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ABSTRACT

The brain is one of nature's greatest mysteries. The mechanism by whh the folds of the

brain's cerebral cortex, called gyri (hills) and sulci (valleys), are formed remains unknown.
Existing biological hypotheses that attempt to explain the underlying mechanism of cortical

folding conict. Some hypotheses, such as the Intermediate Progendr Model, emphasize
genetic chemical factor control. Others, such as the Axonal Tension Hypothasis, emphasize
the in uence of physical tension due to axonal connections.

To bring mathematics into this debate, this dissertation presents two biomathematical
models of cortical folding that utilize a Turing reaction-di usion s ystem on an exponentially
or logistically growing prolate spheroidal domain. These models are uset investigate the
validity of the Intermediate Progenitor Model, thereby investigati ng the role of genetic
chemical factor control of the development of cortical folding patterns. We observe that the
presence of domain growth drives the patterns generated by our growingrolate spheroidal
Turing systems to become transient. An exponentially growing prolae spheroidal domain
generates a pattern that continually evolves, while a logistically groving prolate spheroidal
domain generates a pattern that evolves while the domain is growing buthen converges to
a nal pattern once the domain growth asymptotically stops.

Patterns generated by the model systems represent genetic checail prepatterns for self-
ampli cation of intermediate progenitor cells, which may be correlated to cortical folding
patterns according to the Intermediate Progenitor Model. By altering system parameters,
we are able to model diseases of cortical folding such as polymicrogyriahare the cortex
possesses too many folds as well as diseases where the cortex has taccfatical folds such as
Norman-Roberts Syndrome (microcephalic lissencephaly) and normogpéalic lissencephaly.
Our ability to model such a variety of diseases lends support to theole of genetic control of
cortical folding pattern development and therefore to the Intermedate Progenitor Model.

XV



CHAPTER 1

INTRODUCTION

\In this section a mathematical model...will be described. This model will be a
simpli cation and an idealization, and consequently a falsi cation. It i s to be
hoped that the features retained for discussion are those of greatest ingptance
in the present state of knowledge." {A.M. Turing, The Chemical Basis of Mor-
phogenesis, 1952

Though many advances in biology have been made over the course of human osy, few
things remain as mysterious as the human brain. In particular, the meclanism by which
the folds of the cerebral cortex, called gyri (hills) and sulci (vallgys), are formed remains
unknown. Existing biological hypotheses that try to explain the underlying mechanism of
cortical folding disagree with one another; some emphasize the role of geiwefactors [45],
while others highlight the importance of axonal tension P2]. Furthermore, it is extremely
di cult to perform cortical folding experiments on living humans, as many of the important
events of cortical folding take place during fetal development 19].

To bring mathematics into this debate, this dissertation present biomathematical mod-
els of cortical folding that incorporate an exponentially or logistically growing prolate spher-
oidal domain into a Turing reaction-di usion system. We utilize the Intermediate Progeni-
tor Model, a biological hypothesis describing a possible geneticallgontrolled mechanism of
cortical folding, as the biological foundation of our biomathematical models {5]. A grow-
ing domain Turing system model of cortical folding is more realistic han previous static
domain Turing system models of cortical folding [.3, 86], as it captures the growth that
naturally occurs as the brain develops. Using exponential domain growtlechoes the growth
of a biologically relevant brain structure, while employing logistic growth provides a way to
include domain growth in a Turing model of cortical folding in an overall more biologically
realistic fashion.

Chapter 2 discusses brain anatomy and cells of the central nervous system whiclre key
to cortical development. Several biological hypotheses and mathematicahodels of cortical
development and folding are presented. In Chapter3, Turing reaction-di usion systems
on static and growing domains are introduced. The key properties and chracteristics of
a Turing system are presented. Di erent types of Turing systemreaction kinetics and the
intuition behind Turing systems' pattern-generating capabiliti es are discussed. Lastly, a
prolate spheroidal domain is incorporated into the growing domain Turing system frame-
work.



Chapters 4 and 5 investigate the pattern-generating behavior of a Turing system on
a growing prolate spheroidal domain under di erent types of domain growh. Numerical
simulations are conducted to visualize the evolution of the generated giterns. Chapter 4
incorporates exponential domain growth into the system and uses lineastability analysis to
derive mathematical conditions which ensure that an exponentially greving Turing system
can generate patterns. Chapter5 incorporates logistic domain growth into the system
to further illustrate the role of domain growth in a Turing system's pattern-generating
behavior.

Chapter 6 utilizes the results of Chapters4 and 5 to construct two biomathematical
Turing system models of cortical folding on growing prolate spheroidaldomains. Motiva-
tion for the models and the link between the math and the biology are disassed. The
models' ability to capture various diseases of cortical folding is alsalemonstrated. Finally,
Chapter 7 concludes the investigation by discussing challenges and future wictions for
biomathematical Turing research of cortical folding patterns.

In sum, this dissertation demonstrates that a growing domain Turing s/stem can gener-
ate patterns that can serve as a genetic chemical prepattern for the defopment of cortical
folds in the brain, lending support to both the role of genetic morphogencontrol in cortical
folding pattern development and the Intermediate Progenitor Model. Along the way, we will
observe that the incorporation of domain growth into a Turing system induces a key change
in the system's pattern generating behavior: while static domain Tuing systems generate
a convergent pattern, domain growth drives the system to produce tansiently evolving
patterns. Exponentially growing domains generate continuously evolvig patterns, while
logistically growing domains generate a pattern that rapidly evolves butthen converges to
a nal pattern. The research presented in this dissertation could ®rve as a key stepping
stone in the evolution of mathematical modeling of cortical folding patterns, establishing a
strong foundation for future biomathematical investigations into the subject.



CHAPTER 2

THEORIES AND MODELS OF CORTICAL
FOLDING

2.1 Neuroanatomy

The nervous system is intricately composed of many unique pieces wih work together
to transmit information throughout the body via electrical impulses [80]. The nervous
system can be divided into the central nervous system (CNS), consiing of the brain and
spinal cord, and the peripheral nervous system (PNS), which consist of the nerves that
relay information back and forth between the CNS and the rest of the body[8(]. The
following sections will outline some of the major features of the CNS, rany of which are of
critical importance in the process of cortical development and foldiny.

2.1.1 The Brain: Major Macroscopic Features

At the macroscopic level, the brain is composed of the cerebrum, braistem, and cere-
bellum [8(]. The cerebrum is divided into two hemispheres (left and righ), and the outer
layer of the two hemispheres is called the cerebral cortex. The cebral cortex, which con-
sists of six layers of neuronsd(], is intricately folded into gyri (hills) and sulci (valleys)
(see Figure2.1a). Each hemisphere is divided into four lobes, named the frontal, pdetal,
occipital, and temporal lobes (see Figure2.1b), based on their anatomical locations and
specialized functions. A structure called the corpus callosum pnades connections between
neurons in opposite hemispheres (see Figur21c) [80).

2.1.2 The Ventricular System

The ventricular system of the brain is composed of the two lateral venticles (LVS)
as well as the third and fourth ventricles (see Figure2.2). Early in neurogenesis, which
in humans occurs during gestational weeks 7 to 18, the LVs are approximalg prolate
spheroidal in shape as they account for nearly all the volume of the prolate pheroidal
cerebral hemispheresZ6, 38, 75] (see Figure2.3). At maturity, the LVs are c-shaped with
posterior horns that stretch backwards toward the occipital lobes (se Figure 2.4). Inside
the ventricles is cerebrospinal uid (CSF), which ows throughout the CNS [80]. CSF is
generated within the ventricles by structures called choroid pleuses (see Figure.2). CSF
plays many roles in the CNS, including removal of toxins from the bran and provision of
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Figure 2.1: The human brain. (a) The cerebral cortex is folded into many gyi and sulci.
Figure from [69). (b) The brain is divided into frontal, parietal, occipital, and te mporal
lobes. Figure adapted from [04]. (c) Communication between neurons in the left and right
hemispheres of the brain is provided by the corpus callosum. Figurérom [60].

nutrients to the brain. CSF also provides the brain with physical protection, forming a
cushion-like barrier between the brain and skull B(].

The walls of the developing LVs are lined by the ventricular zone (VZ) ard subventricular
zone (SVZ) [5, 66, 74]. Both the VZ and SVZ are layers of proliferative cells that play
a role in cortical development [i5, 66, 74]. Continuing radially outward from the inside of
the LVs, one passes from the VZ to the SVZ. In particular, the SVZ serves ashe site of
self-ampli cation of intermediate progenitor cells (IPCs), which will be further discussed in
Section 2.2

2.1.3 Germinal Matrix

During development, the SVZ produces a structure called the gerimal matrix (GM),
which contains progenitors of neurons and glial cells7]. The literature uses the term GM
to either represent the part of the SVZ located ventrolateral to the LV and extending along
the lateral wall of the LV [ 2, 44], or as a collective synonym for the VZ and SVZ, referring
to the mass of germ cells that give rise to cortical neurons3]. Regardless, the GM is a key
component in neurogenesis. The GM appears at 7 weeks gestational age (GA) angigs
only until term [ 2, 44]. Growth of the GM has been investigated with magnetic resonance
imaging (MRI) and computational reconstruction of 3-D images of the developing brain
[44] (see Figure2.5. MRIs were obtained from the brains of 13 legally aborted fetuses
ranging from 7-28 weeks GA. The fetuses died from reasons other than CNS dizse or
body malformation, so their brains were viable representatives of hman development. GM
volume was found to increase exponentially from 11-23 weeks GA and then desase rapidly
from weeks 25-28 GA. LV volume was found to linearly increase up to week 23 & then
gradually decrease (see Figur@.4) [2, 44)].

During weeks 5-25 GA, IPCs and other neural progenitors proliferate and gegrate
neurons, which also migrate to the developing cortex during this pgod (see Figure 2.6)
[35, 45, 51, 75, ]. Furthermore, cortical folding is considered to begin at week 10, 14,



Figure 2.2: The ventricular system. The human ventricular system & composed of the
lateral ventricles, third ventricle, and fourth ventricle. Cer ebrospinal uid is produced by
choroid plexuses, shown in red. Figure from{7].
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Figure 2.3: Shape of lateral ventricles early in development. (a) The deeloping cerebral
hemispheres are prolate spheroidal in shape at 48 days GA. Figure adaptedbfn [26]. (b)

The LVs account for nearly the entire volume of the developing cerebrahemispheres at
54-56 days GA. The LVs are thus prolate spheroidal in shape at this time of deslopment.

Figure from [34].



Figure 2.4: Growth of brain, germinal matrix, and ventricular system. Growth of the brain is
shown from 7 weeks gestational age (GA) to 28 weeks GA (top). The GM (midd#, shown in
orange) grows exponentially from weeks 11-23 GA but then rapidly loses votlae beginning
at week 25 GA. The LVs (bottom, shown in blue) grow linearly before their volume reaches
a maximum near week 23 GA. Early in development, the LVs are approximate}t prolate
spheroidal in shape and arec-shaped at maturity. Figure from [44].

Figure 2.5: Fetal brain (top) and its computer reconstruction from MRI (m iddle). The GM
is labeled in orange and the LVs are labeled in blue (bottom). Figure from44].



Figure 2.6: Chronology of selected cortical development events. Dateslsant to cortical

folding appearance (yellow), IPC proliferation and neuron generation (bue), and exponen-
tial growth of GM (green) are plotted on a common time axis. While the literature does not
agree on exact dates for cortical development events, it is clear that the is overlap among
periods of GM exponential growth, IPC proliferation, neurogenesis, ad cortical folding.

Data obtained from [19, 28, 35, 44, 45, 47, 51, 59, 75, ).

or 20 GA, depending on the literary source {9, 28, 47, 59]. Although there is a lack of
consensus in the literature about the precise dates of these biologicalents, it is obvious
that the period of exponential GM growth (11-23 weeks GA) coincides withmany important
events of cortical folding development.

2.1.4 Key Cells of the CNS

The principal types of cells in the CNS are neurons and glial cells, wit glial cells
accounting for 90% of all cells in the CNS §7, 80]. Neurons form the information highways
of the CNS, encoding information in electrical impulses called actionpotentials that are
transmitted from one neuron to another. The brain alone contains approxinately 100
billion neurons. Glial cells serve as caregivers for neurons, perfoling jobs such as providing
structural support and helping messages travel more quickly from neron to neuron [80].

The main structures of the neuron are the dendrites, soma, axon hilldg axon, and
presynaptic terminal (see Figure2.7). The soma, or cell body, contains the cell's nucleus
and performs essential tasks needed for the cell to survive. Denites receive information
from other neurons, while the axon uses action potentials to transmit ougoing information
from the neuron. The axon hillock, located where the axon originates fromthe soma, is the
place from which action potentials are generated. The presynaptic terrimal is responsible
for the actual transmission of the \message" to the next neuron, usually va chemicals called
neurotransmitters.

Cortical neurons will either make corticocortical or corticothalamic connections in the
brain. Corticocortical connections occur when the axons of cortical netons connect to
dendrites of other cortical neurons. Corticothalamic connections occubetween the axons
of cortical neurons and the thalamus, an area of the brain responsible for décting sensory
inputs to their corresponding cortical processing areast|/, 80].

Radial glial cells (RGCs) are special glial cells that have an important roé in brain
development. The soma of each RGC is anchored to a specic place in théZ [75]. Each



Figure 2.7: Neuron anatomy. The principal structures of the neuron are thedendrites,
soma, axon hillock, axon, and presynaptic terminal. Figure adapted from 27].

Figure 2.8: Radial glial cells. (a) RGCs establish a 1-1 correspondence tween the VZ
and cortical plate (CP). (b) Neuroblasts travel up the RGC's radial be r to the CP. Figure
adapted from [76].

RGC has a radial ber shaft that extends out to the cortical plate (CP), t he developmental
precursor of the cerebral cortex T5, 76]. During development, RGCs create neuroblasts
(developmental precursors of neurons), which then travel up the adial ber of the RGCs
to the CP [76]. These neuroblasts, along with others, will form the cerebral cortg [66].
RGCs are also responsible for the production of special proliferativeells called intermediate
progenitor cells (IPCs) [6€], which will be further discussed in Section2.2. The radial bers
and somas of RGCs create a one-to-one correspondence between the VZ and GBg Figure
2.8a) [76].



2.2 Biological Hypotheses of Cortical Development and
Folding

There are numerous biological hypotheses that attempt to explain the pocess of cortical
folding, and there is great debate as to what is the true underlying melsanism. While some
hypotheses share common characteristics, others, such as the Inteadiate Progenitor Model
[45] and the Axonal Tension Hypothesis P27], are in direct opposition with one another.
The following sections will discuss some of the most important biologial viewpoints on the
mechanism of cortical folding.

It is prudent to note that biologists often use the word \model" in place of \hypothesis".
Thus, though the Intermediate Progenitor Model contains the word \model" in its hame,
it is simply another hypothesis that attempts to describe the biological mechanism behind
cortical folding.

2.2.1 Radial Unit Hypothesis

The Radial Unit Hypothesis (RUH) [ 74] describes the formation of the CP and the 1-1
correspondence between the CP and VZ. The RUH proposes two stages of cddlr division,
namely, a symmetric RGC cellular division stage followed by an asymnmigic RGC cellular
division stage. In symmetric cellular division, the mother cell dvides into two identical
daughter cells; in asymmetric cellular division, the mother cell dvides into daughter cells
of two di erent cellular types.

During the symmetric cellular division stage, RGCs in the VZ divide into two RGCs
(one to replace the original RGC and one new RGC), doubling the number oRGCs with
each round of cellular division (see Figure2.9a). Next, during the asymmetric cellular
division stage, each RGC divides into a neuroblast and another RGC that eplaces the
original RGC. The newly produced neuroblasts then travel across theintermediate zone
(12), which separates the VZ and CP during development }15, 74], and up to the CP along
the radial ber of the RGC from which they were generated (see Figure2.%). As more
asymmetric divisions occur, multiple neuroblasts can be formed inthe same location in the
VZ and travel to the same location in the CP. When this occurs, the never neuroblasts
pass over any neuroblasts that are already there and travel to the outerrost area of the CP.
This process forms columns of neuroblasts called ontogenic columnsy. When linked with
the RGC from which they originated, the ontogenic columns form a 1-1 correpondence
between the VZ and CP (see Figure2.8a). The number of RGC symmetric and asymmetric
divisions in a particular area of the developing brain are controlled byspeci ¢ genes [7].

2.2.2 Intermediate Progenitor Hypothesis

The Intermediate Progenitor Hypothesis (IPH) [66] takes the ideas of the RUH one step
further. The IPH states that while lower layers of the CP are created according to the RUH,
upper cortical layers are created di erently. After the creation of the lower cortical layers,
the IPH proposes that the upper layers of the CP are formed in two stagesFirst, RGCs
undergo a round of asymmetric divisions, dividing into a replacemat RGC and an IPC.
The IPC then migrates into the SVZ and undergoes either (i) a terminal symmetric division
into two neuroblasts (see Figure2.10 or (ii) up to two symmetric self-ampli cations into



Figure 2.9: Cortical development according to the Radial Unit Hypothesis. (a) In the

symmetric cellular division stage, the number of RGCs is doubled oer time with each
round of cellular division. (b) In the asymmetric cellular division stage, RGCs divide to
produce one neuroblast and one replacement RGC per round of cellular wision. Multiple

neuroblasts can thus be produced from the same location in the VZ and migite to the same
location in the CP, forming ontogenic columns. Neuroblasts are humberedn decreasing
age order. Figure adapted from {5].
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Figure 2.10: Cortical development according to the Intermediate Progertor Hypothesis.
At time tg, a RGC asymmetrically divides to yield a replacement RGC and an IPC This
IPC undergoes a terminal symmetric division into two neuroblasts At time t;, another
asymmetric RGC division occurs, yielding a replacement RGC and anew IPC. This IPC
undergoes a terminal symmetric division into two neuroblasts whch will eventually migrate
above the neuroblasts produced at timetg. Figure adapted from [45].

two IPCs, each of which eventually divides into two neuroblasts (ge Figure2.11) [73]. The
neuroblasts migrate along the radial ber of the corresponding RGC acrosshe 1Z and up
to the very outermost area of the CP, above any neuroblasts already thereAny neuroblasts
that originate at the same time end up in the same cortical layer, stackirg outwardly in the
CP by age.

2.2.3 Intermediate Progenitor Model

The Intermediate Progenitor Model (IPM) [ 45] expands upon the IPH. Overall, the IPM
states that regional patterning of IPC self-ampli cation in the SVZ could lead to regional
neuron ampli cation in the upper cortical layers, forming patterns of gyri and sulci in the
cortex (see Figure2.12). IPC neuronal ampli cation for the upper cortical layers would
allow for increased cortical surface area while maintaining the size dhe VZ, enabling the
formation of a gyrencephalic cortex [15].

The IPM states that the number of IPCs occupying a region of the SVZ, andtherefore
the SVZ thickness, may be directly correlated with cortical fold formation. Areas of the
SVZ in which the IPCs have undergone many rounds of self-ampli cation ae thickened due
to the many cells there, while areas of the SVZ where IPCs have not dedmpli ed much are
thin. Recall that after self-ampli cation, each IPC becomes two neuroblasts which populate
the upper layers of the developing cortex. Areas of the cortex corregmding to thick SVZ
areas are thus populated by large numbers of neurons, forming gyri (hills while areas
corresponding to thin SVZ areas are populated by fewer neurons, formingulci (valleys).
In this fashion, the IPM dictates that regional patterns of IPC self-ampli cation would
be correlated with SVZ thickness and could be used to predict cortial folding patterns.
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Figure 2.11: Intermediate progenitor cell self-ampli cation. After origi nating from a RGC,
an IPC can undergo up to two rounds of self-ampli cation into two IPCs before a terminal
symmetric division into neuroblasts.

Figure 2.12: Intermediate Progenitor Model and cortical folding. Accordingto the IPM,
patterns of regional IPC self-ampli cation in the SVZ may be correlated with cortical folding
patterns. Areas of high IPC self-ampli cation lead to neuron proliferation, corresponding
with the formation of gyri. Areas of low IPC self-ampli cation lead to a lack of neuron
proliferation that corresponds with the formation of sulci.

12



This correlation between SVZ thickness and gyrus/sulcus formation has ben supported by
observations in both developing monkeys and humans (see Figurz13).

Evidence suggests that self-ampli cation of IPCs in the SVZ, and therdore patterning
of cortical folding, is genetically regulated. Genes such aBax6 have been shown to regulate
cortical folding via modulating proper IPC development in mice [/3]. Furthermore, several
di usible morphogens that a ect cell proliferation, such as those of the Wnt pathway, have
been shown to aect the number of IPCs in mice 3. The Wnt pathway (pronounced
‘wint') is a signaling pathway involved in neurogenesis 3.

