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ABSTRACT

The metabolic makeup of a biological system is a key determinant diiatogical state
providing detailed insights into its function. Identification and quantificatiothefmetabolites
in a system form critical components of metabolomics. Nuclear magmstnance (NMR)
spectroscopy is a unique tool for this purpose providing a wealth of atomicidé&taihation
without requiring extensive fractionation of samples. So far, a majority dR Mfé@tabolomics
studies have been performed by using 1D NMR techniques because of the short diithgon
experiments. The drawback of 1D NMR is the high occurrence of peak overlapspaat
metabolite identification and quantification. The use of multidimensibihdR techniques can
resolve peak overlaps and provide connectivity information of atoms within medec¢héreby
outweighing the longer measurement times. In this thesis, we introduce novelcapproa
identify metabolites by using multidimensional NMR spectroscopy. Our main appcoasists
of two major steps. In the first step, the metabolite mixture is decoedointo its individual
components and in the second step; each individual component is analyzed bysuNi¥gR i
spectrum. In order to achieve fast, robust and (semi-)automated deconvoReiGoDeC
technique is introduced and applied to a varietytbfand **C TOCSY based NMR spectra.
Deconvoluted TOCSY traces are directly queried in metabolite databankdefdification.
Since many metabolites are not present in metabolite databanks, wepdeval strategy to
extract their carbon backbone structures (topology), which is a prerequisie riovostructure
determination. This led to the determination of 112 topologies of unique metahali. coli
from a single sample that constitutes the OtopolomeO of a cetbpbh@me is dominated by
carbon topologies of carbohydrates (34.8%) and amino acids (45.5%) that can constitute building
blocks of more complex structures. Furthermore, since databanks are designed 1®duktiy
spectrum, querying of TOCSY traces against 1D NMR spectra in databanksd@suthperfect
matches. To overcome this, we created a customiige@OCSY database, which substantially
improved the accuracy of database query’6f TOCSY traces. Together these new tools open
up the prospect to enable routine yet accurate analysis of an increasingliex and diverse

range of molecular solutions including metabolomics samples.



CHAPTER 1

INTRODUCTION

1.1 Role of Metabolomics in Systems Biology

In the biological sciences, the suffix O-omeO refers to a holistiofwubfield. For example,
in the context of the present thesis, the "metabolome” comprises &henetabolite content
within a biological system in a particular physiological or developmeras’st > Metabolites
are defined as biologically produced small molecules with less than ~15@@nba) molecular
weight? Metabolites are involved in many critical functions of biological systesuch as
cellular energetics, structure and signafinvo main objectives of metabolic analysis are the
discovery of natural products and the detection of biologically meaningful changegabolite

concentrations and/or fluxés.

The research area, which studies the O-omeO of a given subfielddi©eamnicsO. The
first demonstration of any "omics" approach has been the sequencing of thieetetditary
content in biological systems, which is called the genome. Genongesfaismed by sequencing
DNA by high-throughput sequencing. Today, the genomes of more than 1000 organisms have
been sequenced. Transcriptomics is the global quantification of gene expr&sims. are
expressed to mMRNAs whereby transcriptomics captures the total mMRNA cohbahgtical
transcriptomics techniques use serial analysis of gene expression, oligtidacieicroarrays,
quantitative reverse transcription polymerase chain reaction and direct RN@nsing. Upon
transcription, mRNAs are translated to proteins, which can be quantified byomprcse
approaches namely gel or gel-free techniques. Gel techniques include twotairakens
polyacrylamide gel electrophoresis or two-dimensional fluorescence differeyede
electrophoresis for separation followed by mass spectrometric analysisl-feeg@rofiling
approach is trypsin digestion of proteome followed by liquid chromatognagaisg
spectrometric analysisProteins organize cellular metabolism by regulating the abundance of



metabolites. Quantitative characterization of the metabolome (metabs)amdone by nuclear

magnetic resonance (NMR) spectroscopy and mass spectrometr§ (MS).

Altogether these four O-omicsO disciplines study the main elemantglbfSince these
elements are not acting independently with respect to each other, they Havéntvestigated
together. The name of this multi O-omicsO view is called (globalnsysielogy* Systems
biology is an emerging field of biology, which aims to understand complex biological
interactions with a more holistic view than traditional biology. It is iasmegly accepted that the
benefits of systems biology on understanding biological phenomena are potentially very
significant in terms of both basic scientific and practical terr8ice the genome does not
change significantly during the lifetime of an organism, it forms the stasit part of systems
biology. On the other hand, cellular transcriptome, proteome and metabolome abundances va
in response to internal and external stimuli. Therefore once the genonuénced, a basic
global systems biology experiment requires quantification of the transcriptomeomeiand
metabolome in different biological contexts such as external physical &edical
perturbations, ageing and disease. Since the analysis of these three éleorer® together is
expensive and labor intensive, global systems biology studies are usually periorfaegk

collaborationg? * 2

Integration of different O-omicsO platforms is a challenge for syisi@loy. Although a
simple systems biology network may be constructed by connecting genes to mRRMAS 110
proteins and proteins to metabolites in a hierarchical organization, kihog/n that these
elements affect each other at various levels, such as at traoms@ipgpost-transcriptional,
translational, post-translational levélsTherefore for a true systems biology study, these
interactions should be taken into account. However, today most of these iisraate

unknown.

After post-translation, proteins are also regulated in cells by allosted feedback
regulations. These regulations, for example, change the catalytic ratesyofes. For proteins
involved in metabolic reactions, changes in catalytic rates result mgeban flux rates. Flux

change is not always reflected in changes on metabolite concentratioimst&oce, increase in
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flux rate does not always reduce concentration of the substrate metabalipathway. This is
mainly because of the regulation of other metabolic network elementaitdam metabolite
concentrations stable in cells (homeostdSis)Therefore, measuring concentrations of
metabolites is not enough to fully understand cellular metabolic aclivity. addition to
concentrations, flux rates should be measured to create metabolic netwbdesthe tested and
used to understand how cells respond to external perturb&tidesasurements of total fluxes,
the "fluxome", are also performed by NMR and mass spectrofiefiiyeoretical analysis of
fluxes can be done by Flux balance analysis (Sectior1.7).

The main topics of this thesis, namely the metabolome and fluxomaireceindicators
of biochemical activity® *” Therefore, their analyses are clearly important. Most diseases are
related to changes in metabolistfor instance the Warburg effect discovered in cancer cells in
1924. Warburg observed that unlike most of the other cells, cancer cells nzetajhatiose into
lactate even in the presence of sufficient oxygen to perform mitochondrial tiegida
phosphorylatiot? ?° The reason why cancer cells do not use the energetically favorable
oxidative phosphorylation pathway is still a myst€njt is the hope that cancer and other
metabolism related diseases will be understood by integrating metabatahfereome with

other O-omicsO data in order to gain global systems biological view about diseases.

Like all other research communities, metabolomics community uses dakhenms to
communicate effectively. Some of these terms are explained in Tdblg should be noted that

some of these terms are used differently by different investigators.

Metabolomics can be divided into two main categories as biomarker alutarcel
metabolomic$. Biomarker metabolomics is the research to discover metabolite biomankers t
diagnose diseases, drug effects and other biological perturbations. The samipkeddiot the
analysis is highly depend on the study, for instance for disease, it cahdoly fuid, such as
blood or urine. For plant stress, it can be plant cell extfakte. biomarker studies aim to extract
significant differences between perturbed and control samples by using sentaguant

multivariate data analysis (Section 1.6).



Table 1.1.Glossary for metabolomics.

Metabolomics Identification and quantification of all metabolites present in a bicdb(
system in a noiiased and notargeted mannér

Metabolic Identification and quantification of a certain number of -geéned
profiling metabolites in a biological system. These selected metabaigegenerally
related to a specific metabolic pathay

Metabolite targe] Identification and quantification of one or several metabolites related
analysis specific metabolic reactioff,for instance substrate and/or product metab
of a target proteffi

Exometabolome | Total metabolite content present in the extracellular surrounding
supernatant of a celltture) of a biological systeth

Endometabolom¢ Total metabolite content present inside of a biological syStem

Metabolic Semtquantitative analysis of the endometabolome by directly comparin
fingerprinting | peak areas or peak heights between similar metabolic s&hples
Metabolic Semtquantitative analysis of the exometabolome by directly comparin
footprinting peak areas or peak heights between similar metabolic s&hples

Metabonomics | Quantitative analys of the dynamic multiparametric metabolic response
biological system to pathophysiological stimuli or genetic modificdtion

Cellular Quantitative angkis of the full network of cellular metabolism including 1
metabolomics | dynamic concentration changes and fldes

Cellular metabolomics is focused on understanding of the regulatory structures of
metabolic pathways, connections between pathways, control of metabolitentcatiaes and
their fluxes within cellS. In biomarker metabolomics, if a biomarker is detected, the next
guestion will be the mechanistic understanding of the biomarker via cethdt@bolomics.
Similarly, if cellular metabolomics elucidates a metabolic payhwze next study will be on its
reflection at the biomarker level. Hence, a study starting with biomark&boiemics often

results in cellular metabolomics, dce versa

Although metabolomics is a research field on its own, there are mamyate$elds that
highly benefit from advances in metabolite analysis. These includensystelogy, synthetic
biology, metabolic engineering, bioengineering, drug target discovery, toxicology,
environmental analysis, nutritional studies, metabolite-protein interactiogtsbaiite-nucleic
acid interactions, personalized medicine, metabolic pathway discovery, isigaall quorum
sensing, discovery of natural products and antibiotics, molecular level phenotype-genotype

analysis. Furthermore, since metabolome samples are complex chemxicakesyiadvances in



mixture analysis improve characterization of other complex chemical miucgsas industrial,

fossil and renewable fuel products, and high-throughput organic reactions.

1.2 Analytical Techniques

Metabolomics developed later than other O-omicsO technologies, whichyiseeatise the
metabolome is chemically more diverse than the genome, transcriptome andprdi¢hile the
genome is composed of just 4 different nucleobases and proteome is formednahaacids,

the metabolome consists of 1000 to 200 000 different comp@umtscause of the narrow
chemical diversity, analytical technologies required to detect genes ornprai@ relatively
simple and therefore routinely perform@dVietabolites, on the other hand, can have extremely
different chemical and physical propertfidg.oday, no single analytical technique exists, which
can detect all metabolité$In addition to the large chemical diversity, metabolites also show a
large dynamic range in concentrations (factor®fin nM-mM)2® An obvious but important
fact is that a low abundance metabolite cannot be observed, if itst@tion is lower than the
sensitivity of the analytical technique. On the other hand, high abundandmtesacan create

a background, which prevents detection of low abundance metaBblites.

The techniques used in metabolomics are not conceptually new. Chemistbeleave
using chromatography, NMR and MS since the 1970s in order to characterize known and
unknown organic moleculés. In contrast to organic samples, metabolomics samples are
unpurified complex biological mixtures with much more diver§itfo analyze these complex
samples and identify and quantify all metabolites simultaneously, a@lygichniques have
been improved and in some cases hyphenated such as gas chromatography, liquid
chromatography and capillary electrophoresis are hyphenated with mass spectronegtigrel
abbreviated as GC-MS, LC-MS, CE-MS, respectively. With the addition of techcalogi
advances, today the most commonly used analytical techniques in metab@oeniB8IR and
MS2 Gas, liquid and solid state of metabolic samples are analyzed byediffNMR andVS
techniques. This thesis only includes NMR and MS techniques, which aréeowsealyze liquid

state of metabolic samples.



1.2.1 Nuclear Magnetic Resonance (NMR) Spectroscopy

History of NMR is dated back to 1946, when Felix Bloch and Edward Purcell indeyisnde
demonstrated in their experiments that certain nuclei were absorbing ebagietia radiation in

a strong magnetic field due to splittings in their energy levelssa$@ittings are because of
their existent magnetic moment caused by their non-zero nucled” gfter few years later,
chemists realized that the molecular environment around nucleus influeacssorption radio
frequency of the nucleus and that can be used to elucidate molecularreg@idn 1953, the

first commercial high-resolution NMR spectrometer for chemical structlweidation was
marketed. At that time the spectrometer was acquiring the spectrum imucmstwave fashion
(CW-NMR)? In CW-NMR, the absorption is slowly scanned by keeping the field strength
constant and moving the frequency of sourcejiag versaln 1966, this slow type of technique
was replaced with Fourier transform-NMR (FT-NMR) by the invention of Richard ErnsT.-In
NMR, the sample is irradiated with a pulse of radio frequency energy, whidksresa time-
domain signal. This signal can directly be converted to frequency-domain by usingrFouri
transformatiorf” The frequency-domain signal is a spectrum similar to the one obtained by CW-
NMR. But, since FT-NMR is much faster than CW-NMR, one can acquire moreigcaiggv/en
time. The number of scans increases the sigrabise ratio (sensitivity) proportional to its

square root®

The first NMR experiments were all one-dimensional (1D NMR), where tpalsi
intensities are plotted against one frequency. 1D NMR spectrum of a tgonadl organic
molecule consists of several to dozens of peaks, which can be eaiguithed as isolated
signals. On the other hand, complex mixtures and macromolecules (Protein, DNA, RNA
polymer) have hundreds to thousands of peaks, which leads to peak overlaps that cannot be
distinguished in 1D NMR spectrufi.To overcome this problem Richard Ernst developed two-
dimensional (2D NMR) NMR in the mid 1970s, based on an idea proposed by Jean Jeener. T
advantage of 2D NMR is that the signal intensity is plotted againstftequencies that
significantly reduce the amount of overlap occurring in the 1D NMR spectrum. Dapeowli
the type of experiment, by 2D NMR one can identify through-bond (J) couplings, through-space
interactions and chemical exchange occurring in molecules. Later on, 2D NMBxtemded to
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higher dimensional (3D, 4D, 5D, etc.) experiments to further improve the resolutvosll sss
information obtained from spectrufh.The drawback of going to higher dimensions is the
exponential increase of measurement time. Although 1D experiment takesesniraid
experiment can take hours/day, whereas 3D experiment can take days/weetabolonecs

generally 1D and 2D experiments are being used.

NMR studies interaction of nuclear spins with electromagnetic radidiaciear spin is
an intrinsic property of a nucleus and it is determined based on its @othinass numbef$A
nucleus with odd mass number has half-integral spin quantum number (1/2, 3/2, etcaswhere
nucleus with even mass and odd atomic numbers has integral spin quantum numbgr.)(1,2, e
These two types of nuclei are called NMR active. The spin quantum nlimiban NMR active
nucleus determines that the number of quantized energy levels in the nacku$? Under
normal conditions these energy levels are degenerate; however, in the presenternaf
magnetic field their energy levels become different. This energy splitinglled the Zeeman
effect?® Nuclear spins have an intrinsic angular momentum, which is quantizechéiksptn
quantum number® In the presence of an external magnetic field, spin angular momentum
orients itself with the external magnetization. This results gnaient of bulk magnetization
along the z-axis of external magnetic field and consistent with the Baoitzipopulations of the
Zeeman energy levels, which - in qualitative terms - states tlegudibrium the population of
lower energy level is higher than upper energy |&dlhis results in a polarization of bulk
magnetization along z-axis. Upon exposure to electromagnetic radiation, the lgm&tixetion
is directed to x-y detection plane. Once on the detection plane, the matoetistarts to
perform free precession because of magnetic field along the z-axis. Duanudession, time
domain signal is recorded. Precession frequency for a particular spin idydredated to
absorption energy of the spin. This energy is equal to the difference betwespinthe Zeeman
energy levels. Every spin has different absorption energy due to its differentutaole
environment. This property leads to different NMR chemical shifts, whichdates spectral

resolution so that resonances of different spins do not all lay on top of each other.



Nuclear spin quantum number 1/2 is the most commonly seen isotope in biology. For
instance,'H, *C, N and *'P possess spin quantum number 1/2. Therefore, the following

explanation of NMR theory will be based on spin 1/2 nuclei.

For one spin 1/2 nucleus, there are two Zeeman energy levels. Each enerfggdewes
associated wavefunctidf. Since a spin can be in any one of the energy levels, spin

wavefunction is a superposition of the energy level wavefunctions as shown in Eq. 1.1

n

1" =Cu2 a2 Cowrz sainmunmnning C,", +C5" ! e mme.a)
where” is the wavefunction of a spie, (or ¢,,) andc. (or c.,,,) are the superposition
coefficients (complex numberaysociated with the wavefunctions of the energy leVelfr
") and L, (or ", ,,), respectively?® In order to extract the energy information frém we

need to use the energy operator, which is called Hamilton operator or Hamiltdmia
Hamilton operator is directly related to spin angular momentum operators, vethicitetes the
angular momentum of along x, y and z direction by using I, and | angular momentum

operators, respectively. The result of calculation fas shown as an example in Eq. 1.2.

|,>=1/2c.c. * #1/2c,c  *! | ! h! . 2)
!

where the denotes the complex conjugate. This means that angular momenturalofig z-
axis is 1/2 with possibility ot.c. * and -1/2 with possibility of.c. *, where the sum aof.c. *
andc.c. * is equal to one. This can be written in a more compact way by using deasiby!

in Eq. 1.3%

In this case, angular momentum along x, y, z-axis can be arranged as in®q. 1.4.

| >_;§1/2 0 & I >_?(’)¢O 12 | >_# 0 -8|||||||||l|||||| ma)
z _goo n 1/2( X _ﬁlz O( y _£/2| 0 ( ................ ( : )
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NMR experiments consist of delays and pulses, which manipulaté thea time dependent

manner. To analyze the time dependent wavefunction, we need to use theegaation (EQ.

1.5Y°
"(t) = exp@iHt) " (0) exp{Ht)! ! ! HinneL sy

where H, t and i are the Hamiltonian, the time and the imaginary upgatagely. At the end of
pulses and delays, we will obtain time-dependent density opé€rédorin order to extract

physically observable NMR signal, the mathematical trace operation is performed as in’Eq. 1.6.

s =Td"mr}r ! ! ! (1.6)

Here thel " is the raising operator, which result in the measurement of magnetizatmnxay
plane. Therefore it is related to angular momentum operators along the x- and y-axis (£q. 1.7).

=1, il ! ! i) Hm.7)

Time-domain signal S(t) obtained from experiment is converted to frequency-domain&ighal

by using Fourier transformation.

