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ABSTRACT

We treat two di�erent problems in condensed matter physics. The � rst concerns nuclear
magnetic resonance (NMR) in optimally-doped YBCO in the mixed state. Weshow that the
line shape is broadened due to the fact that the Knight shift becomes position-dependent
in the mixed state. We also identify a second mechanism, in which apair of spin up
quasiparticles is emitted or absorbed, by which the nuclear spins can relax in the presence
of a magnetic �eld, and show that this second mechanism dominates at low temperatures.
We then compare our results to experimental data on17O NMR and show that it is possible
to explain the data without invoking the presence of antiferromagnetic correlations in the
vortex cores. In fact, we show that the e�ects of such correlations on the 17O relaxation
rates are suppressed in the mixed state, as they are in the normal state.

The second problem concerns the electronic phases of bilayer graphene at half �lling.
Using �nite-temperature weak-coupling RG methods, we are able to analytically determine
all possible outcomes of the RG ow equations for the nine coupling constants. From this,
we are able to determine all of the possible leading instabilities that the system may exhibit
as its temperature is lowered. We �nd that the full phase diagram exhibits a very rich
structure, with many di�erent possible instabilities. We then specialize to the case of �nite-
range density-density interactions. We introduce such an interaction into the microscopic
tight-binding model and show how it can be related to the coupling constants in the low-
energy e�ective theory, and apply these results to determine theleading instabilities of the
system as a function of the range of the interaction. We consider two forms of the interaction,
both motivated by experimental setups, namely a potential like that produced by an electron
in the presence of an in�nite conducting plate, and like that produced by an electron situated
exactly halfway between two in�nite conducting plates. We �nd th at the system is unstable
to an antiferromagnetic phase for short-ranged interactions and towards a nematic phase,
which breaks the rotational symmetry of the lattice, in agreement with previous work.
While the antiferromagnetic phase is gapped, the nematic phase is gapless. Motivated by
the fact that we �nd an instability towards an antiferromagnetic phase for short-ranged
interactions and by experimental data that suggests the presence of a gap, we then turn our
attention to an investigation of the antiferromagnetic phase in the presence of an applied
magnetic �eld. This is done within the framework of variational mean �eld theory. We �nd
that, at low �elds, the antiferromagnetic order parameter �( B ) � �(0) � B 2. At higher
�elds, for which ! c is larger than about 2�(0), we �nd that �( B ) � ! c=[ln( ! c=�(0)) + C],
whereC � 0:67 and! c = eB=m� c is the cyclotron frequency. We also determine the energy
gap for creating electron-hole excitations in the system, and, at high �elds, we �nd it to be
a! c + 2�( B ), where a is a non-universal, interaction-dependent, constant.

xi



CHAPTER 1

INTRODUCTION: PROPERTIES OF, AND
NUCLEAR MAGNETIC RESONANCE (NMR)

IN, YBCO

Figure 1.1: An illustration of a single unit cell in the crystal structu re of undoped
(x = 0) YBCO.

The �rst part of this work will concern nuclear magnetic resonance in YBCO (YBa 2Cu3O7� x )
from a theoretical perspective [3]. YBCO, and, in fact, the cuprates in general, are materials
of great interest, due in no small part to the fact that they were the �r st materials known
to exhibit high-temperature superconductivity. This property was �rst observed in 1986 by
Bednorz and M•uller in a La-Ba-Cu-O compound [7], with a transition temperature of 30
K. High-temperature superconductivity was discovered in YBCO the following year by Wu
et. al. [8], with a transition temperature of around 90 K.
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1.1 Crystal structure

YBCO is a cuprate, and exhibits a perovskite crystal structure, asshown in Figure 1.1.
One of the major advantages to working with YBCO in particular is that clean samples are
readily available. We note that YBCO has three Cu-O planes per unit cell, two forming
a slightly rectangular (orthorhombic) lattice, the third forming chai ns. We will focus our
theoretical investigations on the planes that do not form chains, since these are where the
electronic behavior of interest to us is believed to originate. This is due in no small part to
the fact that this is a common structural feature in all of the cuprates. In our work, we will
approximate these planes as square lattices, since the di�erence in the lattice constants is
small.

1.2 Electronic phases

Figure 1.2: The phase diagram for the cuprates. While we will only be discussing
YBCO in this work, this phase diagram is universal to the cuprates in general.

YBCO exhibits a number of di�erent phases as a function of doping and temperature, as
shown in Figure 1.2. In fact, this phase diagram is found to be universal to all cuprates. We
see that, for small (hole) dopingx, YBCO is an antiferromagnetic insulator. As we increase
the doping, we �nd other electronic phases. For example, the system enters a pseudogap
phase for dopings between aboutx = 0 :02 and x = 0 :17, and for temperatures above either
the Neel temperature TN for low dopings or the superconducting transition temperature
Tc for high dopings, but below T � (see Figure1.2). This region of the phase diagram has
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been of great interest in its own right, with much theoretical and experimental work having
been done to determine the nature of this region. However, the region ofgreatest interest
in this work is the superconducting phase. We see that, within a dome-shaped region of
the diagram, the system enters a superconducting phase, with the critical temperature �rst
increasing with doping, achieving a maximum, and then decreasing again. The doping at
which the transition temperature reaches its maximum value is called the optimal doping.
For YBCO, the optimal doping is x = 0 :15, at which the critical temperature Tc = 92 K.

1.3 YBCO as a superconductor

In the superconducting state, YBCO is a type-II dx2 � y2 -wave superconductor. The
distinction between a type-I superconductor and a type-II superconductor is the relative
magnitudes of the superconducting coherence length� , which gives the size of the Cooper
pairs, and the penetration depth � , which is the length scale over which an applied magnetic
�eld is screened out as one goes below the surface of the sample. In a type-I superconductor,
the ratio

� =
�
�

<
1

p
2

: (1.1)

In this type of superconductor, there is a single critical �eld, Hc, above which a cylindrical
sample with the magnetic �eld applied parallel to its axis will transi tion from the Meissner
state, in which an applied magnetic �eld is expelled from the bulk of the sample, to the
normal state; i.e., superconductivity is completely destroyed above Hc. Other geometries,
such as a sphere, may exhibit more complex behavior, namely an intermediate state in
which some parts of the sample become normal while others remain superconducting.

In a type-II superconductor, in which � > 1p
2
, on the other hand, the system has, not

one, but two critical �elds. Above the lower critical �eld, Hc1, the system transitions from
the Meissner state to a mixed, or vortex, state. In this state, vortices, inside of which
superconductivity breaks down, form inside the bulk of the sample. Inside of these vortices,
a circulating current is formed. The superconducting order parameter is suppressed within
each vortex over a length scale given by� , while the magnetic �eld increases over a length
scale given by� , as shown in Figure1.3. This state was originally predicted by Abrikosov on
the basis of the Landau-Ginzburg theory of superconductors in the presence of an applied
magnetic �eld [9]. He showed that a periodic array of vortices would form in a type-II
superconductor placed in a su�ciently large magnetic �eld. His original conclusion was
that these vortices would form a square lattice, but it was later shownthat a triangular
lattice was more favorable. Once the upper critical �eld, Hc2, is exceeded, the system enters
the normal state.

As stated earlier, YBCO is a dx2 � y2 -wave superconductor. A superconductor with this
type of pairing is referred to as \unconventional". A \conventional" supe rconductor, such
as Hg or Al, is an s-wave superconductor. In ans-wave superconductor, each Cooper pair
forms an object with total orbital angular momentum quantum number l = 0. The wave
function for this pair is symmetric in space, and thus must be antisymmetric with respect
to the electronic spins to satisfy Fermi-Dirac statistics; i.e., the electrons must be in a spin
singlet state. This means that the pairing �eld is isotropic in space, and the resulting
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Figure 1.3: Illustration of a vortex appearing in the mixed state of a type-II
superconductor. Inside this vortex, we �nd a circulating current. We see that the
superconducting order parameter is suppressed in the core of the vortex, and that
the magnetic �eld penetrates into the bulk of the sample. The length scale over
which the order parameter is suppressed is given by the coherence length � and
the scale over which the magnetic �eld falls o� as we move away from thevortex
core is given by the penetration depth� .

quasiparticle energy gap is independent of the wave vector of the excitation. On the other
hand, in a d-wave superconductor, the Cooper pairs have a total orbital angular momentum
quantum number l = 2. This results in an anisotropic pairing �eld, and therefore in a
quasiparticle energy gap that depends on the wave vector of the excitation. As an example,
if the electrons had a dispersion relation given by �h2k2=2m, then the gap in a dx2 � y2 -wave
superconductor will be proportional to k2

x � k2
y . An illustration of this pairing gap is given

in Figure 1.4. The wave functions for the Cooper pairs are, again, symmetric in space, and
thus, like in an s-wave superconductor, the electrons in the Cooper pair are in a spinsinglet
state.

It is widely believed that conventional superconductivity is caused by electron-phonon
interactions, which induce an e�ective attraction between electrons. This is because ex-
periments observe an isotope e�ect, in which the transition temperature and critical �eld
are lower for heavier isotopes of a given element than for lighter ones [10, 11]. In fact, the
transition temperature and critical �eld have a power law dependence, (Tc; Hc) � M � � ,
where M is the isotopic mass of the material. Theoretically, � = 1

2 , and many materi-
als have exponents close to this value [12]. The fact that a property of the nuclei of the
atoms has an e�ect on the superconducting transition temperature suggests that the lattice
plays an important role in establishing the superconducting phase.However, the maximum
transition temperature that can be achieved assuming this mechanismis estimated to be
about 40 K for certain types of materials [13]. It is therefore unknown what mechanism is
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Figure 1.4: Illustration of the gap parameter � k in a dx2 � y2 -wave superconductor
on the Fermi surface.

responsible for high-temperature superconductivity, though the problem has been of great
interest.

In our work, we will be employing a mean-�eld model of superconductivity, in which we
introduce the (in general complex) pairing �eld � k via a quadratic term in the Hamiltonian.
As a simple example, let us consider a gas of free electrons. When we introduce the pairing
�eld, the Hamiltonian for a gas of free electrons in the presence of a pairing �eld,

Ĥ =
X

k

X

� = " ;#

� (k)cy
k � ck � +

X

k

(� k cy
k " cy

� k # + h.c.) ; (1.2)

where ck � is a fermionic annihilation operator for an electron with wave vector k and spin
� , and � (k) is the energy of that electron. We will assume here that the chemicalpotential
is included in this energy. In reality, this form would come about by decoupling a four-
fermion interaction term in a superconducting channel, and � k would be determined from
a self-consistency condition. We never explicitly do this in ourwork; we will go into detail
about our assumptions about the pairing �eld in the next chapter. We may write the above
Hamiltonian in matrix form:

Ĥ =
X

k

h
cy

k " c� k #

i �
� (k) � k

� �
k � � (k)

� "
ck "

cy
� k #

#

(1.3)

Note that we assumed time reversal symmetry; i.e.,� (k) = � (� k). This may be diagonalized
by use of the Bogoliubov transformation,

"
 k "

 y
� k #

#

=
�
uk � v�

k
vk u�

k

� "
ck "

cy
� k #

#

; (1.4)

where we assume the normalization condition,juk j2 + jvk j2 = 1. The  operators create
what are known as Bogoliubons, or quasiparticles. These are the elementary excitations of
the electron gas in the superconducting state. This results in theequation,

�
� (k) � k

� �
k � � (k)

� �
uk

vk

�
= E(k)

�
uk

vk

�
: (1.5)
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This is known as the Bogoliubov-de Gennes (BdG) equation, andE(k) is the energy re-
quired to create a single quasiparticle excitation. This equation hastwo solutions, one with
positive energy and one with negative energy, which may be obtained fromthe positive-
energy solution by making the replacements,uk ! � v�

k and vk ! u�
k . We associate the

positive-energy solution with  k " and the negative-energy solution with  � k #, so that the
Hamiltonian, in diagonalized form, will be

Ĥ =
X

k

X

�

E(k) y
k �  k � ; (1.6)

where all of the energiesE(k) are positive.
Solving the BdG equation, we obtain

uk =
1

p
2

s

1 +
� (k)
E (k)

and vk =
sgn� kp

2

s

1 �
� (k)
E (k)

; (1.7)

where
E(k) =

p
[� (k)]2 + j� k j2: (1.8)

In the case of ans-wave superconductor, � k = � 0 is independent ofk, and thus there is a
simple energy gap in the system. On the other hand, in adx2 � y2 -wave superconductor, as

mentioned before, the pairing gap has the symmetry, �0
k2

x � k2
y

k2 . This results in point nodes
in the gap along the Fermi surface, at which� (k) = 0, as illustrated in Figure 1.4.

1.4 NMR data on optimally-doped YBCO

The main motivation for investigating the problem treated in the present work is the
interpretation of 17O NMR data on optimally-doped YBCO in the mixed state [ 1, 14]. The
reason for looking at 17O in particular is because it is the only stable isotope of O with
a non-zero spin, namely5

2 , and therefore a non-zero magnetic moment. NMR has been a
valuable tool for investigating the electronic properties of high-temperature superconductors
[15], and a number of other NMR experiments on these materials exist [16, 17]. The results
presented in Ref. [1] are shown in Figure1.5 [1]. Before discussing the interpretation of the
data, let us �rst review some basic facts about NMR that are relevant to our work.

1.4.1 A brief introduction to NMR

In an NMR experiment, one �rst subjects the sample to a constant magnetic �eld H0

in order to align the nuclear magnetic moments parallel to it. The sampleis then subject
to an oscillating magnetic �eld, which will ip the spins. How strongl y the spins respond
to the oscillating �eld depends on its frequency. This frequency dependence is known as
the line shape. A given nucleus will respond most strongly to a �eld tuned to its resonance
frequency, which is given by [18]

! =  nH0; (1.9)

where  n is the gyromagnetic ratio of the nucleus.
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In a crystal, however, the resonance frequency will deviate from this value. This is
due to an e�ect, known as the Knight shift, which is a shift in the r esonance frequency
� ! caused by an e�ective magnetic �eld generated by the surrounding electrons via the
hyper�ne interaction with the nucleus. We will use the model for this interaction introduced
by Shastry, Mila, and Rice [19, 20],

Ĥhf = �  e n �h2
X

rr 0

A(r � r 0)Î (r ) � Ŝ(r 0); (1.10)

where  e and  n are the gyromagnetic ratios of an electron and of the nuclei, respectively,
Ŝ(r 0) and Î (r ) are their respective spins,r and r 0 are the positions of the nuclei and of the
electrons on the Cu-O plane, andA(r � r 0) is a form factor. Here, we are assuming a negative
value for the electronic gyromagnetic ratio, so that  e = � 1:761� 1011 s� 1 T � 1. In this
work, we will be looking at 17O nuclei in particular, for which  n = � 3:6264� 107 s� 1 T � 1.
For the O atoms, we assume that the main contributors to this term come from the nearest-
and next-nearest-neighbor Cu atoms. The value of e n �h2A(r � r 0) is 2:317� 10� 7 eV for
the nearest-neighbor atoms, and 5:794� 10� 8 eV for the next-nearest-neighbor atoms.

This e�ect was �rst observed in 63Cu by Prof. Walter Knight; he found that metallic
Cu had a resonance frequency that was 0.23% higher than in CuCl for the same value of
the applied constant �eld [18]. Four facts that tend to be true about the Knight shift are
[18]

1) The Knight shift tends to be positive; i.e., it is usually an increase in the resonance
frequency.

2) The fractional shift, � !=! , is independent ofH0.

3) The fractional shift is almost independent of temperature.

4) The fractional shift tends in increase with increasing nuclear charge Z .

To calculate the Knight shift, we use �rst-order time-independent perturbation theory with
respect to the electrons on Equation (1.10), and then take the thermal average of the result.
This will generate an e�ective Zeeman term for the nuclei,

Hhf;ef f = �  n �h
X

r

Î (r ) � � B (r ); (1.11)

where
� B (r ) =  e�h

X

r 0

A(r � r 0)
D

Ŝ(r 0)
E

(1.12)

is the e�ective magnetic �eld experienced by the nuclei and generated by the electrons.
Here, h�i denotes a thermal average over all electronic states. Note that this formula, in
general, allows for the e�ective �eld to be position dependent; we will, in fact, �nd that it
does possess a position dependence, which will have important consequences.

Once the oscillating �eld is removed, the spins will then relax back to their equilibrium
positions. This relaxation is roughly exponential, and happens over a time scale given
by the spin-lattice relaxation time T1. While a number of mechanisms can contribute to
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this relaxation, the one that we will be focusing on the most is due to interactions with
the surronding electrons via the hyper�ne interaction. The relaxation rate, 1=T1, may be
calculated from the formula [18],

1
T1(r )

= 1
2

P
mn Wmn (r )(Em � En )2

P
n E 2

n
; (1.13)

where m and n are spin states for the nucleus at siter , Em and En are their respective
energies, andWmn (r ) is the transition rate from state m to state n. We will assume that
the energies are equally spaced (i.e.,En � En� 1 = �E ) and that their sum is zero. In other
words, we are ignoring contributions from, for example, the quadrupole moments, which
may safely be done in high magnetic �elds. The transition ratesWmn are calculated from
Fermi's Golden Rule,

Wmn (r ) =
2�
�h

*
X

QQ0

�
�
�


mQ0

�
� V̂ (r ) jnQi

�
�
�
2

� (EmQ 0 � EnQ )

+

; (1.14)

where EnQ is the total energy of the nucleus and the electrons and̂V (r ) is the hyper�ne
interaction contribution from the nucleus at site r ,

V̂ (r ) = �  e n �h2
X

r 0

A(r � r 0)Î (r ) � Ŝ(r 0): (1.15)

In an ordinary metal the spin-lattice relaxation rate, is proportional to t he temperature
[18]. This is often known as the Korringa law. In an s-wave superconductor, the relaxation
rate goes ase� 2� =kB T , where � is the superconducting gap parameter, at low temperatures;
i.e. it has a thermally activated behavior. On the other hand, in a d-wave superconductor,
the rate increases asT3 at low temperatures.

1.4.2 Experimental data

The experimental data presented in Ref. [1] is shown in Figure 1.5. The left panel
shows the spin-lattice relaxation rate divided by the temperature, 1=T1T as a function of
temperature, both inside and outside the vortex cores, and for severaldi�erent values of
the applied magnetic �eld. The right panel shows the line shape, alongwith the relaxation
rates as a function of the magnetic �eld. The rates considered to have been taken inside
the core are those within the shaded region on the line shape, while those considered to be
outside the core are taken from the peak in the line shape.

We note two interesting features of this data. First of all, there is an upturn in 1 =T1T
inside the vortex cores with decreasing temperature. This behavior is inconsistent with the
behavior stated earlier for a d-wave superconductor, or even for the normal state. Second
of all, the line shape is broadened considerably from that of the normal state [2]. These
features have been interpreted as evidence for antiferromagnetismin the vortex cores [1].
This interpretation follows from 63Cu NMR data on the normal state [21], which shows a
similar upturn.
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Figure 1.5: Results of an NMR experiment by Mitrovi�c [ 1] on optimally-doped
YBCO (i.e., x = 0 :15) in the mixed, or vortex, state. The left plot shows 1

T1T
both near and away from the vortex cores. The right plot shows the line shape
(continuous curve) and the values of 1

T1T for the given internal magnetic �eld H int

(data points). The vertical scale only applies to the relaxation rates;the line shape
is in arbitrary units.

1.5 Theoretical investigations of NMR in YBCO

Several other theoretical investigations of NMR in the mixed state of thecuprate su-
perconductors have been carried out. One of the earliest treatmentswas that of Takigawa
et.al. [22] using a self-consistent method of solution of the Bogoliubov-de Gennes equations
due to Wang and MacDonald [23]. They found that 1=T1 is linear in temperature near the
vortex cores at low temperatures and exhibits a small, Hebel-Slichter-like, peak near the
superconducting transition temperature. At low temperature, the rates near the core are
also found to be larger than the rates away from it, which approach the usual T3 depen-
dence. NMR in the d-wave mixed state was also studied using a semiclassical approach
[24], and using a linearized form of the Bogoliubov-de Gennes equations [25]. The results
of the linearized model give faster rates near the vortex cores than away from them. They
found that 1=(T1T) near the core increases slowly with temperature up to 30 K, and re-
mains almost constant over the same temperature range away from the core.Importantly,
these works focused on the quasiparticle spin-ip channel, but, asmentioned above and as
we show in more detail below, the Zeeman coupling of the quasiparticles, which cannot be
ignored at large magnetic �elds, introduces an additional channel for spin-lattice relaxation
which is found to dominate at low temperature.
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1.5.1 Summary of our work

In our work, we re-examine this interpretation of the experimental data from a theoret-
ical perspective. We start with a tight-binding model for the Cu-O planes in YBCO with a
dx2 � y2 -wave pairing �eld and an applied magnetic �eld, accounting for both the orbital and
spin (Zeeman) e�ects of the latter. We then obtain the associated BdGequations and solve
them numerically. From these solutions, we may calculate the Knightshift and spin-lattice
relaxation rate.

