj=1; ;kg (5.45)

[f Ur(&e)VT:i=1 m kj=1; ;kg
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where (eq; ; &) Is the canonical basis ofRK, (&1; 8n k) is the canonical basis ofR™ k and

(e1; ;e ) is the canonical basis olR" X. Similarly, we can construct the basis for normal space
NsSk(m;n) = UHVT + UKV, sitt H 2 Sgym(k); K 2 R™ k n K

Using Ns to denote the basis, which is given by

fUge VT :i=1; ;kg[fpl—ZU(ae]T+eje,T)VT:i:1; ‘kij=i+1; kg

(5.46)
[f UegV, :i=1; ;m kj=1;, ;n kg
The columns of Bg and Ng are thus chosen as the \vec" of the basis elements.
We can also derive the vector transport by the di erentiated retraction of (5.37).
Proposition 31. Let S = UNVT 2 Sg(m;n), ; 2 TsSk(m;n). Assuming and have the
following structure
= WV +U\y;
= WV + U\ :
Then the vector transport by the di erentiated retraction of (5.37) is
T =T, (Waf(V+\e)" + af (U+ Up)) (T, (V)" (5.47)

where T, (Us) is a di erentiated retraction on Stiefel manifold [AMS08, Example 8.1.5] and qf ()

denotes the Q factor of the QR decomposition with nonnegative elemenbn the diagonal ofR.

Proof. Based on the de nition of the vector transport by di erentiated retrac tion and the QR-type

retraction (5.37), we have

d
ToE g

d
= a[qf(u + Up + tUg)gf (V + \o + t\g) ]

t=0

= %[qf(u + Up + tUg)]gf (V + \b + t\4)T (5.48)

t=0

+

qf (U + U + tul)%qf(v +\b+ t\4) T
t=0

d
+qf(U+ Up+ tUy) faf (V + Vo + t\Va)]"
t=0
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SinceU 2 St(m;r);V 2 St(n;r), according to the vector transport by di erentiated retraction on

Stiefel manifold [AMSO08], we have forUs; Uy 2 Ty St(m;r),

gt[qf(u + Up + tUg)]ji=0 = Ty, (Ua); (5.49)

and for \4;\s 2 Ty St(n;r),
Slaf (v + o+ tljeco = T, () (5.50)
where
Ty, (U2) = D Ry (Up)[ U]
=D gf (U + Up)[Us]
= Ru(U2) skew(Ru(Uz)" Us(Ru(Up) (U + Up)) 1)

+(1 Ru(U2)Ru(Uz)"Ua(Ru(Up)T (U + Up)) %
and gkew(B) denotes the skew-symmetric term of the decomposition of a square max B into the

sum of a skew-symmetric term and an upper téiangular term, i.e.,

< Bi;j if i>;j
( skeW(B))i;j = 0 ifi=j
' Bj;i ifi<j:

Substituting (5.49) and (5.50) into (5.48), we have
T = Ty, (U)af (V +\e)" + af (U + Up)(T,, (W) "
O
Similarly, vector transport by the di erentiated retraction of (5.39) ¢ an also be derived and is
stated in the following Proposition.

Proposition 32. Let S = UNVT 2 Sg(m;n), ; 2 TsSk(m;n). Assuming and have the
following structure

= WV +U\y;

= WV + U\ :
Then the vector transport by the di erentiated retraction of (5.39) is

T = Ty, (Unuf (V + )T+ uf (U + Up))(Ty, ()T (5.51)

where T, (Us) is a vector transport by di erentiated retraction of (5.39) on the Stiefel manifold

[Hual3, Lemma 10.2.1] anduf () denotes the orthogonal factor of the polar decomposition.
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Proof. Based on the de nition of the vector transport by di erentiated retrac tion and the polar-
decomposition-type retraction (5.39), we have

d
T —aRX( +t)t:0

= %[uf (U+ U+ tU)uf (V + \o + t\4)T]

t=0

= %[uf (U + U+ tU)Juf (V + \b + t\)T . (5.52)

+uf (U+ U+ tLLl)C?tuf (V+\b+ t\a)'
t=0

FUF(U+ Up+ tUg) (V5 o+ 1]
t=0

SinceU 2 St(m;r);V 2 St(n;r), according to the vector transport by di erentiated retraction on

the Stiefel manifold [Hual3, Lemma 10.2.1], folds; Uy 2 Ty St(m;r), it follows that

Suf (U + U+ t)lico = Ty, (W) 559

and for \4;\b 2 Ty St(n;r),

QM (v + o+ s = Ty () (5.54)

where
Ty, (Us) = D Ry (Up)[Us]
=D uf (U + Up)[Uy]
= Ru(W) +( 1 Ry(U)(Ru(U) HUWs((Ru(Up)T(U+ W) %

and R is (5.39), ved g = ((Ru(W))T(U + Up) (Ru(Up)T(U + W)) ved (Ry(Up)) Uy
Uf Ry(Up)g, is the Kronecker sum,i.e, A B=A 1+ B.
Substituting (5.53) and (5.54) into (5.52), we have

T = Ty, (Uauf (V + )T + uf (U + Up)(T,, ()"

5.4.4 The Action of Riemannian Hessian

In order to exploit second-order information, we give the following pioposition with an expres-

sion of the action of Riemannian Hessian.
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Proposition 33. For any S = UlVT 2 S(m;n) and 2 TsSc(m;n), the Riemannian Hessian

of at S in the direction of satis es
Hess (S)[ 1= 5 grad( S) = Ps(Dgrad ( S)[ 1)
where
Dgrad ( S)[ ]= 3k’[STM?S)STS+S TM?%S)STS+ SSTM 2()S'S
+ SSTM ?(S) TS+ SSTM 2(S)ST ]
K[ M2(S)TS+ SM2()TsS+SM?39)7 ]
+2k[STM ?(S)+ S TM 2(S)+ SS™M 2( )]
+2k[M ?( )STS+ M 2(S) Ts+ M %S)ST
Proof. We already have the Riemannian gradient of the cost function (S) on Sc(m;n) is given

by:
grad ( S) = 2P sM ?(S)

3UUT™M 2(S)VVT  UVTM (S)TUVT +2UUTM 2(S)+2M 2(S)V VT (5.55)

3k’SSTM 2(S)STS  kSM 2(S)"S +2kSS™M 2(S) +2kM %(S)ST S:
Since Sg(m; n) is a Riemannian submanifold of a Euclidean space, according to [AMSO08, Etion

(5.19)],
Hess (S)[ 1=r grad( S)=P s(Dgrad ( S)[ ]); (5.56)

where Dg(x)[H] is a directional derivative of g at x along H. We now di erentiate (5.55) to get a
matrix representation of the directional derivative of Riemannian gradient, grad , at S along .
Dgrad ( S)[ ]= 3k’ [STM2(S)STS+S "M ?%(S)STS+ SSTM ?()S'S
+ SSTM 2(S) TS+ SSTM %(S)ST ]
kI M?(S)TS+ SM?()Ts+SM%S)T ]
+2k[STM 2(S)+ S TM 2(S)+ SS"TM ()]
+2k[M 2()STS+ M ?%(S) Ts+ M 2(S)ST

Finally, the Hessian of a cost function at S in the direction of satis es

Hess (S)[ ]=5 grad( S)=P g(Dgrad ( S)[ ]:
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5.4.5 Experiments