The next section will explain NMR experiments, which are commonly used in
metabolomics. Theory of experiments will be illustrated by using simgespin model system.
The spins are through bond (scalar or J-) coupled to each other. Couplings have dateoheffe
Hamiltonian (energy) of the system; therefore, they are observed in the NM&Ruspethe

Hamiltonian (H) of the two-spin system is shown in Eq.%1.8.

H=" 1, +" 241, 81,81, ! ! ! 1(1.8)

where" ;and"” ,are precession frequencies of the first and second spin, respectively &nd J

the coupling constant between them.

In the case of two-spin system the density opetasgiould be expanded as in Eq. £.9.



0,

I/@##C## * C##C#$ * C##C$# * C##C$$ *£
1CusCis © CusChus ™ CuCgqy™ CueCyq ™«

P T B T TTTTT T RC)!

i * * * *% =
CoCar~ CoCus ™ CguCou™ CouCos ™

* * * *
&35Cu = CgsCys ™ CgsCgs ™ CgsCys ™)

Expansion of angular momentum operators can be done by Kronecker pfagercinstance,
angular momentum along z-axXw the first and second spins,; land b, respectively, are

calculated as in Eq. 1.10,

he =12 EI I I I Hngm10
=g 1} ! N T (1110}
!
where E is the identity matrix (Eq. 1.11) and thes the direct matrix product.
!
£ "0 19
= ' ! ! ! .11
¥ oz (1.11)
The result for 1, is shown in Eq. 1.1
931/2 0 0 0 &
| = 20 12 0 0 El | ! i (1.12
2 g9 o "2 o ( (1.12)

& o o Ak

By using the same approach all the other angular momentum opertattxs lhy and by can be

calculated, which will be used in the next section.

1.2.1.1 One-dimensional NMRNMR experiments can be represented in terms of blocks
of radio-frequency pulses (rf pulses) and delays. During pulses electromagnedicomad
applied and during delays the system is under the Hamiltonian for free pracésgure 1.1
shows the representation of a 1D NMR experiment. The experiment stdrtanvéquilibrium

magnetization along z-axis. Therefore, at the beginning of the experimergqual to A The
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90; pulse rotates the magnetization to detection plane. On the detecthen thia spins perform

free precession for timte while the signal is recordéd.

v

Figure 1.1.Representation of basic 1D pulse sequence. The experiment startscatilibaien
with zmagnetization, which is rotated to the detection plane byja@Be, shown as black
rectangular box. Signal acquisition starts immediately after the pulssoatidues during timg
which is represented as a damped cosine wave.

More detailed explanation is provided by applying product operator formalism to the firs
spin (Eg. 1.13). The evolution of the second spin occurs similarly. Briefly, at thenbegiof
the 1D experiment, magnetization of the first spiniisWhen the 99 ( /2) pulse (shown as
arrow in Eq. 1.13) is applied along y-axis, magnetization is rotateg ttréction, which is on
the detection plane. During signal detection, performs free precession, from which the
frequency of the first spin’(;) as well as the coupling constant between the first and second

spins (J,) can be extracted.

|, # HHS 1, # BES cospat)l, +sinCat)l,,
(1.13)
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The NMR probe independently detects the magnetizations ahtl b, and stores them as real

and an imaginary numbers, respectively, as in Eqg. 1.14:
S(t) = cos('J,t)cosé ,t) +icos(' I, t) sin@# ,t)
S(t) =cos('J,t)expl# t) (1.14)
S(t) =1/2exp([#, + "J,,]t) +1/2exp{[#, $ "I.,]t)

where S(t) is the recorded time domain signal. The signal is the suvn abimplex exponential
terms, which are oscillating at frequencies ¢ " Ji0) and { 1 - " Ji»). In real life, these signals
do not only oscillate, but also decay over time due to relaxation, therefeecagsume that the

decay is exponential, then the actual S(t) will be as in Eq.*1.15:

S(t) =1/2exp([" , +#,]t)exp@Rt) +1/2exp{[" ; $#1,,]t)exp@Rt) (1.15)

where R = 1/% is the relaxation rate, which is the inverse of the transverse relaxatie T.
Fourier transformation of S(t) results in a frequency domain spedfrumFigure 1.2, an
example 1D'H NMR spectrum of two-spin molecule is shown. There are two signals appeari
at chemical shift values 6.82 and 7.72 ppm and each signal is splitted by, 8letdfore the 4
lines are corresponding tb { + " J12), (' 1-"J12), (! 2+"Jp) and { , - " Jo) values, from which

I 1,1 2and J, can be extracted. In NMR, instead of frequencie9,(blgnals are represented by
chemical shifts (ppm), because frequencies are directly proportional to teetioafield
strength. For instance, doubling the strength doubles the frequency, which makes comparing
frequencies between different spectrometers diffffulfo overcome this confusion, the
chemical shift scale is used. Construction of chemical shift segléres a reference compound,
whose signal is used to define the zero ppm position. The chemicalddHifies other peaks in
the spectrum are calculated by taking the ratio of their frequencies fredquency of reference,
which cancels out the field dependeftalthough NMR peaks are defined by chemical shifts,
the coupling constants are still represented by frequencies, because couplmgisctiange

based on the magnetic field strength.
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Figure 1.2. 1D *H NMR spectrum of 4-aminobenzoic acid taken from BMRBSignals
appeared at 6.82 and 7.72 parts per million (ppm) are J-coupled to each other withrey coupl
constant of 8.5 Hz, which can be measured from peak splittings (in red color).

The chemical shifts and J-coupling constants are specific for eachouoth For
instance, if the parameters observed in Figure 1.2 are searched in NMRkisitéta (correctly)
identified compound will be 4-aminobenzoic acid. The paramaters can aticebity used to
elucidate molecular structures. For instance, chemical shift valadtbfpeak directly reports
whether it is an aliphatic or aromatfil, or whether it is connected to an oxygen or a carbon
atom. Furthermore, the coupling constant reports the dihedral angle béw@erThe multiplet
pattern of the peaks reports the number of equivalénin the structure, for instance, in 4-
aminobenzoic acid, we observed two doublet peaks, which shows that there avaedilyin

each position.

1.2.1.2 Two-dimensional NMR.In Figure 1.3, the schematic of a 2D NMR experiment
is showr™ In 2D NMR, a 1D NMR experiment is repeated many times while systeihat

incrementing the evolution time, which encodes the correlation between spins through bond or
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space. The signal is detected duripg Finally, the time domain signal §ft) is converted to
frequency domain $(,! ») by Fourier transformation. The dimension, which is never directly
detected, is called indirect dimension; whereas the detected dimensiis called direct

dimension.

evolution detection

—
>

t: t,

v

preparation mixing

Figure 1.3. Representation of basic 2D NMR pulse sequence. Preparation and mixing periods
may contain 2 single pulses as shown above or depending on the 2D NMR experimaut, it
consist of more complex arrangements of pulses and delays. During evolution, col&rence
generated, which evolves duriigDetection occurs during period after mixing pulse.

In metabolomics, two commonly used homonuclear and heteronuclear 2D NMR
experiments are TOCSY and HSQE. In homonuclear experiments, the signals arise from
correlations between same type of spins suchHa%d or **C-'*C, whereas in heteronuclear
experiments they arise from correlations between different type of spinsastid-*C or *H-
15N.

2D TOCSY.TOCSY observes correlation between spins in an unbroken chain of spin
network, where each spin is coupled to the other through-bond. Figure 1.4A shows a
hypothetical spin network of carbons, where Sp@y is connected to spiiCs and spin~Cg is
connected to spitfCc. TOCSY spectrum in Figure 1.4B shows signals between A, B and C. The
most interesting TOCSY signal is between A-C, which could appear evenabgbhace of A-C
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coupling® The reason for this long distance correlation is the magnetizationetrahsing
TOCSY mixing period.

A B

o

w (13C)
9
O
o

@ @ [c

w (13C)

Figure 1.4. (A) Hypothetical carbon spin network arranged as carbof®®@.) connected to
carbon B £3Cg) and carbon B connected to carbontC§) by scalar J-couplings. (B) Schematic
TOCSY spectrum of the spin network shows 9 peaks, 6 of which are cross-peagsarutireg
to correlation between carbons A, B, C with each other. These are shown agdigipeaks.
The remaining 3 peaks are diagonal peaks, which are corresponding to correlatioittofAA

B with B and C with C. These are shown as dark grey pgeaks.

The pulse sequence of TOCSY is represented in Figure 1.5. The grey box @GQB8&' T
mixing pulse sequence, which is applied dutipg.> The stages of TOCSY experiment are the
following.* The initial magnetizationq} is rotated to 8} by 9Qj pulse. Duringt;, the
magnetization evolves under magnetic field along z-axis; thereby it encoddeedency
information of the first spin”(1). The second 99 pulse converts the magnetization backito |

(Eqg. 1.16).
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Figure 1.5. Pulse sequence of TOCSY experiment. The grey box corresponds to the TOCSY
mixing, which is applied for a timenx. TOCSY mixing achieves correlation between distant
spins, if they are part of an unbroken network of scalar J-couplings.

The isotropic mixing durindmix transfers z-magnetization from one spin to the other with a rate,

which depends on the coupling constant between the spins and duratigr{ed. 1.17).

# #$ Yeos@,t)cos( ) (L/2[1+cos(2,," Ly, +1/2[1%Cc0s(2,," )]l ,,) L. 17)

12 mix

Finally the z-magnetization is rotated to detection plane ky@dse for signal acquisition (Eq.

1.18).

# YH$ cos(” Jpt)cosfat) (1/2[1+cos(2'd & )]l +1/2[1" cos(Z'd.& )]1,,) "1 1.18)
I

Eq. 1.17 demonstrates the transfer of in-phase magnetization between spais|eatls to
relatively simple cross-peak multiplet patterns. There is one more comosedyhomonuclear
2D NMR experiment, namely COSY, which displays only correlation between J-capied

Therefore, COSY spectrum of the hypothetical spin network displays only thessigtaleen
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A-B and B-C. TOCSY spectrum can also be used like COSY by reducing the TOG8Y mi
time ! hix. COSY and short mixing time TOCSY provide the same information, but in COSY,
multiplet structure of peaks appears in anti-phase shape, whereas in TIDG&Xrs in-phase
shape. The drawback of anti-phase shape is that in the presence oflswafling, the
multiplets approach each other, which can cause the cancellation of erbekepeaks. By
contrast, for TOCSY-type in-phase cross-peaks, small J-couplings turn the nauttesinglet
with larger intensity. As a result, in terms of cross-peak appearance T@GB0te preferable
than COSY.

2D HSQC.The most abundant nuclei in metabolites #teand *°C, therefore**C-H
HSQC is the most commonly used heteronuclear experiment in metabolbi@idd. HSQC is
explained by using three carbon ch&i@a-"*Cs-*Cc in Figure 1.6A. If each carbon has one
attached'H, **C-*H HSQC spectrum will have 3 peaks as in Figure 1.6B, where each peak is

corresponding to a correlation between a carbon with its attached proton.

The stages of HSQC experiment are the followthghe initial magnetization on the
proton spin | is transferred to carbon spin S during period A (Fig. 1.7). Magnetizatiom & spi
evolves duringt;, thereby it encodes the frequency information of carbon. Finally, the

magnetization is transferred back to | for detection (Eq. 1.19).
|, # W n, # FHES # WES # PHES WBin(2':&)21,S,
# HHYHS Wsin21:&)21,S, # #HHS cos( t)sin(R"I&)21,S, 1ML 19)
# Y HRS ggos( )sin2'Is&)21,S,
I

Since'H has higher sensitivity and higher natural abundance'fi@rthe initial magnetization
and detection in HSQC, are performed throtlg®s to increase sensitivity of the experiment.
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Figure 1.6.(A) Hypothetical carbon spin netwofRCa-3Cs-*Cc with their attachedHOs. (B)
Schematic 20°C-"H HSQC spectrum of the spin network. Three cross-peaks are corresponding
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Figure 1.7.Pulse sequence biC-'H HSQC experiment. The experiment starts with equilibrium
magnetization on proton spinwhich is transferred to carbon s@muring spin echo perioA,
which includes a 189 pulse at the middle, shown as white rectangular box. Smnolves
during t;. At the end of the;, magnetization is transferred back to proton spin by pQlse

followed by detection durint}.
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2D Constant-time spectroscopythe constant-time method is a pulse sequence
modification that leads to the removal of the splittings in the indotgaension 1;), occuring
due to homonuclear J-couplingslt has been applied to many multidimensional experiments
such as COSY, TOCSY and HSQC. The main advantage of collapsing peakatsutoinglet

is an increase in the effective resolution of the spectfum.

Since it will be used in Chapter 3, constant-time version of TOCSY exgetiis
selected to explain the principle of the approach (Fig. 1.8). The constantqtithe ipulse
sequence is the period ©f The evolution time is as usual the period;ofAt the center of the
period T-t;, there is a 180 pulse (white rectangular box). The effect of this pulse on the
evolution of chemical shiftt () and J-coupling is different, which underlies the basis of constant-
time approach. The 180pulse refocuses the chemical shift at the end of the pdrid
Therefore, overall the chemical shift evolves duringas it would occur in normal TOCSY
experiment. On the other hand, 1§lse does not refocus the homonuclear J-coupling and the
coupling evolves during whole constamhe periodT. As a consequence, theart of the signal
S(t,t) becomes a function of chemical shift, but not the function of homonuclearplifg,

which will create a splitting-free spectrum along thedimension of CT-TOCSY°
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Figure 1.8.Pulse sequence of constant-time (CT) TOCSY experiment. TheTtcoeresponds
to constant-time period.

The CT-TOCSY experiment can be represented by product operators as following. The

initial magnetization1l, is rotated to £y by 9Q,; pulse. After that, the coupling evolves durihg
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and the chemical shift evolves duringFinally, magnetization is rotated to z-axis byj90ulse
for TOCSY mixing (Eqg. 1.20).

|, # WS 0, # WS Yeos('I,T)ly, +sin(" I, )21, # H$
LI, 20)
cos(' 3, T, %sin(" 3, T2, 1, # #H#$ # #%$ cos@,t)cos( I,

The only difference between TOCSY and CT-TOCSY occurs at this point fiadT-TOCSY

is a function of cod(,2T), whereas in TOCSY, it was a function of dakft;). Therefore in CT-
TOCSY, coupling does not affect the shape of the signal dlodignension, but it affects the
intensity of the peaks. To have peaks with maximum intenBighould be selected as equal to

n/y,wheren=1,2,3 %

The drawback of constant-time experiment is that during filméhe nuclei undergo
relaxation, which leads to sensitivity less Although this can be serious problem for fast
relaxing molecules such as proteins, fortunately, for small molecules suchetabolites,
relaxation time is long enough that it does not create a big problenwiihié demonstrated in
Chapter 3.

1.2.2 Mass Spectrometry

Although in this thesis, mass spectrometry is not used, for the sake ofetemesk mass

spectrometry will be explained in this section.

Mass spectrometer detects mass to chargk) (ratio of gaseous ions. The first
spectrometer was designed by Joseph John Thomson if“B@&ry MS spectrometer consists

of an ion source, mass analyzer and detéGtor.

Since from a technological perspective to form gaseous ions from gaselyissawas
easier, ion sources capable of first vaporize and second ionize the anabkedf earlier in MS

history. The molecules, which can be analyzed by the gas-phase ion source®latdes or
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thermally stable molecules with boiling points less than ~8D@nd molecular mass less than
~1000 D&’ In early 1940s, MS with gas phase ion source was the first instrumentaused t
quantitatively analyze hydrocarbon mixtures in petroleum ind@stryearly 1950s, commercial

MS instruments started to be used by chemists to analyze variety obajheic compounds.
Since many biological molecules are nonvolatile or/and thermally unstéiele,cannot be
vaporized by gas phase ion sources. Application of MS to biological molecdlés hait until

the invention of desorption ion sources in 1980s. A desorption ion source can convett a soli
state or liquid-state sample directly into gaseous 36@nce then, the field of biological mass
spectrometry has exhibited explosive growth for the analysis of low and highutaola®ight
biomolecules’ Today, MS analyses of gaseous, liquid and solid samples are done most

commonly by EI, ESI and MALDI ion sources, respectively.

Mass analyzer part of MS instrument, which is used to detémotalue, shows diversity

in terms of resolution, speed of scan, sensitivity, fragmentation ability, mass range and cost.

Resolution, the ability to distinguish ions with different masses, issséyg to extract
exact mass, which is the key parameter to identify chemical formadangtance, exact masses
of N," and CO are 28.0061 and 27.9949 Da, respectively. A lower resolution mass analyzer,
which is capable of measuring only nominal masses, cannot discriminsgetiie ions, since
their nominal masses will be the same, 28 Da. Mass analyzers celasséied from low
resolution to high resolution as well as least expensive to most expassjuadrupole, time-of-

flight (TOF), Orbitrap and Fourier transform ion cyclotron resonance.

Fast scan speed is advantageous for platforms requiring short acquisitiofi’ seich as
GC-MS, LC-MS, CE-MS, where at every retention time the elution is senass spectrometer
for scan or another example MALDI imaging, where an image (e.g. brain slio&gn divided
to 256x256 spots and for every spot a mass spectrum is actjueedrupole and TOF are
capable of fast scannifig.

Fragmentation is important for identification of metabolites and ipadormed by

tandem mass spectrometers. In a basic tandem instrument (MS/MSarthén® stages; at the
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first stage,m/zanalysis is applied to select ions for further fragmentation. At thendestage,

the fragment (product) ions@s are analyz&Examples of tandem spectrometers, which are
also called as hybrid mass spectrometers, are quadrupole-TOF and lineapiGmkitrap. It is
common in hybrid instruments that the first tandem stage is performed bgvihedolution

mass analyzer (quadrupole and ion trap), which filter ions on the front end anddhd stage

is performed by a high resolution mass analyzer (TOF and Orbitrap), which meaguds
product ions on the back efd.Fragmentation is useful in metabolomics to discriminate
metabolites having the sanme/z values. For instance, if glucose-1-phosphate and glucose-6-
phosphate samples are separately analyzed in a quadrupole instrumerthebserved will

be both 259 Da. These are the parent (non-fragmented) ions of glucose-1-phosphate and glucose-
6-phosphate. However, if these metabolites are analyzed in a hybrid quadrupoleeinisty tine

ions observed for glucose-1-phosphate will be 79, 97, 139, 241 and 259 Da and the ions
observed for glucose-6-phosphate will be 79, 97, 139 199, 241 and 259Tberefore, the
product ion 199 is specific for glucose-6-phospRatehich can be used to discriminate these

two metabolites.

