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ABSTRACT

The brain is one of nature’s greatest mysteries. The mechanism by which the folds of the
brain’s cerebral cortex, called gyri (hills) and sulci (valleys), are formed remains unknown.
Existing biological hypotheses that attempt to explain the underlying mechanism of cortical
folding conflict. Some hypotheses, such as the Intermediate Progenitor Model, emphasize
genetic chemical factor control. Others, such as the Axonal Tension Hypothesis, emphasize
the influence of physical tension due to axonal connections.

To bring mathematics into this debate, this dissertation presents two biomathematical
models of cortical folding that utilize a Turing reaction-diffusion system on an exponentially
or logistically growing prolate spheroidal domain. These models are used to investigate the
validity of the Intermediate Progenitor Model, thereby investigating the role of genetic
chemical factor control of the development of cortical folding patterns. We observe that the
presence of domain growth drives the patterns generated by our growing prolate spheroidal
Turing systems to become transient. An exponentially growing prolate spheroidal domain
generates a pattern that continually evolves, while a logistically growing prolate spheroidal
domain generates a pattern that evolves while the domain is growing but then converges to
a final pattern once the domain growth asymptotically stops.

Patterns generated by the model systems represent genetic chemical prepatterns for self-
amplification of intermediate progenitor cells, which may be correlated to cortical folding
patterns according to the Intermediate Progenitor Model. By altering system parameters,
we are able to model diseases of cortical folding such as polymicrogyria where the cortex
possesses too many folds as well as diseases where the cortex has too few cortical folds such as
Norman-Roberts Syndrome (microcephalic lissencephaly) and normocephalic lissencephaly.
Our ability to model such a variety of diseases lends support to the role of genetic control of
cortical folding pattern development and therefore to the Intermediate Progenitor Model.
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CHAPTER 1

INTRODUCTION

“In this section a mathematical model...will be described. This model will be a
simplification and an idealization, and consequently a falsification. It is to be
hoped that the features retained for discussion are those of greatest importance
in the present state of knowledge.” –A.M. Turing, The Chemical Basis of Mor-
phogenesis, 1952

Though many advances in biology have been made over the course of human history, few
things remain as mysterious as the human brain. In particular, the mechanism by which
the folds of the cerebral cortex, called gyri (hills) and sulci (valleys), are formed remains
unknown. Existing biological hypotheses that try to explain the underlying mechanism of
cortical folding disagree with one another; some emphasize the role of genetic factors [45],
while others highlight the importance of axonal tension [22]. Furthermore, it is extremely
difficult to perform cortical folding experiments on living humans, as many of the important
events of cortical folding take place during fetal development [28].

To bring mathematics into this debate, this dissertation presents biomathematical mod-
els of cortical folding that incorporate an exponentially or logistically growing prolate spher-
oidal domain into a Turing reaction-diffusion system. We utilize the Intermediate Progeni-
tor Model, a biological hypothesis describing a possible genetically-controlled mechanism of
cortical folding, as the biological foundation of our biomathematical models [45]. A grow-
ing domain Turing system model of cortical folding is more realistic than previous static
domain Turing system models of cortical folding [13, 86], as it captures the growth that
naturally occurs as the brain develops. Using exponential domain growth echoes the growth
of a biologically relevant brain structure, while employing logistic growth provides a way to
include domain growth in a Turing model of cortical folding in an overall more biologically
realistic fashion.

Chapter 2 discusses brain anatomy and cells of the central nervous system which are key
to cortical development. Several biological hypotheses and mathematical models of cortical
development and folding are presented. In Chapter 3, Turing reaction-diffusion systems
on static and growing domains are introduced. The key properties and characteristics of
a Turing system are presented. Different types of Turing system reaction kinetics and the
intuition behind Turing systems’ pattern-generating capabilities are discussed. Lastly, a
prolate spheroidal domain is incorporated into the growing domain Turing system frame-
work.
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Chapters 4 and 5 investigate the pattern-generating behavior of a Turing system on
a growing prolate spheroidal domain under different types of domain growth. Numerical
simulations are conducted to visualize the evolution of the generated patterns. Chapter 4
incorporates exponential domain growth into the system and uses linear stability analysis to
derive mathematical conditions which ensure that an exponentially growing Turing system
can generate patterns. Chapter 5 incorporates logistic domain growth into the system
to further illustrate the role of domain growth in a Turing system’s pattern-generating
behavior.

Chapter 6 utilizes the results of Chapters 4 and 5 to construct two biomathematical
Turing system models of cortical folding on growing prolate spheroidal domains. Motiva-
tion for the models and the link between the math and the biology are discussed. The
models’ ability to capture various diseases of cortical folding is also demonstrated. Finally,
Chapter 7 concludes the investigation by discussing challenges and future directions for
biomathematical Turing research of cortical folding patterns.

In sum, this dissertation demonstrates that a growing domain Turing system can gener-
ate patterns that can serve as a genetic chemical prepattern for the development of cortical
folds in the brain, lending support to both the role of genetic morphogen control in cortical
folding pattern development and the Intermediate Progenitor Model. Along the way, we will
observe that the incorporation of domain growth into a Turing system induces a key change
in the system’s pattern generating behavior: while static domain Turing systems generate
a convergent pattern, domain growth drives the system to produce transiently evolving
patterns. Exponentially growing domains generate continuously evolving patterns, while
logistically growing domains generate a pattern that rapidly evolves but then converges to
a final pattern. The research presented in this dissertation could serve as a key stepping
stone in the evolution of mathematical modeling of cortical folding patterns, establishing a
strong foundation for future biomathematical investigations into the subject.
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CHAPTER 2

THEORIES AND MODELS OF CORTICAL

FOLDING

2.1 Neuroanatomy

The nervous system is intricately composed of many unique pieces which work together
to transmit information throughout the body via electrical impulses [80]. The nervous
system can be divided into the central nervous system (CNS), consisting of the brain and
spinal cord, and the peripheral nervous system (PNS), which consists of the nerves that
relay information back and forth between the CNS and the rest of the body [80]. The
following sections will outline some of the major features of the CNS, many of which are of
critical importance in the process of cortical development and folding.

2.1.1 The Brain: Major Macroscopic Features

At the macroscopic level, the brain is composed of the cerebrum, brain stem, and cere-
bellum [80]. The cerebrum is divided into two hemispheres (left and right), and the outer
layer of the two hemispheres is called the cerebral cortex. The cerebral cortex, which con-
sists of six layers of neurons [30], is intricately folded into gyri (hills) and sulci (valleys)
(see Figure 2.1a). Each hemisphere is divided into four lobes, named the frontal, parietal,
occipital, and temporal lobes (see Figure 2.1b), based on their anatomical locations and
specialized functions. A structure called the corpus callosum provides connections between
neurons in opposite hemispheres (see Figure 2.1c) [80].

2.1.2 The Ventricular System

The ventricular system of the brain is composed of the two lateral ventricles (LVs)
as well as the third and fourth ventricles (see Figure 2.2). Early in neurogenesis, which
in humans occurs during gestational weeks 7 to 18, the LVs are approximately prolate
spheroidal in shape as they account for nearly all the volume of the prolate spheroidal
cerebral hemispheres [26, 38, 75] (see Figure 2.3). At maturity, the LVs are c-shaped with
posterior horns that stretch backwards toward the occipital lobes (see Figure 2.4). Inside
the ventricles is cerebrospinal fluid (CSF), which flows throughout the CNS [80]. CSF is
generated within the ventricles by structures called choroid plexuses (see Figure 2.2). CSF
plays many roles in the CNS, including removal of toxins from the brain and provision of
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(a) (b) (c)

Figure 2.1: The human brain. (a) The cerebral cortex is folded into many gyri and sulci.
Figure from [69]. (b) The brain is divided into frontal, parietal, occipital, and temporal
lobes. Figure adapted from [104]. (c) Communication between neurons in the left and right
hemispheres of the brain is provided by the corpus callosum. Figure from [60].

nutrients to the brain. CSF also provides the brain with physical protection, forming a
cushion-like barrier between the brain and skull [80].

The walls of the developing LVs are lined by the ventricular zone (VZ) and subventricular
zone (SVZ) [45, 66, 74]. Both the VZ and SVZ are layers of proliferative cells that play
a role in cortical development [45, 66, 74]. Continuing radially outward from the inside of
the LVs, one passes from the VZ to the SVZ. In particular, the SVZ serves as the site of
self-amplification of intermediate progenitor cells (IPCs), which will be further discussed in
Section 2.2.

2.1.3 Germinal Matrix

During development, the SVZ produces a structure called the germinal matrix (GM),
which contains progenitors of neurons and glial cells [2]. The literature uses the term GM
to either represent the part of the SVZ located ventrolateral to the LV and extending along
the lateral wall of the LV [2, 44], or as a collective synonym for the VZ and SVZ, referring
to the mass of germ cells that give rise to cortical neurons [33]. Regardless, the GM is a key
component in neurogenesis. The GM appears at 7 weeks gestational age (GA) and exists
only until term [2, 44]. Growth of the GM has been investigated with magnetic resonance
imaging (MRI) and computational reconstruction of 3-D images of the developing brain
[44] (see Figure 2.5). MRIs were obtained from the brains of 13 legally aborted fetuses
ranging from 7-28 weeks GA. The fetuses died from reasons other than CNS disease or
body malformation, so their brains were viable representatives of human development. GM
volume was found to increase exponentially from 11-23 weeks GA and then decrease rapidly
from weeks 25-28 GA. LV volume was found to linearly increase up to week 23 GA, then
gradually decrease (see Figure 2.4) [2, 44].

During weeks 5-25 GA, IPCs and other neural progenitors proliferate and generate
neurons, which also migrate to the developing cortex during this period (see Figure 2.6)
[35, 45, 51, 75, 103]. Furthermore, cortical folding is considered to begin at week 10, 14,
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Figure 2.2: The ventricular system. The human ventricular system is composed of the
lateral ventricles, third ventricle, and fourth ventricle. Cerebrospinal fluid is produced by
choroid plexuses, shown in red. Figure from [27].

(a) (b)

Figure 2.3: Shape of lateral ventricles early in development. (a) The developing cerebral
hemispheres are prolate spheroidal in shape at 48 days GA. Figure adapted from [26]. (b)
The LVs account for nearly the entire volume of the developing cerebral hemispheres at
54-56 days GA. The LVs are thus prolate spheroidal in shape at this time of development.
Figure from [38].
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Figure 2.4: Growth of brain, germinal matrix, and ventricular system. Growth of the brain is
shown from 7 weeks gestational age (GA) to 28 weeks GA (top). The GM (middle, shown in
orange) grows exponentially from weeks 11-23 GA but then rapidly loses volume beginning
at week 25 GA. The LVs (bottom, shown in blue) grow linearly before their volume reaches
a maximum near week 23 GA. Early in development, the LVs are approximately prolate
spheroidal in shape and are c-shaped at maturity. Figure from [44].

Figure 2.5: Fetal brain (top) and its computer reconstruction from MRI (middle). The GM
is labeled in orange and the LVs are labeled in blue (bottom). Figure from [44].
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Figure 2.6: Chronology of selected cortical development events. Dates relevant to cortical
folding appearance (yellow), IPC proliferation and neuron generation (blue), and exponen-
tial growth of GM (green) are plotted on a common time axis. While the literature does not
agree on exact dates for cortical development events, it is clear that there is overlap among
periods of GM exponential growth, IPC proliferation, neurogenesis, and cortical folding.
Data obtained from [19, 28, 35, 44, 45, 47, 51, 59, 75, 103].

or 20 GA, depending on the literary source [19, 28, 47, 59]. Although there is a lack of
consensus in the literature about the precise dates of these biological events, it is obvious
that the period of exponential GM growth (11-23 weeks GA) coincides with many important
events of cortical folding development.

2.1.4 Key Cells of the CNS

The principal types of cells in the CNS are neurons and glial cells, with glial cells
accounting for 90% of all cells in the CNS [67, 80]. Neurons form the information highways
of the CNS, encoding information in electrical impulses called action potentials that are
transmitted from one neuron to another. The brain alone contains approximately 100
billion neurons. Glial cells serve as caregivers for neurons, performing jobs such as providing
structural support and helping messages travel more quickly from neuron to neuron [80].

The main structures of the neuron are the dendrites, soma, axon hillock, axon, and
presynaptic terminal (see Figure 2.7). The soma, or cell body, contains the cell’s nucleus
and performs essential tasks needed for the cell to survive. Dendrites receive information
from other neurons, while the axon uses action potentials to transmit outgoing information
from the neuron. The axon hillock, located where the axon originates from the soma, is the
place from which action potentials are generated. The presynaptic terminal is responsible
for the actual transmission of the “message” to the next neuron, usually via chemicals called
neurotransmitters.

Cortical neurons will either make corticocortical or corticothalamic connections in the
brain. Corticocortical connections occur when the axons of cortical neurons connect to
dendrites of other cortical neurons. Corticothalamic connections occur between the axons
of cortical neurons and the thalamus, an area of the brain responsible for directing sensory
inputs to their corresponding cortical processing areas [67, 80].

Radial glial cells (RGCs) are special glial cells that have an important role in brain
development. The soma of each RGC is anchored to a specific place in the VZ [75]. Each
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Figure 2.7: Neuron anatomy. The principal structures of the neuron are the dendrites,
soma, axon hillock, axon, and presynaptic terminal. Figure adapted from [27].

Figure 2.8: Radial glial cells. (a) RGCs establish a 1-1 correspondence between the VZ
and cortical plate (CP). (b) Neuroblasts travel up the RGC’s radial fiber to the CP. Figure
adapted from [76].

RGC has a radial fiber shaft that extends out to the cortical plate (CP), the developmental
precursor of the cerebral cortex [75, 76]. During development, RGCs create neuroblasts
(developmental precursors of neurons), which then travel up the radial fiber of the RGCs
to the CP [76]. These neuroblasts, along with others, will form the cerebral cortex [66].
RGCs are also responsible for the production of special proliferative cells called intermediate
progenitor cells (IPCs) [66], which will be further discussed in Section 2.2. The radial fibers
and somas of RGCs create a one-to-one correspondence between the VZ and CP (see Figure
2.8a) [76].
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2.2 Biological Hypotheses of Cortical Development and

Folding

There are numerous biological hypotheses that attempt to explain the process of cortical
folding, and there is great debate as to what is the true underlying mechanism. While some
hypotheses share common characteristics, others, such as the Intermediate Progenitor Model
[45] and the Axonal Tension Hypothesis [22], are in direct opposition with one another.
The following sections will discuss some of the most important biological viewpoints on the
mechanism of cortical folding.

It is prudent to note that biologists often use the word “model” in place of “hypothesis”.
Thus, though the Intermediate Progenitor Model contains the word “model” in its name,
it is simply another hypothesis that attempts to describe the biological mechanism behind
cortical folding.

2.2.1 Radial Unit Hypothesis

The Radial Unit Hypothesis (RUH) [74] describes the formation of the CP and the 1-1
correspondence between the CP and VZ. The RUH proposes two stages of cellular division,
namely, a symmetric RGC cellular division stage followed by an asymmetric RGC cellular
division stage. In symmetric cellular division, the mother cell divides into two identical
daughter cells; in asymmetric cellular division, the mother cell divides into daughter cells
of two different cellular types.

During the symmetric cellular division stage, RGCs in the VZ divide into two RGCs
(one to replace the original RGC and one new RGC), doubling the number of RGCs with
each round of cellular division (see Figure 2.9a). Next, during the asymmetric cellular
division stage, each RGC divides into a neuroblast and another RGC that replaces the
original RGC. The newly produced neuroblasts then travel across the intermediate zone
(IZ), which separates the VZ and CP during development [45, 74], and up to the CP along
the radial fiber of the RGC from which they were generated (see Figure 2.9b). As more
asymmetric divisions occur, multiple neuroblasts can be formed in the same location in the
VZ and travel to the same location in the CP. When this occurs, the newer neuroblasts
pass over any neuroblasts that are already there and travel to the outermost area of the CP.
This process forms columns of neuroblasts called ontogenic columns [75]. When linked with
the RGC from which they originated, the ontogenic columns form a 1-1 correspondence
between the VZ and CP (see Figure 2.8a). The number of RGC symmetric and asymmetric
divisions in a particular area of the developing brain are controlled by specific genes [77].

2.2.2 Intermediate Progenitor Hypothesis

The Intermediate Progenitor Hypothesis (IPH) [66] takes the ideas of the RUH one step
further. The IPH states that while lower layers of the CP are created according to the RUH,
upper cortical layers are created differently. After the creation of the lower cortical layers,
the IPH proposes that the upper layers of the CP are formed in two stages. First, RGCs
undergo a round of asymmetric divisions, dividing into a replacement RGC and an IPC.
The IPC then migrates into the SVZ and undergoes either (i) a terminal symmetric division
into two neuroblasts (see Figure 2.10) or (ii) up to two symmetric self-amplifications into
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Figure 2.9: Cortical development according to the Radial Unit Hypothesis. (a) In the
symmetric cellular division stage, the number of RGCs is doubled over time with each
round of cellular division. (b) In the asymmetric cellular division stage, RGCs divide to
produce one neuroblast and one replacement RGC per round of cellular division. Multiple
neuroblasts can thus be produced from the same location in the VZ and migrate to the same
location in the CP, forming ontogenic columns. Neuroblasts are numbered in decreasing
age order. Figure adapted from [45].
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Figure 2.10: Cortical development according to the Intermediate Progenitor Hypothesis.
At time t0, a RGC asymmetrically divides to yield a replacement RGC and an IPC. This
IPC undergoes a terminal symmetric division into two neuroblasts. At time t1, another
asymmetric RGC division occurs, yielding a replacement RGC and a new IPC. This IPC
undergoes a terminal symmetric division into two neuroblasts which will eventually migrate
above the neuroblasts produced at time t0. Figure adapted from [45].

two IPCs, each of which eventually divides into two neuroblasts (see Figure 2.11) [73]. The
neuroblasts migrate along the radial fiber of the corresponding RGC across the IZ and up
to the very outermost area of the CP, above any neuroblasts already there. Any neuroblasts
that originate at the same time end up in the same cortical layer, stacking outwardly in the
CP by age.

2.2.3 Intermediate Progenitor Model

The Intermediate Progenitor Model (IPM) [45] expands upon the IPH. Overall, the IPM
states that regional patterning of IPC self-amplification in the SVZ could lead to regional
neuron amplification in the upper cortical layers, forming patterns of gyri and sulci in the
cortex (see Figure 2.12). IPC neuronal amplification for the upper cortical layers would
allow for increased cortical surface area while maintaining the size of the VZ, enabling the
formation of a gyrencephalic cortex [45].

The IPM states that the number of IPCs occupying a region of the SVZ, and therefore
the SVZ thickness, may be directly correlated with cortical fold formation. Areas of the
SVZ in which the IPCs have undergone many rounds of self-amplification are thickened due
to the many cells there, while areas of the SVZ where IPCs have not self-amplified much are
thin. Recall that after self-amplification, each IPC becomes two neuroblasts which populate
the upper layers of the developing cortex. Areas of the cortex corresponding to thick SVZ
areas are thus populated by large numbers of neurons, forming gyri (hills), while areas
corresponding to thin SVZ areas are populated by fewer neurons, forming sulci (valleys).
In this fashion, the IPM dictates that regional patterns of IPC self-amplification would
be correlated with SVZ thickness and could be used to predict cortical folding patterns.
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Figure 2.11: Intermediate progenitor cell self-amplification. After originating from a RGC,
an IPC can undergo up to two rounds of self-amplification into two IPCs before a terminal
symmetric division into neuroblasts.

Figure 2.12: Intermediate Progenitor Model and cortical folding. According to the IPM,
patterns of regional IPC self-amplification in the SVZ may be correlated with cortical folding
patterns. Areas of high IPC self-amplification lead to neuron proliferation, corresponding
with the formation of gyri. Areas of low IPC self-amplification lead to a lack of neuron
proliferation that corresponds with the formation of sulci.
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This correlation between SVZ thickness and gyrus/sulcus formation has been supported by
observations in both developing monkeys and humans (see Figure 2.13).

Evidence suggests that self-amplification of IPCs in the SVZ, and therefore patterning
of cortical folding, is genetically regulated. Genes such as Pax6 have been shown to regulate
cortical folding via modulating proper IPC development in mice [73]. Furthermore, several
diffusible morphogens that affect cell proliferation, such as those of the Wnt pathway, have
been shown to affect the number of IPCs in mice [73]. The Wnt pathway (pronounced
‘wint’) is a signaling pathway involved in neurogenesis [53].

2.2.4 Axonal Tension Hypothesis

The Axonal Tension Hypothesis (ATH) [22] provides an explanation of cortical folding
that directly conflicts with that of the IPM. The ATH states that cortical folding is a direct
consequence of tension resulting from corticocortical connections. Axonal tension of highly
interconnected areas in the cortex pulls the cortical walls together, forming gyri (see Figure
2.14). Cortical areas joined by few corticocortical connections (or none at all) lack the
axonal tension to pull towards each other, forming sulci.

Recent experimental investigations into the prefrontal cortex of adult rhesus monkeys
have lent support to the ATH [37]. Tracing chemicals were injected into the brain to trace
neuronal connections in the prefrontal cortex. The neuronal connections were then ana-
lyzed using photomicrography of coronal sections of the prefrontal cortex. The experiments
demonstrated that the majority of axons of highly interconnected cortical regions followed
straight paths, while axons of weakly connected regions followed curved paths around sulci.
This result agrees with the ATH prediction that axonal paths of strongly interconnected
cortical regions will be pulled straight as they form gyri (see the transition from the top
right panel to bottom left panel in Figure 2.14).

