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ABSTRACT

We treat two di erent problems in condensed matter physics. The rst concerns nuclear
magnetic resonance (NMR) in optimally-doped YBCO in the mixed state. Weshow that the
line shape is broadened due to the fact that the Knight shift becomes psition-dependent
in the mixed state. We also identify a second mechanism, in which gair of spin up
guasiparticles is emitted or absorbed, by which the nuclear spinsan relax in the presence
of a magnetic eld, and show that this second mechanism dominates at lowdamperatures.
We then compare our results to experimental data on'’O NMR and show that it is possible
to explain the data without invoking the presence of antiferromagnetc correlations in the
vortex cores. In fact, we show that the e ects of such correlations on tie 17O relaxation
rates are suppressed in the mixed state, as they are in the normal state

The second problem concerns the electronic phases of bilayer grapreeat half lling.
Using nite-temperature weak-coupling RG methods, we are able to aalytically determine
all possible outcomes of the RG ow equations for the nine coupling consints. From this,
we are able to determine all of the possible leading instabilities tht the system may exhibit
as its temperature is lowered. We nd that the full phase diagram exhbits a very rich
structure, with many di erent possible instabilities. We then specialize to the case of nite-
range density-density interactions. We introduce such an interation into the microscopic
tight-binding model and show how it can be related to the coupling onstants in the low-
energy e ective theory, and apply these results to determine theleading instabilities of the
system as a function of the range of the interaction. We consider two form of the interaction,
both motivated by experimental setups, namely a potential like that produced by an electron
in the presence of an in nite conducting plate, and like that produced by an electron situated
exactly halfway between two in nite conducting plates. We nd th at the system is unstable
to an antiferromagnetic phase for short-ranged interactions and towards a ematic phase,
which breaks the rotational symmetry of the lattice, in agreement with previous work.
While the antiferromagnetic phase is gapped, the nematic phase is gapkes Motivated by
the fact that we nd an instability towards an antiferromagnetic phase for short-ranged
interactions and by experimental data that suggests the presence of a gagve then turn our
attention to an investigation of the antiferromagnetic phase in the presece of an applied
magnetic eld. This is done within the framework of variational mean eld theory. We nd
that, at low elds, the antiferromagnetic order parameter ( B) (0) B2. At higher
elds, for which ! . is larger than about 2 (0), we ndthat ( B) ! Jn(! =)+ C],
whereC 0:67 and! . = eB=m cis the cyclotron frequency. We also determine the energy
gap for creating electron-hole excitations in the system, and, at high dds, we nd it to be
al . +2( B), where ais a non-universal, interaction-dependent, constant.

Xi



CHAPTER 1

INTRODUCTION: PROPERTIES OF, AND
NUCLEAR MAGNETIC RESONANCE (NMR)
IN, YBCO

Figure 1.1: An illustration of a single unit cell in the crystal structu re of undoped
(x =0) YBCO.

The rst part of this work will concern nuclear magnetic resonance in YBCO (YBa,CuszO7 )
from a theoretical perspective B]. YBCO, and, in fact, the cuprates in general, are materials
of great interest, due in no small part to the fact that they were the r st materials known
to exhibit high-temperature superconductivity. This property was rst observed in 1986 by
Bednorz and Muller in a La-Ba-Cu-O compound [7], with a transition temperature of 30

K. High-temperature superconductivity was discovered in YBCO the following year by Wu
et. al. [8], with a transition temperature of around 90 K.



1.1 Crystal structure

YBCO is a cuprate, and exhibits a perovskite crystal structure, asshown in Figure 1.1
One of the major advantages to working with YBCO in particular is that clean samples are
readily available. We note that YBCO has three Cu-O planes per unit cel, two forming
a slightly rectangular (orthorhombic) lattice, the third forming chai ns. We will focus our
theoretical investigations on the planes that do not form chains, since lhese are where the
electronic behavior of interest to us is believed to originate. Ths is due in no small part to
the fact that this is a common structural feature in all of the cuprates. In our work, we will
approximate these planes as square lattices, since the di erence ithe lattice constants is
small.

1.2 Electronic phases

Figure 1.2: The phase diagram for the cuprates. While we will only be disgssing
YBCO in this work, this phase diagram is universal to the cuprates in gerral.

YBCO exhibits a number of di erent phases as a function of doping and tenperature, as
shown in Figure 1.2. In fact, this phase diagram is found to be universal to all cuprates. We
see that, for small (hole) dopingx, YBCO is an antiferromagnetic insulator. As we increase
the doping, we nd other electronic phases. For example, the systemraers a pseudogap
phase for dopings between abouk = 0:02 andx = 0:17, and for temperatures above either
the Neel temperature Ty for low dopings or the superconducting transition temperature
T for high dopings, but below T (see Figurel.2). This region of the phase diagram has



been of great interest in its own right, with much theoretical and experimental work having
been done to determine the nature of this region. However, the region ajreatest interest
in this work is the superconducting phase. We see that, within a dore-shaped region of
the diagram, the system enters a superconducting phase, with theritical temperature rst
increasing with doping, achieving a maximum, and then decreasing againThe doping at
which the transition temperature reaches its maximum value is calle the optimal doping.
For YBCO, the optimal doping is x = 0:15, at which the critical temperature T, = 92 K.

1.3 YBCO as a superconductor

In the superconducting state, YBCO is a type-Il dy> y2-wave superconductor. The
distinction between a type-l superconductor and a type-ll supeconductor is the relative
magnitudes of the superconducting coherence length, which gives the size of the Cooper
pairs, and the penetration depth , which is the length scale over which an applied magnetic
eld is screened out as one goes below the surface of the sample. In 8¢l superconductor,
the ratio

= —-< %: (1.2)

In this type of superconductor, there is a single critical eld, H¢, above which a cylindrical
sample with the magnetic eld applied parallel to its axis will transi tion from the Meissner
state, in which an applied magnetic eld is expelled from the bulk of the sample, to the
normal state; i.e., superconductivity is completely destroyed alove H.. Other geometries,
such as a sphere, may exhibit more complex behavior, namely an interediate state in
which some parts of the sample become normal while others remain sup@mducting.

In a type-1l superconductor, in which > pl—E on the other hand, the system has, not
one, but two critical elds. Above the lower critical eld, Hci, the system transitions from
the Meissner state to a mixed, or vortex, state. In this state, vortices, inside of which
superconductivity breaks down, form inside the bulk of the sample Inside of these vortices,
a circulating current is formed. The superconducting order paraméer is suppressed within
each vortex over a length scale given by, while the magnetic eld increases over a length
scale given by , as shown in Figurel.3. This state was originally predicted by Abrikosov on
the basis of the Landau-Ginzburg theory of superconductors in the presnce of an applied
magnetic eld [9]. He showed that a periodic array of vortices would form in a type-Il
superconductor placed in a su ciently large magnetic eld. His original conclusion was
that these vortices would form a square lattice, but it was later shownthat a triangular
lattice was more favorable. Once the upper critical eld, Hcp, is exceeded, the system enters
the normal state.

As stated earlier, YBCO is ad,2 ,2-wave superconductor. A superconductor with this
type of pairing is referred to as \unconventional". A \conventional" supe rconductor, such
as Hg or Al, is an s-wave superconductor. In ans-wave superconductor, each Cooper pair
forms an object with total orbital angular momentum quantum number | = 0. The wave
function for this pair is symmetric in space, and thus must be antisynmetric with respect
to the electronic spins to satisfy Fermi-Dirac statistics; i.e, the electrons must be in a spin
singlet state. This means that the pairing eld is isotropic in space, and the resulting



Figure 1.3: lllustration of a vortex appearing in the mixed state of a type-ll

superconductor. Inside this vortex, we nd a circulating current. We see that the
superconducting order parameter is suppressed in the core of the e, and that

the magnetic eld penetrates into the bulk of the sample. The length scale over
which the order parameter is suppressed is given by the coherencenigth and
the scale over which the magnetic eld falls o as we move away from thevortex

core is given by the penetration depth .

guasiparticle energy gap is independent of the wave vector of the exeition. On the other

hand, in a d-wave superconductor, the Cooper pairs have a total orbital angular mometoim

quantum number | = 2. This results in an anisotropic pairing eld, and therefore in a

quasiparticle energy gap that depends on the wave vector of the excitadn. As an example,
if the electrons had a dispersion relation given byh?k?=2m, then the gap in a d,2 y2-wave
superconductor will be proportional to k2 k§. An illustration of this pairing gap is given

in Figure 1.4. The wave functions for the Cooper pairs are, again, symmetric in spaceand
thus, like in an s-wave superconductor, the electrons in the Cooper pair are in a spiginglet
state.

It is widely believed that conventional superconductivity is caused by electron-phonon
interactions, which induce an e ective attraction between electrons. This is because ex-
periments observe an isotope e ect, in which the transition tempeature and critical eld
are lower for heavier isotopes of a given element than for lighter one<.(), 11]. In fact, the
transition temperature and critical eld have a power law dependence, (Tc;He) M,
where M is the isotopic mass of the material. Theoretically, = % and many materi-
als have exponents close to this valuelp]. The fact that a property of the nuclei of the
atoms has an e ect on the superconducting transition temperature sugges that the lattice
plays an important role in establishing the superconducting phase However, the maximum
transition temperature that can be achieved assuming this mechanisnis estimated to be
about 40 K for certain types of materials [L3]. It is therefore unknown what mechanism is



Figure 1.4: lllustration of the gap parameter  in a dy2 y2-wave superconductor
on the Fermi surface.

responsible for high-temperature superconductivity, though the poblem has been of great
interest.

In our work, we will be employing a mean- eld model of supercondudivity, in which we
introduce the (in general complex) pairing eld ¢ via a quadratic term in the Hamiltonian.
As a simple example, let us consider a gas of free electrons. When wéraduce the pairing
eld, the Hamiltonian for a gas of free electrons in the presence of a paing eld,

X X X
R = K)gl o + ( k@.cx+hec); (1.2)

kK ="i# k

where ¢, is a fermionic annihilation operator for an electron with wave vectork and spin

, and (k) is the energy of that electron. We will assume here that the chemicapotential
is included in this energy. In reality, this form would come about by decoupling a four-
fermion interaction term in a superconducting channel, and | would be determined from
a self-consistency condition. We never explicitly do this in ourwork; we will go into detail
about our assumptions about the pairing eld in the next chapter. We may write the above
Hamiltonian in matrix form: . "

X h i Kk Crn
B = o oo k « (1.3)
o N (R
Note that we assumed time reversal symmetry; i.e.,(k) = ( k). This may be diagonalized
by use of the Bogoliubov transformation,
" # " #
k" Uk Ve o G

= : 1.4
o Vk U s (1.4)

where we assume the normalization conditionjuj? + jvkj? = 1. The operators create
what are known as Bogoliubons, or quasiparticles. These are the elementaexcitations of
the electron gas in the superconducting state. This results in theequation,

(k) Ui

k (';() v = E® \‘j‘; : (1.5)



This is known as the Bogoliubov-de Gennes (BdG) equation, ande (k) is the energy re-
quired to create a single quasiparticle excitation. This equation hagwo solutions, one with
positive energy and one with negative energy, which may be obtained fronthe positive-
energy solution by making the replacementsuy ! v and v ! u,.. We associate the
positive-energy solution with - and the negative-energy solution with 4, so that the
Hamiltonian, in diagonalized form, will be

X X
H = EKK) } (1.6)
k

where all of the energiesE (k) are positive.
Solving the BdG equation, we obtain

s s
1 (k) sgn (k)
U = p—= 1+ and vy = — 1 —=; 1.7
K PE q0) k 5 E(K) 1.7
where p
E(k)=" [(KI?+] «i= (1.8)
In the case of ans-wave superconductor, = ¢ is independent ofk, and thus there is a

simple energy gap in the system. On the other hand, in al,> y2-wave superconductor, as

2 2
mentioned before, the pairing gap has the symmetry, okxk—zky. This results in point nodes

in the gap along the Fermi surface, at which (k) = 0, as illustrated in Figure 1.4.

1.4 NMR data on optimally-doped YBCO

The main motivation for investigating the problem treated in the present work is the
interpretation of 17O NMR data on optimally-doped YBCO in the mixed state [ 1, 14]. The
reason for looking at1’O in particular is because it is the only stable isotope of O with
a non-zero spin, namely%, and therefore a non-zero magnetic moment. NMR has been a
valuable tool for investigating the electronic properties of high-tenperature superconductors
[15], and a number of other NMR experiments on these materials existl6, 17]. The results
presented in Ref. [] are shown in Figure1.5[1]. Before discussing the interpretation of the
data, let us rst review some basic facts about NMR that are relevant to our work.

1.4.1 A brief introduction to NMR

In an NMR experiment, one rst subjects the sample to a constant magneic eld Hg
in order to align the nuclear magnetic moments parallel to it. The sampleis then subject
to an oscillating magnetic eld, which will ip the spins. How strongl y the spins respond
to the oscillating eld depends on its frequency. This frequeny dependence is known as
the line shape. A given nucleus will respond most strongly to a eld tined to its resonance
frequency, which is given by [L8]

I' = paHo; (2.9)

where , is the gyromagnetic ratio of the nucleus.



In a crystal, however, the resonance frequency will deviate fromHtis value. This is
due to an e ect, known as the Knight shift, which is a shift in the r esonance frequency
I caused by an e ective magnetic eld generated by the surrounding eletrons via the
hyper ne interaction with the nucleus. We will use the model for this interaction introduced

by Shastry, Mila, and Rice [19, 2Q],

X
R = e nh® A r9f(r) 8(r9; (1.10)

rr 0

where o and , are the gyromagnetic ratios of an electron and of the nuclei, respectively
8(r9 and f(r) are their respective spins,r and r®are the positions of the nuclei and of the
electrons on the Cu-O plane, andA(r r9 is a form factor. Here, we are assuming a negative
value for the electronic gyromagnetic ratio, so that ¢ = 1:761 10s 1T 1 In this
work, we will be looking at 17O nuclei in particular, for which , = 3:6264 10"s 1T 1.
For the O atoms, we assume that the main contributors to this term come fom the nearest-
and next-nearest-neighbor Cu atoms. The value of ¢ hh?A(r r9is 2:317 10 7 eV for
the nearest-neighbor atoms, and ¥94 10 8 eV for the next-nearest-neighbor atoms.

This e ect was rst observed in ®3Cu by Prof. Walter Knight; he found that metallic
Cu had a resonance frequency that was 0.23% higher than in CuCl for the samealie of
the applied constant eld [18]. Four facts that tend to be true about the Knight shift are
[18]

1) The Knight shift tends to be positive; i.e., it is usually an increase in the resonance
frequency.

2) The fractional shift, !=! | is independent ofHg.
3) The fractional shift is almost independent of temperature.
4) The fractional shift tends in increase with increasing nuclear clarge Z.

To calculate the Knight shift, we use rst-order time-independent perturbation theory with
respect to the electrons on Equation {.10), and then take the thermal average of the result.
This will generate an e ective Zeeman term for the nuclei,

X
Hitert = nh  T(r)  B(r); (1.11)

r

where X D E
B(r)= ¢h A 19 59 (1.12)
(0

is the e ective magnetic eld experienced by the nuclei and geneated by the electrons.
Here, hi denotes a thermal average over all electronic states. Note that this formla, in
general, allows for the e ective eld to be position dependent; we wil, in fact, nd that it
does possess a position dependence, which will have important catgiences.

Once the oscillating eld is removed, the spins will then relax back to their equilibrium
positions. This relaxation is roughly exponential, and happens over a tne scale given
by the spin-lattice relaxation time T;. While a number of mechanisms can contribute to



this relaxation, the one that we will be focusing on the most is due to mteractions with
the surronding electrons via the hyper ne interaction. The relaxation rate, 1=T;, may be
calculated from the formula [1§],

P 2
1 -1 mn Wmfb(r)(Em En)_

Tl(r) o2 ' n Erzl ,

(1.13)

where m and n are spin states for the nucleus at siter, E,, and E,, are their respective
energies, andWn,, (r) is the transition rate from state m to state n. We will assume that
the energies are equally spaced (i.eE, En 1= E) and that their sum is zero. In other
words, we are ignoring contributions from, for example, the quadrupole roments, which
may safely be done in high magnetic elds. The transition ratesW,, are calculated from
Fermi's Golden Rule,

* +

Winn (1) = 2 MQ® 0 (1)inQi = (Emoo Eng) : (1.14)

h
QQ0
where Enq is the total energy of the nucleus and the electrons and) (r) is the hyper ne
interaction contribution from the nucleus at site r,

X
Vir)y= < n.h?2 A r9f@r) S@9: (1.15)

ro

In an ordinary metal the spin-lattice relaxation rate, is proportional to t he temperature
[18]. This is often known as the Korringa law. In an s-wave superconductor, the relaxation
rate goes a® 2 8T where is the superconducting gap parameter, at low temperatures;
i.e. it has a thermally activated behavior. On the other hand, in a d-wave superconductor,
the rate increases asT ® at low temperatures.

1.4.2 Experimental data

The experimental data presented in Ref. I] is shown in Figure 1.5. The left panel
shows the spin-lattice relaxation rate divided by the temperature 1=T;T as a function of
temperature, both inside and outside the vortex cores, and for severatli erent values of
the applied magnetic eld. The right panel shows the line shape, alongwith the relaxation
rates as a function of the magnetic eld. The rates considered to have &en taken inside
the core are those within the shaded region on the line shape, while thesconsidered to be
outside the core are taken from the peak in the line shape.

We note two interesting features of this data. First of all, there is anupturn in 1=T;T
inside the vortex cores with decreasing temperature. This behawr is inconsistent with the
behavior stated earlier for ad-wave superconductor, or even for the normal state. Second
of all, the line shape is broadened considerably from that of the normal sta [2]. These
features have been interpreted as evidence for antiferromagnetisiim the vortex cores [L].
This interpretation follows from 83Cu NMR data on the normal state [21], which shows a
similar upturn.



Figure 1.5: Results of an NMR experiment by Mitrove [ 1] on optimally-doped
YBCO (i.e., x = 0:15) in the mixed, or vortex, state. The left plot shows T%T
both near and away from the vortex cores. The right plot shows the line bape
(continuous curve) and the values oleiT for the given internal magnetic eld Hiy
(data points). The vertical scale only applies to the relaxation rates;the line shape
is in arbitrary units.

1.5 Theoretical investigations of NMR in YBCO

Several other theoretical investigations of NMR in the mixed state of thecuprate su-
perconductors have been carried out. One of the earliest treatmentg/as that of Takigawa
et.al. [22] using a self-consistent method of solution of the Bogoliubov-de Gares equations
due to Wang and MacDonald P3]. They found that 1=T; is linear in temperature near the
vortex cores at low temperatures and exhibits a small, Hebel-Slicter-like, peak near the
superconducting transition temperature. At low temperature, the rates near the core are
also found to be larger than the rates away from it, which approach the usal T2 depen-
dence. NMR in the d-wave mixed state was also studied using a semiclassical approach
[24], and using a linearized form of the Bogoliubov-de Gennes equation®j]. The results
of the linearized model give faster rates near the vortex cores than awafrom them. They
found that 1=(T1T) near the core increases slowly with temperature up to 30 K, and re-
mains almost constant over the same temperature range away from the cordmportantly,
these works focused on the quasiparticle spin- ip channel, but, asnentioned above and as
we show in more detail below, the Zeeman coupling of the quasipartiek, which cannot be
ignored at large magnetic elds, introduces an additional channel for spinlattice relaxation
which is found to dominate at low temperature.



1.5.1 Summary of our work

In our work, we re-examine this interpretation of the experimental data from a theoret-
ical perspective. We start with a tight-binding model for the Cu-O planes in YBCO with a
dy2 y2-wave pairing eld and an applied magnetic eld, accounting for both the orbital and
spin (Zeeman) e ects of the latter. We then obtain the associated BdGequations and solve
them numerically. From these solutions, we may calculate the Knightshift and spin-lattice
relaxation rate.

In the absence of the Zeeman term, we would nd that the quasiparticleenergy spectrum
has no negative energies. However, upon introduction of the Zeeman ter, some of the spin-
up quasiparticles acquire negative energies. Furthermore, we ndhat the quasiparticle
wave functions are peaked near the vortex cores. These lead to inteséng e ects for NMR.
For example, the Knight shift becomes position-dependent; in fact,it becomes larger near
the vortex cores than away from them. We show that this can at least partally explain
the broadening of the line shape. We also show that the downward shiiltg of the spin-
up quasiparticle energies opens up a new channel through which the olear spins may
relax, in which a pair of spin-up quasiparticles is created or destrged by the hyper ne
interaction, lowering or raising the nuclear spin accordingly. This process dominates at
low temperatures, and results in an upturn in the spin-lattice relaxation rate divided by
temperature, as observed in the experiment.

The rest of this part of the work is organized as follows. In Chapter2, we state the
electronic model of YBCO in the mixed state that we use, and give the poperties of its
solutions. Chapter 3 will be dedicated to the calculation of the Knight shift and spin-latt ice
relaxation rate, along with our results. In Chapter 4, we will state our conclusions.

10



CHAPTER 2

MODEL OF ELECTRONIC BEHAVIOR OF
YBCO IN THE MIXED STATE

In this chapter, we will introduce our electronic model for YBCO in the mixed state. How-
ever, before introducing the full Hamiltonian for the system that we wish to study, hamely
YBCO in the presence of both a pairing eld and an applied magnetic eld, we will rst
review the properties of the electronic spectrum in the normal staé and in the supercon-
ducting state in the absence of a magnetic eld.

2.1 Normal state; the three-band model and the e ective
one-band model

From Figure 1.1, we see that the Cu-O planes are approximately square lattices with
unit cells consisting of three atomsjone Cu atom and two O atoms. This impl ies that this
plane contributes three electronic bands. The tight-binding Hamiltonian that we will use
to model the electronic behavior of these planes is

X X
H = t [@¥(r)b (r + 3ag)+ b/ (r + JaR)a (r + aR)
+ ay(rr)g((rXL zag)+ o (r + 3ap)a (r + ag) +h.c]
+  cuo [b/(r + 3aR)b (r + 3a8) + ’(r + 3a9)c (r + 3a9);  (2.1)

r
wheret is the hopping integral between a Cu site and a nearest-neighbor O st thea (r)
operators annihilate electrons with spin on the Cu sites, the b and ¢ operators do the
same for electrons on O sites along th&- and y-axes, respectively, and c,.0 IS an energy
di erence between the Cu and O sites, anda is the lattice constant, de ned in Figure 1.1
Here, we approximate the slightly rectangular lattice as a square lattie, as stated earlier.
We may diagonalize this by rst performing the Fourier transform,
1 X
x (N=p= € "x; (2.2)
N
wherex = a, b, or c. The result, in matrix form, is

X X
1= VU HK) (2.3)
k
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where  =[ax ;b ;o ]" and

2 1 1 3
0 2t cos(3kxa) 2t cos(zkya)
H(k)= 4 2t cos(%kxa) Cu-0 0 S: (2.4)
2t cos(zkya) 0 Cu-0

We may now obtain the energy band<E (k) of the system by diagonalizingH (k). Upon doing
so, we nd three bands, as stated earlier. One of the bandskE (k) = cu-0, is completely
at, while the other two bands,

q
E(k)= % cuo 3 2,0 +4t2[co(5kya) + cos?(3kya)]; (2.5)

disperse. We present a plot of these bands along the linga= in Figure 2.1for cyo =
3t. We see that one of the bands, which corresponds to taking the plus sigim Equation

1F ———
// ””””””””””””””” i \\\ ””””
0,- -
-1+
T
w
- 2
- 3
- 4t ‘
-3 -2 -1 0 1 2 3
kea
Figure 2.1: Plot of the energy bands in the three-band model fokya = . Here,
we take cy.0 = 3t. The red band is the \split 0 " band that we focus on in the
e ective one-band model. The dashed line is a chemical potential,aken here to

be 06t.

(2.5), is split o from the other two bands. If we nd the eigenvectors of H (k) corresponding
to the maximum of this band, which is at k = 3 3 then we will nd that that state
resides entirely on the Cu sites. On the other hand, the at band and he maximum of
the other dispersing band turn out to reside entirely on the O sites. Therefore, as long as
the chemical potential is within the highest band, we may safely assme that the electrons
mostly reside on the Cu sites. This is what we do, and we thus adopt the ogrband model,

X X
R= t° [@(r)a (r+ ag)+ a'(r)a (r + ap) + h.c]; (2.6)
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This model may be obtained by writing the partition function for the three-band model
as a coherent-state path integral and integrating out the O sites, arrivhg at an e ective
one-band model. In optimally-doped YBCO, the hopping integral t° = 153 meV and the
chemical potential = 0:297% The chemical potential may be found from the fraction of
occupied states in the Cu band; in the case of optimally-doped YBCO, itis 85% lled.

2.2 Superconducting state

We will now introduce the pairing eld into our one-band model. Because YBCO is a
dy2 y2-wave superconductor, we must introduce a non-local eld; i.e.,a pairing eld that
does not reside on a site. In our case, we introduce a pairing eld tht resides on bonds
between nearest-neighbor Cu atoms. The pairing eld is o on bonds parallel to, say, the
x-axis, while it is o on bonds parallel to the y-axis. The one-band Hamiltonian with
this pairing eld introduced is

X X
H = t [@(r)a (r + a®)+ a’(r)a (r + ap)]
X
+ o [I(naj(r+ar) ayr)al(r+ ar)
X X X
o [@(naj(r+ayp) aj(r)al(r+ ap)]+h.c. a’(ra (r): (2.7)

r r

Note that we dropped the prime ont, compared to the previous section, and that we now
explicitly include the chemical potential in the Hamiltonian.
If we perform a Fourier transform of the c operators, as before, and diagonalize this

Hamiltonian, we obtain energiesE (k) of the form given in Equation (1.8), with (k) =

2t(coskya + coskya) and x = 2 o(coskya coskya). We plot this dispersion
relation in Figure 2.2. We see that there are four point nodes, at which the dispersion looks
like an anisotropic Dirac-like cone. To determine the positions of thee nodes, we rst note
that ¢ vanishes whenky, = ky. If we setky = ky = kp in E(k), we nd that it becomes

E (ko; ko) = j4tcoskpa+ |: (2.8)

Setting E(kp ; kp) = 0 and solving for kp, we nd that, taking the positive solution,

_1 1 :
If we expand E (k) around this node, we obtain
r S
2 o 2
E(k) 2at 1 i (kx+ ky)2+ - (kx ky)% (2.10)

where ky = kx kp and ky = ky kp. Introducing the coordinates, k = k—xp}ﬂ and

ko = Lyp% this becomes

q
E(k) h VB(k2+ v2(ko)Z; (2.11)

13



Figure 2.2: Plot of the dispersion relation for the one-band model in the pesence
of ad,2 y2-wave superconducting order. Here, we used o = 0:5t and = 0:3t.
The numbers on the contours are the energies in units dof.

where p_ I
2 2at 1 2
h 4t
is the Fermi velocity of an electron in the normal state with a wave vector at one of the

nodes, and

VE =

(2.12)

V = Vg —: )
to (2.13)

The value of v may be determined from the ARPES data found in Reference46], and is
Ve 25 10 2. From this value, we can determine the hopping integralt, obtaining the
value quoted above. We see from this result that the contours of constanenergy for the
low-energy quasiparticles are ellipses. These contours, for a qupairticle with energy E,
are given by ,
2
(_k "2) , (_k"’z)z =1: (2.14)
E=h“vg E=h“v
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We now de ne the Dirac cone anisotropy p, which is the ratio of the semi-axis of this

ellipse along k, to that along k. Reading these semi-axes o of the above equation, we

nd that v ¢
= — = — 2.15
D v o ( )

We therefore have a means of determining the magnitude of the supewsaducting pairing
eld if we know the hopping integral and the Dirac cone anisotropy. The latter has been
measured experimentally for optimally-doped YBCO; its value is p 14 [27]. Therefore,
-1
0— ﬂt

2.3 Superconducting state in a large applied magnetic eld
(mixed state)

Figure 2.3: lllustration of a 20 34 magnetic unit cell. The intersections of the
grid lines are atomic sites, and the dots represent the vortex cores.

We now introduce an applied magnetic eld normal to the Cu-O plane su ciently strong
to put the system in the mixed state. In this case, a periodic arrg of vortices will form inside
the sample. We will consider the case in which this array forms a réangular Bravais lattice
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with a basis, such that each unit cell of said lattice, referred to heeafter as a magnetic unit
cell, will contain exactly one quantum h—é’ of magnetic ux. We provide an illustration of a
magnetic unit cell in Figure 2.3. Our treatment of this case will follow that of References
[28, 29, 30, 31, 37). The presence of the magnetic eld will make several modi cations b the
Hamiltonian. First of all, it will introduce a Zeeman term into the Hami ltonian. Second of
all, it will introduce a bond-dependent phase factor into the tight-binding hopping integrals
between nearest-neighbor sites (Peierls phase factors). Finalljt modi es the pairing eld,
introducing the above-mentioned periodic array of vortices. We vill be making several
simplifying assumptions about the latter two modi cations. First of all, we will be assuming
a constant magnetic eld (e ectively an in nite penetration depth) . Second of all, we will
assume that the magnitude of the pairing eld is constant, placing all of the vortex physics
into the complex phase of this eld. In principle, we should detemine the magnetic eld
distribution and the pairing eld self-consistently, but we bel ieve that our assumption of
constant magnitudes for both will not greatly a ect our results. This is b ecause YBCO has
a large penetration depth, 120 nm, or over 300 lattice spacings, and a short coherence
length, 2:5 nm, or about 6 lattice spacings, both within the ab plane that we are
considering B3]. We will be considering vortex lattices with spacings intermedate between
these two length scales, so that it would be a good approximation to trat the magnitudes
of both as constant.