In this section, we compare the performance of Cason's iteration metho#ith those of the gen-
eral Riemannian manifold methods introduced in Chapter 2. Six Riemamian algorithms are used,
i.e., Riemannian steepest descent with line search (RTR-SD), Rmannian trust region with sym-
metric rank-one update (RTR-SR1), limited-memory RTR-SR1 (LRTR- SR1), general Riemannian
trust-region method (RTR-Newton), Riemnnian Broyden-Fletcher-Goldfarb-Shannon (RBFGS) and
limited-memory RBFGS (LRBFGS). Four of them are combined with a tru st region: RTR-SD,
RTR-SR1, LRTR-SR1, RTR-Newton. The rest are combined with a line seach algorithm, i.e.,
RBFGS with inversion Hessian approximationHy, LRBFGS (limited-memory RBFGS). The inner
iteration algorithm of trust region is the truncated CG inner iteration [ AMS08, Section 7.3.2]. The

, parameters in the inner iteration stopping criteria [AMSO08, (7.10)] are ®tto 1;0:1. 1; 2 in
trust region are 0:25 and 2 respectively. The initial radius ¢ is 1. cin RTR-SR1 and LRTR-SR1 is
setto 01, is the square root of machine epsilon. The constants;; ¢c; used in the Wolfe conditions
are le 04 and Q999 respectively.

The results presented are obtained by implementing the di erent algorithms in Matlab (Version
7.10.0) on a Mac platform with 2.4 GHz and 4 GB memory.

Unless otherwise indicated in the description of the experimentsthe following test data param-
eters are used. The test graph is a random graph based on Erds-Renyi miel with 100 nodes and
average of outgoing edges of each node is 10 and the self-similarity matrig computed. The initial
iterate Sp of Riemannian algorithms is composed by two partsUp; Vo, where Ug; Vg are the rst k
columns ofU and V generated by applying Matlab's function SVD on an all 1 matrix. The initial
iterates Sy of Cason's iteration method, i.e. Algorithm 6, is an all 1 matrix, which is setting in
Step 1 of Algorithm 7. The stopping criterion required the ratio of the norm of nal gradient and
the norm of initial gradient is less than 10 7 for all methods. To obtain su ciently stable timing
results, an average time is taken of ve runs with identical parametes.The notation used when
reporting the experimental results is given in Table 5.2.

In Section 5.4.5.2, dierent retractions are compared. Section 5.4.5.2 congres the perfor-
mances of Algorithm 7 and RTR-Newton method. In Section 5.4.5.3, the performances of di erent

Riemannian algorithms are compared with Algorithm 7.
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Table 5.2: Notation for reporting the experimental results.

Rerr | relative error % where SB is the full rank matrix obtained by Blondel's algorithm

f nal value of the cost function (5.7)

gfo | Riemannian metric value of the initial gradient
of; Riemannian metric value of the nal gradient
iter | number of iterations

nf number of function evaluations

nf number of function evaluations

ng number of gradient evaluations

nH number of operations of the formH

nv number of vector transports

nR number of retraction evaluations

t average time (seconds)

5.4.5.1 Performance of di erent retractions. Three types of retractions are proposed in
Section 5.4.2. In this section, the results of RTR-Newton with di erent retractions are compared.
Table 5.3 shows the results of dierent retractions for dierent k in RTR-Newton. From the
table, we observe ask increases, all three retractions get almost the same relative error andhie
same nal value of the cost function (5.7). The computation time of QR-type retraction and
polar-decomposition type retraction are almost the same. But the computaion time of SVD-type
retraction is more than the other two types of retraction. Table 5.3 also $iows the number of
operations of the form H in SVD-type retraction is more than that in the other two types of

retractions when k is small hence the di erence in computational times.

5.4.5.2 Comparision of Cason's Iteration algorithm and RTR-Newton. From the
comparison of di erent retractions, we observe polar-decomposition-tpe retraction has time ad-
vantages compared to the other two. In the following experiments, thé retraction is always used.
In this section, the results of low-rank approximation generated by Gason's iteration method and
RTR-Newton are compared. Table 5.4 shows the results. It shows RTR-N&ton method has no-
ticeable time advantages compared with iteration method, especially Wwen k gets large. It can also
be observed that when the rank of the approximation increases i.e. dsincreases, the relative error
%, where SB is the full rank matrix obtained by Blondel's algorithm 5), also increases,
although the values of the cost function decrease. These counterinttive results occur because

similarity matrices do not usually have identical eigenvalues.

111



Table 5.3: Comparison of di erent retractions for approximation with k identical singular values.
The subscript  z indicates a scale of 10%.

k Rerr Retraction f time(s)  gfs=gfo of nF nG nH nR
1 18750, SVD-type 414044 1704 o1 1578 190 2846 06 7 7 23 6
QR-type 4:404,94 1:058.90 1:995 g9 3599 o5 7 7 21 6
PD-type 4:404,04 1:332 91 21:995 g9 3599 o5 7 7 21 6
2 7655 9 SVD-type 3:203;04 4457 o1 2108 10 2691 o 11 11 67 10
QR-type  3:203p4 4:026 o1 7468 g9 9531 95 11 11 64 10
PD-type  3:203,04 4184 o3 7468 g9 9531 o5 11 11 64 10
3 9195 p; SVD-type 2:706,04 6:205 1 505519 5303 o5 17 17 100 16
QR-type  2:706.04 6:200 g7 1:346 g9 11412 o5 18 18 103 17
PD-type 2:706.04 6:087 o1 1:346 g9 11412 o5 18 18 103 17
4 9996 o1 SVD-type 2:35994 5773 o1 2383 g3 21184 o4 15 15 93 14
QR-type 2:35%04 8849 g1 1796 gg 1:646 oo 17 17 96 16
PD-type  2:35904 6:001 g7 1:796 og 11646 o4 17 17 96 16
5 105299 SVD-type 2:113,94 21:30499 8:339 og 6:837 o4 24 24 218 23
QR-type  2:116.04 7:262 g1 2:126 g9 1743 o5 22 22 119 21
PD-type  2:116.04 7:081 o1 2:126 g9 1:743 o5 22 22 119 21
6 1088 SVD-type 1:916,04 1:729¢ 7:720 17 5844 43; 30 30 295 29
QR-type  1:918.04 7:965 1 1:090 g9 8253 g5 22 22 134 21
PD-type 1:918.04 7:885 7 1090 g9 8253 o5 22 22 134 21
10 116599 SVD-type 1:33Lp4 31629 2:361 g9 1:365 95 31 31 418 30
QR-type  1:33Lg4 2934990 3044 g9 1760 o5 33 33 463 32
PD-type  1:33L4 2:924,990 21942 g9 1:701 o5 31 31 480 30

Table 5.4: Comparison of Cason's iteration method and RTR-Newton for approxination with k
identical singular values. The subscript z indicates a scale of 10%.