In the absence of the Zeeman term, we would �nd that the quasiparticleenergy spectrum
has no negative energies. However, upon introduction of the Zeeman term, some of the spin-
up quasiparticles acquire negative energies. Furthermore, we �nd that the quasiparticle
wave functions are peaked near the vortex cores. These lead to interesting e�ects for NMR.
For example, the Knight shift becomes position-dependent; in fact,it becomes larger near
the vortex cores than away from them. We show that this can at least partially explain
the broadening of the line shape. We also show that the downward shifting of the spin-
up quasiparticle energies opens up a new channel through which the nuclear spins may
relax, in which a pair of spin-up quasiparticles is created or destroyed by the hyper�ne
interaction, lowering or raising the nuclear spin accordingly. This process dominates at
low temperatures, and results in an upturn in the spin-lattice relaxation rate divided by
temperature, as observed in the experiment.

The rest of this part of the work is organized as follows. In Chapter2, we state the
electronic model of YBCO in the mixed state that we use, and give the properties of its
solutions. Chapter 3 will be dedicated to the calculation of the Knight shift and spin-latt ice
relaxation rate, along with our results. In Chapter 4, we will state our conclusions.
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CHAPTER 2

MODEL OF ELECTRONIC BEHAVIOR OF
YBCO IN THE MIXED STATE

In this chapter, we will introduce our electronic model for YBCO in the mixed state. How-
ever, before introducing the full Hamiltonian for the system that we wish to study, namely
YBCO in the presence of both a pairing �eld and an applied magnetic �eld, we will �rst
review the properties of the electronic spectrum in the normal state and in the supercon-
ducting state in the absence of a magnetic �eld.

2.1 Normal state; the three-band model and the e�ective
one-band model

From Figure 1.1, we see that the Cu-O planes are approximately square lattices with
unit cells consisting of three atoms|one Cu atom and two O atoms. This impl ies that this
plane contributes three electronic bands. The tight-binding Hamiltonian that we will use
to model the electronic behavior of these planes is

Ĥ = � t
X

r

X

�

[ay
� (r )b� (r + 1

2ax̂) + by
� (r + 1

2ax̂)a� (r + ax̂ )

+ ay
� (r )c� (r + 1

2aŷ ) + cy
� (r + 1

2aŷ )a� (r + aŷ ) + h.c.]

+ � Cu-O

X

r

X

�

[by
� (r + 1

2ax̂)b� (r + 1
2ax̂) + cy

� (r + 1
2aŷ )c� (r + 1

2aŷ )]; (2.1)

where t is the hopping integral between a Cu site and a nearest-neighbor O site, the a� (r )
operators annihilate electrons with spin � on the Cu sites, the b and c operators do the
same for electrons on O sites along thex- and y-axes, respectively, and� Cu-O is an energy
di�erence between the Cu and O sites, anda is the lattice constant, de�ned in Figure 1.1.
Here, we approximate the slightly rectangular lattice as a square lattice, as stated earlier.

We may diagonalize this by �rst performing the Fourier transform,

x � (r ) =
1

p
N

X

k

ei k �r xk � ; (2.2)

where x = a, b, or c. The result, in matrix form, is

Ĥ =
X

k

X

�

 y
k � H(k) k � ; (2.3)
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where  k � = [ ak � ; bk � ; ck � ]T and

H(k) =

2

4
0 � 2t cos(12kxa) � 2t cos(12kya)

� 2t cos(12kxa) � Cu-O 0
� 2t cos(12kya) 0 � Cu-O

3

5 : (2.4)

We may now obtain the energy bandsE(k) of the system by diagonalizingH(k). Upon doing
so, we �nd three bands, as stated earlier. One of the bands,E(k) = � Cu-O , is completely
at, while the other two bands,

E(k) = 1
2 � Cu-O �

q
1
4 � 2

Cu-O + 4 t2[cos2( 1
2kxa) + cos2( 1

2kya)]; (2.5)

disperse. We present a plot of these bands along the linekya = � in Figure 2.1 for � Cu-O =
� 3t. We see that one of the bands, which corresponds to taking the plus signin Equation

- 3 - 2 - 1 0 1 2 3
- 4

- 3

- 2

- 1

0

1

kxa

E
=

t

Figure 2.1: Plot of the energy bands in the three-band model forkya = � . Here,
we take � Cu-O = � 3t. The red band is the \split o�" band that we focus on in the
e�ective one-band model. The dashed line is a chemical potential, taken here to
be 0:6t.

(2.5), is split o� from the other two bands. If we �nd the eigenvectors of H(k) corresponding
to the maximum of this band, which is at k =

�
� �

a ; � �
a

�
, then we will �nd that that state

resides entirely on the Cu sites. On the other hand, the at band and the maximum of
the other dispersing band turn out to reside entirely on the O sites. Therefore, as long as
the chemical potential is within the highest band, we may safely assume that the electrons
mostly reside on the Cu sites. This is what we do, and we thus adopt the one-band model,

Ĥ = � t0
X

r

X

�

[ay
� (r )a� (r + ax̂ ) + ay

� (r )a� (r + aŷ ) + h.c.] ; (2.6)
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This model may be obtained by writing the partition function for the three-band model
as a coherent-state path integral and integrating out the O sites, arriving at an e�ective
one-band model. In optimally-doped YBCO, the hopping integral t0 = 153 meV and the
chemical potential � = 0 :297t0. The chemical potential may be found from the fraction of
occupied states in the Cu band; in the case of optimally-doped YBCO, itis 85% �lled.

2.2 Superconducting state

We will now introduce the pairing �eld into our one-band model. Because YBCO is a
dx2 � y2 -wave superconductor, we must introduce a non-local �eld; i.e.,a pairing �eld that
does not reside on a site. In our case, we introduce a pairing �eld that resides on bonds
between nearest-neighbor Cu atoms. The pairing �eld is � 0 on bonds parallel to, say, the
x-axis, while it is � � 0 on bonds parallel to the y-axis. The one-band Hamiltonian with
this pairing �eld introduced is

Ĥ = � t
X

r

X

�

[ay
� (r )a� (r + ax̂ ) + ay

� (r )a� (r + aŷ )]

+ � 0

X

r

[ay
" (r )ay

#(r + ax̂ ) � ay
#(r )ay

" (r + ax̂ )

� � 0

X

r

[ay
" (r )ay

#(r + aŷ ) � ay
#(r )ay

" (r + aŷ )] + h.c. � �
X

r

X

�

ay
� (r )a� (r ): (2.7)

Note that we dropped the prime on t, compared to the previous section, and that we now
explicitly include the chemical potential in the Hamiltonian.

If we perform a Fourier transform of the c operators, as before, and diagonalize this
Hamiltonian, we obtain energiesE(k) of the form given in Equation (1.8), with � (k) =
� 2t(coskxa + cos kya) � � and � k = 2� 0(coskxa � coskya). We plot this dispersion
relation in Figure 2.2. We see that there are four point nodes, at which the dispersion looks
like an anisotropic Dirac-like cone. To determine the positions of these nodes, we �rst note
that � k vanishes whenkx = � ky . If we set kx = ky = kD in E(k), we �nd that it becomes

E(k0; k0) = j4t coskD a + � j: (2.8)

Setting E(kD ; kD ) = 0 and solving for kD , we �nd that, taking the positive solution,

kD =
1
a

cos� 1
�

�
�
4t

�
: (2.9)

If we expand E(k) around this node, we obtain

E(k) � 2at

r

1 �
� �

4t

� 2
s

(�k x + �k y)2 +
�

� 0

t

� 2

(�k x � �k y)2; (2.10)

where �k x = kx � kD and �k y = ky � kD . Introducing the coordinates, �k k = �k x + �k yp
2

and

�k ? = �k y � �k xp
2

, this becomes

E(k) � �h
q

v2
F (�k k)2 + v2

� (�k ? )2; (2.11)
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Figure 2.2: Plot of the dispersion relation for the one-band model in the presence
of a dx2 � y2 -wave superconducting order. Here, we used �0 = 0 :5t and � = 0 :3t.
The numbers on the contours are the energies in units oft.

where

vF =
2
p

2at
�h

r

1 �
� �

4t

� 2
(2.12)

is the Fermi velocity of an electron in the normal state with a wave vector at one of the
nodes, and

v� = vF
� 0

t
: (2.13)

The value of vF may be determined from the ARPES data found in Reference [26], and is
vF � 2:5 � 105 m

s . From this value, we can determine the hopping integralt, obtaining the
value quoted above. We see from this result that the contours of constantenergy for the
low-energy quasiparticles are ellipses. These contours, for a quasiparticle with energy E,
are given by

(�k k)2

E=�h2v2
F

+
(�k ? )2

E=�h2v2
�

= 1 : (2.14)
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We now de�ne the Dirac cone anisotropy � D , which is the ratio of the semi-axis of this
ellipse along�k ? to that along �k k. Reading these semi-axes o� of the above equation, we
�nd that

� D =
vF

v�
=

t
� 0

: (2.15)

We therefore have a means of determining the magnitude of the superconducting pairing
�eld if we know the hopping integral and the Dirac cone anisotropy. The latter has been
measured experimentally for optimally-doped YBCO; its value is� D � 14 [27]. Therefore,
� 0 = 1

14t.

2.3 Superconducting state in a large applied magnetic �eld
(mixed state)

Figure 2.3: Illustration of a 20 � 34 magnetic unit cell. The intersections of the
grid lines are atomic sites, and the dots represent the vortex cores.

We now introduce an applied magnetic �eld normal to the Cu-O plane su� ciently strong
to put the system in the mixed state. In this case, a periodic array of vortices will form inside
the sample. We will consider the case in which this array forms a rectangular Bravais lattice
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with a basis, such that each unit cell of said lattice, referred to hereafter as a magnetic unit
cell, will contain exactly one quantum hc

e of magnetic ux. We provide an illustration of a
magnetic unit cell in Figure 2.3. Our treatment of this case will follow that of References
[28, 29, 30, 31, 32]. The presence of the magnetic �eld will make several modi�cations to the
Hamiltonian. First of all, it will introduce a Zeeman term into the Hami ltonian. Second of
all, it will introduce a bond-dependent phase factor into the tight -binding hopping integrals
between nearest-neighbor sites (Peierls phase factors). Finally,it modi�es the pairing �eld,
introducing the above-mentioned periodic array of vortices. We will be making several
simplifying assumptions about the latter two modi�cations. First of all, we will be assuming
a constant magnetic �eld (e�ectively an in�nite penetration depth) . Second of all, we will
assume that the magnitude of the pairing �eld is constant, placing all of the vortex physics
into the complex phase of this �eld. In principle, we should determine the magnetic �eld
distribution and the pairing �eld self-consistently, but we bel ieve that our assumption of
constant magnitudes for both will not greatly a�ect our results. This is b ecause YBCO has
a large penetration depth, � � 120 nm, or over 300 lattice spacings, and a short coherence
length, � � 2:5 nm, or about 6 lattice spacings, both within the ab plane that we are
considering [33]. We will be considering vortex lattices with spacings intermediate between
these two length scales, so that it would be a good approximation to treat the magnitudes
of both as constant.

The full Hamiltonian is given by

Ĥ =
X

hrr 0i

"

t rr 0

X

�

cy
� (r )c� (r 0) + � rr 0(cy

" (r )cy
#(r 0) � cy

#(r )cy
" (r 0))

#

+ h.c.

�
X

r

X

��

cy
� (r )( �� �� + h� z

�� )c� (r ); (2.16)

where

t rr 0 = � t exp

"

�
ie
�hc

Z r 0

r
A (r ) � dr

#

; (2.17)

� rr 0 = � 0� r 0� r ei� rr 0; (2.18)

A (r ) is the magnetic vector potential, � � ax̂ = � � � aŷ = 1, and zero otherwise, andh =
1
2g� B B , where � B is the Bohr magneton and g � 2 is the g factor of an electron. In the
summations, hrr 0i means to sum over pairs of nearest-neighbor sitesr and r 0. We will be
working in the symmetric gauge, so thatA (r ) = 1

2B � r .
In determining the pairing �eld phase factor, ei� rr 0, we make an additional approxima-

tion. We assume that this factor, which resides on bonds, is given by the geometric mean
of a site-dependentphase factor,ei� (r ) ,

ei� rr 0 =
ei� (r ) + ei� (r 0)

jei� (r ) + ei� (r 0) j
; (2.19)

where the phase� (r ) satis�es the equations,

r � r � = 2 � ẑ
X

i

� (r � r i ); (2.20)
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where r i is the position of a vortex core, andr 2� = 0. We will further require that the
superuid velocity,

vs =
�h

2m

�
r � �

2e
�hc

A
�

; (2.21)

be periodic over a unit cell and that there be zero overall current.
Upon solving these equations, we obtain

� (r ) =
X

j

�
arg[�

�
z � z(j ) j

1
2L x ; 1

2 iL y
�
] + 2  (x � x(j ) )(y � y(j ) )

	
+ v0 � r ; (2.22)

where� (zj! 1; ! 2) is the Weierstrass sigma function with half-periods! 1 and ! 2 and j labels
the positions of the vortices within a magnetic unit cell. The constant  is determined to
satisfy the condition that the superuid velocity be periodic, an d is given by

 =
�

2L xL y
�

1
L x

�
� 1

2L x j 1
2L x ; 1

2 iL y
�

; (2.23)

where � (zj! 1; ! 2) is the Weierstrass zeta function, again with half-periods! 1 and ! 2. The
vector v0 �xes the overall current to be zero, and is given by

v0 =
�

`x `y

X

j

(y(j ) x̂ � x(j ) ŷ ): (2.24)

We will derive this result in Appendix A.

2.3.1 Singular gauge transformation

To diagonalize this Hamiltonian, one could make use of magnetic translational symme-
try. However, we elect to solve it using a method introduced by Franz and Te�sanovi�c [ 34],
namely by using a singular gauge transformation. This transformation is given by

c� (r ) ! ei� (r )=2c� (r ): (2.25)

By performing this transformation, we eliminate the phase factor from the pairing term
completely, reducing it to a real number, � 1, and modify the phase factor on the tight-
binding hopping term such that it behaves as if there were zero average applied magnetic
�eld. This means that the Hamiltonian has been rendered periodic, andwe may therefore
use the standard Bloch theorem to diagonalize it.

We must, however, be careful in performing this transformation. As we wind around a
single vortex, the phase� (r ) increases by 2� . This means that the phase appearing in the
gauge transformation only increases by� , and thus the phase factor is not single-valued.
We overcome this di�culty by introducing a branch cut connectin g the locations of the
vortices within the magnetic unit cell and choosing the phases accordingly. The procedure
that we employ to determine the phases is that used in Refs. [30, 32]. We choose a pointr 0

on the atomic lattice and assign it a phaseb0 = ei� (r 0 )=2. We then move to a neighboring
site r such that we do not need to cross the branch cut that we chose in order toreach it.
We then choose the solutionb to b2 = ei� (r ) that gives us the smaller value ofjb� b0j. We
do this for all sites, thus generating the appropriate phases. This process is illustrated in
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Figure 2.4: Illustration of the process by which we determine the phases 1
2 � (r )

appearing in the singular gauge transformation for a 6� 6 magnetic unit cell. The
blue dots are the positions of the vortex cores, and the blue dashed lineconnecting
them is the branch cut. In the large circles, which represent theatomic sites, the
black arrows represent the values ofei� (r ) , while the orange arrows represent the
values of ei� (r )=2 that we assign by the procedure given in the text. In the small
circles, which represent the bonds, the gray arrows representei� rr 0 and the red
arrows represent the values ofei� (r )=2ei� (r 0)=2.

Figure 2.4. This process guarantees that, as long as we do not cross the branch cut, the
di�erence in phase betweenei� (r )=2 and ei� (r 0)=2 when r and r 0 are nearest neighbors will be
in the interval,

�
� �

2 ; �
2

�
. If we do cross the branch cut, on the other hand, then the phase

di�erence will be larger. As a result,

ei� rr 0e� i� (r )=2e� i� (r 0)=2 =
ei� (r ) + ei� (r 0)

jei� (r ) + ei� (r 0) j
e� i� (r )=2e� i� (r 0)=2 = z2;r ;r 0; (2.26)

where z2;r ;r 0 = 1 if the bond between r and r 0 does not cross the branch cut, or� 1 if it
does.

We follow this gauge transformation with the Bogoliubov transformation,
"

c" (r )
cy

#(r )

#

=
X

k ;n

�
uk n (r ) � v�

k n (r )
vk n (r ) u�

k n (r )

� "
 k n"

 y
k n#

#

; (2.27)

where n is a band index and k is the crystal momentum. Here, we are using the fact
that, after performing the above singular gauge transformation, the Hamiltonian becomes
periodic with respect to the vortex lattice. In this case, the crystal momentum lies within
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the Brillouin zone associated with the vortex lattice. If we assume that each magnetic unit
cell contains an `x � `y array of atomic sites, then the crystal momentum is restricted to
the region given by k 2 (� �

`x
; �

`x
] � (� �

`y
; �

`y
]. We also have`x `y bands, corresponding to

the number of atomic sites in the magnetic unit cell.
If we take  k n (r ) = [ uk n (r ); vk n (r )]T , then we obtain the Bogoliubov-de Gennes equa-

tion, H 0 k n (r ) = Ek n  k n (r ), where H 0 = � z(Êr � � ) + � x �̂ r � h, the operators Êr and �̂ r

are de�ned by

Êr  (r ) = � t
X

� = � ax̂ ;� aŷ

z2;r ;r + � ei� z Vr ; r + �  (r + � ); (2.28)

�̂ r  (r ) = � 0

X

� = � ax̂ ;� aŷ

z2;r ;r + � � �  (r + � ); (2.29)

and

eiV r ; r 0 =
1 + ei [� (r 0)� � (r )]

j1 + ei [� (r 0)� � (r )] j
exp

"

�
ie
�hc

Z r 0

r
A (r ) � dr

#

: (2.30)

Due to the periodicity of this Hamiltonian over a magnetic unit cell, we may rewrite  k n (r )
as 1p

NM
ei k �r � k n (r ), where � k n (r ) = [ Uk n (r ); Vk n (r )]T has the periodicity of the vortex

lattice and satis�es e� i k �r H 0ei k �r � k n (r ) = Ek n � k n (r ) and NM is the number of magnetic
unit cells. This choice requires that � k n (r ) be normalized over a magnetic unit cell; i.e.,

X

r 2 `x `y

[jUk n (r )j2 + jVk n (r )j2] = 1 : (2.31)

This has the advantage of making the matrix that we need to diagonalize much smaller
(2`x `y � 2`x `y for each crystal momentum). Unfortunately, this method is only useful if
the magnetic unit cell has an integral number of atoms along each side (i.e., `x and `y are
integer multiples of the atomic lattice spacing). Despite this di�c ulty, we are able to closely
match the size of the magnetic unit cell to the magnetic �elds used inthe experiment in all
cases that we consider [1].

2.3.2 Energy spectrum and wave functions

Before we discuss the energy spectrum in any detail, let us �rst make a comment about
the energies. LetH 0;NZ = � z(Êr � � ) + � x �̂ r ; i.e., H 0;NZ is H 0 without the Zeeman term.
Since H 0;NZ di�ers from H 0 only by a term proportional to the identity matrix, we see
that the same wave functions that diagonalizeH 0;NZ will diagonalize H 0 as well. This also
means that the wave functions will diagonalize the di�erence between H 0;NZ and H 0, which
is just the Zeeman term. Note that this term is proportional to the z component of the
spin. The fact that we can diagonalize this term is a result of the fact that spin remains a
good quantum number for labeling the quasiparticle states. If we letEk n be the eigenvalues
of H 0;NZ , then the eigenvalues ofH 0 will just be Ek n � h.