The full Hamiltonian is given by

#
X X
H o= tro c'(r)c (I‘(b+ rro(C.Y(I‘)Ci(r() cé(r)cy(r(ﬁ) +h.c.
% 7%
& (r)( +h % )c (r); (2.16)
;
where .
ie Z 1 i
tyo = texp — A(r) dr ; (2.17)
hc
w0 = 0o €0 (2.18)
A (r) is the magnetic vector potential, 53 = ag = 1, and zero otherwise, andh =

%g s B, where g is the Bohr magneton andg 2 is the g factor of an electron. In the
summations, hrr & means to sum over pairs of nearest-neighbor sitess and r® We will be
working in the symmetric gauge, so thatA (r) = %B r.

In determining the pairing eld phase factor, € »°, we make an additional approxima-
tion. We assume that this factor, which resides on bonds, is given by tb geometric mean
of a site-dependentphase factor,e ("),

. d 4 (9
| wO= = - .
€ e O+ (9 (2.19)
where the phase (r) satis es the equations,
X
rr =2 2 (r ry); (2.20)
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where r; is the position of a vortex core, andr 2 = 0. We will further require that the

super uid velocity,

h 2e
= — r —A 2.21

2m hc ( )
be periodic over a unit cell and that there be zero overall curreh

Upon solving these equations, we obtain

Vs

X
(r)= argl z  zj)izkxizily 142 (X XgNY  Yi)) +Vo I (2.22)
j
where (zj! 1;! 2) is the Weierstrass sigma function with half-periods! ; and! , and| labels
the positions of the vortices within a magnetic unit cell. The constart is determined to
satisfy the condition that the super uid velocity be periodic, and is given by
1

1 il L1 .

where (zj! 1;! ») is the Weierstrass zeta function, again with half-periods! ; and ! ,. The
vector vg xes the overall current to be zero, and is given by

X

Xy

We will derive this result in Appendix A.

2.3.1 Singular gauge transformation

To diagonalize this Hamiltonian, one could make use of magnetic translational syme-
try. However, we elect to solve it using a method introduced by Fanz and Tesanovt [ 34],
namely by using a singular gauge transformation. This transformation is give by

c(r)! & MD32¢ (r): (2.25)

By performing this transformation, we eliminate the phase factor from the pairing term
completely, reducing it to a real number, 1, and modify the phase factor on the tight-
binding hopping term such that it behaves as if there were zero asrage applied magnetic
eld. This means that the Hamiltonian has been rendered periodic, andwe may therefore
use the standard Bloch theorem to diagonalize it.

We must, however, be careful in performing this transformation. As ve wind around a
single vortex, the phase (r) increases by 2. This means that the phase appearing in the
gauge transformation only increases by , and thus the phase factor is not single-valued.
We overcome this diculty by introducing a branch cut connectin g the locations of the
vortices within the magnetic unit cell and choosing the phases accoiidgly. The procedure
that we employ to determine the phases is that used in Refs.30, 32. We choose a pointrg
on the atomic lattice and assign it a phasety = € ("0)=2. We then move to a neighboring
site r such that we do not need to cross the branch cut that we chose in order toeach it.
We then choose the solutionbto b2 = € () that gives us the smaller value ofib  hoj. We
do this for all sites, thus generating the appropriate phases. This pocess is illustrated in
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Figure 2.4: lllustration of the process by which we determine the plases% (r)

appearing in the singular gauge transformation for a 6 6 magnetic unit cell. The

blue dots are the positions of the vortex cores, and the blue dashed lineonnecting
them is the branch cut. In the large circles, which represent theatomic sites, the
black arrows represent the values o' ("), while the orange arrows represent the
values ofée (N2 that we assign by the procedure given in the text. In the small
circles, which represent the bonds, the gray arrows represerg’ «° and the red

arrows represent the values o (0=2g (19=2,

Figure 2.4. This process guarantees that, as long as we do not cross the branch cuhe

di erence in phase betweene ()=2 and & ("9=2 whenr and rare nearest neighbors will be
in the interval, 5,5 . If we do cross the branch cut, on the other hand, then the phase
di erence will be larger. As a result,

d 4 (9

i wom i (=24 1 (19=2
€ne € je O+ ¢ (r“)j

e i (N2 i (122 Zour 0, (2.26)

where zp.;0 = 1 if the bond between r and r% does not cross the branch cut, or 1 if it
does.
We follow this gauge transformation with the Bogoliubov transformation,

" # " #
c(r) _ X Ukn(r) Vien (1) kn" |

D T WD) YD) (2.27)

# kin kn kn kn#
where n is a band index andk is the crystal momentum. Here, we are using the fact
that, after performing the above singular gauge transformation, the Hamiltonan becomes
periodic with respect to the vortex lattice. In this case, the crystal momentum lies within
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the Brillouin zone associated with the vortex lattice. If we assume hat each magnetic unit
cell contains an"x "y array of atomic sites, then the crystal momentum is restricted to
the region given byk 2 ( —;—] ( < 7]. We also have'y 'y bands, corresponding to
the number of atomic sites in the magnetic unit cell.

If we take n(r) = [ukn(r);vkn(r)]", then we obtain the Bogoliubov-de Gennes equa-
tion, Ho kn(r) = Exn kn(r), whereHo= Z%(& )+ *”, h, the operators& and ",
are de ned by

x

E (r) = t Zorre € Ve (r+ ) (2.28)
= ag; ay
A X
ro(r) = 0 Zir v+ (r+ )); (2.29)
= aRr; ay
and " #
: Z o
Vo 1+ 6l 0% () e T .
e'nrd= 1+ el (9 ] exp he r A(r) dr : (2.30)

Due to the periodicity of this Hamiltonian over a magnetic unit cell, we may rewrite n(r)
as |9,ije"‘r kn(r), where  n(r) = [Ukn(r); Vikn(r)]T has the periodicity of the vortex

lattice and satises e KTHoe® " 1 (r) = Exn kn(r) and Ny is the number of magnetic
unit cells. This choice requires that ¢,(r) be normalized over a magnetic unit cell; i.e.,

[iUin (1)i% + jVin(r)j?] = 1 (2.31)

r2°xy

This has the advantage of making the matrix that we need to diagonalize much maller
(2°x’y 2%y for each crystal momentum). Unfortunately, this method is only usefu if
the magnetic unit cell has an integral number of atoms along each side (i.e.x and "y are
integer multiples of the atomic lattice spacing). Despite this di ¢ ulty, we are able to closely
match the size of the magnetic unit cell to the magnetic elds used inthe experiment in all
cases that we consider]].

2.3.2 Energy spectrum and wave functions

Before we discuss the energy spectrum in any detail, let us rst mak a comment about
the energies. LetHonz = Z(& )+ *",;i.e. Honz is Ho without the Zeeman term.
SinceHo.nz diers from Hg only by a term proportional to the identity matrix, we see
that the same wave functions that diagonalizeHo.nz will diagonalize Hp as well. This also
means that the wave functions will diagonalize the di erence betwea Ho.nz and Ho, which
is just the Zeeman term. Note that this term is proportional to the z component of the
spin. The fact that we can diagonalize this term is a result of the fact that spin remains a
good guantum number for labeling the quasiparticle states. If we letEx,, be the eigenvalues
of Ho.nz , then the eigenvalues ofHo will just be Ey, h.

We will now show that, for every positive eigenvalue ofHg.nz, there is a negative
eigenvalue of equal magnitude. We accomplish this by showing that, if x,(r) is a positive-
energy eigenstate, theni[ ¥ ¢n(r)] is also an eigenstate, with an energy equal and opposite
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that of the original state. If we take the equation, Honz  kn(r) = Ekn kn(r), multiply both
sides byi Y, then take the complex conjugate of both sides, we obtain

[ DHonz (T D10 Y kn()] = Ekali ¥ kn(r)] (2.32)

We now note that

[(i NHonz (P )] = YHonz 7Y
= Z(é( ) XAr
= H onz: (2.33)
Therefore,
Honz[i ¥ kn(r)] = Eknli ¥ kn(r)] : (2.34)

Since| ¥ ¢n(r)] is an eigenstate oH Nz with eigenvalue Ey,, it is also an eigenstate of
Ho with eigenvalue Eg, h. Note that the positive-energy state is just the rst column of
the matrix appearing in Equation (2.27), while the second column is just the corresponding
negative-energy state. We choose to associate the positive eigenvalwgth the spin up
guasiparticles, and the negative eigenvalue with the spin down quaparticles. As a result,
the diagonalized Hamiltonian is

B = Exn U, kn E©; (2.35)

whereEyp, = Ex, h andE©@ = N P «n Ekn, whereN is the total number of atomic
sites in the system. Note that this means that, when we include the Zeman term, some of
the quasiparticle states, all of which are spin up, could have negativenergies. In general,
the spectrum given by Ey, will be gapped for most values of the chemical potential 30, 32].
However, if the Zeeman energy is larger than the gap, then some of the spinp states will
be pushed down to negative energies. We will see in the next chaptehat this leads to
interesting e ects on the spin-lattice relaxation rate in this system. Not only that, but this
means that the ground state of the system is spin-polarized, and thus weiill see a non-zero
Knight shift, even at zero temperature.

In our calculations, we are interested in thermodynamic propertiesof the system at
low temperatures (up to 30 K), and thus we only need to nd the lower-energy bands.
We diagonalize the Hamiltonian numerically using the Arnoldi method, and we divide the
Brillouin zone into a 50 50 mesh of equally-spaced points. We will be focusing on the
cases of 20 34 and 36 62 magnetic unit cells, corresponding to an applied magnetic eld
of 42 T and 13 T, respectively. To be exact, we take the rst 32 bands, whth allows us
to accurately determine properties of the system up to about 30 K in tre former case, and
up to about 20 K in the latter. We determine the upper bound on the requred energies
by requiring that the largest energy found is around &g T} i.e., about six times the energy
scale associated with the given temperature.

We present a plot of the density of states without the Zeeman term intuded,

Xr 4 i
N(E) = — (E  Exn); (2.36)

n=1
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Figure 2.5: Density of quasiparticle states for an applied eld of 42 T (20 34
magnetic unit cell) in the absence of the Zeeman term for o = 1—14t and =0:297.
The green curve is the DOS in the absence of an applied eld, and the vécal line

indicates the Zeeman shifth = 3g gB.

for realistic values of the physical parameters, along with that for the ystem in the absence
of a magnetic eld, for low energies in Figure2.5. We used a ner mesh, namely 250 250,
to determine the density of states. We see that the presence of theuperconducting order
parameter strongly mixes the Landau levels that would be present at low Bergies in the
absence of superconductivity, resulting in broadened peaks in thdensity of states. As we
increase the energy, the original Landau level structure begins to reggear.

We nd from the wave functions that the quasiparticles in this state are concentrated
around the vortex cores. While we do not incorporate the decrease of the agnitude of the
superconducting order parameter into our model, we would expect tls same behavior to
happen in a more realistic model, due to the breakdown of supercondtivity in the vicinity
of the vortices. We also nd that there are lines along which the wave finction is enhanced
as well. This is a consequence of the fact that the pairing eld posseesd,. y» symmetry;
these lines correspond to those along which the pairing eld vanishe We will see in the
next chapter that this structure of the low-energy wave functions will lead to a position
dependence in both the spin-lattice relaxation rate and in the Knight shift, the latter of
which will help explain the broadening of the observed line shape. W may see the features
of the wave function clearly in the e ective magnetic eld generated by the electrons, which
is proportional to the spin density, and which we plot in Figure 3.1 in the next chapter.
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CHAPTER 3

KNIGHT SHIFT AND SPIN-LATTICE
RELAXATION RATE

Having outlined our electronic model for optimally-doped YBCO in the mixed state, we
now turn our attention to the main results of this part of our work, namely the calculation
of the Knight shift and the spin-lattice relaxation rate [ 3].

3.1 Knight shift

To nd the Knight shift for the O atoms, we rst rewrite Equation ( 1.12) using the
Bogoliubov transformation, Equation (2.27). We will only consider the z component of the
e ective magnetic eld, since the actual applied eld is along the z direction, so that the
guasiparticles will be polarized in that direction, and thus the x and y components of the
e ective eld will be zero. The z component of the spin operator§(r) in terms of electron
operators is

S,(r) = c(ne(r)  cir)es(r): (3.1)
Upon rewriting this expression in terms of the quasiparticle operatos ¢, , we obtain
X X
S;(r) = [Ugn (MUkono(r) ¥ne koo Ugn (DViano(r) e Koo
k;n k%no0

Vikn (N Ukono(r) kn# koo + Vkn(r)Viono(r) kns# |></ono#

Vin (1) Vgono(r) kn zono- Vin (F)Ukono(r) kn" konox

U (MVieono(") kg konor Uk (DUKRO(T) £y kenos]: (32)
Note that four of these terms are of the form ¥ Y or . Upon taking the thermal average,

these terms become zero since they have no diagonal matrix elementsth respect to quasi-
particle states. The remaining four terms are non-zero provided tlat k = k®and n = n°

Using the fact that D E L
A e (3.3)
so that fi, is the usual Fermi-Dirac distribution function, we nd that
X
RS (r)i = n(r)(fxnr  Frns); (3.4)
k;n
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wheren(r) = jukn(r)j? + jvikn(r)j?. The e ective magnetic eld due to the electronic spins
is therefore X X

B(r)= eh Ar 1IN (fens  frn): (3.5)

ro k:;n

We may now use this expression and the results of the previous chagt to determine the
e ective magnetic eld experienced by the O atoms within a unit cell. We show the results
for T =11 K in Figure 3.1for both 20 34 and 36 62 magnetic unit cells for the atoms
along the a axis. The results for the b axis are qualitatively identical, and thus we do
not show them here. Our results also do not change appreciably if we caider di erent
temperatures. We note that the e ective magnetic eld is larger near the vortex cores than
away from them, and that there are lines along which the shift is enhaced. These features

are due to the analogous features found in the low-energy wave functiortbat we discussed
in the previous chapter.

Figure 3.1: Plot of the e ective magnetic eld due to the electronic spins as a
function of position for a 20 34 (left) and a 36 62 (right) magnetic unit cell at

11 K. These unit cell dimensions correspond, respectively, to an ggied magnetic
eld of 42 T and 13 T. All e ective magnetic eld values are in T.
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3.2 Line shape

Due to the position dependence of the e ective magnetic eld due tothe electrons, and
therefore of the Knight shift, identical nuclei in di erent locat ions in the unit cell will possess
di erent resonance frequencies. This will result in a broadenimy of the line shape. Denoting
the line shape byf (Bo), where Bg is the magnetic eld corresponding to the resonance
frequency! o = By, the line shape is given by

z

f(Bo)= d’r [Bo B(r): (3.6)

This formula, however, assumes that the response of a given nucleus simply a delta
function centered at the resonance frequency. This is not true in eality; the response, in
fact, has a nite width. For this reason, we must then convolute the above expression with
the appropriate response prole. In our case, we used a Gaussian with aidth of 50 G.
This choice is experimentally motivated; the width is that of the 1=2$  3=2 transition
observed in the normal state P]. We plot the line shapes so determined as a function of the
e ective magnetic eld in Figure 3.2, along with the experimental results [2] for comparison.

Figure 3.2: Calculated line shapes for a 20 34 (left) and a 36 62 (right) magnetic
unit cell at 11 K; these unit cell dimensions correspond to applied mgnetic elds
of 42 T and 13 T, respectively. The black curves are our theoretical preidtions,
while the red curves are the experimental results]].

3.3 Spin-lattice relaxation rate

We now turn our attention to determining the spin-lattice relaxati on rate 1=T,. Before
we do so, however, we rewrite the hyper ne interaction, Equation (L.15), using the identity,
S+ VS, = 3(LS +1 S,), wherel is araising (lowering) operator for a nuclear spin,
and S is the same for an electronic spin. Doing so, we obtain

X
V()= enh® c( INMS Y+ (NS (I (3.7

r0
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where, for convenience, we de neC = %A. Note that we dropped the | ;S term; this term
will not contribute to the spin-lattice relaxation rate because it only possesses diagonal
matrix elements with respect to the nuclear states. We rewrite e interaction in this form
because theS operators have simpler forms than theS, and S, operators, and thus will
be more convenient to work with. These operators are given bys; = cs and S = c},;c--.
In terms of quasiparticle operators, these become

X
é"‘ (r) = [ukn(r)vkono(r) |¥n" |)(/0n0” + Ukn(r)UkOnO(r) I¥n“ kOn 0z
k;n k&no
Vien () Vkono(r) kn# |¥0n0v Vin (F)Ukono(r) kn# konoxl (3.8)
and
X X
S = [Vicn () ukeno(r) kn* koo Vin(FVicanor) ke Fonas
k;n k&no
+ Uy (NUkono(r) Jog ke U (NDVieono(r) ¥og ponosl: (3.9)
Note that, in addition to terms of the form, ¥ , which correspond to apin- ip scattering
(SF) processes, in which the spin of a quasiparticle is ipped, w also obtain terms of the
forms, ¥ ¥ and , which correspond to pair creation and annihilation (PCA) processes,

in which a pair of quasiparticles of like spin are created or annihilated

3.3.1 Transition rates

Our next step is to use Fermi's Golden Rule, Equation (.14), to determine the transition
rates Wmn, (r). In doing so, we will make an approximation. We will assume that the nudear
Zeeman energy is much less than the electronic Zeeman energy, and ththat the former may
be neglected in this calculation. This is a good approximation proviegd that the di erence
between neighboring nuclear energy levelE, E, 1 kgT. At42 T, this energy di erence
corresponds to a temperature scale of about 12 mK, so this approximationsijusti ed for
the temperatures considered in the experiment. In this case, th energy di erence appearing

in the delta function now depends entirely on the electronic enggies:
* +

2 X 2
Winn (1) = - mQ° V(r)jnQi  (Eqo Eg) (3.10)
QQP°
Upon inserting Equation (3.7) into the above expression and expanding out the matrix
element, we obtain four terms, each factoring into matrix elementsvolving only the nuclear
spin states and elements involving only the electronic states. Oftiese, only two will be non-
zero, namely a term involving the product, hmj (% jnihnj* jmi, and a term with the same
product, but with the states m and n interchanged. The other two matrix elements are
zero because it is impossible to make, saym;j (s jni and mj (% jmi both non-zero; the rst
requires that m = n + 1, while the second requires thatm = n 1. The expression that we
obtain for the transition rgte is thus
2,4 XX . N .
Wmn(r)= = 2 2h C(r R)C(r RY[mMjl (R)jnihnjl* (R)jmi
h QQPRR 0
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E
Q°S (RYjQIhQjS:(RYHY Q° +(m$ nQ$ QY (Eqv Eg) : (3.11)

Upon introducing Equations (3.8) and (3.9) into this expression and expanding, we obtain
16 terms. Of these, 10 of them will be zero because they do not contairxactly two
operators and two Y operators, and thus it is impossible to pair each with a Y. Of
the six remaining combinations, QY # »jQihQj  %jQ% will also be zero because the
creation or annihilation of two spin down quasiparticles violates conseration of energy,
since all spin down quasiparticle states have positive energy. Hower, the corresponding
term involving spin up quasiparticles, QY - - jQihQj Y YjQY4, does not violate energy
conservation because some of the spin up states have negative energy. eféfore, we nd
that there are two processes via which the nuclear spins can relax. In addition to the
usual spin- ip (SF) process, there is also a process in which agir of spin up quasiparticles
is created or destroyed, which we will term the quasiparticle cration/annihilation (PCA)
process.

Since the matrix elements,hQj 8 jQ4, are only non-zero when the many-particle states
Q and QY di er either by scattering one quasiparticle to another state or by the creation
or annihilation of two quasiparticles, the energy dierence Eqo Eg appearing in the
delta function depends only on the single-particle states involvedand not on the many-
particle states themselves. For example, for a spin-ip processin which a particle with,
say, spin down is scattered into a state with spin up, the energy derence Eqo Eqg =
Exomo Exn 2h. This allows us to rewrite the products of matrix elements as traces
involving four quasiparticle operators.

After evaluating all traces and thermal averages, we nd that

Wimn(r) =2 2 2n3[tmj (% (R)jnihnj " (R)jmi +c.c]f (r;T); (3.12)
where .
X 2 2
f(r;T) = dk gk 1iGRh ono(r)j? sectt Enth (Ekn  Exono+2h)
nn 0 BZ BZ 2kg T
. . E h
+  LiGESkono(r)j% sectt ;:T (Exn + Exoqpo 2h) ; (3.13)

BZ = % is the area of the rst magnetic Brillouin zone, and the quasiparticle mherence
factors enter through the functions,

X )
Gofmo(r) = C(r R)[Uyn(r)Ukano(r) + Vien (r) Vicono(r)]é *K° 1O R (3.14)
R
and «
GELmo(r) = C(r R)[Vkn(r)Ucono(r)  Ugn () Vicono(r)]e KO R (3.15)
R

Note that the matrix elements, hmj* (R)jni, are only non-zero ifm = n 1. This means
that the only non-zero transition rates are from a nuclear spin staten to a staten 1. In
reality, there is also a non-zero \rate" for remaining in the same state given by the 1,S;
term that we dropped in the hyper ne interaction, but, as stated earlier and as we will see
shortly, this rate does not contribute to the spin-lattice relaxati on rate.
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3.3.2 Spin-lattice relaxation rate

Now that we have found the transition rates, we may now turn our attention to nding
the spin-lattice relaxation rate. We rst note that, in Equation ( 1.13), the term for which
m = n is zero, since there is a factor ofE,, Ep)?, which is zero for that term. This is why
we did not calculate the transition rate for this case. In the remaining cases for which the
transition rate is non-zero, namely cases in whicm=n 1, (E,, E,)?is just given by a
constant, ( nhB)Z. Because of this and the fact that all other transition rates are zero, this
allows us to write the sum over all nuclear spin states as a trace. Eaation (1.13) therefore

becomes
1 _ 2h3( nhB)2Tr[1+ (51 (1) + 1 ()14 (r)]
T1(r) en - E2

Using the identity, 1.1 + 1 1, =2(1Z+ 17), we obtain

f(r;T): (3.16)

1 - 2 2h3( nhB)? Tr{(d«(r))* + (1y(r))?]
T1(r) en =¥

Next, we note that the sum in the denominator is just the sum of squares othe eigenvalues
of the nuclear Zeeman Hamiltonian, ,hBI ;(r). Because of this, we may rewrite the sum

as a trace: X X
1 _ o 2 23 T(x(r)? + (1y(r)?]

Ty(r) en Tr[(12(r))?]
We now note that there is no preferred direction in space for quantiing the nuclear spin in

the sense that we can always work in a basis in which the spin is quarzed along any axis
of our choice. We conclude that Ti 2 = Tr I 7 = Tr 12, and therefore

f(r;T): (3.17)

f(r;T) (3.18)

1
=4 2 2h3f (r;T): 3.19
T]_(r) e n ( ) ( )
From the above equations, we may easily conclude that, regardless of thminimum value
of Exn, the spin-ip process is thermally activated, with a temperature scale set by the

electronic Zeeman energy, due to the thermal factor, seéh Ez‘;(”B*Th In an applied eld
of 42 T, the corresponding temperature scale is 28 K, while, at 13 T, the cale is about
8:67 K. This means that the spin-ip process is suppressed over muc of the range of
temperatures considered experimentally, and thus the upturn in1=T; T with decreasing
temperature observed below about 5 K cannot be due to this process. tAow temperatures,
the PCA process is dominant, and, as we will see, it will cause thispturn in 1 =T, T.

We may, in fact, argue that the contribution from the PCA process to 1=T; must decrease
as the temperature increases. In order for this process to conseremnergy, a given positive
energy spin up state must have a corresponding state of equal and opposienergy. This
means that there is only a nite window of energies of spin up states tlat can participate
in this processs, of a width of about twice the electronic Zeeman emgy. As we increase
the temperature, we begin to excite quasiparticles outside of thisvindow, thus reducing
the number of quasiparticles available to relax the nuclear spins \ this process. This, in
turn, will decrease its contribution to the relaxation rate.
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3.3.3 An illustrative case|thin Im in an in-plane magnetic eld

To illustrate the e ect of the PCA process on the spin-lattice relaxation rate, we rst
consider a simple example, namely a case in which we may ignore the dtdd e ects of
the applied magnetic eld and consider only the Zeeman term, such as ahin Im with an
in-plane magnetic eld. In this case, Uxn(r) and Vi, (r) become independent of, and there
is only one band per spin. In this case, the quasiparticle energies athose found in Section
2.2, and, now dropping the band indices and position dependences, theawe functions Uy
and Vi are given by

s s
1 (k) _sgn (k) .
Uc = 1+Wandvk— 5 1 B’ (3.20)

We will also, for simplicity, assume only an on-site hyper ne interadion; i.e., C(r) = Cq r:.
In this case, the functions, GZFq,0(r) and GESts,0(r) reduce to, again dropping the band
indices and position dependences,

GiFo= Co(Uy Ugo + Vi Vo) (3.21)
and
GRS = Co(VkUko Uy Vyo): (3.22)

We nd that the expressions appearing inf (r;T), GEkFo % and GEKCOA 2 are, assuming that
the pairing eld  is purely real, as it is in this case,

K K9, « ¢

SF 2 _ 1,2
Giko =35C5 1+ EE®KY T E()EK (3.23)
and
0
GPCA 2 _ %CZ 1 (k) (kK9 k k. (3.24)

7 EKEK) EKEK

Let us now assume particle-hole symmetry; i.e., we assume that, forvery normal-state
electronic state with energy , there is another with energy . In this case, we nd that
the second terms in each of these expressiong%%, will give a term in f(r;T) that
integrates to zero, since the rest of the factors are even in(k) and (k9. Furthermore, for
a d-wave pairing eld, we know that, for every momentum-space point for which the value
of saidoeld is , there is another at which its value is . Because of this, the third terms,

ﬁoﬁ also integrate to zero. We therefore nd that the spin-lattice relaxation rate for
this case may be written as

1 Z1 ‘h
- = 2 213 1
T ZZe ah® 3 ) dE N (E)N (E + 2h) seclt? T
2h
E h
1 .
+ 1 . dEN(E)N(2h E)sect ot (3.25)

where N (E) is the density of quasiparticle states. If we consider only low terperatures,
then we only need the density of states at low energies. For the lowrergy dispersion found
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in Section 2.2, N(E) = 2E=( h?vgv ). It is possible to evaluate this integral in closed
form; the result is -

1 — 2 en 3 h .

T W(kBT) F keT (3.26)
whereF (x) = 2+8xIn(1+ &) 3x2+8Liy( €)and Lis(z) is the polylogarithm function.
At high temperatures, i.e., forkg T h,orx 1,F(x) ?2 x2. In this limit, we recover
the usual T2 dependence obtained for al-wave superconductor. At low temperatures, i.e.,
forx 1, onthe other hand,F (x) x? ; In this case, =TT increases as we lower the
temperature and approaches a nonzero constant af = 0. We therefore expect a minimum
in 1=T; T at temperatures on the order ofh=kg. This is, in fact, what we see, as illustrated
in Figure 3.3.

Figure 3.3: Plot of the spin-lattice relaxation rate divided by temperature 1=T1 T
as a function of the temperature T in the absence of orbital e ects. The red
curve is the rate in the presence of a nite magnetic eld, while the black curve
is that in its absence. We note that there is an upturn in 1=T, T as we decrease
the temperature in the rates in the presence of a magnetic eld, ratler than a
decrease; this is due to the PCA process described in the text.

3.3.4 Sample in a perpendicular magnetic eld

We now turn our attention to the case of greatest interest, namely that of YBCO in
a magnetic eld applied perpendicular to the Cu-O planes. In this ase, the relaxation
rate, like the Knight shift, becomes position-dependent. Becaus¢he wave functions for the
low-energy states are largest near the vortex cores, we expect that thelaxation rates will
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be fastest in this region as well. To determine these rates, which ost be done numeri-

cally, we use Equation 3.19 and the low-energy wave functions determined as described in

the previous chapter. In our numerical calculations, we approximatedthe delta functions

appearing in Equation (3.19 as narrow Gaussians of the form,
1 X2=2 2_

—p—=¢

> (3.27)

We determined the appropriate value of by inspecting the list of energy eigenvalues and
setting the width equal to a value close to the largest di erence béveen two eigenvalues.
In performing the summations overk, n, k9 and n® we considered, for xed values ofk
and n, all values ofk®and n®within 3  of the energy atk and n.

Figure 3.4: Plot of the spin-lattice relaxation rate divided by temperature 1=T, T
as a function of the e ective magnetic eld shift B(r) By for an applied eld of
42 T and a temperature of 30 K. The points are the actual calculated rates, whe
the curve is a power law t to the points.

The results that we obtain are consistent with our expectations; we imeed nd that
the fastest relaxation rates are for nuclei near the vortex cores. We alsad that the rates
exhibit an upturn as the temperature is lowered, like that seen eperimentally. We saw a
similar upturn in the relaxation rate in the case of a thin Im in a parall el eld, but it was
much smaller. The reason why there is a much larger upturn in this cas is likely because
the low-energy density of states is also much larger due to orbital e ets, as may be seen
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in Figure 2.5. This means that there are many more states present that can participate
in the PCA process than in the case where orbital e ects are absent, am therefore the
contribution from this process to the relaxation rate is much larger. We note that there
appears to be a decrease in=II; T for very low temperatures as we lower the temperature.
We would not expect this behavior due to the fact that, in the absenceof orbital e ects, the
rate saturates to a non-zero constant. We therefore believe that thigs an artifact of the fact
that we divided the magnetic Brillouin zone into a nite, 50 50, mesh. If we used a ner
mesh for this calculation, then we would most likely obtain results moe consistent with our
expectations in this regime. We also note that both exhibit a slight upturn with increasing
temperature at the higher end of the temperature scale. We believehat this is physical,
unlike the downturn at very low temperatures. This e ect results from the fact that we
have reached the temperature scale at which we cross over from thegiene where the PCA
process dominates to that in which the usual spin- ip scattering process dominates.