Mass range of mass analyzer is also an important criterion. The deomramédsuring
high mass range up to severaf D@ was arisen upon introduction of MALDI for the analysis of
proteins® A modern quadrupole instrument can detect up to 1-4000 Da; therefore, it is not
suitable for detecting high molecular weight molecules. On the other hargirange of TOF is
unlimited and therefore MALDI-TOF is the most common MALDI instrument.

MS platforms for metabolite analysis can be classified as diretion and hyphenated
platforms. Hyphenated platforms can be further divided based on the principlpaoatsm
technique as chromatography (GC-MS and LC-MS) and electrophoresis (CE-MS).

1.2.2.1 Direct infusion MS. Direct infusion mass spectrum is a one-dimensional
spectrum, where the x-axis represemiz values and the y-axis represents ion counts. As its
name implies, in direct infusion (or direct injection), the sample ictejeinto the ionization
source without prior separatidh.Due to absence of separation, it is fast, taking ~2 min per

sample, therefore very high-throughplitShort analysis time also improves inter-sample

! 22



reproducibility and therefore, accuracy of the following statistical andfysisis well known

that every separation technique works best for subclass of metabolites aod dietect the
others. Since direct infusion is a separation-free technique, in idealrzasetabolites are lost

due to separation. Common ionization source used for direct infusion is ESl.airhdrawback

of direct infusion is ion suppression, which is a phenomenon occuring when an abundant ion
suppresses the signals of less abundant ions by competing for the entry ofagee m
spectrometef? Since in direct infusion more abundant and less abundant ions are not separated,
ion suppression is more severe than in hyphenated MS. For instance, high satticdniéfers

or samples can cause ion suppression that can impede meaningful dgsis 4nahother
drawback of direct infusion is that it cannot distinguish isobaric (sana mass) compounds

such as sugar isomers, some of which would be separated by chromatography.

1.2.2.2 Hyphenated MSIdentification of metabolites by direct infusion is difficult and
often requires physical deconvolution by chromatography or electrophoresis. In mass
spectrometry, efficient separation eliminates more interferences, thanelg lower detection

limits.**

Chromatography includes a variety of methods. In every chromatographic technique, the
sample is dissolved in a mobile phase and it is driven through an immistationary phase.
Based on how strong the mixture component interacts with stationary and mob#e ipshows
a distribution. For instance, if it interacts strongly with stationary phase,retained in and
eluted late from the column. To be retained in the column, the mixture compuonshhave
some degree of compatibility with the stationary phase. This can be prdwdesing a polar
stationary phase to retain polar mixture componentsyicw versa As a result of different
migration rates, mixture components are separated that can be analyzediry Galitative
and quantitative mannéf. Chromatographic techniques are classified based on the type of

mobile phase.

GC-MS. In GC-MS, the mobile phase is an inert gas and stationary phase is liquid. A
metabolomics sample is injected into capillary columns. During separa#mi eluent is

directly sent to the mass spectrometer for analysis. If the madsospeter performs scanning
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per second, for a 30 minutes chromatographic run, 1800 mass spectra are recorded. Every point
in this data has one elution time, an&zvalue and one intensity. A typical GC-MS run takes 30-

60 minutes. A temperature gradient from ~& to ~300;C is applied for elution. GGAS

readily detects volatile metabolites. Non-volatile metabolites basome volatile by
derivatization protocols (Section 1%)GC-MS is well suited to detect large number of small
organic molecules and after derivatization: amino acids, sugars and monophospiatends,

but less well suited to detect highly polar molecules such as mutiplyphorylated metabolites

(ATP, GTP, etc.) and larger molecules such aatédf

LC-MS. LC-MS is the name of hyphenation of HPLC with MS. Reverse phase liquid
chromatography is the most commonly used LC instrument in metabolomics. In rnelrasse
HPLC, stationary phase is nonpolar and mobile phase is polar liquids. In a dgaphtc run
hydrophobic mixture components are retained and hydrophilic components pass through the
column and eluted first. Hydrophobic components are later eluted by solvent gradiietit, w
decreases the polarity of the mobile phase by adding an organic (nonpolar) solveas such
methanol or acetonitrile that reduces the hydrophobic interactions. C18 narrow boogisian
reverse phase column with particle sizes@bdwith 2 mm inner diameter and 5-25 cm length.
Here the C18 stationary phase is corresponding to alkyl group (n-octyldecyl) attatteedadbd
support of the column. Metabolomics studies often use C18 column with waterbdle phase.
The problem with this approach is that some of the charged polar metabditest retained by
the column and they are eluted near the void volume in the beginning of the chropfatogra
run3’ To solve this problem ion pairing agents are used, which are volatile cleanmgedunds
that couple and neutralize oppositely charged metabolites. The agent-metalooliplex
contains hydrophobic group that helps binding to C18 coftiriine most commonly used ion
pairing agent is amine group containing agents, which provide positive charge to couple
negatively charged metabolites. This approach allows detection of broad ranggatif/ely
charged metabolites. On the other hand, for positively charged metabolites riog @aproach
is not used because of ion suppression. To detect positively charged metadalidemal phase
chromatography namely HILIC is used. In HILIC, stationary phase is polar, the mobikiphas
relatively nonpolar such as acetonitrile. For elution, acetonitrile is grgcegllaced with water

to elute and detect positively charged metabofites.
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A typical LC-MS run takes 30-60 minutes. Instead of using regular parzeegsiumns,
smaller particle size columns have been developed, which provides higher oesahatishorter
run by applying higher pressure (UPLC). Also higher resolution can be achieved by capillary
LC. These columns have particle size similar to conventional HPLC P35 but the inner
diameter is much smaller (~0.2 mm) and the length of the column is longer $80ctn). The

drawback of capillary LC is that elution takes longer tithe.

Although LC-MS detects smaller number of metabolites than GC-M®yérs greater
fraction of the biologically critical molecules such as nucleotide tripiates and redox-active

metabolite$?

CE-MS.CE-MS is a method, where the charged compounds are separated in a buffer-
filled capillary tube under the influence of dc electric fi€llectric field is applied by locating
pair of electrodes at both ends of the buffer. When the field is ond# teamigration of charged
metabolites toward electrode with a migration rate, which depends on tige-tiaize ratio of
each metabolite. The larger the ratio, the faster the metabolite rtmwesd electrodé’ CE
column has typically 10 to 10@m inner diameter and 30-100 cm length, where eachiend
connected to one electrotfeThe sample is injected from one end and detection happens at the
other end. CE-MS can only detect charged metabolites.

1.2.3 Comparison of NMR and MS

NMR and MS techniques have both pros and cons. Today there is a general comsémesus i
field that NMR and MS are highly complementary technidd&ensitivity of MS is at nM level

and NMR is auM level. Therefore, MS is ~1000-times more sensitive than NMR with higher
dynamic rangé® The drawback of MS is that during sample preparation, separation and
ionization steps, some classes of metabolites are targeted ethides are ignorelf. **
Furthermore, at the ionization step the sample is destructed. On the atdeMNihdR do not

discriminate metabolites or destroy the samples and provides more reproducible data.



1.3 Sample Preparation

Metabolome sample can be in solid, liquid or gaseous form. This sectibonhil include

sample preparation of liquid form of samples.

Metabolomics applications requiring cell extracts are prepared inutelles. Once the
cells reach to a certain level of growth (or time point), they are ocefleitom cultures and
immediately quenched to stop metabolic activitteQuenching can be achieved by instant
change of temperature to either high (e.g. > +i8p or low (e.g. < - 4G C) degrees or hy

applying extreme acidic or basic conditidfis.

After quenching, the cell pellet is obtained by ultrafiltration or ultradegation. In the
next step, cell pellets are lysed (such as by freeze-thaw technique)ritoorelease cytoplasmic
content (supernatant). Since the supernatant contains proteins, nucleic acstaalites, to
obtain only metabolites, an extraction procedure is perforfhediich is done with organic
solvents such as water/methanol/chloroform at low temperatures. Onoetigolite extract is
obtained, a pre-concentration step such as evaporating the solvent under vacuurapgiede
in order to achieve the detection limits of the analytical techriftjue.

Preparation of body fluids does not require cell growth, quenching and lysis. Singe urine
blood and most of the other body fluids contain proteins and other non-metabolitellesléo
extract only metabolites same or similar extraction procedures to thexplaed above is

performed.

After pre-concentration step, treatment of metabolite pellet diffeysdban the analytical

technique and it will be explained specifically for each technique.

NMR. Depending on the NMR tube diameter, final volume of NMR sample can be ~200
puL (3 mm tube) or 60Q@L (5 mm tube). The metabolite pellet is dissolved in phosphate buffer in
order to eliminate signal shifts based on pH differences. Generally pesvelose to biological
values pH 7.0-7.4 are preferred. About 10%0ODis added into the sample to lock the
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spectrometéf and sub-mM concentration of referencing agent is used for calibration of NMR
shifts. The reference agent can be different based on the solvent, for asplgens DSS is the

proper one.

Direct infusion MS.Metabolite pellet is dissolved in ~1Qf infusion solvent (0.1%
formic acid in water and 0.1% formic acid in acetonitrile (1:1)) angill@s injected into ESI-

MS for analysig?

GC-MS. Since polar metabolites are nonvolatile, analysis of them often requires
derivatization at the functional group in order to decrease polarity and intheasel stability
and volatility** Active hydrogens in these functional groups such as BCOOH, -OH, -NH and b
SH can be derivatized by silylatidhSilylation replaces the active hydrogen with an alkylsilyl
group, for instance, ¥Me;.*> BSTFA and MSTFA are the common derivatization agents and
TMCS (1%) is the commonly used catalyst for derivatizatidBptionally, before derivatization
a methoximation procedure can be applied. Methoximation aims to reduce therswohbe
derivatives of reducing sugars so that the GC-MS spectrum contains fewesr pes makes
analysis of spectrum simpler. As a procedure, the carbonyl groups of sugars are ofte
transformed into the corresponding oximes withsGNH; in pyridine to stabilize -ketoacids to
lock the sugars in open-ring conformatién®® By the additions of the derivatization and
methoximation reagents, the metabolite pellet becomes a solution oft108nd 1L is
injected into GC-MS for analysis. Before methoximation and derivatizatiotgbolde pellet
should be compeletely dry otherwise moisture would result in degradation of deatioati
agent:*

LC-MS. The metabolite pellet is dissolved in ~100 HPLC-grade water and 1L is
injected into LC-MS for analysi&.

CE-MS. The metabolite pellet is dissolved in ~1QQ deionized water containing
internal standards such as p® diAla and 50uM HEPES for positive and negative ion

detection, respectively. OL solution is injected into CE-MS for analy$fs.



1.4 Metabolite Quantification

Although peak areas or peak heights of NMR and MS signals have been usedatmolime
fingerprinting and footprinting applications, this information does not provide accumdte a
absolute concentration of metabolites. This section explains how absmhgtentrations can be

extracted from NMR and MS spectra.

1D NMR spectrum provides the most convenient and accurate concentration
determination among all NMR and MS techniques. In 1D NMR, simply a refecemepound
(internal standard) with known concentration is added into the sample beforacdatsition.
The absolute concentrations are measured directly relating the peak volurie&noivn
concentrations to the peak volume of internal standard. Reference agent 188 ased for

NMR chemical shift calibration can also be used as internal staffdard.

The drawback of 1D NMR is that peak volume determination for the overlapplkeslipea
not possible. The overlaps can be resolved in 2D NMR. Quantification of metakm} using
2D NMR is currently an active area of research . Many NMR experimentsasuldisQC and
TOCSY have been proposed for quantification; however, none of them have found wide
application in metabolomics community because of their limited accussngsitivity and
convenience. Independent of being 1D or 2D, all NMR quantification methods require ful
relaxation of spins between scans to prevent differential saturatianseff®r this purpose the
required interscan delay should be at least 5 times of T1 of the slmieeahg nuclei in the

sample®

Unlike NMR, MS quantification cannot be based on a single internal stabeeadse of
different ionization efficiencies of metabolites. For quantification Mg, every metabolite
should be calibrated with its own standdf€ and*C labeled isotopes of the same metabolite
have the same retention time in chromatography, but they have diffefenalues in mass
spectrometer, therefore spiking in the isotope labeled standards can bey dissxdl for
calibration. Since™C labeled standards are often not available, metabolomics sampfe€ are
labeled during cell growth by feeding the cells wiftt labeled energy source and later on,
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natural abundanceC) standards with known concentrations are added into the sample for
quantification?® #’ Limitations of this approach is that standard for every metabolite is not

commercially present and fulljiC labeling is not possible for every eukaryotic cell type.

Regardless of the type of analytical technique, all absolute concenttatemminations
of cellular metabolites require estimation of the number of cellsemgtowth medium as well as
estimation of their intracellular volume by using optical techniques suth/a/is spectroscopy
and fluorescence confocal microscopy, respectitfely.

1.5 Metabolite Identification

A positive identification requires matching of at least two independedt @thogonal
parameters of unknown metabolite and its pure standard collected under identivadr
identical conditiond® These orthogonal parameters for MS can be retention time + mass
spectrum, accurate mass + MS/MS and accurate mass + isotope abunttanmt® par NMR,

a match at least to one of them; ) 1D *3C or 2D'H NMR is generally sufficient, since NMR
data have already two or three orthogonal parameters as multiple chdmfisapsak intensities

and spin J-coupling patterfs.

There are many NMR and MS metabolomics databanks hosting experimentz] plata
metabolite standards. Experimental information can be queried against#taisanks in order
to identify metabolites. Main limitation of this approach lies on twt that only <5% of the
metabolome universe have pure standards and only that amount is availael@atabanks.
As a result of this, many of the NMR or MS signals observed in metabalastidies stay
unknown. ldentification of the uncatalogued (unknown) metabolites requires labor-intensive
purification and pre-concentration steps. Purified metabolite is later adalyme
multidimensional NMR experiments fafe novostructure elucidation. Additionally, MS can
provide exact mass of parent and fragmented ions, buthafzlyalues are often not enough for

de novostructure elucidation.



1.6 Chemometric and Statistical Techniques

The tools described in this section are often used for biomarker metaboldmhesim of
biomarker metabolomics is to extract statistically significarfedéhces between observations.
Data with multiple observations and multiple variables are calledivaittte datd. Often
multivariate data are arranged into table, where rows constitute the olosenatd columns
store the variables.Analysis of multivariate metabolomics data is performed by principle
component analysis (PCA) and partial least squares (PRSH is an unsupervised technique; it
does not require prior information about different classes among samples. Gthehdand,
PLS s a supervised technique; it requires classification of samples kmfahgsis, but this
additional step pays off as a better performance. PCA and PLS both convedlagiables to

a set of new uncorrelated variables, which is called principle compoétes.in metabolomics
studies, first several principle components represent most of the variandeCA) and
covariance (in PLS) of the original variables. This is quite useful, smaeually comparing
hundreds of signal intensities (variables) in dozens of metabolic samplesvéilons) in a
reasonable time is not possible. By using PCA or PLS, metabolomics stuttiast the most
important signal intensities that represent differences among samnmolehen by using their
chemical shifts or retention times amdz values, the metabolites corresponding to the signals
are identified. All of the metabolites identified in this procedure can be potential biomarke

The most important pre-requisite of multivariate data analysis ishtbatariables should
be aligned across observations. NMR or MS spectra of multiple samples dbowot100%
alignment. In NMR, sample always stays in NMR tube. Often misalignimelue to variability
between samples in terms of pH, or metabolite concentrations. In MS,esaomés in direct
contact with many parts of the instrumé&htherefore contamination of the instrument as well as
variability among samples cause misalignment. Alignment in NMR and dVi&hieved by

commercial and public softwares.

Biomarker metabolomics studies generally follow two distinct stratégighe first
strategy works in a well-controlled environment such as in vitro cell cultangsal models or

well classmatched human studies, where the perturbation is the only variable angptiesi a
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extremely®® As a result, metabolome difference between control and perturbed sangurebe
large enough that can be statistically significant by using a snmflleasize*® In the study of
general populations, however, another strategy is required. To understand the metdbslaf s
general populations, the second strategy uses medHenge-scale epidemiological studies,
because only such studies take into account diversity observed in physiology, mettbos

and lifestyle of populatiof Metabolic differences are smaller than the one observed in the first

strategy; therefore, in order to reach to high statistical confidence, sample sizes ameykept |

1.7 Flux Analysis

This section is most often used for cellular metabolomics. Flux asagshniques can be

classified into experimental and computational techniques.

History of flux analysis started with radioisotope tracer experiments, wthere
radioisotope labeled sources were fed to organisms and the fate wasedoliovelucidate

downstream biochemical pathways.

In early 1980s, 1B°*C NMR started to be used to measure relative activity of competing
pathways by analyzinfC enrichment of downstream produtid.ater it was realized that, by
isotopomer analysis NMR can provide more biochemical information than by '8@ly
enrichment” Isotopomers are defined as all possible combinations of isotope labelirggdbam
compound. For instance, for a three-carbon molecule such as alanine, there aréCeight
isotopomers. One isotopomer consists of thf€@s. Another isotopomer consists of thi€és.

In three other isotopomers, one carbon caff®eand two carbons can HicOs. In the last three
isotopomers two carbons can B€Os and one carbon can B8. In NMR spectrum, 8
isotopomers appear at the same chemical shifts with difféif@AfC coupling patterns, which

are used to determine abundance of isotopomers.

The most established experimental flux analysis technique, Metabolratib analysis
(METAFoOR), relies on isotopomer analysis. METAFoR performs flux analysibeasteady
staté? by analyzing**C-labeling pattern of amino acids obtained from hydrolysis of proteins.
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Briefly, feeding the cells with a mixture of natural abundance and unifdri@labeled energy
source results in non-randoffC labeling patterns in amino acids. The non-random labeling
arises from incorporation of intact two- and three-carbon fragments into amasofiaxcn single
energy source. Determination of abundance of intact fragments enables quaraitatysis of
carbon fluxes occurring in central carbon metabolism in particular glycolysis, pyruvate
metabolism, pentose phosphate pathway, tricarboxylic acid cycle anme@bolisnt? During
cultivation in order to keep the cells in steady-state, a batch culitir@xponential growth or a
chemostat culture with continuous growth is uSe@ne of the reasons why METAFoR became
so popular is because of high abundance of proteins in cells. High protein cormentesult in
high proteinogenic amino acid concentrations that can be detected very eakilRyThe
most often used NMR experiments in METAFoR are’aD'H COSY and 2D"*C-'H HSQC,
where thé®*C-1*C coupling patterns appear along the indirect carbon dimerfsion.