2.2.4 Axonal Tension Hypothesis

The Axonal Tension Hypothesis (ATH) [227] provides an explanation of cortical folding
that directly con icts with that of the IPM. The ATH states that corti  cal folding is a direct
consequence of tension resulting from corticocortical connectionsdxonal tension of highly
interconnected areas in the cortex pulls the cortical walls togetherforming gyri (see Figure
2.14). Cortical areas joined by few corticocortical connections (or none at all)lack the
axonal tension to pull towards each other, forming sulci.

Recent experimental investigations into the prefrontal cortex of adut rhesus monkeys
have lent support to the ATH [ 37]. Tracing chemicals were injected into the brain to trace
neuronal connections in the prefrontal cortex. The neuronal connectioa were then ana-
lyzed using photomicrography of coronal sections of the prefrontal cortex:The experiments
demonstrated that the majority of axons of highly interconnected cortical regions followed
straight paths, while axons of weakly connected regions followed curvegaths around sulci.
This result agrees with the ATH prediction that axonal paths of strongly i nterconnected
cortical regions will be pulled straight as they form gyri (see the transtion from the top
right panel to bottom left panel in Figure 2.14).

2.3 Mathematical Models of Cortical Development and
Folding

In this section, we outline three recent investigations into creaing biomathematical
models of cortical folding. We discuss a model that emphasizes morphoggradient control
of cortical precursor cells via a Turing system 6], a model that uses a Turing system to
create chemical gradients that abstractly represent axonal tension1[3], and a pair of nite
element models that emphasize axonal tension without any morphogen inveément [29).
The Turing system models and one of the nite element models presnted here utilize a
static domain, while one of the nite element models incorporates domai growth.

2.3.1 Static Prolate Spheroid Turing Model

Striegel and Hurdal [36] used a two-equation activator-inhibitor Turing reaction-di usion
system on a static prolate spheroidal domain to hypothesize a new biologi¢ model of
cortical folding called the Global Intermediate Progenitor (GIP) model [86]. The equations

were
U = Dr2u+u 1 riv2 +v(l rau);

VAR rov+v( + rquv)+ u( + rav);
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Figure 2.13: Intermediate Progenitor Model, subventricular zone thikness, and cortical
folding. (a) In the developing macaque monkey brain, SVZ thickening (hdicated by arrows
under 1, left panel) leads to gyrus formation about two weeks later (1*, righ panel). A thin

area of SVZ (indicated by arrows under 2, left panel) leads to sulcus fanation (2, right

panel). (b) In the developing human brain, thick areas of SVZ (1, 3, and 5, |& panel) lead
to gyrus formation (1*, 3*, and 5*, right panel) four weeks later. Thin areas of SVZ (2 and
4, left panel) lead to sulcus formation (2 and 4, right panel). Figure from [5].
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Figure 2.14. Axonal Tension Hypothesis mechanism for cortical folding. The AH states
that cortical folds result from axonal tension of highly interconnected ortical regions pulling
the cortical walls together, forming gyri. The path followed by axons linking highly inter-
connected cortical regions straightens out as gyri are formed (transitionrom left to right).

Figure adapted from [27].

where u; v are the concentrations of activator and inhibitor, respectively, D = B—: is the

ratio of diusion coe cients, > 0 is inversely proportional to the domain scaling, and
5, 1,rp are parameters for Barrio-Varea-Maini (BVM) kinetics (see Section3.1.3 [85].

The Turing system generated patterned regions of activation and nonactigtion on the

prolate spheroidal surface 42]. The activated regions represented activation of RGCs to
form IPCs, which, according to the GIP model, is directly correlated with cortical folding.

The GIP model concluded that cortical folding patterns are largely relted to the size and
shape of the LV, which are captured in the static domain mathematical modé as size and
eccentricity of the prolate spheroid. The static domain model was alsaapplied to study

evolutionary changes in cortical development between di erent spees by predicting the
order of sulcal development.

2.3.2 Labyrinthine Turing Model

Cartwright [ 13] constructed a Turing system model to generate labyrinthine paterns of
cortical folds in the brain. The model used a nondimensionalized Tung system with van

der Pol-FitzHugh-Nagumo kinetics [23, 24, 64, 96] on a two-dimensional static domain,
9
3
u

Qu_ e v Yy ;2

at 3 (2.1)

Qv _ r 2y Yu+ +v)">

@t ’
where u is an axon guidance chemical which activates axon growthy is an axon guidance
chemical which inhibits axon growth, ; govern relative activator/inhibitor range and
strength, and ; are kinetics parameters. Newly formed axons follow chemical gradient
signals as they migrate to their connection destination B, 34, 88]. System 2.1 produced

patterned areas of axon growth activation and nonactivation in the developingcortex, with
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Figure 2.15: Labyrinthine Turing pattern of cortical folding. Cartwright [ 13] generated a
labyrinthine Turing model which he interpreted as axonal migration and axonal tension
leading to cortical folding. Activator concentration is represented by the vertical axis; the
other two axes represent the two-dimensional domain. Figure from13].

activated cortical regions exhibiting a high number of corticocortical connections and non-
activated cortical regions exhibiting a low number of corticocortical connections. Following
the ideas of the ATH, activated cortical regions lead to gyrus formation, whie nonactivated
cortical regions lead to sulcus formation. By plotting the activator concentration on the

Z-axis against the rectangular domain, the patterns generated by Systerd.1 were visualized
as three-dimensional labyrinthine patterns that represent folding patterns in the cortex (see
Figure 2.15). In this fashion, Cartwright built a chemical gradient-driven mod el of cortical
folding that abstractly represented concepts from axonal path nding and axonal tension.

2.3.3 Turing Finite Element Model

Lefevre and Mangin [17] created a morphogen-based model of cortical folding by em-
ploying a Turing system with Gray-Scott kinetics on a self-debrming spherical domain using
nite elements. Growth of the underlying spherical domain was not included in the model.
The model system was

@+ u@og’ g = diru+F@A u) w?
@v+v@log’ @ = dor v w? (F + K)V;

where F; k are the kinetics parameters,g is the surface metric with determinant denoted
by p@, and di;d, are the respective di usion coe cients of inhibitor morphogen u and
activator morphogen v. Patterns of activator and inhibitor generated by the Turing system
represented growth factor concentration patterns that act directly on the spherical surface
by deforming it up or down after each iteration in time. This self-deformation resulted in
labyrinthine patterns that represented cortical folding patterns (see Figure2.16). Beginning
with random initial conditions, the model was able to generate one fold ttat consistently
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Figure 2.16: Turing system nite element model of cortical folding. A Turing system on
a nite element self-deforming spherical domain was employed to geerate patterns that
represent cortical folding patterns. Figure adapted from [ 7].

Figure 2.17: Two-dimensional tension-based nite element model of coital folding. Logis-
tically growing nite elements lining a circular domain with radial tension forces represented
the development of cortical folds. Figure adapted from 93].

appeared, representing a primary cortical fold. The model was also ablto generate some
folds that were slightly less reproducible between simulationstepresenting the more variable
secondary cortical folds in the brain.

2.3.4 Two-Dimensional Tension-Based Finite Element Model

Toro and Burnod [93] create a tension-based nite element model of human cortical
folding on a growing 2-D circular domain. The boundary of the circle repesented the
developing cortex and was divided into nite elements whose area ioreased via a logistic
growth function. Forces representing tension from axons and glial cedlpulled on the circular
boundary in the radial direction, yielding a wavy 2-D boundary representing cortical folding
(see Figure2.17). The model concluded that growth of the developing cortex is the diving
force for the formation of cortical folds. The model also observed that inluding asymmetries
in the geometry, the tension forces, or the carrying capacity of the growh function for
di erent parts of the domain in uenced the formation of folds.
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Figure 2.18: Three-dimensional tension-based nite element methodnodel of cortical
folding with tangential domain growth. Cortical areas with low axonal tension lead to sulci
(center of domain), while cortical areas with high axonal tension lead to gyr (left and right
of domain). Figure adapted from [29].

2.3.5 Three-Dimensional Tension-Based Finite Element Model

Genget al. [29) used nite element methods to construct two 3-D axonal tension-bagsd
biomathematical models of cortical folding in sheep. Data was obtained & MRI images of
fetal sheep brains. In their rst model, the 3-D computational mesh was initialized directly
from a portion of 70 day GA sheep MRI data (the entire MRI data could not be used all
at once due to computational constraints). Physical axonal tension forcesCSF pressure
forces, and forces due to growth were mathematically incorporated intahe model, though
dynamic domain growth was not included. Simulations were conducted wh the aim of
trying to reproduce the corresponding 90 day GA sheep MRI data. Ths rst model was
able to accurately predict the cortical folding geometry as well as the ortical thickness of
gyri and sulci.

The inclusion of cortical growth distinguished the second nite elenent model from the
rst. Due to the increased computational demand from the addition of growth, the domain
was selected to be a simple 3-D rectangle rather than a piece of actual MRlata. The sheep
MRI data showed that the fetal sheep cortex grows anisotropically, wit the growth rate
tangential to the cortical surface greatly exceeding the growth rate radal to the cortical
surface. Anisotropic cortical growth was mathematically incorporated into the model via
an osmotic expansion representation. Osmotic expansion analogously reperged cortical
growth in that an increase in concentration of osmotically active particles (as a result of
cell division, for example) in the cortex causes an increase in cortad volume. To capture
tangentially preferred anisotropic growth, the cortical surface was ony allowed to grow
in the direction of the xy-plane, which represented the tangential direction in the model
(see Figure2.18). The sheep MRI data also suggested that subcortical axonal tension
underlying sulci was less than subcortical axonal tension underlyig gyri. For this reason,
the rectangular domain was split into three regions from left to right in the x-direction, with
the two outer regions initialized with high axonal tension and the inner region initialized
with low axonal tension. As expected, numerical simulations resultd in the center region
folding inward to form a sulcus surrounded by a gyrus on either side gee Figure2.18).
This second model supported the idea that a combination of axonal tensiomand tangential
growth serves as a driving force for cortical fold development.
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2.4 Motivation

As outlined in Section 2.2, there is debate amongst biologists over the underlying mech-
anisms of cortical folding, with hypotheses based on genetic chemical cwal (such as the
IPM) competing against physical tension (ATH). To investigate the credence of the IPM
and thereby the validity of genetic morphogen control of cortical folding, we use mathe-
matical modeling and adopt a prolate spheroidal domain Turing system moel of cortical
folding. We use a prolate spheroid because it accurately models the ape of the LV and
SVZ during early neurogenesis as discussed in Sectidhl.2 (see Figure2.3); more details
will be provided in Chapter 6. As discussed in Sectior.3, previous Turing system biomath-
ematical models of cortical folding in the brain utilized a static, non-growing domain. To
build a model which more accurately re ects the biology, we construt Turing models of
cortical folding utilizing an exponentially or logistically growing dom ain. The mathematical
details of our models are presented in Chapter8{5, and their application to cortical folding
is presented in detail in Chapter 6.

2.5 Conclusions

In this chapter, the major anatomical features of the brain and the key cds involved
in cortical development were presented. Several biological hypothes of how the cerebral
cortex develops and folds were outlined. This chapter also discussdeprior biomathemati-
cal models of cortical folding and outlined motivation for investigating a growing prolate
spheroidal domain Turing system model of cortical folding.

Our mathematical models of cortical folding, which are presented in Clapter 6, assume
the IPM view that regional patterns of IPC self-ampli cation might be di rectly correlated
with cortical folding patterns. A Turing-reaction di usion system i s employed to create
prepatterns of activation and nonactivation of IPC self-ampli cation in th e SVZ. Activated
regions represent areas of high IPC self-ampli cation, leading to gyri,while nonactivated
regions represent areas of low IPC self-ampli cation, leading to sulic

Turing reaction-di usion systems and their ability to generate patt erns are introduced
in the following chapter. Chapter 4 discusses Turing systems on an exponentially growing
prolate spheroid, while Chapter5 discusses Turing systems on a logistically growing prolate
spheroid. Further details of our mathematical models of cortical folding are discussed in
Chapter 6.
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CHAPTER 3

TURING REACTION-DIFFUSION SYSTEMS

In his classic 1952 paper, Alan M. Turing used a system of two reaction-dision equations
to generate patterns representing chemical morphogen concentration gdients on the de-
veloping embryo P5]. The principal characteristic of what would come to be known as a
\Turing system" was its ability to generate spatially inhomogeneous patterns from a spa-
tially homogeneous steady state. This pattern-generating capability, ow referred to as
Turing behavior [18, 20, 41], has made Turing systems useful for mathematical modeling
of numerous developmental biology phenomena such as the formation of leopaspots and
zebra stripes as well as the initiation of alligator teeth [3]. Speci cally, patterns generated
by Turing systems serve as prepatterns of genetic factors to whichetls of the developing
organism can later di erentially respond [63, 95].

In this chapter, general static and growing domain Turing systems are pesented. The
biological plausibility of Turing systems, the types of reaction kinetics they use, and an
intuitive explanation of their pattern-generating capabilities are discussed. Lastly, a pro-
late spheroidal domain is incorporated into the growing domain Turing system framework,
establishing the foundation for later chapters.

3.1 Static Domain Turing Systems

Consider a static domain with position vector X where u(X;t) and v(X;t) are con-
centrations of an activator morphogenu and an inhibitor morphogen v. Let the di usion
coe cient Dy of the inhibitor be greater than the di usion coe cient D, of the activator, so
that 0 < D, <D . Then the classic nondimensionalized Turing reaction-di usion sytem
is @u 9

2 y) 2

@t Dr cu+ !f (u;v); 2
@v
@t
where D = Dy=Dy 2 (0;1), ! > 0 arise from nondimensionalization and functionsf;g
represent the reaction kinetics (source terms)q3, 95]. Refer to SectionA.1 for a derivation
of the generic reaction-di usion equation. The di usion coe cient r atio D is required to
satisfy D < 1 in order to reproduce the \short range activation, long range inhibition" [ 31]

(3.1)
= r2v+ g (uv);
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phenomenon observed in nhumerous biological systems such as organogenasisansplants
[31] and hair follicle development in mice BZ].

The reaction terms of System @.1) create peaks ofu; v concentration, while the di usion
terms smooth out these peaks. The end result of this competition beteen peak creation and
peak smoothing is the generation of characteristic Turing patterns. $stem (3.1) possesses
the characteristic Turing pattern-generating behavior when two aiteria are satis ed: (i) the
system must tend to a linearly stable spatially uniform steady state(ug; vo) in the absence
of diusion, and (ii) the steady state is driven unstable by random perturbations in the
presence of di usion. We call these two properties the Turing crieria.

3.1.1 Diusion-Driven Instability and Pattern Formation

The second Turing criterion, often referred to as di usion-driven instability [ 57, 6],
can at rst seem counterintuitive. Many learn in basic chemistry or biology class that
di usion acts as a stabilizing force between two areas of unequal soluteoncentration, but
in a Turing system, di usion acts as a destabilizing force. To illustrate the idea of how
di usion-driven instability occurs, consider the analogy of a genert reaction tank with two
well-mixed reactants [67]. If there is no di usion, the reactants will react with one another
according to the law of mass action and reach a uniform steady state. Thissilinear stability
in the absence of di usion, the rst Turing criterion. If diusion is allowed at equal rates
for each reactant, then any perturbations from the steady state will caug the reactants to
react with each other and return to the steady state. However, if di usion is allowed at
greatly unequal rates, then the reaction rates cannot keep up with di usion to return the
system to the uniform steady state, and a spatially inhomogeneous patter is formed. This
is di usion-driven instability, the second Turing criterion.

To describe how a Turing activator-inhibitor system generates spaially inhomogeneous
patterns, consider the analogy of a dry forest that is prone to forest res[62]. Suppose that
re ghters on helicopters equipped with ame-retardant chemical c annon are dispersed
randomly throughout the forest. Suppose also that the helicopters can yfaster than re
can spread, so that the helicopters can y ahead of a re to spray the ameretardant on
trees and prevent them from being burned. Now suppose that res (tlke \activator") break
out in several random places throughout the forest; the breakout of res r@resents the
perturbation to the homogeneous steady state. As the res begin to spreadthe re ghting
helicopters race ahead of the res and spray unburned trees with ameretardant (the
\inhibitor"). The end result is a forest patterned with areas of black b urned trees and
green unburned trees.

In a similar fashion, Turing systems generate spatially inhomogeneousatterns of acti-
vator and inhibitor morphogens. Recall that the di usion coe cients of t he activator u and
inhibitor v in Turing System (3.1) must satisfy Dy, < D ,. When the system is perturbed
from its steady state in the presence of di usion, the inhibitor morphogen can thus di use
much faster than the activator morphogen. This leads to a pattern with areas of high ac-
tivator concentration separated by areas of high inhibitor concentration, aralogous to the
black and green tree pattern in the aforementioned forest.
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3.1.2 Biological Existence of Turing Patterns

Turing systems require the existence of chemicals which can forrmoncentration gradient
patterns; in the context of biology, these chemicals are morphogens thatesve to in uence
the development of cells into specialized tissues and organS7. The validity of using a
Turing system to model biological systems was debated for many years, asxperimental
evidence in Drosophila embryonic stripe development showed that Turing systems could
not accurately describe the multiple underlying genetic interadions [1, 57].

Recent research, however, supports the plausibility and existece of Turing patterning
in biological development. Evidence suggests that the density of hairdilicles in developing
mice is controlled by the expression of activator and inhibitor proteins [57, 82]. The activator
protein WNT is much larger than the inhibitor protein DKK, thus WNT di  uses slower
than DKK and can be modeled with a smaller di usion coe cient than DK K. This ts
the Turing system requirement of D, < D , and so a Turing system model of mouse hair
follicle patterning was proposed by Sicket al. [57, 87]. The Turing system was used to predict
patterns of mouse hair follicle density that were con rmed experimantally using transgenic
mice, supporting the use of Turing systems to model biological patten formation.

3.1.3 Reaction Kinetics

In order to accurately model patterns in biological systems, a Turingsystem's reaction
kinetics f; g must be nonlinear functions pP5]. Turing systems can be classi ed into four
groups based on the type of kinetics selected>f]. Reaction kinetics are chosen based on
the amount of information known about the underlying reactions of the sydgem in question.

In a phenomenological Turing system, nothing is known about the actual eactions
involved in the system. In this case, one selects or constructs kétics that can reproduce
the observed pattern. An example of a phenomenological Turing system ishe Barrio-
Varea-Maini (BVM) system [ 9], which will be discussed in more detail in Sectior3.2.

Hypothetical Turing systems use kinetics based on a set of hypothetal chemical re-
actions satisfying the law of mass action. The Schnakenberg system @mne example of a
hypothetical Turing system [7&]. While originally created to describe general chemical reac-
tions that exhibit limit cycle oscillatory behavior, Schnakenberg kinetics have been used to
investigate Turing pattern behavior in biological applications such as enbryonic uid ow
asymmetry in the mouse b, 58, 78, 81, ].

An empirical Turing system uses kinetics that have been t to reproduce known exper-
imental data from the system to be modeled. The Thomas uric acid-oxgen system is an
example of an empirical Turing system B9). If the actual chemical reactions in the system
are precisely known, the kinetics functions are calculated usinghe law of mass action. An
example of a system in which the actual kinetics can be calculated ishe chlorite-iodide-
malonic acid starch (CIMA) reaction, which was the rst experimentall y observed Turing
pattern [ 14, 55].

3.2 Growing Domain Turing Systems

To incorporate domain growth into System (3.1), let S R3 be a two-dimensional
regular growing surface with position vectorX ( ; ;t ) where ; are spatial parameters for
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Standt 0. If welet hy = jX j;h, = jX j; then the incorporation of domain growth
allows System @.1) to become

W= D s @n(haho)u+ i (uv);)
(3.2)
Vi = sV @(In(hih2))v + Ig (u;v);
where u; = %‘t‘, Vi = %‘t’and s IS the Laplace-Beltrami operator on S; de ned by
" #
1 hy hi
= — + — .
°* " hihy  hp h, (33)
for = u;v [77). Refer to SectionA.2 for a complete derivation of System (3.2).
Notice that including domain growth in a Turing system causes the formation of a new
third term  @(In(h1h2)) (for = u;v) in each equation of System 8.2) as compared to

System 3.1). These terms represent dilution of the chemical concentrations de to domain
growth [72]. The parameter !, often called the domain scale parameter(3, allows one
to adjust the strength of the reaction terms relative to the strength of the di usion and
the dilution terms; this a ects the pattern generated by the system as will be discussed in
Chapters 4 and 5. System (3.2) allows one to construct a Turing system on an isotropically
growing domain whenX (; ;t )= (t)Xo(; ), where (t) is the domain growth function
and Xo( ; ) denes the domainatt=0[77.