Figure 3.5: Spin-lattice relaxation rate as a function of temperature for \arious
e ective magnetic eld shifts for an applied eld of 42 T (left) and 13 T ( right)
[3]. The black curves are the rates for e ective magnetic eld shifts ranging from
0:04 Tto 0:12 T in steps of Q01 T for the 42 T case, and from 001 T to 0:03 T in
steps of 00025 T for the 13 T case. The green curves in both plots give the best
t to the experimental data away from the core, while the red curves give the best
t to the data inside the core [ 1, 2], with the required e ective magnetic eld shift
indicated in the same color.

We would now like to compare our results to the experimental data. In oder to do this,
we rst generate a plot of the dependence of the relaxation rate on the intrnal magnetic
eld in the sample. This is done by taking the relaxation rate and the e ective magnetic
eld shift for each point in the unit cell for a given temperature and p lotting each point so
generated. The results of this are illustrated in Figure3.4. Note that, for the slower rates,
which correspond to a smaller Knight shift, the points form an approximate continuum.
We therefore feel that it is justied to t a continuous curve to th e points. To be exact,
we t them to a power law, which appears to give the best t. The results of this t are
illustrated in Figure 3.4. We do this for all temperatures considered for each magnetic eld.
The exponents that we obtain in the power laws are typically not much krger than 2.
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With these results, we are nally able to generate plots of the spin-attice relaxation
rate as a function of temperature for a xed e ective magnetic eld. Th ese plots are shown
in Figure 3.5. We also highlight the curves that best t the experimental data both inside
the vortex core and away from it [1, 2] for each case.

3.3.5 E ect of antiferromagnetic correlations on the spin-lattice
relaxation rate

We now investigate what e ect antiferromagnetic correlations would have on 1’0 spin-
lattice relaxation rates in the mixed state, assuming that the vortex cores represent normal-
state regions. It is known that, in the normal state, the form factor for the hyper ne
interaction Iters out such correlations [35. We will now show that this Itering is still
present even in the mixed state. To investigate the e ect of vortices, we start with the
phenomenological model set forth, among others, by Zha, Barzykin, and Pies 5. We
start with their expression for the \antiferromagnetic" part of the sus ceptibility,

X 2

(@)= 4 1+(q Qi)2§+i!=! sc (3.28)

where is a scale factor, is the antiferromagnetic correlation length, g is the Bohr
magneton, the Q; are the locations of the peaks in the susceptibility found from neuton
scattering experiments,! sc is the characteristic frequency of spin uctuations, andq ranges
over the entire rst atomic Brillouin zone [ 35]. To obtain our model, we rst rewrite the
above susceptibility in position space, separate the position depatence into a magnetic
unit cell position and a position within the magnetic unit cell, and th en Fourier transform
the result with respect to the magnetic unit cell positions. The result is

. o1 XX 2 gd@e) (N
Aily o, 1+(a+G Q)2 Z+il=l o

AF(Q; T (3.29)

where g now ranges over the rst magnetic Brillouin zone, G is the set of all reciprocal
magnetic lattice vectors, i.e., the set of vectors for whiche® R = 1 for all R in the magnetic
lattice, and such that q + G lies within the rst atomic Brillouin zone, and Ly and Ly are
the number of atomic sites along each axis within the magnetic unit cell
So far, we have not introduced a new model; we have simply rewtién the original in

a more complicated form. We will now modify this model to introduce vortex e ects. For
simplicity, we will assume only one vortex per magnetic unit cell. We model these e ects by
introducing step functions into the susceptibility to restr ict antiferromagnetic correlations
to within a superconducting coherence length sc. The result is

1 X X 2 ,d@ ) (r° 1)

AF(Q; T; rO,l):4LX|_yG | l+(q+G Qi)22+i!=! SC(SC r) ( sc r‘ﬁ:
(3.30)

We may now nd the contribution to the spin-lattice relaxation rate d ue to antiferro-
magnetic correlations. If we assume that the relaxation is due to the hypr ne interaction
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(1.19, then we may write the spin-lattice relaxation rate as

1 55 X 00 v Di + (r8r9%1y
ORI 2h kBTrO;rOOA(r rOA(r r S!n!m0 o ; (3.31)
where Dif (:::;!) is a \discontinuity" operator, given by
S | Nt BRI | H
Dif(:::;!)=f(""'+'O)2if(""'+|0): (3.32)

We will derive this result in Appendix B. We now rewrite the above formula for a suscepti-
bility of the form that we are considering. Introducing the appropriat e Fourier transforms,
we eventually obtain

1

Ta(r)

2 203 1 X X X
en BT|_§|_

32’NM ro% r%0G .G, k
gy rop D+ (K ro ro ).
o h!

The rest of the work was done numerically. We used the experimentaftdetermined pa-

rameters for the hyper ne interaction for YBa ,Cu30g:.67 given by Barzykin and Pines [36],

and assumed a 6 6 magnetic unit cell. We rst performed a numerical calculation of the

relaxation rates for Cu and O at r = 0 in the absence of vortices. The appropriate form

factors are

A(k + G1)A (k + G,)e(Cr G2 rg itk+Gu) r?

(3.33)

Acu(k) = A +2B(coskya + coskya), (3.34)
Ao (k) =2cos 3kea (Cy+2C;coskya); (3.35)
Aoy (k) =2cos Zkya (Cy+2C;,coskya); (3.36)

where a is the atomic lattice spacing and the parametersA, B, C1, and C, are given in
Reference $5]. Because, for every momentum-space pointkg; ky), the point (ky; Ky) is also
present, we expect to obtain the same results from the form factors gen by Equations
(3.395 and (3.36); i.e., we expect the rates obtained for O sites along the axis to be equal
to those for sites along they axis. We did this calculation using both Equations (3.28 and
(3.30 to check our formulas. We examined a temperature range of 70 K T 300 K. We
found that the Cu and O rates both decreased with temperature, but thatthe Cu rates were
several orders of magnitude higher than the O rates. This suppressionag found earlier by
Mila and Rice [20].

We then repeated this calculation, this time including vortices. In this case, we set the
superconducting coherence lengthsc = 2a. We obtained the same qualitative behavior
as before, but the rates were enhanced. The Cu rates increased by an erdof magnitude,
while the O rates increased by a factor of 4. This is likely because, bimposing a distance
cuto , we removed contributions to the relaxation rate that lowered said rate. We therefore
conclude, based on this simpli ed model, that the Itering e ect of the form factor is not
only still present in the mixed state, but it is in fact enhanced. We would therefore claim
that measurements of'’O relaxation rates are more sensitive to the PCA process thaf3Cu
measurements due to the fact that the e ect of antiferromagnetic corrdations on the former
is suppressed.
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CHAPTER 4

CONCLUSIONS: NMR IN OPTIMALLY-DOPED
YBCO

In this part of our work, we argued that it is possible to explain the broadening of the
line shape and the upturn in the spin-lattice relaxation rate with decreasing temperature
observed experimentally [4, 1] without introducing antiferromagnetic correlations. The
line shape broadening can be explained, at least in part, by noting that he Knight shift
varies with position in the lattice in the vortex state. This position dependence leads to
each nucleus having a di erent resonance frequency, and thereferto a broadened line shape.
The upturn in the relaxation rate can be explained as due to a second rakation process,
namely creation and annihilation of pairs of spin-up quasiparticles, thatappears when a
magnetic eld is applied, and this process dominates at low temperatoes. We do not wish
to claim that AF correlations do not exist in YBCO, only that certain featur es of the NMR
data once attributed to such correlations can be explained without then; in fact, there is
other evidence for the existence of such correlations, namely newin scattering data [37].
As we argued in Section3.3.5 even in the presence of AF correlations, the spin-lattice
relaxation rates for O will not be greatly a ected by them due to the form f actor.

Based on the above arguments we expect that, once the vortex lattice mi and the
system enters a vortex liquid phase, the NMR lines sharpen due to otional narrowing [39].
At the same time, we expect that the spin lattice relaxation rate, 1=T;, is determined by
the faster rates and that the low T upturn persists in the vortex liquid.

This picture, and the density of states shown in Figure 2.5, also predict that if an
experiment is performed in a clean thin Im with a well-ordered vortex lattice in which the
perpendicular component of theB - eld is kept xed, while changing the magnitude of the
total B, quantum-like oscillationsin 1=T;, due to the oscillations of the density of statesin
energy, would be observed.

While our calculated line shapes have about the same width as the expienental shape
for the 42 T case, the theoretical line shape for the 13 T case is narrowethéan the ex-
perimental shape. One possible contributing factor to this discreancy is the fact that we
neglected the variation of the magnetic eld and the pairing amplitude over a unit cell.
We expect the magnetic eld to vary more strongly in the 13 T case than in the 42 T case
because the vortices are further apart in the 13 T case. In fact, in the 4 case, the dis-
tance between the two vortices in a unit cell is about 10% of the peneation depth, while,
in the 13 T case, this distance is about 23% of the penetration depth. This/ariation will
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introduce further broadening, which will be greater at 13 T than at 42 T, due to the fact
that the vortices are further apart in the former case than in the latter, consistent with our
ndings.

We also notice that the \tails" on our calculated curves are dierent in | ength than
those of the experimental curves. We believe that this, once again, islue to the fact
that we neglected the variation of the pairing potential over a unit cell. In reality, the
order parameter should be lower in magnitude near the vortex cores becaa these regions
are where superconductivity is beginning to break down. This meas that we expect our
calculated line shapes to be more accurate in the lower internal eldregions than in the
high internal eld regions, since these regions are closest to the voeix cores and therefore
most likely to be a ected by taking into account the decrease in the siperconducting order
parameter as one approaches the core.

Finally, we note that the peak in our curve at 42 T shown in Figure 3.2 has a \bump"
just before the peak that is not seen in the experimental data 14, 1]. This suggests that
there is another broadening mechanism at work besides that due to the nite width of
the normal-state line shape because such broadening can wash out the \biph One such
possibility is the presence of impurities.

We are able to obtain good ts of our calculated temperature dependence othe spin-
lattice relaxation rates to the experimental data using the internal magnetic eld as our
only tting parameter. We note, however, that the values of the internal magnetic elds
giving us our best- t curves on the line shape do not quite match the &perimental results.
In the experiment, the region away from the core was in the vicinity of the peak in the
line shape [l]. However, the positions of the corresponding theoretical curves daot quite
fall on the peak; rather, they are away from it. It is possible that this discrepancy may
be due, in part, to our approximations in solving the Bogoliubov-de Gemes equation, and
that more realistic modeling of the vortex core is necessary to accourfor this.
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CHAPTER 5

INTRODUCTION: ELECTRON-ELECTRON
INTERACTIONS IN BILAYER GRAPHENE

The second part of this work will concern the e ects of electron-eletron interactions in
bilayer graphene at half lling, and more speci cally the symmetry-breaking electronic
phases that said interactions may result in B9, 40]. Ever since the rst extraction of
graphene samples by Geim and Novoselov in 20041], graphene, in all of its di erent forms,
has been a material of great interest, both experimentally and theoretally. Monolayer
graphene, which is simply a honeycomb lattice of carbon atoms, is intes#ing because of the
fact that its low-energy electronic states resemble massless Dirdermions, thus making the
system good for observing the e ects of relativistic fermion physts, such a<Zitterbewegung
and Klein tunneling [42]. Another type of graphene that has been of interest, and will
in fact be the focus of this part of our work, is bilayer graphene, whichis a stack of two
monolayer graphene sheets. Due to the presence of two layers, it ossible, through the
application of a perpendicular electric eld, to open a gap in the eletronic spectrum that is
roughly proportional to the magnitude of the applied eld. This means that one may view
bilayer graphene as a semiconductor with an adjustable band gap.

5.1 Crystal structure of bilayer graphene

As stated before, bilayer graphene is a stack of two monolayer graphene séts. There
are two types of stacking for the sheets. First is AA stacking, which neans that every
site on one layer is directly above the corresponding site on the othdayer. The second,
more common, con guration is AB, or Bernal, stacking. In this con guration, one layer is
rotated 60 degrees with respect to the other layer, so that only one suhttice on one layer
is directly above the corresponding sublattice on the other layerwhile the other sublattice
resides directly above or below the center of a hexagon in the other yar. We will refer
to the two \overlapping” sites as the dimerized sites. This con guration, which we will be
considering in this work, is illustrated in Figure 5.1. We also illustrate the rst Brillouin
zone, with two points, labeledK and K°= K, marked. We will see later that these two
points are \parabolic degeneracy points", at which the low-energy electonic bands become
degenerate and have an approximately parabolic dispersion.
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HbL

Figure 5.1: (a) The honeycomb bilayer lattice formed by bilayer grapher. We rep-

resent the bottom layer, 1, with red squares and the top layer, 2, withblack circles.

The g; sites are the dimerized sites, and thdy sites are the non-dimerized sites. We
include the nearest-neighbor intralayer hopping o, the hopping between dimer-
ized sites 1, and the nearest-neighbor interlayer hopping between non-dimezed

sites 3. (b) The Brillouin zone associated with the honeycomb bilayer with the

parabolic degeneracy pointK = Q%k and K%= K marked.

With respect to the dimerized sites, the symmetry group of the homrycomb bilayer
lattice formed by AB-stacked bilayer graphene is theD 34 point group with respect to the
dimerized sites }3] plus translations along vectors connecting two pairs of dimerized $és.
The D3y symmetry group consists of a three-fold rotation axis perpendicular tothe sample
(Cs), three two-fold rotation axes perpendicular to the three-fold axis (C5), three re ections
in planes containing the three-fold axis that bisect two neighboring two-fold axes ( ),
and products of any of these operations, which also generate inversions) (@and a six-fold
improper rotation axis (Sg). The point group possesses six irreducible representations in
all. It has four one-dimensional representations, labeledA 14, A1y, Azg, and Ay, and two
two-dimensional representations, labeledEg and E,. We give the character table for this
group in Table 5.1. In addition to these geometric symmetries, the system also possess
time reversal and spinSU(2) symmetries.

5.2 Electronic band structure

In this section, and in the rest of this work, we will be working in units for which
h= kB =1.

Before discussing the e ects of electron-electron interactionslet us begin by stating the
non-interacting part of the Hamiltonian and the electronic band structure that results. Our
starting model is that described in Reference4Z]:

Hip = Ho+ HE + HYY; (5.1)
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Table 5.1: Character table for the D3q4 group.

|Dag |[E [ 2C3[3CY| i [2S6[3 4|
Ag 1] 1 1 [1] 1 1
Ayl 1] 1 (1] 1] 1
Eq [ 2] -1 0 [2] 1] o0
Al 1] 1 1 [-1] 1] 1
Ay 2] 1 A1) 1] 1
E, [ 2] -1 0 |[-2] 1 0
where
. X
Ho = 0 @ (R)bp (R+ )+ &), (R) (R )+hcl]; (5.2)
Hg = 1 [& (R)a (R)+hcl]; (5.3)
3%
HV = 3 B (R+ )p (R+ + 9+hcl]: (5.4)
R;

Here,a; represents the dimerized site on layer, while Iy represents the non-dimerized site.
The sum onR is over the positions of the dimerized sites, and represents vegtgrs pointing
from an a; site to its nearest-neighborb; sites. The possible values of are 73ak + %ay,

%aﬁ + 1ag, and ay, wherea 1:4 Ais the lattice constant. Whenever there is a sum
on , we sum over all three of these values while, if there is no sum, wehoose one. We see
that ¢ is the hopping integral between two nearest-neigbor sites in the samlayer, ; is the
hopping between the two dimerized sites, and 3 is the hopping between nearest-neighbor
non-dimerized sites in di erent layers. We will see that the r st two hopping integrals ¢
and ; setthe e ective mass of the low-energy electronic states, the sead in particular also
being responsible for \splitting o " two high-energy bands. The thi rd hopping integral, 3,
will result in trigonal warping of the low-energy states, in which what would be parabolic
degeneracy points in the absence of; are split into four Dirac-like cones, one isotropic and
three anisotropic. This trigonal warping e ect is illustrated in Figu re 5.3. Experimentally
[44, o 3eV, 1 04eV,and 3 0:3eV. Note that each unit cell contains four sites,
and thus we will obtain four bands.

To diagonalize this Hamiltonian, we introduce Fourier transforms of the dectron oper-
ators, L X

xi (N=p=— €% (k) (5.5)
NUC K

where x = a or b and N is the number of unit cells. Upon introducing these transforms,
the Hamiltonian becomes

X X
Hyp = Y(KH(K) (k) (5.6)
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where (k) =[a1 (k);az (K);by (k);by (K)IT,

> 0 1 0d(k) 0
Hk) = g od (K) 8 8 03?1((5))2; ®.7)
0 0d(k) 3d (k) 0
and |
X | P |
dik)= €k =2€&kv32¢os ;kxa + e kya (5.8)

The problem of nding the band structure has thus been reduced to dagonalizing H (k). It
is possible to do this analytically; the resulting energies are
s

h P
E(k) = S+ 35 0dMiP+3F 3§ 3idKIF + 3 ad ()+ sld(k)]F
(5.9)
where the two  signs may be chosen independently. In the absence of trigonal warping|
i.e., when 3 = 0jthis expression simpli es, becoming

q
Ek)y= 3.1 12+ 2jdk)j* (5.10)

5.3 Low-energy e ective theory

We will be interested in nding a low-energy e ective theory for the electronic modes,
and thus we now wish to nd the minima of the lower-energy bands, whch are obtained by
choosing opposite signs for each sign in the above expression. For these choices, there
will be points for which the energy becomes zero. These occur whet{k) is also zero. We,
in fact, nd that there are two inequivalent points, which are the K and K ° points that we
marked in Figure 5.1. These points are given by

4
K %k (5.11)

and K%= K. We show a plot of Equation (5.10 along the kyx axis with ky = 0 in
Figure 5.2. We see that two of the bands touch atK and have an approximately parabolic
dispersion, while two others are split 0 . In fact, the two higher-energy bands, those that we
obtain by choosing the two  signs in Equation (5.10 to be the same, are just 1 exactly
at this point. We therefore see that ; sets the energy scale of the splitting of the two
high-energy bands.

We also present a plot of Equation 6.9) near K for 3=0andfor 36 0in Figure 5.3.
As noted earlier, we see that the presence of trigonal warping serves t&plit the parabolic
degeneracy into four Dirac-like cones|an isotropic cone at K, and three anisotropic cones
forming an equilateral triangle centered at K. As we wind around the parabolic degeneracy
point in the absence of trigonal warping, we nd that the wave function acquires a phase
of 2 , often known as a Berry phase 42]. In the presence of trigonal warping, the central
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Figure 5.2: Plot of the energy spectrum in the absence of trigonal warping, gua-

tion (5.10), along the line ky = 0, which passes through the parabolic degeneracy

points K at which the low-energy bands, shown in red, touch. We indicate the

separation of the high-energy bands, shown in black, at these points. Ithis plot,
1= 0:4 0-

Dirac-like cone has a Berry phase of associated with it. This means that the other three
cones each carry a phase of [47].
If we expand d(k) to lowest order in g = k K around these points, we obtain

d K+a) 3o ig)a (5.12)
We now expand the low-energy bands given by Equation§.10) around these points, nding
that, to lowest order in g, they are simply

9 242
2 0% 2. (5.13)
4,

We see that the dispersion, in the absence of trigonal warping, becomesambolic, much
like that of a non-relativistic particle with an e ective mass of m = gzg—laz. It is for this
reason that we refer to the K points in the Brillouin zone as parabolic degeneracy points.
Note, however, that the behavior implied by the name is only presenif we ignore the e ects

of trigonal warping. Experimentally [5, 6], m 0:028m¢, while the value that we obtain

from the above formula and the experimental values of the hopping paramnters given above
ism 0:038me.

The matrix H(k) around the K points is

2
E( K+q)= —Zjd( K + q)j° =

2 . 3
0 1 qua 30
0 0 5 o0 a
H( K+ § ! 0 é; 5.14
( q) %Oqa 0 0 ggqa ( )
0 309 a 339 a 0
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Figure 5.3: Plot of the positive low-energy band for 3 = 0 (left) and 3 6 0 (right)
near K. Note that the parabolic behavior of the band in the 3 =0 case is split
into four Dirac-like cones in the 3 6 0 case. For the purpose of this plot, we set

1=0:4 g and 3=1:5 g; we set the latter to a large value in order to make the
splitting into Dirac-like cones more noticeable.

whereq = o« iqy. If we use this to write an approximate Hamiltonian for the low-energy
electronic states, we obtain
X X
Hyp = k. (@HK +0a) k; (@+(K! K); (5.15)
q

where . (q)=[a1 ( K+q)a2 ( K+q);bp ( K+q); ( K+ q)]". We see that
this e ectively introduces a new degree of freedom, labeled by wikh of the two parabolic
degeneracy points a given state is near; we will refer to this as the vi@ly degree of freedom.

Our next step is now to eliminate the high-energy modes and write dheory that includes
only the low-energy modes. One method by which this may be accomished is to project
out the high-energy modes via a perturbative scheme, as is done in R&ence {15]. However,
the method that we will employ is that used in Reference 4€]. In this method, we start
by writing the partition function associated with the Hamiltonian as a c oherent-state path
integral [47]. The result will be

z

Z= DJ[aa;b;b]e S@a:bb). (5.16)

where thea and b elds are Grassman numbers and is an imaginary time. The action, S,
is given by 7

S(a;a;b;b)= d L(a;a;b;b) (5.17)
0
and the Lagrangian, L, is given in momentum space by
X X @
L(a;a :b:b)= Y(q; ) @ (9; )+ H(a;a ;b;b) ; (5.18)

q

where (q; )=1[ «; (a; )i «; (@ )", «; (a; ) is similarly de ned as before, ex-
cept that now the a and b operators are replaced by the corresponding Grassman elds,
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and H is simply the Hamiltonian written in normal orderli.e., with all of the &' and b
operators to the left of the a and b operators|with all of the operators replaced by their
corresponding Grassman elds. is the chemical potential; we will set it to zero. By doing
so, we place the system at half lling; we will show later that this is rigorously true for our
Hamiltonian, even in the presence of interactions, provided that we wite the interaction
terms in the proper form. We then integrate out the dimerized sites which we consider
to be associated with the high-energy modes. We make this associatidrecause, as stated
earlier, the separation of the two high-energy bands is given by the hogpg 1 between
these two sites.

In our case, the Lagrangian is

X X @
L(a;a;b;b) = Y(a; g (@) k. (@ JH(K +0a) «; (@ )+(K! K)
! (5.19)

Since we are interested in integrating out thea elds, we will nd it convenient to rewrite
the above as

X X @ @

L(a;a;b;b) = 3 =+ Haa 2+( )Y Z+Hp O
( ) q ( ) @ aa ( ) @ t;b
+ (R PHa &, +( R, PHpa &, +(K! K) g (5.20)
where *,. =[x1 ( K+ g);x2 ( K + q)]" contains only those elds that reside on

sublattice x and Hyy is the appropriate block of H( K + q). Here, we omit any explicit
dependence of these quantities oy and for brevity. The integral in Equation ( 5.16) is
Gaussian, and therefore we may evaluate it exactly. We rst introduce the Fourier transform
of the elds with respect to imaginary time,

X . — 1X il X . .
k. (@ )=— e k. (@) (5.21)
|
where! runs over all fermionic Matsubara frequencies] ,, = m, wheren is an integer.
The partition function then becomes
" #
Z 1 X
Z= DJlaja;b;b]exp - L(a;a;b;b) ; (5.22)
|
where the Lagrangian is how
X X h
L(a;a;b;b) = (R (I +Ha) &, +( R,)( I +Hp) 2.
q i
+ (R PHap R, +( R PHpa &, +(K!  K): (5.23)

If we now integrate out the a elds, we obtain an e ective Lagrangian,

X X h L]
Le (bib) = (R.) i +Hp H pa( it +Haa) "Ha R,
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+ (K!  K): (5.24)
The matrix product appearing in this expression is

9a% 3 ilq 2 102

Hoa( 1! + Haa) "Hap = ‘4(| 2y 2 162 ilq 2
! 7 !

(5.25)
We now drop all terms in this expression higher than second order i or higher than rst
order in ! ; we will make our reasons for doing so clear in the next chapter. The e etive
Lagrangian is now, combining the two sets of terms for each valley together,

X X
. 2
Le (b;b) = (R @) it +HP+HM  Ro(@ ) (526)
q
where 5 5
@_% 9 oy
Hg o Xty (5.27)
and
HM™ = va(ke x+ Ky y): (5.28)
Here, we de ne the matrices, x =1 1, y= 32, x= 31,and y= 1, The

matrices appearing in these de nitions are the Pauli matrices, the rst acting in valley
( K) space, the second in layer (1 and 2) space. We also de ne the trigonal waing
velocity, v3 = %a 3; note that this di ers from the formula given in References [42] and
[39]. The value of the trigonal warping velocity used in tting the expe rimental data[5] is
vz 1:41 10° m/s, while that obtained from the above formulais vz 0:96 10° m/s. The
origin of the admittedly unimportant and small discrepancy between the experimental values
of the trigonal warping velocity and the value caluclated from the tight-binding parameters
given above, as well as the similar discrepancy in the e ective mass1 discussed above, is
unclear at this time.

If we now transform back to position and imaginary time space and take the cotinuum
limit, we obtain

z

X
Lebib) = 0 (RY0) SeHP R R 629)
wherep = ir is the momentum operator. In taking the continuum limit, we obtain a

factor of ﬁ, where A is the area of a unit cell in position space; we absorbed this factor
into the  elds. From this point on, we will drop the superscript, b, from the  elds.

5.4 Electron-electron interaction terms

We now introduce interaction terms into the low-energy theory. The terms that we
introduce into the Lagrangian are all contact interactions, and take the form,
Z

X
Li=1 gsu [ Y(r;)S (5 I Y )U (r )]; (5.30)
S;U
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where S and U are summed over all 64SU(8) generators. These generators all take the
form, ; jsk, where the rst matrix acts in valley space and the second in layer spce, as
before, but the third acts in spin (up or down) space. We de ne the oupling constants
gsu to be symmetric in their subscripts; i.e.,gus = gsu. Naively, we would expect there to
be 32 63+ 64 = 2;080 di erent interaction terms. However, it may be shown that there
are in fact only 18 unique couplings allowed by the symmetries of the ugerlying lattice
[46, 39]. In all of the allowed terms in (5.30, S = U; i.e., they are squares of bilinears
of the form, YS . Each of these couplings corresponds to an irreducible representati
of the space group of the Hamiltonian under which the corresponding biliear transforms,
and may be classi ed by applying the di erent transformations of the group to them, as
is done for monolayer graphene in Ref.48] and for bilayer graphene in Ref. fi6]. These
classi cations are given in Table 5.2,

Table 5.2: Classi cation of bilinears of the form, YS , according to the repre-
sentation of the space group under which they transform. The represdations
with a K in their label are not invariant under translations (i.e., they transf orm
as vectors under translations, rather than as scalars). The sign at the end of
each representation name is said representation's symmetry undetirhe reversal.
Matrices separated by commas transform into one another under the point grup
operations, while those separated by semicolons transform into one anotheinder
translations. Note that we omit the spin portion of these matrices; it will not
a ect their transformation properties under the space group.

] Rep. \ Matrices \
Aggt 14
Azg 3 3
Egt (11, 3 2)
Alu 31
Aoyt 13
Eu (31, 12
Ak + (Arg/ Awy) 11,2 1
Ak (Azu/ Az) 12; 22
Ek+(Eg/Eu) | (11, 23 21, 1 3)

Note that we omit the spin portion of these matrices, since it is irrelevant to their
transformation properties under the symmetry operations of the lattice. This is because
the operations of the SU(2) group are independent of those of the space group, since they
operate on di erent degrees of freedom. We may thus consider there tde two sets of
representations|\charge" representations in which the matrices, wh ich all have the form,

i j1, transform as scalars under the operations o6U(2), and \spin" representations in
which the matrices transform as three-component vectors. Any terms hat contain matrices
that transform under the same representation must have the same coecient, since the sum
of the squares of all such bilinears forms an invariant according to the gesralized Unseld
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theorem [43]. We see that the 18 couplings are split into 9 \charge" couplings and 9 \spn"
couplings. The interaction t%rms that appear in our theory are therefore

¥ x £ | X |
Li=3 odr 4g9( Y )1 )2+ ¢ (¥ 9~ )% (53
r=1 j ;O =XyzZ
where ) is the j th SU(4) generator in representationr, as given in Table5.2. Throughout

this work, we will denote the coupling constants using the represatation label; e.g., gffig is

the coupling constant for the ( Y )2 term.

We may reduce this number even further by use of Fierz identites {8, 46]. These
identities allow one to transform a product of two bilinears into a sum of products of other
bilinears. These Fierz identities follow from the following algebaic identity for the SU(8)
generators : X

ST =& T(iS;T) i (5.32)
i5j
This may immediately be translated ;?to an identity for Grassman bilinears:

[Y)S L YT MI= & T S iMEYX) « I Yy) j O (5.33)
1)
where x and y represent all other variables besides valley, layer, and spin indes that the
elds depend on. We give a more detailed derivation of these identiis in Appendix C. The
minus sign in this identity follows from the anticommuting nature of Grassman elds. If
we setx = y, we obtain the Fierz identities alluded to earlier. If we apply these identities
to the interaction term given above, we may generate a linear constrainon the bilinears of
the form, FV =0, where V is a \vector" of the symmetry-allowed interactions and F is an
18 18 matrix [46]. We then determine the number of zero eigenvalues thaF possesses,
which is also the number of independent couplings. Performing thé procedure, we nd that
there are nine independent couplings. We will give details of this aalysis in Appendix C.
For simplicity, we choose to work with the nine \charge" couplings; from this point on, we
will drop the superscript, (c), from the associated coupling constants. We will also denote
9) = 9)1; i.e., the matrices 9) are the SU(8) generators of the form, ; 1, that belong
to the \charge" representations.
Note that we may \transcribe" an e ective Hamiltonian for our system from th e La-
grangian; doing so, we obtain
z z
He = @0 (2P0 AP+ HD b0 ;xg o @ (VD ) (639
r=1 j

where (r) is now a fermionic eld operator, rather than a Grassman eld.