We will now show that, for every positive eigenvalue ofH 0;NZ , there is a negative
eigenvalue of equal magnitude. We accomplish this by showing that, if k n (r ) is a positive-
energy eigenstate, then [i� y  k n (r )] � is also an eigenstate, with an energy equal and opposite

19



that of the original state. If we take the equation, H 0;NZ  k n (r ) = Ek n  k n (r ), multiply both
sides byi� y , then take the complex conjugate of both sides, we obtain

[(i� y)H 0;NZ (� i� y)]� [i� y  k n (r )]� = Ek n [i� y  k n (r )] � : (2.32)

We now note that

[(i� y)H 0;NZ (� i� y)] � = � yH �
0;NZ � y

= � � z(Êr � � ) � � x �̂ r

= �H 0;NZ : (2.33)

Therefore,
H 0;NZ [i� y  k n (r )] � = � Ek n [i� y  k n (r )]� : (2.34)

Since [i� y  k n (r )]� is an eigenstate ofH 0;NZ with eigenvalue � Ek n , it is also an eigenstate of
H 0 with eigenvalue � Ek n � h. Note that the positive-energy state is just the �rst column of
the matrix appearing in Equation ( 2.27), while the second column is just the corresponding
negative-energy state. We choose to associate the positive eigenvaluewith the spin up
quasiparticles, and the negative eigenvalue with the spin down quasiparticles. As a result,
the diagonalized Hamiltonian is

Ĥ =
X

k ;n;�

Ek n�  y
k n�  k n� � E (0) ; (2.35)

whereEk n� = Ek n � �h and E (0) = N� �
P

k n Ek n , whereN is the total number of atomic
sites in the system. Note that this means that, when we include the Zeeman term, some of
the quasiparticle states, all of which are spin up, could have negativeenergies. In general,
the spectrum given byEk n will be gapped for most values of the chemical potential [30, 32].
However, if the Zeeman energy is larger than the gap, then some of the spinup states will
be pushed down to negative energies. We will see in the next chapter that this leads to
interesting e�ects on the spin-lattice relaxation rate in this system. Not only that, but this
means that the ground state of the system is spin-polarized, and thus wewill see a non-zero
Knight shift, even at zero temperature.

In our calculations, we are interested in thermodynamic propertiesof the system at
low temperatures (up to 30 K), and thus we only need to �nd the lower-energy bands.
We diagonalize the Hamiltonian numerically using the Arnoldi method, and we divide the
Brillouin zone into a 50 � 50 mesh of equally-spaced points. We will be focusing on the
cases of 20� 34 and 36� 62 magnetic unit cells, corresponding to an applied magnetic �eld
of 42 T and 13 T, respectively. To be exact, we take the �rst 32 bands, which allows us
to accurately determine properties of the system up to about 30 K in the former case, and
up to about 20 K in the latter. We determine the upper bound on the required energies
by requiring that the largest energy found is around 6kB T; i.e., about six times the energy
scale associated with the given temperature.

We present a plot of the density of states without the Zeeman term included,

N (E) =
`x `yX

n=1

Z
d2k

 BZ

� (E � Ek n ); (2.36)
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Figure 2.5: Density of quasiparticle states for an applied �eld of 42 T (20� 34
magnetic unit cell) in the absence of the Zeeman term for �0 = 1

14t and � = 0 :297t.
The green curve is the DOS in the absence of an applied �eld, and the vertical line
indicates the Zeeman shifth = 1

2g� B B .

for realistic values of the physical parameters, along with that for the system in the absence
of a magnetic �eld, for low energies in Figure2.5. We used a �ner mesh, namely 250� 250,
to determine the density of states. We see that the presence of thesuperconducting order
parameter strongly mixes the Landau levels that would be present at low energies in the
absence of superconductivity, resulting in broadened peaks in thedensity of states. As we
increase the energy, the original Landau level structure begins to reappear.

We �nd from the wave functions that the quasiparticles in this state are concentrated
around the vortex cores. While we do not incorporate the decrease of the magnitude of the
superconducting order parameter into our model, we would expect this same behavior to
happen in a more realistic model, due to the breakdown of superconductivity in the vicinity
of the vortices. We also �nd that there are lines along which the wave function is enhanced
as well. This is a consequence of the fact that the pairing �eld possessesdx2 � y2 symmetry;
these lines correspond to those along which the pairing �eld vanishes. We will see in the
next chapter that this structure of the low-energy wave functions will lead to a position
dependence in both the spin-lattice relaxation rate and in the Knight shift, the latter of
which will help explain the broadening of the observed line shape. We may see the features
of the wave function clearly in the e�ective magnetic �eld generated by the electrons, which
is proportional to the spin density, and which we plot in Figure 3.1 in the next chapter.
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CHAPTER 3

KNIGHT SHIFT AND SPIN-LATTICE
RELAXATION RATE

Having outlined our electronic model for optimally-doped YBCO in the mixed state, we
now turn our attention to the main results of this part of our work, namely the calculation
of the Knight shift and the spin-lattice relaxation rate [ 3].

3.1 Knight shift

To �nd the Knight shift for the O atoms, we �rst rewrite Equation ( 1.12) using the
Bogoliubov transformation, Equation (2.27). We will only consider the z component of the
e�ective magnetic �eld, since the actual applied �eld is along the z direction, so that the
quasiparticles will be polarized in that direction, and thus the x and y components of the
e�ective �eld will be zero. The z component of the spin operatorŜ(r ) in terms of electron
operators is

Sz(r ) = cy
" (r )c" (r ) � cy

#(r )c#(r ): (3.1)

Upon rewriting this expression in terms of the quasiparticle operators  k n� , we obtain

Sz(r ) =
X

k ;n

X

k 0;n0

[u�
k n (r )uk 0n0(r ) y

k n"  k 0n0" � u�
k n (r )v�

k 0n0(r ) y
k n"  y

k 0n0#

� vk n (r )uk 0n0(r ) k n# k 0n0" + vk n (r )v�
k 0n0(r ) k n# y

k 0n0#

� vk n (r )v�
k 0n0(r ) k n"  y

k 0n0" � vk n (r )uk 0n0(r ) k n"  k 0n0#

� u�
k n (r )v�

k 0n0(r ) y
k n# y

k 0n0" � u�
k n (r )uk 0n0(r ) y

k n# k 0n0#]: (3.2)

Note that four of these terms are of the form y y or  . Upon taking the thermal average,
these terms become zero since they have no diagonal matrix elementswith respect to quasi-
particle states. The remaining four terms are non-zero provided that k = k0 and n = n0.
Using the fact that D

 y
k n�  k n�

E
= f k n� =

1
eEk n� =kB T + 1

; (3.3)

so that f k n� is the usual Fermi-Dirac distribution function, we �nd that

hSz(r )i =
X

k ;n

n(r )( f k n" � f k n#); (3.4)
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where n(r ) = juk n (r )j2 + jvk n (r )j2. The e�ective magnetic �eld due to the electronic spins
is therefore

� B (r ) =  e�h
X

r 0

X

k ;n

A(r � r 0)n(r 0)( f k n# � f k n" ): (3.5)

We may now use this expression and the results of the previous chapter to determine the
e�ective magnetic �eld experienced by the O atoms within a unit cell. We show the results
for T = 11 K in Figure 3.1 for both 20 � 34 and 36� 62 magnetic unit cells for the atoms
along the a axis. The results for the b axis are qualitatively identical, and thus we do
not show them here. Our results also do not change appreciably if we consider di�erent
temperatures. We note that the e�ective magnetic �eld is larger near the vortex cores than
away from them, and that there are lines along which the shift is enhanced. These features
are due to the analogous features found in the low-energy wave functionsthat we discussed
in the previous chapter.

Figure 3.1: Plot of the e�ective magnetic �eld due to the electronic spins as a
function of position for a 20� 34 (left) and a 36� 62 (right) magnetic unit cell at
11 K. These unit cell dimensions correspond, respectively, to an applied magnetic
�eld of 42 T and 13 T. All e�ective magnetic �eld values are in T.
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3.2 Line shape

Due to the position dependence of the e�ective magnetic �eld due tothe electrons, and
therefore of the Knight shift, identical nuclei in di�erent locat ions in the unit cell will possess
di�erent resonance frequencies. This will result in a broadening of the line shape. Denoting
the line shape by f (B0), where B0 is the magnetic �eld corresponding to the resonance
frequency ! 0 =  nB0, the line shape is given by

f (B0) =
Z

d2r � [B0 � B (r )]: (3.6)

This formula, however, assumes that the response of a given nucleus is simply a delta
function centered at the resonance frequency. This is not true in reality; the response, in
fact, has a �nite width. For this reason, we must then convolute the above expression with
the appropriate response pro�le. In our case, we used a Gaussian with a width of 50 G.
This choice is experimentally motivated; the width is that of the � 1=2 $ � 3=2 transition
observed in the normal state [2]. We plot the line shapes so determined as a function of the
e�ective magnetic �eld in Figure 3.2, along with the experimental results [2] for comparison.

Figure 3.2: Calculated line shapes for a 20� 34 (left) and a 36� 62 (right) magnetic
unit cell at 11 K; these unit cell dimensions correspond to applied magnetic �elds
of 42 T and 13 T, respectively. The black curves are our theoretical predictions,
while the red curves are the experimental results [2].

3.3 Spin-lattice relaxation rate

We now turn our attention to determining the spin-lattice relaxati on rate 1=T1. Before
we do so, however, we rewrite the hyper�ne interaction, Equation (1.15), using the identity,
Î x Ŝx + Î yŜy = 1

2(Î + Ŝ� + Î � Ŝ+ ), where I � is a raising (lowering) operator for a nuclear spin,
and S� is the same for an electronic spin. Doing so, we obtain

V̂ (r ) = �  e n �h2
X

r 0

C(r � r 0)[Î + (r )Ŝ� (r 0) + Î � (r )Ŝ+ (r 0)]; (3.7)
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where, for convenience, we de�neC = 1
2A. Note that we dropped the I zSz term; this term

will not contribute to the spin-lattice relaxation rate because it onl y possesses diagonal
matrix elements with respect to the nuclear states. We rewrite the interaction in this form
because theŜ� operators have simpler forms than theŜx and Ŝy operators, and thus will
be more convenient to work with. These operators are given bŷS+ = cy

" c# and Ŝ� = cy
#c" .

In terms of quasiparticle operators, these become

Ŝ+ (r ) =
X

k ;n

X

k 0;n0

[u�
k n (r )v�

k 0n0(r ) y
k n"  y

k 0n0" + u�
k n (r )uk 0n0(r ) y

k n"  k 0n0#

� vk n (r )v�
k 0n0(r ) k n# y

k 0n0" � vk n (r )uk 0n0(r ) k n# k 0n0#] (3.8)

and

Ŝ� (r ) =
X

k ;n

X

k 0;n0

[vk n (r )uk 0n0(r ) k n"  k 0n0" � vk n (r )v�
k 0n0(r ) k n"  y

k 0n0#

+ u�
k n (r )uk 0n0(r ) y

k n# k 0n0" � u�
k n (r )v�

k 0n0(r ) y
k n# y

k 0n0#]: (3.9)

Note that, in addition to terms of the form,  y
�  � � , which correspond to apin-ip scattering

(SF) processes, in which the spin of a quasiparticle is ipped, we also obtain terms of the
forms,  y

�  y
� and  �  � , which correspond to pair creation and annihilation (PCA) processes,

in which a pair of quasiparticles of like spin are created or annihilated.

3.3.1 Transition rates

Our next step is to use Fermi's Golden Rule, Equation (1.14), to determine the transition
rates Wmn (r ). In doing so, we will make an approximation. We will assume that the nuclear
Zeeman energy is much less than the electronic Zeeman energy, and thus that the former may
be neglected in this calculation. This is a good approximation provided that the di�erence
between neighboring nuclear energy levelsEn � En� 1 � kB T. At 42 T, this energy di�erence
corresponds to a temperature scale of about 12 mK, so this approximation is justi�ed for
the temperatures considered in the experiment. In this case, the energy di�erence appearing
in the delta function now depends entirely on the electronic energies:

Wmn (r ) =
2�
�h

*
X

QQ0

�
�
�


mQ0

�
� V̂ (r ) jnQi

�
�
�
2

� (EQ0 � EQ)

+

(3.10)

Upon inserting Equation (3.7) into the above expression and expanding out the matrix
element, we obtain four terms, each factoring into matrix elements involving only the nuclear
spin states and elements involving only the electronic states. Of these, only two will be non-
zero, namely a term involving the product, hmj Î + jni hnj Î � jmi , and a term with the same
product, but with the states m and n interchanged. The other two matrix elements are
zero because it is impossible to make, say,hmj Î + jni and hnj Î + jmi both non-zero; the �rst
requires that m = n + 1, while the second requires thatm = n � 1. The expression that we
obtain for the transition rate is thus

Wmn (r ) =
2�
�h

 2
e  2

n �h4

*
X

QQ0

X

RR 0

C(r � R )C(r � R 0)[hmj Î + (R ) jni hnj Î � (R ) jmi
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Q0

�
� Ŝ� (R 0) jQi hQj Ŝ+ (R 0)

�
�Q0� + ( m $ n; Q $ Q0)]� (EQ0 � EQ)

E
: (3.11)

Upon introducing Equations (3.8) and (3.9) into this expression and expanding, we obtain
16 terms. Of these, 10 of them will be zero because they do not contain exactly two 
operators and two  y operators, and thus it is impossible to pair each with a  y. Of
the six remaining combinations, hQ0j  # # jQi hQj  y

# y
# jQ0i will also be zero because the

creation or annihilation of two spin down quasiparticles violates conservation of energy,
since all spin down quasiparticle states have positive energy. However, the corresponding
term involving spin up quasiparticles, hQ0j  "  " jQi hQj  y

"  y
" jQ0i , does not violate energy

conservation because some of the spin up states have negative energy. Therefore, we �nd
that there are two processes via which the nuclear spins can relax. In addition to the
usual spin-ip (SF) process, there is also a process in which a pair of spin up quasiparticles
is created or destroyed, which we will term the quasiparticle creation/annihilation (PCA)
process.

Since the matrix elements,hQj Ŝ� jQ0i , are only non-zero when the many-particle states
Q and Q0 di�er either by scattering one quasiparticle to another state or by the creation
or annihilation of two quasiparticles, the energy di�erence EQ0 � EQ appearing in the
delta function depends only on the single-particle states involved, and not on the many-
particle states themselves. For example, for a spin-ip process,in which a particle with,
say, spin down is scattered into a state with spin up, the energy di�erence EQ0 � EQ =
Ek 0n0 � Ek n � 2h. This allows us to rewrite the products of matrix elements as traces
involving four quasiparticle operators.

After evaluating all traces and thermal averages, we �nd that

Wmn (r ) = 2 � 2
e  2

n �h3[hmj Î + (R ) jni hnj Î � (R ) jmi + c.c.]f (r ; T); (3.12)

where

f (r ; T) =
X

n;n 0

Z
d2k

 BZ

d2k

 BZ

�
1
4 jGSF

k nk 0n0(r )j2 sech2
�

Ek n + h
2kB T

�
� (Ek n � Ek 0n0 + 2h)

+ 1
8 jGPCA

k nk 0n0(r )j2 sech2
�

Ek n � h
2kB T

�
� (Ek n + Ek 0n0 � 2h)

�
; (3.13)


 BZ = 4� 2

`x `y
is the area of the �rst magnetic Brillouin zone, and the quasiparticle coherence

factors enter through the functions,

GSF
k nk 0n0(r ) =

X

R

C(r � R )[U �
k n (r )Uk 0n0(r ) + V �

k n (r )Vk 0n0(r )]ei (k 0� k )�R (3.14)

and

GPCA
k nk 0n0(r ) =

X

R

C(r � R )[Vk n (r )Uk 0n0(r ) � Uk n (r )Vk 0n0(r )]ei (k 0+ k )�R : (3.15)

Note that the matrix elements, hmj Î � (R ) jni , are only non-zero ifm = n � 1. This means
that the only non-zero transition rates are from a nuclear spin staten to a state n � 1. In
reality, there is also a non-zero \rate" for remaining in the same state, given by the I zSz

term that we dropped in the hyper�ne interaction, but, as stated earl ier and as we will see
shortly, this rate does not contribute to the spin-lattice relaxati on rate.
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3.3.2 Spin-lattice relaxation rate

Now that we have found the transition rates, we may now turn our attention to �nding
the spin-lattice relaxation rate. We �rst note that, in Equation ( 1.13), the term for which
m = n is zero, since there is a factor of (Em � En )2, which is zero for that term. This is why
we did not calculate the transition rate for this case. In the remaining cases for which the
transition rate is non-zero, namely cases in whichm = n � 1, (Em � En )2 is just given by a
constant, ( n �hB )2. Because of this and the fact that all other transition rates are zero, this
allows us to write the sum over all nuclear spin states as a trace. Equation (1.13) therefore
becomes

1
T1(r )

= � 2
e  2

n �h3 ( n �hB )2 Tr[ I + (r )I � (r ) + I � (r )I + (r )]
P

n E 2
n

f (r ; T): (3.16)

Using the identity, I + I � + I � I + = 2( I 2
x + I 2

y ), we obtain

1
T1(r )

= 2 � 2
e  2

n �h3 ( n �hB )2 Tr[( I x (r ))2 + ( I y(r ))2]
P

n E 2
n

f (r ; T): (3.17)

Next, we note that the sum in the denominator is just the sum of squares ofthe eigenvalues
of the nuclear Zeeman Hamiltonian,�  n �hBI z(r ). Because of this, we may rewrite the sum
as a trace:

1
T1(r )

= 2 � 2
e  2

n �h3 Tr[( I x (r ))2 + ( I y(r ))2]
Tr[( I z(r ))2]

f (r ; T) (3.18)

We now note that there is no preferred direction in space for quantizing the nuclear spin in
the sense that we can always work in a basis in which the spin is quantized along any axis
of our choice. We conclude that TrI 2

x = Tr I 2
y = Tr I 2

z , and therefore

1
T1(r )

= 4 � 2
e  2

n �h3f (r ; T): (3.19)

From the above equations, we may easily conclude that, regardless of theminimum value
of Ek n , the spin-ip process is thermally activated, with a temperatur e scale set by the
electronic Zeeman energy, due to the thermal factor, sech2

�
Ek n + h
2kB T

�
. In an applied �eld

of 42 T, the corresponding temperature scale is 28 K, while, at 13 T, the scale is about
8:67 K. This means that the spin-ip process is suppressed over much of the range of
temperatures considered experimentally, and thus the upturn in1=T1T with decreasing
temperature observed below about 5 K cannot be due to this process. At low temperatures,
the PCA process is dominant, and, as we will see, it will cause this upturn in 1 =T1T.