2.3 Mathematical Models of Cortical Development and

Folding

In this section, we outline three recent investigations into creating biomathematical
models of cortical folding. We discuss a model that emphasizes morphogen gradient control
of cortical precursor cells via a Turing system [86], a model that uses a Turing system to
create chemical gradients that abstractly represent axonal tension [13], and a pair of finite
element models that emphasize axonal tension without any morphogen involvement [29].
The Turing system models and one of the finite element models presented here utilize a
static domain, while one of the finite element models incorporates domain growth.

2.3.1 Static Prolate Spheroid Turing Model

Striegel and Hurdal [86] used a two-equation activator-inhibitor Turing reaction-diffusion
system on a static prolate spheroidal domain to hypothesize a new biological model of
cortical folding called the Global Intermediate Progenitor (GIP) model [86]. The equations
were

ut = Dδ∇2u+ αu
(

1− r1v
2
)

+ v (1− r2u) ,
vt = δ∇2v + v (β + αr1uv) + u (γ + r2v) ,

}
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Figure 2.13: Intermediate Progenitor Model, subventricular zone thickness, and cortical
folding. (a) In the developing macaque monkey brain, SVZ thickening (indicated by arrows
under 1, left panel) leads to gyrus formation about two weeks later (1*, right panel). A thin
area of SVZ (indicated by arrows under 2, left panel) leads to sulcus formation (2, right
panel). (b) In the developing human brain, thick areas of SVZ (1, 3, and 5, left panel) lead
to gyrus formation (1*, 3*, and 5*, right panel) four weeks later. Thin areas of SVZ (2 and
4, left panel) lead to sulcus formation (2 and 4, right panel). Figure from [45].
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Figure 2.14: Axonal Tension Hypothesis mechanism for cortical folding. The ATH states
that cortical folds result from axonal tension of highly interconnected cortical regions pulling
the cortical walls together, forming gyri. The path followed by axons linking highly inter-
connected cortical regions straightens out as gyri are formed (transition from left to right).
Figure adapted from [22].

where u, v are the concentrations of activator and inhibitor, respectively, D = Du

Dv
is the

ratio of diffusion coefficients, δ > 0 is inversely proportional to the domain scaling, and
α, β, γ, r1, r2 are parameters for Barrio-Varea-Maini (BVM) kinetics (see Section 3.1.3) [85].
The Turing system generated patterned regions of activation and nonactivation on the
prolate spheroidal surface [42]. The activated regions represented activation of RGCs to
form IPCs, which, according to the GIP model, is directly correlated with cortical folding.
The GIP model concluded that cortical folding patterns are largely related to the size and
shape of the LV, which are captured in the static domain mathematical model as size and
eccentricity of the prolate spheroid. The static domain model was also applied to study
evolutionary changes in cortical development between different species by predicting the
order of sulcal development.

2.3.2 Labyrinthine Turing Model

Cartwright [13] constructed a Turing system model to generate labyrinthine patterns of
cortical folds in the brain. The model used a nondimensionalized Turing system with van
der Pol-FitzHugh-Nagumo kinetics [23, 24, 64, 96] on a two-dimensional static domain,

∂u

∂t
= ∇2u+ γ

(

v − u3

3
+ u

)

,

∂v

∂t
= δ∇2v − γ−1 (u+ ν + βv) ,











(2.1)

where u is an axon guidance chemical which activates axon growth, v is an axon guidance
chemical which inhibits axon growth, δ, γ govern relative activator/inhibitor range and
strength, and ν, β are kinetics parameters. Newly formed axons follow chemical gradient
signals as they migrate to their connection destination [3, 34, 88]. System 2.1 produced
patterned areas of axon growth activation and nonactivation in the developing cortex, with
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Figure 2.15: Labyrinthine Turing pattern of cortical folding. Cartwright [13] generated a
labyrinthine Turing model which he interpreted as axonal migration and axonal tension
leading to cortical folding. Activator concentration is represented by the vertical axis; the
other two axes represent the two-dimensional domain. Figure from [13].

activated cortical regions exhibiting a high number of corticocortical connections and non-
activated cortical regions exhibiting a low number of corticocortical connections. Following
the ideas of the ATH, activated cortical regions lead to gyrus formation, while nonactivated
cortical regions lead to sulcus formation. By plotting the activator concentration on the
z-axis against the rectangular domain, the patterns generated by System 2.1 were visualized
as three-dimensional labyrinthine patterns that represent folding patterns in the cortex (see
Figure 2.15). In this fashion, Cartwright built a chemical gradient-driven model of cortical
folding that abstractly represented concepts from axonal pathfinding and axonal tension.

2.3.3 Turing Finite Element Model

Lefevre and Mangin [47] created a morphogen-based model of cortical folding by em-
ploying a Turing system with Gray-Scott kinetics on a self-deforming spherical domain using
finite elements. Growth of the underlying spherical domain was not included in the model.
The model system was

∂tu+ u∂t log
√
gt = d1∇2u+ F (1− u)− uv2,

∂tv + v∂t log
√
gt = d2∇v + uv2 − (F + k)v,

where F, k are the kinetics parameters, g is the surface metric with determinant denoted
by

√
gt, and d1, d2 are the respective diffusion coefficients of inhibitor morphogen u and

activator morphogen v. Patterns of activator and inhibitor generated by the Turing system
represented growth factor concentration patterns that act directly on the spherical surface
by deforming it up or down after each iteration in time. This self-deformation resulted in
labyrinthine patterns that represented cortical folding patterns (see Figure 2.16). Beginning
with random initial conditions, the model was able to generate one fold that consistently
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Figure 2.16: Turing system finite element model of cortical folding. A Turing system on
a finite element self-deforming spherical domain was employed to generate patterns that
represent cortical folding patterns. Figure adapted from [47].

Figure 2.17: Two-dimensional tension-based finite element model of cortical folding. Logis-
tically growing finite elements lining a circular domain with radial tension forces represented
the development of cortical folds. Figure adapted from [93].

appeared, representing a primary cortical fold. The model was also able to generate some
folds that were slightly less reproducible between simulations, representing the more variable
secondary cortical folds in the brain.

2.3.4 Two-Dimensional Tension-Based Finite Element Model

Toro and Burnod [93] create a tension-based finite element model of human cortical
folding on a growing 2-D circular domain. The boundary of the circle represented the
developing cortex and was divided into finite elements whose area increased via a logistic
growth function. Forces representing tension from axons and glial cells pulled on the circular
boundary in the radial direction, yielding a wavy 2-D boundary representing cortical folding
(see Figure 2.17). The model concluded that growth of the developing cortex is the driving
force for the formation of cortical folds. The model also observed that including asymmetries
in the geometry, the tension forces, or the carrying capacity of the growth function for
different parts of the domain influenced the formation of folds.
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Figure 2.18: Three-dimensional tension-based finite element method model of cortical
folding with tangential domain growth. Cortical areas with low axonal tension lead to sulci
(center of domain), while cortical areas with high axonal tension lead to gyri (left and right
of domain). Figure adapted from [29].

2.3.5 Three-Dimensional Tension-Based Finite Element Model

Geng et al. [29] used finite element methods to construct two 3-D axonal tension-based
biomathematical models of cortical folding in sheep. Data was obtained via MRI images of
fetal sheep brains. In their first model, the 3-D computational mesh was initialized directly
from a portion of 70 day GA sheep MRI data (the entire MRI data could not be used all
at once due to computational constraints). Physical axonal tension forces, CSF pressure
forces, and forces due to growth were mathematically incorporated into the model, though
dynamic domain growth was not included. Simulations were conducted with the aim of
trying to reproduce the corresponding 90 day GA sheep MRI data. This first model was
able to accurately predict the cortical folding geometry as well as the cortical thickness of
gyri and sulci.

The inclusion of cortical growth distinguished the second finite element model from the
first. Due to the increased computational demand from the addition of growth, the domain
was selected to be a simple 3-D rectangle rather than a piece of actual MRI data. The sheep
MRI data showed that the fetal sheep cortex grows anisotropically, with the growth rate
tangential to the cortical surface greatly exceeding the growth rate radial to the cortical
surface. Anisotropic cortical growth was mathematically incorporated into the model via
an osmotic expansion representation. Osmotic expansion analogously represented cortical
growth in that an increase in concentration of osmotically active particles (as a result of
cell division, for example) in the cortex causes an increase in cortical volume. To capture
tangentially preferred anisotropic growth, the cortical surface was only allowed to grow
in the direction of the xy-plane, which represented the tangential direction in the model
(see Figure 2.18). The sheep MRI data also suggested that subcortical axonal tension
underlying sulci was less than subcortical axonal tension underlying gyri. For this reason,
the rectangular domain was split into three regions from left to right in the x-direction, with
the two outer regions initialized with high axonal tension and the inner region initialized
with low axonal tension. As expected, numerical simulations resulted in the center region
folding inward to form a sulcus surrounded by a gyrus on either side (see Figure 2.18).
This second model supported the idea that a combination of axonal tension and tangential
growth serves as a driving force for cortical fold development.
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2.4 Motivation

As outlined in Section 2.2, there is debate amongst biologists over the underlying mech-
anisms of cortical folding, with hypotheses based on genetic chemical control (such as the
IPM) competing against physical tension (ATH). To investigate the credence of the IPM
and thereby the validity of genetic morphogen control of cortical folding, we use mathe-
matical modeling and adopt a prolate spheroidal domain Turing system model of cortical
folding. We use a prolate spheroid because it accurately models the shape of the LV and
SVZ during early neurogenesis as discussed in Section 2.1.2 (see Figure 2.3); more details
will be provided in Chapter 6. As discussed in Section 2.3, previous Turing system biomath-
ematical models of cortical folding in the brain utilized a static, non-growing domain. To
build a model which more accurately reflects the biology, we construct Turing models of
cortical folding utilizing an exponentially or logistically growing domain. The mathematical
details of our models are presented in Chapters 3–5, and their application to cortical folding
is presented in detail in Chapter 6.

2.5 Conclusions

In this chapter, the major anatomical features of the brain and the key cells involved
in cortical development were presented. Several biological hypotheses of how the cerebral
cortex develops and folds were outlined. This chapter also discussed prior biomathemati-
cal models of cortical folding and outlined motivation for investigating a growing prolate
spheroidal domain Turing system model of cortical folding.

Our mathematical models of cortical folding, which are presented in Chapter 6, assume
the IPM view that regional patterns of IPC self-amplification might be directly correlated
with cortical folding patterns. A Turing-reaction diffusion system is employed to create
prepatterns of activation and nonactivation of IPC self-amplification in the SVZ. Activated
regions represent areas of high IPC self-amplification, leading to gyri, while nonactivated
regions represent areas of low IPC self-amplification, leading to sulci.

Turing reaction-diffusion systems and their ability to generate patterns are introduced
in the following chapter. Chapter 4 discusses Turing systems on an exponentially growing
prolate spheroid, while Chapter 5 discusses Turing systems on a logistically growing prolate
spheroid. Further details of our mathematical models of cortical folding are discussed in
Chapter 6.
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CHAPTER 3

TURING REACTION-DIFFUSION SYSTEMS

In his classic 1952 paper, Alan M. Turing used a system of two reaction-diffusion equations
to generate patterns representing chemical morphogen concentration gradients on the de-
veloping embryo [95]. The principal characteristic of what would come to be known as a
“Turing system” was its ability to generate spatially inhomogeneous patterns from a spa-
tially homogeneous steady state. This pattern-generating capability, now referred to as
Turing behavior [18, 20, 41], has made Turing systems useful for mathematical modeling
of numerous developmental biology phenomena such as the formation of leopard spots and
zebra stripes as well as the initiation of alligator teeth [63]. Specifically, patterns generated
by Turing systems serve as prepatterns of genetic factors to which cells of the developing
organism can later differentially respond [63, 95].

In this chapter, general static and growing domain Turing systems are presented. The
biological plausibility of Turing systems, the types of reaction kinetics they use, and an
intuitive explanation of their pattern-generating capabilities are discussed. Lastly, a pro-
late spheroidal domain is incorporated into the growing domain Turing system framework,
establishing the foundation for later chapters.

3.1 Static Domain Turing Systems

Consider a static domain with position vector X where u(X, t) and v(X, t) are con-
centrations of an activator morphogen u and an inhibitor morphogen v. Let the diffusion
coefficient Dv of the inhibitor be greater than the diffusion coefficient Du of the activator, so
that 0 < Du < Dv. Then the classic nondimensionalized Turing reaction-diffusion system
is

∂u

∂t
= D∇2u+ ωf(u, v),

∂v

∂t
= ∇2v + ωg(u, v),











(3.1)

where D = Du/Dv ∈ (0, 1), ω > 0 arise from nondimensionalization and functions f, g
represent the reaction kinetics (source terms) [63, 95]. Refer to Section A.1 for a derivation
of the generic reaction-diffusion equation. The diffusion coefficient ratio D is required to
satisfy D < 1 in order to reproduce the “short range activation, long range inhibition” [31]
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phenomenon observed in numerous biological systems such as organogenesis in transplants
[31] and hair follicle development in mice [82].

The reaction terms of System (3.1) create peaks of u, v concentration, while the diffusion
terms smooth out these peaks. The end result of this competition between peak creation and
peak smoothing is the generation of characteristic Turing patterns. System (3.1) possesses
the characteristic Turing pattern-generating behavior when two criteria are satisfied: (i) the
system must tend to a linearly stable spatially uniform steady state (u0, v0) in the absence
of diffusion, and (ii) the steady state is driven unstable by random perturbations in the
presence of diffusion. We call these two properties the Turing criteria.

3.1.1 Diffusion-Driven Instability and Pattern Formation

The second Turing criterion, often referred to as diffusion-driven instability [57, 63],
can at first seem counterintuitive. Many learn in basic chemistry or biology class that
diffusion acts as a stabilizing force between two areas of unequal solute concentration, but
in a Turing system, diffusion acts as a destabilizing force. To illustrate the idea of how
diffusion-driven instability occurs, consider the analogy of a generic reaction tank with two
well-mixed reactants [62]. If there is no diffusion, the reactants will react with one another
according to the law of mass action and reach a uniform steady state. This is linear stability
in the absence of diffusion, the first Turing criterion. If diffusion is allowed at equal rates
for each reactant, then any perturbations from the steady state will cause the reactants to
react with each other and return to the steady state. However, if diffusion is allowed at
greatly unequal rates, then the reaction rates cannot keep up with diffusion to return the
system to the uniform steady state, and a spatially inhomogeneous pattern is formed. This
is diffusion-driven instability, the second Turing criterion.

To describe how a Turing activator-inhibitor system generates spatially inhomogeneous
patterns, consider the analogy of a dry forest that is prone to forest fires [62]. Suppose that
firefighters on helicopters equipped with flame-retardant chemical cannon are dispersed
randomly throughout the forest. Suppose also that the helicopters can fly faster than fire
can spread, so that the helicopters can fly ahead of a fire to spray the flame retardant on
trees and prevent them from being burned. Now suppose that fires (the “activator”) break
out in several random places throughout the forest; the breakout of fires represents the
perturbation to the homogeneous steady state. As the fires begin to spread, the firefighting
helicopters race ahead of the fires and spray unburned trees with flame retardant (the
“inhibitor”). The end result is a forest patterned with areas of black burned trees and
green unburned trees.

In a similar fashion, Turing systems generate spatially inhomogeneous patterns of acti-
vator and inhibitor morphogens. Recall that the diffusion coefficients of the activator u and
inhibitor v in Turing System (3.1) must satisfy Du < Dv. When the system is perturbed
from its steady state in the presence of diffusion, the inhibitor morphogen can thus diffuse
much faster than the activator morphogen. This leads to a pattern with areas of high ac-
tivator concentration separated by areas of high inhibitor concentration, analogous to the
black and green tree pattern in the aforementioned forest.

21



3.1.2 Biological Existence of Turing Patterns

Turing systems require the existence of chemicals which can form concentration gradient
patterns; in the context of biology, these chemicals are morphogens that serve to influence
the development of cells into specialized tissues and organs [57]. The validity of using a
Turing system to model biological systems was debated for many years, as experimental
evidence in Drosophila embryonic stripe development showed that Turing systems could
not accurately describe the multiple underlying genetic interactions [1, 57].

Recent research, however, supports the plausibility and existence of Turing patterning
in biological development. Evidence suggests that the density of hair follicles in developing
mice is controlled by the expression of activator and inhibitor proteins [57, 82]. The activator
protein WNT is much larger than the inhibitor protein DKK, thus WNT diffuses slower
than DKK and can be modeled with a smaller diffusion coefficient than DKK. This fits
the Turing system requirement of Du < Dv, and so a Turing system model of mouse hair
follicle patterning was proposed by Sick et al. [57, 82]. The Turing system was used to predict
patterns of mouse hair follicle density that were confirmed experimentally using transgenic
mice, supporting the use of Turing systems to model biological pattern formation.

3.1.3 Reaction Kinetics

In order to accurately model patterns in biological systems, a Turing system’s reaction
kinetics f, g must be nonlinear functions [95]. Turing systems can be classified into four
groups based on the type of kinetics selected [55]. Reaction kinetics are chosen based on
the amount of information known about the underlying reactions of the system in question.

In a phenomenological Turing system, nothing is known about the actual reactions
involved in the system. In this case, one selects or constructs kinetics that can reproduce
the observed pattern. An example of a phenomenological Turing system is the Barrio-
Varea-Maini (BVM) system [9], which will be discussed in more detail in Section 3.2.

Hypothetical Turing systems use kinetics based on a set of hypothetical chemical re-
actions satisfying the law of mass action. The Schnakenberg system is one example of a
hypothetical Turing system [78]. While originally created to describe general chemical reac-
tions that exhibit limit cycle oscillatory behavior, Schnakenberg kinetics have been used to
investigate Turing pattern behavior in biological applications such as embryonic fluid flow
asymmetry in the mouse [6, 58, 78, 81, 100].

An empirical Turing system uses kinetics that have been fit to reproduce known exper-
imental data from the system to be modeled. The Thomas uric acid-oxygen system is an
example of an empirical Turing system [89]. If the actual chemical reactions in the system
are precisely known, the kinetics functions are calculated using the law of mass action. An
example of a system in which the actual kinetics can be calculated is the chlorite-iodide-
malonic acid starch (CIMA) reaction, which was the first experimentally observed Turing
pattern [14, 55].

3.2 Growing Domain Turing Systems

To incorporate domain growth into System (3.1), let St ⊂ R
3 be a two-dimensional

regular growing surface with position vector X(ζ, η, t) where ζ, η are spatial parameters for
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St and t ≥ 0. If we let h1 = |Xζ | , h2 = |Xη| , then the incorporation of domain growth
allows System (3.1) to become

ut = D∆su− ∂t(ln(h1h2))u+ ωf(u, v),

vt = ∆sv − ∂t(ln(h1h2))v + ωg(u, v),

}

(3.2)

where ut =
∂u
∂t
, vt =

∂v
∂t

and ∆s is the Laplace-Beltrami operator on St defined by

∆sφ =
1

h1h2

[

(

h2
h1
φζ

)

ζ

+

(

h1
h2
φη

)

η

]

(3.3)

for φ = u, v [72]. Refer to Section A.2 for a complete derivation of System (3.2).
Notice that including domain growth in a Turing system causes the formation of a new

third term −∂t(ln(h1h2))φ (for φ = u, v) in each equation of System (3.2) as compared to
System (3.1). These terms represent dilution of the chemical concentrations due to domain
growth [72]. The parameter ω, often called the domain scale parameter [63], allows one
to adjust the strength of the reaction terms relative to the strength of the diffusion and
the dilution terms; this affects the pattern generated by the system as will be discussed in
Chapters 4 and 5. System (3.2) allows one to construct a Turing system on an isotropically
growing domain when X(ζ, η, t) = ρ(t)X0(ζ, η), where ρ(t) is the domain growth function
and X0(ζ, η) defines the domain at t = 0 [72].

Turing systems have also been generalized to encompass convection/advection-reaction-
diffusion systems on growing domains [54]. However, since traditional reaction-diffusion sys-
tems have been demonstrated to exist in biological pattern development (see Section 3.1.2)
and also have been used in previous biomathematical models of cortical folding (see Sec-
tion 2.3), we will proceed using System (3.2).

We select nondimensional BVM kinetics [7, 9, 98] so that

f(u, v) = u+ av − Cuv − uv2,

g(u, v) = bv + hu+ Cuv + uv2,

where a, b, C, h are kinetics parameters (see Sections A.3 and A.4). BVM kinetics, classified
as phenomenological, are constructed to primarily give striped patterns when C = 0 and
spotted patterns when C > 0 [9, 21]. Since the biological mechanism of cortical folding is
not completely understood, BVM kinetics are a reasonable choice for a model of cortical
folding.

3.3 Growing Prolate Spheroid

System (3.2) is implemented on a growing prolate spheroidal domain. Two different bio-
logically relevant growth functions are utilized to investigate the versatile pattern-generating
capabilities of a growing domain Turing system. Exponential growth is implemented in
Chapter 4 and logistic growth is presented in Chapter 5. Motivation for a growing prolate
spheroidal domain and each type of domain growth is discussed in Chapter 6.
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(a) f = 2, ξ = 1.3141, surface area = 4π (b) f = 2, ξ = 2.1640, surface area = 16π

(c) f = 1.2247, ξ = 1.3141, surface
area = 1.5π

(d) f = 1, ξ = 2.1640, surface area = 4π

Figure 3.1: Prolate spheroids for different values of f and ξ. Changing ξ while holding f
constant changes the shape of the spheroid. Altering f while holding ξ constant changes
the size but maintains the shape of the spheroid.