Unlike **C-*3C coupling patterns, parent ion/z values cannot distinguish isotopomers.
For instance, 8 isotopomers of alanine have 4 different masses as m, f2+i+H3, where m is
the mass of the parent ion. This problem is resolved in 2003, with the addiimm fohgment
information>* Since then MS has also been used for METAFoOR studies. GC-MS isotte m
commonly used/S instrument for METAFoR. Hard ionization source (El) in GC-MS is able to
fragment the amino acids during ionization so that mass isotopomer distribotonde

extracted by analyzing the fragmented iths.

Drawback of METAFOR analysis is that it cannot provide dynamic informatimout
fluxes, because it measures proteionogenic amino acids, which are at¢edrimutzell over time.
To obtain dynamic fluxes, isotopomer analysis should be performed on intracellular
metabolites® which are continuously renewed in cell. As compared to proteionogenic amino
acids, abundance of intracellular metabolites is much lower, thereforedmgiti\aty analytical
techniques should be employed. The experimental techniques to measure dynasiark still
in progress. One of the approaches, Kinetic flux profiling, measures dynamicsogdaration
of isotope-labeled nutrient source into downstream products by using LC-MS. Hepeadlhe
sizes (absolute concentrations) of metabolites are measured as decBeetion 1.% and flux

changes are estimated by solving differential equations with pool *SiZé®re are some
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advantages of kinetic profiling over METAFOR, the first one is that it cgrtuce fluxes
independent of cellsO state as being steady or non-steady. The secorimk itssghnot only to
study central carbon metabolism, but also other parts of the metabolisnth@lenge of
Kinetic flux profiling is that isotope labeling becomes quickly intractable.

Flux analysis techniques works best in prokaryotic systems and often applioat
eukaryotic systems requires additional considerations. Unlike prokaryotes, eukargotéten
auxotrophs, therefore they cannot synthesize essential metabolites by degwhiEm from
glucose or another sole carbon source. In this case, growth medium should be supptied by ri
medium. However, keeping track of production and consumption of all molecules hn suc
complex systems can be difficult. Furthermore, eukaryotic cells are conepdeth which
results in formation of two or more spatially separated pools of the setadolite. Currently,
NMR and MS cannot access these separated pools. Finally, most eukal®tcemuch more
complex than prokaryotic cells with more competing biochemical pathways. oteeref

dissecting contribution of each pathway is a challenge.

The most established computational flux analysis technique is Flurcbakmnalysis
(FBA), which is used to determine steady state fluxes occurring in metaletliorks'> FBA
starts with the reconstruction of a genostale metatlic network for the organism of interest.
The reconstruction requires organism-specific information, in particular at tgasome
sequence, from which metabolic functions can be extrattedthermore, physiological data is
required, for instance, growth conditions so that predicted model can be refinest ¥gtiese
models contain all known metabolic reactions of the organism. So faasatfée 35 organisms
these models have been credfefihe metabolic network is stored as a two-dimensional matrix
(m x n), where m rows include list of metabolites and n columns includef Ireactions. The
matrix is filled with stoichiometric coefficients of each reanti Stoichiometric matrix ensures
that total amount of compounds being produced and consumed are equal. Once stichiome
matrix is constructed, every reaction will be constrained with minimum axtmm allowable
flux rates. Finally, a biological objective of interest is defined. Fotant®, in the case of
predicting growth, this can be biomass production. Since for biomass production, biomass

constituents such as nucleic acids, proteins and lipids should be produced,tdbelitas
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serving as substrate for the production of biomass are connected to the olfjewtiien by
adding an extra Oartificial biomass reactionO column with coefficiéntse end of the
stoichiometric matrix. FBA calculates the flux rate of each pathwalgag metabolic network in

order to maximize biomass production by using linear programming.

A DCDE polymer (biomass)
A
Fob)ucuvc OUJLC“V'- 2x FODJ”C["""
> A > B > C >E dA/dt=F,-F,=0
£F dB/dt = F,-F;-F,+F;= 0
E dC/dt = F;}'Fs'Fob;echvc =0
4 D dD/dt = F4‘F5'F7'F8'2Fobjcchve =0
dE/dt = F5+F7'Fobjcchvc =
Fs

B Results

0.01 Inf 0.0100
0.00 0.01 0.0100

1 |1 ]ofo oo |o]o |o 0.00 Inf Linear 0.0044

o |1 [ a1 ]o oo ]o 0.00 Inf Programming [T o056
g=[0o |o |1 |o o |1 |0 |o |1 |Ib=|0oo0 |yp=]|m - x = | 0.0000
o oo |1 [0 |a |4 |2 0.00 Inf 0.0019

0 0 0 0 0 1 1 0 -1 0.00 Inf 0.0006

0.00 0.00 0.0000

0.00 Inf 0.0025

Figure 1.9.(A) Representation of a hypothetical metabolic system with the red box dertgm
its boundaries. Corresponding flux balance equations are extracted on the right (Adapted f
Ref. 58). (B) Stoichiometric matri® for the metabolic system. Vectdisandub are the lower
and upper boundary flux rates of each reaction. Vectisrthe flux rates calculated by linear
programming by usin®, Ib andub as inputs.

Figure 1.9A is one simple metabolic network exaripleontaining 5 hypothetical
metabolites (A, B, C, D and E) and 8 reactions. Objective function is tlkenoma rate of
protein biomass synthesis, which is added in thedumn in the stoichiometric matris (Fig.

1.9B). If we measure flux rates satisfying the following conditiongs Fninimum 10 mmol/h,
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F, is maximum 10 mmol/h and all the other reactions are positive or zernptdéacés, which is
always zero, then we obtain the vector x (Fig. 1.9B), which contains flux ratdsrections
when they provide maximum biomass synthesis. Particulaply.i is the last element of the
column and it shows that maximum possible flux rate of protein synthesis is 2.5 mtnol/h.

1.8 Dissertation Overview

As it is shown in previous sections, metabolomics consists of manyediffesubfields. This
thesis is primarily focused on metabolite identification. We introduce stetegies to improve
identification of catalogued and uncatalogued metabolites using multidonahsNMR
spectroscopy. Chapter 2 introduces a computational semi-automated deconvolution technique
DeCoDeC to analyze variety of 2BH TOCSY based NMR experiments at natural abundance.
Deconvoluted '"H TOCSY traces can be directly queried in metabolite databanks for
identification. Chapter 3 is the expansionDECoDeCto the analysis of 2B°C TOCSY based
spectra. The main limitations dfC detection: low™*C abundance and largé€C multiplet
patterns are overcome by using uniformffC enrichment and constant-time spectroscopy,
respectively. Large spectral dispersiortif, enabled observation of large number of unitiGe
TOCSY traces of metabolites. Combination of short mixing time CT-TOCSYC&EY with

112 TOCSY traces enabled extraction of carbon backbone structures (molecular tepaibgie
every metabolite. Topologies are particularly useful @@ novo structure elucidation of
uncatalogued metabolites. For catalogued metabolites, topology provides addiicidénce

to the identification results obtained from database query. It is observequérging of*C
TOCSY trace in NMR databanks results in ambiguous identification beaduseperfect
matching between signals B TOCSY trace and 1E¥C spectra in NMR database. To resolve
this problem, in Chapter 4, C TOCSY metabolite database is created, which enabled
identification of 3C TOCSY traces unambiguously with high accuracy. All chapters include
application of the introduced technique to Ehecoli metabolome. Furthermore, Chapter 2 and 4

also include applications to model metabolite mixtures.



CHAPTER 2

DECONVOLUTION OF NMR SPECTRA OF METABOLITE MIXTURES

2.1 Introduction

Identification of metabolites in metabolomics samples requires decomvobftsignals of every
metabolite. In NMR spectroscopy, deconvolution can be done either computationally or
physically. Physical deconvolution is performed by hyphenating NMR with separation
instruments such as HPLC. The drawback of physical deconvolution is taetst some class

of metabolites and other metabolites cannot be detected.

NMR provides broad range of other tools to perform computational deconvolution. In
some of these tools, 1D and 2D NMR spectra of multiple samples dyzehat a time to
identify compounds by statistical correlation and difference mappiiy®* 2 while other
procedures study single samples and identify individual compounds based on theestaract
translational diffusion constants or NMR relaxation r&te§! ® Another strategy uses
intramolecular magnetization transfer, especially via J-couplings, to ientfvidual spin
systems that can be assigned to various mixture comportehtsi TOCSY?? is an ideal
experiment for this strategy, since at natural abundance it provides correfasibiHOs in the
same spin system (Section 1.2.P2)A disadvantage ofH-'‘H TOCSY is the common
occurrence of relatively broad peak multiplets that are due to the presérmaaiucleatH-H

J-couplings, which lead to increased peak overlaps.

The °C spectrum displays larger chemical shift dispersion fithmvith very narrow
lines, which makes peak overlap rare. A major downsid€®fis its low natural abundance,
~1.1%, which makes direct detectiblc NMR experiments insensitive. Sensitivity’d€ NMR
is increased by using 2B°C-'H HSQC?® where the initial polarization and detection is
performed through'HOs (Section 1.2.1.2). A major downside of HSQC-type spectra, as

compared to TOCSY, is the lack of complete spin system information, leeeacls cross-peak
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is independent of all others. On the other hand, HSQC spectra of individual amefytesent
useful fingerprints, providing the number of C-H spin pairs of the molecule togedthethe’C

and'H chemical shifts, which report on the nature of the chemical groups.

The merging of HSQC with TOCSY in the form of 3BC-H HSQGTOCSY*’
combines connectivity information &fl-'H TOCSY with higher resolution dfC-*H HSQC for
unambiguous metabolite identificati8hHowever, besides its relatively low sensitivity, high
resolution along the indirect’C dimension requires protracted NMR measurement times.
Recently, we introduced the triple-rank (3R) correlation method, which combines pairs of
standard 2D spectra that share a common frequency dim&hgdiosimilar strategy has been
proposed for protein®. For example, from high-resolution 2B8C-'H HSQC and 2D'H-'H
TOCSY spectra, sharing the proton dimension, a triple-rank correlation spectrum can be
constructed with ultrahigh spectral resolution along all dimensions. It spreadd 3@CSY
traces of individual spin systems along tf@ dimension according to the chemical shifts of the
13C spins directly attached to the protons. Although in the absence of specttab dke triple-
rank spectrum is equivalent to the corresponding experimental 3D spectrum, thenocecofre
cross-peak overlaps leads to false peaks. To minimize such effectiewet®ped a spectral
filtering method, which identifies mismatches between the first andnel moments of cross-

peak profiles and thereby suppresses false correl&fions.

Our lab has pioneered approaches to computationally deconvolute 2D TOCSY apectra
complex mixtures into TOCSY traces of individual mixture components, whiclhealirectly
searched through NMR databases for identificatibemixC is one of the state-of-the-art
techniques, which is able to extract TOCSY cross-sections, which do nangoed& overlaps
of different spin system@. Although DemixCworks well for mixtures at moderate complexity,
metabolomics samples are frequently much more complex consisting of dozansdteds of
compounds, which makes peak overlap quite common. In this work, we present ahmeguesc

which can handle deconvolution of very complex mixtures including metabolomics sdmples.



Figure 2.1.(A) Synthetic 1D NMR spectrum of four-compound mixture consisting of compound
a, b, c and d. (B) Synthetic 1D NMR spectra of individual mixture components.

The new approach will be explained in the following four figures. In Figure 2.1A, a
synthetic 1D NMR spectrum of four-compound mixture is shown. The spectrum is quite
congested as is common in metabolomics applications. Four of six pedies spdctrum are
overlapped. 1D NMR spectrum of individual mixture components are plotted in Figure 2.1B. In
real applications, we observe the mixture spectrum (Fig. 2.1A), but we wantio spectra of
individual components (Fig. 2.1B). As it is seen from this case, it is infgh@de extract them
from the 1D spectrum. Therefore, we use 2D TOCSY as shown in Figure 2.2A. dbstrece
of peak overlaps, 2D TOCSY cross-sections through cross-peaks are directly corresponding t
1D NMR spectrum of mixture components. In Figure 2.2B, six cross-sections in the@@BYT
are plotted. The cross-section 2 and 6 do not have overlaps; therefore, they ate EQUdMR
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spectra of mixture component a and b (Fig. 2.1B). The other four cross-sections contain
overlaps; therefore they cannot be used for identificatimmixC method could successfully

select cross-section 2 and 6, and identify a and b, but not c and d.

Figure 2.2.(A) Synthetic 2D TOCSY NMR spectrum of the four-compound mixture, whose 1D
NMR spectrum is shown in Figure 2.1A. (B) All cross-sections of the 2D TO@8atrsim. The
position of cross-sections are pointed by arrows along the indirect dimension DTOEBY
(Figure 2.2A). The red boxes indicate the compounds, whose NMR signals are avaitable
corresponding cross-section. For instance, cross-section 1 contains NMR sigoafgpoticd a
and b.

To obtain all mixture components the new technigpeCdeC, applies consensus
approach to pair of cross-sections. For instance, in Figure 2.3A, the consensus tnass-
section 3 and 1 is extracted. Here the idea is to keep the peaks, wehocimenon in both cross-

sections and remove the others. In this way, in Figure 2.3A consensus trace goneota is
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identified. And in Figure 2.3B, component c is identified.

Figure 2.3.(A) Consensus trace (in red) of cross-sections 3 and 1 (in blue). (B) Consensus trace
(in red) of cross-sections 5 and 4 (in blue). All cross-sections are taken from Figure 2.2B.

The key question is how to find the interesting cross-section pairs. Segeceoss-peak
in TOCSY consists of two frequencies, in other words, two cross-sections Ingldngsame
molecule, focusing on only those pairs provide the result. We have eight unique elassape
2D TOCSY, which result in eight consensus traces that are shown togefgurie 2.4A. Since
some of these traces are sabeCoDeCapproach includes clustering step for the traces in order
to eliminate degeneracy. The cluster result (dendrogram) is shown in Figure 2.4B. By looki
dendrogram, it can be easily realized that there are four different companéinés mixture.
Consensus traces 1, 2 and 6 are corresponding to component a. The 3, 4 and 5 beldegdo b. T
and 8 are corresponding to d and c, respectively. All mixture components can be hyamed

searching their consensus traces in NMR databanks.



Figure 2.4.(A) All consensus traces extracted from the 2D TOCSY spectrum in Figure 2.2A
(B) Clustering result of all consensus traces represented as a dendrogram.

In the following sections, application 8feCoDeCto three differentH TOCSY based
NMR spectra are demonstrated. The samples used in this study are eight-cormoai@hd
mixture andk. coli cell lysate. Common to all three approaches is the concept of extrattion
1D consensus traces or 2D consensus planes followed by clustering, whichcasigifi
improves the capability to identify mixture components that are affectestrbgg spectral

overlap.



2.2 Materials and Methods

2.2.1 Computational methods

Extraction of 1D consensus tracé3eCoDeCis applied to 2D'H-'H TOCSY and 2D
13c-'H HSQGTOCSY spectra as following. 2fH-'H TOCSY and 2D*C-'H HSQGTOCSY
of mixture are represented by a N1 X N2 matrix

In the case of 2BH-'H TOCSY, we first apply covariance processingrt&® * which
can be shown by the equatiG(T" ¥ T)¥? with regularizatior® Here covariance processing is

used to increase resolution along the indirect dimension dH2BI TOCSY spectrum.

In the case of 2BD°C-"H HSQGTOCSY, sinceT is an unsymmetric spectrum, it cannot
be used to select peak pairs for consensus trace determination. In orderrcaay@aimetric
spectrumC, we apply indirect covariance processffigyhich can be shown by the equation
C=(T ¥TH"2

Peak picking of the cross-peaks of ma€iyields a list of (k, k') where k and k' denote
the position of a certain cross-peak along the two frequency axes. Next,Haress-peak entry
(k, k'), the consensus tragd®’is determined as follows: in the case of covariance TOCSY

the K" row and K" row are processed as

q(jkl() :min(ijle'j)! [ I I ! (2.1a)

whereas in the case of HSQC-TOCSBY

g =min( Tttt 11 (2.1b)

J

where index j goes over all N2 columns. The complete set of consensus df¢es

subsequently subjected to clustering for the identification of those tifaaesepresent 1BH
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spectra of individual spin systems. For this purpose'@onsensus traces are quantitatively

compared to each other via the inner product,

N
Paemmt = %™ /(qu“H Ham ! ! L m2.2)

j=1

where the L2-norm of a consensus trace is given by

Hq(kk‘)H :[..2 (qu-)zluzl ! ! ! [ 11(2.3)

j=1

A similarity measure between pairs of traces is then calculateéd' by ,,,,, which permits

clustering (e.g. using the agglomerative hierarchical cluster algorithm asnieied in the
subroutine OlinkageO in the Matlab software package). The result of tiéngjus displayed as

a dendrogram. We refer to this approach as Demixing by Consensus Deconvolution and
Clustering oDeCoDeC"?

Extraction of 2D consensus planes.triple-rank (3R) spectruniR is a mathematical
reconstruction of a 3D spectrum from a pair of standard 2D FT spectrah#tiat & common
frequency dimension. The main advantage of the 3R spectrum over a 3D FT spedinem
resolution gain in the indirect dimensions, which are inherited from the pa &T spectra
used for reconstruction. Acquisition of two high-resolution 2D spectra takesl|gasctime than
the acquisition of the corresponding high-resolution 3D FT spectrum. In the absepeakof
overlap along the shared dimension of the 2D FT spectra pair, the 3D FT apeQR s¢
equivalent. In the presence of peak overlaps, the 3R spectrum contains extranksustpel
can be removed in many cases by identifying mismatches between tladirstcond moments
(i.e. line positions and linewidths) of cross-peak profifes.