We may, in fact, argue that the contribution from the PCA process to 1=T1 must decrease
as the temperature increases. In order for this process to conserveenergy, a given positive
energy spin up state must have a corresponding state of equal and opposite energy. This
means that there is only a �nite window of energies of spin up states that can participate
in this processs, of a width of about twice the electronic Zeeman energy. As we increase
the temperature, we begin to excite quasiparticles outside of thiswindow, thus reducing
the number of quasiparticles available to relax the nuclear spins via this process. This, in
turn, will decrease its contribution to the relaxation rate.
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3.3.3 An illustrative case|thin �lm in an in-plane magnetic �eld

To illustrate the e�ect of the PCA process on the spin-lattice relaxation rate, we �rst
consider a simple example, namely a case in which we may ignore the orbital e�ects of
the applied magnetic �eld and consider only the Zeeman term, such as a thin �lm with an
in-plane magnetic �eld. In this case, Uk n (r ) and Vk n (r ) become independent ofr , and there
is only one band per spin. In this case, the quasiparticle energies arethose found in Section
2.2, and, now dropping the band indices and position dependences, the wave functions Uk

and Vk are given by

Uk =
1

p
2

s

1 +
� (k)
E (k)

and Vk =
sgn� kp

2

s

1 �
� (k)
E (k)

: (3.20)

We will also, for simplicity, assume only an on-site hyper�ne interaction; i.e., C(r ) = C0� r ;0.
In this case, the functions, GSF

k nk 0n0(r ) and GPCA
k nk 0n0(r ) reduce to, again dropping the band

indices and position dependences,

GSF
kk 0 = C0(U �

k Uk 0 + V �
k Vk 0) (3.21)

and
GPCA

kk 0 = C0(Vk Uk 0 � Uk Vk 0): (3.22)

We �nd that the expressions appearing in f (r ; T),
�
�GSF

kk 0

�
�2 and

�
�GPCA

kk 0

�
�2 are, assuming that

the pairing �eld � k is purely real, as it is in this case,

�
�GSF

kk 0

�
�2

= 1
2C2

0

�
1 +

� (k)
E (k)

� (k0)
E (k0)

+
� k

E(k)
� 0

k

E(k0)

�
(3.23)

and
�
�GPCA

kk 0

�
�2

= 1
2C2

0

�
1 �

� (k)
E (k)

� (k0)
E (k0)

�
� k

E(k)
� 0

k

E(k0)

�
: (3.24)

Let us now assume particle-hole symmetry; i.e., we assume that, for every normal-state
electronic state with energy � , there is another with energy � � . In this case, we �nd that
the second terms in each of these expressions,� (k )

E (k )
� (k 0)
E (k 0) , will give a term in f (r ; T) that

integrates to zero, since the rest of the factors are even in� (k) and � (k0). Furthermore, for
a d-wave pairing �eld, we know that, for every momentum-space point for which the value
of said �eld is �, there is another at which its value is � �. Because of this, the third terms,
� k

E (k )
� 0

k
E (k 0) , also integrate to zero. We therefore �nd that the spin-lattice relaxation rate for

this case may be written as

1
T1

= 2 � 2
e  2

n �h3
�

1
4

Z 1

0
dE N (E)N (E + 2h) sech2

�
E + h
2kB T

�

+ 1
8

Z 2h

0
dE N (E)N (2h � E) sech2

�
E � h
2kB T

��
; (3.25)

where N (E) is the density of quasiparticle states. If we consider only low temperatures,
then we only need the density of states at low energies. For the low-energy dispersion found
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in Section 2.2, N (E) = 2 E=(� �h2vF v� ). It is possible to evaluate this integral in closed
form; the result is

1
T1

=
2 2

e  2
n

� �hv2
F v2

�
(kB T)3F

�
h

kB T

�
; (3.26)

whereF (x) = � 2 +8x ln(1+ ex ) � 3x2 +8Li 2(� ex ) and Li s(z) is the polylogarithm function.
At high temperatures, i.e., for kB T � h, or x � 1, F (x) � � 2

3 � x2. In this limit, we recover
the usual T3 dependence obtained for ad-wave superconductor. At low temperatures, i.e.,
for x � 1, on the other hand,F (x) � x2 � � 2

3 . In this case, 1=T1T increases as we lower the
temperature and approaches a nonzero constant atT = 0. We therefore expect a minimum
in 1=T1T at temperatures on the order ofh=kB . This is, in fact, what we see, as illustrated
in Figure 3.3.

Figure 3.3: Plot of the spin-lattice relaxation rate divided by temperature 1=T1T
as a function of the temperature T in the absence of orbital e�ects. The red
curve is the rate in the presence of a �nite magnetic �eld, while the black curve
is that in its absence. We note that there is an upturn in 1=T1T as we decrease
the temperature in the rates in the presence of a magnetic �eld, rather than a
decrease; this is due to the PCA process described in the text.

3.3.4 Sample in a perpendicular magnetic �eld

We now turn our attention to the case of greatest interest, namely that of YBCO in
a magnetic �eld applied perpendicular to the Cu-O planes. In this case, the relaxation
rate, like the Knight shift, becomes position-dependent. Becausethe wave functions for the
low-energy states are largest near the vortex cores, we expect that therelaxation rates will
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be fastest in this region as well. To determine these rates, which must be done numeri-
cally, we use Equation (3.19) and the low-energy wave functions determined as described in
the previous chapter. In our numerical calculations, we approximatedthe delta functions
appearing in Equation (3.19) as narrow Gaussians of the form,

1

�
p

2�
e� x2=2� 2

: (3.27)

We determined the appropriate value of� by inspecting the list of energy eigenvalues and
setting the width equal to a value close to the largest di�erence between two eigenvalues.
In performing the summations over k, n, k0, and n0, we considered, for �xed values ofk
and n, all values of k0 and n0 within 3 � of the energy at k and n.

Figure 3.4: Plot of the spin-lattice relaxation rate divided by temperature 1=T1T
as a function of the e�ective magnetic �eld shift B (r ) � B0 for an applied �eld of
42 T and a temperature of 30 K. The points are the actual calculated rates, while
the curve is a power law �t to the points.

The results that we obtain are consistent with our expectations; we indeed �nd that
the fastest relaxation rates are for nuclei near the vortex cores. We also�nd that the rates
exhibit an upturn as the temperature is lowered, like that seen experimentally. We saw a
similar upturn in the relaxation rate in the case of a thin �lm in a parall el �eld, but it was
much smaller. The reason why there is a much larger upturn in this case is likely because
the low-energy density of states is also much larger due to orbital e�ects, as may be seen
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in Figure 2.5. This means that there are many more states present that can participate
in the PCA process than in the case where orbital e�ects are absent, and therefore the
contribution from this process to the relaxation rate is much larger. We note that there
appears to be a decrease in 1=T1T for very low temperatures as we lower the temperature.
We would not expect this behavior due to the fact that, in the absenceof orbital e�ects, the
rate saturates to a non-zero constant. We therefore believe that thisis an artifact of the fact
that we divided the magnetic Brillouin zone into a �nite, 50 � 50, mesh. If we used a �ner
mesh for this calculation, then we would most likely obtain results more consistent with our
expectations in this regime. We also note that both exhibit a slight upturn with increasing
temperature at the higher end of the temperature scale. We believe that this is physical,
unlike the downturn at very low temperatures. This e�ect resul ts from the fact that we
have reached the temperature scale at which we cross over from the regime where the PCA
process dominates to that in which the usual spin-ip scattering process dominates.

Figure 3.5: Spin-lattice relaxation rate as a function of temperature for various
e�ective magnetic �eld shifts for an applied �eld of 42 T (left) and 13 T ( right)
[3]. The black curves are the rates for e�ective magnetic �eld shifts ranging from
0:04 T to 0:12 T in steps of 0:01 T for the 42 T case, and from 0:01 T to 0:03 T in
steps of 0:0025 T for the 13 T case. The green curves in both plots give the best
�t to the experimental data away from the core, while the red curves give the best
�t to the data inside the core [ 1, 2], with the required e�ective magnetic �eld shift
indicated in the same color.

We would now like to compare our results to the experimental data. In order to do this,
we �rst generate a plot of the dependence of the relaxation rate on the internal magnetic
�eld in the sample. This is done by taking the relaxation rate and the e� ective magnetic
�eld shift for each point in the unit cell for a given temperature and p lotting each point so
generated. The results of this are illustrated in Figure3.4. Note that, for the slower rates,
which correspond to a smaller Knight shift, the points form an approximate continuum.
We therefore feel that it is justi�ed to �t a continuous curve to th e points. To be exact,
we �t them to a power law, which appears to give the best �t. The results of this �t are
illustrated in Figure 3.4. We do this for all temperatures considered for each magnetic �eld.
The exponents that we obtain in the power laws are typically not much larger than 2.
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With these results, we are �nally able to generate plots of the spin-lattice relaxation
rate as a function of temperature for a �xed e�ective magnetic �eld. Th ese plots are shown
in Figure 3.5. We also highlight the curves that best �t the experimental data both inside
the vortex core and away from it [1, 2] for each case.

3.3.5 E�ect of antiferromagnetic correlations on the spin-lattice
relaxation rate

We now investigate what e�ect antiferromagnetic correlations would have on 17O spin-
lattice relaxation rates in the mixed state, assuming that the vortex cores represent normal-
state regions. It is known that, in the normal state, the form factor for th e hyper�ne
interaction �lters out such correlations [ 35]. We will now show that this �ltering is still
present even in the mixed state. To investigate the e�ect of vortices, we start with the
phenomenological model set forth, among others, by Zha, Barzykin, and Pines [35]. We
start with their expression for the \antiferromagnetic" part of the sus ceptibility,

� AF (q; ! ) = 1
4

X

i

�� 2� B

1 + ( q � Q i )2� 2 + i!=! SC
; (3.28)

where � is a scale factor, � is the antiferromagnetic correlation length, � B is the Bohr
magneton, the Q i are the locations of the peaks in the susceptibility found from neutron
scattering experiments,! SC is the characteristic frequency of spin uctuations, andq ranges
over the entire �rst atomic Brillouin zone [ 35]. To obtain our model, we �rst rewrite the
above susceptibility in position space, separate the position dependence into a magnetic
unit cell position and a position within the magnetic unit cell, and th en Fourier transform
the result with respect to the magnetic unit cell positions. The result is

� AF (q; � r 0� � r ; ! ) =
1

4L xL y

X

G

X

i

�� 2� B ei (q+ G )�(� r 0� � r )

1 + ( q + G � Q i )2� 2 + i!=! SC
; (3.29)

where q now ranges over the �rst magnetic Brillouin zone, G is the set of all reciprocal
magnetic lattice vectors, i.e., the set of vectors for whichei G �R = 1 for all R in the magnetic
lattice, and such that q + G lies within the �rst atomic Brillouin zone, and L x and L y are
the number of atomic sites along each axis within the magnetic unit cell.

So far, we have not introduced a new model; we have simply rewritten the original in
a more complicated form. We will now modify this model to introduce vortex e�ects. For
simplicity, we will assume only one vortex per magnetic unit cell. We model these e�ects by
introducing step functions into the susceptibility to restr ict antiferromagnetic correlations
to within a superconducting coherence length� SC. The result is

� AF (q; � r ; � r 0; ! ) =
1

4L xL y

X

G

X

i

�� 2� B ei (q+ G )�(� r 0� � r )

1 + ( q + G � Q i )2� 2 + i!=! SC
� (� SC � �r )� (� SC � �r 0):

(3.30)
We may now �nd the contribution to the spin-lattice relaxation rate d ue to antiferro-

magnetic correlations. If we assume that the relaxation is due to the hyper�ne interaction
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(1.15), then we may write the spin-lattice relaxation rate as

1
T1(r )

=  2
e  2

n �h3kB T
X

r 0;r 00

A(r � r 0)A(r � r 00) lim
! ! 0

Di � + � (r 0; r 00; ! )
�h!

; (3.31)

where Dif (: : : ; ! ) is a \discontinuity" operator, given by

Di f (: : : ; ! ) =
f (: : : ; ! + i0+ ) � f (: : : ; ! + i0� )

2i
: (3.32)

We will derive this result in Appendix B. We now rewrite the above formula for a suscepti-
bility of the form that we are considering. Introducing the appropriat e Fourier transforms,
we eventually obtain

1
T1(r )

=  2
e  2

n �h3kB T
1

L 2
xL 2

yNM

X

� r 0;� r 00

X

G 1G 2

X

k

A(k + G 1)A � (k + G 2)ei (G 1 � G 2 )�r e� i (k + G 1 )�� r 0

� ei (k + G 2 )�� r 00
lim
! ! 0

Di � + � (k ; � r 0; � r 00; ! )
�h!

: (3.33)

The rest of the work was done numerically. We used the experimentally-determined pa-
rameters for the hyper�ne interaction for YBa 2Cu3O6:67 given by Barzykin and Pines [36],
and assumed a 6� 6 magnetic unit cell. We �rst performed a numerical calculation of the
relaxation rates for Cu and O at r = 0 in the absence of vortices. The appropriate form
factors are

ACu (k) = A + 2B (coskxa + cos kya); (3.34)

AO;x (k) = 2 cos
� 1

2kxa
�

(C1 + 2C2 coskya); (3.35)

AO;y (k) = 2 cos
� 1

2kya
�

(C1 + 2C2 coskxa); (3.36)

where a is the atomic lattice spacing and the parametersA, B , C1, and C2 are given in
Reference [35]. Because, for every momentum-space point (kx ; ky), the point ( ky ; kx ) is also
present, we expect to obtain the same results from the form factors given by Equations
(3.35) and (3.36); i.e., we expect the rates obtained for O sites along thex axis to be equal
to those for sites along they axis. We did this calculation using both Equations (3.28) and
(3.30) to check our formulas. We examined a temperature range of 70 K� T � 300 K. We
found that the Cu and O rates both decreased with temperature, but that the Cu rates were
several orders of magnitude higher than the O rates. This suppression was found earlier by
Mila and Rice [20].

We then repeated this calculation, this time including vortices. In this case, we set the
superconducting coherence length� SC = 2a. We obtained the same qualitative behavior
as before, but the rates were enhanced. The Cu rates increased by an order of magnitude,
while the O rates increased by a factor of 4. This is likely because, byimposing a distance
cuto�, we removed contributions to the relaxation rate that lowered said rate. We therefore
conclude, based on this simpli�ed model, that the �ltering e�ect of the form factor is not
only still present in the mixed state, but it is in fact enhanced. We would therefore claim
that measurements of17O relaxation rates are more sensitive to the PCA process than63Cu
measurements due to the fact that the e�ect of antiferromagnetic correlations on the former
is suppressed.
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CHAPTER 4

CONCLUSIONS: NMR IN OPTIMALLY-DOPED
YBCO

In this part of our work, we argued that it is possible to explain the broadening of the
line shape and the upturn in the spin-lattice relaxation rate with decreasing temperature
observed experimentally [14, 1] without introducing antiferromagnetic correlations. The
line shape broadening can be explained, at least in part, by noting that the Knight shift
varies with position in the lattice in the vortex state. This position dependence leads to
each nucleus having a di�erent resonance frequency, and therefore to a broadened line shape.
The upturn in the relaxation rate can be explained as due to a second relaxation process,
namely creation and annihilation of pairs of spin-up quasiparticles, that appears when a
magnetic �eld is applied, and this process dominates at low temperatures. We do not wish
to claim that AF correlations do not exist in YBCO, only that certain featur es of the NMR
data once attributed to such correlations can be explained without them; in fact, there is
other evidence for the existence of such correlations, namely neutron scattering data [37].
As we argued in Section3.3.5, even in the presence of AF correlations, the spin-lattice
relaxation rates for O will not be greatly a�ected by them due to the form f actor.

Based on the above arguments we expect that, once the vortex lattice melts and the
system enters a vortex liquid phase, the NMR lines sharpen due to motional narrowing [38].
At the same time, we expect that the spin lattice relaxation rate, 1=T1, is determined by
the faster rates and that the low T upturn persists in the vortex liquid.

This picture, and the density of states shown in Figure 2.5, also predict that if an
experiment is performed in a clean thin �lm with a well-ordered vortex lattice in which the
perpendicular component of theB -�eld is kept �xed, while changing the magnitude of the
total B , quantum-like oscillations in 1=T1, due to the oscillations of the density of statesin
energy, would be observed.

While our calculated line shapes have about the same width as the experimental shape
for the 42 T case, the theoretical line shape for the 13 T case is narrower than the ex-
perimental shape. One possible contributing factor to this discrepancy is the fact that we
neglected the variation of the magnetic �eld and the pairing amplitude over a unit cell.
We expect the magnetic �eld to vary more strongly in the 13 T case than in the 42 T case
because the vortices are further apart in the 13 T case. In fact, in the 42T case, the dis-
tance between the two vortices in a unit cell is about 10% of the penetration depth, while,
in the 13 T case, this distance is about 23% of the penetration depth. Thisvariation will
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introduce further broadening, which will be greater at 13 T than at 42 T, due to the fact
that the vortices are further apart in the former case than in the latter , consistent with our
�ndings.

We also notice that the \tails" on our calculated curves are di�erent in l ength than
those of the experimental curves. We believe that this, once again, isdue to the fact
that we neglected the variation of the pairing potential over a unit cell. In reality, the
order parameter should be lower in magnitude near the vortex cores because these regions
are where superconductivity is beginning to break down. This means that we expect our
calculated line shapes to be more accurate in the lower internal �eldregions than in the
high internal �eld regions, since these regions are closest to the vortex cores and therefore
most likely to be a�ected by taking into account the decrease in the superconducting order
parameter as one approaches the core.

Finally, we note that the peak in our curve at 42 T shown in Figure 3.2 has a \bump"
just before the peak that is not seen in the experimental data [14, 1]. This suggests that
there is another broadening mechanism at work besides that due to the �nite width of
the normal-state line shape because such broadening can wash out the \bump". One such
possibility is the presence of impurities.

We are able to obtain good �ts of our calculated temperature dependence ofthe spin-
lattice relaxation rates to the experimental data using the internal magnetic �eld as our
only �tting parameter. We note, however, that the values of the internal m agnetic �elds
giving us our best-�t curves on the line shape do not quite match the experimental results.
In the experiment, the region away from the core was in the vicinity of the peak in the
line shape [1]. However, the positions of the corresponding theoretical curves donot quite
fall on the peak; rather, they are away from it. It is possible that this discrepancy may
be due, in part, to our approximations in solving the Bogoliubov-de Gennes equation, and
that more realistic modeling of the vortex core is necessary to accountfor this.
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CHAPTER 5

INTRODUCTION: ELECTRON-ELECTRON
INTERACTIONS IN BILAYER GRAPHENE

The second part of this work will concern the e�ects of electron-electron interactions in
bilayer graphene at half �lling, and more speci�cally the symmetry-b reaking electronic
phases that said interactions may result in [39, 40]. Ever since the �rst extraction of
graphene samples by Geim and Novoselov in 2004 [41], graphene, in all of its di�erent forms,
has been a material of great interest, both experimentally and theoretically. Monolayer
graphene, which is simply a honeycomb lattice of carbon atoms, is interesting because of the
fact that its low-energy electronic states resemble massless Diracfermions, thus making the
system good for observing the e�ects of relativistic fermion physics, such asZitterbewegung
and Klein tunneling [42]. Another type of graphene that has been of interest, and will
in fact be the focus of this part of our work, is bilayer graphene, whichis a stack of two
monolayer graphene sheets. Due to the presence of two layers, it ispossible, through the
application of a perpendicular electric �eld, to open a gap in the electronic spectrum that is
roughly proportional to the magnitude of the applied �eld. This means that one may view
bilayer graphene as a semiconductor with an adjustable band gap.

5.1 Crystal structure of bilayer graphene

As stated before, bilayer graphene is a stack of two monolayer graphene sheets. There
are two types of stacking for the sheets. First is AA stacking, which means that every
site on one layer is directly above the corresponding site on the other layer. The second,
more common, con�guration is AB, or Bernal, stacking. In this con�guration, one layer is
rotated 60 degrees with respect to the other layer, so that only one sublattice on one layer
is directly above the corresponding sublattice on the other layer,while the other sublattice
resides directly above or below the center of a hexagon in the other layer. We will refer
to the two \overlapping" sites as the dimerized sites. This con�guration, which we will be
considering in this work, is illustrated in Figure 5.1. We also illustrate the �rst Brillouin
zone, with two points, labeled K and K 0 = � K , marked. We will see later that these two
points are \parabolic degeneracy points", at which the low-energy electronic bands become
degenerate and have an approximately parabolic dispersion.
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Figure 5.1: (a) The honeycomb bilayer lattice formed by bilayer graphene. We rep-
resent the bottom layer, 1, with red squares and the top layer, 2, withblack circles.
The ai sites are the dimerized sites, and thebi sites are the non-dimerized sites. We
include the nearest-neighbor intralayer hopping 0, the hopping between dimer-
ized sites 1, and the nearest-neighbor interlayer hopping between non-dimerized
sites  3. (b) The Brillouin zone associated with the honeycomb bilayer with the
parabolic degeneracy pointsK = 4�

3
p

3a
x̂ and K 0 = � K marked.

With respect to the dimerized sites, the symmetry group of the honeycomb bilayer
lattice formed by AB-stacked bilayer graphene is theD3d point group with respect to the
dimerized sites [43] plus translations along vectors connecting two pairs of dimerized sites.
The D3d symmetry group consists of a three-fold rotation axis perpendicular tothe sample
(C3), three two-fold rotation axes perpendicular to the three-fold axis (C0

2), three reections
in planes containing the three-fold axis that bisect two neighboring two-fold axes (� d),
and products of any of these operations, which also generate inversions (i ) and a six-fold
improper rotation axis ( S6). The point group possesses six irreducible representations in
all. It has four one-dimensional representations, labeledA1g, A1u , A2g, and A2u , and two
two-dimensional representations, labeledEg and Eu . We give the character table for this
group in Table 5.1. In addition to these geometric symmetries, the system also possesses
time reversal and spinSU(2) symmetries.

5.2 Electronic band structure

In this section, and in the rest of this work, we will be working in units for which
�h = kB = 1.

Before discussing the e�ects of electron-electron interactions,let us begin by stating the
non-interacting part of the Hamiltonian and the electronic band structu re that results. Our
starting model is that described in Reference [42]:

H tb = H k
0 + H ?

0 + H tw
0 ; (5.1)
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Table 5.1: Character table for the D3d group.