Iteration Method RTR-Newton Method

Rerr f t ofs =gfo of¢ f t oft =gfo of;

348 g2 4:69:04 0.67 903 g9 2:15 o3 4:6904 0.18 184 g9 4:38 g5
7:66 01 2:30:04 1.69 957 og 161 o3 326,04 0.41 220 o5 373 4
9:20 01 2:62+04 1.13 999 08 1:37 03 2:62+04 0.90 @38 09 8:68 05
1:00;00 2:29504 10.83 999 o3 1:18 o3 2:29;04 049 226 o5 2:67 o4
1.0500 19594 12.33 999 g3 1:.02 o3 1.95,94 135 742 o9 7:74 o5
10 ]_'16+00 1Zl5+04 31.09 994 08 733 04 1:15+04 1.79 416 08 3.05 04

ga b wN R x
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5.4.5.3 Comparison of other Riemannian algorithms. In this section, six Riemannian
optimization methods are compared with Algorithm 7. Results are shown inTable 5.4.5.3, where
the values in brackets show the iteration numbers and the missing alues ( ) mean the result
needs more time to reach the stop criteria or has exceeded the allowbamount of memory. From
the results, we observe limited-memory RBFGS method is comparalel with RTR-Newton method.
What is more, the Riemannian optimization methods, except RBFGS mehod, have signi cant

time advantages compared with iteration method, especially wherk is small.
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5.5 Approximation of rank at most k

Since the relative error of the approximation with k identical singular values increases ak
increases, we enhance our method with a diagonal positive scalirigy,. However, there is no rigorous
way of how to choosek, i.e., if k is chosen \too small", the result may not be a good approximation
of the similarity matrix; if k is chosen \too large”, the algorithm may require excessive computation.

In this section, we consider the set of rank at mosk, i.e. (5.10) in [CAD13]:

8 9

<UDVT 2R™ ":U 2 St(m;k);V 2 St(n; k);=

S k(m;n) = o
: D diagonal kDkg =1

The setS ¢(m;n) is not a manifold, it can be written as

S k(m;n) = [ S (5.57)
r k

where 8 9
<UDVT2R™ ":U 2 St(m;r);V 2 St(n;r);=
Sc(m;n) = . (5.58)
: D, is a diagonal matrix ; kD kg =1
is a xed-rank manifold with r nonzero singular values. Thus, the modi ed Riemannian opti-
mization method can be applied once the required di erential geometit objects (e.g. Riemannian

gradient, full gradient, retraction, rank-related retraction etc.) ar e de ned.
5.5.1 Gradients of Interest

Following Cason et al. [CAD13], the tangent space toS;(m;n) at a point S = UD,VT 2

Sr(m;n)is

8 9
< UAV' + UBV, + U,CVT :=

TsSi(m;n):= .
B; C arbitrary ; tr(AD,;) =0’
8 ;9 (5.59)
2 U U A B V' =
= ’ C O V?T

> . >
* B;C arbitrary ;tr(AD,)=0"

where U, ; V, are any orthogonal complements olJ; V. There is an extra condition onA such that

tr(AD ) = 0, due to the requirement on matrix Dy, i.e., it satis es kD kg = 1.
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The normal space toS,; (m;n) at the point S= UD,VT 2S,(m;n) is

8 T 9
R yuy Br 0 Vo=
NsS;(m;n): = ' 0 R V, S
. (m r) (n r),
5 2R:R, 2R o (5.60)
< S +U,RpV, =

2R:R5 2 Rr(m r (n r);

By restricting the Euclidean inner product on R™ ",

hA;Bi =tr(ATB) with A;B 2 R™ ";

to the tangent space, we turnS,(m;n) into a Riemannian manifold with Riemannian metric
gs(; ):=h; i=tr( T ) with S2S(m;n)and ; 2 TsSc(m;n); (5.61)

where the tangent vectors ; are seen as matrices irR™ ",
Once the metric is de ned, the Riemannian gradient can be determied which in turn requires

projection. The orthogonal projection onto the tangent space and the normakpace atS = UD,V T

are

Pres (mny :R™ "1 TsSi(m;n)

Z! PsZ=UUTZVVT S +UUTZV,V,] + U,UujzvVT
(5.62)
=uuTz+zvv? uuTzvvt s;
PNsSr(m;n) RM N Nssr (m,n)
Z! PiZ=S +(Im UUNZ(, VVT): (5.63)

In order to get the explicit form of projection, an explicit expression of is needed. We have

any Z 2R™ " can be rewritten into the following form
Z=UKVT+UBV, + U, CVT + U EV»; (5.64)

whereK 2 R" ;B2 R (" nN:c2 RM 1 r-g 2 RM 1) (0 1) projecting Z onto the tangent

and normal spaces, yields

Z=PsZ+PIZ (5.65)
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From the two terms in the expression forZ, the tangent and normal spaces are seen to begls; =
fUAVT + UBV, + U,CVTgand NsS; = f S + U, R, V' g, whereB; C; R, are arbitrary matrices
and A is any matrix that satis es tr( AD,) = 0.
To get a computationally useful form of elements of these spaces, suitébexpressions folA and
are required. SinceS = UD ,VT, we seekA inthe form A= K D ,. Multiplying Z by UT
from the left and V from the right, eliminates the last three terms and givesk = UTZV. Thus
A=UTZV D ,. Combining this with the constraint tr( AD,)=0, we gettr((K D ,)D;)=0.

Therefore, the form of can be obtained:

tr(KD
= trr((DDr)) =tr( UTZV,D,) =tr( ZV,D,U) =tr( Z(U D,V,")T) =tr( ZST): (5.66)
r r

Given the explicit form of , we obtain the formula for projection onto tangent and normal

space as follows:

Pres (mny :R™ "1 TsSi(m;n)

Z! PsZ=UUTZVVT tr(ZST)S+ UUTZV,V, + U,UJZV VT
=uyuTz+zvv'T uUuTzvv' tw(zs"s; (567
Pngs(mn) : R™ "1 NsS¢(m;n)
Z! PEZ=tr(ZST)S+(Im UUNZ(U, VVT): (5.68)

Since the Euclidean gradient of cost function (S) is 2M ?(S), projecting the gradient onto

tangent space, we obtain the Riemannian gradient

grad ( S) := Ps2M (S) = 2PsM 2(S)
(5.69)
=2UUTM (S)+2M 2(S)VVT  2UuU™M 2(S)VVT  2tr(M 2(S)ST)S:

whereM 2(S) = M (M (S)) and [M (S)]j =[ASBT + ATSBJ; .

In order to apply MROM, a Riemannian submanifold M is needed such that the cost function
can be extended. Since for eacl$s = UDVT 2 S (m;n), we require kDke = 1, which implies
kSke = 1, the submanifold M can be treated as a unit sphereS™ 1. Consider the following two
functions g and :

:M =8™M 11 R:ST7tr(STM %(S));

F1S(min)! R:S7!tr(S™™ 2(S)):
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The cost function for the rank inequality constrained problem isthen =  js , and = gjs, =
Js: -
The tangent space and normal space to a spher8™ ! at a point S 2 S™ 1 are given in
[AMS08, Example 3.6.1]:
TsS™ 1=fz2R™ ":STZ =0g; (5.70)
NsS™ 1=fS : 2Rg; (5.71)

and the projections are

Presm 1:R™ "I Tgs™ 1
(5.72)
Z7PsZ=2Z S

Pngsm 1 :R™ "1 Ngs™ !
(5.73)
Z7NPZ=S;
where =tr( ZST). Thus, the full gradient on the submanifold M can be obtained by projecting

the Euclidean gradient of cost function £(S) onto the tangent space TsM
grad £(S):=2PsM %(S)=2M 2(S) 2tr(M ?(S)S")S; (5.74)

whereM 2(S)= M (M) and [M (S)]j =[ASBT + ATSBJ; .
5.5.2 Retractions of Interest

Two kinds of retractions are required for MROM: retraction onto the x ed-rank manifolds and
rank-related retractions.