Turing systems have also been generalized to encompass convectioniation-reaction-
di usion systems on growing domains p4]. However, since traditional reaction-di usion sys-
tems have been demonstrated to exist in biological pattern developm# (see Section3.1.2)
and also have been used in previous biomathematical models of corticablfling (see Sec-
tion 2.3), we will proceed using System 8.2).

We select nondimensional BVM kinetics [/, 9, 9¢] so that
f(u;v) = u+av Cuv uv?
g(u;v) = bv+ hu+ Cuv+ uv?;

where a; b; C; hare kinetics parameters (see Section&.3 and A.4). BVM Kkinetics, classi ed
as phenomenological, are constructed to primarily give striped patters whenC = 0 and
spotted patterns when C > 0 [9, 21]. Since the biological mechanism of cortical folding is
not completely understood, BVM kinetics are a reasonable choice for a odel of cortical
folding.

3.3 Growing Prolate Spheroid

System (3.2) is implemented on a growing prolate spheroidal domain. Two di erentbio-
logically relevant growth functions are utilized to investigate the versatile pattern-generating
capabilities of a growing domain Turing system. Exponential growth isimplemented in
Chapter 4 and logistic growth is presented in Chapter5. Motivation for a growing prolate
spheroidal domain and each type of domain growth is discussed in Chaptes.
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(& f =2, =1:3141 surface area =4 (b) f =2; =2:1640 surface area= 16

(c) f = 1:2247, = 1:3141, surface (d) f =1, =2:1640, surface area = 4
area =1:5

Figure 3.1: Prolate spheroids for di erent values off and . Changing while holding f
constant changes the shape of the spheroid. Altering while holding constant changes
the size but maintains the shape of the spheroid.

A prolate spheroid is obtained by rotating an ellipse with semimajor axs length a and
semiminor axis lengthb about its major axis. The coordinate system for a prolate spheroid
created from such an ellipse is de ned by

_fp
2

p

(L (2 Dsin2; and z:%;

X @ 2)(? 1cos2; vy :%

[0;1), > 1isthe radial term, andf is the interfocal distance withf =2 a2 B [25]. If E
is the eccentricity of the prolate spheroid, then the shape of the speroid can be altered by
altering the value of , asE = % (see SectionA.5). Given a xed value of f and increasing
the value of results in a rounder, more sphere-like prolate spheroid; increasg f given a
xed increases the overall size of the prolate spheroid while maintainingts shape (see
Figure 3.1) [25].

where is the polar angle with  =cos 2 [ 1;1], is the azimuthal aBgIe with = 2
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De ne the position vector X on a growing prolate spheroid as

0 fgp(Z DI 2)cos2
X(;:t)= (t)% %Op(2 DI 2)sin2 §;

fo
2

where f o is the interfocal distance att = 0 and the growth function is given by (t). We
calculate the Laplace-Beltrami operator s de ned in Equation ( 3.3) and the dilution term
@(In(h1hy)) (for = u;v). To this end, we observe that

S
hi= (1) f I0(2 1) 2 and hy= (t)f—O S
1= 0 2= 2 1 2
It follows that
@(In(hihy)) = 2= (3.4)
and
1
s T T2y
where
1 41 2 422 2 1
y T T2 21 (2 1) + f2(2 2 f2(2  2)2
0 0 0
Overall, System (3.2) on a growing prolate spheroidal domain becomes
D 9
Uu = — yu 2=u+!f (uv); 2
35
1 5 (3.5)
Vi = — W 2=v+ g (uiv): s

3.4 Conclusions

This chapter outlined the basic properties of Turing systems, thér basic types of kinetics
functions, and the intuition behind their pattern-generating abil ities. A framework for
including domain growth in a Turing system was presented and subsgiently implemented
on a prolate spheroidal domain, yielding System 8.5). In Chapters 4 and 5, respectively,
System (3.5) is implemented under exponential and logistic domain growth, ultimately
leading to growing domain Turing models of cortical folding that are presented in Chapter®6.
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CHAPTER 4

EXPONENTIALLY GROWING DOMAIN
TURING SYSTEM

To illustrate the types of patterns that can be generated by a growing emain Turing
system, we incorporate exponential domain growth into System 3.5). We begin by deriving
mathematical conditions that explicitly state when an exponentially growing domain Turing
system satis es the two Turing criteria and thus can generate Turing patterns. We then
discuss proper system parameter selection for an exponentially grong prolate spheroidal
domain Turing system with BVM kinetics. Finally, we utilize nume rical simulations to
investigate the pattern-generating abilities of such a system. We vl see that adding domain
growth to a Turing system induces an important change in the systems pattern-generating
behavior. These results have appeared iro[] and have been submitted in 1, 92].
To begin, we select an exponential growth function

(1= e

with R> 0;t 0. The dilution term from Equation ( 3.4) is

2= = 2R (4.1)
and System @3.5) becomes
D 9
u = — yu 2Ru+!f (uv); 3
4.2
1 3 (42)
Vi = — W 2Rv+ g (upv):

Observe that setting the growth rate to R = 0 reduces System §.2) to a static domain
Turing System, which is discussed further in Section4.1.3

4.1 Turing Conditions

It is highly bene cial to have mathematical equations whose satisfacton indicates when
System (4.2) satis es the two Turing criteria and is therefore capable of generaing Turing
patterns. We call such equations Turing conditions and derive them ging linear stability
analysis [37].
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4.1.1 Turing Criterion: Linear Stability in the Absence of Di usion

To derive mathematical Turing conditions representing the rst T uring criterion, we
assume that System §.2) possesses the required spatially uniform steady stateug; vp), and
that (up; vo) remains a steady state in the absence of di usion. System4.2) in the absence
of di usion becomes

Ut 2Ru + If (u;v);

Vi = 2Rv + g (u;v); (4.3)
where (ug; Vo) is the solution to
0 = 2Ruqg + 'f (up; vo);
0 = 2Rvg + g (ug; Vo): (4.4)
De ne w(t) to be a perturbation from (ug; vg) such that
U(t) Uo u
w(t) = = 4.5
(t) Vi) Vo ) (4.5)

with O < j yj;j vj 1. Notice that Equation (4.5) allows System @.3) to be rewritten as

Ut

Wi =
t Vi

Next, we linearize u¢;v; from System (4.3) by performing a Taylor expansion about
(Uo; Vo), yielding

u = 2Rug + If (ug;vo) + (c;@u( 2Ru + If (u;v))
(uo;vo)

+ oy gv( 2Ru + If (u;v)) + O( ?);

(uo;vo)

and similarly for v;. Using System @.4) and ignoring O( 2) and higher terms, we can write

Ut 2R ¢+ ! [ ufu(uosvo) + vfv(uo; vo)l;
Vi 2R v+ !'[ yOu(uo; Vo) + vOv(Uo; Vo)l;
so that
wi= 2Rw+ A w (4.6)
with
A= fulv : (4.7)
gu gV (Uo;Vo)

Consider solutions to Equation @.6) with form w(t) = ce!, where ¢ is a vector of
constants. To achieve the desired linear stability of (1g;vo), perturbations w must ap-
proach 0 ast increases, which occurs wheiRe( ) < 0. By substituting w(t) = ce' into
Equation (4.6) and dividing through by e', we obtain the eigenvalue equation

c=!Ac 2Rc= At
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where
Ifu 2R If v

A=1A 2RI = 9. !g\'/ oR

(uo;vo)
For notational brevity it is assumed that f;fy;g,;g, are evaluated at the steady state
(uo; Vo) in future calculations.
The characteristic equation of A,
fu 2R if oy

det(A 1)= - g4 !gVIZR =0;

implies that the eigenvalues of A satisfy

2 wA+detA=0; (4.8)
where
trA = I (fy+g) 4R and
detA = 12%(fyq fuou) 2R! (fy+ g)+4R%

Since Equation (4.8) has solutions
r

= }trﬁr } trA ? 4 detA:
it follows that Re < 0 when
tr A=1(fy+g) 4R < 0 and (4.9)

det A=12(fyqy fuvqu) 2R! (fu+q)+4R?> > O

These two inequalities constitute the rst two mathematical Turi ng conditions for Sys-
tem (4.2); when these inequalities are satis ed, System4.2) possesses a steady state that
is linearly stable in the absence of di usion.

4.1.2 Turing Criterion: Di usion-Driven Instability

To derive Turing conditions representing di usion-driven instability, we begin by lin-
earizing System @.2) about (ug; Vo) to obtain

wy=Dm ywW 2Rw+ A w; (4.10)
where 1
_ D O
Pm==3 o 1

and w is the perturbation de ned in Equation ( 4.5). Consider solutions to Equation (4.10)

with form X

w(X;t) = ae' Y (X); (4.11)
k
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where ¢, are Fourier coe cients determined by the initial conditions and Yy are prolate
spheroidal harmonics; that is,Y \ are solutions to the Helmholtz equation Y+ k?Y =0
on a prolate spheroid. Substitute Equation @.11) into Equation ( 4.10 and divide through
by et to obtain X
o( Y+ DuK?Y+2RY AYW)=0;
k
where we have used Y = k2Y . Since we desire nontrivial solutionsw, it must be
that ¢, 6 0, and
Y+ Duk?®Y +2RY A Y, =0: (4.12)

Rearranging Equation (4.12) yields another eigenvalue equation,
Ye=( Dwk® 2RI +IA)Yy;
leading to the characteristic equation
det(X Dmk?® 1)=0: (4.13)

When evaluated, the determinant in Equation 4.13 can be rewritten as

2
2+ %(1+ D) tr A +h(k?®)=0; (4.14)

where
2 D 22, K .
h(k9) = —(k9)°+ —[2R(1+ D) ! (fu+ Dgy)]+det A

Setting k? = 0 reduces the analysis to the no-di usion case. Since we wish to dize Turing
conditions for di usion-driven instability, we only consider k? > 0 from this point onward.
It must be that Re( ) > 0 to achieve di usion-driven instability. Solving Equation ( 4.14)
using the quadratic formula yields
s
k2 1 k2 2
—~@1+D) trA > —~@1+D) trA 4h(k?): (4.15)

1,2 —

NI =

Then Re( ) > 0 is achieved when either (i)

2

k—2(1+ D) tr A<O (4.16)

or (ii)

S
1 k2 1 k2 2

= 5 3@+D) wA +5 S(1+D) UA 4h(k?) (4.17)

and
h(k?) < O: (4.18)
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Equation (4.16) cannot be satis ed if the Turing condition given in Equation ( 4.9) is sat-
ised. Thus, to achieve di usion-driven instability, Equations (4.17) and (4.18 must be
satis ed.

A necessary condition for the satisfaction of Equation 4.18) is

2R(1+ D) ! (fy+ Dgy) < 0; (4.19)

which constitutes the rst mathematical condition for System (4.2) to satisfy di usion-
driven instability, and the third mathematical Turing condition ov erall. Notice that Equa-
tion (4.19 is a necessary but not su cient condition to satisfy h(k?) < 0; one must select
the positive square root from Equation (4.15 as well as ensure that

2
'%[2R(1+ D) ! (fy+ Dgy)] > %(k2)2+dem:

To guarantee that h(k?) < 0 is satis ed, a fourth mathematical Turing condition is
derived. Sinceh(k?) is an upward-opening parabola ink?, h(k?) < 0 can be always satis ed
if Equation (4.19 is satis ed and hyin = min h(k?) < 0. By dierentiating h(k?) with
respect to k? and setting the derivative equal to zero, we see thahmin occurs when

2
k? = kijn = 55[2R@+ D) ! (fu+ Dgy)l:
It then follows that

(1+D)?

hmin = h k3., =R? 4 5

+RI S+ D)(fu+Dg) 2y 0)
1
+12 (fugy  futu) E(fu"' Dgv)? ;

so that h(k?) < 0 when

(1+D)?

RZ 4
D

+RI Z(L+D)(fu+ DGy 2(fu+ g)

!2
+ 1 2(fugv fyau) < E(fu + ng)z:

This equation is the second mathematical condition required for Systen (4.2) to achieve
di usion-driven instability and the fourth mathematical Turing con dition overall.

4.1.3 Summary of Turing Conditions

By using linear stability analysis, we derived four mathematical condtions that, when
satis ed, guarantee the exponentially growing prolate spheroidal domainTuring System (4.2)
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is capable of generating Turing patterns. These four Turing conditiors are

tr A=1(fu+q) 4R < O (4.20a)
det A=12(fyqy fuvaqu) 2R! (fu+gq)+4R?> > O (4.20b)
2R(L+ D) !(fy+ Dgy) < O (4.20c)

1+ D)2
R* 4 % +12(fug fuu)

1 2
+R! %(1+ D)(fu+Dgv) 2(fu+ ) < Zo(fu+ Dgv)?%  (4.20d)

where the rst two conditions give linear stability in the absence of di usion and the second
two conditions give di usion-driven instability.

Recall that System (4.2) can be changed to a static domain Turing system by setting
the growth rate to R = 0, giving System (3.1). The four exponentially growing domain
Turing conditions in (4.20) then simplify to the static domain Turing conditions [ 63]:

tr A=fy+g, < O (4.21a)
detA=1fygy fvou > O (4.21b)
fu+ Dgy > O (4.21c)

1
detA < E(fu + Dgy)? (4.21d)

where A is given in Equation (4.7). System parameters must therefore also satisfy these
four static domain Turing conditions. It follows from Equations (4.218 and (4.219 that
fu;gv are of opposite sign andD 6 1. In System (4.2), D must satisfy D 2 (0; 1), thus
system parameters must be chosen to satisff, > 0 and g, < 0.

The space of parameters for which the Turing conditions in 4.20 are satis ed, often
called the Turing space, can be larger for an exponentially growing domairfuring system
than for a corresponding static domain Turing system. Comparing the rst Turing condition
in the growing and static domains, we can see that Equation 4.213 requires f, + g, to
be strictly negative while Equation (4.209 requires that f, + g, < “!—R. SinceR;! > 0,
the exponentially growing domain Turing condition (Equation (4.20g) allows f, + gy to
potentially be positive, allowing for a larger Turing space than a static domain Turing
system. Furthermore, if we compare the second Turing condition in bhe growing and static
domains, we notice that Equation (4.20b) implies

12(fugy fugu) > 2RI (Fu+ @) 2R]> 2R[! (fu+ @) 4R]=2Rtr A (4.22)

While Equation (4.21b) requires that f g, f\gy be strictly positive, Equation (4.22) im-
plies that fyg, fy0Qu only needs to be greater than some negative number since the Equa-
tion (4.208 requires tr A < 0. Again, this shows that an exponentially growing domain
Turing system allows for a larger Turing space than a static domain Turng system.
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4.2 Kinetic Parameter Selection

As discussed in Sectior8.1, we select nondimensional BVM kinetics so that System4.2)

becomes D 9
U = — yu 2Ru+!(u+av Cuv uw?); 3

(4.23)

1
Vi = 5 W 2Rv+!(bv+ hu+ Cuv+ uv?): ;

Traditional use of BVM kinetics in static domain Turing systems sets parameter values so
that (0; 0) is the only spatially uniform steady state of the system p.

It is desirable to accomplish this for the exponentially growing doman System4.23 as
well. However, adding growth to a reaction-di usion system adds thedilution term which
must be considered when nding the steady state(s) of Systen4.23 Recall that the steady
state of any Turing system must remain a steady state in the absence ofidision. A steady
state (u;Vv) = (up; vg) of System 4.23 must then satisfy

0
0

2Rug+ ! (up+ avo CugVp UoVg); (4.24a)
2Rvo + ! (bw + hug + Cugvg + UoVg); (4.24D)

from which it follows that ( 2R+ ! th)
. Uo + 1+
vo = (2Rl 2] (4.25)

if 2R+ !a +!b 60. Requiring 2R+ ! + !'h =0, which implies

_ =

=1

1 (4.26)

ensures thatvy = 0 is the only possiblev coordinate of the steady state. Substitutingvg =0
into Equation 4.24byields
0= "'hu q:

As ! > 0, requiring h 6 0 ensures that ug = 0. In summary, in order for (0;0) to be the
only steady state of System4.23 it must be that

2R+!la+!b 6 O0;

_ 2R
o

! 6 2R;

IMKV/ ©

h 1 6 0; and (4.27)

W

where the third equation follows readily from the second.
The parameters of System .23 must be selected to satisfy the four mathematical
Turing conditions in (4.20). Nondimensional BVM kinetics have partial derivatives

_®

fu=1; fy=a g=h |

1, and g, = b;
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where all partial derivatives are evaluated at the steady state (Q0) as in Section4.1. From
Section4.1.3 we requiregy < 0; thus b < 0. Substituting BVM kinetics partial derivatives
into (4.20), it follows that the four mathematical Turing conditions for System ( 4.23 are

l(1+b 4R < 0
l2(a+ b 2R! (1+a+hb+4R? > O

MR ©

2R(1+ D) ! (1+ Db) < 0; and (4.28)
l2a+h+R22 2 D ,
|

+RI 1 + < —_—(1+ Db)?2: :
R L b 1+Db 2a 45 (1+ Db)

VRN

4.3 Numerical Results

We numerically implement System (4.23) using a forward-time central-space nite dif-
ference scheme coded in FORTRAN({1, 90]. A prolate spheroidal domain has singularities
at the north pole ( = 1) and south pole ( = 1) of the prolate spheroid. Thus, special
care to avoid these singularities must be taken when establishinghie spatial mesh and the
boundary conditions. To establish a mesh in the (; ) spatial domain, we set

2

1
= — and = X
J K+1’

whereJ = 68 and K = 33. Creating the mesh in this fashion agrees with the literature
for numerical simulations of Turing systems on a sphere/] and prolate spheroid B6]. We
then de ne

Kk =U ]

= c 1+k + —:n t

2 1
to be the numerical approximation to the actual value ofu( ; ;t ); wherej; k;n are integers
suchthatj 2 [0;J]; k2 [0;K]; andn O (similarly, Vjﬁ‘( is the approximation to v( ; ;t )).

Creating the mesh in this fashion allows the poles at = 1 to be avoided. Values of at
mesh points exhibit symmetry about the value = 0O, further agreeing with the literature
for similar numerical simulations of Turing systems [B6, 97].

Boundary conditions with respect to are periodic and given by
Uok = UZk:  Vok = Vik:

Boundary conditions with respect to are employed at the north and south pole of the

domain and agree with the literature [86, 97]. The south pole boundary condition is
n _ n . n _ n.
j+2:0 " Uy o; j+%;0_\/j;0’

and the north pole boundary condition is
n K = Ujr;]K VAL

iy
I+ 3

wherej 2 1;% in both cases.
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Concentration values ofu and v are assumed to be normalized about zero and initial
u; v values are selected to be random values 2 [ 0:5; 0:5] along the equator of the prolate
spheroid and zero elsewhere, representing the noise that causeslaring system's steady
state to be driven unstable by di usion [97]. Using these initial conditions in our simulations,
we observed Turing systems' intrinsically high sensitivity to initial conditions, as expected
[29). While di erent random initial conditions yielded di erent patt erns (given a particular
set of system parameters), the overall pattern-generating behavioof the system (described
below for exponential domain growth and in Chapter5 for logistic domain growth) remained
the same. Thus, for the remainder of this dissertation, all simulatiors have been created
using identically seeded random initial conditions so that we can clarly investigate the
pattern-generating behavior of the systems in question. Concentrabn values are visualized
using a concentration gradient where light-colored regions correspondot areas where the
concentration of activator u exceeds that of inhibitor v (representingu > 0 or equivalently,
v < 0) and dark-colored regions correspond to areas where the concentration ofhitbitor v
exceeds that of activatoru (representingu < 0, or equivalently v > 0); for example, refer
to Figure B.1.

Stability of the numerical code was veri ed by several methods. Gien a set of initial
conditions and system parameters, changing the value of t or changing the mesh size in the

direction (by doubling, quadrupling, or halving the number of mesh points) yielded the
same pattern, as expected. Mesh size in the direction was not altered from the literature
value so as not to alter the amount of error being contributed from the bourdary conditions
at the poles. Selecting an identical initial condition value at every int at the equator
and then perturbing the initial condition (either by changing every value on the equator or
by changing just one or two values on the equator) yielded the same patter, as expected.
When using the numerical code to simulate the heat equationvy = v with a constant
initial condition on the equator (representing the \heat source") and zero elsewhere, we
observed that the \heat" spreads over the domain and quickly achieveshe same value at
every point in the domain, as expected.