A triple-rank spectruni is constructed from the 28C-"H HSQC spectrum, represented
by the N x N, matrix H, and the 20°C-'H HSQGTOCSY spectrum, represented by thex\



N, matrix T, where N is the number of points along the diréet dimension and Nis the

number of points along the indiréé€ dimensioff’
Ry =HyT,! ! ! ! L mnp.4y

R (3R HSQC-TOCSY) can be considered as a collection of*®23H HSQC spectra (with
indices k,i for thei*C and*H dimensions, respectively) along the additional proton dimension |
of the 2D °C-'H HSQGTOCSY spectrum. Hence, a spin system with pgxotons will be
represented iR by N HSQC planes. The task at hand is to extract for each spin system its
unique HSQC spectrum. This is accomplished by the establishment of cond&3Usplanes,
followed by clustering with the cluster centers chosen to represent HSQ@aspé the
corresponding spin systems. The following data processing steps are perform@dotceithe

robustness of the approach with respect to cross-peak overlaps:

1. SpectraH andT are represented by the absolute values of their elements and subsequently
subjected td;-noise reduction and thresholding. A matrix element k,i is set to zerg gntaller

than 5 times the average of column i or 3 times the average of row k, ciehe matrix
element remains unchanged. In Eq. Z.4is represented as a binary matrix (i.e. all non-zero
elements are set to 1) so that (semi-)quantitative intensity infornadtibe peaks in the original

2D C-'H HSQC spectrum is directly transferred to the'20-'H HSQC spectra of individual

components obtained from the 3R spectrum.

2. To minimize the effects of partial peak overlap, which can lead.i2 B to the appearance of
false cross-peaks, we apply moment filtering along¥Bedimension (i.e. common index k in

Eq. 2.4). Briefly, local 1st moments are determined as

M 1 M 1

Ppa H K mH, ../ #H " ! ! 11(2.5a)
m M m M
M"1 M"1

U K MTn/ FTom! [ [ 11(2.5b)
m"M m "M
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where 2M was set to 4 (corresponding to 29.2 Hz) so that it exceeds a ty@idalewidth
determined by the finite digital resolution alohg. This moment information is then used to

eliminate false peaks if the difference in thélmioment exceeds 4.4 Hz.

3. The numbeiN,(N, +1)/2 of possible pairwise comparisons of HSQC planeR iis of the
order of 16 and hence computationally significant. Since many of these comparisongeinvol
planes that are void of any signal, the number of comparisons can be reducesttoygsehly
pairs of planes withH indices (j,j)) that belong to the same spin system. Such informatidmecan
directly obtained from a 2BH-'H TOCSY spectrum, which can be measured separately or,

alternatively, can be constructed from the 3fC-'H HSQGTOCSY spectrumT already

available via covariance processi@g= (T'T)"2. Cross-peak picking of leads to the list ofH

index pairs (j,j') that is used in the next step for the pairwise comparison of HSQC pl&nes of

4. For eachH index pair (j,j') of step 3, a new consensus HSQC plane is computed repgesent

the element-by-element geometric averages
(V=R "R )41 ! ! I 1(2.6)

Each planeQ!!” only includes spectral features that are present in both planes j arRl ginaf
hence, they are purged of spurious effects from overlapping protons. The planes ateréien

as binary matrices where elements above the noise are set to one and otherwise to zero.

5. The planes of Eq. 2.6 are compared to each other via the inner product

N;,N,
Pir = QUQM™ /(HQ“”H AR L 2.7y
k,i=1
where the L2-norms of the consensus planes are given by
| 7=t N RGN ! ! nR.8)
Ji=1
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As for the DeCoDeCcase (Eqg. 2.2), a similarity measure between pairs can be defined as
1" P,

jj#nn#

which permits clustering. We refer to this approacBRi®eCoDeC?

2.2.2 Sample Preparation

A model mixture was prepared in,®@ solution with 8 components where carnitine, alanine,
isoleucine, ornithine, arginine, lysine, and shikimate are 10 mM each and glitarhianM (to

introduce a 10-fold dynamic range).

An extract fromE. coliBL21(DE3) strain was obtained as follows: the cells were
cultured in M9 medium with glucose (natural abundance, 5 g/L) at 37 jC, at 250 r@D 860
of 3.25, 9.5 L of cells were exposed to freeze-thaw procedure 3 times in %tenl Whe sample
was centrifuged at 12000 rpm at 4 {C for 15 min to remove the cell debrisupématant was
treated with sequentially added cold methanol and cold chloroform at fina rat
1(water):1(methanol):1(chloroformj. The sample was vortexed after the addition of each
solvent. The resulting mixture was centrifuged at 12000 rpm at 4 jC for 20 min fee pha
separation. The agueous phase is dried under a rotary evaporator and dissolvecRO2¥h H
H,O and loaded onto a solid phase extraction cation-exchange column (Oasi8I®Aus
Waters). The elution was dried in a rotary evaporator and dissolvegOinTbe final samples

were transferred to a 5-mm NMR tube.

2.2.3 NMR Experiments and Processing

2D H-'H TOCSY spectra were collected for model mixture &dcoli cell extracts with
N;=512 and M=1024 complex data points. The spectral width for the indirect and the tirect
dimensions were 7002.2 Hz and 7002.8 Hz, respectively. The number of scans@ement
was set to 16 for the model mixture and 32 for the cell extract. The itarsilequency offset

was set to 4.7 ppm in bothl dimensions.

2D ¥c-'H HSQC and 2D C-'H HSQGTOCSY data sets were collected for both
samples with N=2048 and N=1024 complex data points. The transmitter frequency offset was
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set to 4.7 ppm in théH dimension and 85.0 ppm in th& dimension. For both samples the
spectral width for thé>C dimension was 29934.5 Hz and for thedimension 7002.8 Hz. The
number of scans périncrement for the model mixture was set to 8fa-'H HSQC and to 16

for *C-'H HSQGTOCSY to compensate for the lower sensitivity of the latter caused by
TOCSY mixing. The number of scans for the cell extract was set to 1&8f0H HSQC and 32

for *C-'H HSQGTOCSY. The TOCSY mixing times were set to 90 ms for Bigh'H HSQG
TOCSY and'H-'H TOCSY. The pulse length of the hard 90; degree pulse was first calibrate
and then used to calibrate the power level for TOCSY mixing, which isatritr the effective
magnetization transfer during TOCSY. All NMR spectra were collected asingoprobe at 700
MHz proton frequency at 298 K. The NMR data was zero-filled, Fourier transfophase and
baseline corrected using NMRPf{pand converted to a Matlab-compatible format for further
processing and analysis. The total NMR collection time for the celldysas 5 days while most

components could be identified with a measurement time of less than 2 days.

2.3 Results

Figure 2.5 illustrates the performance of BeCoDeCapproach on the eight-compound model
mixture based on a covariance processed'2BPH TOCSY spectrum. The spectrum exhibits
several regions with spectral congestions, which are due to similar ehestrigctures of
arginine, lysine, and ornithine giving rise to peak overlaps across the spectrum. tionaddi
alanine, isoleucine, and lysine have overlapping peaks at ~1.3 ppm. ApplicatiebefGoDeC
procedure results in remarkably clean, overlap-free 1D spectra for each compoumsl in t
mixture. Carnitine and lysine are chosen here to illustratBéi@oDeCalgorithm.

Cross-peak picking generates a peak list with pairs of indices that tledirahemical
shifts of resonances that potentially belong to the same compound. Two ciksggbaand
(c,d) are chosen with the corresponding traces (a), (b), (c) and (d) indicated by arrayusen F
2.5B. In the case of carnitine, the two traces (c) and (d) are not affected fgpsvand
DeCoDeC produces their consensus trace (c,d) as a clean 1D spectrum of carnitine (for
comparison, a 1D reference spectrum of carnitine taken from the BM&@isplayed in Figure

2.6). Lysine is more challenging, since trace (a) overlaps with alanine aedcisel and trace
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(b) overlaps with ornithine and arginine. Nonethel@=CoDeCproduces a consensus 1D trace
(a,b) with peaks that solely belong to lysine as shown in Figure 2.5C. The dendrodignref
2.5A shows that partitioning of the consensus traces into clusters is rdlowshgthe selection

of representative cluster traces as 1D spectra. For compdbeonxC method applied to the
same TOCSY spectrum via COLMAR® correctly captures the 1D spectra of six out of eight
compounds (Fig. 2.7).

Figure 2.5. (A) Dendrogram of cluster analysis based on similarity of the pair$i dfaces

calculated byDeCoDeCapproach applied to (B) covarianté-'H TOCSY spectrum of model
mixture. (C,D) Representative examples of NMR 1D spectra constructed®yDeCfrom 2D

TOCSY of Panel B. From top to bottom: (C) ornithine, lysine, arginine, glutamatel¢bine,

isoleucine, shikimate, carnitine. Labels a,b,c,d in (B) denote traces of ZD5YQvhose
consensus traces yield the lysine spectrum (a,b) and the carnitine speatijuas {odicated in
Panels A, C, D. The tilted arrows in Panel B indicate the 2 TOCSY -peads from which
traces (a,b) and (c,d) were derived.



Figure 2.6. 1D NMR spectra taken from the BMRB of the following compounds (from top to
bottom): (A) ornithine, lysine, arginine, glutamate; (B) alanine, isoleucine, shiiroarnitine.
Shaded areas correspond to the 1D spectral regions shown in Figures 2.5 and 2.8.

Because discrimination between a real peak andise is not straightforward, consensus
traces of lower concentration solutes may contaginoise from peaks belonging to solutes
present at higher concentration. This situation arises for glutamate (Fig.#5¢ wonsensus
trace contains a-hoise peak at 3.1 ppm. Since the other compounds in the model mixture have

10-fold higher concentration,-hoise is less apparent than in the glutamate case.



Figure 2.7. Application of DemixCmethod to covariance TOCSY spectrum of model mixture.
Successfully identified compounds based on their importance index numbers are k8yBtshi
(8) arginine, (7) ornithine, (6) alanine, (5) isoleucine, (2) carnitine. Because of the presenc
overlaps in the cross-sections of lysine and low concentration of glutabetexC did not
identify the lysine and glutamate traces.

DeCoDeCcan be applied in a similar manner for the analysis of th&*@BH HSQG
TOCSY spectrum of the model mixture (Fig. 2.8). Because the spectrum exhéspeaks
and large chemical shift dispersion along tf@ dimension,DeCoDeCperforms with 100%
accuracy with the consensus traces having even slightly better appeaign2e8(F,D) than in
the case of 2BH-'H TOCSY.



Figure 2.8. (A) Dendrogram of cluster analysis based on similarity of the paif$i dfaces
calculated byDeCoDeCapproach applied to (B) 2BC-'*HHSQGTOCSY spectrum of model
mixture. (C,D) Representative examples of 1D NMR spectra constructed@®yDeCfrom 2D
HSQGTOCSY of Panel B. From top to bottom: (C) ornithine, lysine, arginine, glutamake; (D
alanine, isoleucine, shikimate, carnitine.

Overall, there are no missing peaks in any oldB€oDeCspectra in Figures 2.5C,D and
2.8C,D except for the (Gt peak of carnitine (because it is not J-coupled to the rest of the
molecule and, hence, does not exchange magnetization with other resonances dG®Y TO
mixing). Shikimate has one extra peak outside of the spectral regions shognresR2.5 and
2.8 (for the full 1D'H spectra of shikimate obtained BeCoDeCsee Figures 2.9A,C).



Figure 2.9. Full 1D spectrum of shikimate calculated BeCoDeCmethod applied to (A)
covariance'H-'H TOCSY spectrum and (C) 2B*C-'H 2D HSQC-TOCSY spectrum of model
mixture. Full 1D spectrum of ribose of adenosine calculateddfyoDeCmethod applied to (B)
covariancéH-'H TOCSY spectrum and (D) 28C-'H HSQC-TOCSY spectrum of cell lysate.

Application of 3R DeCoDeQo the same model mixture combines the!aD'H HSQC
spectrum of Figure 2.10B with the 2fC-'H HSQGTOCSY spectrum of Figure 2.8B to extract
2D *C-'H HSQC spectra of the individual compounds using Eq. 2.4. The representative HSQC
spectrum for every compound is validated with the corresponding HSQC spectrum in the
BMRB. For the model mixture, the HSQC spectra of all eight components aressiuty
extracted, which is illustrated for lysine and isoleucine in Figures 2.10C,E.



Figure 2.10.(A) Dendrogram of cluster analysis based on similarity of pairs of HSQt@pla
from 3R spectrum constructed from a 2f¢-'H HSQC (Panel Band a 2D*C-'H HSQG
TOCSY spectrum (Figure 2.8B) of the model mixture. (C) Comparison of 3R HSQC plane of
lysinewith (D) corresponding HSQC spectrum in the BMRB. (E) Comparison of 3R HSQC
planeof isoleucinewith (F) the corresponding 2D HSQC reference spatiofiisoleucine tieen

from the BMRB.

The dendrograms in Figures 2.5A, 2.8A and 2.10A illustrate the clustering restifts for
model mixture by applyindpeCoDeCto the 2D'H-'H TOCSY spectrumDeCoDeCto the 2D
13Cc-'H HSQGTOCSY spectrum, an8R DeCoDeQo the 3R spectrum constructed from the 2D
13c-'H HSQC and 2D"*C-'H HSQGTOCSY spectral pair, respectively. In Figure 2.5A, the
locations of selected lysine (a,b) and carnitine (c,d) traces are labedetbisg, illustrating the
DeCoDeC approach. The dendrogram is useful for visual inspection and validation of the
clustering result and for the selection or verification of a suitable eeds/e trace for each

cluster.
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As a real-life application, we applied tileCoDeCmethods to ark. coli cell lysate
eluted from a solid phase extraction cation-exchange column to partially resacotearides and
saccharide-containing compounds. These compounds would result in severe spectraboongest
between 3 and 4 ppm in thd dimension and 70 and 80 ppm in tf& dimension. Figure 2.11B
displays the covariance processed #D'H TOCSY spectrum of the cell lysate sample.
Individual 1D spectra of valine, isoleucine, glutamine, lysine, leucine, prolystine, and

ribose of adenosine are obtained D&CoDeCas shown in Figures 2.11C,D.

Figure 2.11. (A) Dendrogram of cluster analysis based on similarity of pairsHotraces
calculated byDeCoDeCapproach applied to (B) covariandd-'H TOCSY spectrum of cell
lysate. (C,D) Representative examples of NMR 1D spectra constructed@®yDeCfrom 2D

TOCSY of Panel B. From top to bottom: (C) valine, isoleucine, glutamine, lydndeucine,

proline, cystine, ribose ring of adenosine.



The deconvolution performance BeCoDeCfor the cell lysate based on the 2iz-'H
HSQGTOCSY spectrum can be assessed from Figure 2.12. Overall, there are ng pesdks
in any of the spectra in Figures 2.11C,D and 2.12C,D. Except for adenosine, whdse 1D
spectrum in the BMRB has two additional peaks, which are not obtainedDe{CoDeG
because these peaks are part of the nucleic acid and not of the riboskatlemosine. Since
there is no detectable magnetization transfer between these moleartkarduring TOCSY
mixing, the proton signals coming from ribose protons and nucleic acid protons caneen e s
the same'H TOCSY trace. The ribose ring of adenosine shows one extra peak in thalspect
regions of Figures 2.11 and 2.12 (for the full *HDspectra of ribose ring obtained BgCoDeC
see Figures 2.9B,D). For a detailed comparison’H Beference spectra taken from the BMRB
of eight compounds of the cell lysate are given in Figure 2.13. For comp@sammCmethod
applied to the same TOCSY spectrum via COLMAR correctly captures the 1D spectra of

only two metabolites because of high complexity of the metabolic mixture (Fig. 2.14).

The result of the triple-rank approach for the cell lysate is illustrateFigure 2.15.
Representative HSQC spectra for the following compounds are taken from the *BMIRB
HMDB* databases: cystine, valine, isoleucine, leucine, proline, glutamine, Igsit&thione,
cytosine, and four ribose rings corresponding to different nucleic acid forms. THe-2B
TOCSY spectrum is used to confirm the identified and unidentified compaoutioks cell lysate.
Leucine and the ribose ring of cytidine are depicted as examples in FLBESE. Six HSQC
planes, which could not be identified in either the BMRB or the HMDB databas=e
confirmed by'H-'H TOCSY. The unidentified compounds are either not available in these
databases or they belong to isolated spin systems of larger metalioditefyre, HSQC spectra

extracted byBR DeCoDeGQnay reflect only a portion of these molecules.



Figure 2.12.(A) Dendrogram of cluster analysis based on similarity of the paifsi dfaces
calculated byDeCoDeCapproach applied to (B) 2/C-'H HSQGTOCSY spectrum of cell
lysate. (C,D) Representative examples of 1D NMR spectra constructed@®@yDeCfrom 2D

HSQGTOCSY of Panel B. From top to bottom: (C) valine, isoleucine, glutamine, lydye;
leucine, proline, cystine, ribose ring of adenosine.



Figure 2.13.1D NMR spectra of the following compounds in the BMRB (from top to bottom):
(A) valine, isoleucine, glutamine, lysine; (B) leucine, proline, cystine, riboseofiagienosine.
Shaded areas correspond to the 1D spectral regions shown in Figures 2.11 and 2.12.

Figure 2.14.Performance oDemixCon cell lysate covariance TOCSY spectrum. Successfully
identified compounds based on their importance numbers are (8) glutamine, (6) valine, (2)
leucine with one extra false peak, (1) unknown compound.
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Figure 2.15.(A) Dendrogram of cluster analysis based on similarity of pairs of HSQ@%la
from 3R spectrum constructed from a 2f¢-'H HSQC (Panel B)and a 2D*C-'H HSQG
TOCSY spectrum (Figure 2.12B) of cell lysate. (C) Comparison of 3R HSQC plane ioieleuc
with (D) corresponding HSQC in the BMRB. (E) Comparison of 3R HSQC plarileose ring

of cytidinewith (F) corresponding HSQC spectrum in the BMRB.

2.4 Discussion

Automated analysis of complex mixtures by NMR has made significant proggesstly.
Existing deconvolution approaches based}aoupling-mediated magnetization transfer can be
divided into two groups. The first group focuses on matching the cross-peaks ofGtif&0Q
spectrum of the mixture with the cross-peaks of individual compounds compilathtatzasé’
8283 Optionally, the candidate compounds obtained from the database can be confimged

higher-dimensional experiments, such as 3D HCCH-C&3y, taking advantage of the higher
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resolution along the additiondafC dimension and théH-'H connectivity information. The
disadvantage of this approach is that the compounds that can be extradieitesddo those
stored in the databases, preventing the discovery of novel compounds. The second group of
methods directly focuses on the connectivity information in 2D experiments, fodta *H-'H
TOCSY!* Since chemical shift dispersion in the proton dimension may not be safffor the
analysis of very complex mixtures, depending upon the cross-peak density in the TOCSY
spectrum, TOCSY has been substituted by the 2D HSQC-T&G&geriment to make use of

the favorable chemical shift dispersion along tf@ dimension with narrow®C line widths,

which tends to be less prone to overlap. Both types of spectra are then dutgemiéomated
analysis byDemixCalgorithm that searches for the OcleanO 1D cross-sections in 2D spectrum
represent 1D spectra of individual compounds. Depending on the NMR properties of the
components, this strategy generally works well for mixtures at moderate casmnptéowever,

in mixtures of higher complexity, such as a crude cell extract, the crosopeditp problem

can become so severe that no single cross-section can be found that reprelsamslD trace.
Instead of searching for one clean cross-sectiorD#@oDeCalgorithm extracts common peak
patterns from pairs of cross-sections, which can have different overlapsprotbe dimension.