A prolate spheroid is obtained by rotating an ellipse with semimajor axis length a and
semiminor axis length b about its major axis. The coordinate system for a prolate spheroid
created from such an ellipse is defined by

x =
f

2

√

(1− η2)(ξ2 − 1) cos 2πζ, y =
f

2

√

(1− η2)(ξ2 − 1) sin 2πζ, and z =
f

2
ηξ,

where θ is the polar angle with η = cos θ ∈ [−1, 1], φ is the azimuthal angle with ζ = φ
2π ∈

[0, 1), ξ > 1 is the radial term, and f is the interfocal distance with f = 2
√
a2 − b2 [25]. If E

is the eccentricity of the prolate spheroid, then the shape of the spheroid can be altered by
altering the value of ξ, as E = 1

ξ
(see Section A.5). Given a fixed value of f and increasing

the value of ξ results in a rounder, more sphere-like prolate spheroid; increasing f given a
fixed ξ increases the overall size of the prolate spheroid while maintaining its shape (see
Figure 3.1) [25].
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Define the position vector X on a growing prolate spheroid as

X(ζ, η, t) = ρ(t)









f0
2

√

(ξ2 − 1)(1− η2) cos 2πζ

f0
2

√

(ξ2 − 1)(1− η2) sin 2πζ

f0
2 ξη









,

where f0 is the interfocal distance at t = 0 and the growth function is given by ρ(t). We
calculate the Laplace-Beltrami operator ∆s defined in Equation (3.3) and the dilution term
−∂t(ln(h1h2))φ (for φ = u, v). To this end, we observe that

h1 = ρ(t)πf0
√

(ξ2 − 1)(1− η2) and h2 = ρ(t)
f0
2

√

ξ2 − η2

1− η2
.

It follows that

− ∂t(ln(h1h2))φ = −2
ρ̇

ρ
φ (3.4)

and

∆sφ =
1

ρ2
∆†φ

where

∆†φ =
1

π2f20 (1− η2)(ξ2 − 1)
φζζ +

4(1− η2)

f20 (ξ
2 − η2)

φηη −
4η(2ξ2 − η2 − 1)

f20 (ξ
2 − η2)2

φη.

Overall, System (3.2) on a growing prolate spheroidal domain becomes

ut =
D

ρ2
∆†u− 2

ρ̇

ρ
u+ ωf(u, v),

vt =
1

ρ2
∆†v − 2

ρ̇

ρ
v + ωg(u, v).















(3.5)

3.4 Conclusions

This chapter outlined the basic properties of Turing systems, their basic types of kinetics
functions, and the intuition behind their pattern-generating abilities. A framework for
including domain growth in a Turing system was presented and subsequently implemented
on a prolate spheroidal domain, yielding System (3.5). In Chapters 4 and 5, respectively,
System (3.5) is implemented under exponential and logistic domain growth, ultimately
leading to growing domain Turing models of cortical folding that are presented in Chapter 6.
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CHAPTER 4

EXPONENTIALLY GROWING DOMAIN

TURING SYSTEM

To illustrate the types of patterns that can be generated by a growing domain Turing
system, we incorporate exponential domain growth into System (3.5). We begin by deriving
mathematical conditions that explicitly state when an exponentially growing domain Turing
system satisfies the two Turing criteria and thus can generate Turing patterns. We then
discuss proper system parameter selection for an exponentially growing prolate spheroidal
domain Turing system with BVM kinetics. Finally, we utilize numerical simulations to
investigate the pattern-generating abilities of such a system. We will see that adding domain
growth to a Turing system induces an important change in the system’s pattern-generating
behavior. These results have appeared in [90] and have been submitted in [91, 92].

To begin, we select an exponential growth function

ρ(t) = eRt

with R > 0, t ≥ 0. The dilution term from Equation (3.4) is

− 2
ρ̇

ρ
φ = −2Rφ (4.1)

and System (3.5) becomes

ut =
D

ρ2
∆†u− 2Ru+ ωf(u, v),

vt =
1

ρ2
∆†v − 2Rv + ωg(u, v).















(4.2)

Observe that setting the growth rate to R = 0 reduces System (4.2) to a static domain
Turing System, which is discussed further in Section 4.1.3.

4.1 Turing Conditions

It is highly beneficial to have mathematical equations whose satisfaction indicates when
System (4.2) satisfies the two Turing criteria and is therefore capable of generating Turing
patterns. We call such equations Turing conditions and derive them using linear stability
analysis [32].
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4.1.1 Turing Criterion: Linear Stability in the Absence of Diffusion

To derive mathematical Turing conditions representing the first Turing criterion, we
assume that System (4.2) possesses the required spatially uniform steady state (u0, v0), and
that (u0, v0) remains a steady state in the absence of diffusion. System (4.2) in the absence
of diffusion becomes

ut = −2Ru+ ωf(u, v),
vt = −2Rv + ωg(u, v),

}

(4.3)

where (u0, v0) is the solution to

0 = −2Ru0 + ωf(u0, v0),
0 = −2Rv0 + ωg(u0, v0).

}

(4.4)

Define w(t) to be a perturbation from (u0, v0) such that

w(t) =

(

u(t)− u0
v(t)− v0

)

=

(

ǫu
ǫv

)

(4.5)

with 0 < |ǫu| , |ǫv| ≪ 1. Notice that Equation (4.5) allows System (4.3) to be rewritten as

wt =

(

ut
vt

)

.

Next, we linearize ut, vt from System (4.3) by performing a Taylor expansion about
(u0, v0), yielding

ut = −2Ru0 + ωf(u0, v0) + ǫu
∂

∂u
(−2Ru+ ωf(u, v))

∣

∣

∣

∣

(u0,v0)

+ǫv
∂

∂v
(−2Ru+ ωf(u, v))

∣

∣

∣

∣

(u0,v0)

+O(ǫ2),

and similarly for vt. Using System (4.4) and ignoring O(ǫ2) and higher terms, we can write

ut ≈ −2Rǫu + ω[ǫufu(u0, v0) + ǫvfv(u0, v0)],

vt ≈ −2Rǫv + ω[ǫugu(u0, v0) + ǫvgv(u0, v0)],

so that
wt = −2Rw + ωAw (4.6)

with

A =

(

fu fv
gu gv

)

(u0,v0)

. (4.7)

Consider solutions to Equation (4.6) with form w(t) = ceλt, where c is a vector of
constants. To achieve the desired linear stability of (u0, v0), perturbations w must ap-
proach 0 as t increases, which occurs when Re(λ) < 0. By substituting w(t) = ceλt into
Equation (4.6) and dividing through by eλt, we obtain the eigenvalue equation

λc = ωAc− 2Rc = Ãc,
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where

Ã = ωA− 2RI =

(

ωfu − 2R ωfv
ωgu ωgv − 2R

)

(u0,v0)

.

For notational brevity it is assumed that fu, fv, gu, gv are evaluated at the steady state
(u0, v0) in future calculations.

The characteristic equation of Ã,

det(Ã− λI) =

∣

∣

∣

∣

ωfu − 2R− λ ωfv
ωgu ωgv − 2R− λ

∣

∣

∣

∣

= 0,

implies that the eigenvalues λ of Ã satisfy

λ2 − λtrÃ+ det Ã = 0, (4.8)

where

trÃ = ω(fu + gv)− 4R and

det Ã = ω2(fugv − fvgu)− 2Rω(fu + gv) + 4R2.

Since Equation (4.8) has solutions

λ1,2 =
1

2
trÃ± 1

2

√

(

trÃ
)2

− 4 det Ã,

it follows that Reλ < 0 when

tr Ã = ω(fu + gv)− 4R < 0 and (4.9)

det Ã = ω2(fugv − fvgu)− 2Rω(fu + gv) + 4R2 > 0.

These two inequalities constitute the first two mathematical Turing conditions for Sys-
tem (4.2); when these inequalities are satisfied, System (4.2) possesses a steady state that
is linearly stable in the absence of diffusion.

4.1.2 Turing Criterion: Diffusion-Driven Instability

To derive Turing conditions representing diffusion-driven instability, we begin by lin-
earizing System (4.2) about (u0, v0) to obtain

wt = DM∆†w − 2Rw + ωAw, (4.10)

where

DM =
1

ρ2

(

D 0
0 1

)

and w is the perturbation defined in Equation (4.5). Consider solutions to Equation (4.10)
with form

w(X, t) =
∑

k

cke
λtYk(X), (4.11)
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where ck are Fourier coefficients determined by the initial conditions and Yk are prolate
spheroidal harmonics; that is, Yk are solutions to the Helmholtz equation ∆Yk+k

2Yk = 0
on a prolate spheroid. Substitute Equation (4.11) into Equation (4.10) and divide through
by eλt to obtain

∑

k

ck(λYk +DMk
2Yk + 2RYk − ωAYk) = 0,

where we have used −∆†Yk = k2Yk. Since we desire nontrivial solutions w, it must be
that ck 6= 0, and

λYk +DMk
2Yk + 2RYk − ωAYk = 0. (4.12)

Rearranging Equation (4.12) yields another eigenvalue equation,

λYk = (−DMk
2 − 2RI + ωA)Yk,

leading to the characteristic equation

det(Ã−DMk
2 − λI) = 0. (4.13)

When evaluated, the determinant in Equation 4.13 can be rewritten as

λ2 + λ

[

k2

ρ2
(1 +D)− tr Ã

]

+ h(k2) = 0, (4.14)

where

h(k2) =
D

ρ4
(k2)2 +

k2

ρ2
[2R(1 +D)− ω(fu +Dgv)] + det Ã.

Setting k2 = 0 reduces the analysis to the no-diffusion case. Since we wish to derive Turing
conditions for diffusion-driven instability, we only consider k2 > 0 from this point onward.

It must be that Re(λ) > 0 to achieve diffusion-driven instability. Solving Equation (4.14)
using the quadratic formula yields

λ1,2 =− 1

2

(

k2

ρ2
(1 +D)− tr Ã

)

± 1

2

√

(

k2

ρ2
(1 +D)− tr Ã

)2

− 4h(k2). (4.15)

Then Re(λ) > 0 is achieved when either (i)

k2

ρ2
(1 +D)− tr Ã < 0 (4.16)

or (ii)

λ =− 1

2

(

k2

ρ2
(1 +D)− tr Ã

)

+
1

2

√

(

k2

ρ2
(1 +D)− tr Ã

)2

− 4h(k2) (4.17)

and
h(k2) < 0. (4.18)
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Equation (4.16) cannot be satisfied if the Turing condition given in Equation (4.9) is sat-
isfied. Thus, to achieve diffusion-driven instability, Equations (4.17) and (4.18) must be
satisfied.

A necessary condition for the satisfaction of Equation (4.18) is

2R(1 +D)− ω(fu +Dgv) < 0, (4.19)

which constitutes the first mathematical condition for System (4.2) to satisfy diffusion-
driven instability, and the third mathematical Turing condition overall. Notice that Equa-
tion (4.19) is a necessary but not sufficient condition to satisfy h(k2) < 0; one must select
the positive square root from Equation (4.15) as well as ensure that

∣

∣

∣

∣

k2

ρ2
[2R(1 +D)− ω(fu +Dgv)]

∣

∣

∣

∣

>

∣

∣

∣

∣

D

ρ4
(k2)2 + det Ã

∣

∣

∣

∣

.

To guarantee that h(k2) < 0 is satisfied, a fourth mathematical Turing condition is
derived. Since h(k2) is an upward-opening parabola in k2, h(k2) < 0 can be always satisfied
if Equation (4.19) is satisfied and hmin = min

[

h(k2)
]

< 0 . By differentiating h(k2) with
respect to k2 and setting the derivative equal to zero, we see that hmin occurs when

k2 = k2min = − ρ2

2D
[2R(1 +D)− ω(fu +Dgv)].

It then follows that

hmin = h
(

k2min

)

=R2

[

4− (1 +D)2

D

]

+Rω

[

1

D
(1 +D)(fu +Dgv)− 2(fu + gv)

]

+ ω2

[

(fugv − fvgu)−
1

4D
(fu +Dgv)

2

]

,

so that h(k2) < 0 when

R2

[

4− (1 +D)2

D

]

+Rω

[

1

D
(1 +D)(fu +Dgv)− 2(fu + gv)

]

+ ω2(fugv − fvgu) <
ω2

4D
(fu +Dgv)

2.

This equation is the second mathematical condition required for System (4.2) to achieve
diffusion-driven instability and the fourth mathematical Turing condition overall.

4.1.3 Summary of Turing Conditions

By using linear stability analysis, we derived four mathematical conditions that, when
satisfied, guarantee the exponentially growing prolate spheroidal domain Turing System (4.2)
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is capable of generating Turing patterns. These four Turing conditions are

tr Ã = ω(fu + gv)− 4R < 0, (4.20a)

det Ã = ω2(fugv − fvgu)− 2Rω(fu + gv) + 4R2 > 0, (4.20b)

2R(1 +D)− ω(fu +Dgv) < 0, (4.20c)

R2

[

4− (1 +D)2

D

]

+ ω2(fugv − fvgu)

+Rω

[

1

D
(1 +D)(fu +Dgv)− 2(fu + gv)

]

<
ω2

4D
(fu +Dgv)

2, (4.20d)

where the first two conditions give linear stability in the absence of diffusion and the second
two conditions give diffusion-driven instability.

Recall that System (4.2) can be changed to a static domain Turing system by setting
the growth rate to R = 0, giving System (3.1). The four exponentially growing domain
Turing conditions in (4.20) then simplify to the static domain Turing conditions [63]:

tr A = fu + gv < 0, (4.21a)

detA = fugv − fvgu > 0, (4.21b)

fu +Dgv > 0, (4.21c)

detA <
1

4D
(fu +Dgv)

2, (4.21d)

where A is given in Equation (4.7). System parameters must therefore also satisfy these
four static domain Turing conditions. It follows from Equations (4.21a) and (4.21c) that
fu, gv are of opposite sign and D 6= 1. In System (4.2), D must satisfy D ∈ (0, 1), thus
system parameters must be chosen to satisfy fu > 0 and gv < 0.

The space of parameters for which the Turing conditions in (4.20) are satisfied, often
called the Turing space, can be larger for an exponentially growing domain Turing system
than for a corresponding static domain Turing system. Comparing the first Turing condition
in the growing and static domains, we can see that Equation (4.21a) requires fu + gv to
be strictly negative while Equation (4.20a) requires that fu + gv <

4R
ω
. Since R,ω > 0,

the exponentially growing domain Turing condition (Equation (4.20a)) allows fu + gv to
potentially be positive, allowing for a larger Turing space than a static domain Turing
system. Furthermore, if we compare the second Turing condition in the growing and static
domains, we notice that Equation (4.20b) implies

ω2(fugv − fvgu) > 2R[ω(fu + gv)− 2R] > 2R[ω(fu + gv)− 4R] = 2R tr Ã. (4.22)

While Equation (4.21b) requires that fugv − fvgu be strictly positive, Equation (4.22) im-
plies that fugv − fvgu only needs to be greater than some negative number since the Equa-
tion (4.20a) requires tr Ã < 0. Again, this shows that an exponentially growing domain
Turing system allows for a larger Turing space than a static domain Turing system.
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4.2 Kinetic Parameter Selection

As discussed in Section 3.1, we select nondimensional BVM kinetics so that System (4.2)
becomes

ut =
D

ρ2
∆†u− 2Ru+ ω(u+ av − Cuv − uv2),

vt =
1

ρ2
∆†v − 2Rv + ω(bv + hu+ Cuv + uv2).















(4.23)

Traditional use of BVM kinetics in static domain Turing systems sets parameter values so
that (0, 0) is the only spatially uniform steady state of the system [9].

It is desirable to accomplish this for the exponentially growing domain System 4.23 as
well. However, adding growth to a reaction-diffusion system adds the dilution term which
must be considered when finding the steady state(s) of System 4.23. Recall that the steady
state of any Turing system must remain a steady state in the absence of diffusion. A steady
state (u, v) = (u0, v0) of System 4.23 must then satisfy

0 = −2Ru0 + ω(u0 + av0 − Cu0v0 − u0v
2
0), (4.24a)

0 = −2Rv0 + ω(bv0 + hu0 + Cu0v0 + u0v
2
0), (4.24b)

from which it follows that

v0 =
−u0(−2R+ ω + ωh)

−2R+ ωa+ ωb
(4.25)

if −2R+ ωa+ ωb 6= 0. Requiring −2R+ ω + ωh = 0, which implies

h =
2R

ω
− 1, (4.26)

ensures that v0 = 0 is the only possible v coordinate of the steady state. Substituting v0 = 0
into Equation 4.24b yields

0 = ωhu0.

As ω > 0, requiring h 6= 0 ensures that u0 = 0. In summary, in order for (0, 0) to be the
only steady state of System 4.23, it must be that

−2R+ ωa+ ωb 6= 0,

h =
2R

ω
− 1 6= 0, and

ω 6= 2R,



















(4.27)

where the third equation follows readily from the second.
The parameters of System (4.23) must be selected to satisfy the four mathematical

Turing conditions in (4.20). Nondimensional BVM kinetics have partial derivatives

fu = 1, fv = a, gu = h =
2R

ω
− 1, and gv = b,
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where all partial derivatives are evaluated at the steady state (0, 0) as in Section 4.1. From
Section 4.1.3, we require gv < 0; thus b < 0. Substituting BVM kinetics partial derivatives
into (4.20), it follows that the four mathematical Turing conditions for System (4.23) are

ω(1 + b)− 4R < 0,

ω2(a+ b)− 2Rω(1 + a+ b) + 4R2 > 0,

2R(1 +D)− ω(1 +Db) < 0, and

ω2(a+ b) +R2
(

2− 1
D
−D

)

+Rω
(

1
D
− b− 1 +Db− 2a

)

<
ω2

4D
(1 +Db)2.











































(4.28)

4.3 Numerical Results

We numerically implement System (4.23) using a forward-time central-space finite dif-
ference scheme coded in FORTRAN [61, 90]. A prolate spheroidal domain has singularities
at the north pole (η = 1) and south pole (η = −1) of the prolate spheroid. Thus, special
care to avoid these singularities must be taken when establishing the spatial mesh and the
boundary conditions. To establish a mesh in the (ζ, η) spatial domain, we set

∆ζ =
1

J
and ∆η =

2

K + 1
,

where J = 68 and K = 33. Creating the mesh in this fashion agrees with the literature
for numerical simulations of Turing systems on a sphere [97] and prolate spheroid [86]. We
then define

Un
j,k = U

(

j∆ζ,−1 + k∆η +
∆η

2
, n∆t

)

to be the numerical approximation to the actual value of u(ζ, η, t), where j, k, n are integers
such that j ∈ [0, J ] , k ∈ [0,K] , and n ≥ 0 (similarly, V n

j,k is the approximation to v(ζ, η, t)).
Creating the mesh in this fashion allows the poles at η = ±1 to be avoided. Values of η at
mesh points exhibit symmetry about the value η = 0, further agreeing with the literature
for similar numerical simulations of Turing systems [86, 97].

Boundary conditions with respect to ζ are periodic and given by

Un
0,k = Un

J,k, V n
0,k = V n

J,k.

Boundary conditions with respect to η are employed at the north and south pole of the
domain and agree with the literature [86, 97]. The south pole boundary condition is

Un
j+J

2
,0
= Un

j,0, V n
j+J

2
,0
= V n

j,0,

and the north pole boundary condition is

Un
j+J

2
,K

= Un
j,K , V n

j+J

2
,K

= V n
j,K ,

where j ∈
[

1, J2
]

in both cases.
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Concentration values of u and v are assumed to be normalized about zero and initial
u, v values are selected to be random values χ ∈ [−0.5, 0.5] along the equator of the prolate
spheroid and zero elsewhere, representing the noise that causes a Turing system’s steady
state to be driven unstable by diffusion [97]. Using these initial conditions in our simulations,
we observed Turing systems’ intrinsically high sensitivity to initial conditions, as expected
[99]. While different random initial conditions yielded different patterns (given a particular
set of system parameters), the overall pattern-generating behavior of the system (described
below for exponential domain growth and in Chapter 5 for logistic domain growth) remained
the same. Thus, for the remainder of this dissertation, all simulations have been created
using identically seeded random initial conditions so that we can clearly investigate the
pattern-generating behavior of the systems in question. Concentration values are visualized
using a concentration gradient where light-colored regions correspond to areas where the
concentration of activator u exceeds that of inhibitor v (representing u > 0 or equivalently,
v < 0) and dark-colored regions correspond to areas where the concentration of inhibitor v
exceeds that of activator u (representing u < 0, or equivalently v > 0); for example, refer
to Figure B.1.

Stability of the numerical code was verified by several methods. Given a set of initial
conditions and system parameters, changing the value of ∆t or changing the mesh size in the
ζ direction (by doubling, quadrupling, or halving the number of ζ mesh points) yielded the
same pattern, as expected. Mesh size in the η direction was not altered from the literature
value so as not to alter the amount of error being contributed from the boundary conditions
at the poles. Selecting an identical initial condition value at every point at the equator
and then perturbing the initial condition (either by changing every value on the equator or
by changing just one or two values on the equator) yielded the same pattern, as expected.
When using the numerical code to simulate the heat equation vt = ∆v with a constant
initial condition on the equator (representing the “heat source”) and zero elsewhere, we
observed that the “heat” spreads over the domain and quickly achieves the same value at
every point in the domain, as expected.