5.5 Interaction-induced symmetry breaking in bilayer
graphene

As we showed earlier the low-energy electronic modes have a parabmtispersion in the
absence of trigonal warping. This means that there is a nite density of sates at the Fermi
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energy if the system is at half Iling, in which case the Fermi energywill be exactly at the
parabolic degeneracy points. This, in turn, means that we expect one or wre susceptibilities
towards symmetry-breaking electronic phases to diverge as we approazero temperature,
making the system unstable to such a phase. A number of experimeat and theoretical
works have been dedicated to determining the existence and naterof such phases.

On the experimental side, measurements of the electrical conduistity of suspended
bilayer graphene in dierent electric and magnetic elds, as well asat di erent carrier
densities }19], followed by compressibility measurements§0], nd evidence suggesting the
presence of a symmetry-breaking order. The two possible types of ders argued for in these
works are a quantum anomalous Hall phase, in which the system acquires a naero Hall
conductivity in the absence of an applied magnetic eld, and a nematic fhase, which breaks
the rotational symmetry of the system. In this phase, the parabolic degaeracy points in
the energy spectrum split into two Dirac-like cones, which are sfited slightly away from the
degeneracy point p1]. The separation is given by the magnitude of the order parameter,
while the direction is given by that of the order parameter. Rotating the order parameter
by will produce an equivalent con guration, much like the molecules ina nematic liquid
crystal, hence the name. A more recent experimenty] nds evidence for a nematic phase
by measuring the width of a peak in the resistivity as a function of the carrier density
at di erent temperatures and by measuring cyclotron gaps as a function ofthe applied
magnetic eld for di erent lling factors. Another, more recent, exp eriment [6] uses two-
terminal conductance measurements to argue for a state in which the sgem develops a gap
in its energy spectrum, in apparent disagreement with the previousexperiment, since the
nematic phase argued for in References] is gapless. Two other experimentsq2, 53] also
nd evidence for a gap in the spectrum induced by symmetry breakiry, but are inconclusive
about the exact nature of the state. Yet another experiment p4] performs measurements on
a number of samples, nding a bimodal distribution of conducting and insulating samples.

A number of the theoretical works on this problem have employed meaneld methods.
One such work f5] employs variational methods to argue for a ferromagnetic state for
long-range interactions and a calculation of the susceptibility towardsan antiferromagnetic
state within an RPA approximation, followed by a mean- eld calculation of the associated
order parameter, to argue for said state for short-range interactions. Two dber works
employ a mean- eld approach to argue for a \(layer) pseudospin magnet" plase p5 and
a ferromagnetic state p6]. Later investigations argue for a layer-polarized state, in which
there is more charge on one layer of the sample than on the other, using meaald methods
[57] and a quantum anomalous Hall state using mean- eld methods and taking inb account
Gaussian uctuations about the mean- eld solution [58]. Another work by the same group
[59] uses mean- eld methods, as before, but considers the e ects of appd electric and
magnetic elds; they nd a quantum anomalous Hall state, a quantum Hall ferromagnetic
insulator, and a layer-polarized state. Another work [60] uses Hartree-Fock methods to
argue for a layer-polarized state in the absence of a magnetic eld and arggefor the
existence of a quantum anomalous Hall state when a magnetic eld is applied A very
recent investigation by the same group $1] nds a \(layer) pseudospin antiferromagnet"
state in the honeycomb bilayer. Another very recent investigation p2] uses Hartree-Fock
methods to nd a coexistence of a quantum spin Hall state, in which anon-zero spin Hall
conductivity develops in the system, and a layer-polarized state hat may be turned into a
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pure layer-polarized state with the application of a su ciently str ong electric eld. Finally,

the work of Reference §3] treats the problem of an applied in-plane magnetic eld, in which
case we only acquire a Zeeman term, and an applied perpendicular eleict eld within a

self-consistent mean- eld approximation.

Mean- eld theory, however, has a major disadvantageas a means of predicting the low-
temperature phase of the systemit does not treat the leading logarithmic divergences that
appear in perturbation theory correctly, and therefore may lead to resilts that are incorrect,
even qualitatively [64]. On the other hand, the renormalization group (RG) approach does.
As an illustrative example, let us consider fermions on a one-dimenshal chain with a
nearest-neighbor repulsion §4]. If we consider spinless fermions, as is done in, for example,
Reference ¢5], then mean- eld theory will predict that, at half lling, the syst em will enter
a charge density wave state for arbitrarily weak interactions. The RG approach, on the
other hand, predicts no symmetry-breaking phases until the inteaction becomes su ciently
strong, in agreement with a known exact solution 6]. We therefore believe that RG is a
more accurate means of predicting the phase of our system than mean- eltheory. There
are, in fact, several papers in addition to our own work B9, 40] that employ weak-coupling
perturbative RG techniques in the study of bilayer graphene b1, 46, 67, 68, 69.

In Reference p1], this method is employed to argue for a nematic state for long-range
interactions in the case of spin% fermions, and a similar paper by Lemoniket. al. [67, 68]
that followed arrives at the same conclusion. A later work §€] investigates the short-range
limit (i.e., the Hubbard model), and argues for an antiferromagnetic state, in which the
spins possess a ferrimagnetic arrangement within each layer (i.ethe spins alternate in
direction between neighboring sites, but are unequal in magnitude) and are oppositely
directed between the two layers. An illustration of this phase maybe found in Reference
[4]. It is also argued in Reference 46] that this phase should persist even in the strong-
coupling limit. This has been recently con rmed using a combination of quantum Monte
Carlo and functional RG methods [].

5.5.1 Summary of our work

The rest of this part of the present work will be dedicated to an extersion of the previous
RG analyses conducted in References]] and [46]. We nd that, in fact, it is possible to nd
all of the instabilities that the system may exhibit within a weak- coupling approximation
[39]. Using the Wilson momentum-shell RG method [/0, 65|, and working at nite tem-
perature [71, 77], we rst derive rst-order di erential equations describing t he evolution
of the nine coupling constants as we integrate out shells in momentum gwe and rescale.
This process may be described by a parameter, that gives a measure of how many such
shells that we have integrated out. We nd that, at su ciently high te mperatures, the
coupling constants will all saturate at a nite value. As the temperatur e is lowered, the
coupling constants will saturate at higher, but still nite, values. Eventually, however, we
will reach a temperature at which the constants do not saturate, but rather run away to
in nity; we will call this temperature the critical temperature . We interpret this divergence
as an indication of the presence of an instability towards a symmetry-beaking phase.

While the coupling constants diverge, it turns out that ratios of these coupling constants
tend to nite values. We will refer to the possible ratios that the coupling constants may

47



take as they diverge as xed ratios or xed rays. We nd that it is possibl e to determine
all of these xed ratios for our system. We nd that there is a two-dimen sional surface of
xed ratios (i.e., a two-parameter family of such ratios), as well as four solated points.

To determine which phase(s) the system is unstable to, we calculatthe susceptibilities
of the system towards various orders and determine whether or not thegiverge. In practice,
we determine whether or not a given susceptibility diverges by deving a relation between
the xed raios that the coupling constants tend to at the critical temp erature and the
exponents with which the susceptibilities vary near the critical temperature. We then
use this formula to determine the susceptibility exponent for ech order. If the exponent
becomes negative, then the susceptibility diverges and the syste is therefore unstable to
the formation of the associated phase. Using this, as well as our knowledg# the xed
points, we are able to map out all of the possible phases that the system ignstable to.

We then specialize to the case of nite-range electron-electron irgractions. We start by
introducing a density-density interaction into the microscopic (tight-binding) Hamiltonian
for the system of the form,

X
H, = Vi 9n(r) 1nrY 1 (5.35)

r;ro0

where n(r) = ¥(r)c(r). We then integrate out the high-energy modes, as we did in the
present chapter, obtaining a low-energy theory of the form describ@& above. The coupling
constants that appear in this theory will depend on the interaction that we introduced
into the Hamiltonian. This gives us a relation between the microscopicinteraction and
the coupling constants in the low-energy theory. We use the valuesosobtained as initial
conditions for our RG equations. We will nd that only three of the coupli ng constants,
da14» 9a,,» @nd gg, , Mmay be non-zero for this type of microscopic interaction. We conside
two forms of the microscopic interaction, both motivated by experimertal setups [49, 6].
The rstis an interaction of the form produced by a point charge in the presence of a single
in nite conducting plate, and the second is that produced by a point charge exactly halfway
between two parallel in nite conducting plates. We illustrate th e con gurations that lead
to these forms in Figure5.4. The rst has a dipole-like form,

!

1

V(r) = Uo r:i pﬁ ; (5.36)

where is the distance between the charge and the plate, while the second halse form,

R r 2p§e r=
V(r)=4Uy Ko (2k+1) - UpZpo— (5.37)

k=0 r=

We will show how to obtain this form in Chapter 8. Since the latter falls 0 exponentially,
while the former falls 0 as r 3, the former is a longer-ranged interaction than the latter.
Note that each of these forms contains a parameter, ; this parameter sets the range of
the interaction. For each of these forms, we rst determine the initial values of ga,,,
Oa,,, and ge, as a function of . We then integrate the RG equations numerically and
determine what xed ratios the coupling constants tend to. From this, we may determine
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which phase the system is unstable to. We will nd that the system is unstable to the
antiferromagnetic phase for short ranges of the interaction and to the nemat phase for
long ranges, in agreement with previous work 1, 46, 67, 68]. At intermediate ranges, we
nd an instability towards both.

Figure 5.4: lllustrations of the single-gate (left) and double-gate (right) con gu-
rations, which lead to the potentials given by Equations (6.36) and (5.37), respec-
tively.

Motivated by the fact that we nd an instability towards the antiferrom agnetic phase
for short-ranged interactions and by the fact that a gapped phase is deteetd, for example,
in Reference §], we then turn our attention to investigating the e ects of an applied per-
pendicular magnetic eld on the system in the antiferromagnetic phase We will do this
using variational mean eld theory. In this approach, we start by adding and subtracting a
term of the form, 7

d’r Y(r)1 ss3 (r); (5.38)

from the Equation (5.34) in the case of a microscopic density-density interaction (i.e., wth

only ga,,, 9a,,, and gg, present), and with the magnetic eld introduced via the minimal

substitution, p! p ¢A, whereA is the magnetic vector potential. This term corresponds
to the AF order parameter. We then exactly diagonalize the kinetic enegy plus the added
term to obtain our trial ground state. Finally, we calculate the expectation value of the full

Hamiltonian, which we then minimize with respect to .

Our switch to mean- eld methods is motivated by two factors. First of all, we are not
using these methods taoredict the existence of a phase; rather, we are using them to describe
the phenomenology of a phase that we have already predicted via an RG calfaiion. In fact,
since the AF state is gapped, we expect that a perturbative expansion aund the mean- eld
solution will have a nite radius of convergence. Our second reason for sing mean- eld
methods, rather than RG, is because an RG analysis of the system in theresence of a
magnetic eld is di cult. This is because the non-interacting ene rgy spectrum is discrete
and the crystal momentum k is no longer a good quantum number.

A similar calculation has already been performed ]3], in which a self-consistent mean
eld approach is employed, and a second order parameter, which we wilihd corresponds
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to a \staggered spin current" order, is introduced. Our analysis, on the other hand, only
explicitly includes the antiferromagnetic order parameter. This is because, aB = 0, the two
order parameters will transform under di erent representations of the D 33 symmetry group;
the antiferromagnetic order parameter belongs to theAy, (spin) representation, while the
\staggered spin current" order parameter transforms under the Ay, (spin) representation.
In particular, the two have opposite \parity" under mirror re ection s; the antiferromagnetic
order is even, while the \staggered spin current" order is odd. In thke presence of a nite
external eld, which is an axial vector, however, mirror symmetry is broken. This reduces
the D3g symmetry group to Sg, a subgroup ofD 34 that includes only the Cjz rotations, the
Se improper rotations, and the inversion i. Both order parameters transform under the
same representation, namelyA,. It turns out, in fact, that the variational wave function
that we obtain, which only explicitly includes the AF order parameter, will result in a nite
expectation value of the \staggered spin current" order parameter.

We discover, in our method of solution for , which was later reproduced in Reference
[73], that one may eliminate all of the coupling constants and express the edf-consistency
condition entirely in terms of the value of in the absence of a magnetic eld, which we
denote by . This allows us to send the energy cuto in our problem to in nity. B y doing
this, we may write a self-consistency conditiorwhose dependence on the coupling constants
enters entirely through o:

F =in - ; (5.39)

where! . = eB=m c is the cyclotron frequency of an electron with e ective massm , F( )
is given by q

F()=|()+jlj In 1+ 2+

; (5.40)

Blw

I () is given exactly later on, but may be very accurately approximated forany value of

as
2

[( 31(0) B+4 6= 252
and | (0) 0:0503 is the exact value ofl ( ) at = 0. We may consider this expression
to be \universal" in the sense that it does not explicitly depend on the coupling constants

in the problem
In general, this equation must be solved numerically. However, we maobtain approx-

() (5.41)

imate analytic solutions in the limit of low elds, for which ! . o0, and for high elds
("¢ o). For low elds, we nd a quadratic dependence for ( B):
1 2
(B)= o+ * (5.42)
8 o

At high elds, on the other hand, we nd that

¢ (5.43)

(B)= —In(!c:. 3+ c’

where the constantC  0:67. This form may be experimentally di cult to distinguish from
a linear dependence.
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In order to determine the size of the gap, we then calculate the energsequired to create
an electrically neutral particle-hole excitation of our trial ground stat e. We believe that this
is what is observed in, for example, References] because their measurement involves no
net addition or removal of charge from the system. In order to nd this energy, we simply
nd the di erence between the energy of our trial ground state and that of the state with
the particle-hole excitation present. Doing so, we nd that the excitation energy is

Eex=En + En + %g ( S S ); (5-44)

where

En= P n(n 1) 2+[( B))? (5.45)

and and s are valley and spin indices; =1 for the K valley and 1 for the K valley.
Likewise, s = 1 for spin up and 1 for spin down. If n; =0 or 1, then the product ;s; is
lockedto 1ifj = (particle)or 1ifj = (hole). The quantity g = da;,+ da,, 40,

Vo Vok, whereVy and Vo are Fourier components of the microscopic interaction atg = 0
and q= 2K, respectively. This is simply the sum of the energies of the partile and hole
in the single-particle \auxiliary spectrum” plus a non-universal (i.e., coupling constant-
dependent) term that is linear in B. The gap in our spectrum as a function ofB is
simply the minimum value of E¢x with respect to the choice of particle and hole states; i.e.,
Egap = Min Eex.

Because the expression for the gap contains a non-universal term, it gossible to control
the slope of said term independently of ¢. We use this fact to t our formula to experimen-
tal data. We nd that the best t to the data presented in Reference [ 6] is given by setting
-9 =0:44and =0:95meV. In this case, we obtain a slight non-monotonic behavior
for the gap; it has a minimum of 1:91 g ata eld of B =0:047 T. As we increase the eld,
we observe a \kink" at B = 0:45 T, marking a transition to a quasi-linear behavior.

We also used our expression to t the data for the = 0 gap given in Reference }0].
In this case, it is unclear from the low- eld data what the value of the zero- eld gap, if
any, is. Nevertheless, due to the weak logarithmic dependence of B) on ¢ shown in
Equation (5.43), especially at high elds, it is reasonable to assume the same value for g
as before, namely ¢ =0:95 meV. In this case, we require a negative value aj to tthe
data, implying that the microscopic interaction that is present is non-monotonic, since this
would require that Vo < Vo . We still observe a minimum, this time at about B =0:017 T,
but it is very shallow.

The rest of this part of the work is organized as follows. In Chapter6, we brie y explain
the Wilson RG procedure and use it to derive the RG equations for thenine coupling
constants. In Chapter 7, we nd the susceptibility exponents for di erent orders and the
leading instabilities of the system. Chapter 8 is dedicated to mapping out the leading
instabilities as a function of range for the nite-range interactions listed above. In Chapter
9, we present our variational mean- eld analysis of the antiferromagnetic sate. We present
out conclusions in Chapter 10.
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CHAPTER 6

REVIEW OF WILSON MOMENTUM-SHELL
RG AND DERIVATION OF THE RG
EQUATIONS

Our rst step in determining the leading instabilities of bilay er graphene at half lling will
be to derive the RG equations for the nine coupling constants presdnn the low-energy
theory. As we do so, we will also be reviewing the Wilson momentum-g#l method [70)].

6.1 Review of Wilson momentum-shell RG, the RG
transformation

The basic idea behind the Wilson momentum shell method is to intgrate out electronic
modes in thin shells and rescale in such a way as to obtain a theory of @htical form to
that which we started with. However, the constants appearing in the rew theory will have
di erent values. Nevertheless, this new theory will possess thesame low-energy physics as
the one that we started with. While not strictly necessary, the rescaling step is especially
convenient, since it allows us to easily write down equations relahg the new values of the
constants in our theory to their original values. We will be performing our analysis at nite
temperature, similarly to References 1] and [72].

The way that we put this method into practice is as follows. We start by imposing an
upper cuto on the momenta of the electronic modes. In our case, we séthe cuto so
that the corresponding energy is 1, since it is up to this scale that we expect our low-
energy theory to be valid; the corresponding momentum is =" 2m ;. We will nd it
convenient to work with the theory in momentum and frequency space. Introducing the
Fourier transform,

z
1 X a2k .
(r; )= = ——d®r ) kgny; (6.1)
| (2 )2
the action becomes
Z x
Se = Yk;t) it +HO +HM i)

k!

52



x £ X _ .
o [ Y(kte) O (k2! ) Y(ksita) O (k! a)l;  (6.2)
r=1 1234

+

where we introduce the shorthand,

VA yA
1X d?k
X == X (6.3)
K1 \ (2 )?
and
Z yA
1 X d’k;  d?kq4
X = H (2 )% (ks ks+kz ki) (1a ls+lz )X
1234 Y, @) @)

(6.4)
which we will employ throughout this chapter. Here, all momentum integrals are restricted
to the region, jkj < .

Our next step will be to split the elds into \slow" modes, <, and \fast" modes, -;
i.e.
= <+ (6.5)

Here, the \slow" modes are those with momenta such thatjkj < e 9, whered is an
in nitesimally small number, and the \fast" modes are suchthat e 9 < jkj < . In other
words, <(k;!)=0if jkj> e 9, and similarly for s (k;!). We then integrate out the
fast modes in a cumulant expansion. We may write the partition function as

z Z
Z= D[.; <] D[; sle=: (6.6)
We then evaluate the inner integral. We may write the integral as
Z D E
Z= D[ .; <]Zo> e S So>) . (6.7)
>
where Z
Zo> = D[ .; s]e 5@ (6.8)
is the partition function of the system with only the quadratic terms for the \fast" modes
present, i
>
So> = Yty it +HE M ) (6.9)
k!

Here, the \>" sign on the integral means that the momentum integral is taken only over
the \fast" modes. Finally,
E Z

1
e (S So>) = D[ .; >]e S (6.10)
O;> ZO,>

is an average with respect to the \bare" (i.e., non-interacting) action for the \fast" modes.

We now perform a cumulant expansion of the average:
E h [
e %) =exp h(S Sps)ig,t3 (S So»)? 4. h(S Sos)ig, +:ii:

0;>
(6.11)
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Therefore, our rescaled action is, to second order in this expansion,
Se =NS Sos)ig. 3 (S S05)? 4. h(S So»)ig. +::: (6.12)

Let us rst consider the rst-order term in this expansion. Since t he quadratic terms only
contain an integral over a single momentum, they separate into two setof terms|one
containing only \slow" modes, and one with only \fast" modes. The terms with the \fast"
modes produce a multiplicative constant that we are not concerned wih for our present
purposes. The renormalized action for the quadratic terms at this stepis the same as the
original; i.e., the remaining quadratic action for the \slow" modes is just
z
< X AL

ky k
—_— y -1 il XY
Se 2 o < (k; 1) i! o ¥+ -

+ va(ke x+ky )] < (K1) (6.13)

y

Here, the < sign on the integral sign means that the momentum integral is to only be takae
over \slow" modes. For later convenience, we have chosen to write ¢uH éz) and HSW) :
de ned earlier by Equations (5.27) and (5.28).

We now rescale the momenta, frequencies, and elds such that we rese this part of
the action to its original form. We will refer to this rescaling as the RG transformation. We
start by introducing the rescaled momentum, k®= e k. Upon doing so, the action becomes

Z 2 2
. . k2% KO kK9
Sep = e Yo (k% 91 il +e2d X Y 420 XY
e ;2 o < ( i ) om X m
+ e Tvgk) «+ kD)) < (kK% T (6.14)

y

The factor of e 29 outside of the integral comes from the measure of the momentum

integral. We see that the trigonal warping term has a di erent power of e? than the other

momentum-dependent term. Because of this, we introduce a resca trigonal warping

velocity, v§ = e v3. The action thus becom(zs
Z

\ ‘ , . KO? K02 kOO
Sep = e ¥<(k°?d;!) L +e 2o e My
+ e VY x+ kDY) < (k% T (6.15)
Our next step is to rescale the frequency. If we introducd °= €®4'| | we obtain
Z 2 2
. X . . k9% k9 kK9
S. ., = 4d y kOed.!OeZd il X y + Xy
e 2 © KOl 0 < ’ ) 2m X m Y
+ VIKY x+ KD ) < (k% 91 % 2, (6.16)

where the Matsubara frequencies are now %= @n+l) e2d' Therefore, the sum is no longer
of the same form as before. To restore it to its original form, we must restle the temperature

of the system. To be exact, we let °= e 29 sothat! 0= @™ The action becomes
Z n 2 2
. . . k9 kO kOk?
Se = e® ok% 45ty g+ X Y+ Y
e ;2 KO 0 < ( ) 2m X m y
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+ VIKY x+ KD ) < (k% 9% 2y, (6.17)

where the extra factor ofe 29 comes from the factor of £ present outside of the frequency
sum. We must now eliminate the factor ofe 89 outside of the integral. We accomplish this
by rescaling the elds. De ning

Ak®19=e 38 _(k% ;1% 20, (6.18)

we nally obtain an action of the same form as that which we started with, except with
rescaled elds, momenta, and frequencies. As a consequence, thégwnal warping velocity
and temperature are renormalized.

We may imagine integrating out thin shells and rescaling in the same wg as just de-
scribed many times, with the number of iterations described by a arameter °. After a
number of iterations, the trigonal warping velocity and inverse temperature will be given
by functions of *, i.e., v3(*) and (). Let us now iterate the above process one more time.
These two quantities will be renormalized again, now taking the valus,

vs(C+d)=e"vz()and (C+d)=e @ () (6.19)

If we now expand the exponentials to rst order in d°, we may rearrange these expressions
into rst-order di erential equations giving the values of v3(*) and (°) as a function of *:

Mz vsand &= 2 (6.20)
The solutions to these equations are justvs(’) = va(C = 0)e and ()= ( =0)e 2.

Throughout this work, we will drop the \( = = 0)" and simply denote the \bare" (i.e.,
starting) values of the trigonal warping velocity and inverse temperature as justvs and
respectively, and explicitly write out the functional forms just obtained for their renormal-
ized values. Because the coe cient of the trigonal warping term increases as we integrate
out modes, it is referred to as a relevant term. On the other hand, tke coe cients of the
terms that are second order in components ok were left unchanged; such terms are referred
to as marginal. A term whose coe cient decreasesas we integrate out modes is referred to
as irrelevant. In practice, irrelevant terms are usually omitted in RG analyses, as we will
do here. In our case, any term quadratic in the elds that is higher than second order in
components ofk or higher than rst order in ! will be irrelevant. This is the reason why
we dropped such higher-order terms in deriving the low-energy etive theory.

For convenience, we will now summarize the steps for performing # RG transformation:

1. Integrate out \fast" modes and evaluate all momentum integrals and frequecy sums
over such modes.

2. Introduce the rescaled momentumk®= ke , in all integrals over \slow" modes.

3. Introduce the rescaled frequency, = le ?'; this also requires us to introduce the
rescaled temperature, °= e 2¢,

4. Rescale the \slow" elds by introducing 9qk%!19= e 3¢ _(k% ;1% 20),
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6.2 The interaction terms at rst order

We now turn our attention to the quartic terms (i.e., the interacti on terms). In this case,
we have integrals over three independent momenta, and so we cannotngply separate the
terms into one that consists entirely of \slow" modes and one that conssts entirely of \fast"
modes. However, we only need to consider terms that contain only \sloivmodes, terms
that only contain \fast" modes, and terms with two of each. Terms with an odd number of
\fast" modes will simply be zero by virtue of the fact that, while th e action with respect
to which we are averaging would be invariant under a sign change of these ades, the
guartic expression being averaged over will change its sign. The ter consisting entirely of
\fast" modes, again, only produces a constant that we will not concern ourslves with. The
terms consisting entirely of \slow" modes will be marginal under our RG transformation.
Upon performing the RG transformation, we obtain a factor of e 8¢ from the measure
of the momentum integral, a factor of €4 from the momentum-conserving delta function,
and e 8 from the powers of present, for a total factor of e 120, This factor will be
\absorbed" by the elds upon rescaling. This rescaling of the rst-order, or \tree level",
term in the expansion, which always results in the same term muliplied by, at most, a
power of e, tells us what is called the engineering scaling dimension of the ten. Since
no powers ofed appear, the engineering scaling dimension of the four-fermion interction
terms is zero.

The \mixed" terms, on the other hand, will generate chemical potential-like terms.
While they do, in principle, represent renormalizations of a chemgal potential, we elect to
keep the chemical potential xed as we integrate out modes. We do thidy introducing a
\counterterm" into the action,

z
Ler = © Y1) (k1) (6.21)
k!
where Cis a constant chosen such that this term cancels out the corrections tt we
generate. We will therefore not concern ourselves with these contiutions.

6.3 Second-order corrections to the interaction terms

We now consider the second-order term in the cumulant expansion. Té square of the
guadratic part of the action, as well as the cross terms, will generate teans that are irrelevant
under our RG transformation, and thus we will not consider them. We thus only consider
the square of the quartic terms here. Let us consider the term, S? 0 The square of the
quartic term, which we will denote by Sy, is

0 X0 Z Z
1

SAZ, = 3 OrOs [ Y(kq;! 1) $i) (k2:! I Y(ks;! 3) Ei) (ka:! 2]

[ Yksi's) &) (ke o)l Y(k7;!'7) &) (kg;!g): (6.22)

When we separate the elds into \slow" and \fast" modes and drop terms with an odd
number of \fast” modes (which average to zero for the same reasons as be&r we nd
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Figure 6.1: Diagrams representing second-order (one-loop) corrections the cou-
pling constants g;. The dashed lines represent interactions, with the lettersS and
U standing for one of 16S5U(4) generators, the black lines represent \slow" modes,
and the red lines \fast" modes.

that there are terms containing only \fast" modes, terms with six \fast " modes and two
\slow" modes, terms with four of each, terms with two \fast" modes and six \slow" modes,
and terms with only \slow" modes. The rst is a constant, which we ignore. The second
generates (vanishingly small) corrections to the chemical potential,and thus we do not
consider it; these terms, which are represented with Feynman @igrams with two loops, are
of order (d")2. The last two generate six- and eight-fermion terms, which are irrebvant
under our RG transformation, and thus we ignore them as well. Thereforethe only terms
that we will concern ourselves with are those with four of each type of mde. These terms
renormalize the coupling constants,g,. There are ve dierent types of corrections that
we will obtain, which are represented by the diagrams in Figure6.1l. Note that each of
these diagrams contains a single \loop"; for this reason, these are said to peesent one-
loop corrections. Also note that all of these diagrams are connected; i.ethey do not
consist of two disconnected parts. Terms represented by such disnnected diagrams that
are generated from (S Sp)? 0> are cancelled by a corresponding term generated from

h(S So;>)i(2);>. We will thus denote their dierence by (S Sps)? 0>:C - A similar
statement, in fact, holds at all orders in the cumulant expansion. As an eample of how
to determine these corrections, let us consider the contributios from the rst diagram
shown in Figure 6.1. This corresponds to choosing two modes on the same \side" of each
of the interaction vertices to be \fast". There are four ways to construct such a term,
corresponding to a di erent choice of \side" on each vertex. The termassociated with it is

X Z Z D
sPw = 1 gsw [ Y(ke;! 1)SL < (k2! ) (k3! 3)SL 5 (Kai! 4)]
S:U 1234 5678 E
[ L(ksi! UL > (kei! ol L(kri! DUL <(kgite)] (6.23)

Here, the \argument" of Sf) (1) is meant to represent the fact that this is the contribution
to the renormalization of the quartic terms coming from the rst diagram shown in Figure
6.1 We will use this notation throughout this part of the work. Note that we hav e rewritten
the sums over representations and matrices within said represeations as a single sum over
all SU(4) generators; this is to achieve consistency with the notation usedn Figure 6.1.
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Note that we have an average over four \fast" elds present. This average may be evaluated
using Wick's theorem. This theorem speci es that we consider all vays to \pair" the elds
with complex conjugate elds (i.e.,a eldwitha eld). In each \pairing", we rearrange
the elds such that each eld is with its \partner", changing the sign ap propriately due to
the anticommuting nature of Grassman elds. Each term will then simply be a product of
averages of just each eld and its \partner". These averages are simply gien by

(k') (kail2) =2 )* (kx ko) (11 !'2)G (ky'a);  (6.24)
where the Green's functionG(k;! ) is
" k2 K2 Fa
. kyk
Gk;')= il + szy X+ rxny y+ Va(kxe x+ Ky y)
X 1+ s )i! nl+(5m-k?C0S2 + svskcos ) 1+(sz-k?sin2  vsksin ) 2.
2 3 12+ .1, k4+ v3k2 + s;lvak3cos 3 ’

(6.25)

and is the angle specifying the direction ofk. In the present case, there are two possible
\pairings", namely to pair Y (ks;! 3) with s (ka;!4)and Y(ks;!s)with s (ke;!se), and
to pair Y (ks;!3) with s (ke:!e) and s (ka;!a) with Y (ks;!s5). The former pairing,
however, results in a \disconnected" term, which, as pointed out arlier, will be cancelled
out. Therefore, we only consider the latter. In this case, we place th factors containing
only \slow" elds outside of the average and rewrite the remaining factors containing the
\fast" elds as

[ > (ka!3)(S1) > (kaila)]l > (ksi!s)(UL) > (Keile)] oo @ (6.26)

If we now rearrange all of the terms so that each eld is next to its \partner", we obtain

> (keile) o (k3ila) o (S1) > (kaila) o (ksils) o (UD) © (6.27)

Evaluating the averages, we obtain
Tr[G(ks;! 3)(S1)G(Ka;! 2)(UD]2 )* (ks ke) (ka ks) 2 (13 le) (14 !s5): (6.28)

If we now substitute this into our expression for Sf) (1) and simplify, we eventually obtain

X z z,

sP@ = 1 gsau TG(ks;! 3)(S1)G(ks k7 + Kgils 17+ 1g)(UL)]
s:U 1278 k3! 3

[ 2(k1;!'1)ST <(k2;!' I Z(k7;! 7)UL < (Ksg;! )] (6.29)

We now note that, if we expand the result of the integral overks and sum over! 3, we will
obtain a term constant in k7, kg, ! 7, and ! g, as well as terms with positive powers of these
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guantities. The latter are irrelevant under the RG transformation, and thus we drop them.