D3d E 2C3 3C0
2 i 2S6 3� d

A1g 1 1 1 1 1 1
A2g 1 1 -1 1 1 -1
Eg 2 -1 0 2 -1 0
A1u 1 1 1 -1 -1 -1
A2u 1 1 -1 -1 -1 1
Eu 2 -1 0 -2 1 0

where

H k
0 = �  0

X

R ;�;�

[ay
1� (R )b1� (R + � ) + ay

2� (R )b2� (R � � ) + h.c.] ; (5.2)

H ?
0 = �  1

X

R ;�

[ay
1� (R )a2� (R ) + h.c.] ; (5.3)

H tw
0 = �  3

X

R ;� 0;�

[by
1� (R + � )b2� (R + � + � 0) + h.c.] : (5.4)

Here,ai� represents the dimerized site on layeri , while bi� represents the non-dimerized site.
The sum onR is over the positions of the dimerized sites, and� represents vectors pointing
from an a1 site to its nearest-neighborb1 sites. The possible values of� are �

p
3

2 ax̂ + 1
2aŷ ,

p
3

2 ax̂ + 1
2aŷ , and � aŷ , where a � 1:4 �A is the lattice constant. Whenever there is a sum

on � , we sum over all three of these values while, if there is no sum, wechoose one. We see
that  0 is the hopping integral between two nearest-neigbor sites in the same layer,  1 is the
hopping between the two dimerized sites, and 3 is the hopping between nearest-neighbor
non-dimerized sites in di�erent layers. We will see that the �r st two hopping integrals  0

and  1 set the e�ective mass of the low-energy electronic states, the second in particular also
being responsible for \splitting o�" two high-energy bands. The thi rd hopping integral,  3,
will result in trigonal warping of the low-energy states, in which what would be parabolic
degeneracy points in the absence of 3 are split into four Dirac-like cones, one isotropic and
three anisotropic. This trigonal warping e�ect is illustrated in Figu re 5.3. Experimentally
[44],  0 � 3 eV,  1 � 0:4 eV, and  3 � 0:3 eV. Note that each unit cell contains four sites,
and thus we will obtain four bands.

To diagonalize this Hamiltonian, we introduce Fourier transforms of the electron oper-
ators,

x i� (r ) =
1

p
Nuc

X

k

ei k �r x i� (k); (5.5)

where x = a or b and Nuc is the number of unit cells. Upon introducing these transforms,
the Hamiltonian becomes

H tb =
X

k

X

�

 y
� (k)H(k) � (k); (5.6)

38



where  � (k) = [ a1� (k); a2� (k); b1� (k); b2� (k)]T ,

H (k) =

2

6
6
4

0 �  1 �  0d(k) 0
�  1 0 0 �  0d� (k)

�  0d� (k) 0 0 �  3d(k)
0 �  0d(k) �  3d� (k) 0

3

7
7
5 ; (5.7)

and

d(k) =
X

�

ei k �� = 2eik y a=2 cos

 p
3

2
kxa

!

+ e� ik y a: (5.8)

The problem of �nding the band structure has thus been reduced to diagonalizing H(k). It
is possible to do this analytically; the resulting energies are

E(k) = �

s
�
 2

0 + 1
2  2

3

�
jd(k)j2 + 1

2  2
1 �

r
1
4

h
 2

1 �  2
3 jd(k)j2

i 2
+  2

0 j 1d� (k) +  3[d(k)]2j2;

(5.9)
where the two � signs may be chosen independently. In the absence of trigonal warping|
i.e., when  3 = 0|this expression simpli�es, becoming

E(k) = � 1
2  1 �

q
1
4  2

1 +  2
0 jd(k)j2: (5.10)

5.3 Low-energy e�ective theory

We will be interested in �nding a low-energy e�ective theory for the electronic modes,
and thus we now wish to �nd the minima of the lower-energy bands, which are obtained by
choosing opposite signs for each� sign in the above expression. For these choices, there
will be points for which the energy becomes zero. These occur whend(k) is also zero. We,
in fact, �nd that there are two inequivalent points, which are the K and K 0 points that we
marked in Figure 5.1. These points are given by

K =
4�

3
p

3a
x̂ (5.11)

and K 0 = � K . We show a plot of Equation (5.10) along the kx axis with ky = 0 in
Figure 5.2. We see that two of the bands touch atK and have an approximately parabolic
dispersion, while two others are split o�. In fact, the two higher-energy bands, those that we
obtain by choosing the two � signs in Equation (5.10) to be the same, are just 1 exactly
at this point. We therefore see that  1 sets the energy scale of the splitting of the two
high-energy bands.

We also present a plot of Equation (5.9) near � K for  3 = 0 and for  3 6= 0 in Figure 5.3.
As noted earlier, we see that the presence of trigonal warping serves tosplit the parabolic
degeneracy into four Dirac-like cones|an isotropic cone at � K , and three anisotropic cones
forming an equilateral triangle centered at� K . As we wind around the parabolic degeneracy
point in the absence of trigonal warping, we �nd that the wave function acquires a phase
of 2� , often known as a Berry phase [42]. In the presence of trigonal warping, the central
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Figure 5.2: Plot of the energy spectrum in the absence of trigonal warping, Equa-
tion ( 5.10), along the line ky = 0, which passes through the parabolic degeneracy
points � K at which the low-energy bands, shown in red, touch. We indicate the
separation of the high-energy bands, shown in black, at these points. Inthis plot,
 1 = 0 :4 0.

Dirac-like cone has a Berry phase of� � associated with it. This means that the other three
cones each carry a phase of� [42].

If we expand d(k) to lowest order in q = k � K around these points, we obtain

d(� K + q) � � 3
2(qx � iqy)a: (5.12)

We now expand the low-energy bands given by Equation (5.10) around these points, �nding
that, to lowest order in q, they are simply

E(� K + q) = �
 2

0

 1
jd(� K + q)j2 = �

9 2
0a2

4 1
q2: (5.13)

We see that the dispersion, in the absence of trigonal warping, becomes parabolic, much
like that of a non-relativistic particle with an e�ective mass of m� = 2 1

9 2
0 a2 . It is for this

reason that we refer to the� K points in the Brillouin zone as parabolic degeneracy points.
Note, however, that the behavior implied by the name is only presentif we ignore the e�ects
of trigonal warping. Experimentally [ 5, 6], m� � 0:028me, while the value that we obtain
from the above formula and the experimental values of the hopping parameters given above
is m� � 0:038me.

The matrix H(k) around the � K points is

H(� K + q) �

2

6
6
4

0 �  1 � 3
2  0q� a 0

�  1 0 0 � 3
2  0q� a

� 3
2  0q� a 0 0 � 3

2  3q� a
0 � 3

2  0q� a � 3
2  3q� a 0

3

7
7
5 ; (5.14)
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Figure 5.3: Plot of the positive low-energy band for 3 = 0 (left) and  3 6= 0 (right)
near � K . Note that the parabolic behavior of the band in the  3 = 0 case is split
into four Dirac-like cones in the  3 6= 0 case. For the purpose of this plot, we set
 1 = 0 :4 0 and  3 = 1 :5 0; we set the latter to a large value in order to make the
splitting into Dirac-like cones more noticeable.

whereq� = qx � iqy . If we use this to write an approximate Hamiltonian for the low-energy
electronic states, we obtain

H tb =
X

q

X

�

 y
K ;� (q)H(K + q) K ;� (q) + ( K ! � K ); (5.15)

where  � K ;� (q) = [ a1� (� K + q); a2� (� K + q); b1� (� K + q); b2� (� K + q)]T . We see that
this e�ectively introduces a new degree of freedom, labeled by which of the two parabolic
degeneracy points a given state is near; we will refer to this as the valley degree of freedom.

Our next step is now to eliminate the high-energy modes and write atheory that includes
only the low-energy modes. One method by which this may be accomplished is to project
out the high-energy modes via a perturbative scheme, as is done in Reference [45]. However,
the method that we will employ is that used in Reference [46]. In this method, we start
by writing the partition function associated with the Hamiltonian as a c oherent-state path
integral [47]. The result will be

Z =
Z

D[a; a� ; b; b� ] e� S(a;a� ;b;b� ) ; (5.16)

where thea and b �elds are Grassman numbers and� is an imaginary time. The action, S,
is given by

S(a; a� ; b; b� ) =
Z �

0
d� L (a; a� ; b; b� ) (5.17)

and the Lagrangian, L , is given in momentum space by

L(a; a� ; b; b� ) =
X

q

X

�

�
 y

� (q; � )
�

@
@�

� �
�

 � (q; � ) + H (a; a� ; b; b� )
�

; (5.18)

where  � (q; � ) = [  K ;� (q; � );  � K ;� (q; � )]T ,  � K ;� (q; � ) is similarly de�ned as before, ex-
cept that now the a and b operators are replaced by the corresponding Grassman �elds,
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and H is simply the Hamiltonian written in normal order|i.e., with all of the ay and by

operators to the left of the a and b operators|with all of the operators replaced by their
corresponding Grassman �elds.� is the chemical potential; we will set it to zero. By doing
so, we place the system at half �lling; we will show later that this is rigorously true for our
Hamiltonian, even in the presence of interactions, provided that we write the interaction
terms in the proper form. We then integrate out the dimerized sites, which we consider
to be associated with the high-energy modes. We make this associationbecause, as stated
earlier, the separation of the two high-energy bands is given by the hopping  1 between
these two sites.

In our case, the Lagrangian is

L (a; a� ; b; b� ) =
X

q

X

�

�
 y

� (q; � )
@
@�

 � (q; � ) +  y
K ;� (q; � )H (K + q) K ;� (q; � ) + ( K ! � K )

�
:

(5.19)
Since we are interested in integrating out thea �elds, we will �nd it convenient to rewrite
the above as

L(a; a� ; b; b� ) =
X

q

X

�

�
( a

� )y
�

@
@�

+ H aa

�
 a

� + (  b
� )y

�
@
@�

+ H bb

�
 b

�

+ (  a
K ;� )yH ab b

K ;� + (  b
K ;� )yH ba a

K ;� + ( K ! � K )
i

; (5.20)

where  x
� K ;� = [ x1� (� K + q); x2� (� K + q)]T contains only those �elds that reside on

sublattice x and H xy is the appropriate block of H(� K + q). Here, we omit any explicit
dependence of these quantities onq and � for brevity. The integral in Equation ( 5.16) is
Gaussian, and therefore we may evaluate it exactly. We �rst introduce the Fourier transform
of the �elds with respect to imaginary time,

 x
� K ;� (q; � ) =

1
�

X

!

e� i!�  x
� K ;� (q; ! ); (5.21)

where ! runs over all fermionic Matsubara frequencies,! n = (2n+1) �
� , wheren is an integer.

The partition function then becomes

Z =
Z

D[a; a� ; b; b� ] exp

"

�
1
�

X

!

L(a; a� ; b; b� )

#

; (5.22)

where the Lagrangian is now

L(a; a� ; b; b� ) =
X

q

X

�

h
( a

K ;� )y (� i! + H aa)  a
K ;� + (  b

K ;� )y (� i! + H bb)  b
K ;�

+ (  a
K ;� )yH ab b

K ;� + (  b
K ;� )yH ba a

K ;� + ( K ! � K )
i

: (5.23)

If we now integrate out the a �elds, we obtain an e�ective Lagrangian,

L e� (b; b� ) =
X

q

X

�

( b
K ;� )y

h
� i! + H bb � H ba (� i! + H aa) � 1 H ab

i
 b

K ;�

42



+ ( K ! � K ): (5.24)

The matrix product appearing in this expression is

H ba (� i! + H aa) � 1 H ab =
9a2 2

0

4(! 2 +  2
1)

�
i!q 2 �  1q2

�
�  1q2

� i!q 2

�
: (5.25)

We now drop all terms in this expression higher than second order inq or higher than �rst
order in ! ; we will make our reasons for doing so clear in the next chapter. The e�ective
Lagrangian is now, combining the two sets of terms for each valley together,

L e� (b; b� ) =
X

q

X

�

( b
K ;� )y(q; � )

�
� i! + H (2)

q + H (tw)
q

�
 b

K ;� (q; � ); (5.26)

where

H (2)
q =

q2
x � q2

y

2m� � x +
qxqy

m� � y (5.27)

and
H (tw)

q = v3(kx � x + ky � y): (5.28)

Here, we de�ne the matrices, � x = 1 � 1, � y = � 3� 2, � x = � 3� 1, and � y = � 1� 2. The
matrices appearing in these de�nitions are the Pauli matrices, the �rst acting in valley
(� K ) space, the second in layer (1 and 2) space. We also de�ne the trigonal warping
velocity, v3 = 3

2a 3; note that this di�ers from the formula given in References [42] and
[39]. The value of the trigonal warping velocity used in �tting the expe rimental data[5] is
v3 � 1:41� 105 m/s, while that obtained from the above formula is v3 � 0:96� 105 m/s. The
origin of the admittedly unimportant and small discrepancy between the experimental values
of the trigonal warping velocity and the value caluclated from the tight-binding parameters
given above, as well as the similar discrepancy in the e�ective massm� discussed above, is
unclear at this time.

If we now transform back to position and imaginary time space and take the continuum
limit, we obtain

L e� (b; b� ) =
Z

d2r
X

�

( b
K ;� )y(r ; � )

�
@
@�

+ H (2)
p + H (tw)

p

�
 b

K ;� (r ; � ); (5.29)

where p = � i r is the momentum operator. In taking the continuum limit, we obtain a
factor of 1

A uc
, where Auc is the area of a unit cell in position space; we absorbed this factor

into the  �elds. From this point on, we will drop the superscript, b, from the  �elds.

5.4 Electron-electron interaction terms

We now introduce interaction terms into the low-energy theory. The terms that we
introduce into the Lagrangian are all contact interactions, and take the form,

L I = 1
2

X

S;U

gSU

Z
d2r [ y(r ; � )S (r ; � )][ y(r ; � )U (r ; � )]; (5.30)
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where S and U are summed over all 64SU(8) generators. These generators all take the
form, � i � j sk , where the �rst matrix acts in valley space and the second in layer space, as
before, but the third acts in spin (up or down) space. We de�ne the coupling constants
gSU to be symmetric in their subscripts; i.e., gUS = gSU . Naively, we would expect there to
be 32� 63 + 64 = 2; 080 di�erent interaction terms. However, it may be shown that there
are in fact only 18 unique couplings allowed by the symmetries of the underlying lattice
[46, 39]. In all of the allowed terms in (5.30), S = U; i.e., they are squares of bilinears
of the form,  yS . Each of these couplings corresponds to an irreducible representation
of the space group of the Hamiltonian under which the corresponding bilinear transforms,
and may be classi�ed by applying the di�erent transformations of the group to them, as
is done for monolayer graphene in Ref. [48] and for bilayer graphene in Ref. [46]. These
classi�cations are given in Table 5.2.

Table 5.2: Classi�cation of bilinears of the form,  yS , according to the repre-
sentation of the space group under which they transform. The representations
with a K in their label are not invariant under translations (i.e., they transf orm
as vectors under translations, rather than as scalars). The� sign at the end of
each representation name is said representation's symmetry under time reversal.
Matrices separated by commas transform into one another under the point group
operations, while those separated by semicolons transform into one another under
translations. Note that we omit the spin portion of these matrices; it wil l not
a�ect their transformation properties under the space group.

Rep. Matrices

A1g+ 14

A2g� � 3� 3

Eg+ (1� 1; � 3� 2)
A1u � � 31
A2u+ 1� 3

Eu � (� 3� 1; � 1� 2)
A1K + ( A1g/ A1u) � 1� 1; � 2� 1

A2K � (A2u / A2g) � 1� 2; � 2� 2

EK + ( Eg/ Eu) (� 11; � � 2� 3; � � 21; � � 1� 3)

Note that we omit the spin portion of these matrices, since it is irrelevant to their
transformation properties under the symmetry operations of the lattice. This is because
the operations of the SU(2) group are independent of those of the space group, since they
operate on di�erent degrees of freedom. We may thus consider there tobe two sets of
representations|\charge" representations in which the matrices, wh ich all have the form,
� i � j 1, transform as scalars under the operations ofSU(2), and \spin" representations in
which the matrices transform as three-component vectors. Any terms that contain matrices
that transform under the same representation must have the same coe�cient, since the sum
of the squares of all such bilinears forms an invariant according to the generalized Uns•old
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theorem [43]. We see that the 18 couplings are split into 9 \charge" couplings and 9 \spin"
couplings. The interaction terms that appear in our theory are therefore

L I = 1
2

9X

r =1

X

j

Z
d2r

2

4g(c)
r ( y� (j )

r 1 )2 + g(s)
r

X

�;� = x;y;z

( y
� � (j )

r ~� ��  � )2

3

5 ; (5.31)

where � (j )
r is the j th SU(4) generator in representationr , as given in Table5.2. Throughout

this work, we will denote the coupling constants using the representation label; e.g., g(c)
A 1g

is

the coupling constant for the ( y )2 term.
We may reduce this number even further by use of Fierz identities [48, 46]. These

identities allow one to transform a product of two bilinears into a sum of products of other
bilinears. These Fierz identities follow from the following algebraic identity for the SU(8)
generators � i :

S�� T�� = 1
64

X

i;j

Tr(� i S� j T)� i;�� � j;�� (5.32)

This may immediately be translated into an identity for Grassman bil inears:

[ y(x)S (x)][ y(y)T  (y)] = � 1
64

X

i;j

Tr(� i S� j T)[ y(x)� i  (y)][ y(y)� j  (x)]; (5.33)

where x and y represent all other variables besides valley, layer, and spin indices that the
�elds depend on. We give a more detailed derivation of these identities in Appendix C. The
minus sign in this identity follows from the anticommuting nature of Grassman �elds. If
we setx = y, we obtain the Fierz identities alluded to earlier. If we apply these identities
to the interaction term given above, we may generate a linear constraint on the bilinears of
the form, F V = 0, where V is a \vector" of the symmetry-allowed interactions and F is an
18 � 18 matrix [46]. We then determine the number of zero eigenvalues thatF possesses,
which is also the number of independent couplings. Performing this procedure, we �nd that
there are nine independent couplings. We will give details of this analysis in Appendix C.
For simplicity, we choose to work with the nine \charge" couplings; from this point on, we
will drop the superscript, (c), from the associated coupling constants. We will also denote
� (j )

r = � (j )
r 1; i.e., the matrices � (j )

r are the SU(8) generators of the form,� i � j 1, that belong
to the \charge" representations.

Note that we may \transcribe" an e�ective Hamiltonian for our system from th e La-
grangian; doing so, we obtain

He� =
Z

d2r
X

�

( b
K ;� )y(r )

�
H (2)

p + H (tw)
p

�
 b

K ;� (r ) + 1
2

9X

r =1

gr

Z
d2r

X

j

( y� (j )
r  )2; (5.34)

where  (r ) is now a fermionic �eld operator, rather than a Grassman �eld.

5.5 Interaction-induced symmetry breaking in bilayer
graphene

As we showed earlier the low-energy electronic modes have a parabolic dispersion in the
absence of trigonal warping. This means that there is a �nite density of states at the Fermi
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energy if the system is at half �lling, in which case the Fermi energywill be exactly at the
parabolic degeneracy points. This, in turn, means that we expect one or more susceptibilities
towards symmetry-breaking electronic phases to diverge as we approach zero temperature,
making the system unstable to such a phase. A number of experimental and theoretical
works have been dedicated to determining the existence and nature of such phases.

On the experimental side, measurements of the electrical conductivity of suspended
bilayer graphene in di�erent electric and magnetic �elds, as well as at di�erent carrier
densities [49], followed by compressibility measurements [50], �nd evidence suggesting the
presence of a symmetry-breaking order. The two possible types of orders argued for in these
works are a quantum anomalous Hall phase, in which the system acquires a non-zero Hall
conductivity in the absence of an applied magnetic �eld, and a nematic phase, which breaks
the rotational symmetry of the system. In this phase, the parabolic degeneracy points in
the energy spectrum split into two Dirac-like cones, which are shifted slightly away from the
degeneracy point [51]. The separation is given by the magnitude of the order parameter,
while the direction is given by that of the order parameter. Rotating the order parameter
by � will produce an equivalent con�guration, much like the molecules in a nematic liquid
crystal, hence the name. A more recent experiment [5] �nds evidence for a nematic phase
by measuring the width of a peak in the resistivity as a function of the carrier density
at di�erent temperatures and by measuring cyclotron gaps as a function ofthe applied
magnetic �eld for di�erent �lling factors. Another, more recent, exp eriment [6] uses two-
terminal conductance measurements to argue for a state in which the system develops a gap
in its energy spectrum, in apparent disagreement with the previousexperiment, since the
nematic phase argued for in Reference [5] is gapless. Two other experiments [52, 53] also
�nd evidence for a gap in the spectrum induced by symmetry breaking, but are inconclusive
about the exact nature of the state. Yet another experiment [54] performs measurements on
a number of samples, �nding a bimodal distribution of conducting and insulating samples.