The resulting consensus traces or planes are more likely to represeritzlea2D spectra of
individual components identified through subsequent clustering. It should be noted thas the

no consensus trace for one-spin systems. Therefore, information on such systentsaked.
Consensus trace determination can be generalized to trace triplets oam@nnumbers of
traces. For example, in the case of trace triplets, any three-spin systemeld only a single
consensus trace, which after clustering will appear as an Oorphan®ttrackendrogram, while

one-spin and two-spin systems will be lost.

Although more NMRtime-consuming thaibeCoDeCmethod, the8R DeCoDeCwhich
generates HSQC spectra of individual compounds in mixtures, has several advdfitagean
HSQC is more specific than a 1D trace, since spectral informatispréad out in multiple
dimensions. This makes database querying of HSQC planes more accurate thiag gfid D
spectral traces. At the same time, one retains the option to pitogeEtSQC plane onto the

proton or carbon dimension and apply 1D query. Second, clustering of HSQC planes enhances



the separation of the cluster centers, which helps visual inspection démldeogram for the

extraction of a representative HSQC plane for every cluster.

HSQC planes reconstructed BR DeCoDeCcarry their original intensities from ¢h
input HSQC spectruril; therefore, they can be used for quantification. Moreover, it has been
pointed out that the concentration measurement for an individual metabaolibe ¢aproved by
averaging the intensities over multiple, nonoverlapping cross-peaks assignedrettizlite®®
Since HSQC is deficient in connectivity information across complete sgtems, it is not
known which peaks can be averaged to accurately quantify concentration of an imdividua
compound in a complex mixture. Since 3R produces individual HSQC planes for each
compound, one can average the peaks in the same HSQC plane to measureerigation

more accurately.

Currently the3R DeCoDeQequires a 2D HSQC and a 2D HSQC-TOCSY spectrum as
input. To reduce acquisition time, alternative data acquisition schamesrceivable, such as
the PANACEA approach, which acquires two different 2D experiments in pafaltigh
resolution along the indirecC dimension is critical for the performance of the method.
Recently, non-uniform sampling schemes have been introduced to shorten thequititi@at
time for 2D HSQC(-TOCSY) by reducing the number of increments along the indirect
dimension while maintaining high digital resolutifriThese methods can be used to shorten the
total NMR measurement time, while keeping the spectral resolutiortisatfy high. Finally,
the 3R DeCoDeGnethod can be implemented for other pairs of 2D spestich as HMBC and
HSQC, TOCSY and HSQC or even 2D HSQC-TOCSY and HMBC to obtain HMBC planes of

individual compounds in complex mixtures.

The 2D TOCSY, 2D HSQC-TOCSY, and 3R HSQC-TOCSY spectra require increasing
amounts of measurement times; however, they provide increasingly good deconvolution
performance when applied to mixtures of higher complexity. Together these newgenlsip
the prospect to enable routine yet accurate analysis of an increasinglgxa@md diverse range

of molecular solutions including metabolomics samples.



CHAPTER 3

DE NOVO STRUCTURE ELUCIDATION OF METABOLITES BY NMR

3.1 Introduction

Many biological samples contain significant number of unknown metabolitesatkanot
catalogued in databanks (Section 1.5). Systematic identification and strobianatterization of
uncatalogued metabolites is an important target for metabolobegsvo structure elucidation
of metabolites are most often performed by 2D NMR spectroscopy. For sensgasons, so
far, majority of these studies have been based oH2BMR experiments taking advantage of
the high natural abundancef spins and their relatively large magnetic monféifthe strong
conformation dependence of vicinalJ®H,*H)-couplings, however, can cause uneven
magnetization transfer in TOCSY and COSY spectra, thereby impeding thenasst of cross-
peaks to individual spin systems or entire molecules. Furthermore, the spdotraktion of
protons may not be sufficient for the complete reconstruction of the carbon baakbone
metabolites and their bonding topology, which is a prerequiste for structure determination.

Here we present a comprehensive approach for the characterization oftét®lime
content of a cell by 2B°C NMR spectroscopy. The low abundance problent®6fspins is
overcome by using uniformly*C labeling approacf’. The large one-bond J-couplings
(J®cBC) > 30 Hz) make the efficient transfer of spin magnetization dufi@grOCSY
mixing possible? The sameéJ(*C,**C)-couplings lead to broad multiplet structdPe®sulting
in increased cross-peak overlap, which are mitigated along the indirdanension byC-°C
constant-time (CT) TOCSY spectroscapy:*C-"*C CT-TOCSY was initially introduced for
side-chain assignment of proteins. In this work, it is first time appbtedharacterization of
metabolites. A protocol is developed, which identifies traces in long mikimg CT-TOCSY
spectrum that are unique for individual mixture component®®goDeCand then assembles
for each consensus trace the corresponding carbon-bond topology network by using short mixing
time CT-TOCSY and COSY. This lead to determination of 112 topologies of unigabaties
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in E. coli from a single sample that constitutes the OtopolomeQO of a celtopiileme is
dominated by carbon topologies of carbohydrates (34.8%) and amino acids (45.5%) that can

constitute building blocks of more complex structdfes.

3.2 Materials and Methods

3.2.1 Computational Methods

The deconvolution of the 2B5C-*C CT-TOCSY, represented by ax¥l, matrix T, of the**C-
labeled cell lysate was performed by adapting Bie€€oDeC? approach taC-**C TOCSY.
DeCoDeCwas originally developed for the analysis *6f and natural abundancdéC NMR
spectra. Peak picking of the cross-peaks of mdinpelded a list (k,k') where k and k' denote
the cross-peak position along the two frequency axes. In order to minimize teaaflof those
parts of T that are close to the diagonal, the intensities of all diagonal pesiesset to the
largest peak intensity of the rest of the spectrum. Next, for each crdspaiegk.k’) and (1,I'),
which are placed symmetrically with respect to the diagonal, ‘thenkl I" row are extracted

from T to obtain the consensus trace:

g =min(T,, T,)r ! ! ! ! (3.1)

J

where index j = 1,..., N The enlargement of the diagonal peaksl oénsures that Eqg. 3.1 is
dominated by cross-peaks rather than diagonal peaks. The complete set of cdrmessie

was subsequently subjected to clustering for the identification of thasss tiaat represent 1D

%C spectra of individual spin systems. For this purposeDconsensus traceg” were
guantitatively compared to each other via the inner product by using Eq. 2.2 and Eq. 2.3 and

finally clustered as mentioned previously (Section 2.2.1).

CT-TOCSY spectrum reconstruction from cluster center trateseach cluster center trace
along! 2, g (where superscript r denotes a row vector), the corresponding CT-TOCSY trace

m

along! ; was assigned represented by the column vexfor(where superscript ¢ denotes a
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column vector). Ifq"") is the consensus trace between thamkd I" row of T, thenq® is simply

m

the consensus trace between th& &nd [

columns where (k,k') and (I,I') denote the
corresponding cross-peak pair. Next, for each traceq¥diand ‘¢, the two NxN; correlation
spectra were reconstructed according to

1S, =a"q0r w mSP =g g (312)

I

and superimposed on the TOCSY spectrum for cross-peak assignment and validat®g°Si
is decoupled by the constant-time TOCSY sche&fg, has a collapsed multiplet structure (and
hence high resolution) along both dimensions. By cont&sts only decoupled along;, while

it shows the full multiplet fine structure alohg. The cross-peak fine structure 8f, equals to
the one of the experimental CT-TOCSY trace albagwhile S has its collapsed cross-peaks

centered at the same positionsSs The sum of all subspectra over all M compounds (spin
systems) are obtained by Eq. 3.3.

n M

S= S S = S (3.3)

m=g M m=1 M

n M

3.2.2 Sample Preparation

E. coli BL21(DE3) cells were cultured in M9 minimum medium as previously (Section 2.2.2)
described with [U¥C]glucose added as the sole carbon source. One liter of overnight
BL21(DE3) culture was centrifuged at 5000g for 20 min atC4 and the cell pellet was
resuspended in 50 mL of 50 mM phosphate buffer at pH 7.0. Cell suspension wagjbeted

to centrifugation for cell pellet collection. The cell pellet wasuspended in 60 mL of ice cold
water, and pre-chilled methanol and chloroform were sequentially added under vigorous vortex
at H,O/methanol/chloroform ratios of 1:1:1. The mixture was then left af &0vernight for

phase separation. Next, it was centrifuged at 4000g for 20 minj&t 4nd the clear top

hydrophilic phase was collected and subjected to rotary evaporator processing tthehave



methanol content reduced. Finally the liquid was lyophilized. The NMR samg@grepared by

dissolving the lyophilized material in.,D.

3.2.3 NMR Experiments and Processing

2D BC-°C CT-TOCSY data sets were collected with 576x204&NX)) complex points with a

long (47 ms) and a short (4.7 ms) mixing time, respectively, using FLOPSY-16 with 22 h
measurement time and a digital resolution of 38 Hz alongrior to zero filling®? Standard 2D
13c-Bc TOCSY data were collected with 512x2048,XN,) complex points using a 46 ms
mixing time using DIPSI-2 for mixing® Both 2D**C-*C CT-TOCSY and 2D"C-*C TOCSY

were collected with 110 ppfiC spectral width. The 2B°C-**C COSY data set was collected
with 1024x1024 (MXN,) complex data points with 202.5 ppHC spectral width* All NMR
spectra were collected at 800 MHz proton frequency g5 he NMR data were zero-filled,
Fourier transformed, phase and baseline corrected using NMEPael converted to a

MATLAB -compatible format for subsequent clustering and analysis.

3.3 Results

Figure 3.1 compares a spectral regiorEotoli cell lysate of a 20°C-*C CT TOCSY with a
regular 2D**C-*C TOCSY (Figure 3.2 shows the full CT-TOCSY spectrum). The presence of
homonuclearJ(*C,**C)-couplings leads to prominent peak splittings with average multiplet
widths ~75 Hz, which substantially exceed the intrinsic linewidths. In thelae2D TOCSY,
these splittings appear along both frequency dimensions, leading to severely ezbogess-
peak regions (Fig. 3.1A). By contrast, the CT-TOCSY (Fig. 3.1B) is decoupled along the
dimension with respect to the dominadf-C,**C)-couplings and therefore displays significantly
reduced cross-peak overlap. The resolution enhanceatwery! ; over the standard 26C-'°C
TOCSY amounts on average to a factor >4, improving the average multiplet wiat»70 Hz

to ~15 Hz, which turned out to be critical for the analysis of a spectruheafomplexity of a

cell lysate. The favorable resolution achieved in this way is not iingrfactor any longer,
except for the analysis of highly complex carbohydrate mixtures, which could bfoefit
partial fractionation prior to the NMR experiments.
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Figure 3.1.Selected region of (A) 2B°C-**C TOCSY and (B) 20°C-*C constant-time (CT)
TOCSY of uniformly**C-labeledE. coli cell lysate. The large resolution improvement albag
in the CT-TOCSY experiment enables the extraction of unique traces forafisggnment to
individual metabolites.

The TOCSY spectrum with a sufficiently long mixing time correlat€sspins within the
same spin system with each other. For linear spin systems, the teffisiency over up to ~10
3¢ spins is quite efficient for the mixing time of 47 ms used here (Fig.I8.Bjinciple, a cross-
section through a cross-peak aldng(! 1) represents the homonuclear coupled (decoupfed)
1D spectrum of the corresponding spin systérowever, full or partial peak overlap along one
of the frequency domains produces traces that contain additional peaks, whidhosh nearby
cross-peaks of other mixture components. For more complex mixtures, the extracipuare®
traces is increasingly hard because of the higher likelihood of peak overlapsinifoize
spurious peaks in CT-TOCSY cross-sectidbeCoDeCwas applied, which generates from a
pair of TOCSY traces a consensus trace that contains only peaks that imppeth original
traces’” The consensus trace is notably more robust with respect to partial or o
overlaps than either one of the input traces. The two input traces wemneatkeoss-sections
along! >through crospeaks symmetrically placed with respect to the diagonal. The resulting set

of consensus traces was then subjected to hierarchical clusteringaizedby the dendrogram
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in Figure 3.4A. It permits the straightforward extraction of cluster centersethigesent unique

spin systems. In this way, 98 spin systems were identified, whose 18 aeealepicted in
Figure 3.4B. Cluster traces with a sigtaoise ratio as low as ~10:1 were recognized with
high fidelity benefitting from the remarkably flat base plane of #@'°C CT-TOCSY
spectrum, which, unlikéH-detected NMR spectra, does not suffer from the presence of a strong
solvent peak. Remaining peaks with low sigimahoise (due to low concentration of the

corresponding compound) were manually analyzed as discussed below.

Figure 3.2.Entire 2D**C-**C CT-TOCSY spectrum of uniform’C-labeled cell extract from
E. coliBL21(DE3) cells.
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Figure 3.3. Simulated magnetization transfer betwéd spins in a linear chain consisting of
N=10 spins under isotropic TOCSY mixing. The simulation included only the dominant next
neighbor scalar J-coupling&J(°C,**C) = 35 Hz). Starting on the first spin, the propagation of
single spin magnetization through the spin system is depicted as a fuottiba TOCSY
mixing time where the spins are sequentially numbered as indicatedfigutee At 47 ms the
transfer efficiency to all spins is reasonably high.

Figure 3.4.(A) Dendrogram representation of the consensus trace clustering result of 2D CT-
TOCSY traces (cross-sections) aldngof **C-labeled cell lysate. The x-axis corresponds to the
consensus trace indices. (B) 98 semi-automatically determif@eIMR cluster center traces

that represent the clusters of Panel A.
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In next step, from each cluster center trace m of Figure 3.4B a correlagicinusnS |
was reconstructed (Eq. 3.2) containing*aC-*C cross-peaks expected from its cluster trace.
The cross-peaks of the original CT-TOC3$Yould then be assigned to individual cluster center
traces by direct comparison with,. Figures 3.5A,C depict selected regions of the CT-TOCSY
spectrum for comparison with the superposition of all spesirgrig. 3.5B,D). Very close
agreement in peak positions and multiplet structure between the origin&leaback-calculated
spectrum attests to the high degree of completeness achieved forighenass of cross-peaks
to specific spin systems. This is further illustrated in Figures 3.6 andvBi¢h depict the
connections betweeliC-'*C cross-peaks for the ribose of adenosine and leucine, respectively,
derived from the back-calculated spectra of these two metabolitesrddsepeaks that could not
be assigned in this way have on average a signadise S/N ~5, which is a factor 5 lower than
the median S/N of the assigned peaks. On the basis of manual inspéctimassigned cross-
peaks, an additional 14 spin systems were uncovered, bringing the total numbersyEtpirs
identified in theE. colicell lysate sample to 112.

Figure 3.5.2D *C-'3C CT-TOCSY spectrum (A) in comparison with spectr8iEq. 3.3) (B),
which was back-calculated from the cluster center traces of Figure 3.A8sFaand D show
the zoomed regions (gray boxes) of the spectra of Panels A and B, respectioblingeketails
of the multiplet patterns.
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Figure 3.6. SpectrumS(CC) (blue, Eq. 3.3) back-calculated from selectedconsensus traces
superimposed on the 2D CT-TOCSY (red). The dashed lines cai@ect cross-peaks from

the ribose of adenosine.



Figure 3.7. SpectrumS(cc) (blue, Eq. 3.3) back-calculated from selectedconsensus traces
superimposed on the 2D CT-TOCSY (red). The dashed lines coi@edC cross-peaks from
leucine.

The connectivity information of*C-**C TOCSY spectra directly reports on covalent
carbon-carbon bonds. For this purpose, we used the short-mixing time (437CAi&} CT-
TOCSY spectrum Tshor) to reconstruct the full carbon backbone structures (molecular
topologies) of each metabolite. Because the one-BdddC,**C)-couplings dominate the
2J*3c Bc) and®3(3c . 1*C) couplings, a cross-peak Tnortis direct evidence for the presence of
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a chemical bond between two carbon atoms. When superimposing a correlationnsi$sct
reconstructed from cluster center trace jTanon the cross-peaks @, that coincide with a
cross-peak iff snort Fepresent a carbon-carbon chemical bond, wWf@epairs that do not show a
cross-peak i shortdo NOt have a chemical bond between each other.

Figure 3.8.Entire **C-*C COSY spectrum of uniformly°C-labeled cell extract frork. coli
BL21(DE3) cells. The boxed areas contain cross-peaks to carbonyl and carboxyl carbons
complementing the information obtained from tf@-*C TOCSY spectrum of Figure 3.2.



Since the TOCSY spectrum did not cover the carbonyl and carBi&ytesonances
(~176 ppm) due td°C radio frequency offset effects, we used ¥#@'*C COSY (Fig. 3.8) to
establish connectivities to those carbon moieties. From the chemicalrifondation derived
from theS,, spectra, a bond connectivity matrix was derived for each consensus trateyvasic
then converted into the topology network (Fig. 3.9). To independently validate the topologies
obtained in this way, the multiplet structure of each TOCSY cross-peakxaasned. Carbons
that are bonded to one, two, three, or four other carbons show the characterigiletrpalterns
with intensity ratios 1:1, 1:2:1 (or 1:1:1:1), 1:3:3:1, and 1:4:6:4:1, respectively. As is
demonstrated in Figure 3.9 for coenzyme A, the ribose of uritdhgalactose and leucine, the
multiplet patterns provide a rigorous consistency test of the topologies witguiting any

additional experiment. The overall protocol is summarized in Scheme 3.1.

Figure 3.9. Backbone carbon topologies of (A) coenzyme A, (B) ribose of uridine,! {C)
galactose, (D) leucine frofiC-"*C cross-peak connectivities of 2D CT-TOCSY at short mixing
time (t, = 4.7 ms) and frof’C-multiplet patterns along the, dimension in CT-TOCSY.
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Scheme 3.1Flow chart of the 2D CT-TOCSY deconvolution protocol used in this work.