We therefore setkz, kg, ! 7, and ! g all to zero in the above expression, obtaining

sP@w = 1 gsw

X z z,

s:u 1278 k3! 3

[ L(k1;!1)S1 < (k! I (k73! 7)UL < (kg;! g)l:

Tr[G(ks; ! 3)(S1)G(ks; ! 5)(UL)]

(6.30)

We now perform the integrals and sums ovelkkz and ! 3. We accomplish this with the aid

of the identity,

The functions

where

and

Z
Gkk;!') G( k; !)=
k;!

d‘gi[ s Il 1( s+ 2( 3t

%(1 11 111+ 321 3 21)[ 3(at)+ 4( 3t)]

3la sl 1(3t)  2( 3t)]

3( 35t)]

1
5(3 11 3 11+1 21 1 L1)[ 4( 35t)
a( 3;t) are
11Zl dx
1( 35t) = >t P 1(X; 3rt);
Zl 1 X
1171 dx 1
2o(3t) = —— Py 20X 3
3 0 1 x¢X
11 271 dx
) = = pP——- ;oat);
3( 3t) . PTex 3(X; 3;t)
(20 = 22 p % a
4( 3; = 51 1W 4(X; 3;1);
10X 3t) = ¥+£tanh Q- ;
cost % Q+ A
X Q
;oat) = tanh — ;
2(x; 3it) ] Q tan o
X
3(x; at) = ] Q—tanh %t :
a(X; 3t) = ! +£tanh Q- :
cosit & Q« 2t
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(6.33)

(6.34)

(6.35)

(6.36)

(6.37)

(6.38)

(6.39)

(6.40)



Here, 3 is a dimensionless trigonal warping velocity,
V3

= ; 6.41
3 =2m ' (6.41)
and t is a dimensionless temperature,
T
t= ———; 42
2=2m ' (6.42)

where T = 1. In the next section, we will nd the following asymptotic forms of t he
functionsas !'1  at nite temperature useful:

e 2

a 3e\;tez\ = 0 +::: fora=1;2 (6.43)
N 2\ e 6\
a 3€,te = ?23+:::fora=3;4; (6.44)

where \:::" represents terms that are smaller than the leading terms. Note that h neither
expression does the leading term depend on the trigonal warping vedity.

Upon applying this identity, we nd that all of the traces that we must e valuate are
of the form, Tr[(M 1)(S1)(M 1)(U1)], where M is an SU(4) generator. The only SU(4)
generator with non-zero trace is the 4 4 identity matrix, and thus the product appearing
in the trace must evaluate to a multiple of the identity in order for t he trace to be non-zero.
This can only happen if S = U. We therefore nd that Sf) (1) represents a correction to
the coupling gs that is proportional to g2.

We may apply a similar procedure to evaluate the contributions from the other diagrams.
We nd that the second and third diagrams together give us

X
sP@E+3) = JsQu Y(ky;! 1)S1 (k2! 2)
S:U Z1234
Y(ks3;! 3) U1G(k;!)S1G(Kk;! UL (k4! 4):  (6.45)

k;!

In this case, we nd that all of the terms generated from U1G(k;! )S1G(k;! )U1 are pro-
portional to S1. Therefore, this also represents a correction to the couplingys, except now
it is proportional to gsgu.

The fourth and fth give us

X Z Z.
sP@ = 1 gsau Y(kq;! 1)S1G(K; 1)UL (kz;! 2)
s:u 1234 k;!
Y(k3; ! 3)ULG(K; ! )S1 (k4! 4)
6.46
y : 2z (6.46)
s = I gsa Y(ky;! 1)S1G(K; 1)UL (k2! 2)
s:u 1234 k;!
Y(ks13)S1G( k; 1)UL (Ka;! 4)
(6.47)
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Both matrices appearing in this expression are proportional to each otherbut not nec-
essarily to either S or U. Therefore, this represents corrections to a couplingyy that is
proportional to gsgu.

Putting all of these contributions together, we nd that the renormali zed coupling con-
stants are, to second order,

NI . XX @ a2
g(C+d)=g()+d Aijk OOk a 3€,t€° (6.48)
ik a=1
This may be rewritten as a di erential equation, which is the key result of this chapter,
dg X X .
d‘%‘ = Ai(ji) Gk a 3€;t€% (6.49)
ik a=1

We now wish to determine the values of the coe cients, Ai(ji). We will break these down
into contributions from each of the ve diagrams considered:

AR = AR+ AR 2+3)+ AR @)+ AR (5): (6.50)
The contribution from the rst diagram may readily be read o from our expr ession for
Sflz) (1). Since it represents a contribution to a couplingg; that is proportional to itself
squared, the only non-zero values oAi(ji) (1) are those for whichi = j = k; these values are,

letting S1 i(l),

= m
AT = 38 TP aL)Pog (6.51)

AG= (1)

T P10 TP s a)A T P10+ T P 2100
(6.52)

In these expressions, the top signs correspond to the rst numbemi the superscript on the
left-hand side, while the bottom corresponds to the second.

To nd the contribution from the second and third diagrams, we take advantage of the
fact that all of the terms generated from U1G(k;! )S1G(k;! )U1 are proportional to S1.
Using the fact that Tr( (™ j(”)) =8 j mn and letting S1= ® andU1= j(m), wherem

runs over all matrices in representationj , we nd that the only non-zero values ofAi(ji) (2+3)
are

i
1=2 1 1 1 m
AP+ = g P ™ TP el P sl (Meg (6.53)
m=1
3=4 X 1) (m 1 m 1) (m 1 m
Ai(ij_)(2+3) = i [Tr(i()j()llli()lllj()) Tr(i()J-()311i()3llj())
m=1
m
LG R P R AP I L R (G Y T B R N

(6.54)
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where m; is the total number of matrices in representationj .
Finally, we turn our attention to the contributions from the fourth and fth diagrams.

To nd Ai(ji) (4) and Ai(ji) (5), we use similar observations as before. If we lev1 = (Y,
s= ™M, andu= ", we obtain
X X
1=2 1 1
A(kij '@ = & [ O™ Myme @My
m=1 n=1
1 1 m
@™ el Mm@ st (Mg (6.55)
i R
3=4 1 1
AGY@ = m( @ ™M1 1 Oy @ Mg 1 M)
:an:1 n=1 1
Tr( (k) m 51 j(n))Tl'( (k) j(n) 3 11 (™)
1 1
(& ™11 Myme P W11 (M)
m
£ TP Mg o1 TP a1 My (6.56)
and
X X
1=2 1 1 m
A (6) = g i ™ M2 @™ s j(n))]zg4—;(6.57)
m=1 n=1
(3=4) — 1 XX (1) (m) (nNy12 (1) (m) (nN)y12
A ") = 25 HLQOR R REE B ) L L G I E B |
m=1 n=1
m
(™1 21 P+ P ™ s a1 (V)P (6.58)

6.4 Solution of the RG equations

In general, the ow equations, given by Equation (6.49, describe two competing ten-
dencies. The term proportional to gj g« tends to cause an increase of the absolute value of
the coupling constants as' increases, while the functions tend to zero as’ increases due
to the increase of their arguments ze and te? . Numerical analysis of the ow equations
reveals that, for xed values of the initial couplings and for a su cient ly large value of the
initial temperature t, there is a certain value of where the ow becomes stagnant and
the coupling constantsg tend to nite values as’ ! 1 . Therefore, if the initial couplings
are small, they remain small as long as the initial temperature is su ciently large even as
all of the modes are integrated out. In this regime weak-coupling RG is eitely justi ed.
Lowering the initial temperature, while keeping the initial couplings xed, causes an in-
crease of the value of the RG parameter where the coupling constants stop owing and an
increase in the limiting value of the coupling constants. At a critical initial temperature tc,
the coupling constantsg; diverge as™ ! 1 . For an initial temperature t <t , the coupling
constants diverge at nite .

The role of trigonal warping is to cause additional suppression of the in@ase of the
absolute value of the coupling constants. Thus, for xed initial values of the coupling
constants and for su ciently large initial vz, the g's do not diverge even att = 0.
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Therefore, as stated previously $1], for xed initial vz, a critical value of the initial
coupling(s) must be exceeded for a runaway ow of the coupling consint(s), which we
associate with a phase transition, to occur.

In order to understand the nature of the possible ordering tendenas, we must rst
analyze the asymptotic behavior of the Equations 6.49 whent = tc > Oand "~ ! 1
Provided that at least one coupling g- diverges, we are able to enumerateall possible
solutions for the stable \rays" along which ratios with the other couplings gj=g tend to
constants. The detailed analysis of these solutions is given in the néxhapter. Along such
a stable ray, all nine di erential equations \collapse™" onto one, namely

dg ,e 2

i Amn9 ;as 11 (6.59)

g + i
Here, and in the remainder of this work, if an index is in parenthesesd.g., (r)), then there
is no automatic summation over r unless explicitly stated. The coe cient A, depends
on the stable ray along which the couplings diverge and A::" denotes terms which vanish
faster than e 2. Combining the asymptotic behavior of the functionsas *!1 , given
by Equations (6.43 and (6.44), and Equation (6.49), the coe cient may be expressed as

XX X
- (@ (r) (r).
j=1 k=1 a=1
where the j(r) = gj=¢ is the ratio of two couplings along the stable ray. The solution of
di erential equation ( 6.59) is
4t -
gr(‘)=A°e2+:::; as " 11 (6.61)

(r)

where \:::" denotes terms which are smaller thane? as ! 1
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CHAPTER 7

DETERMINATION OF THE LEADING
INSTABILITIES

Having derived the RG equations for the coupling constants in the pregious chapter, we
now turn our attention to using those results to determine the leadng instabilities in our
system [39].

7.1 RG ows of source terms

The rst step in our analysis is to introduce symmetry-breaking source terms into the
action,

382 x Z .
s - pr 1 k(2 )2 Y(k;1)OoD (k;1)
6 1')( Z .
s 30 PET @@ )? Y1OD (ki N)+ce  (70)

We may think of these terms as \forces" that couple to various observable, which acquire
non-zero averages whenever the system enters the appropriate phade the rst sum, the
matrix O0) runs over all SU(8) generators; however, the coe cient " is the same for all
three components of any \spin” order; i.e., the coe cientfor ; jsy, i jSy,and ; js;isthe
same for xedi andj. In the second sum,0() runs only over antisymmetric SU(8) genera-
tors, of which there are 16. This is required due to the anticommutingnature of Grassman
elds. We may see this by noting that, if we expand the matrix product appearing in
the sum, we obtain  (k;!)O"  (k;1); this is equivalent o (k;! )(O)T  (k;1),
or  Y(k;!)(OM)T (k;!). Note that only 18 of the 32 particle-hole source terms intro-
duced are symmetry-inequivalent. Similarly, only 9 of the 16 partide-particle source terms
are inequivalent. The transformation properties of the former under the various symmetry
group operations are summarized in Table7.1, and illustrations of the associated phases
are shown in Figures7.1 and 7.2. Similar illustrations appear in Figure 2 of Reference {8],
but the notation used for the phases is di erent. We will see later that only two of the
particle-particle, or superconducting, orders can appear, namely theA;4 and A, orders.
These correspond tos.: - and s; -wave superconducting orders, respectively. Both are
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Table 7.1: Table of all particle-hole phases considered, listed accordinto what
representation of the Dzq point group they transform, along with how they trans-
form under translations (R), time reversal (T), inversions (i), and mirror re ections
( q)- The Kekuk and density waves have a wave vector oK .

| Grouprep. [R[T [ i | d \ \
Ajgcharge |+ |+ | e e Charge instability
Aoy charge | + e o] Anomalous quantum Hall [74, 58]
Egcharge |+ |+ | e elo Nematic [51, 67]
A1, charge | + 0 o] Loop current [75]
Ap, charge |+ |+ | © e Layer-polarized [55, 57]
E, charge | + o] ole Loop current Il (ME2)
A1k charge + | elo elo Kekuk [ 76]
Aok charge ole elo Kekuk current
Ek charge + | elo | (e/o)/(ole) Charge density wave
Aig spin | + e e Ferromagnetic
Agg spin | + | + e o] Quantum spin Hall [40, 77, 68]
Eg spin + e elo Spin nematic
Ay, spin |+ |+ | 0 o] Staggered spin current
Ao, spin | + o] e Layer AF [42, 46, 73]
E, spin + |+ | o ole Loop spin current Il
A1k spin elo elo Spin Kekue
Aok spin + | ole elo Spin Kekuk current
Ek spin elo | (e/o)/(ole) Spin density wave

s-wave, but the s, order parameter has the same sign on both layers, while the, order
has opposite signhs on each layer.

We now determine how the coe cients of the source terms ow unde RG. If we employ
the same procedure used in the previous chapter, we nd from the st-order term in
the cumulant expansion that the engineering scaling dimension for th source terms is 2;
i.e., at \tree level", the source terms acquire a coe cient of € upon performing the
RG transformation. At second order, the terms that contribute to the r enormalization of
the source terms are the cross terms between the source terms andetlinteraction terms.
By going to second order, we are assuming that the source term coe ciets iph:pp are
small. Since these terms were introduced as a calculational devide help us determine
the susceptibilities of the system to the corresponding ordersand will be taken to zero at
the end of the calculation, we feel that this assumption, and thereforegoing only to second
order, is justi ed. These contributions are represented by the dagrams in Figure 7.3.

Following a similar procedure to that used in the previous chapter we nd that the
particle-hole source term corrections give us
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Figure 7.1: lllustration of the charge orders listed in Table 7.1, labeled by the
representation that the order transforms under. The lower layer ) is indicated
by black circles, while the upper layer ) is indicated by red squares. A+ ( ) sign
indicates an increased (decreased) charge density at the given sit&olid lines with
arrows indicate current ows, with the arrows specifying their direction. A thick
black line indicates an enhanced hopping integral over the given bond.Finally,
the dashed green arrows in the translational symmetry-breaking case 1k , Ak ,
and Ek ) give the primitive lattice vectors for the lattice of \supercells" formed.

X X Z< 2> _
Spn = €4 PRgs T G(k;! YO G(k;!)S1] Y(K®! 9s1 (K%1 9
00 _ki
‘ i XS < S .
e PRgs Y(k%19s1G(k;! )ONG(Kk;!1)S1 (k&1 9: (7.2)
s koo k!

Again, we useS to represent the SU(4) generators to maintain consistency with the notation
in Figure 7.3. In the rst term, the trace will only be nonzero if S1 = O, and, in the
second term, the matrix appearing in the expression is proportional toO{). Therefore, we
see that di erent source terms are not mixed to this order. Note that the rst term is only
nonzero if OW) represents a charge order, and vanishes for spin orders.
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Figure 7.2: lllustration of the spin orders listed in Table 7.1, labeled by the repre-
sentation that the order transforms under. The notation is the same as in kgure
7.1, with the following exceptions. A small arrow pointing up (down) indicates
an overall up (down) spin polarization of the electrons on a given site, bnd, or
current ow. A dashed black line indicates a reduced hopping inteyral over the

given bond.

The correction to the particle-particle source term is

X6 X Z< 2> |
Sp= 3€° PPgs e (k%1951 Ok:1) (ST ( k@ 19+cc; (7.3)
i=1 S ! !

where _ _
O(k;1)= G(k;1)OD[G( k; 1)) (7.4)

For similar reasons as above, the product of ve matrices appearing in tis expression is
proportional to O, and therefore di erent source terms are not mixed to this order. Al

note that the 8 8 matrix O() must be completely antisymmetric.
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Figure 7.3: (a) Diagrams representing contributions to the renormalizaton of the
particle-hole source terms. All lines are as in Figure6.l. In addition, the wavy

lines represent the source terms. (b) Diagram representing conitoutions to the
renormalization of the particle-particle source terms.

If we combine these results, we nd that the RG equations for the souce terms are

din P X X C
5 L = 2+ Biﬁa)gj( ) a 3€;te? ; (7.5)
j=1 a=1
din PP X0 x4 .
T L= 2+ Biﬁa)gj( ) a 3e;te? ; (7.6)
j=1 a=1

Following a similar procedure used to obtain the coe cients Ai(ji) in Equation (6.49, we
determine the coe cients Bi(ja) and Bﬁa). We nd that

Bj” = B{* (1) + B(2); (7.7)
where
(1=2) X i (n) i (M)y, M
Bj “(1) = 2 [Tr(0® i) Tr( 31,00 3y )]T’ (7.8)
n=1
- X _ :
B = L m@ 1200131 M) (31100 5 11 M)
n=1
T2 21001 51 M)+ Tr( 5 2100 5 51 }”))]%; (7.9)
(1=2) , X ) (n)y2 i (n) - My M
B 7@ = {5 fT(OY )% T(0® ¥ 31,00 514 (VYo (7.10)
n=1
- X . . . .
BPP@ = & [mo® M1,31001 1 M) mo® M5 100 5 11 M)
n=1

. . . ) m
(00 |71 21001 51 M)+ Tr( 0V [V 5 21000 5 51 M)
(7.11)
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Here, the \arguments" have the same meaning as before, but with respédo Figure 7.3.
The values ofBi(ja) are

_ X . _ . . m
By 0 = 4 f1{o® ol )T To® [ 3100 su( V) e, (7.12)
n=1
_ X _ _ . :
B = L fmo® M1 11001 53¢ ™)1 mo® M5 1100 5 11 (M)
n=1
OO (M1 51001 ,1( (M) TOO 5 5100 5 H1( (V)5
(7.13)
Note that Equations (7.5) and (7.6) can be readily integrated, and we nd that
h=pp - h= ‘ h=pp,~
PPy = PPP(0)€? expl PO (7.14)
where
o4 o
ey = B d% (9 4 se’ite?” (7.15)
j=1 a=1 0
PP~ x X (a)Z‘ “0p 0,20
j=1 a=1 0

Att=1t.>0,as !1 thee? increase of a divergent couplingg, exactly balances the
e 2 decrease of the functions and the right hand sides of the above equatios tend to
constants,

ph
din ™" By .
- = 2+ —~ as 1 ;
d A(r)
din PP 2B
= 2 A;(;) as 11 (7.17)
r

In other words, the engineering dimensions of the source terms, wth are equal to 2, are
corrected by the anomalous dimensions

i

ph=pp _ —Ti(r (7.18)
' A

due to the electron-electron interactions. In the above equation, lhere is no summation over

r, which corresponds to the divergent couplingg, that we divided by. The values of the B's

are

2
BY, = 2 (BY+BY)"; (7.19)
k=1
pp X a0, 5@ 0.
Biry = 2 (B’ + By’) s (7.20)
k=1

69



where B2 s given by the sum of Egs. 7.8) and (7.10) and B2 is given by (7.12).
Note that the expressions forA ,y and B?rh):pp depend on the choice ofy, but the P"™"'s
do not.

7.2 Determination of susceptibility exponents

In order to calculate the physical susceptibility towards various orering tendencies, we
calculate the correction to the free energy due to the presence of thsymmetry breaking
source terms [8]. Recall that, in our derivation of the RG equations, we were dropping
terms that contained only \fast" modes, since they did not renormalize any terms in the
action. These terms, in fact, are contributions to the free energy of he system. Upon
integrating out \fast" modes, our partition function becomes

z

Z=27Z- D[ .; <]e S (7.21)
Recall that the free energy is related to the partition function by
1
F= =Inz (7.22)

This means that we may build up the free energy by simply adding togeher contributions
from the shells of \fast” modes as we integrate them out. Each of these conbutions is
given by, to second order in a cumulant expansion,

1
> S2 N RIS (7.23)

dF() = EhS>i0;>
where S, represents the terms in the action that contain only \fast" modes.

For our purposes, we are only interested in corrections to the free amngy due to the
presence of the source terms, and thus we will only consider contriiions that contain
these terms. The lowest-order terms of interest are of second-ordéerm in the cumulant
expansion. The only contributions that we obtain will be from the particle-hole terms
squared and from the particle-particle terms times their conjugates We may also appear to
obtain terms from the source terms times the interaction terms, butthese will be \two-loop"
terms; i.e., we will obtain two integrals over the momenta of \fast" modes, so that these
terms are of order @)2. The second-order contribution is thus

Z 7z b |
8% goc pn jph Y(ka;! 1)OW (ka;! 1)
o ki'1 ka!2 i =1
y -1 () -
(k2;!12)OV7 (k2! 2) -
Z Z % D .
(™ P (k! DOW (kg 1)
() E
ko; 15)O ko:! :
( ka2 12) (k2;! 2) 0C

+
=

kil'1 kol 2 i =1

(7.24)
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Using Wick's theorem to evaluate the averages, we obtain

SE 0;>,C
N X2 z | .
= e 2(2)%(0) PP T G(k;1)0MG(k; 1))
i = k!
X 2 _ |
+ 3e 7@2)0 (P P TGN (k1)oWG( k; 1)ol)]
i = k!
X 2 _ |
26 P2y O () P TEH(kHOVG( ki 1))
ij =1 :

(7.25)

We thus appear to have obtained a divergent term, due to the Dirac ddh function. However,
note that we have been working in the thermodynamic limit; i.e., we have been taking the
system size to be in nite. This allowed us to rewrite sums overmomenta as integrals. In
reality, the system only has a nite size. If we did not take the thermodynamic limit, then

the integrals on k would have become sums,

z d2k iX

(2)2' |_2k’

(7.26)

where L is a linear dimension of our system (say, the length of the side of a sque if the
system has a square shape) and the Dirac delta functions would becomeréhecker delta
functions,

(2 )2 () L? . (7.27)

Imagine that we performed our RG procedure on the action written in terms of sums on
momenta rather than integrals. Due to the fact that ky and ky are quantized in integral

multiples of 2-, our rescaling of the momenta would have changed the spacing of thle

points. We can restore the original spacing by rescaling. as well. In fact, the rescaling
that would have been required isL°= Le 9. Deriving a di erential equation to describe

the evolution of L as we integrate out modes and solving it would then lead to the functional
dependence ol on >, L() = L(C =0)e . In this spirit, we will replace all occurrences of
the in nite expression, (2 )2 (0), with L2e 2. Our expression for the second-order term
in the cumulant expansion thus becomes

®e 2 | j
S P TG )oYe(k: )00

|
—

N
(¢

N

%6 z

+ogLfet () TGNH(kHOVG( ki 1)0V]

W6 z

il () 7 TENH(kHOVG( ki 1))

(7.28)
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We may now use Equation 6.31) to evaluate the integrals over momenta and sums over
frequencies. We see that the only non-zero terms in the above exgssion, given that all
of the matrices OU) are either symmetric or antisymmetric, are those for whichi = j.
Furthermore, note that the last two terms only di er by the replacem ent of OU) with its
transpose. Therefore, these two terms are in fact identical, and adddgether.

What we have just calculated is, in fact, only the contribution to the free energy from
one \shell". In order to determine the total free energy change due to tle source terms,
which we denote by f (), we simply add together the contributions from all shells. The
free energy thus reduces to an integral over:

%2 2 XA
m . N . N .
fO = 5 de *[ 'O & a(seite?)
i:k 0 a=1
e X o
16 de *j PC)j Qﬁ a( ze;te”): (7.29)
i=1 O a=1
The coe cients are
Py = 8 (0 31,)%; (7.30)
e = %fTr[( o®1 11)?] TH( o® 5 11)?
(01 ,1)2+ Tr[( 0D 3 ,1)?]g: (7.31)
and
i = 8 TH(0W 3107 (7.32)
o = 3T _O“)l 11?1 Tr( _0(” 3 11)?]
(oW1 1) T(0M 5 ,1)g: (7.33)

The susceptibilities are then simply given by second derivative of the free energy with
respect to the bare values of the appropriate source terms,

ph  _ @f .
! @ ™M =02
o & ) & _
T @Re (=02 @m P(=0)?

(7.34)

(7.35)

Using Equations (7.14) and (7.29, we nd that the susceptibilities given above may be
written as

Z
ph=pp _ M ) phepp = o o PP ) a2y
f = deci a( 3e ;te ) (736)

i 8 - aji 0

Note that the source terms, f’thp(‘ = 0), being auxiliary elds, do not appear.
Any divergence in the susceptibilities has to come from the regions dérge * in Equation

(7.29 where the asymptotic expressions derived earlier hold. Therefar, since, fort = t; > 0,
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the asymptotic behavior of the functions is e 2, the condition for the divergence of a
susceptibility in a particle-hole or particle-particle channel i is

h= .
e (7.37)

Next, we will relate the anomalous dimensions of the source termsiph:pp to the suscep-

tibility exponents PP
For t >t ¢, but su ciently close to tc, the asymptotic behavior of the coupling constants
is still approximately described by Equation (6.59). If we integrate it from "o to °, both
of which are asymptotically large (and temperature independent), butnot in nite, then we
nd
1 1 A o 20
o () o (ort) 4t

At tc we have Eg (To;tc) = A)e Zo=4t. and we can write the above equation as

e? (7.38)

1 1 1

- = \ . 7.39
o) gCoD a(otd (7:39)
11 Angz2, Ao, 2,
t tc 4 4t
Since g is nite, g ("o;t) is analytic in t at tc and can be expanded as
Ny Ny @ ..
gr( 0, t) gr( 0, tC) + ( t tC)igl’( 0, t) + 1l 1 (740)
@ te
where \:::" represents terms of order ¢ t¢)2 and higher. Therefore
. 1 . +
o(;t) A -, as 11 ;t!otg (7.412)
Gt to)+ —te ?
where
1 A .
c @ + g 20, (7.42)

@gr(\o;t) te 4'[5

Note that ¢;Ay > 0 sinceg ("o;t) increases in magnitude as ! tg.

The ow of the source terms at large™ at t >t . is determined by substituting the above
result into Equations (7.5) and (7.6) and taking the asymptotic limit of the functions at
large *:

ph .
din P 94 Bi e? -
S d 2t A p 2 (7.43)
G(t to)+ —e
pp .
din PP 94 Bi(r) e ? _ 744
d B 2t A g 2o (7.44)
G(t to)+ e
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Integrating from "¢ to ~ and substituting to Equation (7.29, we nd that the singular
contribution to the susceptibility for the symmetry breaking source term ; is

= ph=pp
PREPP (1 o) (7.45)

where - -
i|o =pp _ I|o =P . (7.46)

Clearly, the susceptibility for a particular order diverges if the condition given in Equation
(7.37) is satis ed. Note that only if PP =2 do the susceptibility exponents acquire their
mean- eld values. This is in general not the case here, as will be elabated on in the next
section.

It is also important to stress that these exponents are obtained withh the one-loop
approximation of the fermionic theory and are therefore not expected to be accurate. They
are also not expected to be equal to the one-loop exponents obtained wih an -expansion
of the corresponding bosonic theory, with the Landau functional for the orcering eld. The
ultimate critical behavior is determined by the universality cl ass of such a bosonic theory.
As an example, the nite temperature phase transition into the nematic state belongs to the
two dimensional 3-state Potts model p1] universality class for which the exponent = 13=9
(see Reference?(]). However, within our one-loop fermionic RG treatment, does not
exceed 23. Nevertheless, the exponents calculated within the present appximation give
us important information about the physical character of the dominant ordering tendency,
without any a priori bias towards any given order.

7.3 Determination of xed ratios and leading instabilities

We are now ready to determine the possible leading instabilitieshiat may appear in our
system. To do this, we look at what happens to the couplings and suscépilities at large
*. This allows us to enumerate all the possible phases regardless of titial interactions.

Previously, we discussed the asymptotic behaviour of the RG equatins att = t; > O.
We know that at least one coupling will diverge asg, (") €?. We divide all the other
couplings by that particular coupling and nd the  functions for the ratios, j(r) = g =4,
to be

d ™ 9 Qg X o
&= =e) 00 AR AR aseie?) e
r kil
Here, a dot over a coupling constant represents a derivative with rgpect to . In the large
* limit, these equations become

X 2

) _ 8l (r) () @ @ .