Given the triple (U;D;V) such that S = UDV T, the computation of the triple (W;D; \) is
similar to the discussions in Section 4.3.4. Foll and \,, they are the same as shown in Section
4.3.4. However, there is an additional restriction onD such that kDkg = 1. Thus, D is computed
as

D=UTsVY D =UTsv tr(SS")D: (5.75)

The three choices of retractions on the xed-rank manifoldS, are considered in the following:

three-factor SVD-type retraction

Rs(S) = Uy D4V, (5.76)
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where

UD = QuRy;
LD = QvRy;

D+D R/
UsDgVs = v
s/sVs Ru O
Us = U Qu Us(:;1:r);
D, = Ds(2:r;1:r)

B kDS(lzr;l:r)k,:;
Ve=V Q Vs(;1l:r);

three-factor polar-type retraction

where

Rs(S) = U.D. V)] (5.77)

UsDsVe = D + D using SVD;
Us = uf (U+ WUs;

—_ DS .
D = KD ckg ’

Vi = uf (V + \)Vs

and uf () denotes the orthogonal component of the polar decomposition.

three-factor QR-type retraction |

where

Rs(S) = U, D4V, : (5.78)

UsDsV = D + D using SVD;
Us = gf (U + WUg;

—_ DS .
D = KD ckg ’

Vi = gf(V + \)Vs;

and gf () denotes the Q-factor of the thin QR decomposition of its matrix argument

three-factor QR-type retraction Il

Rs(S) = U, D4V, : (5.79)
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where

Us = gf(U+ W),
D, = &l
kD + Dkg

Vi = qf(V +\);
and gf () denotes the Q-factor of the thin QR decomposition of its matrix argument
In order to apply Algorithm 2, a rank-related retraction is also needed. t must satisfy certain

properties as in De nition 8 in Chapter 3. Given S 2 S;, based on De nition 8 in Chapter 3, the

following three types of rank-related retractions are constructed:
SVD-type rank-related retraction
Rs( )= U,;IﬁF.VJ; (5.80)

where U;D;V] =svd(S+ ) is (ordered) singular value decomposition (SVD),Ug; V. are
rst + columns of U; V respectively, D, are the upper~by r block of matrix D, B, = 2=

KD kg *
This can be computed more e ciently by
Rs( )= U,D.V]; (5.81)
where
QuRuy = Up;
QvRv = Vp;
Dr+ RY
UsDsVs = FRUD_F (;/ ;
O, = U Qu Us(:;1:1m;
Ds(1:r1:8
D. = ;
kDs(1:r 1:PRke
Vi = Ve Qy VS(:;l:F‘);
Dr o r
andr=r+ r,Uc= U U, , De= orr or T Ve 2 Vi V.
Polar-type rank-related retraction
Rs( )= U,D.V]; (5.82)
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where
O: = uf (Ue+ Ux)Us;

Ds
D, = -
T 7 KDoke '

Ve = uf (Ve + V)V,
Dr+ De = UsDsVy ;

where uf () denotes the orthogonal component of the polar decomposition.
QR-type rank-related retraction |
Rs( )= U,D.V,]; (5.83)

where
O: = gf (Ue+ Ux)Us;

Ds
D, = :
T 7 KDgkg '

Vi = gf (Ve + \b)Vs;
D+ Dp = UsDsVy ;

where gf (') denotes the Q-factor of the thin QR decomposition of its matrix argument

For the three types of rank-related retraction above, the rank-related vector  has the form
of = UV + UDVT + U and D= UTSV  tr(SST)D. If D is assumed to be a
diagonal matrix and = UDrV] + UDeV] + UrD\4, then similar to Section 4.3.5, we
have the QR-type rank-related retraction Il

Rx( )= 0.D.V; (5.84)

where

O: = gf (Ur + Us);
_  De+De |
~ KDp+ Dok
Vi = gf (Ve + \&);

+

where gf () denotes the Q-factor of the thin QR decomposition of its matrix argument

5.5.3 Vector Transport

In our framework, vector transport can be represented by amfm by n matrix. Given two points

S; and S in Sg(m;n), the corresponding tangent spaces are 4, Ts,. We choose the isometric
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vector transport T from S; to S; as the direct rotation from T g, Sx(m; n) to T s, Sx(m; n), restricted

to act on T, Sg(m; n). Note that the tangent space has the following structure
8 9

< UAVT + UBV, + U,CVT :=
TsSk(m;n) = o
B; C arbitrary ; tr((ADy) =0}
An orthonormal basis of TsSg(m;n), denoted by Bs, is given by
fU(e.eJT)V i=1;  ;k;j=1; ;k;i;j can not both equal to kg
[f U(ge)V) :i=1; ;n kj=1; ;kg (5.85)

[f Ur(&e)VT:i=1 m kj=1; ;kg

where (e1; ;&) is the canonical basis ofRK, (&; ;& ) is the canonical basis ofR™ K and
(e1; ;e k) is the canonical basis oR" X. Similarly, we can construct the basis for normal space
8 9
< S +U,RpV, =
NsSk(m;n) = :

2R:R; 2 R(M k) (n k),

Using Ns to denote, which is given by
fUDVTg[f U,&qV, :i=1; ;m kj=1; ;n kg (5.86)

The columns of Bg and Ng are thus chosen as the \vec" of the basis elements.

We can also derive the vector transport by the di erentiated retraction of (5.78) and (5.79).

Proposition 34. Let S = UDyVT 2 Sg(m;n), ; 2 TsSk(m;n). Assuming and have the

following structure

= WDV + UDyVT + UD\Y;
= WD VT + UDpVT + UDK\ :

Then the vector transport by the di erentiated retraction of (5.78) is

D D D D
T o= T (W) k2 af (v + V)T + af (U + Ug)) KT 22

kD + Doke Dy + D_2|k|:
Dy D+ Dy (Dyk+ Dp)TDy
kDy + Doke kD + D_2k|2: kDg + Doke

(Ty, ()"
(5.87)

+ gf (U + Up)) af (V + \&)T;

where T, (Us) is a di erentiated retraction on Stiefel manifold [AMS08, Example 8.1.5] and qf ()

denotes the Q factor of the QR decomposition with nonnegative elemenbn the diagonal ofR.
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Proof. Based on the de nition of the vector transport by di erentiated retrac tion and the QR-type

| retraction (5.78), we have

d

T =aRx(+t)t:O !
- ;t[qf(u + Up + tUy) kDDkk++ Elllzz:tglj(F | af (V + Vo + t\4)"] =
+qf(U+ Up+ tU—l)% kDDkk++Dl?2-2++tt£;(F ' af (V + e + t\g)T B
O 01 Sl s v T i