A number of the theoretical works on this problem have employed mean-�eld methods.
One such work [45] employs variational methods to argue for a ferromagnetic state for
long-range interactions and a calculation of the susceptibility towardsan antiferromagnetic
state within an RPA approximation, followed by a mean-�eld calculation of the associated
order parameter, to argue for said state for short-range interactions. Two other works
employ a mean-�eld approach to argue for a \(layer) pseudospin magnet" phase [55] and
a ferromagnetic state [56]. Later investigations argue for a layer-polarized state, in which
there is more charge on one layer of the sample than on the other, using mean-�eld methods
[57] and a quantum anomalous Hall state using mean-�eld methods and taking into account
Gaussian uctuations about the mean-�eld solution [58]. Another work by the same group
[59] uses mean-�eld methods, as before, but considers the e�ects of applied electric and
magnetic �elds; they �nd a quantum anomalous Hall state, a quantum Hall ferr omagnetic
insulator, and a layer-polarized state. Another work [60] uses Hartree-Fock methods to
argue for a layer-polarized state in the absence of a magnetic �eld and argues for the
existence of a quantum anomalous Hall state when a magnetic �eld is applied. A very
recent investigation by the same group [61] �nds a \(layer) pseudospin antiferromagnet"
state in the honeycomb bilayer. Another very recent investigation [62] uses Hartree-Fock
methods to �nd a coexistence of a quantum spin Hall state, in which anon-zero spin Hall
conductivity develops in the system, and a layer-polarized state that may be turned into a
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pure layer-polarized state with the application of a su�ciently str ong electric �eld. Finally,
the work of Reference [63] treats the problem of an applied in-plane magnetic �eld, in which
case we only acquire a Zeeman term, and an applied perpendicular electric �eld within a
self-consistent mean-�eld approximation.

Mean-�eld theory, however, has a major disadvantageas a means of predicting the low-
temperature phase of the system. It does not treat the leading logarithmic divergences that
appear in perturbation theory correctly, and therefore may lead to results that are incorrect,
even qualitatively [64]. On the other hand, the renormalization group (RG) approach does.
As an illustrative example, let us consider fermions on a one-dimensional chain with a
nearest-neighbor repulsion [64]. If we consider spinless fermions, as is done in, for example,
Reference [65], then mean-�eld theory will predict that, at half �lling, the syst em will enter
a charge density wave state for arbitrarily weak interactions. The RG approach, on the
other hand, predicts no symmetry-breaking phases until the interaction becomes su�ciently
strong, in agreement with a known exact solution [66]. We therefore believe that RG is a
more accurate means of predicting the phase of our system than mean-�eldtheory. There
are, in fact, several papers in addition to our own work [39, 40] that employ weak-coupling
perturbative RG techniques in the study of bilayer graphene [51, 46, 67, 68, 69].

In Reference [51], this method is employed to argue for a nematic state for long-range
interactions in the case of spin-12 fermions, and a similar paper by Lemoniket. al. [67, 68]
that followed arrives at the same conclusion. A later work [46] investigates the short-range
limit (i.e., the Hubbard model), and argues for an antiferromagnetic state, in which the
spins possess a ferrimagnetic arrangement within each layer (i.e.,the spins alternate in
direction between neighboring sites, but are unequal in magnitude), and are oppositely
directed between the two layers. An illustration of this phase maybe found in Reference
[4]. It is also argued in Reference [46] that this phase should persist even in the strong-
coupling limit. This has been recently con�rmed using a combination of quantum Monte
Carlo and functional RG methods [4].

5.5.1 Summary of our work

The rest of this part of the present work will be dedicated to an extension of the previous
RG analyses conducted in References [51] and [46]. We �nd that, in fact, it is possible to �nd
all of the instabilities that the system may exhibit within a weak- coupling approximation
[39]. Using the Wilson momentum-shell RG method [70, 65], and working at �nite tem-
perature [71, 72], we �rst derive �rst-order di�erential equations describing t he evolution
of the nine coupling constants as we integrate out shells in momentum space and rescale.
This process may be described by a parameter,̀, that gives a measure of how many such
shells that we have integrated out. We �nd that, at su�ciently high te mperatures, the
coupling constants will all saturate at a �nite value. As the temperatur e is lowered, the
coupling constants will saturate at higher, but still �nite, values. Eventually, however, we
will reach a temperature at which the constants do not saturate, but rather run away to
in�nity; we will call this temperature the critical temperature . We interpret this divergence
as an indication of the presence of an instability towards a symmetry-breaking phase.

While the coupling constants diverge, it turns out that ratios of these coupling constants
tend to �nite values. We will refer to the possible ratios that the c oupling constants may
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take as they diverge as �xed ratios or �xed rays. We �nd that it is possibl e to determine
all of these �xed ratios for our system. We �nd that there is a two-dimensional surface of
�xed ratios (i.e., a two-parameter family of such ratios), as well as four isolated points.

To determine which phase(s) the system is unstable to, we calculate the susceptibilities
of the system towards various orders and determine whether or not theydiverge. In practice,
we determine whether or not a given susceptibility diverges by deriving a relation between
the �xed raios that the coupling constants tend to at the critical temp erature and the
exponents with which the susceptibilities vary near the critical temperature. We then
use this formula to determine the susceptibility exponent for each order. If the exponent
becomes negative, then the susceptibility diverges and the system is therefore unstable to
the formation of the associated phase. Using this, as well as our knowledgeof the �xed
points, we are able to map out all of the possible phases that the system isunstable to.

We then specialize to the case of �nite-range electron-electron interactions. We start by
introducing a density-density interaction into the microscopic (tight-binding) Hamiltonian
for the system of the form,

H I =
X

r ;r 0

V(r � r 0)[n(r ) � 1][n(r 0) � 1]; (5.35)

where n(r ) = cy(r )c(r ). We then integrate out the high-energy modes, as we did in the
present chapter, obtaining a low-energy theory of the form described above. The coupling
constants that appear in this theory will depend on the interaction that we introduced
into the Hamiltonian. This gives us a relation between the microscopicinteraction and
the coupling constants in the low-energy theory. We use the values so obtained as initial
conditions for our RG equations. We will �nd that only three of the coupli ng constants,
gA 1g , gA 2u , and gEK , may be non-zero for this type of microscopic interaction. We consider
two forms of the microscopic interaction, both motivated by experimental setups [49, 6].
The �rst is an interaction of the form produced by a point charge in the presence of a single
in�nite conducting plate, and the second is that produced by a point charge exactly halfway
between two parallel in�nite conducting plates. We illustrate th e con�gurations that lead
to these forms in Figure5.4. The �rst has a dipole-like form,

V (r ) = U0

 
1

r=�
�

1
p

(r=� )2 + 1

!

; (5.36)

where � is the distance between the charge and the plate, while the second hasthe form,

V (r ) = 4 U0

1X

k=0

K 0

�
(2k + 1) �

r
�

�
� U0

2
p

2e� �r=�
p

r=�
: (5.37)

We will show how to obtain this form in Chapter 8. Since the latter falls o� exponentially,
while the former falls o� as r � 3, the former is a longer-ranged interaction than the latter.
Note that each of these forms contains a parameter,� ; this parameter sets the range of
the interaction. For each of these forms, we �rst determine the initial values of gA 1g ,
gA 2u , and gEK as a function of � . We then integrate the RG equations numerically and
determine what �xed ratios the coupling constants tend to. From this, we may determine
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which phase the system is unstable to. We will �nd that the system is unstable to the
antiferromagnetic phase for short ranges of the interaction and to the nematic phase for
long ranges, in agreement with previous work [51, 46, 67, 68]. At intermediate ranges, we
�nd an instability towards both.

Figure 5.4: Illustrations of the single-gate (left) and double-gate (right) con�gu-
rations, which lead to the potentials given by Equations (5.36) and (5.37), respec-
tively.

Motivated by the fact that we �nd an instability towards the antiferrom agnetic phase
for short-ranged interactions and by the fact that a gapped phase is detected, for example,
in Reference [6], we then turn our attention to investigating the e�ects of an applied per-
pendicular magnetic �eld on the system in the antiferromagnetic phase. We will do this
using variational mean �eld theory. In this approach, we start by adding and subtracting a
term of the form,

�
Z

d2r  y(r )1� 3s3 (r ); (5.38)

from the Equation (5.34) in the case of a microscopic density-density interaction (i.e., with
only gA 1g , gA 2u , and gEK present), and with the magnetic �eld introduced via the minimal
substitution, p ! p � e

cA , whereA is the magnetic vector potential. This term corresponds
to the AF order parameter. We then exactly diagonalize the kinetic energy plus the added
term to obtain our trial ground state. Finally, we calculate the expectat ion value of the full
Hamiltonian, which we then minimize with respect to �.

Our switch to mean-�eld methods is motivated by two factors. First of all, we are not
using these methods topredict the existence of a phase; rather, we are using them to describe
the phenomenology of a phase that we have already predicted via an RG calculation. In fact,
since the AF state is gapped, we expect that a perturbative expansion around the mean-�eld
solution will have a �nite radius of convergence. Our second reason for using mean-�eld
methods, rather than RG, is because an RG analysis of the system in thepresence of a
magnetic �eld is di�cult. This is because the non-interacting ene rgy spectrum is discrete
and the crystal momentum k is no longer a good quantum number.

A similar calculation has already been performed [73], in which a self-consistent mean
�eld approach is employed, and a second order parameter, which we will�nd corresponds
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to a \staggered spin current" order, is introduced. Our analysis, on the other hand, only
explicitly includes the antiferromagnetic order parameter. This is because, atB = 0, the two
order parameters will transform under di�erent representations of the D3d symmetry group;
the antiferromagnetic order parameter belongs to theA2u (spin) representation, while the
\staggered spin current" order parameter transforms under theA1u (spin) representation.
In particular, the two have opposite \parity" under mirror reection s; the antiferromagnetic
order is even, while the \staggered spin current" order is odd. In the presence of a �nite
external �eld, which is an axial vector, however, mirror symmetry i s broken. This reduces
the D3d symmetry group to S6, a subgroup ofD3d that includes only the C3 rotations, the
S6 improper rotations, and the inversion i . Both order parameters transform under the
same representation, namelyAu . It turns out, in fact, that the variational wave function
that we obtain, which only explicitly includes the AF order parameter , will result in a �nite
expectation value of the \staggered spin current" order parameter.

We discover, in our method of solution for �, which was later reproduced in Reference
[73], that one may eliminate all of the coupling constants and express the self-consistency
condition entirely in terms of the value of � in the absence of a magnetic �eld, which we
denote by � 0. This allows us to send the energy cuto� in our problem to in�nity. B y doing
this, we may write a self-consistency conditionwhose dependence on the coupling constants
enters entirely through � 0:

F
�

�( B )
� 0

�
= ln

�
! c

� 0

�
; (5.39)

where ! c = eB=m� c is the cyclotron frequency of an electron with e�ective massm� , F (� )
is given by

F (� ) = I (� ) +
1

j� j
� ln

�
1 +

q
� 2 + 3

4

�
; (5.40)

I (� ) is given exactly later on, but may be very accurately approximated forany value of �
as

I (� ) � �
2

[(� 1
2 I (0)) � 2=3 + 4 � 62=3� 2]3=2]

; (5.41)

and I (0) � � 0:0503 is the exact value ofI (� ) at � = 0. We may consider this expression
to be \universal" in the sense that it does not explicitly depend on the coupling constants
in the problem

In general, this equation must be solved numerically. However, we may obtain approx-
imate analytic solutions in the limit of low �elds, for which ! c � � 0, and for high �elds
(! c � � 0). For low �elds, we �nd a quadratic dependence for �( B ):

�( B ) = � 0 +
! 2

c

8� 0
(5.42)

At high �elds, on the other hand, we �nd that

�( B ) =
! c

ln( ! c=� 0) + C
; (5.43)

where the constantC � 0:67. This form may be experimentally di�cult to distinguish from
a linear dependence.
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In order to determine the size of the gap, we then calculate the energyrequired to create
an electrically neutral particle-hole excitation of our trial ground stat e. We believe that this
is what is observed in, for example, Reference [6] because their measurement involves no
net addition or removal of charge from the system. In order to �nd this energy, we simply
�nd the di�erence between the energy of our trial ground state and that of the state with
the particle-hole excitation present. Doing so, we �nd that the excitation energy is

Eex = En � + En � +
m�

4�
g� (� � s� � � � s� ); (5.44)

where
En =

p
n(n � 1)! 2

c + [�( B )]2 (5.45)

and � and s are valley and spin indices;� = 1 for the K valley and � 1 for the � K valley.
Likewise, s = 1 for spin up and � 1 for spin down. If nj = 0 or 1, then the product � j sj is
locked to 1 if j = � (particle) or � 1 if j = � (hole). The quantity g� = gA 1g + gA 2u � 4gEK �
V0 � V2K , whereV0 and V2K are Fourier components of the microscopic interaction atq = 0
and q = � 2K , respectively. This is simply the sum of the energies of the particle and hole
in the single-particle \auxiliary spectrum" plus a non-universal ( i.e., coupling constant-
dependent) term that is linear in B . The gap in our spectrum as a function of B is
simply the minimum value of Eex with respect to the choice of particle and hole states; i.e.,
Egap = min Eex.

Because the expression for the gap contains a non-universal term, it ispossible to control
the slope of said term independently of � 0. We use this fact to �t our formula to experimen-
tal data. We �nd that the best �t to the data presented in Reference [ 6] is given by setting
m �

4� g� = 0 :44 and � 0 = 0 :95 meV. In this case, we obtain a slight non-monotonic behavior
for the gap; it has a minimum of 1:91� 0 at a �eld of B = 0 :047 T. As we increase the �eld,
we observe a \kink" at B = 0 :45 T, marking a transition to a quasi-linear behavior.

We also used our expression to �t the data for the� = 0 gap given in Reference [50].
In this case, it is unclear from the low-�eld data what the value of the zero-�eld gap, if
any, is. Nevertheless, due to the weak logarithmic dependence of �(B ) on � 0 shown in
Equation (5.43), especially at high �elds, it is reasonable to assume the same value for� 0

as before, namely � 0 = 0 :95 meV. In this case, we require a negative value ofg� to �t the
data, implying that the microscopic interaction that is present is non-monotonic, since this
would require that V0 < V2K . We still observe a minimum, this time at about B = 0 :017 T,
but it is very shallow.

The rest of this part of the work is organized as follows. In Chapter6, we briey explain
the Wilson RG procedure and use it to derive the RG equations for thenine coupling
constants. In Chapter 7, we �nd the susceptibility exponents for di�erent orders and the
leading instabilities of the system. Chapter 8 is dedicated to mapping out the leading
instabilities as a function of range for the �nite-range interactions listed above. In Chapter
9, we present our variational mean-�eld analysis of the antiferromagnetic state. We present
out conclusions in Chapter10.
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CHAPTER 6

REVIEW OF WILSON MOMENTUM-SHELL
RG AND DERIVATION OF THE RG

EQUATIONS

Our �rst step in determining the leading instabilities of bilay er graphene at half �lling will
be to derive the RG equations for the nine coupling constants present in the low-energy
theory. As we do so, we will also be reviewing the Wilson momentum-shell method [70].

6.1 Review of Wilson momentum-shell RG, the RG
transformation

The basic idea behind the Wilson momentum shell method is to integrate out electronic
modes in thin shells and rescale in such a way as to obtain a theory of identical form to
that which we started with. However, the constants appearing in the new theory will have
di�erent values. Nevertheless, this new theory will possess thesame low-energy physics as
the one that we started with. While not strictly necessary, the rescaling step is especially
convenient, since it allows us to easily write down equations relating the new values of the
constants in our theory to their original values. We will be performing our analysis at �nite
temperature, similarly to References [71] and [72].

The way that we put this method into practice is as follows. We start by imposing an
upper cuto� � on the momenta of the electronic modes. In our case, we set the cuto� so
that the corresponding energy is 1, since it is up to this scale that we expect our low-
energy theory to be valid; the corresponding momentum is � =

p
2m�  1. We will �nd it

convenient to work with the theory in momentum and frequency space. Introducing the
Fourier transform,

 (r ; � ) =
1
�

X

!

Z
d2k

(2� )2 ei (k �r � !� )  (k ; ! ); (6.1)

the action becomes

Se� =
Z

k !

X

�

 y
� (k ; ! )

�
� i! + H (2)

k + H (tw)
k

�
 � (k ; ! )
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+ 1
2

9X

r =1

gr

Z

1234

X

j

[ y(k1; ! 1)� (j )
r  (k2; ! 2))][  y(k3; ! 3)� (j )

r  (k4; ! 4)]; (6.2)

where we introduce the shorthand,
Z

k !
X =

1
�

X

!

Z
d2k

(2� )2 X (6.3)

and
Z

1234
X =

1
� 4

X

! 1 :::! 4

Z
d2k1

(2� )2 : : :
d2k4

(2� )2 (2� )2� (k4 � k3 + k2 � k1)�� (! 4 � ! 3 + ! 2 � ! 1) X;

(6.4)
which we will employ throughout this chapter. Here, all momentum integrals are restricted
to the region, jk j < �.

Our next step will be to split the �elds into \slow" modes,  < , and \fast" modes,  > ;
i.e.

 =  < +  > : (6.5)

Here, the \slow" modes are those with momenta such thatjk j < � e� d` , where d` is an
in�nitesimally small number, and the \fast" modes are such that � e� d` < jk j < �. In other
words,  < (k ; ! ) = 0 if jk j > � e� d` , and similarly for  > (k ; ! ). We then integrate out the
fast modes in a cumulant expansion. We may write the partition function as

Z =
Z

D[ �
< ;  < ]

Z
D [ �

> ;  > ] e� S: (6.6)

We then evaluate the inner integral. We may write the integral as

Z =
Z

D[ �
< ;  < ] Z0;>

D
e� (S� S0;> )

E

0;>
; (6.7)

where

Z0;> =
Z

D[ �
> ;  > ] e� S0;> (6.8)

is the partition function of the system with only the quadratic terms for the \fast" modes
present,

S0;> =
Z >

k !

X

�

 y
� (k ; ! )

�
� i! + H (2)

k + H (tw)
k

�
 � (k ; ! ): (6.9)

Here, the \> " sign on the integral means that the momentum integral is taken only over
the \fast" modes. Finally,

D
e� (S� S0;> )

E

0;>
=

1
Z0;>

Z
D[ �

> ;  > ] e� S (6.10)

is an average with respect to the \bare" (i.e., non-interacting) action for the \fast" modes.
We now perform a cumulant expansion of the average:
D

e� (S� S0;> )
E

0;>
= exp

h
� h (S � S0;> )i 0;> + 1

2

� 

(S � S0;> )2�

0;> � h (S � S0;> )i 2
0;>

�
+ : : :

i
:

(6.11)
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Therefore, our rescaled action is, to second order in this expansion,

Se� = h(S � S0;> )i 0;> � 1
2

� 

(S � S0;> )2�

0;> � h (S � S0;> )i 2
0;>

�
+ : : : (6.12)

Let us �rst consider the �rst-order term in this expansion. Since t he quadratic terms only
contain an integral over a single momentum, they separate into two setsof terms|one
containing only \slow" modes, and one with only \fast" modes. The terms with the \fast"
modes produce a multiplicative constant that we are not concerned with for our present
purposes. The renormalized action for the quadratic terms at this stepis the same as the
original; i.e., the remaining quadratic action for the \slow" modes is just

Se� ;2 =
Z <

k !

X

�

 y
�;< (k ; ! )

"

� i! +
k2

x � k2
y

2m� � x +
kxky

m� � y

+ v3(kx � x + ky � y)]  �;< (k ; ! ): (6.13)

Here, the < sign on the integral sign means that the momentum integral is to only be taken
over \slow" modes. For later convenience, we have chosen to write out H (2)

k and H (tw)
k ,

de�ned earlier by Equations (5.27) and (5.28).
We now rescale the momenta, frequencies, and �elds such that we restore this part of

the action to its original form. We will refer to this rescaling as the RG transformation. We
start by introducing the rescaled momentum, k0 = ed`k. Upon doing so, the action becomes

Se� ;2 = e� 2d`
Z

k 0!