+ T A Ko A A i (7.48)
(r) k:l

jki
a=1

We now ask if these equations have any xed points, or, in our terminology xed rays.
These are obtained by demanding that the right hand sides of all 8 equatios (7.48) are
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simultaneously equal to zero. After nding the xed rays, we need to determine whether
each ray is stable, unstable, or mixed by analyzing eigenvalues of theability matrix Sy =

@_ﬁr):@f(r). SinceA (y is already de ned in Equation (6.60) in terms of the ratios, the entire
stability matrix has well-de ned eigenvalues for each \ xed ray" solu tion. In addition, the
sign of A,y determines the sign of the diverging coupling that we divide the otters by; see
Equation (6.59).

If we nd that a ray is stable, then, if we start with the coupling con stants su ciently
close to the xed ray, then the ratios of the couplings approach the givenset of values
as  !'1 . Such a ow leads to a divergent susceptibility in at least one chanel. If a
ray is mixed or unstable, then, in the absence of ne-tuning, the RG ow cannot take the
couplings toward such a ratio; even if the ow starts in such a direcion for small °, it will be
redirected toward some other ray that is stable. We therefore conclde that all the solutions
that have even one positive eigenvalue in their stability matrix are physically irrelevant. It
is possible that some rays are marginal in certain directions, meaninghiat some of the
eigenvalues of the stability matrix are zero, and stable in others. We doin fact, nd such
physically relevant solutions.

Following the procedure described above for all possible choicesthie divergent coupling,
we nd that the stable solutions of the RG ow are situated either on a manifold that we
call the \target plane” or on one of four isolated xed rays. The \target plane" r epresents
a set of stable rays that are marginal in two directions and stable in six ohers. The target
plane and the phases corresponding to each point within are shown in Bure 7.4. We
parameterize the plane in the following way. We choose as our parameterthe following
two coupling constant ratios:

x = lim % (7.49)
1 GEg t=t,
y = lim %« (7.50)

Since, for certain xed rays, ge, and/or gg, diverge, while ge, does not, these parameters
take values in the interval (1 ;1 ), including in nite values. With the chosen parameter-
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ization, we express each coupling at largé as

gAlg _ . — (1+ X+2y)2 Ny .
~ - 01 - —G 1
G0) o, Pu T cky) oV
(7.51)
201+ X +2y) _ . a2
= G ; " = G :
gEg t:tc C(X,y) ( ) gAl t:tc C(X,y) ( )
(7.52)
ax . 2X(L+ x+2y) .
= G : " = G ;
(7.53)
axy . 4y .
G(); = G();
P TS O BT oy O
(7.54)
2y(1+ x+2y) .
Oe = : G();
« t=1t¢ C(X’y)
(7.55)

where C(x y) is a square root of a quartic polynomial and the \overall" coupling G(*) =

le gj2 is a positive de nite function of ~ that diverges as™ ! 1 . The expression for

C(x;y) can be readily obtained from the de nition of G(°), but is unwieldly, and thus we
do not include it here. The ratios of any two couplings at large™ depend only onx andy,
although sometimes these ratios may be in nite.

The values of j(r) = g=g are readily obtained from (7.50{( 7.55. Without loss of
generality we now setg, = gg, in Equation (6.59. We obtain

3+2x+3x%+4y+4xy +8y’m
1+ x+2y 4

A(Eg) = (756)
We may obtain B;; (g ) from Egs. (7.19 and (7.20. We can now determine the anomalous
dimensions of the symmetry-breaking source terms de ned in Equabn (7.18). Remarkably,
we see that the anomalous dimensions are continuous functions of the twoapameters x
and y. For each point in the target plane, we determine the phases for which; > 1, i.e.,
the inequality Equation ( 7.37) holds. If more than one phase satis es this inequality, then
we list all such phases regardless of the value of.

We are, in fact, able to determine the region inside which a given suptibility diverges
analytically. The boundaries of these regions are de ned by the sign of th susceptibility
exponent i, as given by Equation (7.46), for a given phase; whenever it is positive, the
susceptibility diverges, and an instability towards the correspording phase is present. The
value of A(g, is given by Equation (7.56. We may obtain B;, g, from Egs. (7.19 and

(7.20) and from the coupling constant ratios i(Eg)

of this, all of the ; will have the form,

given in Equations (7.50){( 7.55. Because

Qi(x;y)
3+2x+3x2+4y+4xy+8y2'

(7.57)
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where Q;(x; y) is an inhomogeneous quadratic function ok andy. The denominator of this
expression is positive de nite, so that the sign of the exponent is dtermined entirely by
Qi(x;y). Our condition that ; be positive thus requires that Qi(x;y) > 0. We therefore
see that the phase boundaries, given b@;(x;y) = 0, are all conic sections.

As discussed before, whenever two or more susceptibilities dikge, we cannot decide
within our RG framework if the system chooses only one of these phases drthere is a
coexistence. The resulting list of phases towards which our sysm is unstable is shown in
Figure 7.4. We now describe the properties of these phases:

a) Nematic (N):  The nematic state is gapless, but it reconstructs the low-energy sgc-
trum such that two out of four Dirac cones in each valley become gapped. Théwo
massless Dirac cones are slightly displaced from the K points, with the size of the
displacement given by the magnitude of the order parameter and the diretion of the
displacement by its direction.

b) Layer antiferromagnet (AF): In this state the magnetization on each undimerized
site is nite, with the magnetization within one layer pointing in on e direction, and
that in the other layer in the opposite direction.

c) Layer-polarized state (LP): In this phase, which is gapped, there is an imbalance of
the electron occupation number between the two layers. One layeis more occupied

and the opposite layer is equally less occupied with respect to # symmetric, high-
temperature, state.

d) Quantum spin Hall state (QSH): In this state, which is gapped, there is a spin
current around each plaquette circulating in the same direction in loth layers.

e) s++ superconductor ( ss+ SC): This state opens a superconducting gap in both lay-
ers with the same sign on each layer.

f) Kekué current phase (KC): This phase breaks lattice translational symmetry and
time-reversal symmetry. In this phase a supercell, consistingf three regular unit
cells, is formed. Within the supercell, two plaquettes carry a arculating current, both
in the same direction. This phase is gapped.

g) Magnetoelectric phase (ME2): The order parameter for this phase transforms ac-
cording to the E, charge representation. In this phase, currents forming a bow-tie
pattern within a plaquette appear. Like the nematic phase, this phases gapless, but
it reconstructs the low lying spectrum by lifting two of the four Dirac cones.

h) Kekué state (K): In this phase, a supercell made of three unit cells is formed, much
like the Kekuke current phase. The dierence is that, in this p hase, there are no
currents. Instead, there is a modi cation of the hopping integrals ach that the
hoppings in one unit cell are unchanged, while, in the two other unit ells, the hoppings
on alternating bonds are changed 76]. The phase is gapped.

i) Staggered spin current state (SSC): This phase is characterized by circulating spin
currents in each plaquette owing in opposite directions in each lger. This phase
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is not gapped, corresponds to a compensated semimetal, and the order parater
belongs to the A1, spin representation.

i) s+ superconducting state ( s+ SC): Since a particle-particle susceptibility diverges
in this case, a superconducting gap opens on both layers. The gaps are,wever, not
independent; they have opposite signs. The order parameter of thishmase is a (charge
2) Ay spin singlet.

Strictly speaking, when either x or y becomes in nite or they satisfy 1+ x+2y =0, we
are not allowed to divide by ge, as this coupling is not divergent. It shows up in Equation
(7.56) as a divergentA . Instead, these cases are explored by dividing by some other
coupling. We follow the same procedure as described above in the castere we divided
by ge,. Interestingly, since both Ag ) and B, diverge in the same way, the i's are
independent of the choice of the coupling that we divide by.

In addition to the target plane, we also nd the following four isolated stable xed
points.

R1:
jim S o g
OBy t=t,
Iim 3 = 186 Ay (7.58)
1 Oeg t=t,

with ge,(" !'1 ) > 0. In this case, only the ferromagnetic A4 spin) susceptibility
diverges.

Ro:

lim 9 = 0 8 6 Ay, (7.59)
"1 gAZg t=tc

and ga,, (" ' 1 ) < 0. The only divergent susceptibility in this case is towards the
anomalous quantum Hall state [/4] (Axg charge). Here, charge currents circulate in
each layer pg], and in the same direction in both layers.

Jim 9 = 0 86 A (7.60)
1 Oay, t=t¢

andga,, (" !'1 ) < 0. This yields a loop current order [/5], or \orbital antiferromag-
net" (Ay, charge). Like the above phase, there are charge currents circulatingiieach
layer, but in opposite directions. Note that the order parameter, 31, can be thought
of as a chemical potential shift with opposite signs in each valley. Thezfore, at weak
coupling, this phase corresponds to a compensated semimetal with ekeon and hole
pockets.

78



R4Z

Iim 9 = 0 8j 6 Ay (7.61)
o OAyg t=t,

with ga,, (" !'1 ) < 0. Although we would intuitively expect this xed point to favor
a superconducting state, we nd no particle-particle susceptillites diverging. Only
the A1g charge susceptibility, or equivalently the electronic compresdiility, diverges.
Therefore, we conclude that the system enters a phase segregated stat

For a graphical illustration of some of these phases, see Figurésl and 7.2
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Figure 7.4: A plot of all of the phases found in the xed plane described by
Equations (7.5D{( 7.55. We nd nematic (N, Eg charge), Kekue (K, Ak charge),
spontaneous current, or magnetoelectric (ME2,E,, charge), layer-polarized (LP,
Ay, charge), Kekuk current (KC, Aok charge), staggered spin current (SSCA 1,
spin), antiferromagnetic (AF, Ay spin), quantum spin Hall (QSH, Ayg spin), Si+
superconductor S++ SC, Aig singlet), and s. superconductor 6+ SC, Ay,
singlet) states. In addition to this xed plane, we also nd four isolat ed xed
points, which are described in the text.
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CHAPTER 8

LEADING INSTABILITIES AS A FUNCTION
OF INTERACTION RANGE

Having determined all of the possible instabilities that may be exfibited by our system, we
now specialize to the case of nite-range density-density interatons [40)].

8.1 Relation of coupling constants to a microscopic
nite-range interaction

Our rst step is to go back to our original microscopic Hamiltonian, Equation (5.1) and
introduce density-density interaction terms,

(XX X X . .
H= 2 Vi(r r9ne(r)  1me(r9 1]+ Vi(0) e (r)  inis(r) 21 (8.2)
k=1r6r0 k=1 r

X
H? = Vo(r r9lma(r)  1ha(r9 11 (82)
0
Here, r runs over all projections of the position vectors of the lattice sitesonto the plane
of the sample, and thus is entirelyr_ip the xy plane. ¢ (r) is the annihilation operator
for a particle at site r, and ng(r) = c{ (r)ce (r). The interaction V(r) is assumed to
depend only on distance, i.e.V(r) = V(jrj). For convenience, we introduced the notation
Vi(r) = V(r) and V> (r) = V(r c2), wherec 3.7 A is the distance between the two
layers. The system represented by these terms plus Equation5(1) will be at half lling
when the chemical potential is zero. This follows from the fact that the Hamiltonian is
invariant under the particle-hole transformation,

ap (r) = & (r); (8.3)
ap (r) = & () (8.4)
by (r) = B (r); (8.5)
b (r) = B (r): (8.6)
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Using this, the calculated expectation value of the particle number ona given site can be
shown to be 1.

To determine the low-energy theory associated with this Hamiltonian we rst write it
in coherent-state path integral form. For now, we will ignore the e ects of trigonal warping,
so that 3 =0. We then integrate out the a elds in a cumulant expansion, using the term
in the action corresponding to the HZ term as the \bare" action. We go to rst order in
the interaction terms and second order only to generate the \kinetic" term. Note that, by
doing this, we are working under the assumption that the interaction V (r) may be treated
as weak. After performing this integration, we obtain

@ .
Le N bV(R@b(R, )

2 X

+fi b, R+ ; (R ; )+b (R ; ) (R+; )
R;; ¢
1X2 X k 1. 0 k 1.

+ 3 V(R ROMp(R+( D¢ 1 Inp(RO%+( 1 15 )
k=1 R6 RO

2npk(R +( 1) 15 )]
X2 X
+  3V(0) Mo (R+( 115 Inpw(R+( 1 15 )

k=1 R
%(nbk(R'*'( ko
+ Vo(R R%42)nu(R+ 5 np(R® 5 ) nu(R+ ;) np(R® ; );
RR 0
(8.7)

wherenp (R; )= b (R; )b (R; )and nw(R; )= P Nk (R; ). We now obtain the
low-energy theory by performing a Fourier transform with respect to position,
1 X .
h (R )= p== b (ki ek’ (8.8)
uc Kk
and expanding the result around the K points, similarly to how we found the low-energy
theory in the non-interacting case. If we do this, we nd that the r st two terms of Equation
(8.7), which are the \kinetic" terms of the theory, become identical to t he low-energy theory
derived before in the case thatvz = 0. We now turn our attention to the interaction terms.
As an example, let us consider the quartic part of the interlayer intgaction,
X

V2(R R%2 )ny(R+ ; Ine(R® ;) (8.9)
RR 0
Let us de ne
Vo, ()= Vo (r+ ) (8.10)
and its Fourier transform,
1 X .
Vo (= po= Vo, (@) (8.12)
uc



We also note that, because the above quartic interaction term does notepend on our choice
of , we could just as well write it as an average of the same term over all podse choices:
X X

3 V2(R R%2 )nyw(R+ 5 Inp(R® ;) (8.12)

RR 0

If we now introduce the Fourier transform of V,. de ned above, as well as the transforms

for npk(R), X

1
Nok(d; ) = P b (ki )b (k+ag+G; ), (8.13)
U ke
where G is a reciprocal lattice vector, and sum overR and R we obtain
" #
P X X
3 Nuc Voo (@) np( 95 )nee(q; ): (8.14)

q

We now impose a low-energy cuto ; i.e., we restrictq to reside near K. We may do this

in Equation (8.13) by restricting q so that k and k + g+ G both reside near one of the K

points. This is possible ifq is close to 0 or 2K . We may write these in terms of the elds
(k; ) as

1 X
no(di )= Po—= Yk M) (k+ g+ G ); (8.15)
U kG
1 X (O\T
Npk(2K +q; ) = P Y(k; M) (k+a+ G ) (8.16)
e
and
1 X (b)
np( 2K +q; )= P Yk; WM, (k+qg+G; ): (8.17)
uc k;G

The matrices M (kf) and M (kb) are given in Reference 46], and we repeat them here for

convenience: 2 3 2 3
0 0O 0 00O

(f)=§000g _ (f):§01og _

M § 00 1 1; M 00 0 1p; (8.18)

0 00O 0 001
and 2 3 2 3
0 010 0 00O

(b)zgooogé _ (b):§0002.é ,
0 00O 0 00O

where L in the above expression is the 2 2 identity matrix. We now expand the potential
in the quartic term around these points. We only keep the constant tem because all
higher-order terms are irrelevant under RG. Using Equations 8.15{( 8.17), we obtain, upon

transforming back to position space,

X
f f
Mo ( M ) vm§)
R
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b b
+Voneak (M P )Y )T

b b
ok (Y M )T (M Py, (8.20)
where X
Van=3 Vo(R ) (8.21)
R;
and X
Vomizk =3 V(R )R (8.22)
R;

It may be shown that V; .\:.ok iS zero due to the symmetry of the honeycomb lattice that
the b sites form. Our quartic term is therefore just

X
Vo (M ym )y, (8.23)

R

or, in the continuum limit, .
VoA @R(IME )M P y; (8.24)

Performing this procedure on all terms in the Lagrangian, we nd that the interaction terms
become

Z NG
Lie = 3Aw R Vo "M )2+ vy [ YIM PTT (oM )
k=1
+ (M P IM T g 2
+ VonAwe R(IMP Hwm$y 0 @R Y (8.25)

Note that our theory includes a quadratic, chemical potential-like, term. We may think
of the undetermined constant as being chosen in such a way as to cancel out the quadratic
terms that are generated from the quartic terms under RG. We requirethat this occur
because we know that our original lattice model is at half lling (that is, it possesses
particle-hole symmetry), and therefore this must be re ected in our e ective low-energy
theory as well.

We could, in principle, have also determined the value of 0 when we wrote down the
above e ective low-energy theory. Strictly speaking, we should notsimply drop all of the
modes above the cuto, as we did here, but rather integrate them out ina perturbative
scheme similar to what is done in an RG analysis. This, at rst order, wil not change our
guartic terms because it only generates the tree-level quartic tans. However, it will gen-
erate both tree-level and one-loop contributions to the quadratic tems. It would, however,
be somewhat cumbersome and, given the above particle-hole symmetry guments, equally
unnecessary, to determine these one-loop contributions to the @mical potential.

We can rewrite Equation (8.25) in terms of the SU(8) generators of the form, ; ;1.
Upon doing so, we nd that the only non-zero coupling constants are given by

Ga, = 3(Vio  Voon)Auc (8.26)

% = 3(Mko Von)Auc (8.27)

Oee = 7Viek Auc; (8.28)
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where

Viko = Vik(R); (8.29)
Rx

Von = 3 V(RO (8.30)
R:
X

Viok = Vi(R)cos(K R): (8.31)
R

We note that ga,, and ga,, depend only onq = 0 Fourier components of the interaction,
and thus we may say that they give us a measure of the strength of the forard scattering
induced by said interaction. Likewise, we note thatge, only depends on theq = 2K

Fourier components, and thus it gives us a measure of the strength of thback scattering.
Furthermore, we see thatga,, depends on the di erence between an intra-layer interaction
and an inter-layer interaction, and thus it may be seen as a measure ofhe imbalance
between these two interactions. We will therefore refer toga,,, ga,,, and gg, as forward
scattering, layer imbalance scattering, and back scattering, respeately.

8.2 Determination of leading instabilities

We are now ready to describe the results of our RG analysis. We considévo forms of
the microscopic interaction, which are given by Equations 6.36) and (5.37). In both cases,
we determine our initial couplings by rst using Equations (8.26){( 8.28 to determine the
ratios, da,,=0,, and ge, =th,,, as a function of the range of the interaction. We then
consider di erent values of ga,, to multiply these ratios by; we may therefore think of this
value of ga,, as determining the overall strength of the interaction. We then usethese
couplings as the initial conditions for the RG equations given by Equation(6.49), which we
integrate numerically. The initial energy scale for these equationsd given by the hopping
between dimerized sites, 1, since it is only below this energy scale that our low-energy
theory holds. We then apply the procedure outlined in the previouschapter to determine
the leading instabilities.

8.2.1 Screened Coulomb-like interaction; two-plate case

The rst interaction form that we will consider is a screened Coulomb-like interaction,
with the screening being due to two in nite planar conducting plates, between which the
charge is located (see Figur®.1). Our consideration of this case is motivated by experimen-
tal setups, such as those of the experiments in Reference$d and [6]; in these cases, the
two gates that are present will serve as the conducting plates. As we Wisee shortly, the
interaction will be screened by the presence of the gates, thus reering them nite-ranged,
with the range set by the distance between the gates. This opens up th possibility of
controlling the range of the interaction, and thus what state the systemis unstable to, by
changing the distance between the gates. We will assume that the diahce between the
plates is much larger than the distance between the two layers so #t we may assume that
the particles are exactly halfway between the two plates. If the dstance between the plates
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Figure 8.1: lllustration of the double-gate con guration, which leads to the poten-
tial given by Equation (8.32).

is , then the interaction is given by

X ()

V(I’)Z Uon:1 m

(8.32)

We will now demonstrate that Equation (5.37) is the correct long-range behavior of the
screened Coulomb-like interaction, Equation 8.32). We start by rewriting the sum using

the identity, z,
1
[T P=  due o (8.33)
obtaining
2 Z 1 2(R= )2 )4 2,2
V(R)= p=Up  due ¥ (R=) ( 1)"e "MV (8.34)
0 n=1

We may evaluate the sum in terms of the Jacobi theta function,

b3 .
#a(z;0) = ( g e, (8.35)
n=1
to obtain ) Z,
V(R)= p=Uy  due Y(R=)’#,0;e ): (8.36)
0
We now use the identity,
P aaad )
#4(z;q) - P e(4z + <)=4logq ek(k+1) =logq
logq k=0
cosh w ; (8.37)
logq

86



so that 7
)4 1 1 2R_ 2 k+l_22 2,12

V(R) =4Uq du=e U(R=)%g (k+1=2)% “=u®. (8.38)
k=0 O u

This integral can be evaluated in terms of modi ed Bessel functions othe second kind; the

result is

R R
V(R)=4Uy Ko (2k+1) — : (8.39)
k=0
For large values ofx, the modi ed Bessel function K,(x) can be approximated as
r
Kn(x) & X (8.40)

We see that, in the above sum, the most dominant term forR is the k = 0 term,
since the values of successive terms decrease exponentially witttreasingk. Therefore, we
arrive at Equation (5.37). This form is useful in practice when evaluating the values of the
initial coupling constants. In the opposite limit, jrj , We may simply approximate the
interaction with the rst few terms of the sum around n =0.
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Figure 8.2: Map of the leading instabilities for the two-plate screenedCoulomb-like
interaction, Equation (8.32), as a function of the dimensionless coupling strength
J-0a,, and the interaction range in units of the lattice spacing a. For very
short ranges, the leading instability is towards an antiferromagnetic AF) phase,
in which the spins possess a ferrimagnetic arrangement within eaclayer (i.e., the
spins alternate in direction between neighboring sites, but are of nequal magni-
tude), and are oppositely directed between the two layers; an illgtration of this
phase may be found in Fig. 1(a) of Referenced]. As we increase the range, we
enter a region where the susceptibilities toward both the AF and nenatic (N)
phases diverge as we lower the temperature. Determining whethesr not these
two phases truly coexist requires a theory valid below the critcal temperature, the
development of which is beyond the scope of the present work. As we irgase the
range further, the instability towards the AF state disappears, leaving only that
towards the nematic state, in which the parabolic degeneracy points edcsplit into
two Dirac-like cones. Note that the critical range for each of these trangions is
weakly dependent on the coupling strength, and corresponds to e edtely turning
0 back scattering.

Note that, as is, the on-site interaction given by our formula is in nite, and thus it

would give us in nite values for the initial coupling constants. However, we recognize that,
for two electrons on the lattice that are su ciently close, the electrons are not localized at a
single point, but rather their wave functions have a nite extent in space. This will render
the on-site interaction nite. As a simple model of this e ect, we set the on-site interaction

equal to some constant times the nearest-neighbor interaction. In our calculations, we set

=1:2.
Our results for the leading instabilities are shown in Figure8.2. We see that, for very

short ranges of the interaction , the system is unstable to an antiferromagnetic state,
in which the spins possess a ferrimagnetic arrangement within eachayer (i.e., the spins
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alternate in direction between neighboring sites, but are of unequaimagnitude), and are
oppositely directed between the two layers; an illustration of this phase is given in Figure
8.3, a similar illustration may be found in Figure 1(a) of Reference §]. In this phase,

Figure 8.3: lllustration of the AF phase. The black circles represent ges on the
bottom layer (1), while the red squares represent sites on the top Mer (2). The
arrows indicate the overall spin polarization on a given site. Each laye possesses
a ferrimagnetic arrangement of spins (i.e., the spins alternate in diection between
neighboring sites, but have unequal magnitudes), and are oppositelyicected be-
tween the two layers.

the operator, 1, 3S3, acquires a non-zero expectation value. This result is in agreement
with the zero-temperature results obtained in the previous work fi6]. As we increase the
range, we will enter a region in which both the AF and nematic susceptillities diverge.
This happens when is larger than about two lattice spacings. This indicates a possible
coexistence of the two phases. However, to determine if such aexistence is in fact present
would require a theory valid below the critical temperature. The construction of such
a theory is beyond the scope of the present work. As we increase the randerther, the
antiferromagnetic instability disappears, leaving only that towards a nematic state, in which
the operators, L, 11, and 3 »1p, acquire non-zero expectation values. In this phase, the
parabolic degeneracy points each split into two Dirac-like cones that a& displaced slightly
from the parabolic degeneracy points. The size of this displacement iset by the magnitude
of the order parameter, while the direction of the splitting is set by the order parameter's
direction. If we rotate the order parameter by , then we obtain an identical con guration,
much like the molecules in a nematic liquid crystal. This resultis, again, in agreement with
the previous work [51]. This happens when exceeds about 10 lattice spacings. Note that
there is a weak dependence of these critical ranges on the initial veéuof ga .

89



Figure 8.4: lllustration of the single-gate con guration, which leads to the potential
given by Equation (8.41).

8.2.2 Screened Coulomb-like interaction; one-plate case

The second form of the interaction that we consider is a dipole-like iteraction much
like the one produced by an electron in the presence of a single inite conducting plate
(see Figure8.4). This interaction has the form,

" #
1 1
V(iN=Uy — p———; (8.41)
r= (r: )2 +1

This interaction has a longer range than in the two-plate case, since thidalls o as r 3
for long distances, rather than as an exponential. As in the previous casehis formula, as
is, will give us an in nite on-site interaction. We use the same mettod as before to render
this interaction nite, and we again set = 1:2. The resulting instabilities are shown in
Figure 8.5. We note that it is qualitatively identical to that obtained from the pr evious
case, except that the critical ranges are smaller. We nd that an instablity towards the
nematic phase appears when exceeds a value between:® and 06 lattice spacings and
that the AF instability disappears when exceeds a value between 4 and 6 lattice spacings,
depending on the initial ga,, .

Note that, throughout this section, we have been working with monotonicaly-decreasing
repulsive density-density interactions, and thus we only obserg two of the possible insta-
bilities that we may nd in the system. For short-range interactions, we start in the upper-
right-hand corner of Figure 8.6, which maps out the leading instability as a function of the
initial value of ga,, and gg, whenga,, = O:Olr‘;—, corresponds to the AF instability. As
we increase the range, we move toward the center of the diagram, whil¢aying within the
upper-right quadrant, passing through the AF + nematic \coexistence" region and ending
in the pure nematic region. While, for =1:2, we only nd instabilities toward the AF and
nematic phases for the one- and two-plate cases that we considered, tleeare more possi-
ble instabilities, even for density-density interactions. For example, for < 1, such that
the on-site repulsion isweakerthan the nearest-neighbor repulsion, and thus the repulsive
interaction is non-monotonic in real space, the initial value ofge, may become negative.
Under such conditions, we will nd that the susceptibility toward the quantum spin Hall
phase will diverge, though never along with the antiferromagnetic suseptibility. This is
illustrated in Figure 8.6.
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Figure 8.5: Map of the leading instabilities for the one-plate screene€oulomb-like
interaction, Equation (8.41), as a function of the coupling strength ga,, and the
interaction range . The map is qualitatively identical to that obtained for the
two-plate case, except that the ranges at which the AF instability disappears and
that at which the nematic instability appears are smaller.

Note that the results presented in Figure 8.6 were obtained in the presence of trigonal
warping, while those presented earlier in this section were obtairg in its absence. On the
basis of the results shown in FigureB.6, we expect that the inclusion of trigonal warping will
not qualitatively change our results; it will only change the \critical r ange™ at which the
antiferromagnetic instability disappears and that at which the nematic instability appears.
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Figure 8.6: Map of the leading instabilities as a function of the initial value of
da,, and ge, for an initial value of ga,, = 0:012-; the initial values of all other
couplings are zero, corresponding to a density-density interaction In this case,
trigonal warping is present, with vz = 0:178,——, and the critical temperature is
xed to T¢ = 0:01%. For predominantly forward scattering, we see that the
system is unstable to the nematic phase. When the initial di ererce between the
inter- and intralayer scattering (ga,,) and/or the backscattering (gg, ) become
considerable, however, other instabilities appear, namely the lagr antiferromagnet
(AF), the layer-polarized state (LP), the quantum spin Hall state (QSH), the
Kekuk current phase (KC), and the s., superconducting phase ¢.+ SC). We use
a plus sign to denote an instability towards multiple phases. To deermine whether
or not there is truly a coexistence of the listed phases requireshe development

of a theory (such as a Landau theory) that is valid belowT., which is beyond the
scope of the present work.
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CHAPTER 9

ANALYSIS OF THE ANTIFERROMAGNETIC
STATE IN A FINITE MAGNETIC FIELD

Having established the existence of an instability towards an antiferomagnetic state in the
previous chapter for short-ranged electron-electron interactions, w now turn our attention
to analyzing said state in the presence of an applied magnetic eld40]. This investigation
is motivated by the fact that a gap is observed in some experiments50D, 6]. We will
investigate these e ects within the framework of variational mean eld theory. We employ
this method, rather than RG, because, in the presence of a perpeicllar magnetic eld, the
non-interacting energy spectrum for our problem is discrete, rathe than continuous, and
thus an RG analysis of the type employed in the previous chapters wodl be more di cult.
We start by writing down a Hamiltonian corresponding to our e ective | ow-energy eld
theory and introducing the orbital e ects of the magnetic eld via mi nimal substitution.
We will neglect the Zeeman e ect in this case, since the spin sgling (m =me¢)g 5B
(m =mg)! ¢ is small compared to the orbital splitting ! .. The Hamiltonian that we obtain
is simply Equation (5.34), but with the momentum p replaced with = p £A, where A
is the magnetic vector potential.

9.1 \Variational mean eld method

Our variational mean eld calculation will proceed as follows. We start by adding and
subtracting a source term for the antiferromagnetic order parameter,
Z
d’r Y(r)ly sss (r); (9.1)

in the Hamiltonian. Here, is the antiferromagnetic order parameter, whi ch corresponds
to the magnitude of the moment on the undimerized sites on each layerWe now de ne two

parts to the Hamiltonian, a \non-interacting" part, Hy,
|

YA 2 2 + ' Z
Ho = d?r Y(r) X2m Yy x4 % y (r) + d2r Y(r)1, 3s3 (r):

(9.2)
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and an \interaction", H,,
Z Z

H& = d’r gs[ Y(r)S ()] d’r Y(r)lp ss3 (r): (9.3)

NI

S

Here, we are usingS to stand in for the three coupling constants that are non-zero in the
case of a microscopic density-density interaction and their associatl matrices. We then
exactly diagonalize Hp, nd the expectation value of the full Hamiltonian with respect to
the (trial) ground state of Hg, and minimize the result with respect to .