SinceU 2 St(m;r);V 2 St(n;r), according to the vector transport by di erentiated retraction on

the Stiefel manifold [AMSO08], we have forUs; Uy, 2 Ty St(m;r),

%[qf(U + Up + tUs)]je=0 = Ty, (Ua); (5.89)

and for \4;\s 2 Ty St(n;r),

R VY AL (590

where
Ty, (Us) = D Ry (Up)[Ui]
=D qf (U + Up)[Us]
= Ru(U2) skew(Ru(U2)"Wa(Ru(U2)" (U + W) )
+(1 Ry(Uz)Ry(Uz)UWs(Ry(Uz) " (U + Up))

and <ew(B) denotes the skew-symmetric term of the decomposition of a square max B into the

sum of a skew-symmetric term and an upper triangular term, i.e.,

8 L

< Bi;j if 1>7]
( skew(B))i;j = 0 ifi=j

' Bj;i if i<jI
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. : d D+ Do+tDyg R .
The derivative KDy 3 Dot (DLkE is computed as follows:

t=0
|
d D+ Do+ thy .
dt KDk + Do+ tDuke =0
_ @(Di+ Do+ tDA)KDy + Do+ tDake  (Dy+ Do+ D) (KD + Do+ tDake) (5 g1
kD + Dp + tD_]_k,Z: t=0
N D+ Dy (Dik+ Dp)'Dy

kDy + Doke kD + D.zk,zz kDg + Doke
Substituting (5.89), (5.90) and (5.91) into (5.88), we have the vector transport by di erentiated
retraction (5.78) are following

Dk + Dp

D¢ + Dy T T
T = — "= _qgf(V+ +qf (U + —X < (T
u, (Ua) KDy + Dok af (V +\p)" + gf (U + Up)) KDy + D_2|k|:( v, (V2)) o
D, D+ Dy (Dy+ Dp)TDy ; '
+ f U + ||2 f V + .
g ( )) kDy + Doke kD + D_2k|2: kDg + Doke a ( \LZ)
[

5.5.4 Action of the Hessian on Fixed-rank Manifold

Proposition 35. For any S= UD,VT 2 S, (m;n) and 2 TsSk(m;n), the Riemannian Hessian

of at S in the direction of satis es
Hess (S)[ 1= 5 grad( S)= Ps(Dgrad ( S)[ D;

where
Dgrad ( S)[ 1=2[U, (U] VD HuT + Uu(u] vD HTUJIM %(S)+2(UUT)M ?( )
+2M 2()VVT +2M 4(S)[V> (D, *UT V,)TVT + V(D, 'UT V,)V,]
2[U, (U3 VD HuT + U] vD HTuJIM 2(S)VVT  2uU™M 2( )v VT
2UUTM (S)[V2 (D 'UT V2)TVT + V(D 'UT V5)V,']
2tr(M ?( )ST)S  2tr((M 2(S) T)S  2tr(M ?(S)S") :
Proof. As the Riemannian gradient of ( S) at a point S= UDV' is

grad ( S) = Ps2M (S) = 2 PsM 2(S)
(5.93)

=2UUTM 2(S)+2M 2(S)VVT  2UuUM 2(S)VVT  2tr(M ?(S)ST)s:
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In order to nd the Hessian, we need the derivative ofUUT and the derivative of VVT. SinceU 2
St(m; k), its derivative has the form W= U 1+ U, K1, where 1 is a skew matrix, K1 2 R(M K k
Similarly for V 2 St(n; k), the derivative of V has the form\_= V ,+ V, K,, where ; is a skew
matrix, K, 2 R(" K kK Thus, for any S= UD,VT 2 Si(m;n), its derivative can be written into
the following form:

S=UAVT + U, K1DyVT + UDKK ] VS (5.94)

where A 2 RX K;K, 2 RM K kK, 2 RN K K tr(AD ) = 0. Multiplying S-by U] from the left
and V from the right, we get
Ki=UjsvD (5.95)
Similarly, we can get
KJ =D, UTSW,: (5.96)
The derivative of UUT is computed as
(UUT)= uUT + UUT = (U 1+ U, K)UT + U(U 1+ UsKyp)T

U( 1+ DUT+ U, KqUT + UKJUJ

(5.97)
= U, KqUT + UKJUJ
= U, (U;SVD, HuT + Uu(uJsvp, HTud:
Similarly, we can obtain the derivative of V VT:
(VVH2= Vv, (D, 'UTSV,)TVT + V(D, UTSW,)V,": (5.98)

Therefore, the directional derivative of grad at S along is
Dgrad ( S)[ 1= 2(UUT)M ?(S)+2(UUTM ?( )+2M ?( )VVT +2M 2(S)(VVT)°

20UNYM 2(S)VVT  20UT™™M ?( )VVT 20U™M 2(S)(VVT)©
2tr(M 2( )ST)S  2tr(M 2(S) T)S  2tr(M ?(S)ST)

=2[U, (U] VD HuT + U] vD HTUJIM (S)+2(UUT)M ?( )

+2M 2()VVT +2M 4(S)[V> (D, *UT V,)TVT + V(D, 'UT V,)V,]
2[U, (U vD HuT + u] vD HTulIM 2(S)VVT  2uU™™ 2( v VT
2UU™M %(S)[V- (D, *UT V,)TVT + v(D, 'UT V5)V,']

2tr(M ?( )ST)S  2tr((M 2(S) T)S  2tr(M ?(S)S") :
(5.99)

125



Finally, the Riemannian Hessian of at S in the direction of can be computed by

Hess (S)[ 1= 5 grad( S)= Ps(Dgrad ( S)[ ]:

5.5.5 Some Observations of Cason's Algorithm

To reduce the complexity, Cason et al. do not use Algorithm 7, i.e., theydo not work with
S 2 R™ " jtself but with its singular value decomposition (U;D;V) 2 R™ ¥ Diag(k;k;k) R" X,
where Diagk:;k;k) := fD 2 Rk X : D diagonalDj = Oforall i > k g. Similarly, in practice,
they do not compute M 2(S) 2 R™ " itself but its singular value decomposition. Algorithm 7 is

rewritten as following

Algorithm 8 Cason's Algorithm 3

Require: Graph Ga and Gg respectively of orderm and n
1: (U% D% VY SV Dk(1=klkg)

2. for t=1;2; itmax do

3 U° AUt Ipt 1. ATyt Ipt 1 2 Rm 2.

4 U AUS ATUO 2 RM 4,

s v0  Bvt1 BTvt ! 2R %

6: V0 BvG BTVO 2 RN 4;

7. (QuiRu)  QR(U%2R™M # R 4

3: (QV;RV) QR(V092 RN 4k R4k 4k;

9. (U900 SV D (RYRY) 2 R™ kK Rk kRN K
10:  (USDYGVY (QuUO%Bae: Quv o

11: end for

Note that Algorithm 8 does not use any Riemannian objects. It is an update of tre form

Ste1 = P(St+ sMA(S) Sy (5.100)

with step sizes; = 1 and P is a projection using the SVD and a normalization, that projects a
proposed iterate onto the feasible sety.
The update of the Riemannian steepest descent algorithm with line s&ch on the xed rank
manifold Sg(m;n) is given by
Stv1 = Rs ( stPs;r ( S)); (5.101)
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wheres; is a step sizePs,r ( $) is the Riemannian gradient obtained by projecting the Euclidean
gradient r ( St) onto the tangent space Ts, Sx(m;n), and Rg, is the retraction from the tangent
space ofS; to the manifold, e.g., a projection of the matrix S; stPs,r ( St). Cason's iteration
(5.100) is not exactly Riemannian steepest descent o (m;n) but it is related to Riemannian
steepest descent.