System parameters were selected to be

D=0:5516 a=1:112 b= 101 C=0;

agreeing with traditional values used for BVM kinetics [8, 50]. Initial interfocal distance
was selected to bdfg =2 and was xed at = 1:3141. This choice off and gave the
domain an initial surface area of 4 , matching the surface area of the unit sphere. We x
to x the domain shape (see Section3.3) as changing a ects the generated pattern [34].
Growth rate R and domain scale! were the only parameters varied between simulations
and were selected such that the Turing conditions in ¢.28 were satis ed.

We observed that patterns produced by exponentially growing domain Tring Sys-
tem (4.23 are transient and evolve continuously from one pattern to another (see k-
ures4.1{4.3). This pattern-generating behavior contrasts with that of a comparable Turing
system on a static prolate spheroidal domain in which the pattern conveges to one nal
pattern [86, 97]. The addition of exponential domain growth to a Turing system therefore
induces a fundamental change in the system's pattern-generating tavior. Our observation
of domain growth inducing transient patterns agrees with previous resarch conducted on
Turing systems on exponentially growing spheresd?, 43] and linearly growing spheres 16].
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System (4.23) can generate striped or spotted patterns depending on whether BVM
parameter C is selected asC = 0 or C > 0, respectively (see Sectior.2). By electing
BVM parameter C = 0 for our simulations, we observe striped patterns, similar to a staic
domain BVM system [9, 21]. As the patterns evolve, they become more complex; that is,
one can observe more stripes as elapsed tintencreases (see Figured.1{4.3). An increase
in pattern complexity with increasing time agrees with results in the literature from linearly
growing spherical Turing systems 6.

Since simulations varied only in the values of parameterR and ! , we were able to
observe that increasingR (given a particular ! ) or increasing! (given a particular R)
causes the system to generate a more complex pattern at any giverr> 0 (see Figure4.4 or
compare Figures4.1{4.3) . We also noticed that increasingR or ! increases the frequency
at which the pattern evolves from one pattern to another. The correspon@&nce between
increasing domain growth rate and overall rate of pattern evolution has bee previously
observed in the case of linearly growing spherical Turing systemslLf].

While we employed C = 0 in our simulations, it should be noted that observations
analogous to those in the preceding three paragraphs are made for spotted patins produced
by System (4.23 when C > 0. Patterns are again transient, with the number of spots
increasing ast increases; increasing the value dR or ! again increases the number of spots
generated at a givent > 0. An example of a spotted pattern produced by System 4.23
with C = 1:57 (the traditional literature value of C used to generate spots with BVM
kinetics [8, 49, 50]) is given in Figure 4.5.

4.4 Comparison to Static Domain Pattern

As discussed in Sectior.3, a pattern generated by a static prolate spheroidal domain
Turing system converges to a nal pattern (see Figures4.6 and 4.7). We also compared
static prolate spheroidal domain patterns to exponentially growing doman patterns. We
generate the pattern on an exponentially growing domain for a given value of gwth rate
R. At the nal pattern ( t,q = 35), the domain size has grown isotropically by a factor of
eRtna | This scale factor is used to create a static prolate spheroidal domain ohie same size.
The corresponding static domain pattern is then generated using Sysim (4.23) with R = 0.
Patterns generated on prolate spheroidal domains with equal nal domain sie are di erent,
but are qualitatively similar in the number and size of stripes (seeFigures 4.8 and 4.9). Our
observation of domain size having a directly proportional in uence on patern complexity
agrees with previous Turing system research conducted on static prate spheroidal domains
[8€] and linearly growing spherical domains 4.

4.5 Conclusions

In this chapter, we investigated the e ects of implementing exporential domain growth
in a Turing system on a prolate spheroid. Linear stability analysis was enployed to derive
mathematical Turing conditions which allow one to select parameters hat ensure the sys-
tem will generate Turing patterns. Appropriate selection of system mrameters that satisfy
the Turing conditions and maintain the origin as the unique steady stateof the system when
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Figure 4.1: Evolution of exponentially growing domain Turing pattern for R = 0:025! =
115. The pattern is transient; that is, it evolves ast increases, with pattern complexity
increasing with t. Light-colored regions represent areas where the concentration of the ac-
tivator u exceeds that of the inhibitor v (u > 0 or equivalently, v < 0) and dark-colored
regions represent areas where the concentration of the inhibitov exceeds that of the acti-
vator u (u < 0, or equivalently v > 0). The pattern was generated by System 4.23) with
kinetics parameters listed on page34. Snapshot times are indicated by red dots in the lower
right gure. See also: animation.
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Figure 4.2. Evolution of exponentially growing domain Turing pattern for R = 0:01;! =
115. Decreasing the value oR yields patterns that are are less complex than those in
Figure 4.1 at each correspondingt. The pattern was generated by System 4.23) with
kinetics parameters listed on page34. Snapshot times are indicated by red dots in the
lower right gure. See also: animation.
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Figure 4.3: Evolution of exponentially growing domain Turing pattern for R = 0:025! =
70. Decreasing the value of gives patterns that are less complex than those in Figuret.1
at corresponding values oft. The pattern was generated by System 4.23 with kinetics

parameters listed on page34. Snapshot times are indicated by red dots in the lower right

gure. See also: animation.
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Figure 4.4: Side-by-side comparison of exponentially growing domain Tung patterns for
di ering values of R and! at t = 35. Increasing R or ! results in a more complex pattern
at a given value oft. The pattern was generated by System 4.23) with kinetics parameters
listed on page34.

using BVM kinetics was discussed. Finally, the pattern-generatirg behavior of an exponen-
tially growing prolate spheroidal domain Turing system with BVM kinet ics was investigated
by conducting numerical simulations. These simulations demonstragtd that incorporating
exponential domain growth into a Turing system causes the patterns ¢ become transient
and ever-increasing in complexity. Increasing the value of paramets R or ! causes the gen-
erated pattern to be more complex (more stripes) at a given value of > 0. Domain size has
a strong in uence on pattern complexity, illustrated by the observation that exponentially
growing domain patterns are qualitatively similar to static domain Turi ng patterns on a
corresponding nal size domain. In the next chapter, we insert logisic domain growth into
System (3.5) and observe that domain growth is the driving force behind pattern transiency
in a growing domain Turing system.

39



Figure 4.5: Evolution of spotted exponentially growing domain Turing pattern. By selecting
C = 1:57, System @.23) generates a transient spotted pattern in which the number of
spots increases witht. Other system parameters wereR = 0:025! =70;D =0:516a =

1:112b= 1:01. Snapshot times are indicated by red dots in the lower right gure. Se

also: animation.
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Figure 4.6: Turing pattern on a static domain scaled bye®® 35, The pattern converges to a
nal pattern due to the lack of domain growth. The pattern was generated by System @.23

with R = 0;! = 115; and kinetics parameters listed on page34. The static domain size
equals that of an exponentially growing domain att 5 = 35 with R = 0:01. Snapshot
times are indicated by red dots in the lower right gure.
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Figure 4.7: Turing pattern on a static domain scaled by €*92% 35 The lack of domain
growth allows the system to converge to a nal pattern. The pattern was generated by
System @.23) with R = 0;! = 70; and kinetics parameters listed on page34. The static
domain size equals that of an exponentially growing domain at 5 = 35 with R = 0:025.
Snapshot times are indicated by red dots in the lower right gure.
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(a) Exponentially growing domain (b) Same-sized static domain

Figure 4.8: Comparison of exponentially growing domain withR = 0:01 attny = 35
and same-sized static domain Turing patterns for! = 115. A pattern generated on an
exponentially growing domain (a) and a same-sized static domain (b) are dérent, but
gualitatively similar in the number and size of stripes due to their shared domain size.

(a) Exponentially growing domain (b) Same-sized static domain

Figure 4.9: Comparison of exponentially growing domain withR = 0:025 att ,5 =35 and
same-sized static domain Turing patterns for! = 70. Turing systems generate di erent yet
gualitatively similar patterns on an exponentially growing domain (a) and a static domain
(b) whose size is equal to the nal size of the growing domain.
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CHAPTER 5

LOGISTICALLY GROWING DOMAIN TURING
SYSTEM

To further illustrate the versatility of the growing domain Turing framework, we incorporate
logistic domain growth into System (3.5). Logistic growth has been used to model biological
phenomena such as population growth, cell division, and tumor growth§3]. Logistic growth
is frequently used in biomathematical models due to its high levelof biological realism
[12, 46, 94]. Organisms cannot continue to grow forever; they eventually stop growg due
to constraints of resources or size (or both), and logistic growth modelshis well.

We rst build a logistic growth function that approximates biologically relevant cortical
growth data. We then scale this growth function in a way that facilitate s comparison
between patterns generated by System3.5) on corresponding prolate spheroidal domains
with exponential or logistic domain growth. We demonstrate that although a logistically
growing domain does not allow for the derivation of Turing conditions, as &plained in
Section 5.2, the logistic system is still able to exhibit pattern-forming Tur ing behavior,
which is presented in Section5.3. These results have been submitted inq1].

5.1 Selecting a Logistic Growth Function

To incorporate logistic domain growth into System (3.5), we de ne (t) to be a logistic
growth function. The basic logistic growth function is

K
(t) - m! (51)
wheret 0, K is the \carrying capacity” or asymptotic value of the curve ast!1 ,r isthe
logistic growth rate (not to be confused with the exponential growth rate R from exponential
growth function  exp(t) = eRt), and tg allows one to horizontally shift the graph left or right.
Since we are constructing a growth function for use in a model of cortial folding, we perform
a logistic t on a modi cation of the estimated Kinoshita et al. [44] germinal matrix volume
data points. The data points, which approximate exponential growth, must be modi ed to
appear logistic because without modi cation, the logistic t operation re turns a curve that
resembles exponential growth (see Figuré.1). The resulting parameter values from the

logistic tare K =2:3304r =0:66031tg = 19:9258 (see Figures.1).
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Figure 5.1: Logistic growth curves. The unmodi ed estimated Kinoshita et al. [44] germi-
nal matrix data points (circles) are logistically t using the basic logi stic function (Equa-
tion (5.1)) and resemble an exponential growth function (dashed curve). Estnated param-
eters areK = 1:8683 10'3;r = 0:28137to = 128:6751. After modifying the estimated
data points by adding repetitions of the nal value to the end (diamonds), the tted logistic
function (solid curve) with parameters K =2:3304r = 0:6603 tg = 19:9258 is sigmoidal.

Next, we alter the basic logistic growth function in Equation (5.1) with the intention of
comparing domain growth between logistic and exponential growth functons. We change
the carrying capacity from K to K? = eRtra 1 and vertically shift the graph by 1 to give
the scaled logistic growth function

K?
Equation 5.2 has been scaled so that ex(0) log(0) and  exp(t na ) log(t nat ) at

a chosen timet y (see Figure5.2). A growing domain under logistic growth function
log and exponential growth function ey thus have approximately the same initial and
nal domain sizes. Controlling the initial and nal domain size in this f ashion allows for
comparison of patterns generated on corresponding exponentially and logistally growing
domains.

Using the growth function in Equation (5.2), the dilution term from Equation ( 3.4)
becomes

2= = 2L(1);

where
b, 1. (5.3)

L(t) = <
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Figure 5.2: Scaled logistic growth curve. Modifying the basic logistict curve given by
Equation (5.1) (dash-dotted curve) results in the scaled logistic growth curve §olid curve)
given by Equation (5.2), which has approximately the same initial and nal values as the
exponential growth curve %1t (dashed curve).

Overall, System (3.5) with logistic growth function |og(t) becomes

D 9

u = — yu 2L(u+!f (uv); 3
(5.4)

Vi = 12 yWo 2L(t)v+ 1g (usv); B

where L(t) is given by Equation (5.3). Notice that unlike the 2R dilution term for
the exponentially growing domain (Equation 4.1), the dilution term under logistic domain
growth is time-dependent.

5.2 Linear Stability Analysis for the Logistically Growing
Domain Turing System
We attempt to employ linear stability analysis to obtain Turing condi tions for the logis-

tically growing domain System (5.4) in the same manner as for the exponentially growing
domain System @.2) in Section 4.1.1. System (5.4) in the absence of di usion becomes

u = 2L (tHu + If (u;v);
Vi = 2L(t)v + Ig (u;v):

Let (up; vp) be a spatially uniform steady state of System 6.4) that remains a steady state
in the absence of di usion. This implies that (ug; vo) is the solution to

0 2L (t)ug + If (uo;Vo);
0 2L (t)vo + !g (ug; Vo):
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Notice that due to the time dependence of the dilution term, the steady state of the system
is also time-dependent, soo; Vo) = (Ug(t); vo(t)). Linear stability analysis no longer makes
sense because of this time dependence, as the system would needb¢ore-linearized at each
value of t; in other words, a unique linear approximation for the system for allt cannot be
found.

Since linear stability analysis fails, the time dependence of the itution term prevents
the derivation of Turing conditions for the logistically growing domain System (5.4). This
means that we cannot nd mathematical conditions that guarantee that System (5.4) will
be able to exhibit the characteristic Turing pattern-generating behavior. However, the lack
of a guarantee does not rule out the possibility that System §.4) might still exhibit Turing
behavior; in fact, it is able to generate Turing patterns, which we $iow in the following
sections.

5.3 Numerical Results

We select nondimensional BVM kinetics so that System §.4) becomes

9

ug = 22 yu 2L(tu+!(u+av Cuv w?); 3
55
1 2 (53)

= W 2L(t)v+ ! (bv+ hu+ Cuv+ uv?):

Vi
To numerically implement System (5.5), we use a forward-time, central-space nite di er-
ence scheme coded in FORTRAN. We wish to compare the patterns creatby System (4.23
and System (.5) to investigate the e ects of changing domain growth in System @3.5) from
exponential to logistic. To accomplish this, our logistic growth numeiical simulations had
identical kinetics parameters, identical initial conditions, and approximately identical initial
and nal domain size (as discussed in Sectiorb.1) as the exponential growth simulations
in Section 4.3. We again visualize concentration values with a concentration gradient in
which light-colored areas represent regions where activaton has greater concentration than
inhibitor v (corresponding tou > 0 or equivalently, v < 0) and dark-colored areas repre-
sent regions where inhibitorv has greater concentration than activator u (corresponding to
u < 0 or equivalently, v > 0). Parameters for the logistic growth function de ned in Equa-
tion (5.2) werer = 0:6603tp = 19:9258 K? = eRtna 1 whereR = 0:01 andt gy = 35.
The parameter! was varied as in Sectior4.3.

We observed a key di erence in how patterns produced by logisticay and exponentially
growing domain Turing systems evolve as elapsed time progresses. \Vihipatterns on an
exponentially growing prolate spheroid continually change and evolve (e Sectioré.3), pat-
terns on a logistically growing prolate spheroid exhibit the vast majoiity of their transiency
during the period when the logistic growth curve is rapidly increasing. A \burst" of pattern
change is seen concurrently with the \burst" of domain growth provided by the logistic
growth curve. Once the domain stops growing (asymptotically), pattems generated on a
logistically growing prolate spheroidal domain behave like a pattern poduced by a static
domain, converging towards one nal pattern (see Figuress.3 and 5.4). Overall, we observe
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that transient pattern evolution in a growing domain Turing system is driven by domain
growth.

We also observed that increasing the value of the domain scale parametérin a logis-
tically growing prolate spheroid Turing system increases the comgxity of the generated
pattern at a given t > 0, just as in an exponentially growing prolate spheroid Turing
system (compare Figures5.3 and 5.4). Even though they shared identical kinetics param-
eters, initial conditions, and initial and nal domain size, the nal pat terns produced by
System @4.23) and System (5.5) are di erent, though they are qualitatively similar in the
number and size of stripes due to their corresponding nal domain sie (see Figures$.5, 5.6).
It will be demonstrated in Chapter 6 that increasing the value of R, which increases the
logistic carrying capacity K ? and therefore the domain size at a givent > 0, increases
the complexity of the pattern at a given t > 0, again echoing the observations seen in an
exponentially growing system.

5.4 Piecewise Exponential Growth

We provide further evidence that domain growth drives pattern transiency in a growing
domain Turing system. A piecewise growth function consisting of iftial and nal constant
values and a middle exponential growth region can be used to approximatgistic domain
growth. We incorporate such a growth function into Turing System (3.5). Consider the
piecewise growth function

g a fork; t<ky;
pe(t) = S beRee)t  for ko t<kg;
e forks t kg
wherek; (i = 1;:::;4) are chosen constants andRpe is the growth rate for the exponential
region. The dilution term from Equation ( 3.4) becomes
8
20 fork; t<ky;
2= = S 2Rpe forks t<ksg;
o forks t ki

Inserting the growth function pe(t) into System (3.5) still yields System (4.2), but with
R =0for t 2 [ky;ko) [ [k3;ka] and R = Rpe for t 2 [kp; k3). The linear stability analysis
and Turing conditions in Section 4.1 thus still hold true. When selecting system parameters
for System (3.5) with growth function pe(t), one must check that the parameters satisfy
the Turing conditions in (4.20 not only for the exponential growth rate R = Rpe but
also for R = 0. It is not dicult to nd system parameters that meet this requir ement,
allowing us to conrm that System (3.5 with growth function pe(t) can exhibit Turing
pattern-generating behavior.

To enable comparison of the pattern-generating behavior of a piecewisexponentially
growing prolate spheroidal domain Turing system with that of the exponentially or logisti-
cally growing domain Turing systems discussed in Sectiondé.3 and 5.3, we select parameters
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Figure 5.3: Evolution of logistically growing domain Turing pattern with ! = 70. Other

parameters areR = 0:0Lt,y = 35;r = 0:6603tp = 19:9258K? = eRtma 1. The

pattern changes rapidly when the growth curve rapidly increases butdoes not change much
when the growth curve is at. The system converges to a nal pattern once the domain
asymptotically stops growing. The pattern was generated by System %.5) with kinetics

parameters listed on page34. Snapshot times are indicated by red dots in the lower right
gure. See also: animation.
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Figure 5.4: Evolution of logistically growing domain Turing pattern with ! = 115. Other
parameters areR = 0:0Lt pay = 35;r = 0:6603tg = 19:9258K ? = eRtra 1. Patterns at
corresponding values oft are more complex than those in Figure5.3 due to the increased
value of ! . The pattern was generated by System $%.5) with kinetics parameters listed
on page34. Snapshot times are indicated by red dots in the lower right gure. Ses also:
animation.
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@) (b)

(c) (d)

Figure 5.5: Comparison of patterns on exponentially and logistically growingprolate spher-
oidal domains for R = 0:0L;! = 115 at tng = 35. Figures (a),(b) show the pattern
produced by System @.23) on an exponentially growing prolate spheroid. Figures (c),(d)
show the pattern produced by System 6.5) on a logistically growing prolate spheroid with
r =0:6603tp=19:9258K ? = eRtra 1. Kinetics parameters used in both cases are listed
on page 34. Figures (a),(c) represent the patterns on the prolate spheroid, wile gures
(b),(d) represent the patterns on their computational domain. The patterns are di erent,
even though both simulations had approximately the same initial and nal domain size and
used identical initial conditions, di usion coe cient, and kinet ics parameters. The patterns
are qualitatively similar in the number and size of stripes due to their corresponding nal
domain size.
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@) (b)

(c) (d)

Figure 5.6: Comparison of patterns on exponentially and logistically growingprolate spher-
oidal domains forR = 0:0L;! = 70 at t,5 = 35. Figures (a),(b) show the pattern pro-
duced by System @.23 on an exponentially growing prolate spheroid. Figures (c),(d)
show the pattern produced by System 6.5) on a logistically growing prolate spheroid with
r =0:6603tp=19:9258K ? = eRtra 1. Kinetics parameters used in both cases are listed
on page34. Figures (a),(c) show the patterns on the prolate spheroid; gures (9,(d) show
the patterns on their computational domain. Patterns produced using d erent growth
functions are di erent despite being produced by systems that tad nearly identical initial
and nal domain size, identical initial conditions, and identical kinetics and di usion pa-
rameters. The patterns are qualitatively similar in the number and sze of stripes due to
their corresponding nal domain size.
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Figure 5.7: Comparison of growth functions. Depicted are three di eren growth functions
where R = 0:01: gxp(t) = eRt (dashed curve), log(t) de ned by Equation (5.2) with
r = 0:6603tg = 19:9258t 4 = 35;K? = eRtna 1 (solid curve), and pe(t) given in
Equation (5.6) (dash-dot curve). The plotted points (13:2366 1) and (26:615Q €%01 35)
were used to nd the exponential portion of pe(t) via best exponential t.

for pe(t) such that

8
21 for0 t< 132366

pe(t) = _ 0:707300261%  for 13:2366 t< 26:615Q (5.6)
© eRlna for 26:6150 t 35=tpa ;

where R = 0:01 and the middle function is obtained by performing a best exponenal t
between the points (132366 1) and (26:615Q eRtra ). These speci ¢ points were selected to
construct a pe(t) with exponential growth occurring concurrently with the rapid i ncrease
portion of |o4(t) (see Figure5.7); this was accomplished by nding where |o4(t) is away
from its initial and nal asymptotic values of 1 and %% 35 where was chosen to be
= 0:005. Choosing the parameters for pe(t) in this way also allows all three growth
functions exp; 10g; pe to have approximately the same initial and nal values so that their
corresponding Turing systems have approximately the same initiabnd nal domain sizes.