9.2 Diagonalization of the \non-interacting" Hamiltonian

To diagonalize Hp, we rst note that the source term is diagonal in layer, valley, and
spin space, while the \kinetic" term is only diagonal in valley and spin space. This allows
us to split the problem into the diagonalization of four 2 2 matrices; our wave functions
will have a de nite valley pseudospin and real spin orientation. Let us consider the block
corresponing to the +K valley and spin up. We must solve

(i y)?
(xti y)? am (xy)=E (xy); (9.4)

2m

where (x;y) is a two-component spinor corresponding to the + valley and spin up
components of the full eight-component spinor; the other six componerst are all zero. We

will work in the Landau gauge, in which A = ByZR. For this gauge, the above becomes
' 1 B 2#
1 + €5 i
1 By, 2 " S Py (xy)=E (xy):
am Pxt oYt Ipy
(9.5)
Let us now assume the following form for (x;y):
S T .
(y)= p=€ K(y); (9.6)
X

where (y) is another two-component spinor. Upon substitution into our equation, we
obtain

’ 1 B 2#
— k+ & i
: B . . 2 oy Py k(Y)= E «(y):
am- K+ TY+ipy
(9.7)
We may now write this in terms of the operators,
r—
I k N VA

% = 2 m!c+y+lm!C ’ (©-8)
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where! ¢ = n‘f—BC is the cyclotron frequency of the electrons in our system. These opators

may be veri ed to satisfy the commutation relation, [ ay; a{] = 1. Interms of these operators,
the equation becomes

| Yy2
e @ m=E (9.9
I cag

Let us now de ne normalized functions ., (y) such that afax kn(yY) = N n(y); these will
just be the usual harmonic oscillator-like wave functions that emergen the solution of the
free electron gas in a magnetic eld. Thesg functions may be shown teatisfy the relations,
& kn(Y)= "N kn 1(y)and & kn(y) =  n+1 nea(y). We now assume the following
form for (y):

_ kn kn(Y)
k(Y)— k:n k;n Z(Y) (9'10)

We nd that this form satis es our equation, provided that ., and ., satisfy

P
¢ n(n 1) kin  _ k:n

andj nj?+ ] knj?=1. We have thus reduced the problem to solving for the eigenvalues
and eigenvectors of a 2 2 matrix. The eigenvalues areE = E,, where

En = P nin 12+ 2 (9.12)

and the corresponding eigenvectors are given by

1 1
—— - 1 — o = - 1 — 9.13
k;n FFZ E, k;n 1%2 E, ( )

Inthe K valley, the positions of the creation and annihilation operatorsa), and ay will be
interchanged; in this case, we must instead assume that

k;n k;n Z(y) : (9-14)

K= )

This will give us the same eigenvalue problem as before. For the spin dm case, we simply
reverse the sign on in our equations; we obtain the same eigenvalues as fbae, but .,
and .n will switch values. This implies that, at least for n 2, each of our energy levels
is four-fold degenerate, due to valley and spin degeneracies. For= 0 or 1, on the other
hand, there is no valley degeneracy for a given spin. In these caseset eigenfunctions are

(=t (9.15)
in the + K valley and
k(y) = k-,?(y) (9.16)

inthe K valley. The former corresponds to the energy eigenvalues = , while the other
corresponds toE = . Each of these levels is still four-fold degenerate, but this time
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due to orbital and spin degeneracies. Note that we may still use the wave functionsugted
earlier even for this case if we adopt the convention that ., (y) is identically zero if n < 0.
We may now rewrite the eld operators in terms of these eigenstates:
X
(X1 y) = [ I:;n; 'S (X1 y)ak;n; 'S + k;n; 'S (Xr y)%;n; 'S ]1 (917)

kin; ;s
where ;;(n; ;)S represents the positive (negative) energy state for a given wave nuber and
orbital, valley, and spin indices. We have chosen our operatorg and b such that they
annihilate the trial ground state jOi.

9.3 Derivation of the minimization condition

Having diagonalized the \non-interacting” Hamiltonian, we are now ready to nd the
energy of our trial ground state and minimize it with respect to . Throu ghout this
derivation, we will assume that > 0. We start by rewriting the eld operators in our
Hamiltonian in terms of the eigenstates of theHy derived above; the formula for this is
given by Equation (9.17). If we label the positive energy eigenvalues a&y.n..s = En =

n(n 1)!2+ 2 then Ho becomes
X
Ho = Ek;n; 'S (ai;n; 'S An; ;s T b\K/;n; 'S b.<;n; 'S )
kﬁ; 'S

k;n; ;s

The expectation value ofHq with respect to the ground state jOi is then
X X

k;n; ;s n

whered is the degeneracy of each Landau level due to the wave numbér.
Now we turn our attention to the interaction, starting with the quadrat ic term,

Z
H® = d?r Y(r)1, ss3 (r): (9.20)
In terms of the eigenstates ofH, this becomes
@ Z X
H = der Y (r)1z 3s3 n(r)al,an: (9.21)

mn

Here, we let the indicesm and n stand for all of the quantum numbers characterizing a
given eigenstate, and we use,, to stand for either a positive or negative energy state,
with the understanding that the negative energy state is given bya, = by. Upon taking
the expectation value of this term with respect to the ground state, we nd that only the
negative energy states contribute:
Z X
Hoj H @ joi = d2r ()12 383 (1) (9.22)

m
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Evaluating all of the sums and integrals using the expressions given ale for the wave
functions, we may write this as

i H? j0i = LyLy Tr(L 2 383 ); (9.23)
where
X
= m(NC W)Y(r)
ml
= a2 'e(NIlg+ 3 31> 312 3 Y1 3S3): (9.24)

B

Evaluating the trace, we obtain

rojH @ joi =
! 213

Y; (9.25)
wherelg = P c=eB is the magnetic length, Ly and L are the dimensions of our system,
and X
Y = —+1: 9.26
& (9.26)

n

We now consider the quartic terms. Each of these terms, neglectinthe coupling con-
stants and integrals over position, has the form,

[ Y(nS (N5 (9.27)

where S is a matrix. Substituting in Equation ( 9.17), and adopting the same conventions
as before, this becomes
X
[ 7()S n(NIL J(NS o(r)]ahanatag: (9.28)
mnpq

We now take the expectation value of this expression with respect tadhe ground state.
This expectation value will involve the expression,h)j a‘,ﬁqana}ﬁaqui. The only way for this
to be non-zero is ifm and q are negative-energy states. We must also require thah and
p either be both positive-energy states or both negative-energy statesln the former case,
we obtain, using the anticommutation relations for fermions,

rOjbmana};béjOi = mq np:

In the latter case, we obtain

HOj b b byl O

Putting these results together, the above quartic form becomes

mn  pg-

X X
[( )OS FMIC 2)'(OS m()+ [ w)(NS WO ()Y()S (] (9.29)

m;n m;p
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Upon evaluating all sums and integrals, this becomes

™S +S )+[M(S )% (9.30)
where
X + +\Y
v = m(N)( m)’(r)
™
= -2 c(Nlg+ 3 3lo+ 312 3+ Y12 3S9): (9.31)
B

Evaluating the traces, we nd that the total energy E.ar = HOjH jOi of our system is, noting
that d= LyLy=(213),

0 1
2LyLy X 2L, L
Evar = ‘x2 Y@ En+ A+ # Y +4LXLy(gAlg + Oy T 406 )
" B n 2 # B
N 2 Y 2 | 2N 2
12 12 +5LbxbyOa,, ~5 (9.32)
B B B
where X
N = 1+1; (9.33)
n 2

We will now minimize this energy with respect to . First, we tak e the derivative of the
above expression, which may be written as

@Ear _ 2LxLy 1 X 1 2
@ |é 41 %(gAlg + Oay t40E)Y i Za 1 EZ (9.34)

We now set this derivative to zero. We note that the second factor can neer be zero, since
E, > forall n 2, and therefore it is always positive. Wepmay therefore drop this faabr.
The remainder, upon simplifying and noting that Ig = 1= m !, thus yields, assuming
> 0, the minimization condition on ,
|

X
Ge !¢ ?+1 = (9.35)
, En

n=
where
m
O = T(gAlg + 0n,, F40E,) (9.36)

and N is an upper cuto on the orbital index, which we impose because our theor only
works for low energies and because, in reality, we do not have electrianstates in our system
at arbitrarily large energies. In the limit of zero magnetic eld, we may treat the sum as a

Riemann sum, with = n! c and = ! ; our equation then reduces to
z d
O !c P=—== 1; (9.37)
0 + 0



where is an upper cuto on the energy and we introduce ¢ as the value of the AF order
parameterpin the absence of an applied magnetic eld;N is related to the energy cuto
by = !'c N(N 1). We have veri ed this result with a separate calculation. As is, we
cannot send the upper cuto to in nity in our equation without encount ering a divergence
in the sum, since the summand only decreases %s We can, however, rewrite the equation
in such a way that we can do this if we eliminatege in favor of .

We now wish to rewrite Equation (9.35 in such a way that we may send the upper

cuto to in nity. We start be rewriting the sum as an integral over a \D irac comb":
!

z N 1 b 1
I e d p ( nm+ —
3=2 ( D2+ 2 .,
1
- . (9.38)
Oe
We now use the identity, 2
( n) = g2k (9.39)
n=1 k=1
to obtain
N % L
1 2k ! 1
. dp ___+21, d p oo 2 _+ %= = (9.40)
3=2 ( Dre+ k=1 372 ( Dres G

The integral that appears in the sum converges for allk 1, so we may already send the
upper limit to in nity. However, we must still take care of the rs t integral, which will
diverge if we do the same with it. We may use the zero- eld equation,Equation (9.37),
to rewrite the right-hand side such that we eliminate g from the equation. If we do this
and also introduce the change of variables,?= ( 1)! 2, into the rst integral, we may
then move the rst integral to the right-hand side, obtaining an inte gral that converges if
we send the upper limit to in nity, namely

0 1

e d @p
0

£
©
N
N
o
o
£
©
N

2+

OoN)
N
+
E

(9.41)

where ¢ is the value of at zero magnetic eld. Upon evaluating this integral, our
equation becomes

7 0 q 3 21
X 1 cos(2k ! ! + 3!
2l ¢ d p k) ,le_p@lcs T OA (9.42)
o1 32 ( N2+ 2 0 0
This equation may be rewritten in terms of the dimensionless parameers, = =!. and
=1l= o
e Z 1 2k 1 q
2 d pu+— In 1+ 2+3 =In: (9.43)
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We can see that the left-hand side is a monotonically-decreasing fution of for > O.
In fact, as ! 0%, the left-hand side increases inde nitely due to the second tem, while,
as ! 1 , the expression decreases inde nitely due to the third term. This equation
therefore has a single positive solution for for any given value of . While we would
need to solve the equation numerically for general values of, we can derive approximate
solutions analytically for very large and very small values of .

Before we do this, however, let us rst rewrite this equation in an equivalent form. We

start by changing variables in the rsttermto x = % obtaining
e2|kx 1 q
2 ( 1¥Re dXg=—o——+ = In 1+ 2+32 =1n
k=1 1 X2 + 2 %

We now note that, as a function of x, the integral is analytic in the entire complex plane,
except for a bran&h cut. For < 1 this branch cut can be chosen to be on the real axis and

Y

in the interval 7 2<x< % 2 For > %, on the other hand, the branch cut
may be chosen to lie along the imaginary axis. In either case, we may iagrate this function
over a large quarter circle centered at the point,x = 1, in the complex plane and with one
of the radii along the positive real axis and the other parallel to the posiive imaginary
axis and obtain zero since we will always avoid the branch cut. The comtbution from the
circular arc will vanish as we increase the radius to in nity since the integrand decreases
exponentially as we do so. This leaves only contributions from the radi The contribution
from the radius along the real axis is just the integral that appears in the equation. This
means that the contribution from the radius parallel to the imaginary axis is equal to this
integral. We may therefore write

2 3
Z, ikx Z, o 2kx O
Re dx g———— =Re 4i dx%g S:
1 x2+ 2 1 0 (1+ix92+ 2 1

Note that we dropped a factor ofe 2 : sincek is an integer, this factor is always equal to
1. If we substitute this back into the equation, we nd that the sum on k is just a geometric
series with a common ratio of e 2*°. We may therefore perform the summation, obtaining

1 q
|()+j—j In 1+ 2+

=In ; (9.44)

Blw

where

2Zl 3

i 1
I( )=2Re 4  dx%q ! 2
0 (1+ix92+ 2

(9.45)

We can see that the integrall ( ) converges for all values of ; the integrand is analytic
everywhere on the interval of integration and decreases exponentialljor large x° At large
values of , we can show that this integral falls 0 as 3. We rst note that the integral is
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dominated by small values ofx° due to the Fermi occupation factor-like expression. With
this in mind, we may pull out a factor of  from the square root, obtaining
2 " # 3
Z, o2 10 172
+ =
0ol 1+ (1+ix9%2 2

4.
2Re 4| ) dx — 2+ 1

Since is large, we now have a small parameter with respect to which we mayeyform an
expansion of the square root. The constant term in this expansion gives a contribution,
since the total result will be purely imaginary. The lowest-order non-zero contribution will,
in fact, be given by 7
2 71 e x0 1
3 ex%+1 24 ¥
We see that this term is of the order 2, as asserted earlier.
We may derive a good closed-form approximation td ( ) as follows. Let us rst expand
the square root in the integrand in powers ofx’. To the lowest non-vanishing order, we
obtain Z,

0
0 X 1 _ 1 ]
() 2O dx W ;32 @x%+1 | 3(3+4 232

We now rewrite this expression so that its value at = 0 matches the exact value ofl (0).

Doing so, we obtain
2

[( %|(0)) 23 14 @23 2]3=2:

If we were to plot this expression alongside the exact expression foi( ), then we would see
that it follows the exact expression very closely. In fact, if we usethis expression to solve
Equation (9.44), then the solution that we obtain is very close to the solution obtainedfrom
the exact 1 ( ).

While Equation (9.44) must, in general, be solved numerically, we may obtain analytic
expressions in two limiting cases, namely the large and small limits (equivalently, for large
and small applied magnetic elds). Let us rst consider the large limit. This means that
the right-hand side of our equation is large and positive, and thus, as impéd by our above
discussion, should be small. In this limit, we may set the rst and third terms on the left
to their values at = 0, since both are nite at this point, while the second term diverges.
Our equation becomes

1() (9.46)

Y oczm (9.47)

where C is the value of the rst and third terms at = 0; its value is approximately 0:67.
Here, we are assuming that is positive. Solving for , we nd that

— 1 .
“In +C’
or |
= —° (9.48)
In(! c= 0)+ C .
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We see that the behavior is almost linear in the magnetic eld, but with a logarithmic
correction.

Next, we consider the small limit. In this case, the right-hand side of Equation (9.35
becomes large and negative, and thus should become large. We would be tempted to
drop all but the third term, since the rst two terms go to zero for | arge values of . This
would give us a result that is only accurate at constant order in , however. This is because,
if we expand the third term in powers of 1, then the next-lowest order term after the
logarithmic term is of order 1 and the second term in our equation is also of this order;
in fact, it cancels this term exactly. We may still drop the rst te rm, since, as stated above,
the lowest-order term that it contributes is of order 3. In this case, our equation becomes

1 9 3
=~ In 1+ 2+ 37 =In : (9.49)
Again, we are assuming that > 0. If we take the exponential of both sides, we get
9 1
e™ 1+ 2+3 =2

We will now expand the left-hand side in powers of ! to the order 2. Doing so, but
rst pulling out a factor of  from the second factor, we get

1 1
l ﬁ = —.

If we rearrange this, we nally arrive at the quadratic equation,
8 2 8 =0:

If we solve this equation and take the positive solution, we get

1+ 1+3 2
= - — 4+ —:
2 8
Rewriting this result in terms of and ! ¢, we get
= ot —c . (950)

We see that, for low elds, the antiferromagnetic order parameter incteases quadratically
with the eld.

We now solve Equation 0.44) numerically; the numerical result, along with the low- and
high- eld limits derived above, is plotted in Figure 9.1. If we look at our low- and high- eld
expressions, we see that the slope of our low- eld approximation in@ases withB, while our
high- eld approximation has a decreasing slope. This implies that trere should be a maxi-
mum slope to the exact curve. We determined the maximum slope of the( B)= ¢ versus
I .= o curve, and found that it is about 0:2681, and occurs whern .= ¢ 2:432. These
values are independent of the values on and . Using the experimentally-determined
value [5] of the e ective mass, m = 0:028m¢, and the experimentally-determined value of
the order parameter at zero eld [6], ¢ = 0:95 meV we may determine the maximum slope
of the ( B) versusB curve. We nd that the slope is 1:11mTLV, and that it occurs at a
eld of about 0:56 T.
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Figure 9.1: Plot of the solution to Equation (9.44). The solid line is the numerical
solution, while the dashed lines are the solutions in the low- and higheld limits.

The vertical axis is the value of the order parameter divided by its z ero- eld
value (. The bottom horizontal axis is the cyclotron frequency! . = eB=m c
divided by o, while the top horizontal axis is the applied magnetic eld B divided
by o; in determining the latter from the former, we assumed that the e ective
massm =0:028n¢ [5], and ¢ =0:95 meV [g].

9.4 The excitation spectrum, comparison with
experimental results

We would now like to compare our theoretical results to the experimetal data [6]. First
of all, we note that is not the energy gap in our system. In fact, the energy eigenvalues
stated earlier are an \auxiliary spectrum”, and do not represent the true (many-body)
energy spectrum of our system. As an approximation to the actual energy gapwe will
consider particle-hole excitations of the \vacuum”, or trial ground state, for our system.
We construct a state, @b’ j0i, where and stand for the full sets of quantum numbers
describing the particle and hole states, respectively, and nd the di erence between the
expectation value of our Hamiltonian for this state and that for the trial ground state. For
both states, we assume the value of that is obtained from the minimization condition,
Equation (9.44). The states and that result in the lowest value of the excitation energy
will be taken to give the actual energy gap.

Throughout this calculation, we assume that the AF order parameter > 0. Let
us begin with the quartic terms. If we take the dierence in expedation value of these
terms between the excited state and the ground state, we nd, after sraightforward but
tedious application of anticommutation relations and dropping terms that will vanish in the
thermodynamic limit, that the contribution to the excitation ener gy is

X
Eqa=  gs[T(S TS )+ 3TM(S + S )

(9.51)

103



where

X
+ = [ A )M ()OI (9.52)
z'
= dr[ TN ) (e )Nl
(9.53)
We may now evaluate the sums and integrals in the above expressions, @lning
m
+ = 5 te(Y12 353+ 3l2Ss) (9.54)
and
= 15 1+s (1+ )L+ 3)(L+sss)n 1
n
+ 4 1 s 1+ 3@ 3L+ ssz)n 1
n
& 1 s 1+ 3+ 3@A+ss3z)n 1+
n
5 1+s 1+ 3@ A+ ssy)n 1
n
(9.55)

Here, , is 0if n< 0O, or 1 otherwise. We may now evaluate the traces in Equation4.51).
Doing so, and using the fact that

m
T! c(Oayg * Oy +40E()Y = (9.56)
we nd that
1 1
_ 2
a4 = En ' En
m
o elOag * Gas 40E( S s ):
(9.57)

We now consider the quadratic terms. One of these terms simply giveus the single-particle
\auxiliary spectrum", while the other is the quadratic term that we ch ose to consider as
part of the interaction term. We nd, upon application of anticommutation r elations as
before, that the contribution from these terms to the excitation energy is

E-=E, + Ej, Tl'(l 3S3 )Z (958)
Upon evaluating the trace, we obtain
1 1
+

Ex=E, +E 2
2 n n E, E,

(9.59)
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Combining these two contributions, we obtain
m
Eex=En +Ep + Tg Pe( s s ); (9.60)

where g = ga,, + Oa,, 40 - Here, « = 1 if the state exists in the K valley,
Bnd sk = +1 (1) for a spin up (down) state. The single-particle energies areE, =

n(n 1)!2+ 2. Note that this energy does not depend on the wave numbers of the
states, and only depends on the valley and spin indices via their pructs. If one of the
states is one of the lowest Landau levels, given by = 0 or 1, then these products are
locked to a specic value. To be exact, ifn =0or 1,then s =1. Similarly,if n =0
orl,then s = 1. We see that this energy includes a term linear in the magnetic
eld, and is in agreement with the results obtained in Reference 73]. The key di erence
between our derivation and that presented in Reference73] is that we did not need to
assume the presence of another \order parameter” (in fact, as we will eXpin shortly, this
other paramter is not really an order parameter in the sense that it breaksany additional
symmetries), corresponding to the matrix 31,S3 in the notation of the present paper, or a
\staggered spin current" state (see Table7.1) to obtain this linear term, assuming that we
properly calculate the excitation energy (i.e., we calculate it from the full Hamiltonian rather
than assume that the gap in the single-particle \auxiliary spectrum” is the observed gap).
In fact, the above result would not have changed had we had included tts parameter in our
variational analysis, assuming that it was su ciently small | it would ha ve only introduced
a constant shift to the energies in the \auxiliary spectrum" and left the associated wave
functions unchanged.

We present a plot of part of this excitation spectrum in Fig. 9.2 We nd that the gap
for low elds is, in fact, not given by taking n andn to both be either 0 or 1, which would
correspond to the lowest-energy states in the \auxiliary spectrum”. Instead, it is given by
takingn =n =2,with s = 1land s =1. Athigher elds, however, we nd that
excitations with n and n both equal to either 0 or 1 do, in fact, give us the actual gap.
To obtain the value for g , we t the slope of our predicted high- eld gap at around 2.5 T
to the slope found in Reference (] of 5:5 mTﬂ Assuming that the e ective mass is given
by the experimental value [5] of m = 0:028m,, where m¢ is the mass of an electron, we
obtain J-g = 0:44. Note that this di ers slightly from the value used in Reference [/3],
namely 7-g = 0:4; this is the value that we would obtain if we instead t the slope of the
high- eld gap at the point where the AF order parameter reaches its maximun slope to the
experimental value. For the value ofge that we use, we nd that the gap has a minimum
at a non-zero value of the eld; the minimum is reached at a eld of B 0:047 T, and is
Eg 191 o. We also nd a \kink" in the eld dependence of the gap, at which the gap
goes from being givenbyn = n =2, s = 1,and s =1to being given by n and
n either 0 or 1. This \kink" appears ata eld of B 0:45T.

We also considered the data from Referencés()]. In this case, we t our expression to
the = 0 gap presented therein. Note that, from the low- eld data, it is uncl ear what
the size of the energy gap, if any, is. Nevertheless, we can still obtaia t to the slope of
the gap at high elds, since the zero- eld value of the order parameter ony enters via a
small logarithmic correction to the high- eld slope. The experimentally-determined slope
is 1.7 ”‘Tﬂ If we perform our tin the same way as before, we obtain7-g = 0:018. In
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Figure 9.2: (Left panel) Plot of the excitation spectrum, Equation (9.60), for
-9 = 0:44, which is the value used to t the experimental data in Reference
[6]. The vertical axis is the excitation energy in units of o, and the horizontal
axes are the same as in Fig9.1. As before, in determining the upper horizontal
axis, we takem = 0:028m¢ [5] and o = 0:95 meV [5]. Each curve is labeled
according to which electron and hole states are occupied, with a labeif the form
(electron, hole), with the orbital index n and the sign of the product of the valley
and spin indices, s, indicated. (Right panel) Zoomed-in view of the lowest three

excitations over the range, 15 = 2:5, to better illustrate the \kink" in the
gap.

this case, since we obtain a negative value fay , we will nd that energy of the n andn
equal to 0 or 1 excitation has a hon-monotonic dependence on the magneticleé In fact, it
gives us the energy gap for all elds. It possesses a very shallow minum of 1:99985  at
a eld of about 0:017 T and, unlike the previous case, there is no \kink". In this case, we
cannot completely rule out the possibility of the gap actually possessig such a minimum
on the basis of the data given in Reference5])] alone, due to the lack of data at low elds.
Note that we required a negative value ofg , which would imply that 4 ge,, >da,, + Ga,,»
to t the data. Satisfying this inequality would require either an at tractive interaction or
one that is non-monotonic; this may be seen by noting that it is equival@t to Vi.ox > V.o,
which cannot be satis ed for any monotonically-decreasing repulsiveriteraction.

Note that, while we are able to t the experimental data [50, 6] at high elds, we
also predict ner features at low elds that are not resolved in these experiments, namely
a slight non-monotonic behavior of the gap and, in the case of our t to the datafrom
Reference §], a \kink". It is possible that such features are, in fact, present, but cannot
be observed in the experiments due, for example, to the fact that, atnite temperature,
any sharp features that would have appeared at zero temperature are \wasleout", thus
introducing uncertainty into any energy gaps extracted from the data. It is also possible
that these features, which are predicted from a mean- eld calculaton, will be removed once
uctuations are taken into account. The development of a more sophistiated method for
treating this problem is therefore of interest, but it is beyond the scope of the present paper.
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9.5 Symmetry analysis in the presence of an applied
magnetic eld

In the absence of a magnetic eld, the honeycomb bilayer lattice conslered in this
paper possesses Bzq point group symmetry. The AF and \staggered spin current" orders
transform under di erent representations of this group | the AF state t ransforms under
the Ay, representation, while the \staggered spin current” state transformsunder the Ay,
representation (see Table7.1). Physically, this means that the AF order parameter is even
under mirror re ections and odd under C9 rotations, while the \staggered spin current"
order parameter is odd under mirror re ections and even underC) rotations. Note that
both orders are odd under inversion. In fact, the two also transform dierently under time
reversal; the AF order parameter is odd, while the \staggered spin curent” is even. This
means that the expectation value of the \staggered spin current" operator nust vanish in
the AF state.

When we apply a magnetic eld, however, the point group is reduced toSg. This is
because the magnetic eld is an axial vector that is odd under mirror re ections and even
under inversion. In this case, the AF and \staggered spin current” ordes transform under
the same representation, namely theAq, representation {3]. Physically, this is because
the mirror re ection and C2 symmetries are no longer present. As pointed out above,
the two order parameters transform di erently under time reversal; however, time reversal
symmetry is broken in the presence of a magnetic eld. This means tht the two orders
no longer break di erent symmetries, and thus there is nothing preventing the system from
acquiring a non-zero expectation value of one of these order parameters the presence of
the other.

The development of a nite expectation value of the \staggered spin curent" operator
was correctly pointed out in Reference [3], but was attributed to \the emergence of the
n =0;1 Landau levels (LLs) and the peculiar property of their wave-functionsto reside on
only one sublattice in each valley". Here, we show that it must be preset on much more
general grounds, and is not tied to the properties of the Landau levels.

At B = 0, the AF order parameter breaks time reversal and inversion symmetry but
it preserves mirror re ection symmetry, as we see from Table7.1. Therefore, the wave
functions for this state are eigenstates of the re ection operators as wél and may be
classied as even or odd under them. Let us now consider the expect&n value of an
observableO that transforms under the Ay, representation of the D3q point group, such as
the \staggered spin current” order parameter. This operator will have the property that
any mirror re ection ¢ will anticommute with it, i,e. 4O = O 4. Because of this, the
expectation value of the \staggered spin current" operator with respectto the AF state of
the Hamiltonian must be zero.

Let us now consider the case in whichB 6 0. As stated before, this will break the
mirror re ection symmetry of our system. However, it is symmetric under such a re ection
followed by a reversal of the magnetic eld (i.e.,B ! B). This means that we may classify
all eigenstates as even or odd under this combination of operations. This eans that, in
terms of the eigenstates of the Hamiltonian atB = 0, we may write the new AF state of
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the Hamiltonian in the presence of an applied eld as

X
iAF(B)i = [ {7(®)iei+ [9(B)jioil (9.61)
|
where ji; ei (ji;oi) is a general even (odd) state of the zero- eld Hamiltonian. One set of
the coe cients (i.e., i(e) or i(o)) must be even functions ofB, while the other must be
odd. If we now calculate the expectation value ofO with respect to this state, only matrix
elements that mix states of opposite parity under re ections will appear:

X

oi= (9 [Phejojjoi+c.c. (9.62)
Il)
Since one of either the i(e) or i(°) must be even functions ofB, while the others must be

odd, we see that the expectation value o0 must be an odd function of B.
If we calculate the expectation value of the \staggered spin current" opeator for the
trial ground state that we work with above, we nd that it is a linear func tion of B. This is
consistent with our general conclusions and with the observation made b¥Kharitonov [ 73).
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CHAPTER 10

CONCLUSIONS: ELECTRON-ELECTRON
INTERACTIONS IN BILAYER GRAPHENE

In this work, we used weak-coupling perturbative RG methods to icentify the conditions on
the electron-electron interactions under which various electront ordering tendencies, if any,
dominate in half- lled bilayer graphene. Our results for the ordered states are summarized
in Figure 7.4. Aside from our use of one-loop RG, no further approximations are made.
Therefore, our results can be stated rigorously at the level of mathematal theorems. We
discover that, in principle, a large number of di erent instabili ties towards various phases
are possible in the entire nine-dimensional space of couplings, as onancsee from Figure
7.4,

We also employed these results to determine the leading instalities of a system fermions
on a honeycomb bilayer lattice with nite-range density-density interactions in the absence
of trigonal warping. The use of these methods is justi ed since we onlyinclude nearest-
neighbor hopping terms, resulting in a band structure with two quadratic degeneracy points
and therefore in a nite density of states at the Fermi level at half | ling. We considered two
forms of the interaction, a screened Coulomb-like interaction much ike the one produced
by a point charge situated exactly halfway between two in nite parallel conducting plates,
as well as that produced by a point charge in the presence of a single comcting plate. For
all cases, we determined what phase the system enters as a function thfe range of the
interaction by determining which phase has its susceptibility dverge rst as we lower the
temperature, i.e., by determining the leading instability.