Comparing the two forms and reviewing the Riemannian gradient discused in Section 5.5.1, we
observe the update in (5.100) is equivalent to the update of Riemannian sepest descent method
with Riemannian gradient of submanifold M , i.e., the full gradient (5.74) on the sphere of dimension

mn 1, and a particular step sizes; = 1 = ) mapped to the feasible setS,(m; n) using

the SVD-type retraction (5.76) discussed in Section 5.5.2.

Therefore, Cason's improved Algorithm 8 is a generalization of the welknown Euclidean gra-
dient projection method for constrained optimization that maps every point of the line x; + d
de ned by the unconstrained line search method to the nearest poinof the, typically convex, fea-
sible set. In this case, the \line" is de ned by a step of Riemanniansteepest descent on the sphere
retracted by simple scaling of the norm followed by a rank-k approximation of the point on the
sphere and a second normalization to a point orSc(m; n). Additionally, we have seen empirically
that this xed step size of Cason's in this form satis es the Riemannian Armijo condition that is

one of the line search termination criteria that is used to guarantee cowergence.

5.5.6 Experiments

In this section, Algorithm 8 is used in all comparisons. Given the relaionship of Algorithm
8 to a xed step size gradient projection algorithm we compare it to the Riemannian steepest
descent method on rankk manifold rst. Then, Algorithm 2 is compared to Algorithm 8. Section
5.5.6.2 shows the performance of both methods on approximating a rank-lirsilarity matrix. The
performance when approximating a similarity matrix for random graphs isshown in Section 5.5.6.3.
Finally, in Section 5.5.6.4, the di culties for Algorithm 8 and MROM when the two dominant
eigenvalues ofM?2 = (A B + AT BT)? are close, whereA;B are adjacency matrices, are
illustrated and the performance improvement of a modi cation to MRO M is demonstrated.

The parameters in Algorithm 2 are set to be the same as they were in Secth 4.4.2. The initial
point in Algorithm 8 is given in Step 1. The initial point in Algorithm 2 is a rank-1 matrix de ned

by [Uo; Do; Vo], where Up = p% 1. 17, Dg=1, Vo= pl—ﬁ 1. :1". The stopping criteria of
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Algorithm 2 and Algorithm 8 are set to be the norm of nal gradient on the xed-r ank manifold

over the norm of initial full gradient is less than 10 7.

5.5.6.1 Comparision of Approximation with k Nonzero Singular Values. In this
section, the performance of Cason's method is compared with the perforance of Riemannian
steepest descent method (RSD) on rankk manifold. Note that the rank- k manifold is a honcom-
pact manifold since the limit may be not in the feasible set. The prgection in Algorithm 8 is
equivalent to an SVD-type retraction. In this section, the SVD-type retraction and the ortho-
graphic retraction [AO13, Section 3.2] on the xed-rank manifold is used forRSD. Both of them
are second-order retraction. Furthermore, like Algorithm 8, the step sze chosen in RSD is xed,
which is W%SK)SJ)

The random generated graph is a directed graph with 1000 nodes and the probdlty of adding
a new edge for each node is.01. We look at the performances of both methods to compute low-rank
approximations of self-similarity matrices, i.e., A = B. The initial point in RSD is a rank-k matrix
de ned by [Ug; Do; Vo], whereUg 2 R™ K;\p 2 R" K are orthogonal matrices generated by Matlab's
ORTH and RANDN, Dg = ﬁ, whereD is a diagonal matrix with diagonal elements from 1 tok.
The stopping criterion for both methods arek skr 10 ®kSkg. The relative error is computed
by % where SB is the true similarity matrix obtained from the Blondel's algorithm. T he
numerical rank of the true similarity matrix is small. There are 8 singular values greater than 10 °
and 9 of them greater than 10 ©.

The average computational times and the average relative errors with rggect to the true self-
similarity matrices for exactly k nonzero eigenvalues are shown in Figure 5.5 and Figure 5.6. From
the two gures, we observe that when reaching almost the same relativeerror, the computational
time of RSD is much smaller than Cason's method, especially whek gets larger. This shows that
even for xed k the combination of the somewhat lower computational complexity per stepof RSD
and its choice of direction are a clear improvement over the choices dafirection and projection in
Algorithm 8

Figure 5.6 shows wherk reaches 8, the relative error is already small, which matches the sindar

values we observed in true similarity matrix. After that, increasing k makes no big di erence on the

relative error. This means the valuek greater than 8 may be \too large" and can bring unnecessary
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operations. This motivates using Algorithm 2 rather than a xed rank k to exploit its ability to

nd a suitable numerical rank independent of the upper bound k.
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Figure 5.5: Comparison of compuational time be-  Figure 5.6: Comparison of relative error between
tween Riemannian Steepest Descent method and Riemannian Steepest Descent method and Ca-
Cason's iteration method with di erent k. son's iteration method with di erent k.

5.5.6.2 Comparison of approximation to a rank-1 similarity matrix. As mentioned
in Section 5.3, when one of the graphs is symmetric, the similarity matix is a rank-1 matrix. In the
following, we compare Cason's method with MROM for di erent bounds k. The inner algorithm
in MROM is taken to be the Riemannian steepest descent method (RB) with xed step size in
each iteration discussed earlier.

The adjacency matrix of a random symmetric graph with N nodes is generated byA = Ag+ Al
where Ag is generated by Matlab's RANDINT with seed 1. The graph B is also generated by
Matlab's RANDINT. Since the rank of the true similarity matrix is 1, the b ound on rank is
considered with two valuesk =1 and k = 5. The relative error is computed by % where SB
is true similarity matrix obtained from Blondel's algorithm. The init ial pointin MROM is a rank-k
matrix de ned by [ Up; Do; Vo], whereUp 2 R™ X:\ 2 R" K are orthogonal matrices generated by
Matlab's ORTH and RANDN, Dg = ﬁ, where D is a diagonal matrix with diagonal elements
from 1 to k. The initial point in Algorithm 8 is a rank-1 matrix given in Step 1 inde pendent of the

value of the boundk.
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Results are shown below in Figures 5.7 and 5.8. For MROM, we observe, dependently of
the rank of the initial point, always adjusts the rank of the similarity matrix to the correct value
of 1. Figure 5.7 shows the computational time of both methods with di erent k. MROM has
signi cant time advantages as N (the size of graph) increases, independently of the initial point.
The computational time of Algorithm 8 are almost the same for di erent k. The algorithm works
with m 4k andm 2k matrices which sincem  k here yields mild dependence ol in complexity
per step. MROM has a similar mild dependence per step. Figure 5.8h®ws although the relative
error achieved by both methods is small that of MROM is near numerical oundo and noticeably
smaller than that of Cason's method.

Therefore, the rank adjustment and e cient optimization on each xed r ank manifold clearly
provide a signi cant bene t compared to Cason's method. Furthermore, gure 5.7 indicates that
MROM starting from a rank-1 matrix is more e cient than starting from a  higher rank matrix.
In the all experiments in the remainder of this chapter, we start from a rank-1 matrix and let the

rank adjust automatically using our rank control strategy.