5.4.1 Numerical Results

We implement System 3.5 with nondimensional BVM kinetics and growth function
pe(t) de ned in Equation ( 5.6) using a FORTRAN forward-time, central-space nite dif-
ference scheme. To allow comparison with the exponentially or logistally growing prolate
spheroid Turing systems discussed in Section$.3 and 5.3, we select system parameters and
initial conditions as in Sections4.3 and 5.3. Considering the observations from Sectiongl.3
and 5.3, Turing patterns generated on a piecewise exponentially growing late spheroidal
domain behave as expected: patterns exhibit the vast majority of thé& evolution during the
period of exponential domain growth, while converging to a pattern whe the domain is not
growing (see Figure5.8). Patterns can exhibit small amounts of transiency during the initial
constant portion of the growth curve, as some pattern evolution is to be egected during

53



the initial development of any Turing pattern (even on a static domain). Once the domain
begins to grow during the middle exponential portion of the growth curve, the generated
pattern becomes highly transient and increases in complexity, sinkar to the exponentially

growing domain patterns in Section4.3. When the nal constant part of the growth curve

is reached, the system converges to a nal pattern. These observatiancombined with the
results from Sections4.3 and 5.3 clearly show that domain growth drives pattern change in
a growing domain Turing system.

5.5 Conclusions

In this chapter, we developed a logistic growth function that allowedcomparisons of pat-
terns generated by exponentially and logistically growing prolate spheoids. After observing
the pattern-generating behavior of a logistically growing prolate spheoidal Turing system,
we concluded that domain growth drives pattern transiency in a growirg domain Turing
system. Observing the pattern-generating behavior of a comparableipcewise-exponentially
growing prolate spheroid further supported this conclusion. As in Clapter 4, we noted that
increasing the value of parametersR or ! in a logistically growing Turing system gives a
more complex pattern at a givent > 0. In the next chapter, we utilize the growing domain
Turing systems presented in Chapters4 and 5 to construct growing domain Turing system
models of cortical folding patterns in the brain.
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Figure 5.8: Pattern generated by System 8.5) on a piecewise exponentially growing prolate
spheroid with growth function de ned in Equation ( 5.6) and ! = 115. Kinetics parameters
used are listed on page84. The pattern changes during the period of domain growth and
converges when domain growth stops. Dots in the bottom right gure indicate when the
individual snapshots were taken. See also: animation.
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CHAPTER 6

GROWING DOMAIN TURING MODELS OF
CORTICAL FOLDING

In this chapter, we use the exponentially and logistically growing polate spheroidal domain
Turing systems discussed in Chapterst and 5 to create two separate yet related growing
domain models of cortical folding. Motivation for using a growing prolate sgheroidal do-

main Turing system to model the development of cortical folding patterns is presented. The
connection between patterns generated by our model systems and theidbogy of cortical

folding pattern development is discussed. The mathematical model are then utilized to

model various manifestations of polymicrogyria and lissencephaly, twdypes of human dis-
eases of cortical folding which present with too many or too few cortial folds [4, 65, 68, 79).

Advantages and drawbacks of the exponential growth model when compared tthe logistic

growth model are also discussed. The exponential modeling resslthave appeared in 90

and have been submitted in P1]; logistic modeling results have been submitted in §1].

6.1 Motivation: Connecting the Math to the Biology

The original aim of Turing systems was to model chemical morphogen concénation
gradient patterns on a developing embryo $5]. Since cortical folding may be controlled
via a genetic chemical gradient (see Sectiorz.2), a Turing system is a reasonable choice
for our biomathematical models of cortical folding. Previous Turing sysem models of
cortical folding used a static domain, failing to capture the natural growth that occurs
as the brain develops §6]. We address this shortcoming by incorporating a dynamically
growing domain into a Turing system model of cortical folding. We apply our model with
exponential domain growth (presented in Section6.2.1) as well as our model with logistic
domain growth (presented in Section6.2.2) to cortical folding.

Recall that our model investigates the viability of the Intermediate Progenitor Model
(IPM), and the key biological processes hypothesized in the IPM takeplace in the subven-
tricular zone (SVZ). Thus, we must select an appropriate geometric domai to represent
the SVZ in our model. We select a prolate spheroidal domain which grows aording to
a chosen type of growth function. The growing prolate spheroidal domain radels the lat-
eral ventricle (LV), while the domain surface models the SVZ. Early n neurogenesis, which
occurs from weeks 7-18 gestational age (GA) in humans/§], the cerebral hemispheres are
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(@) (b)

Figure 6.1: Brain, lateral ventricles, and fetus early in development The cerebral hemi-
spheres (yellow arrow in Figure (a)) are prolate spheroidal in shape at 48ays GA; since
the LVs occupy nearly the entire volume of the developing cerebral @mispheres at 54-56
days GA, they are therefore prolate spheroidal in shape (see Figure (Ip) Figure (a) adapted

from [2€]; Figure (b) from [34].

prolate spheroidal in shape, with the LVs accounting for the nearly the atire volume of
the cerebral hemispheres (see Figuré.1) [26, 36, 38, 86]. It follows that the LVs are also

prolate spheroidal in shape at this time, making a prolate spheroid a reamable choice to
represent the LV in our model. Since the SVZ lines the walls of the I/ (see Section2.1.2),

the prolate spheroid's surface is a reasonable choice to representatsSVZ.

We assume the existence of an activator morphogen which drives interngéate progen-
itor cells (IPCs) to self-amplify and an inhibitor morphogen which prevents IPCs from
self-amplifying; the existence of such morphogens is supported byiglence showing that
IPCs are controlled by genetic gradients (see SectioR.2). The concentration of activator
morphogen is represented by and the concentration of inhibitor morphogen is represented
by v. Concentration values are assumed to be normalized about zero such that @as with
u = 0 (equivalently, v = 0) represent regions where the concentration of activator and
inhibitor are exactly equal, areas with u > 0 (equivalently, v < 0) represent activated re-
gions where the concentration of activator exceeds that of inhibitor, and aeas withu < 0
(equivalently, v > 0) represent nonactivated regions where the concentration of inhibitor
exceeds that of activator (see gures of simulation results, for examplerigures 4.1{4.3,
where light-colored regions representi > 0 and dark-colored regions represent < 0).

Patterns created by the model Turing systems on the domain surface an represent
a genetic chemical prepattern 2, 63] of regions of activation and nonactivation for IPC
self-ampli cation in the SVZ. According to the IPM, IPCs would respond to activated
regions by undergoing self-ampli cation, leading to gyrus formation; IPCs in nonactivated
regions would not undergo self-ampli cation, leading to sulcus formaton (see Figure6.2a).
Plotting the nal value of u on the z-axis against the (; ) computational domain allows
one to visualize the development of a labyrinthine cortical folding mattern [13, 86] that could
evolve from a Turing prepattern via the IPM (see Figure 6.2b). Visualizing a labyrinthine
Turing pattern in this fashion was previously done in the case of a stait rectangular domain
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Turing system model of cortical folding [L3]. Alternatively, one can obtain a visualization
of a labyrinthine cortical folding pattern on the prolate spheroidal surface by addingu to
the radial coordinate at each mesh point and projecting the result onto the nal prolate
spheroidal domain (see Figures.2c). Using activator concentration to proportionally deform
the domain surface in this fashion has been previously utilized in a tiring model of tumor
growth on a linearly growing spherical domain [L6]. Animations have been created for each
pattern evolution gure and each labyrinthine visualization gure in th is chapter. In sum,
our models create prepatterns for regional IPC self-ampli cation that could then determine
the location of cortical folds via the IPM; in other words, the IPM prov ides the link between
mathematical Turing pattern and biological cortical folding pattern in our models.

6.2 Growing Domains for Cortical Folding
6.2.1 Exponentially Growing Model

We select exponential domain growth for our rst Turing model of cortical folding.
Recall that the SVZ is the site of self-ampli cation of IPCs, and regional patterning of
IPC self-ampli cation could lead to cortical fold locations via the IPM . Since the SVZ
produces (and contains) the germinal matrix (GM), which grows exponatially at a time
during which IPCs proliferate and cortical folds begin to form in humans (see Sectior2.1.3
and Figure 2.6), an exponentially growing domain is a reasonable choice for our model.
Additionally, the cerebral hemispheres have been observed to groaxponentially from week
8-13 GA [L(] and the cerebral hemispheres' volume is dominated by the LVs and othe
ventricles through week 16 GA €], further supporting the use of exponential growth in
our model.

Our exponential growth model utilizes System @.23), a Turing system with nondimen-
sional BVM kinetics on an exponentially growing prolate spheroidal domain. The values
of BVM kinetics parameters utilized in our simulations are listed on page34. As we will
demonstrate in the following sections, this model of cortical foldirg can qualitatively model
both normal cortical folding and abnormal (diseased) cortical folding by altering system
parametersR and ! to represent changes in LV size and level of overall genetic exprésa
of activator and inhibitor morphogens [90]. This technique of modifying system parameters
to represent changes in genetic expression has been previously doyed in other biomath-
ematical Turing models of cortical folding [47]. In particular, we are able to model di erent
presentations of polymicrogyria and lissencephaly, which are disceed in Section6.3.

6.2.2 Logistically Growing Model

For our second growing domain Turing model of cortical folding, we seledbgistic domain
growth. As discussed in Section5.1, our logistic growth function is formed via a logistic
t on a modi cation of the estimated Kinoshita et al. [44] germinal matrix volume data
points, then scaled to allow for comparison with the exponentially groving model. Using
logistic growth in a growing domain Turing model of cortical folding allows the prolate
spheroidal domain to grow rapidly, then (asymptotically) stop growing. Since the prolate
spheroidal domain represents the LV, which will eventually stop groving along with the
rest of the brain, logistic growth is a biologically realistic choice for amodel of cortical
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(a) Turing prepattern for cortical folding

(b) Labyrinthine visualization on computational do-
main

(c) Labyrinthine visualization on prolate spheroid

Figure 6.2: The Intermediate Progenitor Model provides the link between the mathematics
and the biology in our Turing system models of cortical folding patterns Light areas (u > 0)
in the Turing pattern represent activated regions where IPCs wouldundergo many rounds
of self-ampli cation; dark areas (u < 0) represent nonactivated regions where IPCs would
not self-amplify (Figure (a)). This cortical folding prepattern coul d lead to folding patterns
of gyri and sulci (Figures (b) and (c)). Refer to Section2.2.3for more details on the IPM.
See also: animations.
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folding. As discussed in Sectiongl.3 and 5.3, Turing patterns on an exponentially growing
domain continually evolve, while Turing patterns on a logistically growing domain eventually
converge to a nal pattern. Since a nal cortical folding pattern is eventually established, a
logistically growing domain model captures the generation of cortical foléthg patterns more
realistically than an exponentially growing domain model.

Our logistic growth model of cortical folding uses System §.5), a Turing system with
nondimensional BVM kinetics on a logistically growing prolate spheroidaldomain. The
values of BVM kinetics parameters used in our simulations are listed on pge 34. As is
the case for our exponentially growing model, we can alter system paraners R and !
to represent changes in LV size and genetic morphogen expression sathour logistically
growing model of cortical folding can qualitatively model certain diseases of cortical folding,
which are discussed in the following section.

6.3 Modeling Diseases of Cortical Folding

Our growing prolate spheroidal domain models of cortical folding can be epioyed to
model diseases of cortical folding in which the number and size of foddor the size of the LVs
are di erent from normal development. As discussed in Sectiongl.3and 5.3, increasingR or
I increases the complexity of the pattern at a givent > 0, yielding more numerous, thinner
stripes. Altering the value of R allows us to control the size of the domain and thus the size of
the LV. In the case of exponential growth, increasing or decreasinR respectively increases
or decreases the exponential growth rate, therefore increasing or dexasing the size of the
domain (representing the size of the LV) at a givent > 0. For logistic growth, increasing or
decreasingR respectively increases or decreases the carrying capaciy’ = eRtna 1 of
the logistic growth function in Equation 5.2, again yielding a larger domain at a givent > 0
for larger values of R. Recalling that parameter ! allows one to control the strength of
the reaction terms relative to the dilution and di usion terms in a gr owing domain Turing
system, increasing or decreasing the value df represents a respective increase or decrease
in the overall level of genetic expression of activator and inhibitor mophogensu and v.

We alter both R and ! to control the complexity of the pattern to model various
manifestations of polymicrogyria and lissencephaly. To do this, we mst establish a reference
set of values which represent normal LV size and genetic expressiosvel, thus giving a
normal cortical folding pattern (via a prepattern for IPC self-ampli cation as discussed
in Section 6.1). We select R = 0:015 to correspond to a normal-sized LV and!l = 115
to represent normal activator-inhibitor genetic expression, so thatthe number and size of
stripes in the pattern given by System 4.23) or (5.5 with R = 0:015! = 115 represents
normal development of the cortical folding pattern. Finally, since patterns generated by
exponentially growing System @.23) continually evolve without end, we must select a value
of t to represent the \ nal" pattern generated by the system, which wil | be interpreted
by IPCs as a prepattern for self-ampli cation. Since the pattern geneated by logistically
growing System 6.5) has converged byt = 35, we selectt = 35 as the time at which we
stop our exponentially growing simulations. Figures in this section terefore show the nal
pattern generated att = 35 by the corresponding model simulation.
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6.3.1 Polymicrogyria

Polymicrogyria (PMG) is the common name given to a group of diseases of coxal
folding in which the folds of the cortex are unusually high in number ard small in size {].
Patients su ering from PMG often exhibit mental retardation, epile psy, and developmental
delay. Mutations in Pax6 and GPR56 have been linked to some forms of PMG 5, 71].
Several di erent types of PMG are accompanied by enlarged LVs, such as ngalencephaly
PMG with polydactyly and hydrocephalus (see Figure 6.3a) [17], bilateral frontoparietal
PMG (see Figure6.3b) [4, 15, 87], and unilateral PMG (see Figure 6.3c) [7(].

As discussed above, we model normal cortical folding usin® = 0:015! = 115. The
evolving pattern for exponential domain growth fromt = 0 to t = 35 is shown in Figure 6.4,
and the corresponding labyrinthine visualizations are shown in Figues 6.5 and 6.6. Using
our models, we capture various forms of PMG by altering the values oR and ! . Results
are summarized in Table6.1 and Figures 6.7 and 6.8, which show the nal pattern (at
t = 35) for exponential and logistic growth, respectively. For example, Fgures 6.7a{6.7c
(corresponding to the last time step of Figures6.4{6.6) and Figures 6.88( 6.8c show normal
patterns for exponential and logistic growth, while Figures6.7d{6.7i and Figures 6.8d{ 6.8i
show various representations of PMG. Details are discussed in the folwing paragraphs.
The full corresponding pattern evolution and labyrinthine visualization gures are found in
Appendix B.

To model polymicrogyria with enlarged LVs, our model systems utiliz! = 115 and
capture LV enlargement by increasing the value ofR to R = 0:021, causing the prolate
spheroidal domain (representing the LV) to be larger as explained in Sgion 6.3. Using a
larger R results in a more complex pattern with an increased number and deceesed width of
stripes when compared to the normal pattern. Recalling that the pattern produced by our
model can represent a prepattern for cortical folding via the IPM, this can be interpreted as
an increased number of smaller cortical folds, modeling the charactestic manifestation of
polymicrogyria. The nal patterns for PMG with enlarged LVs are shown in F igures 6.7d{
6.7f and 6.80{6.8f.

In certain types of PMG, such as some cases of bilateral frontoparietal PMGpatients
present with microcephaly (smaller than normal brain and head), yet ae still reported
to have enlarged LVs (see Figure6.3d) [15, 71]. The literature is unclear as to whether
or not these enlarged LVs are actually bigger than normal-sized ventriclesn a normal-
sized brain (see Figure6.3e). We thus capture enlarged LVs within a microcephalic brain
by employing the value of R = 0:015 used for normal-sized LVs, making the assumption
that enlarged LVs in a microcephalic brain are approximately the size ofnormal LVs in
a normocephalic (normal-sized) brain. The needed polymicrogyric paern can then be
generated with! = 150, representing an increase in overall genetic expression of and v.
The result of employing R = 0:015! = 150 in System (4.23 and (5.5) to model PMG with
microcephaly and enlarged LVs can be seen in Figure®.7¢{6.7i and 6.8¢ 6.8i, respectively.
The generated patterns again exhibit an increased number and decreasetize of stripes
relative to the normal patterns, representing polymicrogyria.
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(@ Megalen- (b) Bilateral fron-

cephaly PMG with toparietal polymicro-
polydactyly and gyria
hydrocephalus
(c) Unilateral polymicrogyria (d) Bilateral frontopari- (e) Normal brain

etal polymicrogyria with
microcephaly

Figure 6.3: MRI images illustrating di erent types of polymicrogyria. | n megalencephaly
PMG with polydactyly and hydrocephalus ((a), gure from[ 17]) and bilateral frontoparietal
polymicrogyria ((b), gure from [ 4]), both sides of the brain feature PMG and enlarged
lateral ventricles. In unilateral polymicrogyria ((c), gure from [ 7(]), PMG is seen on the
side of the brain with the enlarged LV, while the side of the brain with a normal-sized
LV exhibits normal cortical folding. Some cases of bilateral frontoparietal PMG present
with microcephaly ((d), gure from [ 15].) A brain with normal cortical folding pattern and
normal-sized LVs is shown in (e) ( gure from [4(]).
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Figure 6.4. Evolution of Turing pattern on an exponentially growing prolate spheroid
representing normal cortical development. The pattern was generatedy System (4.23
with R =0:015! = 115 and kinetics parameters listed on page34. Red dots on the bottom
right gure represent times at which the snapshots were taken. See ab: animation.
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Figure 6.5: Exponential growing domain Turing pattern as a prepattern for normal cortical
fold development. Figures (a) through (d) provide a visualization of hawv a labyrinthine
cortical folding pattern could develop from a genetic chemical Turingprepattern by plotting
the activator concentration u on the z-axis forz =0, z = %, zZ= % and z = u, respectively.
The pattern represents normal cortical development and correspondsatthe nal pattern in

Figure 6.4. See also: animation.
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Figure 6.6: Prolate spheroid visualization of exponentially growing domainTuring prepat-
tern for normal cortical fold development. Projecting the images from Fgure 6.5 onto the
corresponding prolate spheroidal domain gives a new way to visualize khoa labyrinthine
pattern representing normal cortical folding could develop from a chenical Turing prepat-
tern (refer to Figure 6.4 at t = 35). See also: animation.
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Table 6.1: Polymicrogyria simulation results. Simulation results are simmarized in Fig-
ures 6.7 and 6.8. Full pattern evolution and labyrinthine visualization gures are in Ap -

pendix B.
Growth Figure Type Normal PMG, PMG,
Function (R =0:015 enlarged LVs microcephaly,
I =115) (R=0:021 enlarged LVs
I =115) (R=0:015
I =150)
Prolate Figs. 6.7a B.1 | Figs. 6.7d, B.4 | Figs. 6.7g B.7
Exponential | spheroid
prepattern
Rectangular Figs. 6.7b, B.2 | Figs. 6.7¢ B.5 | Figs. 6.7h, B.8
domain folding
pattern
Prolate Figs. 6.7¢ B.3 | Figs. 6.7f, B.6 | Figs. 6.7i, B.9
spheroid
folding pattern
Prolate Figs. 6.84 Figs. 6.8d, Figs. 6.8¢g,
Logistic spheroid B.19 B.22 B.25
prepattern
Rectangular Figs. 6.8b, Figs. 6.8¢ Figs. 6.8h,
domain folding | B.20 B.23 B.26
pattern
Prolate Figs. 6.8¢ Figs. 6.8f, B.24 | Figs. 6.8i, B.27
spheroid B.21
folding pattern
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(@) Normal: R =0:015;! =115 (b) Folding pattern from (a) (c) Projection of (b)

(d) PMG with enlarged LVs: (e) Folding pattern from (d) (f) Projection of (e)
R =0:021! =115

(@) PMG, microcephaly, en- (h) Folding pattern from (g) (i) Projection of (h)
larged LVs: R =0:015! =150

Figure 6.7. Modeling polymicrogyria on an exponentially growing prolate pheroid. The
generated PMG prepatterns exhibit an increased number and decreadewidth of stripes
(gures (d){(i)) relative to the normal patterns ( gures (a){(c)). Th e center and right
columns show how a labyrinthine cortical folding pattern could devdop from the corre-
sponding Turing genetic chemical prepattern in the left column. Se FiguresB.1{B.9 for
the corresponding pattern evolution and labyrinthine visualization gures.
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(&) Normal: R =0:015! =115 (b) Folding pattern from (a) (c) Projection of (b)

(d) PMG with enlarged LVs: (e) Folding pattern from (d) (f) Projection of (e)
R =0:0213;! =115

() PMG, microcephaly, en- (h) Folding pattern from (g) (i) Projection of (h)
larged LVs: R =0:015;! =150

Figure 6.8: Modeling polymicrogyria on a logistically growing prolate spheroid. The gener-
ated PMG prepatterns exhibit an increased number and decreased witl of stripes ( gures
(d){(i)) relative to the normal patterns ( gures (a){(c)). The cente r and right columns show
how a labyrinthine cortical folding pattern could develop from the corresponding Turing ge-
netic chemical prepattern in the left column. See FiguresB.19{B.27 for the corresponding
pattern evolution and labyrinthine visualization gures.
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6.3.2 Lissencephaly

Type | lissencephaly, also called classical lissencephaly, is asdase of cortical folding
in which the brain presents with a below-normal number of cortical blds, which appear
broader in width (see Figures6.9 and 6.10) [5, 65, 79. As we did with polymicrogyria, we
model various types of type | lissencephaly (henceforth referretb simply as lissencephaly)
by varying the values of parametersR and ! in our model systems. Results corresponding
to our model representations of lissencephaly are summarized in Tabb.2 and Figures6.11
and 6.12 for exponential and logistic growth. For example, Figures6.11g6.11cand 6.12
6.12c (repeats of Figures6.7a{6.7c and 6.88{6.80 show normal patterns for exponential
and logistic growth, while gures 6.11d6.11land 6.12d 6.12] show various representations
of lissencephaly. The corresponding full pattern evolution and labymthine visualization
gures are in Appendix B.