All 112 identified metabolite topology networks were tested for consistendhis
manner. The sum of all topologies, termed the metabolite OtopolomeO cisddepiFigure
3.10A. It consists of 10 different topology types (Fig. 3.10B), which include up to 7 carbons
(note that topologies with a single carbon are not included here because thegide nee to a
13C TOCSY or COSY cross-peak). The observed occurrences of each topology, listed in Figure
3.10B, range between 1 (topologies b,c,d) and 31 (topology g). It should be noted that these
topologies refer to the carbon spin systems only. For example, the carbon spmcfydbese is
linear while its chemical structure is cyclic whereby the ether djakarevents magnetization
transfer between oxygen-linked carbons. Secondary carbons are encountered mosthotien wit
relative occurrence of 54%, followed by primary carbons (topological end groups) (45%),
tertiary carbons (0.8%), and quarternary carbons (0.2%). The most frequent topology consists of

five linearly arranged carbons (topology g), whereas the OaverageO topology has 4.5 linearly
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arranged carbon atoms. The topolome was then linked to known molecules by scraehing e
cluster center trace against the 0 spectral metabolomics library of the BM&Rising the
COLMAR web servef? This yielded unique molecular assignments of 29 cluster traces (spin
systems) belonging to 27 metabolites listed in Figure 3.10B, which include 12 untigande
acids, 6 riboses of larger nucleic-acid containing molecules, and 3 monosaccharitining

six carbons.

Figure 3.10. Backbone carbon topolome &. coli. (A) Display of the backbone carbon
topologies of the 112 spin systemsEafcoli identified in this study. (B) List of the different
topologies identified together with their occurrences (Occ.). Compounds with speanifies
matched BMRB database compounds, whereas compounds referred to as "others", ¢ci@mino-a
like", and "saccharides" were not contained in the database.

The majority of these 27 metabolites were also observéd doli cell extracts by mas
spectrometry® The largest discrepancy between the mass spectrometry and NMR results
concerns carbohydrates since the number of hexoses and other 6-carbon sugars détbtiRed by
(23 compounds) significantly exceeds the one observed by mass spectrometry (11 compounds).
Some of these carbohydrate units may be part of as yet uncharacterized atoguedt
structures, while others may represent isobaric isomers, whose distincticaisbyspectrometry

is a challeng€® *C-*C TOCSY traces of carbohydrates provide straightforward access to their

! 74



carbon topologies, while chemical shift changes uniquely identify the carbonicatdif sites.
For example, all four glucosamine-like topologies observed here have the nitrdgehsdat
their C2 positions, which is the same as for glucosamine. These differenderline the
complementarity of these two experimental methods.

3.4 Discussion

High-resolution solution NMR of biological mixtures typically detects hundredsaiesands of
peaks of both known and unknown compounds, which can be used for a wide range of
applications, including compound identification, quantification, dadovocharacterization of
unknown species, that cross the boundaries between traditional natural prodathresd
metabolomic$. While database searching can dramatically accelerate the \@ifias the
presence of known compounds, the characterization of unknown compounds remains a major
challenge. The classical approach, which is the method of choice in natodakts research,

uses chromatographic separation until individual compounds are isolated sbethaan be
further characterized individually. Because this approach is targeted andotisweying for
metabolomics applications, methods are needed that do not require extensiemdtian.

Here, we introduced a multidimensionaMR-based approach for the analysis of metabolite
mixtures of uniformly*®C-labeled organisms. The favorable spectral resolution and baseline
properties of thé®C-*C TOCSY correlation spectra allow a rigorous, semi-automated analysis
of the mixture in terms of the carbon-backbone topologies of the underlying compoitents w
concentrations in the submillimolar to hundreds of millimolar range. This pednthe
reconstruction of the full topolome consisting of 112 spin systems or chespezaés detectable

by NMR. From the cluster center traces, each representing a metd®lispin system, a
remarkably complete reconstruction of the CT-TOCSY could be achieved (Fig. 3.5), which
accounts for over 94% of all observable CT-TOCSY cross-peaks. Resonances that are not
accounted for either have very low sigtaroise or fall into the few highly crowded regions,
(Fig. 3.2 and 3.5). In addition, analysis of the multiplet pattern of Echesonance permitted
independent validation of each topology. Together, these methods enable the rapichhled
identification of the very large number of topologies reported here. This approactenepres
significant advance over alternative methods of chemical structure desgioniin complex
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mixture’’” An additional advantage of diretiC detection is that non-protonated carbons can be
directly detected, including carbonyl and carboxyl carbons whose correlations witlcarthans

are obtained from thEC-*C COSY. Since carbonyl and carboxyl carbons possess significantly
larger 1J(*C,**C)-couplings (~55 Hz) than most other C-C bonds (~35 Hz), multiplet patterns
observed in CT-TOCSY independently validate the carbonyl and carboxyl substituentsabserve
in the®*C-*C COSY experiment. For example, in Figure 3.9D the resonances of leuciaedC

C", which are both secondary carbons, show the distinct multiplet patterns 11d11t2al,

respectively, consistent with the attached carboxyl group to C

The topolome detected fdE. coli reveals that the most frequent topology with 31
occurrences is linear containing five sequentially bonded carbons (topology g in Figure 3.10).
This topology comprises glutamate and 8 glutamate-like compounds or spin systalss.
includes 13 riboses and only 1 deoxyribose, reflecting the larger structural and functiona
diversity of ribose-containing molecules over deoxyribose-containing molecules. The method
differentiates between isomers that slowly interconvert on the NMR chEshift time scale.

The second most frequent topology with 27 occurrences is topology e (6 linearly arranged
carbons). Topology e includes 12 aldohexoses, comprising the common monosaccharides
glucose and galactose, serving both as energy sources and as structural building bilueks

cell. An advantage of NMR-based topology analysis is that quantitative icdieshift
information at each carbon site is available. Aldohexoses detected herallyeexhibit a 5 - 10

ppm **C chemical shift increase in the C1 or C4 positions (or both) compared to
monosaccharides. Since these positions are the common glycosidic linlegevidit other
molecular groups, the unknown aldohexoses might be part of larger chemical strgciciness
polysaccharides (whereby the oxygens involved in these linkages divide the carbons into
separate spin systems that are not connected by TOCSY cross-peaks). Gartaisuaars,

such as N-acetylglucosamine and N-acetylmuramic acid present in thé/saté in four
different forms, share the same topology as the aldohexoses (topology e). Thendhird
frequent topology with 24 occurrences is topology i (three linearly arranged carbons). Topology i
is adopted by seven alanine-like compounds, and topology a includes two diaminopiidelic-ac
like topologies. Because the prevalent glutamate, alanine, diaminopimeid; &l-
acetylglucosamine and N-acetylmuramic acid form the basic building blockgheof
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peptidoglycan cell wall ofE. coli, these topologies might belong to cell wall fragméfts.
Knowledge of metabolite topologies provides an ideal basis for further charaiibe. Since
NMR *3C chemical shifts with their high sensitivity to substituents are méxdasimultaneously
with the topologies, they should assist further chemical structure deteomirwdt selected
mixture components. The presence of substituents derived ‘fienthemical shifts can be
corroborated by additional NMR experiments that display additional correlationgafopke, to
3p 1N, and'H nuclei.

A uniformly high level of**C enrichment is important for the method to work. L@
enrichment levels will reduce the number of fully, i.e. consecutiVéBlabeled spin systems,
which is required for the extraction of complete spin system information €drTOCSY
traces. If the fraction of°C labels at all sites is D f ! 1, then the fraction of fully labeled
molecules isf, where N is the number of spins. Hence, the number of molecules that centribut
to complete TOCSY traces decreases exponentially with N, which cempanied by a
corresponding drop in sensitivity. If the enrichment level is biochemical patrelated, as is
typical for mammalian cells, f can be close to zero 0 for certdes sand impede the

measurement of complete carbon traces by this approach.

The resolution power resulting from the combination of consensus trace olyisteth
homonuclear>C CT-TOCSY spectroscopy produces a unique and exhaustive set of carbon
topologies of components of a mixture of ultrahigh complexity as demonstratedohexe
uniformly *C-labeled cell lysate. Such OtopolomicalO information should prove powerful for the
exploration and establishment of new biochemical pathways and interactionsirig **C-
labeled endogenous and exogenous metabolites. Unff@abeling of many organisms, such
as bacteria, yeast and plants, is now readily available and, henceMRisstkategy can give
broad access to the complex chemical information necessary for a sybielogical

understanding of their function.



CHAPTER 4

IDENTIFICATION OF METABOLITES BY CUSTOMIZED
NMR DATABASE

4.1 Introduction

A primary goal of metabolomics is the identification of all mixture ponents with high
accuracy. Retrieval of such information from 1D NMR spectra alone is diterging®® This

is because of two factors: (1) the high frequency of peak overlaps impairs compound
identification from individual peaks, and (2) the lack of connectivity informaietwveen peaks

that belong to the same compound limits the combined use of NMR informairamiultiple

nuclei that belong to the same molecule. As a consequence, even minor dhacigemical

shifts between the mixture and database spectra can cause ambiguities in componeiohannotat

The use of 2D NMR spectra can overcome some of these issues. Fatchaghof 2D
NMR spectra against database information a number of different strategiedeen proposed.
2D H-*C HSQC spectra can be matched cipsak by crospeak against database entre&
83.99 Although the resolution is increased by the introduction of the indif€ctlimension, the
lack of connectivity information between the differéiht-'*C pairs belonging to the same
molecule causes similar types of challenges for peak annotation arbhtetalentification as
in 1D NMR. Connectivity information between resonances from different partsnoiecule is

available in*H-'H TOCSY spectra collected at long mixing tiniés.

In Chapter 3, we expanded this strategy to uniforif@ylabeled metabolites by the use
of 3C-*C constantime-TOCSY*! (CT-TOCSY) spectroscopy. Application to uniformly labeled
E. coli extracts allowed the determination of carbon topologies of all detectatbbolites’
Because the topologies could be determined without any database informasi@ppttoach is
not limited to the characterization of mixture components that are alcsdadlpgued. On the

other hand, for those mixture components that are present in metabolite datdizability to
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directly identify them from™C-*C CT-TOCSY would further enhance the utility of this
approach. Since TOCSY traces only correlate resonances that belong to ¢hspsamsystem,
for molecules with multiple spin systems or multiple isomeric formas are in slow exchange,
they yield only part of the entire 1BC spectrum. Therefore, a query against NMR databases
that consist of the full 1D NMR spectra of metabolites leads ttwhea that are imperfect,
carrying the risk of false interpretations. Moreover, depending on the matchinghaitgased,
often molecules with a large a number of resonances are returned sindeavieeg higher
chance to match the resonances of the query trace. Presently, none of thepobiierNMR
databases sorts spins into individual spin systems or slowly exchanging idomeeparate
gueries. To meet this demand, a metabolite database is introduced hetejswpecifically
geared toward the query dfC TOCSY traces with the goal to optimize the matching

accuracy”

A customized metabolomics NMR database, TOCCATA, is introduced, whishitse
chemical shift information for the reliable identification of metatesli their isomeric states and
spin systems. TOCCATA, whose information was derived from the BMRB and HMDB
databases and the literature, currently contains 463 compounds and 801 spin sgsté&nsana
be used through a publicly accessible web server. TOCCATA allows the ichidii of
metallites in the submillimolar concentration range frdf€->C TOCSY experiments of
complex mixtures, which is demonstrated for a carbohydrate mixtute, @oli cell extracts and
an amino acid mixture, all of which are uniformfz-labeled-*

4.2 Materials and Methods

4.2.1 Computational Methods

Consensus trace determination from $0-'*C CT-TOCSY spectrum was explained previously
(Section 3.2.1).



4.2.2 Sample Preparation

The carbohydrate mixture of uniforml§C-labeled glucose was purchased from Sigma-
Aldrich, and fructose, galactose, and ribose were purchased from Cambridge Isotope
Laboratories, Inc. An NMR sample was prepared by dissolving these carbohydrai€s @ath
with a 10 mM final concentration.

A uniformly **C-labeled algal amino acid mixture, purchased from Sigma-Aldrich, was
prepared by dissolving 0.5 mg mixture in 2 miD The resulting suspension was centrifuged

and the supernatant was used for measurements.

TheE. coliNMR sample preparation was explained previously (Section 3.2.2).

4.2.3 NMR Experiments and Processing

2D Bc-1C CT-TOCSY" data sets of thi. coli cell lysate and the carbohydrate mixture were
collected with 576 Nand 2048 N complex data points for 47 ms FLOPSY-16 mixfnat 800
MHz proton frequency with a 110 pHC spectral width at 28C. 2D **C-*C CT-TOCSY data
set of amino acid mixture was collected with 512akdd 2048 N complex data points, with 38
ms FLOPSY16 mixing at 700 MHz proton frequency with 110 pi@ spectral width at 2&C.
The NMR data were zero-filled to 2048 ,jNand 8192 (M), apodized using shifted sine-bell
windows, Fourier transformed, phase and baseline corrected using NMR&ieconverted to

a Matlab-compatible format for subsequent processing and analysis.

4.3 Results ad Discussion

The new database, which is termed TOCCATA (TOCSY Customized Carbon Thetiee)

was primarily derived from the BMRB and HMDB®® metabolomics databases and presently
contains 463 compounds. From these 463 compounds, 263 contain a single spin system and
adopt a single isomeric state. Therefore, only for this subset of compoundsistheperfect

match possible between a BC TOCSY trace and the 1B’C spectrum. 163 compounds
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consist of more than one spin system in a single (isomeric) state; Z®wods consist of a
single spin system in multiple states; and 8 compounds consist of egltgies and multiple

spin systems.

The TOCCATA database is structured as follows. First, the chestidéd of the 463
compounds were subdivided into their individual isomeric states, which werefuhaer
subdivided into individual spin systems. Group$’6f spins are considered to belong to separate
spin systems, if they are separated by at least one noncarbon atom, anabxggen (e.g., O-
glycosidic bond in lactose), a sulfur (e.g., methionine), or a nitrogen (e.g., N-glycosidicnbond i
adenosine). While this does not exclude the possible existence of 8G&iC J-couplings
between spins that belong to neighboring spin systems, the magnetizatiorr tirarid@="*C
TOCSY experiments at mixing times used here (<50 ms) is essentiallgiblegl This
definition of the spin systems yielded a total of 801 different spin regsté& specifically
designed web portal at http://spinportal.magnet.fsu.edu/toccata/webquery.htnd gllewing
of the database either by using a list’& chemical shifts of a given spin system or by
uploading a*C TOCSY trace, such as™C consensus TOCSY trace. The trace can be peak-

picked interactively and subsequently queried against the database.

The BMRB metabolomics database includes NMR spectra of compounds ierdifiel
values and solvents. Since pH and solvent may result in NMR peak shiftd\ifitydata of
compounds dissolved in,B/D,0 at pH 7.4 were included in TOCCATA. For some metabolites
not present in the BMRB, such as ribose, ‘i@ NMR chemical shifts were extracted from the
HMDB [it should be noted that the HMDB spectra had been recorded at ayslayier pH (pH
7.0); no pH correction was applied to the resulting chemical shifts].

The chemical shift assignments of all compounds of TOCCATA were peatorm
manually by extracting spectral information from the BMRB, HMDB, and the litegdt* 192 1%3
104105106 107108 After the assignment of all resonances of a given compound, they were grouped
into the different isomeric states and spin systems. In addition, igarassts were also used to
determine the peak multiplet patterns for every carbon resonance in the dalialBankiformly

3C-labeled compound with all protons decoupled®@ multiplet provides the number of
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directly bonded*C atoms. A primary, secondary, tertiary, or quaternary carbon possesses a
multiplet with intensity ratios of 1:1, 1:2:1 (or 1:1:1:1), 1:3:3:1 and 1:4:6:4:1, rigplgc
Inspection of multiplet patterns along the detection dimension in the CT-TOCSY spectrum
has proven useful for the independent validation of the top matches returnedtdaseajaery
(Section 3.4).

The idea of complex mixture analysis B3C-*C CT-TOCSY NMR and subsequent
database searching using TOCCATA is depicted in Figure 4.1. In order to identify the
components of a mixture consisting of uniformfz-labeled metabolites (lysine, galactose
pyranose, and galactogepyranose in the case of Figure 4.1) giving rise to the"*tDNMR
spectrum depicted at the top of the figuré’@&'3C CT-TOCSY spectrum at a sufficiently long
TOCSY mixing time is collected (e.8nix = 47 ms), which is deconvoluted into consensus traces
(blue spectra) that represent individdiC spin systems as described previously (Chapter 3).
When queried against TOCCATA, the identities of the underlying metaboliéeseturned.
Figure 4.2 shows a screenshot of the user interface of the TOCCATA webh sblsers can
manually enter (e.g. by copy and paste) a chemical shift list into the Lilgatext box, and
submit it for TOCCATA query. Alternatively, a user can directly upload®@ TOCSY
(consensus) trace as a file in a two-column ASCII format (where thedixginn represents the
frequencies in parts per million (ppm) and the second column the spectraltiggansarbitrary
units). The trace is then displayed in the web server so that it caarhaly peak-picked using
the peak-picking button. For each peak multiplet, the center frequency should piokedn(e
case it has zero intensity, such as in the case of a doublet or qUédmeselected peak list can
be interactively edited by clicking on the spectrum: a peak is addedlistiié is not yet in the

peak list, and a peak is removed if the peak is already contained in the peak list.



Figure 4.1. Schematic representation of the deconvolution and TOCCATA database querying
based on 2D°C-C CT-TOCSY spectrum of complex metabolite mixtures. The method is
illustrated in the figure for a model mixture composed of lysine and gatdacibe resulting
deconvoluted 1B°C TOCSY consensus traces belong to (from left to right): lysine, galdctose
pyranose, and galacto$epyranose. They are identified by querying each of these traces against
the®C TOCSY databank TOCCATA.