Figure 5.7: Comparison of computational time  Figure 5.8: Comparison of relative error between
between MROM and Cason's iteration method for MROM and Cason's iteration method for k = 1
k=1and k =5. and k = 5.

5.5.6.3 Comparison of approximation of a self-similarity matrix of a random grap h.
In this section, the performances of MROM and Cason's method when comgping a low-rank ap-

proximation of the self-similarity matrix of a randomly generated graph are compared. The random
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graph is a directed graph with 500 nodes and, since the probability of adaig a new edge for each
node is Q003, it has a sparse adjacency matrix. The relative error is computed b%i:ﬂ where
SB is true similarity matrix obtained from the Blondel's algorithm. The n umerical rank of the true
similarity matrix is not large compared to the size of the matrix. There are 182 singular values
greater than 10 ® and 311 of them greater than 10°6.

The comparison in Section 4.4.8 shows for matrix with large size, limitd-memory RBFGS

method has signi cant time advantage. Therefore, it is used as the inne algorithm in MROM.

Since the numerical rank is large, 1 is chosen to beT3 in Algorithm 2 in order to allow a more

rapid increase of rank at each step.

Figures 5.9 and 5.10 show the comparison of relative error and computational mie for the
two methods with di erent values of k. It can be observed for eachk, that the relative error of
both methods are almost the same, however, the computational time costyoMROM is much less
than Algorithm 8. Clearly, by allowing an approximate minimization and star ting with a rank-1
similarity matrix, MROM's rank adjustment and e cient Riemannian op timization on each xed
rank manifold makes it the preferred method is the numerical rank of he low-rank approximation

is not very small.

Figure 5.9: Comparison of relative error between Figure 5.10: Comparison of cost time between
MROM and Cason's Iteration Method on random  MROM and Cason's Iteration Method on random
generated graph generated graph
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5.5.6.4 Comparision when the largest two eigenvalues are close. In this section,
situations that cause di culties for both Cason's Algorithm 8 and MROM are ¢ onsidered. First,
note that, due to its relationship to the power method, when the two dominant eigenvalues of
M2 whereM = A B+ AT BT, are very close in magnitude, the rate of the convergence of
Algorithm 8 to the desired dominant eigenvector can be very slow. Theimiting case when the
dominant eigenvalue ofM ? has geometric multiplicity greater than 1, requires that the similarity
matrix S is the eigenvector ofM 2 with the largest 1-norm. Given an appropriately large boundk,
Cason's Algorithm 8 will converge to this eigenvector by design, possilglvery slow. Unfortunately,
MROM, while converging to an eigenvector ofM 2, does not necessarily converge to the desired
one.

Fortunately, in general, it does not appear to be a common situation to hae large graphs
for comparison whereM ? has two such dominant eigenvalues, either analytically or numerically
However, it is possible to construct a family of graphs to illustrate the e ect on the algorithms of
interest and to provide some basis for the expectation that MROM with some modi cation can
maintain its e ciency and e ectiveness.

We consider computing the self-similarity matrix of a graph G de ned by a unidirectional cycle
and an additional source node. The graph with 10 nodes and uniform edge weitgghof 1 is shown

in Figure 5.11.

OO OO ORORORO=0
)

Figure 5.11: A sparse GraphG with 10 nodes.

132



The adjacency matrix A of graph G in Figure 5.11 is
2

0100000008
00100O0OO0OO
00010O0O0OO0TO
0O 0O0O0O1O0O0O0TDO0
A:000001000_
0O 0O0O0OO0OO11O00O0 @&
0 000O0OOOTI1TO0
0O 00 0O0OO0OOOTG 0?1
0 000OO0OOOOO
01 00O0O0OO0OCOTOO

The two dominant eigenvalues of the matrix M 2, whereM = A A+ AT AT, are 56280 and
5:5818 vyielding a ratio of approximately 09918 which is close enough to 1 to expect a degradation
in convergence.

Table 5.6 shows the relative error %‘;ka SB is true similarity matrix obtained from the
dominant eigenvector associated with matrix M 2), the nal value of the cost function (5.7) and
the computational time. With the bound k = 10, both methods produce a similarity matrix with
rank 10, which is the true rank. The relative error achieved by MROM is much smaller than
Algorithm 8, and is essentially at double precision roundo . Furthermore, although the modi ed
Riemannian optimization method starts from a rank-1 matrix and adjusts rank automatically, the
computational time cost is less than Cason's method. This shows the dgadation of convergence
in Cason's algorithm and that, despite the fact that the eigenvalues are ase, they are not close

enough to a ect MROM's performance.

Table 5.6: Rank k approximation of self-similarity matrix of graph 5.11. The subscript z
indicates a scale of 10%.

Iteration Method MROM
k relative err f time(s) relative err f time(s)
10 2005 s 5.6280 0.359 49 14 5.6280 0.167

A larger member of the family of graphs can be used to illustrate the needor a modi cation

to MROM. Consider the extending the graph above from 10 to 41 nodes and ating a tiered set of
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edge weights as seen in the adjacency matrix

2
05 0 0 0
00 1 0 0 0
A - B0 00 1 0 0
~80 0 0 0 105 0
000 0 0 10 5
010 0 0 0

Checking the singular values of the true rank similarity matrix SB, we observe that the weighting

has caused the singular values to become small after the rst six singal values
0:81700 057577 003147 000085 466e 05 126e 06 :

Clearly, a low-rank approximation of SB is a reasonable goal. The two computed dominant eigen-
values of M 2 are equal to double precision accuracy with a value approximately 6700148 and
there is a signi cant gap to the next eigenvalue at approximately 27. Theefore, the invariant
subspace associated with the dominant eigenvalue has dimension 2 and acoding to [BGH™* 04],
the true rank similarity matrix SB can be provided by the normalized projection of a vectorl on
the dominant invariant subspaces.

Di erent values for upper bound k (k = 1;2; 3;4;5;6) are used in the experiments. Figure 5.12
shows the results of loggrad | versus number of iterations in Cason's method. It is clear that for
k = 2;3;4 the algorithm has signi cant di culties reaching the desired stopp ing criterion. The
rapid convergence fork = 1 does not yield the desired eigenvector oM ? since the bound is too
small compared to the numerical rank of 6 ofSB. However, whenk is taken large enough at 6 a
good approximation of SB is computed. The rst six singular values of the computed similarity
matrix, listed in the second column of Table 5.7, are very close to those o8B given in the rst
column of the same table.

When MROM with RTR-Newton as inner algorithm is applied to the problem, we observed
that, while convergence is reasonable, the method simply converge® tan eigenvector associated
with the largest eigenvalues. It does not satisfy the property of the @sired similarity matrix, i.e.,
it does not have the largestl norm. In order to get the approximation of similarity matrix with

largest 1 norm, a modi cation such as those proposed in Section 5.3 must be made.
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Figure 5.12: Low rank approximation with rank at most k by Cason's Iteration Method.

We consider the rst modi cation proposed in Section 5.3. It requires adding a penalty term

on the cost function (5.7), i.e. the following new cost function is conglered:
2(S):=tr( STM %(S))+ 17S1; (5.102)

where is the penalty coe cient, 1 is an all one vector.