Even though our determination of the instabilities in the case of nite-range interactions
was carried out in the absence of trigonal warping, our methods would be jused even in
its presence. As shown in Reference3f], even when the trigonal warping velocity is set
to realistic values, we obtain an instability towards a symmetry-breaking phase for a small
initial value of ga,, in the case of forward scatering only.

We found that the system, for both forms of the interaction, is unstable towards an
antiferromagnetic state for short ranges and towards a nematic state for longanges, in
agreement with the previous work f6, 51]. For intermediate ranges, we nd that the
susceptibilities towards both the antiferromagnetic and nematic prases diverge, though not
necessarily with the same exponent. This indicates a possible cristence of the two phases.
To determine whether the phases truly coexist, or if only one appea, would require a theory
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that is valid below the critical temperature. The development of such a theory is a problem
of great interest, but is beyond the scope of the present work.

It may initially appear that the rangesat which we see these transitions are too short
to explain why the experiment in Reference §], which was done with a single gate, observes
evidence for a nematic state, while that in Referenced], which was done with two gates,
and thus, as we argue, would have shorter-ranged interactions, observesgap. In both
setups, the gate separation is about 300 nm, which would result in an inteaction with a
range of over 2000 lattice spacings, thus placing both experiments well within theregion
where we predict a nematic state. How does one reconcile our resulgth the experimental
observations? In the present paper, we only determined théeading instability that appears
as we lower the temperature of the system for a given interaction formrange, and over-
all strength. At exactly T = 0 there is an instability towards both the AF and quantum
spin Hall states [39] even when forward scattering dominates when the e ects of trigonal
warping are taken into account. Under the same conditions, but atT & 0, our calculations
predict that the rst instability as the temperature is lowered i s towards a nematic state.
This implies that, in addition to a nematic order parameter, there are also antiferromag-
netic and quantum spin Hall correlations, with correlation lengths that grow as we lower
the temperature below the nematic ordering temperature and divege at T = 0. This di-
vergence must happen at exactlyT = 0 because the antiferromagnetic and quantum spin
Hall states both break a continuous symmetry, namelySU(2) spin symmetry, and thus no
nite-temperature transition into either state is possible in a two-dimensional systen. Our
ndings therefore imply that, in the experiment in Reference [6], in addition to the AF
order at T = 0, there should be a nematic order present, and that, as the temperatte of
the sample is raised, there will be a phase transition in which the ematic order disappears.
Since the measurements presented therein are only sensitive the presence of a gap, and
not to any breaking of rotational symmetry, we cannot rule out this possibility based on
their data alone.

One issue with our results, however, is the fact that we predict aninstability towards
an antiferromagnetic phase, which breaks a continuousSU(2) spin symmetry. As pointed
out earlier, it is impossible for any two-dimensional system to entersuch a phase at nite
temperature. We should therefore view the divergence of the suspability towards this
phase as identifying the dominant ordering tendency in this case. W expect that, if the
RG could be carried out exactly, we would nd no divergent susceptiblity towards the
antiferromagnetic phase at nite temperature in this case. However, his susceptibility may
still diverge at zero temperature, and in fact we expect that, as the emperature is lowered,
the antiferromagnetic correlation length will grow and diverge at exactly T = 0; i.e., we will
see strong tendencies towards the antiferromagnetic phase at su cietly low temperatures,
even if the system is not truly unstable towards it. There are currently no known systematic
extensions of the approximate RG analysis used here that would be powfl enough to
capture the Mermin-Wagner physics, and thus the development of sut methods would be
of great interest. We also wish to point out that the nematic phase that we predict only
breaks adiscrete symmetry, namely the C3 rotational symmetry of the lattice. Such a
broken symmetry is allowed in a two-dimensional system at nite temperatures, and thus
we would expect to nd an instability towards this phase at a non-zero temperature even
in an exact analysis.
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As a simple illustration of our point, let us consider a similar approach © the Hubbard
model in one spatial dimension §4]. It is found therein that there are divergences in the
scattering amplitudes at nite temperature, naively suggesting a nite temperature phase
transition, which we know cannot happen. Nevertheless, among many potslities, the
method does identify the correct channels for which long, but nite, correlation lengths
develop. For example, the low-energy e ective eld theory for the course-grained half- lled
Hubbard model does correctly determine that the dominant correlatiors appear in either
the pairing (attractive, or negative U) or AF (repulsive, or positive U) channel [80]. Away
from any special lling, a metallic state is also correctly predicted [81].

As further justi cation of our methods, they also reproduce known exact properties of
the Hubbard model on a bipartite lattice, such as that formed by the b sites on bilayer
graphene B9). In this case, the non-zero coupling constants satisiiga,, = ga,, = 20 -
One such property is that one can map an attractive Hubbard model onto its epulsive coun-
terpart. This guarantees that the AF instability predicted for a given repulsive Hubbard
model will have the same critical temperature at which the instabiity occurs as the insta-
bility towards the layer-polarized state that happens in the attract ive counterpart. Another
property that our methods reproduce is a dynamical SO(4) symmetry 2] that allows one
to \rotate" a layer-polarized state onto an s;+ superconducting state, both of which are
good ground states for an attractive Hubbard model, since the interactionpromotes on-site
pairing. This implies that, in this case, the susceptibilities towards both states should be
the same. This is, in fact, proven analytically within the framework of our RG equations
and veri ed numerically [ 39).

We also considered the e ects of an applied perpendicular magnetic kel on the system
when it is in the antiferromagnetic phase. In this case the uctuations e ects are weaker
than at B = 0 since the broken continuous symmetry is theU(1) subgroup of the full
spin SU(2) group. At B 6 0 a nite temperature transition into a power-law correlated
state is in fact possible. Our variational mean eld investigation was motivated by the
fact that we nd an instability towards an antiferromagnetic state in our R G calculations
for short-ranged interactions, as well as by experimental dataf0, 6] on the gap size as a
function of an applied magnetic eld. We nd that the antiferromagnetic or der parameter
increases quadratically with the eld for low elds, then acquires a dependence of the form
B=In(B=B) for large elds. We also determined the gap by considering the energyequired
to create particle-hole excitations of our variational ground state. We nd that this energy
is the sum of the energies of the particle and the hole given by the singtparticle \auxiliary
spectrum”, plus a term linear in the magnetic eld. The excitation t hat gave us the smallest
such energy was assumed to determine the energy gap in the system. Wiaund that the
gap has a slight non-monotonic behavior for low elds, followed by a quaslinear increase
at higher elds. We also compared this prediction to the experimentl data and found that
good agreement can be achieved.

One reason for our switch to mean- eld methods for treating this problem is that we
have already established via RG methods the presence of the antdf®magnetic instability
for very short-ranged interactions. As long as we are considering a case imhich we know
this phase to be present, and because said phase is gapped, we expdwttan expansion
around the mean- eld solution will be convergent, thus justifying our use of such methods in
studying the phenomenology of the phase. Another reason for our use of meareld methods
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as opposed to the RG methods used previously in the zero- eld case the fact that the
energy spectrum for the non-interacting problem is discrete, ratker than continuous, and
momentum Kk is not a good quantum number, making the use of RG methods more di cul.
While we expect our mean- eld methods to be fairly accurate, such rethods are still only
approximate. The problem of developing a more sophisticated technige for determining
the AF order parameter and the energy gap in the system is therefore of greahterest.
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APPENDIX A

DERIVATION OF THE SITE-DEPENDENT
PHASE

We now provide a derivation of Equation (2.22), which gives the site-dependent phase
entering into our Hamiltonian for YBCO in the mixed state. The equations satis ed by this
phase are X

rr =2 2 (r ri); (A1)

wherer; is the position of a vortex core, andr 2 =0. We may consider the vortex lattice
to be a rectangular lattice with primitive vectors R = m'x® + n’y§, wherem and n are
integers, and with a basis, with one vortex displaced by a vector ) ry = %(‘Xk + )
with respect to the other.

Let us start by considering a single vortex; i.e., we determine thecontribution to the
phase,

rr i=2 2 (r ry); (A.2)

from the vortex at r;. One way to solve this equation would be to consider a closed circular
contour centered at the position of the vortex and rewrite the equation n terms of a line
integral of r ;. If we do this, then we obtain

1 1
ri=—1Im R +Re
a Z Zj Z Z

% (A.3)

wherez = % + %i is a complex number corresponding to position in units of the atomic
lattice spacing a, and z; corresponds similarly to the position of the vortex core. One might
then be tempted to add all of the contributions so obtained together to oliain the total
phase. However, the resulting sum will be divergent. To x this problem, we note that,
in reality, Equation ( A.1) only determines the phase up to the gradient of an arbitrary
function. Let us add the gradient of following function to all of the phases except for those
coming from the vortices in the unit cell at the origin (i.e., m = n =0):

_XYy oYX L (X2 yAxy  xivi(x? o y?)
X2 + y?2 = I (X2 + y2)2 (A.4)

rf=Im ;+5 2+Re —+ 2 ¢ (A.5)
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Upon adding this to the phase contributions, as before, we nd that the total phase is now
_1X INETRRET TR :
r = Im Z zj)izLx;3lLly R+Re z zgizlxsily 9 (A.6)
j=1;2
where the sum onj is over vortex positions relative to the unit cell z; (i.e., the actual
position is R + r()), Lxy = 2= and (zj! 1;!2) is the Weierstrass zeta function with
half-periods! 1 and ! 5:

X
(@l 151 2)= S Lotz A7)
z m:n 60 mn mn mn

where n = 2m! 1 +2n! 2. We have thus rendered the sum over all vortex positions
convergent.
We now wish to render the super uid velocity,

h 2e
Vs = 5o r H:A ; (A.8)
periodic. In the symmetric gauge that we are working in,
2e 1 X _ _ _ _
LA T Im  z zGjslx3ily R+Re  z zj)jsLy3ily 9
j=1;2
2
+ (YR X¥): (A.9)
Xy
Using the properties of the Weierstrass zeta functions that
(z+2'))= @+2 (') (A.10)
and that
2(')l2 2(12)'a= 30 (A.11)
we obtain
2e N 2e ) .2 14 4 .4 1
r RA (X+ ny)_ r RA (va) X \X\y 5? éLxJQnyflLy 9‘
(A.12)
and
2e . oL 2e ] .2 14 4 .4 1 )
r H:A (X,y+ y)— r RA (X,Y) Yy \X\y 5‘)( ZLXJELX’QILY k

(A.13)
By inspection of Equation (A.7), one can convince oneself that 1L,j3L; 3Ly is a real
number. We see that, as is, the super uid velocity is not periodc. This, however, may be
corrected by adding the gradient of

X Xy Y.

, . (A.14)

g(r)=2
j=1;2



where

- TR TR T .
= 7 L sLxjsLlx;giky (A.15)
to the gradient of the phase, thus obtaining
- 1 X ST ST
r = 3 Im z Zzjjzlx;3lky R +Re z zpizlxsiby 9
j=1;2
2 Xy g X X()
+ = — s R+ —= : A.16
a a i (A.16)

To nd the phase itself, we simply perform a line integral of the abowe expression. Using
the fact that
Im[f (z)] dx + Re[f ()] dy = Im[ f (z) dz] (A.17)

and that q
aln (Zi' ;' 2)= (Z)! 1;! 2); (A.18)

where (zj! 1;! 2) is the Weierstrass sigma function with half-periods! 1 and! ,, we nally
arrive at Equation (2.22).
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APPENDIX B

SPIN-LATTICE RELAXATION RATE IN
TERMS OF MAGNETIC SUSCEPTIBILITY

Here, we provide a derivation of Equation @.31), which gives the spin-lattice relaxation
rate in terms of a spin susceptibility of our system.

B.1 Relaxation Rate in Terms of Correlation Functions

Our rst task will be to nd the transition rates Wpn (r) for a nucleus at siter to
go from state n to state m. Rather than use Fermi's Golden Rule, we will use rst-order
time-dependent perturbation theory directly. Let us consider a g/stem consisting of a single
nucleus at point r and a gas of electrons. Let the state vectofnQi represent the system
with the nucleus in state n and the electrons in stateQ. We now introduce the hyper ne
interaction H,, which is given by

X
Bi(r;t)= e nh® A r9f(r;t) 8¢r%t): (B.1)

ro

In the interaction picture and to rst order in the interaction, the state vector for our system
evolves according to

YA t
i ((r;0i = jnQi + % B (r;t9jnQi dt® (B.2)
to
The amplitude for our system to evolve into a statejmQ¥Y is thus given by
1 24
mQ%j | (r;t)i = mn oo+ s mQ° K, (r;tYjnQi dt® (B.3)

to

We now substitute the form of the interaction into the above expresion and introduce an
adiabatic \switching on" of said interaction by including an exponential factor e! ° where
is a small quantity that we will take to zero at the end of our calculation, and by letting
tg! 1 . We obtain
Z, X
mQOj 1(rt)i = mn Qoo i enh S

1 ro
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h i
mQ® I (r;t98 (r8tY+ I (1198, (r%t9 + 1L(r; 195, (r%tY jnQi di®  (B.4)

We note that this expression is only non-zero ifm = norm = n 1. We will not consider
the m = n case here because it will not contribute to%. Let us rst consider the case

wherem = n + 1. The above amplitude becomes
Z, X
mQ% (r;t)i = ii e nh el” A 9 mQ°ri(r;t98 (r%tYjnQi di® (B.5)

1

ro

We may factor the matrix element occurring in the integral into a part involving only the
nuclear states and one only involving the electronic states. We will ao factor out the time
dependence of the nuclear state by rewriting the raising operatof (r;t) in the Schredinger
representation. This gives us

z t
n+1;Q% (r;t)i = % e nhm+1j%(r)jni g (Env En)t=hgt?
X 1
Ar 9 Q°8 (r*t9jqQi dt® (B.6)
(0
For convenience, we will introduce the nuclear resonance frequew, ! y = W The
magnitude squared of the above amplitude is then
ZZ t Z t
n+1;Q% ((ri)i >= % 2 2n2 m+1jl (r)jni e I n(t? e (%)

1 1
Ar A % Q%S (r%t%jQihQj S, (r*®°t% Q° dt°dt® (B.7)

r 0 00

We may now nd the probability for the nucleus to transition from stat e n to state n + 1.
In doing so, we assume that the electron gas was initially in thermal equibrium, and that
the nal state is unrestricted. We thus obtain

, 2y Zy _
Prsr n(r;t)= 3 2 202 m+1j0% (r)jni g N t%g (%1%

D 1 E
A A 1% S (r%%t%N8 (r%t9  dtldt® (B.8)

0 00

where h i represents a thermal average. We recognize the thermal average ocduag in this
expression as a spin-spin correlation function:

D E
Sy (r:r%t® = S.(r%9S (r;t) ; (B.9)

where we have assumed invariance under time translation. We may threwrite
ZZ t Z t i 0 i 00
Posr n(rit)= 3 & 2h® M+ 1j1(r)jni el it +itn)t
1 1
A(r A r9s. (r%r%t%° 19 dt%i®°  (B.10)

r0r 00
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We now introduce the Fourier transform of the correlation function with respect to time,

z
11 .
Sy (rr;t) = > S: (r%r;) e’ td ; (B.11)
1
so that
1 221 Zy Zy . N0 L N oo
Pn+1 n(r;t) = 3 2 2p2 tn+1j0% (r)jni gl inti) Og( +ily i)t
X 1

1 1
A(r A r%s. (r%r%) d dt%di$.12)

r0r 00

Upon performing the time integrals and simplifying the result, we ge

A
Pn+1 n(r:t)_ 87 e nh m+l] r\+(r)1m (! N ) 24 2
Ar A r%s, (r%r%9) d (B.13)
rr 00
We can now nd the transition rate,
dP, r;t
Wis1n(r;t) = “”T”(): (B.14)
Taking this derivative, we get
z
) — 1 2 2K2 ; L2 ! 2 2t
Wn+l;n(r1t)_ 87 e nh m+1] r\+(r)Jn| (| N ) 2+ Ze
Ar %A@ r%s. (1%r%) d : (B.15)
1 0r 00
We now take the limit of | 0. Upon doing this, the transition rate becomes independent
of time. We obtain
221 X
Whstn(r) = 3 2 20% m+1j0% (r)jni A(r AT s, (%) oy ) d;
1 (oo00
(B.16)

or, eliminating the delta function,

2 X
Whein(r) = 3 2 202 m+1j0% (r)jni A(r YA r9s, (r%r%1 ) (B.17)
r 0 00

The only other case we need to consider now i1 = n 1. The calculation is similar, and
we obtain

X
Wh 1n(r)= 2 2202 m 2§ (r)jni ? A(r YA r%s L (r%r% 1) (B.18)

i
r 0 00

We can now nd % using Equation (1.13. If we de ne the energy dierence E, E, 1=

E , we may write

!
1 - 12 2h2( E)Z X E2 '
FORERE “
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2 X
tn+1j0% (r)jni A(r YA r%s, (r®r%1 )+
n r O 00 "

X
+ 1jr‘(r)jni2 A(r YA r%s L (r%r% 1) (B.19)

ror00

Because the matrix elementshmj [ (r)jni will only be non-zero whenm = n + 1, and
similarly for hmj ™ (r)jni, we may write the above as

!
1 :lZZhZ(E)Z X E2
" Ty(r) 8°° "

1

n

2 X
hmj 1% (r) jni Ar YA r%s. (r%r%ry)+
mn 1 0r 00 "

X
+ tmjl* (r)jni ? A(r YA r%s L (r%r% 1) (B.20)

r O 00

B.2 Generalized Fluctuation-Dissipation Theorem

We now wish to rewrite our expression for% in terms of spin susceptibilities. However,
because our correlation functions depend on position, we may no longer @she uctuation-
dissipation theorem in the form,

S0)= s M) (B.21)

1 eh=

where Q1) is the imaginary part of the spin susceptibility. However, we can eaily gener-
alize the theorem to the case of interest. We start by writing down the Fourier transform
of the correlation function:

1 D E
S (r;r%1) = et S (%S (r;0) dt
112 X
= o @t e ReTeTgis (%) QY Q°S (r;0)jQi dt
ran x
— Zl e EQZKBTei(EQ EQ0+h! )t=h }.Qjé (r() QO QO é (r)JQ| dt
L Qqo
2 hX _ _ .
= 5 e Eoske THQjS (r% Q° Q°S (r)jQi (Eq Eqo+ h! (B.22)
QQO

We now wish to relate this to the Fourier transform of the spln SUSC@thlhty

(r:r ,t): H (1) é (r%t):8 (r; 0) : (B.23)
Taking the Fourier transform, we get
141, x h
(riré)= o @t e FeTeThois (1%1) Q° Q%S (r;0)jQi

hz 0Qo
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i
e BT T8 (;0) Q° QS (1SnjQi dt  (B.24)

or, in the Schredinger representation,

(r;r®1)y= - =

L1 e Eo=keTd(Eo Eqorh)=h i 8 (19 Q0 Q0 § (1)jQi
. .

QQO |
e Eovka Tgl(Eqo Eo+hh)Eh i & (1) 9 Q0 & (r9jQi  dittB.25)

If we interchange Q and QC°in the second term, we get, after introducing a convergence
factor e ! into the integrand,

o Z
(rir81)= 17X e Eo=ke T o Eqoke T i(Eq Eqoth!)thg t
QQo

hQjs (r% Q° Q°S ()jQi dt: (B.26)

We may now perform the time integration, obtaining

1 X e EQ:kBT e EQ0=kBT

rdry= = ; 0 0 A -
(G = 2 e By ha ey QS Y QS miQ: B2
QQ°
Let us now de ne a \discontinuity" operator, which we will denote by D if (:::;!):
B | sk DRI | H
Dif(:::;!):f(""'+|0)2if(""'+|0) (B.28)
We nd that

1X h eBeleT g EqoskeT

. .0 _ ; 0 0 0O -
s zQQo (Eqo Eq h!)2+ h? 2 "QjS (1) Q% Q°S Qi

(B.29)
or, in the limit ! O,

X
DI (rirS1)= 5 e FokeT g Eov™eT 108§ (1% Q° Q%S (n)jQi
o (Eqe Eq h!): (B.30)

In the rst factor inside the summation, we may replace Eqo with Eq + h! because of the
delta function. When we do this, we get

X
Di  (rrS1)= 5 1 eM¥eT e Re¥e TS (1) Q° QS (NiQi
QQ°
(Eqo Eq h!):(B.31)

Comparing this expression to Equation B.22), we see that

S (r;rl1)= 2h — Di (r;r®1): (B.32)
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This is the appropriate generalization of the uctuation-dissipation th eorem we sought. In
the case where the spin-spin correlation function and the spin sugptibility are independent
of position, this formula reduces to Equation (B.21).

There is one other relation that we will nd useful in what follows. Let us interchange
the labels Q and Q%in Equation (B.30):

DI (r;r81)= e FerleT g BoeT Q0§ (r9jQihQjs (r) Q°

(E@ Eqo h!) (B.33)
Rearranging terms, we get

X
Di  (rir%)= 5 efeteT e Foel 1OiS () Q° Q°$ (YQ
QQo
(Eqe Eq+hl)= Di (r%r; 1):(B.34)

B.3 Relaxation Rate in Terms of Spin Susceptibilities

We are now ready to write % in terms of spin susceptibilities. Using the generalized
uctuation-dissipation theorem, we get
!

1 X !
_ 12 2,2 2 2
= 12202 E
. T]_(r) 8 e n ( ) . n
. . . ZX 0 2h . 0 00
tmj (% (r) jni Ar OAr 99— _Di . (r%r% )+
1 e h n=kg T
mn ¢ O 00 "

. . 2X 2h .
+ tmjl* (r)jni A(r  rOA(r rO9WD| +(r%r% 1) : (B.35)
r 0 00

We now use Equation B.34) to obtain

!
1 - 12 2h2( E)Z X E2 '
Tl(l’) 8 e n n

n

. . . ZX 0 2h . 0 00
bmj % (r) jni A(r  rYA(r r9le o (r%r0r )+

mn r Or 00 4
. o 2X 0 2h , 00,0
tmjl* (r)jni A(r  rYA(r rSWm + (%% %1 y) : (B.36)
r O 00

We may interchange the position vectorsr®and r%in the second term to get

!
1 - 12 2h2( E )2 X E2 '
Tl(r) 8 e n n

2h
1 e h! NszT

n

X
rmjm(ur)jni2 A(r A % Di + (r%r%1 )+

mn r 0r 00
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#

. o 2X 2h .
tmj ™ (r)jni A(r  rYA(r r09wm + (r%r%ry) : (B.37)
Oy 00

We now make an approximation|typically, the resonance frequency of our nucleus is much
smaller than the temperature scale; that is,h! y kg T. Because of this, one often works
in the limit ! y ! 0. In this limit, we may write

!

1 X '
— 1 2 2,3 2 2
Ty T4 e nrreTlEN R
X 2 2 X i 0 00
hj s () jni ~+ hmj (r)jni A A r% fim DI - élr 0 g 38)
mn 1 O 00 ' o .
We may rewrite the sum onm and n in terms of , and [, obtaining
1 x
— 1 2 2,3 2 2
Ty 2 ennkeT(E) n =
h i X ; 0,00
fmj (2(r) + 12(r) jmi A rOAQ@ r% lim DI - r(ﬂ” ). (B39
m r 0r 00 o ’
We can rewrite the sum of E2 as
X
E2=(E)?> mjl2(r)jni: (B.40)

n n

We have thus reduced these sums to traces di?, (2, and 2. The traces of these three
operators are all equal; upon evaluating them, we obtain Equation 8.31).
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APPENDIX C

FIERZ REDUCTION OF THE FOUR-FERMION
INTERACTION TERMS

We now provide details on the Fierz reduction of the interaction temms, Equation (5.31),
appearing in our low-energy theory for bilayer graphene. The analysis W closely follow
that of Reference [i6], though it di ers in some mathematical details.

First, however, we wish to derive the identity, Equation (5.32). Let us start with the
fact that any 8 8 matrix can be expanded in terms of theSU(8) generators ;:

X
A=1  Ti(A ) (C.1)
i
We may write this in component form as
1X X

A =

Rewriting the left-hand side in terms of the indices and , we obtain

X X X
A = % A i T (C.3)
i
Equating like terms in the two sums, we obtain
L X
= 8 i T (C4)

Let us now consider a product of two matrix elements,S T . This product may be
written as X

S T : (C.5)

If we rearrange the order of the delta functions and use Equation C.4), we obtain
X L X X
S T = éa i i i i S T : (C6)
]

We may now readily rewrite this in terms of traces, thus obtaining Equation (5.32).
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We are now ready to show how to perform the Fierz reduction of the ineraction term in
Equation (5.31). Let us rst write down a 64-component vector of the squares of bilineas
of the form, ( Y )% We will arrange them in the order, Ves = [X 1;XsS1;XS2; Xs3]T,

where
X =[14; 11 20 351 05 11, 21 3 51 2,12, 22,3 2,13, 13 23 33]':
(C.7)

We now note that, if we apply the Fierz identity, Equation ( 5.33, to ( Y ¢ )?, then only
terms for which i = j will be non-zero. This means that, if we apply the Fierz identity to
Ve4, then the result will simply be Vg4 =  Viga, Where
i = (i i) (C.8)
Since the ;| = 4 pSg are simply direct products of three SU(2) generators, the matrix
product appearing in j is also such a direct product, and the trace of it is just the produd
of the traces of the three \component" matrices. In other words, we may wite
G*JATr( aj aj aj aj )Tr( h q h h )TI’( SCi SC] SCi SCJ ) (Cg)

i =
Each of these traces is equal to 2 if either both matrices appearing inhie matrix product

are equal, or if at least one is the identity. Otherwise, the trace wil be 2 due to the

anticommutative nature of the Pauli matrices. As a result, we obtain
= ) (C.10)
where 2 3
1 1 1 1
81 1 1 12 _
= §1 11 15 (C.11)
1 1 1 1
We now perform a similarity transformation, MVgs = (M M 1)MVes. The matrix M is
given by 2 3
Q o0 0 0
0 Q Q Q é
M = g ; C.12
020 Q Q (C.12)
0O 0 Q Q
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where the 16 16 matrix Q is

2 10 0 0 O O O O O 0O OoO0OO O O 8
61 10 0O O O O O O OOO0OD 1 1
0o 0 010 O O OO O OOOTUOTUO
0o 0o 0 061 0 OOOTOOTZ1IO0O0 O
0o 0 0 00O 1.1 0 0 0O OO0OO0OO0 O
0o 0o 0 0 0O 001 1 0 000 00O
0o 0 0 0 0O 00 O O 1 1200 00O
0O 0o 0 0 0O 00O O O OO 0O

Q= 0o 0 0 0 0O 00O 0O OO OOO OO0 O (C.13)

0 1.1 0 0 0 O O O 0 OoOO0OOTI1TT10O
0 1. 120 0O O O O O O OOO 1T 1
0 1 10 0 0 O O O 0 0OOT11T10O0
0 0o 0 0 1. 0 00O O 0 010 0O
0o 0o 0 00 11 0 0 0 O0OO0OO0O OO
0O 0o 0 0O 0O 00 11 0 O0O0OO0OO0O OO
0 0 0 0 0 0 0 O O 1100 0 00O

The rst nine rows of this matrix correspond to the irreducible re presentations of the space
group of bilayer graphene, as enumerated in Tabl®&.2, while the last seven are \orthogonal”
linear combinations to the multi-dimensional representations. Theefore, rows 1{9 and 17{
25 of M correspond to the \charge" and \spin" representations. We thus nd that rows
1{9 of MVeg4 correspond to the symmetry-allowed \charge" interaction terms, in the order
of Aig, Ek, Awu, Eg, Ak, Eu, Aok, Aoy, and Aog, while rows 17{25 are the corresponding
\spin" interactions. If we perform the similarity transformation on gi ven by M, we nd

that 2 3
QAQ ' QAQ! 0 0
1=§3QAQ ' QAQt o0 0 Z
M M 0 0 20AQ 1 0 : (C.14)
0 0 0 NAQ 1
whereA = % . We have thus reduced to block form. All that remains is to evaluate
QAQ 1. Upon doing so, we obtain
QAQ '=
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1 1 i1 1 1 1 1
§ 8 & s 8 & s g & 0 0 00 000
?o%oooo?%ooooooo
?%%%%1%%1§1%0000000
{0 £ 30161 %0000 0 0 0
% 4 4 4 4 4
0 o0 2z 0 ¥z %+ 0o 0 o0 o0 0 0 O
t o ' 2 o0 190 1 % 9 000 0 0 0
% 4 4 4 Z%
i1 11 l9g 0 0 0 0 0 O
4 FL 3l 3 i foooo 000
o 0 o 0 0 0 0 0 0O 2 o000 O 0 O
o o o0 o o o 0 0 O O o0 O%4o0 % o
o o o o o o o o o0 o 0o 0w O%4 o 1
o o o o 0o o 0 O O o o0 %+ 0 1 O
o o o o 0o o o o o o0 0o 1 o 1!
o 0o 0 o 0 0 0 0 O O3 O %+ 0 1 O
o o o o o o o o o o oo I o
(C.15)

We have thus reducedA to block form as wellla 9 9 block and a 7 7 block. From
this and the above expression foM M 1, we see that rows 1{9 and 17{25 ofM Vg4 only
couple to one another, but not to any other row. If we denote byV components 1{9 and
17{25 of MVg4 and by F°the elements ofM M 1 that act on these components, we have
FO/ = V. Therefore, to obtain the Fierz matrix F such that FV = 0 that we seek, we
simply subtract the 18 18 identity from F® Denoting the 9 9 block of QAQ * by A°
we nd that
0 0

F= A3A0' AAO - (C.16)
If we nd the eigenvalues of this matrix, we nd that it has nine zero eigenvalues. Therefore,
there are nine independent couplings, as asserted in the main text.
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