Microcephalic Lissencephaly: Norman-Roberts Syndrome. Norman-Roberts
Syndrome (NRS) is a very rare congenital disease of brain development,ithr only eleven
cases reported as of 2007.], 65, 68, 79. NRS patients present with type | lissencephaly,
microcephaly (see Figure6.9), reduced head growth rate, severe mental retardation, and
epilepsy b, 11, 65, 79. In ve of the eleven cases, patients presented with enlarged LVs,
while in the other six cases the LVs are reported as not being enlarged €s Figure 6.10)
[11, 65, 68, 79). For NRS cases in which the LVs are not enlarged, individual components
of the brain are smaller than normal (including the LVs), as NRS patients a1 er from
microcephaly. To model these cases of NRS, we seldct= 115 and represent the smaller-
than-normal-LVs by reducing the value of R to R = 0:005, resulting in a smaller prolate
spheroidal domain (representing the LV) as explained in Sectior6.3. DecreasingR results
in a less complex nal pattern, or in other words, a decrease in numbeand increase in width
of stripes when compared to the normal pattern (see Figure$.11¢ 6.11fand 6.12d{ 6.121).
By interpreting the striped pattern as a prepattern for the locati on and size of cortical folds
via the IPM, this represents a decrease in number and increase iwidth of cortical folds,
modeling the lissencephaly that is seen in NRS.

For cases of NRS in which the LVs are enlarged, the enlarged ventricles aséill contained
within a microcephalic brain, and the literature is again unclear about the size of such
enlarged LVs relative to normal-sized LVs in a normocephalic brain. To nedel the enlarged
LVs in these cases of NRS, we sele®® = 0:015 (corresponding to normal-sized LVs) as
we did in the case of PMG with microcephaly and enlarged LVs in Section6.3.1 The
needed prepattern leading to lissencephaly can then be generatedttv ! = 30, representing
a decrease in the overall activator-inhibitor genetic expression. Tis again results in a
pattern with a decrease in number and increase in width of stripes Wwen compared to the
normal pattern, representing the lissencephaly observed in NRS ée Figures6.11¢ 6.11i
and 6.12d 6.12j).

Normocephalic Lissencephaly. Type | lissencephaly can occur in normocephalic
brains that possess enlarged LVsi9, 57. We again model the enlargement of LVs by using
R = 0:021, giving a larger domain size as explained in Sectioh.3. The lissencephalic
prepattern can then be generated on a large domain with = 30, representing an overall
decrease in genetic activator-inhibitor expression. The end restubf using R = 0:021;! =30
in Systems @.23 and (5.5 is a pattern with stripes that are decreased in number and
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Table 6.2: Lissencephaly simulation results. Simulation results are .lenmarized in Fig-
ures 6.11 and 6.12 Full pattern evolution and labyrinthine visualization gures are in
Appendix B.

Growth Figure Normal NRS, LVs NRS, LVs Type |
Function Type (R =0:015, | non- enlarged lissencephaly,
I =115) enlarged (R =0:015, | normo-
(R=0:005, | ! =30) cephaly,
I =115) enlarged LVs
(R=0:021,
I =30)
Prolate Figs. 6.113 | Figs. 6.11d | Figs. 6.11g | Figs. 6.11j,
Exponential | spheroid B.1 B.10 B.13 B.16
prepattern
Rectangular | Figs. 6.11b, | Figs. 6.11e | Figs. 6.11h | Figs. 6.11k,
domain B.2 B.11 B.14 B.17
folding
pattern
Prolate Figs. 6.11¢ | Figs. 6.11f, Figs. 6.11i, Figs. 6.11l,
spheroid B.3 B.12 B.15 B.18
folding
pattern
Prolate Figs. 6.12g | Figs. 6.12d | Figs. 6.12g | Figs. 6.12j,
Logistic spheroid B.19 B.28 B.31 B.34
prepattern
Rectangular | Figs. 6.12b, | Figs. 6.12e¢ | Figs. 6.12h | Figs. 6.12k,
domain B.20 B.29 B.32 B.35
folding
pattern
Prolate Figs. 6.12¢ | Figs. 6.12f | Figs. 6.12i, | Figs. 6.12],
spheroid B.21 B.30 B.33 B.36
folding
pattern
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Figure 6.9: Comparison of Norman-Roberts Syndrome brain with normally devedping

brain (MRI). At 23 weeks GA, one can observe the microcephaly exhibied by a Norman-
Roberts Syndrome fetus (top gures) as compared with a normally developg fetus (bottom

gures). Furthermore, one can observe the presence of the parietogipital sulcus in the nor-

mal brain (bottom left) but not in the NRS brain (top left), demonstratin g the lissencephaly
presented by NRS. Figure adapted from $5].
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(@) NRS with enlarged LVs (b) NRS with LVs not enlarged

Figure 6.10: Lateral ventricles in Norman-Roberts Syndrome (MRI). Out of the eleven
reported cases of NRS, ve have presented with enlarged LVs (a) and sixdve presented
with LVs that are not enlarged (b). Lissencephaly is observed in all casesFigures adapted
from [11].

increased in width when compared to the normal pattern (see Figure$.11{6.11land 6.12§
6.12l), representing lissencephaly.

6.4 Exponential Versus Logistic Growth

We have presented two Turing system models of cortical folding, onen an exponentially
growing domain and the other on a logistically growing domain, and have usedhem to
model di erent diseases of cortical folding. The exponential and logist growth models
each have their own advantages and disadvantages. The exponentially gromg model allows
for the derivation of mathematical Turing conditions, which allow one to select system
parameters such that the system is guaranteed to be able to generate Ting patterns. An
exponentially growing domain may not be the most biologically realistic, as the domain
keeps growing and the generated patten keeps evolving and increasiimg complexity with
increasingt, yet the developing brain does not keep growing forever and the cortal folding
pattern is eventually nalized. In order to be interpreted as a prepattern for cortical folding,
one must choose an arbitrary time at which the numerical simulation mus be stopped. The
pattern at this time then represents the prepattern for IPC self-ampli cation, which could
be correlated with the cortical folding pattern according to the IPM.

The logistically growing model addresses the aforementioned shortcangs of the ex-
ponential model while possessing drawbacks of its own. The logisady growing model
does not allow for the derivation of Turing conditions and as such cannot beguaranteed to
be able to generate Turing patterns, but as we have demonstrated in ®tion 5.3, system
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(@) Normal: R =0:015;! =115 (b) Folding pattern from (a) (c) Projection of (b)

(d) NRS, non-enlarged LVs: (e) Folding pattern from (d) (f) Projection of (e)
R =0:005"! =115

(9) NRS, enlarged LVs: R = (h) Folding pattern from (g) (i) Projection of (h)
0:015;! =30

() Type | Lissencephaly, en- (k) Folding pattern from (j) () Projection of (k)
larged LVs, normocephaly: R =

0:021;! =30

Figure 6.11: Modeling lissencephaly on an exponentially growing prolatespheroid. The
generated lissencephalic prepatterns exhibit a decreased numband increased width of
stripes (gures (d){(I)) relative to the normal patterns (gures (a) {(c)). The center and
right columns show how a labyrinthine cortical folding pattern could develop from the cor-
responding Turing genetic chemical prepattern in the left column See FiguresB.1{B.3 and
Figures B.10{B.18 for the corresponding pattern evolution and labyrinthine visualization
gures.
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(@) Normal: R =0:015;! =115 (b) Folding pattern from (a) (c) Projection of (b)

(d) NRS with non-enlarged LVs: (e) Folding pattern from (d) (f) Projection of (e)

R =0:005! =115

(g) NRS with enlarged LVs: R = (h) Folding pattern from (g) (i) Projection of (h)
0:015! =30
(i) Type | Lissencephaly with (k) Folding pattern from (j) () Projection of (k)

enlarged LVs and normocephaly:

R=0:021! =30
Figure 6.12: Modeling lissencephaly on a logistically growing prolate dperoid. The gener-
ated lissencephalic prepatterns exhibit a decreased number anadéreased width of stripes
(gures (d){(l)) relative to the normal patterns ( gures (a){(c)). Th e center and right
columns show how a labyrinthine cortical folding pattern could devdop from the corre-
sponding Turing genetic chemical prepattern in the left column. $e FiguresB.19{B.21 and
Figures B.28{ B.36 for the corresponding pattern evolution and labyrinthine visualization

gures.
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parameters can still be found so that Turing patterns can be generated.The logistically
growing model makes up for its lack of mathematical Turing conditions wth biological re-
alism, as its domain eventually stops growing and its pattern eventualy converges. Since
the brain eventually stops growing and the cortical folding pattern is eventually nalized,
a logistically growing domain Turing model of cortical folding is more biologically realistic
than an exponentially growing domain model. Furthermore, since the jattern generated
on a logistically growing domain converges to a nal pattern, there is no reed to select an
arti cial time at which to stop the model simulation to view the patte rn. The system's
nal convergent pattern can be readily interpreted as the chemical pepattern for IPC self-
ampli cation, which, as stated by the IPM, might be correlated with th e cortical folding
pattern.

Beyond the context of cortical folding models, a strength of the exponatially growing
domain Turing system in System @.2) is that it can be applied to not just an exponentially
growing prolate spheroidal domain, but an exponentially growing domain inany of the
eleven Helmholtz-separable coordinate systems. The linear staliji analysis in Section4.1
can be used to derive mathematical Turing conditions on any such expomgially growing
domain. System @.2) thus can be used to construct mathematical Turing models complete
with Turing conditions on a geometrically diverse group of exponentialyy growing domains.

6.5 Conclusions

This chapter presented our growing prolate spheroidal domain Turing gstem models of
cortical folding patterns. Motivation for using a Turing system in a b iomathematical model
of cortical folding was provided, and details of how the mathematics likk to the biology
of cortical folding (via the IPM) were discussed. Motivation for using an exponentially or
logistically growing domain in a Turing model of cortical folding was presented. Both the
exponential and logistic models were utilized to model various manéstations of polymicro-
gyria and lissencephaly, two contrasting types of cortical folding dsease. Variations of these
diseases were captured in the models by altering the values & and! . ChangingR allowed
for control of domain size, which represented the size of the LVs; changg ! allowed for
control of the reaction terms' strength relative to the di usion and di lution terms, which
represented the overall genetic expression level of the activator @hinhibitor. Labyrinthine
patterns were visualized on both the computational domains and on the prola¢ spheroidal
domains. The fact that our models were able to qualitatively capture boh polymicrogyric
and lissencephalic diseases of cortical folding lends support to th®M; in other words, our
models help provide evidence that patterns of genetic chemical faors could play a role in
establishing cortical folding patterns. Finally, strengths and wealknesses of the exponential
growth model of cortical folding were compared with those of the logisticgrowth model.

Our cortical folding models investigate and lend support to the role ofgenetic chemical
control of cortical folding by implementing a Turing system on a dynamically growing and
biologically relevant prolate spheroidal domain. We speci cally invesigated the e ects of
altering domain growth (via changes in R) or genetic expression level (via changes i)
on the generated pattern; this allowed us to capture various types of pgimicrogyria and
lissencephaly with our models. The Striegel and Hurdal §6] static prolate spheroidal do-
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main Turing model (see Section2.3.1) investigated the role of domain size and shape as
the primary factors in uencing a genetically-controlled pattern for cortical folding. Their
model was able to predict the order of cortical sulci, which is sometimg our growing do-
main models are unable to do. However, our models were able to repregenore diseases of
cortical folding in a more biologically realistic way due to the incluson of domain growth.
Cartwright's [ 13] static domain Turing model (see Section2.3.2) used the patterns gener-
ated by the reaction-di usion system to represent axonal tension viaaxonal migration. Like
Cartwright, we employ the value of activator u to generate labyrinthine patterns. However,
Cartwright employs a static rectangular domain, lacking the biological motivation and re-
alism our models enjoy by employing a growing prolate spheroidal domai The Lefevre
and Mangin [47] Turing nite element model (see Section 2.3.3) generated a pattern that
directly in uenced the formation of cortical folds by causing the domain surface to deform
up or down at every time step of the simulations. Our models, on the otler hand, utilize a
nal Turing pattern as a prepattern that, according to the IPM, could b e correlated with
the possible location of cortical folds. The Toro and Burnod P3] 2-D tension-based nite
element model (see SectioR2.3.4) investigated the e ects of having unequal domain growth
in di erent parts of the domain, but only was able to represent cortical folds in two dimen-
sions on a simple circular domain. The Genget al. [29] 3-D tension-based nite element
models (see Sectior.3.5), bene ted from the use of fetal sheep MRI data to help construct
and initialize the models; our models of human cortical folding could @t be constructed
on similar human data because such data is not readily available. Howevetheir second
model's growing 3-D rectangular domain was not as biologically inspired as oumodels'
growing prolate spheroidal domain. Overall, our models Il a hole in the biomathematical
cortical folding research by examining the e ects of altering domain gowth and overall
genetic expression level in a Turing system that generates a genetchemical prepattern for
cortical folding.
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CHAPTER 7

CONCLUSIONS

7.1 Summary

While there have been numerous biomathematical investigations intanodeling cortical
folding patterns of the brain, a growing domain Turing system model of cortical folding
had yet to be implemented. Turing system models of cortical foldig had been investigated
using static domains B€], failing to capture the growth that inherently occurs as the brain
develops. To address this hole in the research, this dissertationrpsented growing pro-
late spheroidal domain Turing system models of cortical folding usingBVM kinetics and
exponential or logistic domain growth.

We began by introducing the biology of cortical folding, discussing therelevant anatom-
ical features and outlining some of the biological hypotheses attemptingo describe the
underlying mechanism of cortical folding. We noted that some biological hpotheses as-
cribe cortical folding development to a genetic chemically-contrded process, while others
suggest a physical tension-driven process. After discussing sl previous mathematical ef-
forts into modeling cortical folding, we presented the propertiesof Turing reaction-di usion
systems and outlined a framework in which di erent types of domain gravth could be incor-
porated into a Turing system on a prolate spheroidal surface. We then tilized numerical
simulations to investigate the pattern-generating behavior of a Turing system with BVM
kinetics on a prolate spheroidal domain under exponential or logistic domai growth. We
observed that increasing system parameter® or ! increased the complexity of the gener-
ated pattern at a given value oft > 0, and that patterns generated on domains with equal
nal domain size, regardless of the presence or type of growth functionare qualitatively
similar in the number and size of stripes.

A growing domain Turing system can generate di erent patterns with di erent transient
behaviors on the same geometric domain by changing the domain growth funn. We
have observed that a Turing system with BVM kinetics on an exponentally growing prolate
spheroidal domain generates patterns that continually evolve. Changingtie domain growth
to logistic generates a pattern that evolves while the domain grows but hen converges to
a nal pattern once domain growth stops. Overall, the presence of domain gswth in a
Turing system drives the Turing pattern to be transient, while a lack of domain growth
allows the pattern to converge. This observation agrees with previousnvestigations into
Turing systems on static prolate spheroids $6], exponentially growing spheres $2], and
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linearly growing spheres [.6]; it was further con rmed by observing the behavior of a Turing
system on a piecewise exponentially growing prolate spheroidal domainilt is therefore of
key importance to include domain growth when building a Turing model of cortical folding
not only because of the biological realism that a growing domain lends to thenodel, but
also because the addition of domain growth fundamentally alters the patten-generating
behavior of a Turing system.

To help investigate the plausibility of a genetic morphogen-controllel mechanism of
cortical folding, we built the biological basis of our biomathematical modes upon the In-
termediate Progenitor Model (IPM), which is a biological hypothesis describing a possible
underlying mechanism for cortical folding [45]. We utilized a prolate spheroidal domain to
represent the LV and the prolate spheroidal domain surface to represe the SVZ, accurately
capturing the shape of the LV during early neurogenesis. Under the IRl assumption that
regional patterning of IPC self-ampli cation in the SVZ might be direct ly correlated to cor-
tical folding patterns, our model systems' Turing patterns can sexe as a genetic chemical
factor prepattern for IPC self-ampli cation. IPCs in activated regions (u > 0) of the pat-
tern would self-amplify, leading to gyri, while IPCs in nonactivated (u < 0) regions would
not self-amplify, leading to sulci.

Patterns created by our exponentially or logistically growing domain Turing systems can
gualitatively describe cortical folding patterns in normal cortical d evelopment or in certain
diseases of cortical folding. By controlling the strength of the reactionterms relative to
the diusion and dilution terms (re ecting varying levels of expr ession of genetic factors
controlling IPC cells) via parameter ! and by controlling the domain size (re ecting the
size of the LVs) via parameter R, our models of cortical folding can qualitatively capture
di erent manifestations of polymicrogyria and lissencephaly, two types of diseases of cortical
folding in which there are respectively too many or too few corticalfolds. The fact that
our Turing system models of cortical folding are able to qualitatively capture such vastly
di erent kinds of diseases of cortical folding lends support to both the role of genetic control
in cortical development and to the IPM.

7.2 Future Directions

Patterns generated by our growing domain Turing models of cortical foldng represent
patterns of genetic chemical factors, and genetic control is the undeying principle of sev-
eral modern biological hypotheses of cortical folding such as the Interediate Progenitor
Hypothesis, Intermediate Progenitor Model, and Radial Unit Hypothesis. However, our
models do not capture any physical axonal tension, which is the main conisuent of com-
peting biological hypotheses of cortical folding such as the Axonal Tensiolypothesis. As
there has been much evidence supporting both genetic- and tensidmased biological hy-
potheses of cortical folding P2, 73, 77], the true mechanism behind cortical folding likely
involves both physical tension and genetic chemical control. Thus, a pssible future ex-
tension of the research presented in this dissertation would be théncorporation of terms
representing physical axonal tension into the model Turing systen equations.

Another possible future direction for Turing models of cortical folding would be to
utilize a nite element mesh that could dynamically grow from an init ial prolate spheroid
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shape to the nal c-shape of the LV. Furthermore, while we have speci cally investigakd an
implementation of the growing domain Turing system framework in Sysem (3.2) using BVM
kinetics on a prolate spheroidal domain under isotropic exponential and dgistic domain
growth, it would be of further interest to investigate the types of patterns that System (3.2)
could generate using other kinds of reaction kinetics, geometric domas(such as an oblate
spheroid), or growth functions (such as linear, quadratic, or anisotropt growth). It is
interesting to note that the three Turing models of cortical foldin g discussed in Sectior2.3all
utilized di erent reaction kinetics, yet still generated resul ts that could be applied to cortical
folding. As mentioned in Section6.4, the linear stability analysis performed in Section4.1
could be used to obtain mathematical Turing conditions on any of the eleva Helmholtz-
separable coordinate systems under exponential growth, opening ughé possibility for using
System (3.2) to model other areas of developmental biology beyond cortical folding patrns.