The Euclidean gradient of the new cost function »(S) is 2M 2(S) + pﬁlTl. As before,
projecting the Euclidean gradient onto the tangent space of submanifal M (the sphere S™ 1)
and the xed-rank manifold S; yields the full Riemannian gradient and Riemannian gradient on
the xed-rank manifold.

All the parameters are set to be the same as before. In addition, the newgrameter in the
penalty term is set to be 120%. The value of the quantity log jgrad j as a function of the iteration
is shown in Figure 5.13.

For all values of the bound k, MROM on the modied cost function achieves the stopping
criterion. The characteristic behavior of changing rank from the rank-1 initial guess at the similarity

matrix to the appropriate rank nal approximation - in this case always th e boundk { is observed.
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Figure 5.13: Low rank approximation with rank at most k by applying MROM on new cost function.

For a given rank, the value of logjgrad j decreases rapidly as the Riemannian optimization on
the xed-rank submanifold S; of the sphere converges. After a rank change the value increases as
expected and then once again decreases rapidly due to the xed-rank ojpbization. Eventually,
the nal rank is chosen and a value of loggrad |j satisfying the stopping criterion is achieved. The
third column of Table 5.7 contains the relevant singular values of the sinlarity matrix computed

by MROM on the modied cost function with k = 6. Clearly, they are good approximations to

those of SB and they have been computed e ciently.

5.6 Conclusion

The adaptation and application of MROM to generating a low-rank approximati on of a graph
similarity matrix has been explored in this chapter. While the uti lity of a low-rank approximation
matrix when the similarity matrix is not low-rank either numerical ly or exactly is still an open
guestion, it is reasonable to consider the e cient computation of sucha low-rank approximation,

especially for those cases where the true similarity matrix has lowank structure.
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Table 5.7: The rst 6 singular values of true similarity matrix SB, low rank approximation got by
Cason's iteration algorithm S¢ and low rank approximation got by modi ed Riemannian optimiza-
tion algorithm SM.

SB S¢ sM
0.817005719797966 0.817005719800206 0.817006681732839
0.57576954816249 0.575769548159327 0.575768137078938

0.0314698499477739 0.0314698499477084 0.0314705899851615
0.000852991923203862 0.000852991923194901 0.000853796152030672
4.6621999922645e-05  4.66218975973872e-05  7.2624727193948e-05
1.26369173803024e-06 1.26368896454642e-06 4.53024313970956e-05

Two types of low-rank approximation have been considered. For the st type, the feasible set
of low-rank approximations with k identical singular values is a manifold. Therefore, the general
Riemannian optimization methods can be applied directly. The secondype, approximation with
rank at most k, is more general and its feasible set does not have a manifold structer The
algorithm proposed by Cason et al. is essentially equivalent to Blonde$ algorithm (Algorithm 5)
when k = min( m;n). What is more, we observe the more e cient version of their algorithm, i.e.,
Algorithm 8, can be analyzed in terms of a Riemannian manifold rather than a hearistic Euclidean
algorithm.

Support for the following conclusions was demonstrated. First, the prformances of the Rie-
mannian optimization algorithms on xed-rank manifold show that working on r ank-k manifold is
more e cient in terms of space and computational time than using Algorithm 8. Next, the most
signi cant advantage of MROM s its e cient and e ective updating of the rank of the approx-
imation to the similarity matrix. Additionally, the performance of MRO M was seen to be more
e cient for most cases especially the practical case when the numecial rank is not very small and
an approximate optimization yields a useful low-rank approximation for the particular application.
For the special rank-1 similarity matrix, MROM has signi cant time adv antages compared with
Cason's iteration method. This advantage holds even if the starting poim has rank greater than 1.
MROM can decrease the rank to 1 e ciently to save time and space. MRQM's overall robustness
was clearly demonstrated.

MROM failed to compute a good approximation to the similarity matrix w hen the geometric
multiplicity of the extremal eigenvalue of M ? is greater than 1, i.e., the eigenspace associated to

the extremal eigenvalue is not one-dimensional. While this situationappears to be uncommon,
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MROM can only guarantee convergence to an eigenvector, not necessarily éhunique one with the
largest 1-norm required for this special case. Applying MROM to one of tle proposed modied
cost functions has been shown to address the problem for a family of exaie graphs. We have
also introduced other modi ed cost functions in Section 5.3. They mg prove useful for this special

case.
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CHAPTER 6

CONCLUSION AND FUTURE RESEARCH

In this dissertation, we present new algorithms that solve optimization problems on a matrix
manifold M R™ " with an additional rank inequality constraint. New geometric objects are
de ned to facilitate e ciently nding a suitable rank. The conver gence properties of the algorithms
are analyzed and empirically veried. Experiments and applications ae used to illustrate the
e ciency and e ectiveness of the algorithm.

The major contributions of this dissertation are:
1. Developed a rank-related vector that de nes a search direction on tk tangent cones.

2. Developed a rank-related retraction that facilitates the change from oe xed-rank manifold
to another that is more exible and e ective than xed-increment up dating.

3. Developed a general algorithm with exible xed-rank inner algorithm choice to solve opti-
mization problems with rank inequality constraints.

4. Completed the convergence theory for the new algorithms.

5. Empirically evaluated the algorithms for two important applications: w eighted low-rank ma-
trix approximation problems and low-rank approximation of a graph similarity matrix.

6. For weighted low-rank matrix approximation problems:

(a) Empirically evaluated the ability of the new algorithms to determi ne a space e cient
approximation when the singular value pro le is gapless and strongly gappedor general
weighting matrix for a range of problem sizes and choice of xed-rank innealgorithm.

(b) Empirically evaluated the performance of the new algorithms for prodems with a struc-
tured weighting matrix for a range of problem sizes and choice of xed-rak inner algo-
rithm.

(c) Empirically evaluated the in uence of the retraction and its fact or (in)variance for a
range of problem sizes and choice of xed-rank inner algorithm.

(d) Empirically evaluated the performance of di erent inner algorith ms and sizes. For large
size matrix, the limited-memory algorithms were shown to be prefeable.
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7. For low-rank approximation of a graph similarity matrix:
(a) Developed algorithms with exible xed-rank inner algorithm choic e for geometric mul-
tiplicity of 1 and greater than 1.

(b) Empirically evaluated the new algorithms for problems with geometric multiplicity of 1
for a range of problem sizes and choice of xed-rank inner algorithm.

(c) Characterized some problems that yield geometric multiplicity greater than 1.

(d) Considered the case when the similarity matrix de ned by the full-rank iteration does not
have a good low-rank approximation in the sense of the Frobenius norm ahdetermined
if the low-rank approximations that are produced by the proposed algorihms have any
useful information for the related graph problems.

There are several avenues of future research in both algorithms and tliveapplications. For al-
gorithms, we will consider developing heuristics to choose/adapt pameters 1 and » in Algorithm
2. To avoid the singular value decomposition for a large matrix, we implemat three-factor repre-
sentations of each matrix. Further analysis is needed on the invariancand variance of retractions
with respect to the three-factor representations.

For applications, there are other constraints on the approximating matrix of interest in the lit-
erature apart from the rank constraint, e.g., non-negativity and Hankel structure. We will continue
to adapt and improve the Riemannian methods and our understanding of tkir behavior and its
relationship to application characteristics and constraints. The adaped and improved methods

will be systematically compared with current state-of-the-art methods in each application area.
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