System parameters were selected to be

D = 0.516, a = 1.112, b = −1.01, C = 0,

agreeing with traditional values used for BVM kinetics [8, 50]. Initial interfocal distance
was selected to be f0 = 2 and ξ was fixed at ξ = 1.3141. This choice of f0 and ξ gave the
domain an initial surface area of 4π, matching the surface area of the unit sphere. We fix ξ
to fix the domain shape (see Section 3.3) as changing ξ affects the generated pattern [86].
Growth rate R and domain scale ω were the only parameters varied between simulations
and were selected such that the Turing conditions in (4.28) were satisfied.

We observed that patterns produced by exponentially growing domain Turing Sys-
tem (4.23) are transient and evolve continuously from one pattern to another (see Fig-
ures 4.1–4.3). This pattern-generating behavior contrasts with that of a comparable Turing
system on a static prolate spheroidal domain in which the pattern converges to one final
pattern [86, 97]. The addition of exponential domain growth to a Turing system therefore
induces a fundamental change in the system’s pattern-generating behavior. Our observation
of domain growth inducing transient patterns agrees with previous research conducted on
Turing systems on exponentially growing spheres [32, 43] and linearly growing spheres [16].
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System (4.23) can generate striped or spotted patterns depending on whether BVM
parameter C is selected as C = 0 or C > 0, respectively (see Section 3.2). By electing
BVM parameter C = 0 for our simulations, we observe striped patterns, similar to a static
domain BVM system [9, 21]. As the patterns evolve, they become more complex; that is,
one can observe more stripes as elapsed time t increases (see Figures 4.1–4.3). An increase
in pattern complexity with increasing time agrees with results in the literature from linearly
growing spherical Turing systems [16].

Since simulations varied only in the values of parameters R and ω, we were able to
observe that increasing R (given a particular ω) or increasing ω (given a particular R)
causes the system to generate a more complex pattern at any given t > 0 (see Figure 4.4 or
compare Figures 4.1–4.3) . We also noticed that increasing R or ω increases the frequency
at which the pattern evolves from one pattern to another. The correspondence between
increasing domain growth rate and overall rate of pattern evolution has been previously
observed in the case of linearly growing spherical Turing systems [16].

While we employed C = 0 in our simulations, it should be noted that observations
analogous to those in the preceding three paragraphs are made for spotted patterns produced
by System (4.23) when C > 0. Patterns are again transient, with the number of spots
increasing as t increases; increasing the value of R or ω again increases the number of spots
generated at a given t > 0. An example of a spotted pattern produced by System (4.23)
with C = 1.57 (the traditional literature value of C used to generate spots with BVM
kinetics [8, 49, 50]) is given in Figure 4.5.

4.4 Comparison to Static Domain Pattern

As discussed in Section 4.3, a pattern generated by a static prolate spheroidal domain
Turing system converges to a final pattern (see Figures 4.6 and 4.7). We also compared
static prolate spheroidal domain patterns to exponentially growing domain patterns. We
generate the pattern on an exponentially growing domain for a given value of growth rate
R. At the final pattern (tfinal = 35), the domain size has grown isotropically by a factor of
eRtfinal . This scale factor is used to create a static prolate spheroidal domain of the same size.
The corresponding static domain pattern is then generated using System (4.23) with R = 0.
Patterns generated on prolate spheroidal domains with equal final domain size are different,
but are qualitatively similar in the number and size of stripes (see Figures 4.8 and 4.9). Our
observation of domain size having a directly proportional influence on pattern complexity
agrees with previous Turing system research conducted on static prolate spheroidal domains
[86] and linearly growing spherical domains [16].

4.5 Conclusions

In this chapter, we investigated the effects of implementing exponential domain growth
in a Turing system on a prolate spheroid. Linear stability analysis was employed to derive
mathematical Turing conditions which allow one to select parameters that ensure the sys-
tem will generate Turing patterns. Appropriate selection of system parameters that satisfy
the Turing conditions and maintain the origin as the unique steady state of the system when
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Figure 4.1: Evolution of exponentially growing domain Turing pattern for R = 0.025, ω =
115. The pattern is transient; that is, it evolves as t increases, with pattern complexity
increasing with t. Light-colored regions represent areas where the concentration of the ac-
tivator u exceeds that of the inhibitor v (u > 0 or equivalently, v < 0) and dark-colored
regions represent areas where the concentration of the inhibitor v exceeds that of the acti-
vator u (u < 0, or equivalently v > 0). The pattern was generated by System (4.23) with
kinetics parameters listed on page 34. Snapshot times are indicated by red dots in the lower
right figure. See also: animation.
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Figure 4.2: Evolution of exponentially growing domain Turing pattern for R = 0.01, ω =
115. Decreasing the value of R yields patterns that are are less complex than those in
Figure 4.1 at each corresponding t. The pattern was generated by System (4.23) with
kinetics parameters listed on page 34. Snapshot times are indicated by red dots in the
lower right figure. See also: animation.
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Figure 4.3: Evolution of exponentially growing domain Turing pattern for R = 0.025, ω =
70. Decreasing the value of ω gives patterns that are less complex than those in Figure 4.1
at corresponding values of t. The pattern was generated by System (4.23) with kinetics
parameters listed on page 34. Snapshot times are indicated by red dots in the lower right
figure. See also: animation.
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Figure 4.4: Side-by-side comparison of exponentially growing domain Turing patterns for
differing values of R and ω at t = 35. Increasing R or ω results in a more complex pattern
at a given value of t. The pattern was generated by System (4.23) with kinetics parameters
listed on page 34.

using BVM kinetics was discussed. Finally, the pattern-generating behavior of an exponen-
tially growing prolate spheroidal domain Turing system with BVM kinetics was investigated
by conducting numerical simulations. These simulations demonstrated that incorporating
exponential domain growth into a Turing system causes the patterns to become transient
and ever-increasing in complexity. Increasing the value of parameters R or ω causes the gen-
erated pattern to be more complex (more stripes) at a given value of t > 0. Domain size has
a strong influence on pattern complexity, illustrated by the observation that exponentially
growing domain patterns are qualitatively similar to static domain Turing patterns on a
corresponding final size domain. In the next chapter, we insert logistic domain growth into
System (3.5) and observe that domain growth is the driving force behind pattern transiency
in a growing domain Turing system.
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Figure 4.5: Evolution of spotted exponentially growing domain Turing pattern. By selecting
C = 1.57, System (4.23) generates a transient spotted pattern in which the number of
spots increases with t. Other system parameters were R = 0.025, ω = 70, D = 0.516, a =
1.112, b = −1.01. Snapshot times are indicated by red dots in the lower right figure. See
also: animation.
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Figure 4.6: Turing pattern on a static domain scaled by e0.01∗35. The pattern converges to a
final pattern due to the lack of domain growth. The pattern was generated by System (4.23)
with R = 0, ω = 115, and kinetics parameters listed on page 34. The static domain size
equals that of an exponentially growing domain at tfinal = 35 with R = 0.01. Snapshot
times are indicated by red dots in the lower right figure.
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Figure 4.7: Turing pattern on a static domain scaled by e0.025∗35. The lack of domain
growth allows the system to converge to a final pattern. The pattern was generated by
System (4.23) with R = 0, ω = 70, and kinetics parameters listed on page 34. The static
domain size equals that of an exponentially growing domain at tfinal = 35 with R = 0.025.
Snapshot times are indicated by red dots in the lower right figure.
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(a) Exponentially growing domain (b) Same-sized static domain

Figure 4.8: Comparison of exponentially growing domain with R = 0.01 at tfinal = 35
and same-sized static domain Turing patterns for ω = 115. A pattern generated on an
exponentially growing domain (a) and a same-sized static domain (b) are different, but
qualitatively similar in the number and size of stripes due to their shared domain size.

(a) Exponentially growing domain (b) Same-sized static domain

Figure 4.9: Comparison of exponentially growing domain with R = 0.025 at tfinal = 35 and
same-sized static domain Turing patterns for ω = 70. Turing systems generate different yet
qualitatively similar patterns on an exponentially growing domain (a) and a static domain
(b) whose size is equal to the final size of the growing domain.
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CHAPTER 5

LOGISTICALLY GROWING DOMAIN TURING

SYSTEM

To further illustrate the versatility of the growing domain Turing framework, we incorporate
logistic domain growth into System (3.5). Logistic growth has been used to model biological
phenomena such as population growth, cell division, and tumor growth [63]. Logistic growth
is frequently used in biomathematical models due to its high level of biological realism
[12, 46, 94]. Organisms cannot continue to grow forever; they eventually stop growing due
to constraints of resources or size (or both), and logistic growth models this well.

We first build a logistic growth function that approximates biologically relevant cortical
growth data. We then scale this growth function in a way that facilitates comparison
between patterns generated by System (3.5) on corresponding prolate spheroidal domains
with exponential or logistic domain growth. We demonstrate that although a logistically
growing domain does not allow for the derivation of Turing conditions, as explained in
Section 5.2, the logistic system is still able to exhibit pattern-forming Turing behavior,
which is presented in Section 5.3. These results have been submitted in [91].

5.1 Selecting a Logistic Growth Function

To incorporate logistic domain growth into System (3.5), we define ρ(t) to be a logistic
growth function. The basic logistic growth function is

ρ(t) =
K

1 + e−r(t−t0)
, (5.1)

where t ≥ 0, K is the “carrying capacity” or asymptotic value of the curve as t→ ∞, r is the
logistic growth rate (not to be confused with the exponential growth rate R from exponential
growth function ρexp(t) = eRt), and t0 allows one to horizontally shift the graph left or right.
Since we are constructing a growth function for use in a model of cortical folding, we perform
a logistic fit on a modification of the estimated Kinoshita et al. [44] germinal matrix volume
data points. The data points, which approximate exponential growth, must be modified to
appear logistic because without modification, the logistic fit operation returns a curve that
resembles exponential growth (see Figure 5.1). The resulting parameter values from the
logistic fit are K = 2.3304, r = 0.6603, t0 = 19.9258 (see Figure 5.1).
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Figure 5.1: Logistic growth curves. The unmodified estimated Kinoshita et al. [44] germi-
nal matrix data points (circles) are logistically fit using the basic logistic function (Equa-
tion (5.1)) and resemble an exponential growth function (dashed curve). Estimated param-
eters are K = 1.8683 × 1013, r = 0.28137, t0 = 128.6751. After modifying the estimated
data points by adding repetitions of the final value to the end (diamonds), the fitted logistic
function (solid curve) with parameters K = 2.3304, r = 0.6603, t0 = 19.9258 is sigmoidal.

Next, we alter the basic logistic growth function in Equation (5.1) with the intention of
comparing domain growth between logistic and exponential growth functions. We change
the carrying capacity from K to K⋆ = eRtfinal − 1 and vertically shift the graph by 1 to give
the scaled logistic growth function

ρlog(t) =
K⋆

1 + e−r(t−t0)
+ 1. (5.2)

Equation 5.2 has been scaled so that ρexp(0) ≈ ρlog(0) and ρexp(tfinal) ≈ ρlog(tfinal) at
a chosen time tfinal (see Figure 5.2). A growing domain under logistic growth function
ρlog and exponential growth function ρexp thus have approximately the same initial and
final domain sizes. Controlling the initial and final domain size in this fashion allows for
comparison of patterns generated on corresponding exponentially and logistically growing
domains.

Using the growth function in Equation (5.2), the dilution term from Equation (3.4)
becomes

−2
ρ̇

ρ
φ = −2L(t)φ,

where

L(t) =
r(ρ− 1)

ρ

(

1− ρ− 1

K⋆

)

. (5.3)
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Figure 5.2: Scaled logistic growth curve. Modifying the basic logistic fit curve given by
Equation (5.1) (dash-dotted curve) results in the scaled logistic growth curve (solid curve)
given by Equation (5.2), which has approximately the same initial and final values as the
exponential growth curve e0.01t (dashed curve).

Overall, System (3.5) with logistic growth function ρlog(t) becomes

ut =
D

ρ2
∆†u− 2L(t)u+ ωf(u, v),

vt =
1

ρ2
∆†v − 2L(t)v + ωg(u, v),















(5.4)

where L(t) is given by Equation (5.3). Notice that unlike the −2Rφ dilution term for
the exponentially growing domain (Equation 4.1), the dilution term under logistic domain
growth is time-dependent.

5.2 Linear Stability Analysis for the Logistically Growing

Domain Turing System

We attempt to employ linear stability analysis to obtain Turing conditions for the logis-
tically growing domain System (5.4) in the same manner as for the exponentially growing
domain System (4.2) in Section 4.1.1. System (5.4) in the absence of diffusion becomes

ut = −2L(t)u+ ωf(u, v),

vt = −2L(t)v + ωg(u, v).

Let (u0, v0) be a spatially uniform steady state of System (5.4) that remains a steady state
in the absence of diffusion. This implies that (u0, v0) is the solution to

0 = −2L(t)u0 + ωf(u0, v0),

0 = −2L(t)v0 + ωg(u0, v0).
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Notice that due to the time dependence of the dilution term, the steady state of the system
is also time-dependent, so (u0, v0) = (u0(t), v0(t)). Linear stability analysis no longer makes
sense because of this time dependence, as the system would need to be re-linearized at each
value of t; in other words, a unique linear approximation for the system for all t cannot be
found.

Since linear stability analysis fails, the time dependence of the dilution term prevents
the derivation of Turing conditions for the logistically growing domain System (5.4). This
means that we cannot find mathematical conditions that guarantee that System (5.4) will
be able to exhibit the characteristic Turing pattern-generating behavior. However, the lack
of a guarantee does not rule out the possibility that System (5.4) might still exhibit Turing
behavior; in fact, it is able to generate Turing patterns, which we show in the following
sections.

5.3 Numerical Results

We select nondimensional BVM kinetics so that System (5.4) becomes

ut =
D

ρ2
∆†u− 2L(t)u+ ω(u+ av − Cuv − uv2),

vt =
1

ρ2
∆†v − 2L(t)v + ω(bv + hu+ Cuv + uv2).















(5.5)

To numerically implement System (5.5), we use a forward-time, central-space finite differ-
ence scheme coded in FORTRAN.We wish to compare the patterns created by System (4.23)
and System (5.5) to investigate the effects of changing domain growth in System (3.5) from
exponential to logistic. To accomplish this, our logistic growth numerical simulations had
identical kinetics parameters, identical initial conditions, and approximately identical initial
and final domain size (as discussed in Section 5.1) as the exponential growth simulations
in Section 4.3. We again visualize concentration values with a concentration gradient in
which light-colored areas represent regions where activator u has greater concentration than
inhibitor v (corresponding to u > 0 or equivalently, v < 0) and dark-colored areas repre-
sent regions where inhibitor v has greater concentration than activator u (corresponding to
u < 0 or equivalently, v > 0). Parameters for the logistic growth function defined in Equa-
tion (5.2) were r = 0.6603, t0 = 19.9258,K⋆ = eRtfinal − 1 where R = 0.01 and tfinal = 35.
The parameter ω was varied as in Section 4.3.

We observed a key difference in how patterns produced by logistically and exponentially
growing domain Turing systems evolve as elapsed time progresses. While patterns on an
exponentially growing prolate spheroid continually change and evolve (see Section 4.3), pat-
terns on a logistically growing prolate spheroid exhibit the vast majority of their transiency
during the period when the logistic growth curve is rapidly increasing. A “burst” of pattern
change is seen concurrently with the “burst” of domain growth provided by the logistic
growth curve. Once the domain stops growing (asymptotically), patterns generated on a
logistically growing prolate spheroidal domain behave like a pattern produced by a static
domain, converging towards one final pattern (see Figures 5.3 and 5.4). Overall, we observe
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that transient pattern evolution in a growing domain Turing system is driven by domain
growth.

We also observed that increasing the value of the domain scale parameter ω in a logis-
tically growing prolate spheroid Turing system increases the complexity of the generated
pattern at a given t > 0, just as in an exponentially growing prolate spheroid Turing
system (compare Figures 5.3 and 5.4). Even though they shared identical kinetics param-
eters, initial conditions, and initial and final domain size, the final patterns produced by
System (4.23) and System (5.5) are different, though they are qualitatively similar in the
number and size of stripes due to their corresponding final domain size (see Figures 5.5, 5.6).
It will be demonstrated in Chapter 6 that increasing the value of R, which increases the
logistic carrying capacity K⋆ and therefore the domain size at a given t > 0, increases
the complexity of the pattern at a given t > 0, again echoing the observations seen in an
exponentially growing system.

5.4 Piecewise Exponential Growth

We provide further evidence that domain growth drives pattern transiency in a growing
domain Turing system. A piecewise growth function consisting of initial and final constant
values and a middle exponential growth region can be used to approximate logistic domain
growth. We incorporate such a growth function into Turing System (3.5). Consider the
piecewise growth function

ρpe(t) =











a for k1 ≤ t < k2,

be(Rpe)t for k2 ≤ t < k3,

c for k3 ≤ t ≤ k4,

where ki (i = 1, . . . , 4) are chosen constants and Rpe is the growth rate for the exponential
region. The dilution term from Equation (3.4) becomes

−2
ρ̇pe
ρpe

φ =











0 for k1 ≤ t < k2,

−2Rpeφ for k2 ≤ t < k3,

0 for k3 ≤ t ≤ k4.

Inserting the growth function ρpe(t) into System (3.5) still yields System (4.2), but with
R = 0 for t ∈ [k1, k2) ∪ [k3, k4] and R = Rpe for t ∈ [k2, k3). The linear stability analysis
and Turing conditions in Section 4.1 thus still hold true. When selecting system parameters
for System (3.5) with growth function ρpe(t), one must check that the parameters satisfy
the Turing conditions in (4.20) not only for the exponential growth rate R = Rpe but
also for R = 0. It is not difficult to find system parameters that meet this requirement,
allowing us to confirm that System (3.5) with growth function ρpe(t) can exhibit Turing
pattern-generating behavior.

To enable comparison of the pattern-generating behavior of a piecewise exponentially
growing prolate spheroidal domain Turing system with that of the exponentially or logisti-
cally growing domain Turing systems discussed in Sections 4.3 and 5.3, we select parameters
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Figure 5.3: Evolution of logistically growing domain Turing pattern with ω = 70. Other
parameters are R = 0.01, tfinal = 35, r = 0.6603, t0 = 19.9258,K⋆ = eRtfinal − 1. The
pattern changes rapidly when the growth curve rapidly increases but does not change much
when the growth curve is flat. The system converges to a final pattern once the domain
asymptotically stops growing. The pattern was generated by System (5.5) with kinetics
parameters listed on page 34. Snapshot times are indicated by red dots in the lower right
figure. See also: animation.
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Figure 5.4: Evolution of logistically growing domain Turing pattern with ω = 115. Other
parameters are R = 0.01, tfinal = 35, r = 0.6603, t0 = 19.9258,K⋆ = eRtfinal − 1. Patterns at
corresponding values of t are more complex than those in Figure 5.3 due to the increased
value of ω. The pattern was generated by System (5.5) with kinetics parameters listed
on page 34. Snapshot times are indicated by red dots in the lower right figure. See also:
animation.
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(a) (b)

(c) (d)

Figure 5.5: Comparison of patterns on exponentially and logistically growing prolate spher-
oidal domains for R = 0.01, ω = 115 at tfinal = 35. Figures (a),(b) show the pattern
produced by System (4.23) on an exponentially growing prolate spheroid. Figures (c),(d)
show the pattern produced by System (5.5) on a logistically growing prolate spheroid with
r = 0.6603, t0 = 19.9258,K⋆ = eRtfinal −1. Kinetics parameters used in both cases are listed
on page 34. Figures (a),(c) represent the patterns on the prolate spheroid, while figures
(b),(d) represent the patterns on their computational domain. The patterns are different,
even though both simulations had approximately the same initial and final domain size and
used identical initial conditions, diffusion coefficient, and kinetics parameters. The patterns
are qualitatively similar in the number and size of stripes due to their corresponding final
domain size.
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(a) (b)

(c) (d)

Figure 5.6: Comparison of patterns on exponentially and logistically growing prolate spher-
oidal domains for R = 0.01, ω = 70 at tfinal = 35. Figures (a),(b) show the pattern pro-
duced by System (4.23) on an exponentially growing prolate spheroid. Figures (c),(d)
show the pattern produced by System (5.5) on a logistically growing prolate spheroid with
r = 0.6603, t0 = 19.9258,K⋆ = eRtfinal −1. Kinetics parameters used in both cases are listed
on page 34. Figures (a),(c) show the patterns on the prolate spheroid; figures (b),(d) show
the patterns on their computational domain. Patterns produced using different growth
functions are different despite being produced by systems that had nearly identical initial
and final domain size, identical initial conditions, and identical kinetics and diffusion pa-
rameters. The patterns are qualitatively similar in the number and size of stripes due to
their corresponding final domain size.
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Figure 5.7: Comparison of growth functions. Depicted are three different growth functions
where R = 0.01: ρexp(t) = eRt (dashed curve), ρlog(t) defined by Equation (5.2) with
r = 0.6603, t0 = 19.9258, tfinal = 35,K⋆ = eRtfinal − 1 (solid curve), and ρpe(t) given in
Equation (5.6) (dash-dot curve). The plotted points (13.2366, 1) and (26.6150, e0.01∗35)
were used to find the exponential portion of ρpe(t) via best exponential fit.

for ρpe(t) such that

ρpe(t) =











1 for 0 ≤ t < 13.2366,

0.7073e0.02616t for 13.2366 ≤ t < 26.6150,

eRtfinal for 26.6150 ≤ t ≤ 35 = tfinal,

(5.6)

where R = 0.01 and the middle function is obtained by performing a best exponential fit
between the points (13.2366, 1) and (26.6150, eRtfinal). These specific points were selected to
construct a ρpe(t) with exponential growth occurring concurrently with the rapid increase
portion of ρlog(t) (see Figure 5.7); this was accomplished by finding where ρlog(t) is ǫ away
from its initial and final asymptotic values of 1 and e0.01∗35, where ǫ was chosen to be
ǫ = 0.005. Choosing the parameters for ρpe(t) in this way also allows all three growth
functions ρexp, ρlog, ρpe to have approximately the same initial and final values so that their
corresponding Turing systems have approximately the same initial and final domain sizes.