While this dissertation qualitatively described the number and sze of stripes in growing
domain BVM Turing patterns, future research would benet from the development of a
metric or index which quanti es the complexity of such patterns. Some of the ways that
this could be accomplished could include measuring the length of sfges, calculating the
number of stripes per unit area, or counting the number of \defects" (spots or discontinuous
stripes) [97] in a striped pattern. The mechanism by which stripes form in a graving domain
BVM Turing pattern could be explored, investigating if di erent gro wth rates or growth
functions a ect the way in which stripes emerge as the pattern evoles.

Several challenges face our growing domain Turing models of cortical faly. To begin,
parameters used in our simulations are not based on real human cortical foldg data,
but rather were phenomenologically selected to produce the desideresults. Longitudinal
data about the surface area and volume of the LVs or the rate of growth of the SVZ
would allow growth function parameters and initial domain size and shape prameters to
be selected in a way that would allow our models' domain to more accuratg represent the
developing LVs and SVZ. Data about the di usion coe cients and genetic expression levels
of genetic factors controlling IPC self-ampli cation would allow the di usion coe cient
D, BVM kinetics parameters a; b; C; h and domain scale parametett (controlling relative
reaction term strength) to be selected in a way that would allow our malels to more
accurately represent the underlying biology of cortical development However, such data
is not readily available, and thus new biological research must be conduied to allow the
mathematics to better represent and connect with the biology.

We modeled di erent diseased conditions of cortical folding by alteing the values ofR
and ! . For example, some cases of NRS are reported as having enlarged LVs, and other
cases of NRS are reported as not having enlarged LVs. In both cases, the cortexhibits
lissencephaly. Our model was able to capture both of these cases. A @R (representing
enlarged LVs) coupled with a small! value (representing a decrease in genetic expression)
modeled NRS lissencephaly with enlarged LVs, while a smaR (representing small LVs due
to microcephaly) coupled with the \normal" value of ! modeled NRS lissencephaly with
non-enlarged LVs. Clearly, many factors are at play in diseases of corticabfding, and more
research is needed to establish a link between the mathematical pametersR;! and the
underlying biology of the disease.

Our models can represent cortical folding only on a qualitative level that is, they can
generally describe the number and size of cortical folds but are unabl® model the location
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of speci ¢ folds in the brain or the order in which speci ¢ folds appear. Part of the reason
for this is the inherent sensitivity of Turing systems to initi al conditions. This high level
of sensitivity to initial conditions means that di erent initial con ditions cause our model
systems to generate di erent patterns that may be qualitatively similar in number and size
of stripes, but vastly di erent in the arrangement of such stripes. We seeded our random
initial conditions to allow us to investigate the e ects of altering R and ! on the patterns
produced by our model systems. However, the initial conditions of Tring systems represent
random biological noise, and these natural perturbations are truly random, mt a seeded
sequence of random numbers. Furthermore, humans develop cortical ftihg patterns in
which certain folds share a common location and size despite originatingrom di erent
initial conditions. Finding a way to generate consistently reproducible patterns (hence
reducing the sensitivity to initial conditions) that can model th e speci c location and order
of emergence of cortical folds is an area where Turing modeling of corat folding can be
extended in the future. One possible way to address these isssignay be to construct a
Turing system on a self-deforming surface constructed of nite edments. As discussed in
Section 2.3.3 this technique has been previously applied on a dynamically selleforming
sphere and was able to consistently reproduce the location of one coetil fold from di erent
random initial conditions [47]. Overall growth of the spherical domain was not incorporated
into this model, however, and so creating a nite element Turing model of cortical folding on
a dynamically growing and self-deforming domain holds strong potentiafor future research.

7.3 Concluding Remarks

By combining the mathematics of Turing systems pP5] with the biological ideas of ge-
netic chemical prepatterns [2, 63, 95] and the Intermediate Progenitor Model [45], we have
created two growing prolate spheroidal domain Turing system models otortical folding
that are capable of qualitatively modeling normal and diseased cortical faling patterns.
Mathematically, by investigating the e ects of exponential and logistic domain growth in a
Turing system, we have demonstrated that the presence of domain graiv drives a prolate
spheroidal Turing system pattern to become transient. Under exponetial domain growth,
patterns are continually transient; when utilizing logistic domain growth, patterns are tran-
sient during the growth period but converge to a nal pattern once domain growth ceases.
Both types of domain growth possess interesting applicability for matrematically modeling
cortical folding patterns. Biologically, by creating a biomathematical model that is able
to capture a variety of diseases of cortical folding, we have providedwdence to support
the role of genetic chemical factor prepatterns in the development of artical folding pat-
terns, therefore supporting biological cortical folding hypotheses sch as the Intermediate
Progenitor Model.
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APPENDIX A

APPENDIX: DERIVATIONS

A.1 Generic Reaction Di usion-Equation

To derive a generic reaction-di usion equation in three-dimensioral space, letV RS2
be a compact domain and letS R? be its piecewise-continuous surface. Let(X ;t) be
the concentration of a substance inV at location X and time t, and assumeu(X;t) is
continuous. The general theory of conservation states that the rate of changef the amount
of the substance insideV equals the amount of the substance owing acrossS out of V
[72] plus the amount of the substance produced by its source insid¥ . This can be stated
mathematically as

Z Z Z

d u(X;t)dv = J dS+  f(u(X;t)dv; (A1)
dt v S v

where f (u(X;t)) represents the source of the substance insid¢ and J represents the ux
of the substance across.

Theorem A.1.1 (Divergence Theorem B3]). If V is a bounded spatial domain with a

C

piecewise continuous boundary surfac& with positive orientation, and J is any continuous
vector eld on the closure ofV, then

y4 4

rJdv=  J dS: (A.2)
\% S

Using Equation (A.2), we can rewrite Equation (A.1) as

q Z Z Z
uX;t)ydv = r Jdv + f (u(X;t)) dv;
dt v v v
which implies 7
@Yy tyer 3 fux:t) dv =0 (A.3)
v @t

Theorem 4.1.2  (Second Vanishing Theorem §4]). If f (X) is a continuous function in D
such that of (X)dV =0 for all subdomainsD® D, thenf(X) 0 on D:
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Applying Theorem (A.1.2) to Equation (A.3) yields

@u_
@t
Fick's First Law states J = Dr u [55], where D > 0 is the constant di usion coe cient

of the substance. Using Fick's First Law, Equation (A.4) can be rewritten as the generic
reaction-di usion equation

ro J+fu(X;t): (A.4)

g‘:: Dr 2u+ f (U(X;1);

where the source functionf is now referred to as a reaction kinetics function §3].

A.2 Growing Domain Turing System Framework

The following derivation of the growing domain Turing system framewoik follows that
of [77].

Let S; R3 be a two-dimensional growing surface such thatS; = ( i) (see Fig-
ure (A.1)), where
0 1
x(;5t)
el REDRY (5 ) X(sat)= @y(gt) A (A.5)

for (; )2 i;t 0. Assume that growth function ; 2 C? is continuously di erentiable
with respect to t. Also assume thatS; is a regular surface in the Euclidean metric, so that

X X 608(; )2 ;8t 0

and
di? = dx?+ dy? + dz%

Finally, assume that
X X =0 8t

which implies that the ( ; )-parametrized coordinate system is orthogonal orf;. It follows
that the normal vectorto S;isN(; ;t )= X X 6 0.

Next, consider a specic parameter domain region g i with smooth positively
oriented boundary @ o. Dene ( t) = ( o) 2 St with boundary @ t) = (@ o) to be
the growing domain of interest (see Figure A.1)), and suppose the boundary is parametrized
by @ t) = X( o(S); o(s), where X 2 St ands 2 [0;1]. Let = (X(; ;t);t) be the
concentration at location X 2 S; of a chemical substance with di usion coe cient D.
Ignoring the e ects of any reaction kinetics sources of inside the domain (t), then
Equation (A.1) on ( t) becomes

q z z
at (X;t)ds=D ro nfd, (A.6)
(v @t
wherert is the outward unit normal vector to @( t) and we have again used Fick's First
Law,J = Dr
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Figure A.1: Deriving the growing domain Turing system framework. The growth function
() maps to St and oto (t). The surface normal vector to S; is denotedN. The
tangent and unit normal vectors to @( t) are denoted andn, respectively.

Let be the tangent vector to @ t) sothat i =0 and let ( )°represent the derivative

d0) Since@( t) = X( o(S); o)), it follows that

E-
@
@s
* @, & @
@y @s @o @s

:8X+8X,

where we have dropped the naught subscripts on derivatives of for notational convenience.
To nd 1, we let hy; hy be scale factors, where

hi=jX j; ha=jX j:

Let r be a normal vector to @( t) whose length is not necessarily equal to 1. By the
right-hand rule, r = N, which implies

R = (())X + 8X (X X)
= X X X))+ X X X): (A.7)

Applying the vector triple product a (b ¢)= b(a ¢) c(a b)to Equation (A.7) gives

R = X X X X X X +X X X X X X
h2x + Sh3x

sinceX X =0. Since
jri? = hin3 @Ehi+ §hZ = hih3j j*;

it follows that
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where h, O
- "2 0.
—-— and = =
h2j | hij |
To continue the derivation of the growing domain Turing system framework, we need to
rewrite both the right- and left-hand sides of Equation (A.6). We rst turn our attention

to the right-hand side. A change of variables yields

hy §

z |
D r nd = D r (X + X )jjds
@ t) @o
! h h
= D 1o d+ 2@ d: (A.8)
@ o hy hy

Theorem A.2.1 (Green's Theorem B4]). SupposeD R? is a bounded domain with
positively oriented and piecewisec! boundary C. If p(x;y);q(x;y) 2 C* on the closure of
D, then

’ z I

@q @p
— — dxdy= dx+ gdy:
5 @x @y y CIO qay

Green's Theorem applied to Equation A.8) implies
z z #
h, hy
D r nd=D —@ + —@ dd: (A.9)
@ v L h2
Next, applying a change of variables to the left-hand side of Equation A.6) gives
d z d z

a - (X;t)dS g

(X(;;t);t)hihod d

0

ol X i0i0mhald d

- haho gt (Xit) +(hih) (Xit) dd: (A10)

0

By the parametrization given in Equation (A.5), (X(; ;t);t) = (x;y;z;t). Applying
the chain rule gives

@ . @, . .. .

ot (X(;;t)) @t(x,y,z,t)

@@x, @@y, @@z @

@x@t @yot @zt @tdt
@

= r Xi+ @t (A.11)
Substituting Equation ( A.11) into Equation ( A.10) gives
d Z Z
&t o (X;t)ds = (( t+r  Xghihy+(hghy)e )d d: (A.12)
t 0
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Finally, substituting the rewritten the left- and right-hand si des of Equation (A.6) (given
by Equations (A.12) and (A.9), respectively) into Equation (A.6) yields

Z ! #!
~ ~ ha _ hy _
thihz + (hih2), D = + — dd =0;
0 hl h2
where we have used the notation™; ;t ) = (X(;;t);t)sothat 7 =r X + %t,
@ = ~",and @ = ~. Since g was arbitrary, we can apply Theorem (A.1.2) to yield
" #
“thihz + (hih2), = D o, o =0;
hy ho
which implies
" #
-1 hy _ hy _ 1 -
t— hthD hil + hiz m(hlhz)t . (A13)

Equation (A.13) can be equivalently written as
=D 7 @(In(hihz)); (A.14)

where ¢ is the Laplace-Beltrami operator de ned by
" #
1 hy _ N hy _

* " hih, hg ho

Using Equation (A.14), the dimensional form of the growing domain Turing system
framework on growing domain (t) for a system of two chemicals with concentrationsu =
u(;;t)andv=v(;;t)for(; )2 ois

u = Dy su @(ln(hlhz))UJfF(UiV)?)

(A.15)
vi = Dy v @In(hih))v+ G(u;v);

whereF; G are the dimensional reaction kinetics andD; Dy are the di usion coe cients of
u; Vv respectively. System @.15) can be nondimensionalized following the technique of Mur-
ray [63] to yield the nondimensional form of the growing domain Turing systemframework,

D su @In(hihp))u + If (u;v);)

sV @(In(Chiho))v + 1g (u;v);

Ut

Vi

D . . . . .
whereD = D—“ I > 0isthe domain scale parameter, and; g are the dimensionless versions

of F; G. See éectionsA.S and A.4 for details.
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A.3 BVM Kinetics

This derivation of BVM kinetics follows that of Leppanen [48, 49]. Consider the classic
dimensional Turing system

)

Ut
Vi

Dyr 2U + f(U;V);

A.16
Dvr 2V + g(U;V); ( )

wheref; g are the BVM kinetics (to be constructed below), U = U(x;t);V = V(x;t) (where
X is space andt is time) are the respective concentrations of activator morphogerJ and
inhibitor morphogen V, and D ; Dy are the respective di usion coe cients of U; V. Assume
System (A.16) has a spatially uniform steady state at (Uc; V) which remains a steady state
in the absence of di usion; that is, f (Uc; Vc) = g(Uc; V) = 0.

A Taylor expansion of the kinetics functions f;g about the steady state Uc; Vc) is
performed up to third order terms, giving

FUV) f(UeiVe) + (U Uofujuav + (V' Vafviewe
1 . . .
+ 5 (U UC)szUJ(Uc;VC) + 2(U UC)(V VC)fUVJ(UC;VC) +(V VC)ZfVVJ(UC;VC)
1 . )
* 3 (U Ue)*fuuuiueve +3(U UV Vo)f uuviuave
+3(U UV Vo fuvvieve + (V' Vo fvvviuave + O( %)

and similarly for g(U; V). By construction, functions f; g are de ned to have the following
partial derivatives, where all are evaluated at steady state Uc; Vc):

fu = A fy=B; fyuv= C; %fuvv: Dy,
fuu = fvv ="Ffyuu ="fuuv = fvvv =0;

1
u = E, gv=F oguv=C¢C égUVV:Dli and

Quu = Ovv = Guuu = Quuv = Gvvyv =0:
The third order Taylor expansions of f and g then reduce to
f(U;V)= AU U+ B(V V)
C(U UV Vo) Da(U UV Vo)
g(U;V)=E(U U+ F(V V)
+C(U UV Vo)+ Dy(U UV Vo)

(A.17)

The quadratic UV and cubic UV? kinetic terms give the BVM System (A.16) its char-
acteristic behavior of generating spotted or striped patterns §]. Generally, spotted patterns
are produced when the quadratic term has a nonzero coe cient, whié stripes are produced
when the cubic term has a nonzero coe cient and the quadratic term's coe cient is zero or
very close to zero §, 21]. In other words, the quadratic term causes the system to strongly
tend toward the formation of spots while the cubic term causes the sy'em to tend toward
the formation of stripes [9, 21].
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We next establish the traditional dimensional BVM parameter notation by d enoting
A= > 0 B=1; C=ry Di=7141 E=; and F =

Using this new parameter notation and the substitutionsu = U Uc andv = V
(e ectively moving the steady state of the system from (Uc; Vc) to (0;0)) in the right hand
side of Equations (A.17) yields the dimensional BVM kinetics

fuv) = u(@ ryvd)+ v rou)
gu;v) = v( + rquv)+ u( +rav): (A.18)
Substituting Equations (A.18) into System (A.16) yields
U = Dr2u+ u(@ ryvd)+v(@d rou);
| o v e (A.19)
Vi = r 2y + v( + rquv)+ u( + rav);

whereD = Dy=Dy. A scaling factor > 0 has been divided out of the di usion coe cients
to allow for independent control of di usion and domain scaling. This scalng factor is
inversely proportional to domain scale B, unlike the directly proportional scaling factor
commonly used in the Turing system notation of Murray [63]. Notice that the strength of
cubic and quadratic interactions are respectively controlled by theparametersri and r.

System (A.19) shall be referred to as the dimensional BVM system §]. One should
note that even though Equations (A.18) and System (A.19) are called \dimensional", their
equations are actually dimensionless; BVM kinetics are phenomenologicand hence are
not based on any particular physical dimensions §6]. As stated by Maini [56], \Since the
[BVM] model is therefore really a model of a model it probably does noimake sense to talk
about dimensional aspects of it."

To nondimensionalize System QA.19), let T be the characteristic time and L be the
characteristic length of the system. Whereas we previously letJ = U(x;t);V = V(x;t) be
the respective concentration functions for the activator and inhibitor, we now letU and V
represent the characteristic concentrations of activator and inhibitor, respectively. We can
then de ne the dimensionless quantities

u % t X
U_U’ V_V' t‘?’ and X_f' (A.20)
Substituting these dimensionless quantities into System A.19) gives
9
U D
avu) - _ —r?(Uu)+ Uu r Uu(Vv)?+ Vv roUuVy; 2
@Tt) L2
v (A.21)
gT‘t’)) 5P 2V + Vv T aUu(VV)2+ Ut rpuovy:
To rewrite the nondimensional system in its nal form, we de ne
L? 1 1 L?
T=—; U=V= = a=—; b=— h=—- C= ﬂ%rzr; and ! = —;
1 1
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which can be substituted into System (A.21) to yield the nondimensional BVM system,

@' = Dr2u+!(u+av Cuv uw?);

@v
ot

r 2v+ ! (bv+ hu+ Cuv+ uv?);

where the bars have been dropped for convenience. The domain scalilgynow controlled
by the parameter ! > 0, which is directly proportional to the domain scale.

A.4  Growing Domain BVM Turing System
Nondimensionalization

Consider the dimensional growing domain Turing System QA.15) with dimensional BVM
kinetics

uu = D su @In(hiho)u+ u (1 rvd)+ v(l rzu);)

(A.22)
Vi = v @(In(hiho))v+ v( + 1 quv)+ u( + rav):
The process of nondimensionalizing SystemA.22) is the same as that of System A.19)
in Section A.3 with the addition of nondimensionalizing the dilution terms  @(In(h1h2))u
and @(In(hihy))v. Substituting the dimensionless quantities (A.20) gives the new dimen-
sionless dilution terms

@ in(hihy))Ut and @

@Tt) QTt)

After simplifying and dropping the bars for convenience, the resuing nondimensional grow-
ing domain BVM Turing system is

(In(h1h2))VV:

u = D su @In(hih))u+ ! (u+av Cuv uv2);)

Vi = v @(In(hiho)v+ ! (bv+ hu+ Cuv + uv?):

A.5 Prolate Spheroidal Coordinates

The following derivation of prolate spheroidal coordinates follows thatof [25, 85].
Consider an ellipse centered at the origin of the X; y) plane with major axis length 2a,
minor axis length 2b, and foci at ( ¢;0). The ellipse has equation
x2
= +

Y2 _
2
wherea>b> 0andc? = a2 I?; the interfocal distancef is de ned asf = 2c. To derive

elliptical coordinates, let a = %cosh and b= %sinh , where > 0. Equation (A.23) then
becomes

1; (A.23)

4x2 N 4y?
f 2 cosl? f 2sinh?

=1: (A.24)
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Setting Equation (A.24) equal to corresponding terms in the Pythagorean Identity co§ +
2

sin= =1 and rearranging yields the elliptical coordinate system (; ), where
f 9
X = Ecosh cos; =
; S (A.25)
y = 5smh sin ; ¢
and 21[0; 2 ).

To derive prolate spheroidal coordinates, one must rst rewrite the elliptical coordinate
equations of System QA.25). To this end, de ne = cosh land =cos 2[ 1;1]. By
relabeling the x variable asz [107 and using the de nitions of and , System (A.25) can
be rewritten in an alternate form of elliptical coordinates,

9
S GV
>

Z=22

y

f
f2 (A.26)

A prolate spheroid is generated by rotating an ellipse around its major axs; rotation
around the minor axis yields an oblate spheroid, which will not be considred here P5].
Rotating an ellipse described by SystemA.26) an angle 2 [0;2 ) in the (x;y) plane [107]
yields the prolate spheroidal coordinate systemZ{9],

9
_ fp .
= 3 1 ?H(2%2 1)cos; %
_fp T
y = 3 @ (2 1sin; % (A.27)
z = .
= 5 :

where (represented by ) is the polar angle and is the azimuthal angle. As shown in
Section 3.3, the azimuthal angle can be replaced by =2 , where 2 [0;1); to facilitate
implementation of System (A.27) in numerical schemes. Prolate spheroidal coordinates are
an orthogonal coordinate system 75].