2D CT-TOCSY spectra are typically performed on a finite spectral rangéoétvgeen O
and 110 ppm) in order to minimize off-resonance effects on TOCSY transfemkel this into
account during the TOCCATA query, the web server allows users to specifyetieas width
for which the database query should be performed by specifying the most downfiettbsind
upfield ppm values. This eliminates potential mismatches arising ff@mresonances not
detected in the TOCSY experiment, but which are present in the databa#ig, tde number of
query peaks is identical to the number of resonances of the best matchisgsspm. However,
this is not always the case (e.g., because a peak was missedjuetperace or two chemical

shifts were assigned to different multiplet components of the sameare=s). To facilitate the

! 83



analysis of mismatches, the web server allows the user to specifgxamally tolerated
mismatch difference (M) between the number of query peaks and the number of resonances of
all possible matches. If the user is confident that all query peaks weretlyoidentified, then a
mismatch parameter My = 0 should be entered (default value). As a rule, if a mismatch is

detected, the user is advised to inspect the NMR raw data to identify the origin of the mismatc

An important property of NMR chemical shifts is their proper referencing. ydehk
chemical shifts are referenced against standard compounds, such DSS omTilS .cases
where no standard was used, the web server permits the user to enter calcbleifhivalue
(default 0.00 ppm) in order to reference a spectrum by uniformly increasing or dectéasing
chemical shifts of all metabolite signals in the spectrum by itered ppm value. To find the
minimum rootmeansquare-deviation (rmsd) for every metabolite, the TOCCATA matching
algorithm performs an automated alignment within an interval of +/-0.5 ppm andppbes a
weighted matching algorithfito find the best matching peak pairs from the query list and the
database. Finally, the average chemical shift rmsd between the inpdidtabdse peak pairs is
calculated and used as a criterion to select the best match, whiisiplayed on the screen (Fig.
4.2).

In our experience, the database query is most accurate when,the B and rmsd <
0.12 ppm (default values). If no database entries satisfy the above critergudry returns a
Ono matchO statement. With remarkably few exceptions, the chenfiditstextracted from
the TOCSY traces of the sugar mixture, the amino acid mixture, ariel twdi cell lysate have
only one match satisfying these criteria, which are the correct ones. Whigplermatches are
returned, they are rank-ordered according to increasing rmsd values and displayed in ginoups w
identical mismatch. Concise information about the number of isomeris stadespin systems of
a compound is displayed for the top (currently 4) returns (Fig. 4.2). In addition, their expected
multiplet patterns are displayed for direct comparison with the multipdéterns of the
experimental input data. In our experience, the use of the multiplet pattarts-breakerO
resolves the vast majority of ambiguities.



Figure 4.2.Screenshot of TOCCATA web server user interface. A'iDtrace of interest can

be uploaded and interactively peak-picked (red diamonds) with the corresponding chemical
shifts displayed in the "Peak List". Querying of this peak list agdi@€CATA returns the best
matching compound (in this case D-galactose) with the chemical shifDRM®re and after a
uniform shift of -0.004 ppm was applied. A mismatch number M = 0 indicateththaimber of

query peaks and database peaks for D-galactose were the sam# Themical shifts of D-
galactose are listed together with their multiplet fine structure (111 =dublet, 121 = 1:2:1
triplet, 1111 = 1:1:1:1 quartet, 1331 = 1:3:3:1 quartet, etc.) for validation.

The first application shows the performance of TOCCATA for a carbohydraterei
consisting of uniformly**C-labeled fructose, glucose, ribose, and galactose,@® Bach of
these carbohydrates was present in solution either in two (glucose, galactthseg (fructose,
ribose) isomeric forms whereby each isomer constitutes a sit@lepin system. Consensus
trace clustering of thEC-"*C CT-TOCSY spectrum yielded the traces shown in Figure 4.3. Each
of these traces were peak-picked as shown by red triangles and queried BQ&QATA,
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which resulted in the correct identification of each of the 10 isomersmirgsthe mixture with

the query results compiled in Table 4.1. For each hit (see Table 4.1), Mrisece{whereby M

Mmax Where Mhax can be entered on the web server) as well as the rmsd between thenguery a
the database chemical shifts. For the carbohydrate mixture of Figure 418sthealues are all

< 0.12 ppm, and the M values are all zero, reflecting that the number of ingatquesaied was
equal to the number of matched database peaks. With the selection ditgrE 0 and rmsd <
0.12 ppm, unique and correct matches were found for all the carbohydrate traceslufiiire c
OShiftO shows how much the input data were shifted by the TOCCATAngadtdorithm to

find the minimum rmsd between input and database peaks. The Shift vamessmall
variations indicating that there is no optimal universal shift for ategaThis is not unexpected

as each metabolite responds individually to the specific conditions of the mixture.

Table 4.1. TOCCATA query results of deconvoluted IC TOCSY traces of carbohydrate
mixture shown in Figure 4.3.

RMSD? [ M” | Shift® RMSD | M | Shift
fructose! -furanose | 0.016 | 0 | 0.019 | ribose! -furanose 0.080 | 0 | 0.060
fructose! -pyranose | 0.020 | 0 | 0.019 | ribose! -pyranose 0.030 | 0 | 0.015
fructose" -furanose | 0.015 | 0 | 0.024 | ribose" -furanose 0.119 | 0 | 0.033
glucose! -pyranose 0.013 | 0 | 0.023 | galactose -pyranose | 0.011 | O | 0.019
glucose" -pyranose 0.010 | O | 0.022 | galactose" -pyranose | 0.018 | 0 | 0.013

@ Root-mean square difference (in units of ppm) between the input and databank chemical shifts.
P Integer mismatch parameter between the number of input and databank chemical shifts.

¢ Amount by which the input chemical shifts were uniformly moved (in ppm) sahtea®MSD

with respect to the databank chemical shifts is minimized.



Figure 4.3. Deconvolution and TOCCATA database querying of Z0-*C CT-TOCSY
spectrum of carbohydrate mixture. The resulting deconvolutef@OCSY traces belong to:
fructose ! -furanose (1A), fructose -pyranose (1B), fructosé -furanose (1C), glucosé-
pyranose (2A), glucose-pyranose (2B), ribosk-furanose (3A), ribosé-pyranose (3B), ribose
" -furanose (3C), galactosepyranose (4A) and galacto$epyranose (4B).
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Application of consensus trace clustering to f@'°C CT-TOCSY of uniformly*c-
labeledE. coli cell lysate yielded 112 metabolite carbon topologies each corresponding to a
unique’*C TOCSY trace (Chapter 3). We queried each of these traces against TOGGKRGA
the criteria Mhax = 0 and rmsd < 0.12 ppm, which led to the identification of 36 metabolites
corresponding to 43 spin systems or isomeric states (Table 4.2). Out of theab®litest, 34
have at least one topology for which a single match was returned. For th2 othbolites, the
guery returned 2 matches where one of the returns could be safely discardedaseonecause
the expected multiplet pattern did not agree with the experimental onm dhe other case
because of a large rmsd difference between the best and second-bestaddition, if a
molecule consists of multiple spin systems, one expects to ddtethexd spin systems of the
same molecule, which should be used as an additional criterion for theatemfiof the identity
of a compound. For instance, spermidine consists of t{@cspin systems containing 4 and 3
spins, which were detected independently in the CT-TOCSY and turned out td hasoesthe
TOCCATA query.

Some metabolites in Table 4.2 demonstrate the capability of TOCCAT#iferentiate
and detect metabolites with very similar chemical shifts. For exammltose exists in both
and" -isomers with each state consisting of 2 glucose spin systems conmgetie(ll! 4) bond.
While the first glucose populates thestate, the second glucose can adopt both taed the'
state [ - and" -maltose). This renders the chemical shifts of the first glucose vailasin the
two states. CT-TOCSY analysis yields 3 unique consensus traces forenaliSCATA query
showed that one trace belongs to the first glucose of!bo#imd" -maltose, while the other two
traces correspond to the second glucosé -ofind " -maltose. NAD and NADP represent
another example. These two metabolites are very similar in structuréemdtal shift (the only
difference is that in NADP the ribose group attached to the adenine base is phosphorylated at
the 2' position). Three consensus traces could be identified for' AB NADP within the
spectral range of the CT-TOCSY. According to TOCCATA query one of them corresponds to
the ribose rings attached to the nicotinamide group in both ‘Nl NADP. The other two
traces correspond to the ribose rings attached to the adenine groups 6faNAIDNADP,
respectively. These examples illustrate that by treating the chesfidtd of different spin



systems separately, the capability to distinguish between differeetuhed and their isomeric

states can be enhanced by identifying them through their most distinct (unique) spin systems.

Table 4.2 Metabolites identified irE. coli cell lysate by querying against the TOCCATA
database. The numbers in parentheses correspond to the query results of ditéabotiten
states or spin systems. Parameters RMSD, M, Shift are defined as in Table 4.1.

RMSD | M | Shift RMSD | M | Shift
Valine 0.044 | 0 | 0.085] Lysine 0.016 | 0 | 0.089
Glutathione red. (1) | 0.016 | O | 0.084| Aspartate 0.041 | 0 | 0.093
Glutathione red. (2) | 0.042 | 0 | 0.037| Glucose 0.011 | 0 | 0.104
Glutathione ox. (1)] 0.006 | 0 | 0.079]| Cysteine 0.052 | 0 | 0.159
Glutathione ox. (2)| 0.008 | O | 0.085] Isoleucine 0.027 | 0 | 0.074
Coenzyme A (1) 0.014 | 0 | 0.053|! -Glycerol phosphate | 0.026 | 0 | 0.047
Coenzyme A (2) 0.031 | 0 | 0.061] Inosine 0.026 | 0 | 0.107
Coenzyme A (3) 0.072 | 0 | 0.090| Threonine 0.034 | 0 | 0.100
Glutamate 0.016 | O | 0.137| N(1 )-Acetyl-ornithine | 0.110 | 0 | 0.103
Malate 0.006 | O | 0.089 | N-Acetyl-glutamate 0.072 | 0 | 0.057
Maltose (1) 0.066 0 | 0.070| N(! )-Acetyl-lysine 0.086 | 0 | 0.144
Maltose (2) 0.090 | 0 | 0.039| 2-Aminoadipic acid 0.016 | 0 | 0.089
Maltose (3) 0.090 | O | 0.088| N-Acetyl-alanine 0.003 | 0 | -0.011
Maltose (4) 0.088 | 0 | 0.081| 2-Aminobutyric acid 0.041 | 0 | 0.069
Proline 0.031 | 0 | 0.091| Gluconate 0.014 | 0 | 0.062
Adenosine 0.045 0 | 0.144| NAD" (1) 0.047 | 0 | 0.110
Leucine 0.037 | 0 | 0.066| NAD" (2) 0.069 | 0 | 0.181
UDP-GIcNACc 0.035 | 0 | 0.053| NADP" (1) 0.118 | 0 | 0.216
Ethanolamine 0.024 | 0 | 0.037| NADP" (2) 0.101 | 0 | 0.056
Phenylalanine 0.015 | 0 | 0.110] Spermidine (1) 0.078 | 0 | 0.143
Serine 0.030 | 0 | 0.096 | Spermidine (2) 0.039 | 0 | 0.164
Galactose 0.013 | 0 | 0.101| Uridine 0.046 | 0 | 0.105
Methionine 0.025 | 0 | 0.081] Putrescine 0.026 | 0 | 0.110

red. (reduced)
ox. (oxidized)

To compare the TOCCATA with other currehC chemical shift web servers, we
submitted the 4E. coli cell lysate'*C consensus TOCSY traces unambiguously identified by
TOCCATA to the BMRB', COLMAR™ #and the HMDE?® databases for 18'C querying. The
correct hit rates for BMRB (with a OC RangeO parameter of 0.15) and COLMAR wea@d1%
76%, respectively, and the one for HMDB (with’ad08hift ToleranceO parameter of 0.15) was
significantly lower. It should be noted that unlike the HMDB, the BMRB and COLMAR
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databases were derived from the same experimental spectra. Overalbhnparison illustrates
how the accuracy of compound identification is substantially enhanced when thging
customized TOCSY trace database TOCCATA.

The results of application of the TOCCATA query-6 consensus TOCSY traces of an
amino acid mixturdFig. 4.4 and CT-TOCSY spectrum in Fig 4.5) are summarized in Table 4.3,
which shows that TOCCATA query always identified the correct compoundlearaap match,
when using the same criteria as above,{M 0 and rmsd < 0.12 ppm). These relatively strict
selection criteria together with multiplicity and completeness asafygvented the occurrence

of false positive hits in all applications reported here.

Table 4.3. TOCCATA query results ofC TOCSY traces of amino acid mixture of Figure 4.4.
Parameters RMSD, M, Shift are defined as in Table 4.1.

RMSD M Shift RMSD M Shift
Alanine 0.056 0 0.126 | Lysine 0.023 0 0.142
Valine 0.072 0 0.129 | Leucine 0.064 0 0.123
Threonine 0.080 0 0.181 | Isoleucine | 0.068 0 0.118
Serine 0.037 0 0.174 | Glutamate | 0.034 0 0.218
Proline 0.027 0 0.152 | Aspartate 0.066 0 0.182
Phenylalanine| 0.025 0 0.181 | Arginine 0.032 0 0.131

As metabolomics databases continue to grow the chances that tws datree very
similar NMR properties will also increase. This requires highly accuat@base query tools,
such as TOCCATA, for the unambiguous identification of mixture components.e Whil
metabolomics studies with uniformfC-labeled samples are not yet widespread, the ease and
reliability of interpretation should provide additional motivation for this typemgroach. As
13C-labeling of whole organisms, such as bacteria, yeast, and plants, is beawreagingly
common, the emergence of a wealth of new chemical and biological inionnvatluding both
natural product chemistry and metabolomics can be expected. While TOCCATéntyes
contains >800 spin systems, there is ample room for expansion, as theatelekemple clearly
demonstrates, by addirfgC chemical shift information from a wide range of sources, including

existing NMR databases, the chemical literature, and NMR experiments of new compounds.



Figure 4.4. Deconvolution and TOCCATA database querying of 20-'*C CT-TOCSY
spectrum of amino acid mixture. The resulting deconvoluted®CDTOCSY traces belong to:
alanine (1A), valine (1B), threonine (1C), serine (1D), proline (2A), phenylalanine (2B), lysine
(2C), leucine (2D), isoleucine (3A), glutamate (3B), aspartate (3C) and arginine (3D).

In addition to the analysis of 2B5C-**C TOCSY spectra, TOCCATA can also be used to
analyze 2DC-*C COSY spectra after the user has established complete chenfick$tshpf
each spin system from a OCOSY-walkO between direct-neighbi@irsgpins. Application of
TOCCATA to 2D *C-'H HSQGTOCSY spectra works only in exceptional cases: because
TOCSY transfer in 2B°C-'H HSQGTOCSY experiments is mediated by spins, the presence
of nonprotonated carbons leads to qualitatively diffefehfOCSY and*C-TOCSY transfer
traces. Therefore, for the analysis of 20-'H HSQGTOCSY and 20H-'H TOCSY spectra, a
'H TOCSY database derived in a fashion analogous to TOCCATA will be needed.
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Figure 4.5.2D *C-*C CT-TOCSY spectrum of amino acid mixture.



CHAPTER 5

CONCLUDING REMARKS

Accurate identification of all metabolites is one of the mosicatitsteps of metabolomics.
Metabolite identification is performed in two steps. In the first die@,metabolite mixture is
deconvoluted into its individual components and in the second step, each nestabdéntified
from metabolite databanks. Currently both steps are quite involving and their perfercaanoe
hampered in practical situations. In this thesis, new approaches are intraducedrove

metabolite identification by multidimensional NMR spectroscopy.

In Chapter 2, novel strategies have been described for the deconvolution of complex
chemical mixtures at natural abundance in a reliable, efficient, aodhatatble fashion. The
DeCoDeCapproach permits the determination of ‘HDTOCSY trace of individual components,
while the 3R DeCoDeCmethod extracts 2B°C-'H HSQCs of individual components, which
serve as useful fingerprints for database queries and as entry points te@ath&moicture

determination.

In Chapter 3,DeCoDeCmethod is adapted to analysis '8€ labeled samples. This
enabled detection of significant number of metabolites because of legecal shift dispersion
of *C spin and high resolution provided by constant-time spectroscopy. Carbon backbone
structure (topology) for eacheCoDeC**C TOCSY trace is obtained by combining short and
long mixing time magnetization transfer information. Topology is particularlyubsefidentify
uncatalogued metabolites, which comprise ~95% of the metabolome universe. Exmdnsion
catalogued metabolites by this technology can further improve information obtaored f

metabolome analyses.

Unambiguous identification of components in complex metabolite mixtugegeay step
for their biological interpretation. In Chapter 4, we introduced the TOCCATA databhd is
customized for the identification of isomeric states and spin systémeetabolites front*C
TOCSY spectra that yields database query results with unprecedented yactagether these
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new tools open up the prospect to enable routine yet accurate analysis dfatatndance and

uniformly **C enriched metabolomics samples.

Although this is not part of the thesis, metabolite identification bytidnensional
NMR must be combined with quantification. Developments in quantification biNKRIR are
still ongoing. The difficulty arises from variability of cross-peak inteesitdue to multiple
factors such as uneven magnetization, non-uniform relaxation, J-couplings, evoluésratich
mixing times®® So far, the majority of 2D NMR quantification studies have focused on
heteronuclear experiments, in particuffz-‘H HSQC. Quantification approaches by HSQC can
be divided into two categories. The first category generates calibration ciomvesach
metabolite by using its own stand&fd?® This approach is quite labor intensive, since it requires
preparation of many mixture standards. Furthermore, quantification is only limitedtabolites
having internal standards. The detection limit of this approach is atutirenldl level. The
second and more convenient approach aims at minimizing variability in crossimsaities by
using pulse sequence modificatidn$®® The detection limit is about ten fold higher than the

first strategy.

Homonuclear 2D NMR experiments, in particular #D*H COSY, 2D'H-'H TOCSY
and 2D'H-INADEQUATE have also been proposed for quantificalidri!? These approaches

also require calibration curves for each metabolite. The detection limit is in the hunduddls of

So far all proposed 2D NMR quantification techniques are for natural abundance
samples. While metabolomics studies with uniformfC-labeled samples are not yet
widespread, the ease and reliability of interpretation, as shown in Chaptet 3, ahould
provide additional motivation for this type of approach. ‘Ag-labeling of whole organisms,
such as bacteria, yeast, and plants, is becoming increasingly commonethjerara of a wealth
of new chemical and biological information including both natural product chenasidy
metabolomics can be expected. Future work is to develop a strategy for gatiotifiof :*C
labeled metabolites by 2D NMR, which is compatible with the technitpa¢svere developed in
the thesis. Combination of accurate metabolite identification and qoatitfi will enable us to

apply NMR to many relevant biological questions.
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