5.4.1 Numerical Results

We implement System (3.5) with nondimensional BVM kinetics and growth function
ρpe(t) defined in Equation (5.6) using a FORTRAN forward-time, central-space finite dif-
ference scheme. To allow comparison with the exponentially or logistically growing prolate
spheroid Turing systems discussed in Sections 4.3 and 5.3, we select system parameters and
initial conditions as in Sections 4.3 and 5.3. Considering the observations from Sections 4.3
and 5.3, Turing patterns generated on a piecewise exponentially growing prolate spheroidal
domain behave as expected: patterns exhibit the vast majority of their evolution during the
period of exponential domain growth, while converging to a pattern when the domain is not
growing (see Figure 5.8). Patterns can exhibit small amounts of transiency during the initial
constant portion of the growth curve, as some pattern evolution is to be expected during
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the initial development of any Turing pattern (even on a static domain). Once the domain
begins to grow during the middle exponential portion of the growth curve, the generated
pattern becomes highly transient and increases in complexity, similar to the exponentially
growing domain patterns in Section 4.3. When the final constant part of the growth curve
is reached, the system converges to a final pattern. These observations combined with the
results from Sections 4.3 and 5.3 clearly show that domain growth drives pattern change in
a growing domain Turing system.

5.5 Conclusions

In this chapter, we developed a logistic growth function that allowed comparisons of pat-
terns generated by exponentially and logistically growing prolate spheroids. After observing
the pattern-generating behavior of a logistically growing prolate spheroidal Turing system,
we concluded that domain growth drives pattern transiency in a growing domain Turing
system. Observing the pattern-generating behavior of a comparable piecewise-exponentially
growing prolate spheroid further supported this conclusion. As in Chapter 4, we noted that
increasing the value of parameters R or ω in a logistically growing Turing system gives a
more complex pattern at a given t > 0. In the next chapter, we utilize the growing domain
Turing systems presented in Chapters 4 and 5 to construct growing domain Turing system
models of cortical folding patterns in the brain.
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Figure 5.8: Pattern generated by System (3.5) on a piecewise exponentially growing prolate
spheroid with growth function defined in Equation (5.6) and ω = 115. Kinetics parameters
used are listed on page 34. The pattern changes during the period of domain growth and
converges when domain growth stops. Dots in the bottom right figure indicate when the
individual snapshots were taken. See also: animation.
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CHAPTER 6

GROWING DOMAIN TURING MODELS OF

CORTICAL FOLDING

In this chapter, we use the exponentially and logistically growing prolate spheroidal domain
Turing systems discussed in Chapters 4 and 5 to create two separate yet related growing
domain models of cortical folding. Motivation for using a growing prolate spheroidal do-
main Turing system to model the development of cortical folding patterns is presented. The
connection between patterns generated by our model systems and the biology of cortical
folding pattern development is discussed. The mathematical models are then utilized to
model various manifestations of polymicrogyria and lissencephaly, two types of human dis-
eases of cortical folding which present with too many or too few cortical folds [4, 65, 68, 79].
Advantages and drawbacks of the exponential growth model when compared to the logistic
growth model are also discussed. The exponential modeling results have appeared in [90]
and have been submitted in [91]; logistic modeling results have been submitted in [91].

6.1 Motivation: Connecting the Math to the Biology

The original aim of Turing systems was to model chemical morphogen concentration
gradient patterns on a developing embryo [95]. Since cortical folding may be controlled
via a genetic chemical gradient (see Section 2.2), a Turing system is a reasonable choice
for our biomathematical models of cortical folding. Previous Turing system models of
cortical folding used a static domain, failing to capture the natural growth that occurs
as the brain develops [86]. We address this shortcoming by incorporating a dynamically
growing domain into a Turing system model of cortical folding. We apply our model with
exponential domain growth (presented in Section 6.2.1) as well as our model with logistic
domain growth (presented in Section 6.2.2) to cortical folding.

Recall that our model investigates the viability of the Intermediate Progenitor Model
(IPM), and the key biological processes hypothesized in the IPM take place in the subven-
tricular zone (SVZ). Thus, we must select an appropriate geometric domain to represent
the SVZ in our model. We select a prolate spheroidal domain which grows according to
a chosen type of growth function. The growing prolate spheroidal domain models the lat-
eral ventricle (LV), while the domain surface models the SVZ. Early in neurogenesis, which
occurs from weeks 7-18 gestational age (GA) in humans [75], the cerebral hemispheres are
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(a) (b)

Figure 6.1: Brain, lateral ventricles, and fetus early in development. The cerebral hemi-
spheres (yellow arrow in Figure (a)) are prolate spheroidal in shape at 48 days GA; since
the LVs occupy nearly the entire volume of the developing cerebral hemispheres at 54-56
days GA, they are therefore prolate spheroidal in shape (see Figure (b)). Figure (a) adapted
from [26]; Figure (b) from [38].

prolate spheroidal in shape, with the LVs accounting for the nearly the entire volume of
the cerebral hemispheres (see Figure 6.1) [26, 36, 38, 86]. It follows that the LVs are also
prolate spheroidal in shape at this time, making a prolate spheroid a reasonable choice to
represent the LV in our model. Since the SVZ lines the walls of the LV (see Section 2.1.2),
the prolate spheroid’s surface is a reasonable choice to represent the SVZ.

We assume the existence of an activator morphogen which drives intermediate progen-
itor cells (IPCs) to self-amplify and an inhibitor morphogen which prevents IPCs from
self-amplifying; the existence of such morphogens is supported by evidence showing that
IPCs are controlled by genetic gradients (see Section 2.2). The concentration of activator
morphogen is represented by u and the concentration of inhibitor morphogen is represented
by v. Concentration values are assumed to be normalized about zero such that areas with
u = 0 (equivalently, v = 0) represent regions where the concentration of activator and
inhibitor are exactly equal, areas with u > 0 (equivalently, v < 0) represent activated re-
gions where the concentration of activator exceeds that of inhibitor, and areas with u < 0
(equivalently, v > 0) represent nonactivated regions where the concentration of inhibitor
exceeds that of activator (see figures of simulation results, for example Figures 4.1–4.3,
where light-colored regions represent u > 0 and dark-colored regions represent u < 0).

Patterns created by the model Turing systems on the domain surface can represent
a genetic chemical prepattern [62, 63] of regions of activation and nonactivation for IPC
self-amplification in the SVZ. According to the IPM, IPCs would respond to activated
regions by undergoing self-amplification, leading to gyrus formation; IPCs in nonactivated
regions would not undergo self-amplification, leading to sulcus formation (see Figure 6.2a).
Plotting the final value of u on the z-axis against the (ζ, η) computational domain allows
one to visualize the development of a labyrinthine cortical folding pattern [13, 86] that could
evolve from a Turing prepattern via the IPM (see Figure 6.2b). Visualizing a labyrinthine
Turing pattern in this fashion was previously done in the case of a static rectangular domain
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Turing system model of cortical folding [13]. Alternatively, one can obtain a visualization
of a labyrinthine cortical folding pattern on the prolate spheroidal surface by adding u to
the radial coordinate ξ at each mesh point and projecting the result onto the final prolate
spheroidal domain (see Figure 6.2c). Using activator concentration to proportionally deform
the domain surface in this fashion has been previously utilized in a Turing model of tumor
growth on a linearly growing spherical domain [16]. Animations have been created for each
pattern evolution figure and each labyrinthine visualization figure in this chapter. In sum,
our models create prepatterns for regional IPC self-amplification that could then determine
the location of cortical folds via the IPM; in other words, the IPM provides the link between
mathematical Turing pattern and biological cortical folding pattern in our models.

6.2 Growing Domains for Cortical Folding

6.2.1 Exponentially Growing Model

We select exponential domain growth for our first Turing model of cortical folding.
Recall that the SVZ is the site of self-amplification of IPCs, and regional patterning of
IPC self-amplification could lead to cortical fold locations via the IPM. Since the SVZ
produces (and contains) the germinal matrix (GM), which grows exponentially at a time
during which IPCs proliferate and cortical folds begin to form in humans (see Section 2.1.3
and Figure 2.6), an exponentially growing domain is a reasonable choice for our model.
Additionally, the cerebral hemispheres have been observed to grow exponentially from week
8-13 GA [10] and the cerebral hemispheres’ volume is dominated by the LVs and other
ventricles through week 16 GA [36], further supporting the use of exponential growth in
our model.

Our exponential growth model utilizes System (4.23), a Turing system with nondimen-
sional BVM kinetics on an exponentially growing prolate spheroidal domain. The values
of BVM kinetics parameters utilized in our simulations are listed on page 34. As we will
demonstrate in the following sections, this model of cortical folding can qualitatively model
both normal cortical folding and abnormal (diseased) cortical folding by altering system
parameters R and ω to represent changes in LV size and level of overall genetic expression
of activator and inhibitor morphogens [90]. This technique of modifying system parameters
to represent changes in genetic expression has been previously employed in other biomath-
ematical Turing models of cortical folding [47]. In particular, we are able to model different
presentations of polymicrogyria and lissencephaly, which are discussed in Section 6.3.

6.2.2 Logistically Growing Model

For our second growing domain Turing model of cortical folding, we select logistic domain
growth. As discussed in Section 5.1, our logistic growth function is formed via a logistic
fit on a modification of the estimated Kinoshita et al. [44] germinal matrix volume data
points, then scaled to allow for comparison with the exponentially growing model. Using
logistic growth in a growing domain Turing model of cortical folding allows the prolate
spheroidal domain to grow rapidly, then (asymptotically) stop growing. Since the prolate
spheroidal domain represents the LV, which will eventually stop growing along with the
rest of the brain, logistic growth is a biologically realistic choice for a model of cortical
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(a) Turing prepattern for cortical folding

(b) Labyrinthine visualization on computational do-
main

(c) Labyrinthine visualization on prolate spheroid

Figure 6.2: The Intermediate Progenitor Model provides the link between the mathematics
and the biology in our Turing system models of cortical folding patterns. Light areas (u > 0)
in the Turing pattern represent activated regions where IPCs would undergo many rounds
of self-amplification; dark areas (u < 0) represent nonactivated regions where IPCs would
not self-amplify (Figure (a)). This cortical folding prepattern could lead to folding patterns
of gyri and sulci (Figures (b) and (c)). Refer to Section 2.2.3 for more details on the IPM.
See also: animations.
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folding. As discussed in Sections 4.3 and 5.3, Turing patterns on an exponentially growing
domain continually evolve, while Turing patterns on a logistically growing domain eventually
converge to a final pattern. Since a final cortical folding pattern is eventually established, a
logistically growing domain model captures the generation of cortical folding patterns more
realistically than an exponentially growing domain model.

Our logistic growth model of cortical folding uses System (5.5), a Turing system with
nondimensional BVM kinetics on a logistically growing prolate spheroidal domain. The
values of BVM kinetics parameters used in our simulations are listed on page 34. As is
the case for our exponentially growing model, we can alter system parameters R and ω
to represent changes in LV size and genetic morphogen expression so that our logistically
growing model of cortical folding can qualitatively model certain diseases of cortical folding,
which are discussed in the following section.

6.3 Modeling Diseases of Cortical Folding

Our growing prolate spheroidal domain models of cortical folding can be employed to
model diseases of cortical folding in which the number and size of folds or the size of the LVs
are different from normal development. As discussed in Sections 4.3 and 5.3, increasing R or
ω increases the complexity of the pattern at a given t > 0, yielding more numerous, thinner
stripes. Altering the value of R allows us to control the size of the domain and thus the size of
the LV. In the case of exponential growth, increasing or decreasing R respectively increases
or decreases the exponential growth rate, therefore increasing or decreasing the size of the
domain (representing the size of the LV) at a given t > 0. For logistic growth, increasing or
decreasing R respectively increases or decreases the carrying capacity K⋆ = eRtfinal − 1 of
the logistic growth function in Equation 5.2, again yielding a larger domain at a given t > 0
for larger values of R. Recalling that parameter ω allows one to control the strength of
the reaction terms relative to the dilution and diffusion terms in a growing domain Turing
system, increasing or decreasing the value of ω represents a respective increase or decrease
in the overall level of genetic expression of activator and inhibitor morphogens u and v.

We alter both R and ω to control the complexity of the pattern to model various
manifestations of polymicrogyria and lissencephaly. To do this, we must establish a reference
set of values which represent normal LV size and genetic expression level, thus giving a
normal cortical folding pattern (via a prepattern for IPC self-amplification as discussed
in Section 6.1). We select R = 0.015 to correspond to a normal-sized LV and ω = 115
to represent normal activator-inhibitor genetic expression, so that the number and size of
stripes in the pattern given by System (4.23) or (5.5) with R = 0.015, ω = 115 represents
normal development of the cortical folding pattern. Finally, since patterns generated by
exponentially growing System (4.23) continually evolve without end, we must select a value
of t to represent the “final” pattern generated by the system, which will be interpreted
by IPCs as a prepattern for self-amplification. Since the pattern generated by logistically
growing System (5.5) has converged by t = 35, we select t = 35 as the time at which we
stop our exponentially growing simulations. Figures in this section therefore show the final
pattern generated at t = 35 by the corresponding model simulation.
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6.3.1 Polymicrogyria

Polymicrogyria (PMG) is the common name given to a group of diseases of cortical
folding in which the folds of the cortex are unusually high in number and small in size [4].
Patients suffering from PMG often exhibit mental retardation, epilepsy, and developmental
delay. Mutations in Pax6 and GPR56 have been linked to some forms of PMG [35, 71].
Several different types of PMG are accompanied by enlarged LVs, such as megalencephaly
PMG with polydactyly and hydrocephalus (see Figure 6.3a) [17], bilateral frontoparietal
PMG (see Figure 6.3b) [4, 15, 87], and unilateral PMG (see Figure 6.3c) [70].

As discussed above, we model normal cortical folding using R = 0.015, ω = 115. The
evolving pattern for exponential domain growth from t = 0 to t = 35 is shown in Figure 6.4,
and the corresponding labyrinthine visualizations are shown in Figures 6.5 and 6.6. Using
our models, we capture various forms of PMG by altering the values of R and ω. Results
are summarized in Table 6.1 and Figures 6.7 and 6.8, which show the final pattern (at
t = 35) for exponential and logistic growth, respectively. For example, Figures 6.7a–6.7c
(corresponding to the last time step of Figures 6.4–6.6) and Figures 6.8a–6.8c show normal
patterns for exponential and logistic growth, while Figures 6.7d–6.7i and Figures 6.8d–6.8i
show various representations of PMG. Details are discussed in the following paragraphs.
The full corresponding pattern evolution and labyrinthine visualization figures are found in
Appendix B.

To model polymicrogyria with enlarged LVs, our model systems utilize ω = 115 and
capture LV enlargement by increasing the value of R to R = 0.021, causing the prolate
spheroidal domain (representing the LV) to be larger as explained in Section 6.3. Using a
larger R results in a more complex pattern with an increased number and decreased width of
stripes when compared to the normal pattern. Recalling that the pattern produced by our
model can represent a prepattern for cortical folding via the IPM, this can be interpreted as
an increased number of smaller cortical folds, modeling the characteristic manifestation of
polymicrogyria. The final patterns for PMG with enlarged LVs are shown in Figures 6.7d–
6.7f and 6.8d–6.8f.

In certain types of PMG, such as some cases of bilateral frontoparietal PMG, patients
present with microcephaly (smaller than normal brain and head), yet are still reported
to have enlarged LVs (see Figure 6.3d) [15, 71]. The literature is unclear as to whether
or not these enlarged LVs are actually bigger than normal-sized ventricles in a normal-
sized brain (see Figure 6.3e). We thus capture enlarged LVs within a microcephalic brain
by employing the value of R = 0.015 used for normal-sized LVs, making the assumption
that enlarged LVs in a microcephalic brain are approximately the size of normal LVs in
a normocephalic (normal-sized) brain. The needed polymicrogyric pattern can then be
generated with ω = 150, representing an increase in overall genetic expression of u and v.
The result of employing R = 0.015, ω = 150 in System (4.23) and (5.5) to model PMG with
microcephaly and enlarged LVs can be seen in Figures 6.7g–6.7i and 6.8g–6.8i, respectively.
The generated patterns again exhibit an increased number and decreased size of stripes
relative to the normal patterns, representing polymicrogyria.
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(a) Megalen-
cephaly PMG with
polydactyly and
hydrocephalus

(b) Bilateral fron-
toparietal polymicro-
gyria

(c) Unilateral polymicrogyria (d) Bilateral frontopari-
etal polymicrogyria with
microcephaly

(e) Normal brain

Figure 6.3: MRI images illustrating different types of polymicrogyria. In megalencephaly
PMG with polydactyly and hydrocephalus ((a), figure from [17]) and bilateral frontoparietal
polymicrogyria ((b), figure from [4]), both sides of the brain feature PMG and enlarged
lateral ventricles. In unilateral polymicrogyria ((c), figure from [70]), PMG is seen on the
side of the brain with the enlarged LV, while the side of the brain with a normal-sized
LV exhibits normal cortical folding. Some cases of bilateral frontoparietal PMG present
with microcephaly ((d), figure from [15].) A brain with normal cortical folding pattern and
normal-sized LVs is shown in (e) (figure from [40]).
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Figure 6.4: Evolution of Turing pattern on an exponentially growing prolate spheroid
representing normal cortical development. The pattern was generated by System (4.23)
with R = 0.015, ω = 115 and kinetics parameters listed on page 34. Red dots on the bottom
right figure represent times at which the snapshots were taken. See also: animation.
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Figure 6.5: Exponential growing domain Turing pattern as a prepattern for normal cortical
fold development. Figures (a) through (d) provide a visualization of how a labyrinthine
cortical folding pattern could develop from a genetic chemical Turing prepattern by plotting
the activator concentration u on the z-axis for z = 0, z = u

4 , z =
u
2 , and z = u, respectively.

The pattern represents normal cortical development and corresponds to the final pattern in
Figure 6.4. See also: animation.
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Figure 6.6: Prolate spheroid visualization of exponentially growing domain Turing prepat-
tern for normal cortical fold development. Projecting the images from Figure 6.5 onto the
corresponding prolate spheroidal domain gives a new way to visualize how a labyrinthine
pattern representing normal cortical folding could develop from a chemical Turing prepat-
tern (refer to Figure 6.4 at t = 35). See also: animation.
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Table 6.1: Polymicrogyria simulation results. Simulation results are summarized in Fig-
ures 6.7 and 6.8. Full pattern evolution and labyrinthine visualization figures are in Ap-
pendix B.

Growth
Function

Figure Type Normal
(R = 0.015,
ω = 115)

PMG,
enlarged LVs
(R = 0.021,
ω = 115)

PMG,
microcephaly,
enlarged LVs
(R = 0.015,
ω = 150)

Exponential
Prolate
spheroid
prepattern

Figs. 6.7a, B.1 Figs. 6.7d, B.4 Figs. 6.7g, B.7

Rectangular
domain folding
pattern

Figs. 6.7b, B.2 Figs. 6.7e, B.5 Figs. 6.7h, B.8

Prolate
spheroid
folding pattern

Figs. 6.7c, B.3 Figs. 6.7f, B.6 Figs. 6.7i, B.9

Logistic
Prolate
spheroid
prepattern

Figs. 6.8a,
B.19

Figs. 6.8d,
B.22

Figs. 6.8g,
B.25

Rectangular
domain folding
pattern

Figs. 6.8b,
B.20

Figs. 6.8e,
B.23

Figs. 6.8h,
B.26

Prolate
spheroid
folding pattern

Figs. 6.8c,
B.21

Figs. 6.8f, B.24 Figs. 6.8i, B.27

66



(a) Normal: R = 0.015, ω = 115 (b) Folding pattern from (a) (c) Projection of (b)

(d) PMG with enlarged LVs:
R = 0.021, ω = 115

(e) Folding pattern from (d) (f) Projection of (e)

(g) PMG, microcephaly, en-
larged LVs: R = 0.015, ω = 150

(h) Folding pattern from (g) (i) Projection of (h)

Figure 6.7: Modeling polymicrogyria on an exponentially growing prolate spheroid. The
generated PMG prepatterns exhibit an increased number and decreased width of stripes
(figures (d)–(i)) relative to the normal patterns (figures (a)–(c)). The center and right
columns show how a labyrinthine cortical folding pattern could develop from the corre-
sponding Turing genetic chemical prepattern in the left column. See Figures B.1–B.9 for
the corresponding pattern evolution and labyrinthine visualization figures.
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(a) Normal: R = 0.015, ω = 115 (b) Folding pattern from (a) (c) Projection of (b)

(d) PMG with enlarged LVs:
R = 0.021, ω = 115

(e) Folding pattern from (d) (f) Projection of (e)

(g) PMG, microcephaly, en-
larged LVs: R = 0.015, ω = 150

(h) Folding pattern from (g) (i) Projection of (h)

Figure 6.8: Modeling polymicrogyria on a logistically growing prolate spheroid. The gener-
ated PMG prepatterns exhibit an increased number and decreased width of stripes (figures
(d)–(i)) relative to the normal patterns (figures (a)–(c)). The center and right columns show
how a labyrinthine cortical folding pattern could develop from the corresponding Turing ge-
netic chemical prepattern in the left column. See Figures B.19–B.27 for the corresponding
pattern evolution and labyrinthine visualization figures.
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6.3.2 Lissencephaly

Type I lissencephaly, also called classical lissencephaly, is a disease of cortical folding
in which the brain presents with a below-normal number of cortical folds, which appear
broader in width (see Figures 6.9 and 6.10) [5, 65, 79]. As we did with polymicrogyria, we
model various types of type I lissencephaly (henceforth referred to simply as lissencephaly)
by varying the values of parameters R and ω in our model systems. Results corresponding
to our model representations of lissencephaly are summarized in Table 6.2 and Figures 6.11
and 6.12 for exponential and logistic growth. For example, Figures 6.11a–6.11c and 6.12a–
6.12c (repeats of Figures 6.7a–6.7c and 6.8a–6.8c) show normal patterns for exponential
and logistic growth, while figures 6.11d–6.11l and 6.12d–6.12l show various representations
of lissencephaly. The corresponding full pattern evolution and labyrinthine visualization
figures are in Appendix B.