The south pole of a prolate spheroid is given by = 1 =cos , while the north pole
isgivenby =1=cos0=cos2 (see FigureA.2). To avoid the ambiguity of multiple

-values corresponding to the same -coordinate, is restricted to 2 [0; ]. When > 1,

constant values give concentric prolate spheroids centered at the origin, whel constant
j ] < 1 values give halves of hyperboloids of two sheets about the-axis [25]. The cases
when =1 andj j=1 are degenerate cases corresponding to the-axis with jz] % and
jzj > &, respectively 4.

The eccentricity of a prolate spheroid equals the eccentricity of he ellipse from which it
was formed. The eccentricity E of an ellipse with semimajor axis lengtha and semiminor

axis length b is de ned as [L0]] r

(A.28)
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Figure A.2: Prolate spheroidal coordinates. Interfocal distancef and radial term > 1
respectively control the size and shape of a prolate spheroid, while = > 2 [0;1) and

=cos 2 [ 1;1] describe the azimuthal and polar angles and , respectively. Figure
adapted from [25].

Usingc® = a> k? andf = 2c; Equation (A.28) can be rewritten as
E=_—: (A.29)

Recalling that a= 5 cosh = % | it follows from Equation (A.29) that

As discussed in Sectior8.3, altering the value of allows one to control the eccentricity and
therefore the shape of a prolate spheroid.

90



APPENDIX B

APPENDIX: FIGURES

In Chapter 6, the nal ( t = 35) Turing pattern and labyrinthine visualization gures were or-
ganized by disease. In this Appendix, we present the full pattern golution and labyrinthine
visualization gures and organize them by domain growth. SectionB.1 contains exponen-
tial growth gures, while Section B.2 contains logistic growth gures. Animations are also
available.

B.1 Exponentially Growing Model

This section contains the full pattern evolution and labyrinthine vi sualization gures for
the exponentially growing patterns presented in Chapter6. Correspondence between the
gures and the diseases they represent is given in Tabl&.1.
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Table B.1: Exponential domain growth simulation results. Simulation results for polymicr-
ogyria and lissencephaly are discussed in detail in Chaptes.

(a) Polymicrogyria

Growth Figure Type Normal PMG, PMG,
Function (R =0:015 enlarged LVs microcephaly,
I =115) (R=0:02z% enlarged LVs
I =115) (R=0:015
I =150)

Prolate Figs. 6.7 B.1 | Figs. 6.7d, B.4 | Figs. 6.7g, B.7
Exponential | spheroid

prepattern

Rectangular Figs. 6.7b, B.2 | Figs. 6.7¢ B.5 | Figs. 6.7h, B.8
domain folding
pattern
Prolate Figs. 6.7¢ B.3 | Figs. 6.7f, B.6 Figs. 6.7i, B.9
spheroid
folding pattern

(b) Lissencephaly

Growth Figure Normal NRS, LVs NRS, LVs Type |
Function Type (R =0:015, | non- enlarged lissencephaly,
I =115) enlarged (R =0:015, | normo-
(R=0:005, | ! =30) cephaly,
I =115) enlarged LVs
(R=0:021,
I =30)
Prolate Figs. 6.113 | Figs. 6.11d | Figs. 6.11g | Figs. 6.11j,
Exponential | spheroid B.1 B.10 B.13 B.16
prepattern
Rectangular | Figs. 6.11h | Figs. 6.11e | Figs. 6.11h | Figs. 6.11k
domain B.2 B.11 B.14 B.17
folding
pattern
Prolate Figs. 6.11¢ | Figs. 6.11f, Figs. 6.11i, Figs. 6.11l,
spheroid B.3 B.12 B.15 B.18
folding
pattern
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Figure B.1: Evolution of Turing pattern on an exponentially growing prolat e spheroid
representing normal cortical development. The pattern was generatedy System (4.23
with R =0:015! = 115 and kinetics parameters listed on page34. Red dots on the bottom
right gure represent times at which the snapshots were taken. See ab: animation.
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Figure B.2: Exponential growing domain Turing pattern as a prepattern for normal cortical
fold development. Figures (a) through (d) provide a visualization of hawv a labyrinthine
cortical folding pattern could develop from a genetic chemical Turingprepattern by plotting
the activator concentration u on the z-axis forz =0, z = %, zZ= % and z = u, respectively.
The pattern represents normal cortical development and correspondsatthe nal pattern in

Figure B.1. See also: animation.
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Figure B.3: Prolate spheroid visualization of exponentially growing doman Turing prepat-
tern for normal cortical fold development. Projecting the images from Fgure B.2 onto the
corresponding prolate spheroidal domain gives a new way to visualize khoa labyrinthine
pattern representing normal cortical folding could develop from a chenical Turing prepat-
tern (refer to Figure B.1 at t = 35). See also: animation.
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Figure B.4: Evolution of Turing pattern on an exponentially growing prolat e spheroid rep-
resenting polymicrogyria. The pattern was generated by System4.23 with R =0:021! =
115 and kinetics parameters listed on pag&4. The bottom right gure indicates when each

snapshot was taken. See also: animation.
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Figure B.5: Exponential growing domain Turing pattern as a prepattern for polymicro-
gyria. Figures (a) through (d) provide a visualization of how a labyrinthine cortical folding
pattern could develop from a genetic chemical Turing prepattern by potting the activator
concentration u on the z-axis forz =0, z = %, zZ= % and z = u, respectively. The pattern
represents polymicrogyria and corresponds to the nal pattern in Figue B.4. See also:
animation.
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Figure B.6: Prolate spheroid visualization of exponentially growing doman Turing prepat-
tern for polymicrogyria. Projecting the images from Figure B.5 onto the corresponding
prolate spheroidal domain gives a new way to visualize how a labyrintme pattern repre-
senting polymicrogyria could develop from a chemical Turing prepatern (refer to Figure B.4
at t = 35). See also: animation.
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Figure B.7. Evolution of Turing pattern on an exponentially growing prolat e spheroid
representing polymicrogyria with microcephaly and enlarged lateralventricles. The pattern
was generated by System4.23 with R = 0:015! = 150 and kinetics parameters listed
on page 34. The bottom right gure indicates when each snapshot was taken. See also:

animation.
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Figure B.8: Exponential growing domain Turing pattern as a prepattern for polymicro-
gyria with microcephaly and enlarged lateral ventricles. Figures (a)through (d) provide
a visualization of how a labyrinthine cortical folding pattern could develop from a genetic
chemical Turing prepattern by plotting the activator concentration u on the z-axis forz = 0,
z= 3,z= 3,andz = u, respectively. The pattern represents PMG with microcephalyand
enlarged LVs and corresponds to the nal pattern in Figure B.7. See also: animation.
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Figure B.9: Prolate spheroid visualization of exponentially growing doman Turing prepat-
tern for polymicrogyria with microcephaly and enlarged lateral ventricles. Projecting the
images from FigureB.8 onto the corresponding prolate spheroidal domain gives a new way
to visualize how a labyrinthine pattern representing PMG with microcephaly and enlarged
LVs could develop from a chemical Turing prepattern (refer to Figure B.7 at t = 35). See
also: animation.
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Figure B.10: Evolution of Turing pattern on an exponentially growing prolat e spheroid
representing the lissencephaly seen in Norman-Roberts Syndrometv non-enlarged lateral
ventricles. The pattern was generated by System 4.23 with R = 0:005! = 115 and
kinetics parameters listed on page34. The dots in the lower-right gure represent the time
at which each snapshot was taken. See also: animation.
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Figure B.11: Exponential growing domain Turing pattern as a prepattern for Norman-
Roberts Syndrome with non-enlarged lateral ventricles. Figures (a) hirough (d) provide
a visualization of how a labyrinthine cortical folding pattern could develop from a genetic
chemical Turing prepattern by plotting the activator concentration u on the z-axis forz = 0,
z= 3,2= 35, andz = u, respectively. The pattern represents NRS with non-enlarged LVs
and corresponds to the nal pattern in Figure B.10. See also: animation.
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Figure B.12: Prolate spheroid visualization of exponentially growing doman Turing prepat-
tern for Norman-Roberts Syndrome with non-enlarged lateral ventricles Projecting the im-
ages from FigureB.11 onto the corresponding prolate spheroidal domain gives a new way to
visualize how a labyrinthine pattern representing NRS with non-enlarged LVs could develop
from a chemical Turing prepattern (refer to Figure B.10 at t = 35). See also: animation.
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Figure B.13: Evolution of Turing pattern on an exponentially growing prolat e spheroid
representing the lissencephaly presented in Norman-Roberts Sgnome with enlarged lateral
ventricles. The pattern was generated by System4.23 with R = 0:015! = 30 and kinetics
parameters listed on page34. The dots in the lower-right gure represent the time at which
each snapshot was taken. See also: animation.
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Figure B.14: Exponential growing domain Turing pattern as a prepattern for Norman-
Roberts Syndrome with enlarged lateral ventricles. Figures (a) throgh (d) provide a visu-
alization of how a labyrinthine cortical folding pattern could develop from a genetic chemical
Turing prepattern by plotting the activator concentration u on the z-axis forz =0, z = §,
z = 3, and z = u, respectively. The pattern represents NRS with enlarged LVs and cae-

sponds to the nal pattern in Figure B.13. See also: animation.
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Figure B.15: Prolate spheroid visualization of exponentially growing doman Turing prepat-
tern for Norman-Roberts Syndrome with enlarged lateral ventricles. Pojecting the images
from Figure B.14 onto the corresponding prolate spheroidal domain gives a new way to vi-
sualize how a labyrinthine pattern representing NRS with enlargedLVs could develop from
a chemical Turing prepattern (refer to Figure B.13 at t = 35). See also: animation.
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Figure B.16: Evolution of Turing pattern on an exponentially growing prolat e spheroid
representing normocephalic type | lissencephaly with enlargedateral ventricles. The pat-
tern was generated by System4.23 with R =0:021;! = 30 and kinetics parameters listed
on page34. The dots in the lower-right gure represent the time at which each snapshot

was taken. See also: animation.
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Figure B.17: Exponential growing domain Turing pattern as a prepattern for normocephalic
type | lissencephaly with enlarged lateral ventricles. Figures (a)through (d) provide a

visualization of how a labyrinthine cortical folding pattern could develop from a genetic
chemical Turing prepattern by plotting the activator concentration u on the z-axis for

z=0,z=Y,z= 4, and z = u, respectively. The pattern represents normocephalic type
| lissencephaly with enlarged LVs and corresponds to the nal pattern n Figure B.16. See
also: animation.
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Figure B.18: Prolate spheroid visualization of exponentially growing domai Turing prepat-
tern for normocephalic type | lissencephaly with enlarged lateral vetricles. Projecting the
images from FigureB.17 onto the corresponding prolate spheroidal domain gives a new way
to visualize how a labyrinthine pattern representing normocepfalic type | lissencephaly
with enlarged LVs could develop from a chemical Turing prepattern (refer to Figure B.16
at t = 35). See also: animation.
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B.2 Logistically Growing Model

This section contains the full pattern evolution and labyrinthine vi sualization gures
for the logistically growing patterns presented in Chapter 6. Correspondence between the
gures and the diseases they represent is given in Tabl&.2.
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Table B.2: Logistic domain growth simulation results. Simulation results for polymicrogyria
and lissencephaly are discussed in detail in Chapte.

(a) Polymicrogyria

Growth Figure Type Normal PMG, PMG,
Function (R =0:015 enlarged LVs microcephaly,
I =115) (R=0:02z% enlarged LVs
I =115) (R=0:015
I =150)
Prolate Figs. 6.8a Figs. 6.8d, Figs. 6.8g
Logistic spheroid B.19 B.22 B.25
prepattern
Rectangular Figs. 6.8Db, Figs. 6.8¢ Figs. 6.8h,
domain folding | B.20 B.23 B.26
pattern
Prolate Figs. 6.8¢ Figs. 6.8f, B.24 | Figs. 6.8i, B.27
spheroid B.21
folding pattern
(b) Lissencephaly
Growth Figure Normal NRS, LVs NRS, LVs Type |
Function Type (R =0:015, | non- enlarged lissencephaly,
I =115) enlarged (R =0:015, | normo-
(R=0:005, | ! =30) cephaly,
I =115) enlarged LVs
(R=0:021,
I =30)
Prolate Figs. 6.12g | Figs. 6.12d | Figs. 6.12g | Figs. 6.12],
Logistic spheroid B.19 B.28 B.31 B.34
prepattern
Rectangular | Figs. 6.12h | Figs. 6.12¢ | Figs. 6.12h | Figs. 6.12k
domain B.20 B.29 B.32 B.35
folding
pattern
Prolate Figs. 6.12¢ | Figs. 6.12f, Figs. 6.12i, Figs. 6.12],
spheroid B.21 B.30 B.33 B.36
folding
pattern
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Figure B.19: Evolution of Turing pattern on a logistically growing prolate spheroid rep-
resenting normal cortical development. The pattern was generated by Bstem (5.5) with
R = 0:015! = 115;ty = 35;r = 0:6603ty = 19:9258K ? = eRtna 1 and kinetics
parameters listed on page34. The times at which the snapshots were taken are indicated
as dots in the bottom right gure. See also: animation.
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Figure B.20: Logistically growing domain Turing pattern as a prepattern for normal cortical
fold development. Figures (a) through (d) provide a visualization of hawv a labyrinthine
cortical folding pattern could develop from a genetic chemical Turingprepattern by plotting
the activator concentration u on the z-axis forz =0, z = %, zZ= % and z = u, respectively.
The pattern represents normal cortical development and correspondsatthe nal pattern in

Figure B.19. See also: animation.
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Figure B.21. Prolate spheroid visualization of logistically growing domain Turing prepat-
tern for normal cortical fold development. Projecting the images from Hgure B.20 onto the
corresponding prolate spheroidal domain gives a new way to visualize khoa labyrinthine
pattern representing normal cortical folding could develop from a chenical Turing prepat-
tern (refer to Figure B.19 at t = 35). See also: animation.
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Figure B.22: Evolution of Turing pattern on a logistically growing prolate spheroid repre-
senting polymicrogyria. The pattern was generated by System 8.5 with R = 0:021;! =
115t 4 =35;r =0:6603tp = 19:9258 K ? = eRtna 1 and kinetics parameters listed on
page34. The bottom right gure uses dots to depict the times at which the snapshots were

taken. See also: animation.
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Figure B.23: Logistically growing domain Turing pattern as a prepattern for polymicro-
gyria. Figures (a) through (d) provide a visualization of how a labyrinthine cortical folding
pattern could develop from a genetic chemical Turing prepattern by potting the activator
concentration u on the z-axis forz =0, z = %, zZ= % and z = u, respectively. The pattern
represents polymicrogyria and corresponds to the nal pattern in Figue B.22. See also:
animation.
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Figure B.24: Prolate spheroid visualization of logistically growing domain Turing prepat-
tern for polymicrogyria. Projecting the images from Figure B.23 onto the corresponding
prolate spheroidal domain gives a new way to visualize how a labyrintme pattern represent-
ing polymicrogyria could develop from a chemical Turing prepattern (refer to Figure B.22
at t = 35). See also: animation.
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Figure B.25: Evolution of Turing pattern on a logistically growing prolate spheroid rep-
resenting polymicrogyria with microcephaly and enlarged lateral vetricles. The pattern
was generated by System %.5) with R = 0:015! = 150;t.y = 35;r = 0:6603ty =
199258 K? = eRtna 1 and kinetics parameters listed on page34. The bottom right
gure uses dots to depict the times at which the snapshots were takenSee also: animation.
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Figure B.26: Logistically growing domain Turing pattern as a prepattern for polymicro-
gyria with microcephaly and enlarged lateral ventricles. Figures (a)through (d) provide
a visualization of how a labyrinthine cortical folding pattern could develop from a genetic
chemical Turing prepattern by plotting the activator concentration u on the z-axis forz = 0,
z= 3,z= 3,andz = u, respectively. The pattern represents PMG with microcephalyand
enlarged LVs and corresponds to the nal pattern in Figure B.25. See also: animation.

120



Figure B.27: Prolate spheroid visualization of logistically growing domain Turing prepat-
tern for polymicrogyria with microcephaly and enlarged lateral ventricles. Projecting the
images from FigureB.26 onto the corresponding prolate spheroidal domain gives a new way
to visualize how a labyrinthine pattern representing PMG with microcephaly and enlarged
LVs could develop from a chemical Turing prepattern (refer to Figure B.25 at t = 35). See
also: animation.
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Figure B.28: Evolution of Turing pattern on a logistically growing prolate spheroid rep-
resenting the lissencephaly seen in Norman-Roberts Syndrome withon-enlarged lateral
ventricles. The pattern was generated by System §.5) with R = 0:005! = 115;tny =
35r = 0:6603ty = 19:9258K? = eRtra 1 and kinetics parameters listed on page34.
Dots in the bottom right gure correspond to the time at which each snapshot was taken.
See also: animation.
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Figure B.29: Logistically growing domain Turing pattern as a prepattern for Norman-
Roberts Syndrome with non-enlarged lateral ventricles. Figures (a) hirough (d) provide
a visualization of how a labyrinthine cortical folding pattern could develop from a genetic
chemical Turing prepattern by plotting the activator concentration u on the z-axis forz = 0,
z= 3,2= 35, andz = u, respectively. The pattern represents NRS with non-enlarged LVs
and corresponds to the nal pattern in Figure B.28. See also: animation.
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Figure B.30: Prolate spheroid visualization of logistically growing domain Turing prepat-
tern for Norman-Roberts Syndrome with non-enlarged lateral ventricles Projecting the
images from Figure B.29 onto the corresponding prolate spheroidal domain gives a new
way to visualize how a labyrinthine pattern representing NRS with non-enlarged LVs could
develop from a chemical Turing prepattern (refer to Figure B.28 at t = 35). See also:
animation.
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Figure B.31: Evolution of Turing pattern on a logistically growing prolate spheroid rep-
resenting the lissencephaly presented in Norman-Roberts Syndroewith enlarged lateral
ventricles. The pattern was generated by System §.5) with R = 0:015! = 30;tny =
351 = 0:6603ty = 19:9258K? = eRtra 1 and kinetics parameters listed on page34.
Dots in the bottom right gure correspond to the time at which each snapshot was taken.
See also: animation.
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Figure B.32: Logistically growing domain Turing pattern as a prepattern for Norman-
Roberts Syndrome with enlarged lateral ventricles. Figures (a) throgh (d) provide a visu-
alization of how a labyrinthine cortical folding pattern could develop from a genetic chemical
Turing prepattern by plotting the activator concentration u on the z-axis forz =0, z = §,
z = 3, and z = u, respectively. The pattern represents NRS with enlarged LVs and cae-

sponds to the nal pattern in Figure B.31. See also: animation.
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Figure B.33: Prolate spheroid visualization of logistically growing domain Turing prepat-
tern for Norman-Roberts Syndrome with enlarged lateral ventricles. Pojecting the images
from Figure B.32 onto the corresponding prolate spheroidal domain gives a new way to vi-
sualize how a labyrinthine pattern representing NRS with enlargedLVs could develop from
a chemical Turing prepattern (refer to Figure B.31 at t = 35). See also: animation.
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Figure B.34: Evolution of Turing pattern on a logistically growing prolate spheroid rep-
resenting normocephalic type | lissencephaly with enlarged lated ventricles. The pat-

tern was generated by System 5.5 with R = 0:021;! = 30;tg = 35;r = 0:6603tg =
199258 K ? = eRtna 1 and kinetics parameters listed on page34. Dots in the bottom

right gure correspond to the time at which each snapshot was taken. See ab: animation.
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Figure B.35: Logistically growing domain Turing pattern as a prepattern for non-
microcephalic type | lissencephaly with enlarged lateral ventrides. Figures (a) through
(d) provide a visualization of how a labyrinthine cortical folding pat tern could develop from
a genetic chemical Turing prepattern by plotting the activator concentration u on the z-axis
forz=0,z=4,z= %, and z = u, respectively. The pattern represents normocephalic
type | lissencephaly with enlarged LVs and corresponds to the nal patern in Figure B.34.
See also: animation.
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Figure B.36: Prolate spheroid visualization of logistically growing domain Turing prepat-
tern for normocephalic type | lissencephaly with enlarged lateral vetricles. Projecting
the images from FigureB.35 onto the corresponding prolate spheroidal domain gives a new
way to visualize how a labyrinthine pattern representing normoephalic type | lissencephaly
with enlarged LVs could develop from a chemical Turing prepattern (refer to Figure B.34

at t = 35). See also: animation.
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