X

�

 y
�;< (k0e� d` ; ! )

"

� i! + e� 2d` k0
x

2 � k0
y

2

2m� � x + e� 2d` k0
xk0

y

m� � y

+ e� d`v3(k0
x � x + k0

y � y)
i

 �;< (k0e� d` ; ! ): (6.14)

The factor of e� 2d` outside of the integral comes from the measure of the momentum
integral. We see that the trigonal warping term has a di�erent power of ed` than the other
momentum-dependent term. Because of this, we introduce a rescaled trigonal warping
velocity, v0

3 = ed`v3. The action thus becomes

Se� ;2 = e� 2d`
Z

k 0!

X

�

 y
�;< (k0e� d` ; ! )

"

� i! + e� 2d` k0
x

2 � k0
y

2

2m� � x + e� 2d` k0
xk0

y

m� � y

+ e� 2d`v0
3(k0

x � x + k0
y � y)

i
 �;< (k0e� d` ; ! ): (6.15)

Our next step is to rescale the frequency. If we introduce! 0 = e2d` ! , we obtain

Se� ;2 = e� 4d`
Z

k 0! 0

X

�

 y
�;< (k0e� d` ; ! 0e� 2d` )

"

� i! +
k0

x
2 � k0

y
2

2m� � x +
k0

xk0
y

m� � y

+ v0
3(k0

x � x + k0
y � y)

�
 �;< (k0e� d` ; ! 0e� 2d` ); (6.16)

where the Matsubara frequencies are now! 0 = (2n+1) �
� e2d` . Therefore, the sum is no longer

of the same form as before. To restore it to its original form, we must rescale the temperature
of the system. To be exact, we let� 0 = �e � 2d` , so that ! 0 = (2n+1) �

� 0 . The action becomes

Se� ;2 = e� 6d`
Z

k 0! 0

X

�

 y
�;< (k0e� d` ; ! 0e� 2d` )

"

� i! +
k0

x
2 � k0

y
2

2m� � x +
k0

xk0
y

m� � y
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+ v0
3(k0

x � x + k0
y � y)

�
 �;< (k0e� d` ; ! 0e� 2d` ); (6.17)

where the extra factor ofe� 2d` comes from the factor of 1=� present outside of the frequency
sum. We must now eliminate the factor ofe� 6d` outside of the integral. We accomplish this
by rescaling the �elds. De�ning

 0(k0; ! 0) = e� 3d`  < (k0e� d` ; ! 0e� 2d` ); (6.18)

we �nally obtain an action of the same form as that which we started with, except with
rescaled �elds, momenta, and frequencies. As a consequence, the trigonal warping velocity
and temperature are renormalized.

We may imagine integrating out thin shells and rescaling in the same way as just de-
scribed many times, with the number of iterations described by a parameter `. After a
number of iterations, the trigonal warping velocity and inverse temperature will be given
by functions of `, i.e., v3(`) and � (`). Let us now iterate the above process one more time.
These two quantities will be renormalized again, now taking the values,

v3(` + d`) = ed`v3(`) and � (` + d`) = e� 2d` � (`): (6.19)

If we now expand the exponentials to �rst order in d`, we may rearrange these expressions
into �rst-order di�erential equations giving the values of v3(`) and � (`) as a function of `:

dv3

d`
= v3 and

d�
d`

= � 2� (6.20)

The solutions to these equations are justv3(`) = v3(` = 0) è and � (`) = � (` = 0) e� 2` .
Throughout this work, we will drop the \( ` = 0)" and simply denote the \bare" (i.e.,
starting) values of the trigonal warping velocity and inverse temperature as just v3 and � ,
respectively, and explicitly write out the functional forms just obtained for their renormal-
ized values. Because the coe�cient of the trigonal warping term increases as we integrate
out modes, it is referred to as a relevant term. On the other hand, the coe�cients of the
terms that are second order in components ofk were left unchanged; such terms are referred
to as marginal. A term whose coe�cient decreasesas we integrate out modes is referred to
as irrelevant. In practice, irrelevant terms are usually omitted in RG analyses, as we will
do here. In our case, any term quadratic in the �elds that is higher than second order in
components ofk or higher than �rst order in ! will be irrelevant. This is the reason why
we dropped such higher-order terms in deriving the low-energy �ective theory.

For convenience, we will now summarize the steps for performing the RG transformation:

1. Integrate out \fast" modes and evaluate all momentum integrals and frequency sums
over such modes.

2. Introduce the rescaled momentum,k0 = ked` , in all integrals over \slow" modes.

3. Introduce the rescaled frequency,! 0 = !e 2d` ; this also requires us to introduce the
rescaled temperature,� 0 = �e � 2d` .

4. Rescale the \slow" �elds by introducing  0(k0; ! 0) = e� 3d`  < (k0e� d` ; ! 0e� 2d` ).
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6.2 The interaction terms at �rst order

We now turn our attention to the quartic terms (i.e., the interacti on terms). In this case,
we have integrals over three independent momenta, and so we cannot simply separate the
terms into one that consists entirely of \slow" modes and one that consists entirely of \fast"
modes. However, we only need to consider terms that contain only \slow" modes, terms
that only contain \fast" modes, and terms with two of each. Terms with an odd number of
\fast" modes will simply be zero by virtue of the fact that, while th e action with respect
to which we are averaging would be invariant under a sign change of these modes, the
quartic expression being averaged over will change its sign. The term consisting entirely of
\fast" modes, again, only produces a constant that we will not concern ourselves with. The
terms consisting entirely of \slow" modes will be marginal under our RG transformation.
Upon performing the RG transformation, we obtain a factor of e� 8d` from the measure
of the momentum integral, a factor of e2d` from the momentum-conserving delta function,
and e� 6d` from the powers of � present, for a total factor of e� 12d` . This factor will be
\absorbed" by the �elds upon rescaling. This rescaling of the �rst-ord er, or \tree level",
term in the expansion, which always results in the same term multiplied by, at most, a
power of ed` , tells us what is called the engineering scaling dimension of the term. Since
no powers ofed` appear, the engineering scaling dimension of the four-fermion interaction
terms is zero.

The \mixed" terms, on the other hand, will generate chemical potential-like terms.
While they do, in principle, represent renormalizations of a chemical potential, we elect to
keep the chemical potential �xed as we integrate out modes. We do thisby introducing a
\counterterm" into the action,

L CT = � 0
Z

k !
 y(k ; ! ) (k ; ! ); (6.21)

where � 0 is a constant chosen such that this term cancels out the corrections that we
generate. We will therefore not concern ourselves with these contributions.

6.3 Second-order corrections to the interaction terms

We now consider the second-order term in the cumulant expansion. The square of the
quadratic part of the action, as well as the cross terms, will generate terms that are irrelevant
under our RG transformation, and thus we will not consider them. We thus only consider
the square of the quartic terms here. Let us consider the term,



S2

�
0;> . The square of the

quartic term, which we will denote by S4, is

S2
4 = 1

4

9X

r =1

9X

s=1

gr gs

Z

1234

Z

5678

X

i;j

[ y(k1; ! 1)� (i )
r  (k2; ! 2)][ y(k3; ! 3)� (i )

r  (k4; ! 4)]

� [ y(k5; ! 5)� (j )
s  (k6; ! 6)][ y(k7; ! 7)� (j )

s  (k8; ! 8)]: (6.22)

When we separate the �elds into \slow" and \fast" modes and drop terms with an odd
number of \fast" modes (which average to zero for the same reasons as before), we �nd
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Figure 6.1: Diagrams representing second-order (one-loop) correctionsto the cou-
pling constants gr . The dashed lines represent interactions, with the lettersS and
U standing for one of 16SU(4) generators, the black lines represent \slow" modes,
and the red lines \fast" modes.

that there are terms containing only \fast" modes, terms with six \fast " modes and two
\slow" modes, terms with four of each, terms with two \fast" modes and six \slow" modes,
and terms with only \slow" modes. The �rst is a constant, which we ign ore. The second
generates (vanishingly small) corrections to the chemical potential,and thus we do not
consider it; these terms, which are represented with Feynman diagrams with two loops, are
of order (d`)2. The last two generate six- and eight-fermion terms, which are irrelevant
under our RG transformation, and thus we ignore them as well. Therefore,the only terms
that we will concern ourselves with are those with four of each type of mode. These terms
renormalize the coupling constants,gr . There are �ve di�erent types of corrections that
we will obtain, which are represented by the diagrams in Figure6.1. Note that each of
these diagrams contains a single \loop"; for this reason, these are said to represent one-
loop corrections. Also note that all of these diagrams are connected; i.e.,they do not
consist of two disconnected parts. Terms represented by such disconnected diagrams that
are generated from



(S � S0;> )2

�
0;> are cancelled by a corresponding term generated from

h(S � S0;> )i 2
0;> . We will thus denote their di�erence by



(S � S0;> )2

�
0;>;C . A similar

statement, in fact, holds at all orders in the cumulant expansion. As an example of how
to determine these corrections, let us consider the contributions from the �rst diagram
shown in Figure 6.1. This corresponds to choosing two modes on the same \side" of each
of the interaction vertices to be \fast". There are four ways to construct such a term,
corresponding to a di�erent choice of \side" on each vertex. The termassociated with it is

�S (2)
4 (1) = � 1

2

X

S;U

gSgU

Z

1234

Z

5678

D
[ y

< (k1; ! 1)S1 < (k2; ! 2)][ y
> (k3; ! 3)S1 > (k4; ! 4)]

� [ y
> (k5; ! 5)U1 > (k6; ! 6)][ y

< (k7; ! 7)U1 < (k8; ! 8)]
E

0;>;C
: (6.23)

Here, the \argument" of �S (2)
4 (1) is meant to represent the fact that this is the contribution

to the renormalization of the quartic terms coming from the �rst diagram s hown in Figure
6.1. We will use this notation throughout this part of the work. Note that we hav e rewritten
the sums over representations and matrices within said representations as a single sum over
all SU(4) generators; this is to achieve consistency with the notation used in Figure 6.1.
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Note that we have an average over four \fast" �elds present. This average may be evaluated
using Wick's theorem. This theorem speci�es that we consider all ways to \pair" the �elds
with complex conjugate �elds (i.e., a  �eld with a  � �eld). In each \pairing", we rearrange
the �elds such that each �eld is with its \partner", changing the sign ap propriately due to
the anticommuting nature of Grassman �elds. Each term will then simply be a product of
averages of just each �eld and its \partner". These averages are simply given by



 � (k1; ! 1) �

� (k2; ! 2)
�

= (2 � )2� (k1 � k2)�� (! 1 � ! 2)G�� (k1; ! 1); (6.24)

where the Green's functionG(k; ! ) is

G(k; ! ) =

"

� i! +
k2

x � k2
y

2m� � x +
kxky

m� � y + v3(kx � x + ky � y)

#� 1

=
1
2

X

s= �

(1 + s� 3)
i! n1 + ( 1

2m� k2 cos 2� + sv3k cos� )� 1 + ( s 1
2m � k2 sin 2� � v3k sin � )� 2

! 2
n + 1

4m � 2 k4 + v2
3k2 + s 1

m � v3k3 cos 3�
1;

(6.25)

and � is the angle specifying the direction ofk. In the present case, there are two possible
\pairings", namely to pair  y

> (k3; ! 3) with  > (k4; ! 4) and  y
> (k5; ! 5) with  > (k6; ! 6), and

to pair  y
> (k3; ! 3) with  > (k6; ! 6) and  > (k4; ! 4) with  y

> (k5; ! 5). The former pairing,
however, results in a \disconnected" term, which, as pointed out earlier, will be cancelled
out. Therefore, we only consider the latter. In this case, we place the factors containing
only \slow" �elds outside of the average and rewrite the remaining factors containing the
\fast" �elds as

X

���



[ �

�;> (k3; ! 3)(S1)��  �;> (k4; ! 4)][ �
;> (k5; ! 5)(U1)�  �;> (k6; ! 6)]

�
0;>;C

: (6.26)

If we now rearrange all of the terms so that each �eld is next to its \partner", we obtain

�
X

���



 �;> (k6; ! 6) �

�;> (k3; ! 3)
�

0;>
(S1)��



 �;> (k4; ! 4) �

;> (k5; ! 5)
�

0;>
(U1)� : (6.27)

Evaluating the averages, we obtain

� Tr[ G(k3; ! 3)(S1)G(k4; ! 4)(U1)](2� )4� (k3 � k6)� (k4 � k5)� 2� (! 3 � ! 6)� (! 4 � ! 5): (6.28)

If we now substitute this into our expression for �S (2)
4 (1) and simplify, we eventually obtain

�S (2)
4 (1) = 1

2

X

S;U

gSgU

Z

1278

Z >

k 3 ! 3

Tr[ G(k3; ! 3)(S1)G(k3 � k7 + k8; ! 3 � ! 7 + ! 8)(U1)]

� [ y
< (k1; ! 1)S1 < (k2; ! 2)][ y

< (k7; ! 7)U1 < (k8; ! 8)]: (6.29)

We now note that, if we expand the result of the integral overk3 and sum over! 3, we will
obtain a term constant in k7, k8, ! 7, and ! 8, as well as terms with positive powers of these
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quantities. The latter are irrelevant under the RG transformation, an d thus we drop them.
We therefore setk7, k8, ! 7, and ! 8 all to zero in the above expression, obtaining

�S (2)
4 (1) = 1

2

X

S;U

gSgU

Z

1278

Z >

k 3 ! 3

Tr[ G(k3; ! 3)(S1)G(k3; ! 3)(U1)]

� [ y
< (k1; ! 1)S1 < (k2; ! 2)][ y

< (k7; ! 7)U1 < (k8; ! 8)]: (6.30)

We now perform the integrals and sums overk3 and ! 3. We accomplish this with the aid
of the identity,

Z

k ;!
G(k; ! ) 
 G(� k ; � ! ) =

d`
m�

8�
[� 18 
 18 [� 1 (� 3; t) + � 2 (� 3; t)]

+
1
2

(1� 11 
 1� 11 + � 3� 21 
 � 3� 21) [� 3 (� 3; t) + � 4 (� 3; t)]

+ � � 314 
 � 314 [� 1 (� 3; t) � � 2 (� 3; t)]

�
1
2

(� 3� 11 
 � 3� 11 + 1� 21 
 1� 21) [� 4 (� 3; t) � � 3 (� 3; t)]
�

:

(6.31)

The functions � a(� 3; t) are

� 1(� 3; t) =
1

2�
1
t

Z 1

� 1

dx
p

1 � x2
� 1(x; � 3; t); (6.32)

� 2(� 3; t) =
1
�

1
� 3

Z 1

0

dx
p

1 � x2

1
x

� 2(x; � 3; t); (6.33)

� 3(� 3; t) =
1
�

1 � � 2
3

� 3

Z 1

0

dx
p

1 � x2

1
x

� 3(x; � 3; t); (6.34)

� 4(� 3; t) =
1

2�
1
t

Z 1

� 1

dx
p

1 � x2
� 4(x; � 3; t); (6.35)

where

� 1(x; � 3; t) =
1

cosh2
�

Q+
2t

� +
2t

Q+
tanh

�
Q+

2t

�
; (6.36)

� 2(x; � 3; t) =
X

� = �

�Q � tanh
�

Q�

2t

�
; (6.37)

� 3(x; � 3; t) = �
X

� = �

�
Q�

tanh
�

Q�

2t

�
; (6.38)

� 4(x; � 3; t) =
� 1

cosh2
�

Q+
2t

� +
2t

Q+
tanh

�
Q+

2t

�
; (6.39)

and

Q� =
q

1 + � 2
3 � 2x� 3: (6.40)
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Here, � 3 is a dimensionless trigonal warping velocity,

� 3 =
v3

� =2m� ; (6.41)

and t is a dimensionless temperature,

t =
T

� 2=2m� ; (6.42)

where T = 1
� . In the next section, we will �nd the following asymptotic forms of t he �

functions as ` ! 1 at �nite temperature useful:

� a

�
� 3è ; te2`

�
=

e� 2`

2t
+ : : : for a = 1 ; 2; (6.43)

� a

�
� 3è ; te2`

�
=

e� 6`

12t3 + : : : for a = 3 ; 4; (6.44)

where \: : :" represents terms that are smaller than the leading terms. Note that in neither
expression does the leading term depend on the trigonal warping velocity.

Upon applying this identity, we �nd that all of the traces that we must e valuate are
of the form, Tr[( M 1)(S1)(M 1)(U1)], where M is an SU(4) generator. The only SU(4)
generator with non-zero trace is the 4� 4 identity matrix, and thus the product appearing
in the trace must evaluate to a multiple of the identity in order for t he trace to be non-zero.
This can only happen if S = U. We therefore �nd that �S (2)

4 (1) represents a correction to
the coupling gS that is proportional to g2

S.
We may apply a similar procedure to evaluate the contributions from the other diagrams.

We �nd that the second and third diagrams together give us

�S (2)
4 (2 + 3) = �

X

S;U

gSgU

Z

1234
 y(k1; ! 1)S1 (k2; ! 2)

�  y(k3; ! 3)
� Z >

k ;!
U1G(k; ! )S1G(k; ! )U1

�
 (k4; ! 4): (6.45)

In this case, we �nd that all of the terms generated from U1G(k; ! )S1G(k; ! )U1 are pro-
portional to S1. Therefore, this also represents a correction to the coupling,gS, except now
it is proportional to gSgU .

The fourth and �fth give us

�S (2)
4 (4) = � 1

2

X

S;U

gSgU

Z

1234

Z >

k ;!
 y(k1; ! 1)S1G(k; ! )U1 (k2; ! 2)

�  y(k3; ! 3)U1G(k; ! )S1 (k4; ! 4)

(6.46)

�S (2)
4 (5) = � 1

2

X

S;U

gSgU

Z

1234

Z >

k ;!
 y(k1; ! 1)S1G(k; ! )U1 (k2; ! 2)

�  y(k3; ! 3)S1G(� k; � ! )U1 (k4; ! 4)

(6.47)
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Both matrices appearing in this expression are proportional to each other, but not nec-
essarily to either S or U. Therefore, this represents corrections to a couplinggV that is
proportional to gSgU .

Putting all of these contributions together, we �nd that the renormali zed coupling con-
stants are, to second order,

gi (` + d`) = gi (`) + d`
X

j;k

4X

a=1

A (a)
ijk gj gk � a

�
� 3è ; te2`

�
: (6.48)

This may be rewritten as a di�erential equation, which is the key result of this chapter,

dgi

d`
=

X

j;k

4X

a=1

A (a)
ijk gj gk � a

�
� 3è ; te2`

�
: (6.49)

We now wish to determine the values of the coe�cients, A (a)
ijk . We will break these down

into contributions from each of the �ve diagrams considered:

A (a)
ijk = A (a)

ijk (1) + A (a)
ijk (2 + 3) + A (a)

ijk (4) + A (a)
ijk (5): (6.50)

The contribution from the �rst diagram may readily be read o� from our expr ession for
�S (2)

4 (1). Since it represents a contribution to a coupling gi that is proportional to itself

squared, the only non-zero values ofA (a)
ijk (1) are those for which i = j = k; these values are,

letting S1 = � (1)
i ,

A (1=2)
iii (1) = � 1

2 f 8 � Tr[(� (1)
i � 314)2]g

m�

4�
; (6.51)

A (3=4)
iii (1) = 1

4 f Tr[(� (1)
i 1� 11)2] � Tr[(� (1)

i � 3� 11)2] � Tr[(� (1)
i 1� 21)2] + Tr[(� (1)

i � 3� 21)2]g
m�

4�
:

(6.52)

In these expressions, the top signs correspond to the �rst number in the superscript on the
left-hand side, while the bottom corresponds to the second.

To �nd the contribution from the second and third diagrams, we take advant age of the
fact that all of the terms generated from U1G(k; ! )S1G(k; ! )U1 are proportional to S1.
Using the fact that Tr(� (m)

i � (n)
j ) = 8 � ij � mn and letting S1 = � (1)

i and U1 = � (m)
j , where m

runs over all matrices in representationj , we �nd that the only non-zero values of A (a)
ijk (2+3)

are

A (1=2)
iij (2 + 3) = 1

8

m jX

m=1

f Tr[(� (1)
i � (m)

j )2] � Tr(� (1)
i � (m)

j � 314� (1)
i � 314� (m)

j )g
m�

4�
; (6.53)

A (3=4)
iij (2 + 3) = � 1

16

m jX

m=1

[Tr(� (1)
i � (m)

j 1� 11� (1)
i 1� 11� (m)

j ) � Tr(� (1)
i � (m)

j � 3� 11� (1)
i � 3� 11� (m)

j )

� Tr(� (1)
i � (m)

j 1� 21� (1)
i 1� 21� (m)

j ) + Tr(� (1)
i � (m)

j � 3� 21� (1)
i � 3� 21� (m)

j )]
m�

4�
;

(6.54)
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where mj is the total number of matrices in representation j .
Finally, we turn our attention to the contributions from the fourth and �fth diagrams.