Microcephalic Lissencephaly: Norman-Roberts Syndrome. Norman-Roberts
Syndrome (NRS) is a very rare congenital disease of brain development, with only eleven
cases reported as of 2007 [11, 65, 68, 79]. NRS patients present with type I lissencephaly,
microcephaly (see Figure 6.9), reduced head growth rate, severe mental retardation, and
epilepsy [5, 11, 65, 79]. In five of the eleven cases, patients presented with enlarged LVs,
while in the other six cases the LVs are reported as not being enlarged (see Figure 6.10)
[11, 65, 68, 79]. For NRS cases in which the LVs are not enlarged, individual components
of the brain are smaller than normal (including the LVs), as NRS patients suffer from
microcephaly. To model these cases of NRS, we select ω = 115 and represent the smaller-
than-normal-LVs by reducing the value of R to R = 0.005, resulting in a smaller prolate
spheroidal domain (representing the LV) as explained in Section 6.3. Decreasing R results
in a less complex final pattern, or in other words, a decrease in number and increase in width
of stripes when compared to the normal pattern (see Figures 6.11d–6.11f and 6.12d–6.12f).
By interpreting the striped pattern as a prepattern for the location and size of cortical folds
via the IPM, this represents a decrease in number and increase in width of cortical folds,
modeling the lissencephaly that is seen in NRS.

For cases of NRS in which the LVs are enlarged, the enlarged ventricles are still contained
within a microcephalic brain, and the literature is again unclear about the size of such
enlarged LVs relative to normal-sized LVs in a normocephalic brain. To model the enlarged
LVs in these cases of NRS, we select R = 0.015 (corresponding to normal-sized LVs) as
we did in the case of PMG with microcephaly and enlarged LVs in Section 6.3.1. The
needed prepattern leading to lissencephaly can then be generated with ω = 30, representing
a decrease in the overall activator-inhibitor genetic expression. This again results in a
pattern with a decrease in number and increase in width of stripes when compared to the
normal pattern, representing the lissencephaly observed in NRS (see Figures 6.11g–6.11i
and 6.12g–6.12i).

Normocephalic Lissencephaly. Type I lissencephaly can occur in normocephalic
brains that possess enlarged LVs [39, 52]. We again model the enlargement of LVs by using
R = 0.021, giving a larger domain size as explained in Section 6.3. The lissencephalic
prepattern can then be generated on a large domain with ω = 30, representing an overall
decrease in genetic activator-inhibitor expression. The end result of using R = 0.021, ω = 30
in Systems (4.23) and (5.5) is a pattern with stripes that are decreased in number and
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Table 6.2: Lissencephaly simulation results. Simulation results are summarized in Fig-
ures 6.11 and 6.12. Full pattern evolution and labyrinthine visualization figures are in
Appendix B.

Growth
Function

Figure
Type

Normal
(R = 0.015,
ω = 115)

NRS, LVs
non-
enlarged
(R = 0.005,
ω = 115)

NRS, LVs
enlarged
(R = 0.015,
ω = 30)

Type I
lissencephaly,
normo-
cephaly,
enlarged LVs
(R = 0.021,
ω = 30)

Exponential
Prolate
spheroid
prepattern

Figs. 6.11a,
B.1

Figs. 6.11d,
B.10

Figs. 6.11g,
B.13

Figs. 6.11j,
B.16

Rectangular
domain
folding
pattern

Figs. 6.11b,
B.2

Figs. 6.11e,
B.11

Figs. 6.11h,
B.14

Figs. 6.11k,
B.17

Prolate
spheroid
folding
pattern

Figs. 6.11c,
B.3

Figs. 6.11f,
B.12

Figs. 6.11i,
B.15

Figs. 6.11l,
B.18

Logistic
Prolate
spheroid
prepattern

Figs. 6.12a,
B.19

Figs. 6.12d,
B.28

Figs. 6.12g,
B.31

Figs. 6.12j,
B.34

Rectangular
domain
folding
pattern

Figs. 6.12b,
B.20

Figs. 6.12e,
B.29

Figs. 6.12h,
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Figure 6.9: Comparison of Norman-Roberts Syndrome brain with normally developing
brain (MRI). At 23 weeks GA, one can observe the microcephaly exhibited by a Norman-
Roberts Syndrome fetus (top figures) as compared with a normally developing fetus (bottom
figures). Furthermore, one can observe the presence of the parietooccipital sulcus in the nor-
mal brain (bottom left) but not in the NRS brain (top left), demonstrating the lissencephaly
presented by NRS. Figure adapted from [65].
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(a) NRS with enlarged LVs (b) NRS with LVs not enlarged

Figure 6.10: Lateral ventricles in Norman-Roberts Syndrome (MRI). Out of the eleven
reported cases of NRS, five have presented with enlarged LVs (a) and six have presented
with LVs that are not enlarged (b). Lissencephaly is observed in all cases. Figures adapted
from [11].

increased in width when compared to the normal pattern (see Figures 6.11j–6.11l and 6.12j–
6.12l), representing lissencephaly.

6.4 Exponential Versus Logistic Growth

We have presented two Turing system models of cortical folding, one on an exponentially
growing domain and the other on a logistically growing domain, and have used them to
model different diseases of cortical folding. The exponential and logistic growth models
each have their own advantages and disadvantages. The exponentially growing model allows
for the derivation of mathematical Turing conditions, which allow one to select system
parameters such that the system is guaranteed to be able to generate Turing patterns. An
exponentially growing domain may not be the most biologically realistic, as the domain
keeps growing and the generated patten keeps evolving and increasing in complexity with
increasing t, yet the developing brain does not keep growing forever and the cortical folding
pattern is eventually finalized. In order to be interpreted as a prepattern for cortical folding,
one must choose an arbitrary time at which the numerical simulation must be stopped. The
pattern at this time then represents the prepattern for IPC self-amplification, which could
be correlated with the cortical folding pattern according to the IPM.

The logistically growing model addresses the aforementioned shortcomings of the ex-
ponential model while possessing drawbacks of its own. The logistically growing model
does not allow for the derivation of Turing conditions and as such cannot be guaranteed to
be able to generate Turing patterns, but as we have demonstrated in Section 5.3, system
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(a) Normal: R = 0.015, ω = 115 (b) Folding pattern from (a) (c) Projection of (b)

(d) NRS, non-enlarged LVs:
R = 0.005, ω = 115

(e) Folding pattern from (d) (f) Projection of (e)

(g) NRS, enlarged LVs: R =
0.015, ω = 30

(h) Folding pattern from (g) (i) Projection of (h)

(j) Type I Lissencephaly, en-
larged LVs, normocephaly: R =
0.021, ω = 30

(k) Folding pattern from (j) (l) Projection of (k)

Figure 6.11: Modeling lissencephaly on an exponentially growing prolate spheroid. The
generated lissencephalic prepatterns exhibit a decreased number and increased width of
stripes (figures (d)–(l)) relative to the normal patterns (figures (a)–(c)). The center and
right columns show how a labyrinthine cortical folding pattern could develop from the cor-
responding Turing genetic chemical prepattern in the left column. See Figures B.1–B.3 and
Figures B.10–B.18 for the corresponding pattern evolution and labyrinthine visualization
figures.
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(a) Normal: R = 0.015, ω = 115 (b) Folding pattern from (a) (c) Projection of (b)

(d) NRS with non-enlarged LVs:
R = 0.005, ω = 115

(e) Folding pattern from (d) (f) Projection of (e)

(g) NRS with enlarged LVs: R =
0.015, ω = 30

(h) Folding pattern from (g) (i) Projection of (h)

(j) Type I Lissencephaly with
enlarged LVs and normocephaly:
R = 0.021, ω = 30

(k) Folding pattern from (j) (l) Projection of (k)

Figure 6.12: Modeling lissencephaly on a logistically growing prolate spheroid. The gener-
ated lissencephalic prepatterns exhibit a decreased number and increased width of stripes
(figures (d)–(l)) relative to the normal patterns (figures (a)–(c)). The center and right
columns show how a labyrinthine cortical folding pattern could develop from the corre-
sponding Turing genetic chemical prepattern in the left column. See Figures B.19–B.21 and
Figures B.28–B.36 for the corresponding pattern evolution and labyrinthine visualization
figures.
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parameters can still be found so that Turing patterns can be generated. The logistically
growing model makes up for its lack of mathematical Turing conditions with biological re-
alism, as its domain eventually stops growing and its pattern eventually converges. Since
the brain eventually stops growing and the cortical folding pattern is eventually finalized,
a logistically growing domain Turing model of cortical folding is more biologically realistic
than an exponentially growing domain model. Furthermore, since the pattern generated
on a logistically growing domain converges to a final pattern, there is no need to select an
artificial time at which to stop the model simulation to view the pattern. The system’s
final convergent pattern can be readily interpreted as the chemical prepattern for IPC self-
amplification, which, as stated by the IPM, might be correlated with the cortical folding
pattern.

Beyond the context of cortical folding models, a strength of the exponentially growing
domain Turing system in System (4.2) is that it can be applied to not just an exponentially
growing prolate spheroidal domain, but an exponentially growing domain in any of the
eleven Helmholtz-separable coordinate systems. The linear stability analysis in Section 4.1
can be used to derive mathematical Turing conditions on any such exponentially growing
domain. System (4.2) thus can be used to construct mathematical Turing models complete
with Turing conditions on a geometrically diverse group of exponentially growing domains.

6.5 Conclusions

This chapter presented our growing prolate spheroidal domain Turing system models of
cortical folding patterns. Motivation for using a Turing system in a biomathematical model
of cortical folding was provided, and details of how the mathematics link to the biology
of cortical folding (via the IPM) were discussed. Motivation for using an exponentially or
logistically growing domain in a Turing model of cortical folding was presented. Both the
exponential and logistic models were utilized to model various manifestations of polymicro-
gyria and lissencephaly, two contrasting types of cortical folding disease. Variations of these
diseases were captured in the models by altering the values of R and ω. Changing R allowed
for control of domain size, which represented the size of the LVs; changing ω allowed for
control of the reaction terms’ strength relative to the diffusion and dilution terms, which
represented the overall genetic expression level of the activator and inhibitor. Labyrinthine
patterns were visualized on both the computational domains and on the prolate spheroidal
domains. The fact that our models were able to qualitatively capture both polymicrogyric
and lissencephalic diseases of cortical folding lends support to the IPM; in other words, our
models help provide evidence that patterns of genetic chemical factors could play a role in
establishing cortical folding patterns. Finally, strengths and weaknesses of the exponential
growth model of cortical folding were compared with those of the logistic growth model.

Our cortical folding models investigate and lend support to the role of genetic chemical
control of cortical folding by implementing a Turing system on a dynamically growing and
biologically relevant prolate spheroidal domain. We specifically investigated the effects of
altering domain growth (via changes in R) or genetic expression level (via changes in ω)
on the generated pattern; this allowed us to capture various types of polymicrogyria and
lissencephaly with our models. The Striegel and Hurdal [86] static prolate spheroidal do-

75



main Turing model (see Section 2.3.1) investigated the role of domain size and shape as
the primary factors influencing a genetically-controlled pattern for cortical folding. Their
model was able to predict the order of cortical sulci, which is something our growing do-
main models are unable to do. However, our models were able to represent more diseases of
cortical folding in a more biologically realistic way due to the inclusion of domain growth.
Cartwright’s [13] static domain Turing model (see Section 2.3.2) used the patterns gener-
ated by the reaction-diffusion system to represent axonal tension via axonal migration. Like
Cartwright, we employ the value of activator u to generate labyrinthine patterns. However,
Cartwright employs a static rectangular domain, lacking the biological motivation and re-
alism our models enjoy by employing a growing prolate spheroidal domain. The Lefevre
and Mangin [47] Turing finite element model (see Section 2.3.3) generated a pattern that
directly influenced the formation of cortical folds by causing the domain surface to deform
up or down at every time step of the simulations. Our models, on the other hand, utilize a
final Turing pattern as a prepattern that, according to the IPM, could be correlated with
the possible location of cortical folds. The Toro and Burnod [93] 2-D tension-based finite
element model (see Section 2.3.4) investigated the effects of having unequal domain growth
in different parts of the domain, but only was able to represent cortical folds in two dimen-
sions on a simple circular domain. The Geng et al. [29] 3-D tension-based finite element
models (see Section 2.3.5), benefited from the use of fetal sheep MRI data to help construct
and initialize the models; our models of human cortical folding could not be constructed
on similar human data because such data is not readily available. However, their second
model’s growing 3-D rectangular domain was not as biologically inspired as our models’
growing prolate spheroidal domain. Overall, our models fill a hole in the biomathematical
cortical folding research by examining the effects of altering domain growth and overall
genetic expression level in a Turing system that generates a genetic chemical prepattern for
cortical folding.
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CHAPTER 7

CONCLUSIONS

7.1 Summary

While there have been numerous biomathematical investigations into modeling cortical
folding patterns of the brain, a growing domain Turing system model of cortical folding
had yet to be implemented. Turing system models of cortical folding had been investigated
using static domains [86], failing to capture the growth that inherently occurs as the brain
develops. To address this hole in the research, this dissertation presented growing pro-
late spheroidal domain Turing system models of cortical folding using BVM kinetics and
exponential or logistic domain growth.

We began by introducing the biology of cortical folding, discussing the relevant anatom-
ical features and outlining some of the biological hypotheses attempting to describe the
underlying mechanism of cortical folding. We noted that some biological hypotheses as-
cribe cortical folding development to a genetic chemically-controlled process, while others
suggest a physical tension-driven process. After discussing several previous mathematical ef-
forts into modeling cortical folding, we presented the properties of Turing reaction-diffusion
systems and outlined a framework in which different types of domain growth could be incor-
porated into a Turing system on a prolate spheroidal surface. We then utilized numerical
simulations to investigate the pattern-generating behavior of a Turing system with BVM
kinetics on a prolate spheroidal domain under exponential or logistic domain growth. We
observed that increasing system parameters R or ω increased the complexity of the gener-
ated pattern at a given value of t > 0, and that patterns generated on domains with equal
final domain size, regardless of the presence or type of growth function, are qualitatively
similar in the number and size of stripes.

A growing domain Turing system can generate different patterns with different transient
behaviors on the same geometric domain by changing the domain growth function. We
have observed that a Turing system with BVM kinetics on an exponentially growing prolate
spheroidal domain generates patterns that continually evolve. Changing the domain growth
to logistic generates a pattern that evolves while the domain grows but then converges to
a final pattern once domain growth stops. Overall, the presence of domain growth in a
Turing system drives the Turing pattern to be transient, while a lack of domain growth
allows the pattern to converge. This observation agrees with previous investigations into
Turing systems on static prolate spheroids [86], exponentially growing spheres [32], and
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linearly growing spheres [16]; it was further confirmed by observing the behavior of a Turing
system on a piecewise exponentially growing prolate spheroidal domain. It is therefore of
key importance to include domain growth when building a Turing model of cortical folding
not only because of the biological realism that a growing domain lends to the model, but
also because the addition of domain growth fundamentally alters the pattern-generating
behavior of a Turing system.

To help investigate the plausibility of a genetic morphogen-controlled mechanism of
cortical folding, we built the biological basis of our biomathematical models upon the In-
termediate Progenitor Model (IPM), which is a biological hypothesis describing a possible
underlying mechanism for cortical folding [45]. We utilized a prolate spheroidal domain to
represent the LV and the prolate spheroidal domain surface to represent the SVZ, accurately
capturing the shape of the LV during early neurogenesis. Under the IPM assumption that
regional patterning of IPC self-amplification in the SVZ might be directly correlated to cor-
tical folding patterns, our model systems’ Turing patterns can serve as a genetic chemical
factor prepattern for IPC self-amplification. IPCs in activated regions (u > 0) of the pat-
tern would self-amplify, leading to gyri, while IPCs in nonactivated (u < 0) regions would
not self-amplify, leading to sulci.

Patterns created by our exponentially or logistically growing domain Turing systems can
qualitatively describe cortical folding patterns in normal cortical development or in certain
diseases of cortical folding. By controlling the strength of the reaction terms relative to
the diffusion and dilution terms (reflecting varying levels of expression of genetic factors
controlling IPC cells) via parameter ω and by controlling the domain size (reflecting the
size of the LVs) via parameter R, our models of cortical folding can qualitatively capture
different manifestations of polymicrogyria and lissencephaly, two types of diseases of cortical
folding in which there are respectively too many or too few cortical folds. The fact that
our Turing system models of cortical folding are able to qualitatively capture such vastly
different kinds of diseases of cortical folding lends support to both the role of genetic control
in cortical development and to the IPM.

7.2 Future Directions

Patterns generated by our growing domain Turing models of cortical folding represent
patterns of genetic chemical factors, and genetic control is the underlying principle of sev-
eral modern biological hypotheses of cortical folding such as the Intermediate Progenitor
Hypothesis, Intermediate Progenitor Model, and Radial Unit Hypothesis. However, our
models do not capture any physical axonal tension, which is the main constituent of com-
peting biological hypotheses of cortical folding such as the Axonal Tension Hypothesis. As
there has been much evidence supporting both genetic- and tension-based biological hy-
potheses of cortical folding [22, 73, 77], the true mechanism behind cortical folding likely
involves both physical tension and genetic chemical control. Thus, a possible future ex-
tension of the research presented in this dissertation would be the incorporation of terms
representing physical axonal tension into the model Turing system equations.

Another possible future direction for Turing models of cortical folding would be to
utilize a finite element mesh that could dynamically grow from an initial prolate spheroid
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shape to the final c-shape of the LV. Furthermore, while we have specifically investigated an
implementation of the growing domain Turing system framework in System (3.2) using BVM
kinetics on a prolate spheroidal domain under isotropic exponential and logistic domain
growth, it would be of further interest to investigate the types of patterns that System (3.2)
could generate using other kinds of reaction kinetics, geometric domains (such as an oblate
spheroid), or growth functions (such as linear, quadratic, or anisotropic growth). It is
interesting to note that the three Turing models of cortical folding discussed in Section 2.3 all
utilized different reaction kinetics, yet still generated results that could be applied to cortical
folding. As mentioned in Section 6.4, the linear stability analysis performed in Section 4.1
could be used to obtain mathematical Turing conditions on any of the eleven Helmholtz-
separable coordinate systems under exponential growth, opening up the possibility for using
System (3.2) to model other areas of developmental biology beyond cortical folding patterns.

While this dissertation qualitatively described the number and size of stripes in growing
domain BVM Turing patterns, future research would benefit from the development of a
metric or index which quantifies the complexity of such patterns. Some of the ways that
this could be accomplished could include measuring the length of stripes, calculating the
number of stripes per unit area, or counting the number of “defects” (spots or discontinuous
stripes) [97] in a striped pattern. The mechanism by which stripes form in a growing domain
BVM Turing pattern could be explored, investigating if different growth rates or growth
functions affect the way in which stripes emerge as the pattern evolves.

Several challenges face our growing domain Turing models of cortical folding. To begin,
parameters used in our simulations are not based on real human cortical folding data,
but rather were phenomenologically selected to produce the desired results. Longitudinal
data about the surface area and volume of the LVs or the rate of growth of the SVZ
would allow growth function parameters and initial domain size and shape parameters to
be selected in a way that would allow our models’ domain to more accurately represent the
developing LVs and SVZ. Data about the diffusion coefficients and genetic expression levels
of genetic factors controlling IPC self-amplification would allow the diffusion coefficient
D, BVM kinetics parameters a, b, C, h, and domain scale parameter ω (controlling relative
reaction term strength) to be selected in a way that would allow our models to more
accurately represent the underlying biology of cortical development. However, such data
is not readily available, and thus new biological research must be conducted to allow the
mathematics to better represent and connect with the biology.

We modeled different diseased conditions of cortical folding by altering the values of R
and ω. For example, some cases of NRS are reported as having enlarged LVs, and other
cases of NRS are reported as not having enlarged LVs. In both cases, the cortex exhibits
lissencephaly. Our model was able to capture both of these cases. A large R (representing
enlarged LVs) coupled with a small ω value (representing a decrease in genetic expression)
modeled NRS lissencephaly with enlarged LVs, while a small R (representing small LVs due
to microcephaly) coupled with the “normal” value of ω modeled NRS lissencephaly with
non-enlarged LVs. Clearly, many factors are at play in diseases of cortical folding, and more
research is needed to establish a link between the mathematical parameters R,ω and the
underlying biology of the disease.

Our models can represent cortical folding only on a qualitative level; that is, they can
generally describe the number and size of cortical folds but are unable to model the location
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of specific folds in the brain or the order in which specific folds appear. Part of the reason
for this is the inherent sensitivity of Turing systems to initial conditions. This high level
of sensitivity to initial conditions means that different initial conditions cause our model
systems to generate different patterns that may be qualitatively similar in number and size
of stripes, but vastly different in the arrangement of such stripes. We seeded our random
initial conditions to allow us to investigate the effects of altering R and ω on the patterns
produced by our model systems. However, the initial conditions of Turing systems represent
random biological noise, and these natural perturbations are truly random, not a seeded
sequence of random numbers. Furthermore, humans develop cortical folding patterns in
which certain folds share a common location and size despite originating from different
initial conditions. Finding a way to generate consistently reproducible patterns (hence
reducing the sensitivity to initial conditions) that can model the specific location and order
of emergence of cortical folds is an area where Turing modeling of cortical folding can be
extended in the future. One possible way to address these issues may be to construct a
Turing system on a self-deforming surface constructed of finite elements. As discussed in
Section 2.3.3, this technique has been previously applied on a dynamically self-deforming
sphere and was able to consistently reproduce the location of one cortical fold from different
random initial conditions [47]. Overall growth of the spherical domain was not incorporated
into this model, however, and so creating a finite element Turing model of cortical folding on
a dynamically growing and self-deforming domain holds strong potential for future research.

7.3 Concluding Remarks

By combining the mathematics of Turing systems [95] with the biological ideas of ge-
netic chemical prepatterns [62, 63, 95] and the Intermediate Progenitor Model [45], we have
created two growing prolate spheroidal domain Turing system models of cortical folding
that are capable of qualitatively modeling normal and diseased cortical folding patterns.
Mathematically, by investigating the effects of exponential and logistic domain growth in a
Turing system, we have demonstrated that the presence of domain growth drives a prolate
spheroidal Turing system pattern to become transient. Under exponential domain growth,
patterns are continually transient; when utilizing logistic domain growth, patterns are tran-
sient during the growth period but converge to a final pattern once domain growth ceases.
Both types of domain growth possess interesting applicability for mathematically modeling
cortical folding patterns. Biologically, by creating a biomathematical model that is able
to capture a variety of diseases of cortical folding, we have provided evidence to support
the role of genetic chemical factor prepatterns in the development of cortical folding pat-
terns, therefore supporting biological cortical folding hypotheses such as the Intermediate
Progenitor Model.
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APPENDIX A

APPENDIX: DERIVATIONS

A.1 Generic Reaction Diffusion-Equation

To derive a generic reaction-diffusion equation in three-dimensional space, let V ⊂ R
3

be a compact domain and let S ⊂ R
2 be its piecewise-continuous surface. Let u(X, t) be

the concentration of a substance in V at location X and time t, and assume u(X, t) is
continuous. The general theory of conservation states that the rate of change of the amount
of the substance inside V equals the amount of the substance flowing across S out of V
[72] plus the amount of the substance produced by its source inside V . This can be stated
mathematically as

d

dt

∫

V

u(X, t) dV = −
∫

S

J · dS+

∫

V

f(u(X, t)) dV, (A.1)

where f(u(X, t)) represents the source of the substance inside V and J represents the flux
of the substance across S.

Theorem A.1.1 (Divergence Theorem [83]). If V is a bounded spatial domain with a
piecewise continuous boundary surface S with positive orientation, and J is any continuous
vector field on the closure of V , then

∫

V

∇ · J dV =

∫

S

J · dS. (A.2)

Using Equation (A.2), we can rewrite Equation (A.1) as

d

dt

∫

V

u(X, t) dV = −
∫

V

∇ · J dV +

∫

V

f(u(X, t)) dV,

which implies
∫

V

[

∂u

∂t
(X, t) +∇ · J− f(u(X, t))

]

dV = 0. (A.3)

Theorem A.1.2 (Second Vanishing Theorem [84]). If f(X) is a continuous function in D
such that

∫

D′ f(X) dV = 0 for all subdomains D′ ⊂ D, then f(X) ≡ 0 on D.
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Applying Theorem (A.1.2) to Equation (A.3) yields

∂u

∂t
= −∇ · J+ f(u(X, t)). (A.4)

Fick’s First Law states J = −D∇u [55], where D > 0 is the constant diffusion coefficient
of the substance. Using Fick’s First Law, Equation (A.4) can be rewritten as the generic
reaction-diffusion equation

∂u

∂t
= D∇2u+ f(u(X, t)),

where the source function f is now referred to as a reaction kinetics function [63].

A.2 Growing Domain Turing System Framework

The following derivation of the growing domain Turing system framework follows that
of [72].

Let St ⊂ R
3 be a two-dimensional growing surface such that St = ψt(Ωi) (see Fig-

ure (A.1)), where

ψt : Ωi ⊂ R
2 → R

3, ψt(ζ, η) ≡ X(ζ, η, t) =





x(ζ, η, t)
y(ζ, η, t)
z(ζ, η, t)



 , (A.5)

for (ζ, η) ∈ Ωi, t ≥ 0. Assume that growth function ψt ∈ C2 is continuously differentiable
with respect to t. Also assume that St is a regular surface in the Euclidean metric, so that

Xζ ×Xη 6= 0 ∀ (ζ, η) ∈ Ωi, ∀ t ≥ 0

and
dl2 = dx2 + dy2 + dz2.

Finally, assume that
Xζ ·Xη = 0 ∀ t,

which implies that the (ζ, η)-parametrized coordinate system is orthogonal on St. It follows
that the normal vector to St is N(ζ, η, t) = Xζ ×Xη 6= 0.

Next, consider a specific parameter domain region Ω0 ⊂ Ωi with smooth positively
oriented boundary ∂Ω0. Define Ω(t) = ψt(Ω0) ∈ St with boundary ∂Ω(t) = ψt(∂Ω0) to be
the growing domain of interest (see Figure (A.1)), and suppose the boundary is parametrized
by ∂Ω(t) = X(ζ0(s), η0(s)), where X ∈ St and s ∈ [0, 1]. Let φ = φ(X(ζ, η, t), t) be the
concentration at location X ∈ St of a chemical substance with diffusion coefficient D.
Ignoring the effects of any reaction kinetics sources of φ inside the domain Ω(t), then
Equation (A.1) on Ω(t) becomes

d

dt

∫

Ω(t)
φ(X, t) dS = D

∫

∂Ω(t)
∇φ · n̂ dl, (A.6)

where n̂ is the outward unit normal vector to ∂Ω(t) and we have again used Fick’s First
Law, J = −D∇φ.
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Figure A.1: Deriving the growing domain Turing system framework. The growth function
ψ(t) maps Ωi to St and Ω0 to Ω (t). The surface normal vector to St is denoted N. The
tangent and unit normal vectors to ∂Ω(t) are denoted τ and n̂, respectively.

Let τ be the tangent vector to ∂Ω(t) so that τ ·n̂ = 0 and let (·)′ represent the derivative
d(·)
ds

. Since ∂Ω(t) = X(ζ0(s), η0(s)), it follows that

τ =
∂X

∂s

=
∂X

∂ζ0

∂ζ0
∂s

+
∂X

∂η0

∂η0
∂s

= ζ ′0Xζ + η′0Xη,

where we have dropped the naught subscripts on derivatives ofX for notational convenience.
To find n̂, we let h1, h2 be scale factors, where

h1 = |Xζ | , h2 = |Xη| .

Let ñ be a normal vector to ∂Ω(t) whose length is not necessarily equal to 1. By the
right-hand rule, ñ = τ ×N, which implies

ñ =
(

ζ ′0Xζ + η′0Xη

)

× (Xζ ×Xη)

= ζ ′0Xζ × (Xζ ×Xη) + η′0Xη × (Xζ ×Xη) . (A.7)

Applying the vector triple product a× (b× c) = b(a · c)− c(a · b) to Equation (A.7) gives

ñ = Xζ

(

ζ ′0Xζ ·Xη

)

−Xη

(

ζ ′0Xζ ·Xζ

)

+Xζ

(

η′0Xη ·Xη

)

−Xη

(

η′0Xη ·Xζ

)

= −ζ ′0h21Xη + η′0h
2
2Xζ

since Xζ ·Xη = 0. Since

|ñ|2 = h21h
2
2

(

ζ ′20 h
2
1 + η′20 h

2
2

)

= h21h
2
2 |τ |2 ,

it follows that

n̂ =
ñ

|ñ| = βXζ + αXη,
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where

α = −h1
h2

ζ ′0
|τ | and β =

h2
h1

η′0
|τ | .

To continue the derivation of the growing domain Turing system framework, we need to
rewrite both the right- and left-hand sides of Equation (A.6). We first turn our attention
to the right-hand side. A change of variables yields

D

∫

∂Ω(t)
∇φ · n̂ dl = D

∮

∂Ω0

∇φ · (αXη + βXζ) |τ | ds

= D

∮

∂Ω0

(

−h1
h2
∂ηφ

)

dζ +

(

h2
h1
∂ζφ

)

dη. (A.8)

Theorem A.2.1 (Green’s Theorem [84]). Suppose D ⊂ R
2 is a bounded domain with

positively oriented and piecewise-C1 boundary C. If p(x, y), q(x, y) ∈ C1 on the closure of
D, then

∫

D

(

∂q

∂x
− ∂p

∂y

)

dx dy =

∮

C

p dx+ q dy.

Green’s Theorem applied to Equation (A.8) implies

D

∫

∂Ω(t)
∇φ · n̂ dl = D

∫

Ω0

[

(

h2
h1
∂ζφ

)

ζ

+

(

h1
h2
∂ηφ

)

η

]

dζ dη. (A.9)

Next, applying a change of variables to the left-hand side of Equation (A.6) gives

d

dt

∫

Ω(t)
φ(X, t) dS =

d

dt

∫

Ω0

φ(X(ζ, η, t), t)h1h2 dζ dη

=

∫

Ω0

∂

∂t
[φ(X(ζ, η, t), t)h1h2] dζ dη

=

∫

Ω0

[

h1h2

(

∂

∂t
φ(X, t)

)

+ (h1h2)t φ(X, t)

]

dζ dη. (A.10)

By the parametrization given in Equation (A.5), φ(X(ζ, η, t), t) = φ(x, y, z, t). Applying
the chain rule gives

∂

∂t
φ(X(ζ, η, t), t) =

∂

∂t
φ(x, y, z, t)

=
∂φ

∂x

∂x

∂t
+
∂φ

∂y

∂y

∂t
+
∂φ

∂z

∂z

∂t
+
∂φ

∂t

dt

dt

= ∇φ ·Xt +
∂φ

∂t
. (A.11)

Substituting Equation (A.11) into Equation (A.10) gives

d

dt

∫

Ω(t)
φ(X, t) dS =

∫

Ω0

((φt +∇φ ·Xt)h1h2 + (h1h2)t φ) dζ dη. (A.12)
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Finally, substituting the rewritten the left- and right-hand sides of Equation (A.6) (given
by Equations (A.12) and (A.9), respectively) into Equation (A.6) yields

∫

Ω0

(

φ̃th1h2 + (h1h2)t φ̃−D

[

(

h2
h1
φ̃ζ

)

ζ

+

(

h1
h2
φ̃η

)

η

])

dζ dη = 0,

where we have used the notation φ̃(ζ, η, t) = φ(X(ζ, η, t), t) so that φ̃t = ∇φ · Xt +
∂φ
∂t
,

∂ζφ = φ̃ζ , and ∂ηφ = φ̃η. Since Ω0 was arbitrary, we can apply Theorem (A.1.2) to yield

φ̃th1h2 + (h1h2)t φ̃−D

[

(

h2
h1
φ̃ζ

)

ζ

+

(

h1
h2
φ̃η

)

η

]

= 0,

which implies

φ̃t =
1

h1h2
D

[

(

h2
h1
φ̃ζ

)

ζ

+

(

h1
h2
φ̃η

)

η

]

− 1

h1h2
(h1h2)t φ̃. (A.13)

Equation (A.13) can be equivalently written as

φ̃t = D∆sφ̃− φ̃∂t(ln(h1h2)), (A.14)

where ∆s is the Laplace-Beltrami operator defined by

∆sφ̃ =
1

h1h2

[

(

h2
h1
φ̃ζ

)

ζ

+

(

h1
h2
φ̃η

)

η

]

.

Using Equation (A.14), the dimensional form of the growing domain Turing system
framework on growing domain Ω(t) for a system of two chemicals with concentrations u =
u(ζ, η, t) and v = v(ζ, η, t) for (ζ, η) ∈ Ω0 is

ut = Du∆su− ∂t(ln(h1h2))u+ F (u, v),

vt = Dv∆sv − ∂t(ln(h1h2))v +G(u, v),

}

(A.15)

where F,G are the dimensional reaction kinetics and Du, Dv are the diffusion coefficients of
u, v respectively. System (A.15) can be nondimensionalized following the technique of Mur-
ray [63] to yield the nondimensional form of the growing domain Turing system framework,

ut = D∆su− ∂t(ln(h1h2))u+ ωf(u, v),

vt = ∆sv − ∂t(ln(h1h2))v + ωg(u, v),

}

where D =
Du

Dv
, ω > 0 is the domain scale parameter, and f, g are the dimensionless versions

of F,G. See Sections A.3 and A.4 for details.
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A.3 BVM Kinetics

This derivation of BVM kinetics follows that of Leppanen [48, 49]. Consider the classic
dimensional Turing system

Ut = DU∇2U + f(U, V ),

Vt = DV ∇2V + g(U, V ),

}

(A.16)

where f, g are the BVM kinetics (to be constructed below), U = U(x, t), V = V (x, t) (where
x is space and t is time) are the respective concentrations of activator morphogen U and
inhibitor morphogen V , andDU , DV are the respective diffusion coefficients of U, V . Assume
System (A.16) has a spatially uniform steady state at (Uc, Vc) which remains a steady state
in the absence of diffusion; that is, f(Uc, Vc) = g(Uc, Vc) = 0.

A Taylor expansion of the kinetics functions f, g about the steady state (Uc, Vc) is
performed up to third order terms, giving

f(U, V ) ≈ f(Uc, Vc) + (U − Uc)fU |(Uc,Vc) + (V − Vc)fV |(Uc,Vc)

+
1

2!

[

(U − Uc)
2fUU |(Uc,Vc) + 2(U − Uc)(V − Vc)fUV |(Uc,Vc) + (V − Vc)

2fV V |(Uc,Vc)

]

+
1

3!

[

(U − Uc)
3fUUU |(Uc,Vc) + 3(U − Uc)

2(V − Vc)fUUV |(Uc,Vc)

+ 3(U − Uc)(V − Vc)
2fUV V |(Uc,Vc) + (V − Vc)

3fV V V |(Uc,Vc)

]

+O(ǫ4)

and similarly for g(U, V ). By construction, functions f, g are defined to have the following
partial derivatives, where all are evaluated at steady state (Uc, Vc):

fU = A, fV = B, fUV = −C, 1

2
fUV V = −D1,

fUU = fV V = fUUU = fUUV = fV V V = 0,

gU = E, gV = F, gUV = C,
1

2
gUV V = D1, and

gUU = gV V = gUUU = gUUV = gV V V = 0.

The third order Taylor expansions of f and g then reduce to

f(U, V ) = A(U − Uc) +B(V − Vc)

− C(U − Uc)(V − Vc)−D1(U − Uc)(V − Vc)
2,

g(U, V ) = E(U − Uc) + F (V − Vc)

+ C(U − Uc)(V − Vc) +D1(U − Uc)(V − Vc)
2.

(A.17)

The quadratic UV and cubic UV 2 kinetic terms give the BVM System (A.16) its char-
acteristic behavior of generating spotted or striped patterns [9]. Generally, spotted patterns
are produced when the quadratic term has a nonzero coefficient, while stripes are produced
when the cubic term has a nonzero coefficient and the quadratic term’s coefficient is zero or
very close to zero [9, 21]. In other words, the quadratic term causes the system to strongly
tend toward the formation of spots while the cubic term causes the system to tend toward
the formation of stripes [9, 21].
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We next establish the traditional dimensional BVM parameter notation by denoting

A = α > 0, B = 1, C = r2, D1 = αr1, E = γ, and F = β.

Using this new parameter notation and the substitutions u = U − UC and v = V − Vc
(effectively moving the steady state of the system from (Uc, Vc) to (0, 0)) in the right hand
side of Equations (A.17) yields the dimensional BVM kinetics

f(u, v) = αu(1− r1v
2) + v(1− r2u)

g(u, v) = v(β + αr1uv) + u(γ + r2v).
(A.18)

Substituting Equations (A.18) into System (A.16) yields

ut = Dδ∇2u+ αu(1− r1v
2) + v(1− r2u),

vt = δ∇2v + v(β + αr1uv) + u(γ + r2v),

}

(A.19)

where D = DU/DV . A scaling factor δ > 0 has been divided out of the diffusion coefficients
to allow for independent control of diffusion and domain scaling. This scaling factor δ is
inversely proportional to domain scale [85], unlike the directly proportional scaling factor
commonly used in the Turing system notation of Murray [63]. Notice that the strength of
cubic and quadratic interactions are respectively controlled by the parameters r1 and r2.

System (A.19) shall be referred to as the dimensional BVM system [9]. One should
note that even though Equations (A.18) and System (A.19) are called “dimensional”, their
equations are actually dimensionless; BVM kinetics are phenomenological and hence are
not based on any particular physical dimensions [56]. As stated by Maini [56], “Since the
[BVM] model is therefore really a model of a model it probably does not make sense to talk
about dimensional aspects of it.”

To nondimensionalize System (A.19), let T be the characteristic time and L be the
characteristic length of the system. Whereas we previously let U = U(x, t), V = V (x, t) be
the respective concentration functions for the activator and inhibitor, we now let U and V
represent the characteristic concentrations of activator and inhibitor, respectively. We can
then define the dimensionless quantities

ū =
u

U
, v̄ =

v

V
, t̄ =

t

T
, and x̄ =

x

L
. (A.20)

Substituting these dimensionless quantities into System (A.19) gives

∂ (Uū)

∂ (T t̄)
=

Dδ

L2
∇2(Uū) + αUū− αr1Uū(V v̄)

2 + V v̄ − r2UūV v̄,

∂ (V v̄)

∂ (T t̄)
=

δ

L2
∇2(V v̄) + βV v̄ + αr1Uū(V v̄)

2 + γUū+ r2UuV v̄.















(A.21)

To rewrite the nondimensional system in its final form, we define

T =
L2

δ
, U = V =

1√
r1
, a =

1

α
, b =

β

α
, h =

γ

α
, C =

r2
α
√
r1
, and ω =

L2α

δ
,
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which can be substituted into System (A.21) to yield the nondimensional BVM system,

∂u
∂t

= D∇2u+ ω(u+ av − Cuv − uv2),

∂v
∂t

= ∇2v + ω(bv + hu+ Cuv + uv2),

}

where the bars have been dropped for convenience. The domain scaling is now controlled
by the parameter ω > 0, which is directly proportional to the domain scale.

A.4 Growing Domain BVM Turing System

Nondimensionalization

Consider the dimensional growing domain Turing System (A.15) with dimensional BVM
kinetics

ut = Dδ∆su− ∂t(ln(h1h2))u+ αu(1− r1v
2) + v(1− r2u),

vt = δ∆sv − ∂t(ln(h1h2))v + v(β + αr1uv) + u(γ + r2v).

}

(A.22)

The process of nondimensionalizing System (A.22) is the same as that of System (A.19)
in Section A.3 with the addition of nondimensionalizing the dilution terms −∂t(ln(h1h2))u
and −∂t(ln(h1h2))v. Substituting the dimensionless quantities (A.20) gives the new dimen-
sionless dilution terms

− ∂

∂(T t̄)
(ln(h1h2))Uu and − ∂

∂(T t̄)
(ln(h1h2))V v.

After simplifying and dropping the bars for convenience, the resulting nondimensional grow-
ing domain BVM Turing system is

ut = D∆su− ∂t(ln(h1h2))u+ ω(u+ av − Cuv − uv2),

vt = ∆sv − ∂t(ln(h1h2))v + ω(bv + hu+ Cuv + uv2).

}

A.5 Prolate Spheroidal Coordinates

The following derivation of prolate spheroidal coordinates follows that of [25, 85].
Consider an ellipse centered at the origin of the (x, y) plane with major axis length 2a,

minor axis length 2b, and foci at (±c, 0). The ellipse has equation

x2

a2
+
y2

b2
= 1, (A.23)

where a > b > 0 and c2 = a2 − b2; the interfocal distance f is defined as f = 2c. To derive
elliptical coordinates, let a = f

2 coshµ and b = f
2 sinhµ, where µ > 0. Equation (A.23) then

becomes
4x2

f2 cosh2 µ
+

4y2

f2 sinh2 µ
= 1. (A.24)
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Setting Equation (A.24) equal to corresponding terms in the Pythagorean Identity cos2 θ+
sin2 θ = 1 and rearranging yields the elliptical coordinate system (µ, θ), where

x =
f

2
coshµ cos θ,

y =
f

2
sinhµ sin θ,











(A.25)

and θ ∈ [0, 2π).
To derive prolate spheroidal coordinates, one must first rewrite the elliptical coordinate

equations of System (A.25). To this end, define ξ = coshµ ≥ 1 and η = cos θ ∈ [−1, 1]. By
relabeling the x variable as z [102] and using the definitions of ξ and η, System (A.25) can
be rewritten in an alternate form of elliptical coordinates,

y =
f

2

√

(1− η2)(ξ2 − 1),

z =
f

2
ηξ.











(A.26)

A prolate spheroid is generated by rotating an ellipse around its major axis; rotation
around the minor axis yields an oblate spheroid, which will not be considered here [25].
Rotating an ellipse described by System (A.26) an angle φ ∈ [0, 2π) in the (x, y) plane [102]
yields the prolate spheroidal coordinate system [25],

x =
f

2

√

(1− η2)(ξ2 − 1) cosφ,

y =
f

2

√

(1− η2)(ξ2 − 1) sinφ,

z =
f

2
ηξ,































(A.27)

where θ (represented by η) is the polar angle and φ is the azimuthal angle. As shown in
Section 3.3, the azimuthal angle φ can be replaced by φ = 2πζ, where ζ ∈ [0, 1), to facilitate
implementation of System (A.27) in numerical schemes. Prolate spheroidal coordinates are
an orthogonal coordinate system [25].

The south pole of a prolate spheroid is given by η = −1 = cos π, while the north pole
is given by η = 1 = cos 0 = cos 2π (see Figure A.2). To avoid the ambiguity of multiple
θ-values corresponding to the same η-coordinate, θ is restricted to θ ∈ [0, π]. When ξ > 1,
constant ξ values give concentric prolate spheroids centered at the origin, while constant
|η| < 1 values give halves of hyperboloids of two sheets about the z-axis [25]. The cases
when ξ = 1 and |η| = 1 are degenerate cases corresponding to the z-axis with |z| ≤ f

2 and

|z| > f
2 , respectively [25].

The eccentricity of a prolate spheroid equals the eccentricity of the ellipse from which it
was formed. The eccentricity E of an ellipse with semimajor axis length a and semiminor
axis length b is defined as [101]

E =

√

1− b2

a2
. (A.28)
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Figure A.2: Prolate spheroidal coordinates. Interfocal distance f and radial term ξ > 1
respectively control the size and shape of a prolate spheroid, while ζ = φ

2π ∈ [0, 1) and
η = cos θ ∈ [−1, 1] describe the azimuthal and polar angles φ and θ, respectively. Figure
adapted from [25].

Using c2 = a2 − b2 and f = 2c, Equation (A.28) can be rewritten as

E =
f

2a
. (A.29)

Recalling that a = f
2 coshµ = f

2 ξ, it follows from Equation (A.29) that

E =
1

ξ
.

As discussed in Section 3.3, altering the value of ξ allows one to control the eccentricity and
therefore the shape of a prolate spheroid.
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APPENDIX B

APPENDIX: FIGURES

In Chapter 6, the final (t = 35) Turing pattern and labyrinthine visualization figures were or-
ganized by disease. In this Appendix, we present the full pattern evolution and labyrinthine
visualization figures and organize them by domain growth. Section B.1 contains exponen-
tial growth figures, while Section B.2 contains logistic growth figures. Animations are also
available.

B.1 Exponentially Growing Model

This section contains the full pattern evolution and labyrinthine visualization figures for
the exponentially growing patterns presented in Chapter 6. Correspondence between the
figures and the diseases they represent is given in Table B.1.
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Table B.1: Exponential domain growth simulation results. Simulation results for polymicr-
ogyria and lissencephaly are discussed in detail in Chapter 6.

(a) Polymicrogyria

Growth
Function

Figure Type Normal
(R = 0.015,
ω = 115)

PMG,
enlarged LVs
(R = 0.021,
ω = 115)

PMG,
microcephaly,
enlarged LVs
(R = 0.015,
ω = 150)

Exponential
Prolate
spheroid
prepattern

Figs. 6.7a, B.1 Figs. 6.7d, B.4 Figs. 6.7g, B.7

Rectangular
domain folding
pattern

Figs. 6.7b, B.2 Figs. 6.7e, B.5 Figs. 6.7h, B.8

Prolate
spheroid
folding pattern

Figs. 6.7c, B.3 Figs. 6.7f, B.6 Figs. 6.7i, B.9

(b) Lissencephaly

Growth
Function

Figure
Type

Normal
(R = 0.015,
ω = 115)

NRS, LVs
non-
enlarged
(R = 0.005,
ω = 115)

NRS, LVs
enlarged
(R = 0.015,
ω = 30)

Type I
lissencephaly,
normo-
cephaly,
enlarged LVs
(R = 0.021,
ω = 30)

Exponential
Prolate
spheroid
prepattern

Figs. 6.11a,
B.1

Figs. 6.11d,
B.10

Figs. 6.11g,
B.13

Figs. 6.11j,
B.16

Rectangular
domain
folding
pattern

Figs. 6.11b,
B.2

Figs. 6.11e,
B.11

Figs. 6.11h,
B.14

Figs. 6.11k,
B.17

Prolate
spheroid
folding
pattern

Figs. 6.11c,
B.3

Figs. 6.11f,
B.12

Figs. 6.11i,
B.15

Figs. 6.11l,
B.18
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Figure B.1: Evolution of Turing pattern on an exponentially growing prolate spheroid
representing normal cortical development. The pattern was generated by System (4.23)
with R = 0.015, ω = 115 and kinetics parameters listed on page 34. Red dots on the bottom
right figure represent times at which the snapshots were taken. See also: animation.
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Figure B.2: Exponential growing domain Turing pattern as a prepattern for normal cortical
fold development. Figures (a) through (d) provide a visualization of how a labyrinthine
cortical folding pattern could develop from a genetic chemical Turing prepattern by plotting
the activator concentration u on the z-axis for z = 0, z = u

4 , z =
u
2 , and z = u, respectively.

The pattern represents normal cortical development and corresponds to the final pattern in
Figure B.1. See also: animation.
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Figure B.3: Prolate spheroid visualization of exponentially growing domain Turing prepat-
tern for normal cortical fold development. Projecting the images from Figure B.2 onto the
corresponding prolate spheroidal domain gives a new way to visualize how a labyrinthine
pattern representing normal cortical folding could develop from a chemical Turing prepat-
tern (refer to Figure B.1 at t = 35). See also: animation.
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Figure B.4: Evolution of Turing pattern on an exponentially growing prolate spheroid rep-
resenting polymicrogyria. The pattern was generated by System (4.23) with R = 0.021, ω =
115 and kinetics parameters listed on page 34. The bottom right figure indicates when each
snapshot was taken. See also: animation.
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Figure B.5: Exponential growing domain Turing pattern as a prepattern for polymicro-
gyria. Figures (a) through (d) provide a visualization of how a labyrinthine cortical folding
pattern could develop from a genetic chemical Turing prepattern by plotting the activator
concentration u on the z-axis for z = 0, z = u

4 , z =
u
2 , and z = u, respectively. The pattern

represents polymicrogyria and corresponds to the final pattern in Figure B.4. See also:
animation.
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Figure B.6: Prolate spheroid visualization of exponentially growing domain Turing prepat-
tern for polymicrogyria. Projecting the images from Figure B.5 onto the corresponding
prolate spheroidal domain gives a new way to visualize how a labyrinthine pattern repre-
senting polymicrogyria could develop from a chemical Turing prepattern (refer to Figure B.4
at t = 35). See also: animation.
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Figure B.7: Evolution of Turing pattern on an exponentially growing prolate spheroid
representing polymicrogyria with microcephaly and enlarged lateral ventricles. The pattern
was generated by System (4.23) with R = 0.015, ω = 150 and kinetics parameters listed
on page 34. The bottom right figure indicates when each snapshot was taken. See also:
animation.
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Figure B.8: Exponential growing domain Turing pattern as a prepattern for polymicro-
gyria with microcephaly and enlarged lateral ventricles. Figures (a) through (d) provide
a visualization of how a labyrinthine cortical folding pattern could develop from a genetic
chemical Turing prepattern by plotting the activator concentration u on the z-axis for z = 0,
z = u

4 , z =
u
2 , and z = u, respectively. The pattern represents PMG with microcephaly and

enlarged LVs and corresponds to the final pattern in Figure B.7. See also: animation.
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Figure B.9: Prolate spheroid visualization of exponentially growing domain Turing prepat-
tern for polymicrogyria with microcephaly and enlarged lateral ventricles. Projecting the
images from Figure B.8 onto the corresponding prolate spheroidal domain gives a new way
to visualize how a labyrinthine pattern representing PMG with microcephaly and enlarged
LVs could develop from a chemical Turing prepattern (refer to Figure B.7 at t = 35). See
also: animation.
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Figure B.10: Evolution of Turing pattern on an exponentially growing prolate spheroid
representing the lissencephaly seen in Norman-Roberts Syndrome with non-enlarged lateral
ventricles. The pattern was generated by System (4.23) with R = 0.005, ω = 115 and
kinetics parameters listed on page 34. The dots in the lower-right figure represent the time
at which each snapshot was taken. See also: animation.
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Figure B.11: Exponential growing domain Turing pattern as a prepattern for Norman-
Roberts Syndrome with non-enlarged lateral ventricles. Figures (a) through (d) provide
a visualization of how a labyrinthine cortical folding pattern could develop from a genetic
chemical Turing prepattern by plotting the activator concentration u on the z-axis for z = 0,
z = u

4 , z = u
2 , and z = u, respectively. The pattern represents NRS with non-enlarged LVs

and corresponds to the final pattern in Figure B.10. See also: animation.
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Figure B.12: Prolate spheroid visualization of exponentially growing domain Turing prepat-
tern for Norman-Roberts Syndrome with non-enlarged lateral ventricles. Projecting the im-
ages from Figure B.11 onto the corresponding prolate spheroidal domain gives a new way to
visualize how a labyrinthine pattern representing NRS with non-enlarged LVs could develop
from a chemical Turing prepattern (refer to Figure B.10 at t = 35). See also: animation.
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Figure B.13: Evolution of Turing pattern on an exponentially growing prolate spheroid
representing the lissencephaly presented in Norman-Roberts Syndrome with enlarged lateral
ventricles. The pattern was generated by System (4.23) with R = 0.015, ω = 30 and kinetics
parameters listed on page 34. The dots in the lower-right figure represent the time at which
each snapshot was taken. See also: animation.
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Figure B.14: Exponential growing domain Turing pattern as a prepattern for Norman-
Roberts Syndrome with enlarged lateral ventricles. Figures (a) through (d) provide a visu-
alization of how a labyrinthine cortical folding pattern could develop from a genetic chemical
Turing prepattern by plotting the activator concentration u on the z-axis for z = 0, z = u

4 ,
z = u

2 , and z = u, respectively. The pattern represents NRS with enlarged LVs and corre-
sponds to the final pattern in Figure B.13. See also: animation.
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Figure B.15: Prolate spheroid visualization of exponentially growing domain Turing prepat-
tern for Norman-Roberts Syndrome with enlarged lateral ventricles. Projecting the images
from Figure B.14 onto the corresponding prolate spheroidal domain gives a new way to vi-
sualize how a labyrinthine pattern representing NRS with enlarged LVs could develop from
a chemical Turing prepattern (refer to Figure B.13 at t = 35). See also: animation.
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Figure B.16: Evolution of Turing pattern on an exponentially growing prolate spheroid
representing normocephalic type I lissencephaly with enlarged lateral ventricles. The pat-
tern was generated by System (4.23) with R = 0.021, ω = 30 and kinetics parameters listed
on page 34. The dots in the lower-right figure represent the time at which each snapshot
was taken. See also: animation.
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Figure B.17: Exponential growing domain Turing pattern as a prepattern for normocephalic
type I lissencephaly with enlarged lateral ventricles. Figures (a) through (d) provide a
visualization of how a labyrinthine cortical folding pattern could develop from a genetic
chemical Turing prepattern by plotting the activator concentration u on the z-axis for
z = 0, z = u

4 , z = u
2 , and z = u, respectively. The pattern represents normocephalic type

I lissencephaly with enlarged LVs and corresponds to the final pattern in Figure B.16. See
also: animation.

109



Figure B.18: Prolate spheroid visualization of exponentially growing domain Turing prepat-
tern for normocephalic type I lissencephaly with enlarged lateral ventricles. Projecting the
images from Figure B.17 onto the corresponding prolate spheroidal domain gives a new way
to visualize how a labyrinthine pattern representing normocephalic type I lissencephaly
with enlarged LVs could develop from a chemical Turing prepattern (refer to Figure B.16
at t = 35). See also: animation.
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B.2 Logistically Growing Model

This section contains the full pattern evolution and labyrinthine visualization figures
for the logistically growing patterns presented in Chapter 6. Correspondence between the
figures and the diseases they represent is given in Table B.2.
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Table B.2: Logistic domain growth simulation results. Simulation results for polymicrogyria
and lissencephaly are discussed in detail in Chapter 6.

(a) Polymicrogyria

Growth
Function

Figure Type Normal
(R = 0.015,
ω = 115)

PMG,
enlarged LVs
(R = 0.021,
ω = 115)

PMG,
microcephaly,
enlarged LVs
(R = 0.015,
ω = 150)

Logistic
Prolate
spheroid
prepattern

Figs. 6.8a,
B.19

Figs. 6.8d,
B.22

Figs. 6.8g,
B.25

Rectangular
domain folding
pattern

Figs. 6.8b,
B.20

Figs. 6.8e,
B.23

Figs. 6.8h,
B.26

Prolate
spheroid
folding pattern

Figs. 6.8c,
B.21

Figs. 6.8f, B.24 Figs. 6.8i, B.27

(b) Lissencephaly

Growth
Function

Figure
Type

Normal
(R = 0.015,
ω = 115)

NRS, LVs
non-
enlarged
(R = 0.005,
ω = 115)

NRS, LVs
enlarged
(R = 0.015,
ω = 30)

Type I
lissencephaly,
normo-
cephaly,
enlarged LVs
(R = 0.021,
ω = 30)

Logistic
Prolate
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Figure B.19: Evolution of Turing pattern on a logistically growing prolate spheroid rep-
resenting normal cortical development. The pattern was generated by System (5.5) with
R = 0.015, ω = 115, tfinal = 35, r = 0.6603, t0 = 19.9258,K⋆ = eRtfinal − 1 and kinetics
parameters listed on page 34. The times at which the snapshots were taken are indicated
as dots in the bottom right figure. See also: animation.
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Figure B.20: Logistically growing domain Turing pattern as a prepattern for normal cortical
fold development. Figures (a) through (d) provide a visualization of how a labyrinthine
cortical folding pattern could develop from a genetic chemical Turing prepattern by plotting
the activator concentration u on the z-axis for z = 0, z = u

4 , z =
u
2 , and z = u, respectively.

The pattern represents normal cortical development and corresponds to the final pattern in
Figure B.19. See also: animation.
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Figure B.21: Prolate spheroid visualization of logistically growing domain Turing prepat-
tern for normal cortical fold development. Projecting the images from Figure B.20 onto the
corresponding prolate spheroidal domain gives a new way to visualize how a labyrinthine
pattern representing normal cortical folding could develop from a chemical Turing prepat-
tern (refer to Figure B.19 at t = 35). See also: animation.
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Figure B.22: Evolution of Turing pattern on a logistically growing prolate spheroid repre-
senting polymicrogyria. The pattern was generated by System (5.5) with R = 0.021, ω =
115, tfinal = 35, r = 0.6603, t0 = 19.9258,K⋆ = eRtfinal − 1 and kinetics parameters listed on
page 34. The bottom right figure uses dots to depict the times at which the snapshots were
taken. See also: animation.

116



Figure B.23: Logistically growing domain Turing pattern as a prepattern for polymicro-
gyria. Figures (a) through (d) provide a visualization of how a labyrinthine cortical folding
pattern could develop from a genetic chemical Turing prepattern by plotting the activator
concentration u on the z-axis for z = 0, z = u

4 , z =
u
2 , and z = u, respectively. The pattern

represents polymicrogyria and corresponds to the final pattern in Figure B.22. See also:
animation.
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Figure B.24: Prolate spheroid visualization of logistically growing domain Turing prepat-
tern for polymicrogyria. Projecting the images from Figure B.23 onto the corresponding
prolate spheroidal domain gives a new way to visualize how a labyrinthine pattern represent-
ing polymicrogyria could develop from a chemical Turing prepattern (refer to Figure B.22
at t = 35). See also: animation.
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Figure B.25: Evolution of Turing pattern on a logistically growing prolate spheroid rep-
resenting polymicrogyria with microcephaly and enlarged lateral ventricles. The pattern
was generated by System (5.5) with R = 0.015, ω = 150, tfinal = 35, r = 0.6603, t0 =
19.9258,K⋆ = eRtfinal − 1 and kinetics parameters listed on page 34. The bottom right
figure uses dots to depict the times at which the snapshots were taken. See also: animation.

119



Figure B.26: Logistically growing domain Turing pattern as a prepattern for polymicro-
gyria with microcephaly and enlarged lateral ventricles. Figures (a) through (d) provide
a visualization of how a labyrinthine cortical folding pattern could develop from a genetic
chemical Turing prepattern by plotting the activator concentration u on the z-axis for z = 0,
z = u

4 , z =
u
2 , and z = u, respectively. The pattern represents PMG with microcephaly and

enlarged LVs and corresponds to the final pattern in Figure B.25. See also: animation.
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Figure B.27: Prolate spheroid visualization of logistically growing domain Turing prepat-
tern for polymicrogyria with microcephaly and enlarged lateral ventricles. Projecting the
images from Figure B.26 onto the corresponding prolate spheroidal domain gives a new way
to visualize how a labyrinthine pattern representing PMG with microcephaly and enlarged
LVs could develop from a chemical Turing prepattern (refer to Figure B.25 at t = 35). See
also: animation.
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Figure B.28: Evolution of Turing pattern on a logistically growing prolate spheroid rep-
resenting the lissencephaly seen in Norman-Roberts Syndrome with non-enlarged lateral
ventricles. The pattern was generated by System (5.5) with R = 0.005, ω = 115, tfinal =
35, r = 0.6603, t0 = 19.9258,K⋆ = eRtfinal − 1 and kinetics parameters listed on page 34.
Dots in the bottom right figure correspond to the time at which each snapshot was taken.
See also: animation.
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Figure B.29: Logistically growing domain Turing pattern as a prepattern for Norman-
Roberts Syndrome with non-enlarged lateral ventricles. Figures (a) through (d) provide
a visualization of how a labyrinthine cortical folding pattern could develop from a genetic
chemical Turing prepattern by plotting the activator concentration u on the z-axis for z = 0,
z = u

4 , z = u
2 , and z = u, respectively. The pattern represents NRS with non-enlarged LVs

and corresponds to the final pattern in Figure B.28. See also: animation.
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Figure B.30: Prolate spheroid visualization of logistically growing domain Turing prepat-
tern for Norman-Roberts Syndrome with non-enlarged lateral ventricles. Projecting the
images from Figure B.29 onto the corresponding prolate spheroidal domain gives a new
way to visualize how a labyrinthine pattern representing NRS with non-enlarged LVs could
develop from a chemical Turing prepattern (refer to Figure B.28 at t = 35). See also:
animation.
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Figure B.31: Evolution of Turing pattern on a logistically growing prolate spheroid rep-
resenting the lissencephaly presented in Norman-Roberts Syndrome with enlarged lateral
ventricles. The pattern was generated by System (5.5) with R = 0.015, ω = 30, tfinal =
35, r = 0.6603, t0 = 19.9258,K⋆ = eRtfinal − 1 and kinetics parameters listed on page 34.
Dots in the bottom right figure correspond to the time at which each snapshot was taken.
See also: animation.
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Figure B.32: Logistically growing domain Turing pattern as a prepattern for Norman-
Roberts Syndrome with enlarged lateral ventricles. Figures (a) through (d) provide a visu-
alization of how a labyrinthine cortical folding pattern could develop from a genetic chemical
Turing prepattern by plotting the activator concentration u on the z-axis for z = 0, z = u

4 ,
z = u

2 , and z = u, respectively. The pattern represents NRS with enlarged LVs and corre-
sponds to the final pattern in Figure B.31. See also: animation.
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Figure B.33: Prolate spheroid visualization of logistically growing domain Turing prepat-
tern for Norman-Roberts Syndrome with enlarged lateral ventricles. Projecting the images
from Figure B.32 onto the corresponding prolate spheroidal domain gives a new way to vi-
sualize how a labyrinthine pattern representing NRS with enlarged LVs could develop from
a chemical Turing prepattern (refer to Figure B.31 at t = 35). See also: animation.
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Figure B.34: Evolution of Turing pattern on a logistically growing prolate spheroid rep-
resenting normocephalic type I lissencephaly with enlarged lateral ventricles. The pat-
tern was generated by System (5.5) with R = 0.021, ω = 30, tfinal = 35, r = 0.6603, t0 =
19.9258,K⋆ = eRtfinal − 1 and kinetics parameters listed on page 34. Dots in the bottom
right figure correspond to the time at which each snapshot was taken. See also: animation.

128



Figure B.35: Logistically growing domain Turing pattern as a prepattern for non-
microcephalic type I lissencephaly with enlarged lateral ventricles. Figures (a) through
(d) provide a visualization of how a labyrinthine cortical folding pattern could develop from
a genetic chemical Turing prepattern by plotting the activator concentration u on the z-axis
for z = 0, z = u

4 , z = u
2 , and z = u, respectively. The pattern represents normocephalic

type I lissencephaly with enlarged LVs and corresponds to the final pattern in Figure B.34.
See also: animation.
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Figure B.36: Prolate spheroid visualization of logistically growing domain Turing prepat-
tern for normocephalic type I lissencephaly with enlarged lateral ventricles. Projecting
the images from Figure B.35 onto the corresponding prolate spheroidal domain gives a new
way to visualize how a labyrinthine pattern representing normocephalic type I lissencephaly
with enlarged LVs could develop from a chemical Turing prepattern (refer to Figure B.34
at t = 35). See also: animation.
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