To �nd A (a)
ijk (4) and A (a)

ijk (5), we use similar observations as before. If we letV1 = � (1)
k ,

S = � (m)
i , and U = � (n)

j , we obtain

A (1=2)
kij (4) = 1

128

m iX

m=1

m jX

n=1

[Tr(� (1)
k � (m)

i � (n)
j )Tr(� (1)

k � (n)
j � (m)

i )

� Tr(� (1)
k � (m)

i � 314� (n)
j )Tr(� (1)

k � (n)
j � 314� (m)

i )]
m�

4�
; (6.55)

A (3=4)
kij (4) = � 1

256

m iX

m=1

m jX

n=1

[Tr(� (1)
k � (m)

i 1� 11� (n)
j )Tr(� (1)

k � (n)
j 1� 11� (m)

i )

� Tr(� (1)
k � (m)

i � 3� 11� (n)
j )Tr(� (1)

k � (n)
j � 3� 11� (m)

i )

� Tr(� (1)
k � (m)

i 1� 21� (n)
j )Tr(� (1)

k � (n)
j 1� 21� (m)

i )

+ Tr(� (1)
k � (m)

i � 3� 21� (n)
j )Tr(� (1)

k � (n)
j � 3� 21� (m)

i )]
m�

4�
; (6.56)

and

A (1=2)
kij (5) = � 1

128

m iX

m=1

m jX

n=1

f [Tr(� (1)
k � (m)

i � (n)
j )]2 � [Tr(� (1)

k � (m)
i � 314� (n)

j )]2g
m�

4�
; (6.57)

A (3=4)
kij (5) = � 1

256

m iX

m=1

m jX

n=1

f [Tr(� (1)
k � (m)

i 1� 11� (n)
j )]2 � [Tr(� (1)

k � (m)
i � 3� 11� (n)

j )]2

� [Tr(� (1)
k � (m)

i 1� 21� (n)
j )]2 + [Tr(� (1)

k � (m)
i � 3� 21� (n)

j )]2g
m�

4�
: (6.58)

6.4 Solution of the RG equations

In general, the ow equations, given by Equation (6.49), describe two competing ten-
dencies. The term proportional to gj gk tends to cause an increase of the absolute value of
the coupling constants as` increases, while the � functions tend to zero as` increases due
to the increase of their arguments� 3è and te2` . Numerical analysis of the ow equations
reveals that, for �xed values of the initial couplings and for a su�cient ly large value of the
initial temperature t, there is a certain value of ` where the ow becomes stagnant and
the coupling constantsg tend to �nite values as` ! 1 . Therefore, if the initial couplings
are small, they remain small as long as the initial temperature is su�ciently large even as
all of the modes are integrated out. In this regime weak-coupling RG is entirely justi�ed.
Lowering the initial temperature, while keeping the initial coup lings �xed, causes an in-
crease of the value of the RG parameter̀ where the coupling constants stop owing and an
increase in the limiting value of the coupling constants. At a critical initial temperature tc,
the coupling constantsgi diverge as` ! 1 . For an initial temperature t < t c, the coupling
constants diverge at �nite `.

The role of trigonal warping is to cause additional suppression of the increase of the
absolute value of the coupling constants. Thus, for �xed initial values of the coupling
constants and for su�ciently large initial v3, the g's do not diverge even att = 0.
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Therefore, as stated previously [51], for �xed initial v3, a critical value of the initial
coupling(s) must be exceeded for a runaway ow of the coupling constant(s), which we
associate with a phase transition, to occur.

In order to understand the nature of the possible ordering tendencies, we must �rst
analyze the asymptotic behavior of the Equations (6.49) when t = tc > 0 and ` ! 1 .
Provided that at least one coupling gr diverges, we are able to enumerateall possible
solutions for the stable \rays" along which ratios with the other couplin gs gj =gr tend to
constants. The detailed analysis of these solutions is given in the next chapter. Along such
a stable ray, all nine di�erential equations \collapse" onto one, namely

dgr

d`
= A (r )g

2
r

e� 2`

2tc
+ : : : ; as ` ! 1 : (6.59)

Here, and in the remainder of this work, if an index is in parentheses (e.g., (r )), then there
is no automatic summation over r unless explicitly stated. The coe�cient A (r ) depends
on the stable ray along which the couplings diverge and \: : :" denotes terms which vanish
faster than e� 2` . Combining the asymptotic behavior of the � functions as ` ! 1 , given
by Equations (6.43) and (6.44), and Equation (6.49), the coe�cient may be expressed as

A (r ) = 2
9X

j =1

9X

k=1

2X

a=1

A (a)
rjk � (r )

j � (r )
k ; (6.60)

where the � (r )
j = gj =gr is the ratio of two couplings along the stable ray. The solution of

di�erential equation ( 6.59) is

gr (`) =
4tc

A (r )
e2` + : : : ; as ` ! 1 ; (6.61)

where \: : :" denotes terms which are smaller thane2` as ` ! 1 .
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CHAPTER 7

DETERMINATION OF THE LEADING
INSTABILITIES

Having derived the RG equations for the coupling constants in the previous chapter, we
now turn our attention to using those results to determine the leading instabilities in our
system [39].

7.1 RG ows of source terms

The �rst step in our analysis is to introduce symmetry-breaking source terms into the
action,

� S =
32X

i =1

� ph
i

1
�

X

!

Z
d2k(2� )2  y(k ; ! )O(i )  (k ; ! )

+ 1
2

16X

i =1

� pp
i

1
�

X

!

Z
d2k(2� )2  y(k ; ! ) ~O(i )  � (� k ; � ! ) + c.c. (7.1)

We may think of these terms as \forces" that couple to various observables, which acquire
non-zero averages whenever the system enters the appropriate phase. In the �rst sum, the
matrix O(i ) runs over all SU(8) generators; however, the coe�cient � ph

i is the same for all
three components of any \spin" order; i.e., the coe�cient for � i � j sx , � i � j sy , and � i � j sz is the
same for �xed i and j . In the second sum, ~O(i ) runs only over antisymmetric SU(8) genera-
tors, of which there are 16. This is required due to the anticommutingnature of Grassman
�elds. We may see this by noting that, if we expand the matrix product appearing in
the sum, we obtain  �

� (k ; ! ) ~O(i )
��  �

� (k ; ! ); this is equivalent to �  �
� (k ; ! )( ~O(i )

�� )T  �
� (k ; ! ),

or �  y(k ; ! )( ~O(i ) )T  � (k ; ! ). Note that only 18 of the 32 particle-hole source terms intro-
duced are symmetry-inequivalent. Similarly, only 9 of the 16 particle-particle source terms
are inequivalent. The transformation properties of the former under the various symmetry
group operations are summarized in Table7.1, and illustrations of the associated phases
are shown in Figures7.1 and 7.2. Similar illustrations appear in Figure 2 of Reference [68],
but the notation used for the phases is di�erent. We will see later that only two of the
particle-particle, or superconducting, orders can appear, namely theA1g and A2u orders.
These correspond tos++ - and s+ � -wave superconducting orders, respectively. Both are
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Table 7.1: Table of all particle-hole phases considered, listed according to what
representation of theD3d point group they transform, along with how they trans-
form under translations (R), time reversal (T), inversions (i ), and mirror reections
(� d). The Kekul�e and density waves have a wave vector ofK .

Group rep. R T i � d

A1g charge + + e e Charge instability
A2g charge + � e o Anomalous quantum Hall [74, 58]
Eg charge + + e e/o Nematic [51, 67]
A1u charge + � o o Loop current [75]
A2u charge + + o e Layer-polarized [55, 57]
Eu charge + � o o/e Loop current II (ME2)

A1K charge � + e/o e/o Kekul�e [ 76]
A2K charge � � o/e e/o Kekul�e current
EK charge � + e/o (e/o)/(o/e) Charge density wave

A1g spin + � e e Ferromagnetic
A2g spin + + e o Quantum spin Hall [40, 77, 68]
Eg spin + � e e/o Spin nematic
A1u spin + + o o Staggered spin current
A2u spin + � o e Layer AF [42, 46, 73]
Eu spin + + o o/e Loop spin current II

A1K spin � � e/o e/o Spin Kekul�e
A2K spin � + o/e e/o Spin Kekul�e current
EK spin � � e/o (e/o)/(o/e) Spin density wave

s-wave, but the s++ order parameter has the same sign on both layers, while thes+ � order
has opposite signs on each layer.

We now determine how the coe�cients of the source terms ow under RG. If we employ
the same procedure used in the previous chapter, we �nd from the �rst-order term in
the cumulant expansion that the engineering scaling dimension for the source terms is 2;
i.e., at \tree level", the source terms acquire a coe�cient of e2d` upon performing the
RG transformation. At second order, the terms that contribute to the r enormalization of
the source terms are the cross terms between the source terms and the interaction terms.
By going to second order, we are assuming that the source term coe�cients � ph=pp

i are
small. Since these terms were introduced as a calculational deviceto help us determine
the susceptibilities of the system to the corresponding orders,and will be taken to zero at
the end of the calculation, we feel that this assumption, and thereforegoing only to second
order, is justi�ed. These contributions are represented by the diagrams in Figure 7.3.

Following a similar procedure to that used in the previous chapter, we �nd that the
particle-hole source term corrections give us
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A1g
A2g Eg

A1u A2u Eu

A1K
A2K EK

b1

b2

Figure 7.1: Illustration of the charge orders listed in Table 7.1, labeled by the
representation that the order transforms under. The lower layer (b1) is indicated
by black circles, while the upper layer (b2) is indicated by red squares. A + (� ) sign
indicates an increased (decreased) charge density at the given site.Solid lines with
arrows indicate current ows, with the arrows specifying their direction. A thick
black line indicates an enhanced hopping integral over the given bond.Finally,
the dashed green arrows in the translational symmetry-breaking cases(A1K , A2K ,
and EK ) give the primitive lattice vectors for the lattice of \supercells" formed.

�S ph = e2d`
X

i

X

S

� ph
i gS

Z <

k 0! 0

Z >

k !
Tr[ G(k; ! )O(i )G(k; ! )S1] y(k0; ! 0)S1 (k0; ! 0)

� e2d`
X

i

X

S

� ph
i gS

Z <

k 0! 0

Z >

k !
 y(k0; ! 0)S1G(k; ! )O(i )G(k; ! )S1 (k0; ! 0): (7.2)

Again, we useS to represent theSU(4) generators to maintain consistency with the notation
in Figure 7.3. In the �rst term, the trace will only be nonzero if S1 = O(i ) , and, in the
second term, the matrix appearing in the expression is proportional toO(i ) . Therefore, we
see that di�erent source terms are not mixed to this order. Note that the �rst term is only
nonzero if O(i ) represents a charge order, and vanishes for spin orders.
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A1g
A2g Eg

A1u A2u Eu

A1K
A2K EK

Figure 7.2: Illustration of the spin orders listed in Table 7.1, labeled by the repre-
sentation that the order transforms under. The notation is the same as in Figure
7.1, with the following exceptions. A small arrow pointing up (down) i ndicates
an overall up (down) spin polarization of the electrons on a given site, bond, or
current ow. A dashed black line indicates a reduced hopping integral over the
given bond.

The correction to the particle-particle source term is

�S pp = � 1
2e2�`

16X

i =1

X

S

� pp
i gS

Z <

k 0! 0

Z >

k !
 (k0; ! 0)S1� (i ) (k ; ! )(S1)T  � (� k0; � ! 0) + c.c ; (7.3)

where
� (i ) (k ; ! ) = G(k; ! ) ~O(i ) [G(� k ; � ! )]T : (7.4)

For similar reasons as above, the product of �ve matrices appearing in this expression is
proportional to ~O(i ) , and therefore di�erent source terms are not mixed to this order. Also
note that the 8 � 8 matrix ~O(i ) must be completely antisymmetric.
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(a) (b)

Oi

S

Figure 7.3: (a) Diagrams representing contributions to the renormalization of the
particle-hole source terms. All lines are as in Figure6.1. In addition, the wavy
lines represent the source terms. (b) Diagram representing contributions to the
renormalization of the particle-particle source terms.

If we combine these results, we �nd that the RG equations for the source terms are

d ln � ph
i

d`
= 2 +

9X

j =1

4X

a=1

B (a)
ij gj (`)� a

�
� 3è ; te2`

�
; (7.5)

d ln � pp
i

d`
= 2 +

9X

j =1

4X

a=1

~B (a)
ij gj (`)� a

�
� 3è ; te2`

�
; (7.6)

Following a similar procedure used to obtain the coe�cients A (a)
ijk in Equation ( 6.49), we

determine the coe�cients B (a)
ij and ~B (a)

ij . We �nd that

B (a)
ij = B (a)

ij (1) + B (a)
ij (2); (7.7)

where

B (1=2)
ij (1) = � 1

2

m jX

n=1

[Tr( O(i ) � (n)
j ) � Tr( � 314O(i ) � 314� (n)

j )]
m�

4�
; (7.8)

B (3=4)
ij (1) = 1

4

m jX

n=1

[Tr(1 � 11O(i )1� 11� (n)
j ) � Tr( � 3� 11O(i ) � 3� 11� (n)

j )

� Tr(1 � 21O(i )1� 21� (n)
j ) + Tr( � 3� 21O(i ) � 3� 21� (n)

j )]
m�

4�
; (7.9)

B (1=2)
ij (2) = 1

16

m jX

n=1

f Tr[( O(i ) � (n)
j )2] � Tr( O(i ) � (n)

j � 314O(i ) � 314� (n)
j )g

m�

4�
; (7.10)

B (3=4)
ij (2) = � 1

32

m jX

n=1

[Tr( O(i ) � (n)
j 1� 11O(i )1� 11� (n)

j ) � Tr( O(i ) � (n)
j � 3� 11O(i ) � 3� 11� (n)

j )

� Tr( O(i ) � (n)
j 1� 21O(i )1� 21� (n)

j ) + Tr( O(i ) � (n)
j � 3� 21O(i ) � 3� 21� (n)

j )]
m�

4�
:

(7.11)
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Here, the \arguments" have the same meaning as before, but with respect to Figure 7.3.
The values of ~B (a)

ij are

~B (1=2)
ij = � 1

16

m jX

n=1

f Tr[ ~O(i ) � (n)
j

~O(i ) (� (n)
j )T ] � Tr[ ~O(i ) � (n)

j � 314 ~O(i ) � 314(� (n)
j )T ]g

m�

4�
; (7.12)

~B (3=4)
ij = � 1

32

m jX

n=1

f Tr[ ~O(i ) � (n)
j 1� 11 ~O(i )1� 11(� (n)

j )T ] � Tr[ ~O(i ) � (n)
j � 3� 11 ~O(i ) � 3� 11(� (n)

j )T ]

� Tr[ ~O(i ) � (n)
j 1� 21 ~O(i )1� 21(� (n)

j )T ] � Tr[ ~O(i ) � (n)
j � 3� 21 ~O(i ) � 3� 21(� (n)

j )T ]g
m�

4�
:

(7.13)

Note that Equations (7.5) and (7.6) can be readily integrated, and we �nd that

� ph=pp
i (`) = � ph=pp

i (0)e2` exp[
 ph=pp
i (`)]; (7.14)

where
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j =1

4X

a=1

B (a)
ij

Z `

0
d`0gj (`0)� a

�
� 3è

0
; te2`0

�
; (7.15)


 pp
i (`) =

9X

j =1

4X

a=1

~B (a)
ij

Z `

0
d`0gj (`0)� a

�
� 3è

0
; te2`0

�
: (7.16)

At t = tc > 0, as` ! 1 the e2` increase of a divergent couplinggr exactly balances the
e� 2` decrease of the � functions and the right hand sides of the above equations tend to
constants,

d ln � ph
i

d`
= 2 +

2Bph
i (r )

A (r )
as` ! 1 ;

d ln � pp
i

d`
= 2 +

2Bpp
i (r )

A (r )
as` ! 1 : (7.17)

In other words, the engineering dimensions of the source terms, which are equal to 2, are
corrected by the anomalous dimensions

� ph=pp
i =

2Bph=pp
i (r )

A (r )
(7.18)

due to the electron-electron interactions. In the above equation, there is no summation over
r , which corresponds to the divergent couplinggr that we divided by. The values of the B's
are

Bph
i (r ) = 2

9X

k=1

(B (1)
ik + B (2)

ik )� (r )
k ; (7.19)

Bpp
i (r ) = 2

9X

k=1

( ~B (1)
ik + ~B (2)

ik )� (r )
k ; (7.20)
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where B (1=2) is given by the sum of Eqs. (7.8) and (7.10) and ~B (1=2) is given by (7.12).
Note that the expressions forA (r ) and Bph=pp

(r ) depend on the choice ofgr , but the � ph=pp
i 's

do not.

7.2 Determination of susceptibility exponents

In order to calculate the physical susceptibility towards various ordering tendencies, we
calculate the correction to the free energy due to the presence of the symmetry breaking
source terms [78]. Recall that, in our derivation of the RG equations, we were dropping
terms that contained only \fast" modes, since they did not renormalize any terms in the
action. These terms, in fact, are contributions to the free energy of the system. Upon
integrating out \fast" modes, our partition function becomes

Z = Z>

Z
D[ �

< ;  < ] e� Se� : (7.21)

Recall that the free energy is related to the partition function by

F = �
1
�

ln Z: (7.22)

This means that we may build up the free energy by simply adding together contributions
from the shells of \fast" modes as we integrate them out. Each of these contributions is
given by, to second order in a cumulant expansion,

dF (`) =
1
�

hS> i 0;> �
1

2�



S2

>

�
0;>;C + : : : ; (7.23)

where S> represents the terms in the action that contain only \fast" modes.
For our purposes, we are only interested in corrections to the free energy due to the

presence of the source terms, and thus we will only consider contributions that contain
these terms. The lowest-order terms of interest are of second-order term in the cumulant
expansion. The only contributions that we obtain will be from the partic le-hole terms
squared and from the particle-particle terms times their conjugates. We may also appear to
obtain terms from the source terms times the interaction terms, butthese will be \two-loop"
terms; i.e., we will obtain two integrals over the momenta of \fast" modes, so that these
terms are of order (d`)2. The second-order contribution is thus
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(7.24)
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Using Wick's theorem to evaluate the averages, we obtain
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(7.25)

We thus appear to have obtained a divergent term, due to the Dirac delta function. However,
note that we have been working in the thermodynamic limit; i.e., we have been taking the
system size to be in�nite. This allowed us to rewrite sums overmomenta as integrals. In
reality, the system only has a �nite size. If we did not take the thermodynamic limit, then
the integrals on k would have become sums,

Z
d2k

(2� )2 !
1

L 2

X

k

; (7.26)

where L is a linear dimension of our system (say, the length of the side of a square if the
system has a square shape) and the Dirac delta functions would become Kronecker delta
functions,

(2� )2� (: : :) ! L 2� :::: (7.27)

Imagine that we performed our RG procedure on the action written in terms of sums on
momenta rather than integrals. Due to the fact that kx and ky are quantized in integral
multiples of 2�

L , our rescaling of the momenta would have changed the spacing of thek
points. We can restore the original spacing by rescalingL as well. In fact, the rescaling
that would have been required isL 0 = Le� d` . Deriving a di�erential equation to describe
the evolution of L as we integrate out modes and solving it would then lead to the functional
dependence ofL on `, L (`) = L(` = 0) e� ` . In this spirit, we will replace all occurrences of
the in�nite expression, (2� )2� (0), with L 2e� 2` . Our expression for the second-order term
in the cumulant expansion thus becomes
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(7.28)
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We may now use Equation (6.31) to evaluate the integrals over momenta and sums over
frequencies. We see that the only non-zero terms in the above expression, given that all
of the matrices O(i ) are either symmetric or antisymmetric, are those for which i = j .
Furthermore, note that the last two terms only di�er by the replacem ent of ~O(j ) with its
transpose. Therefore, these two terms are in fact identical, and add together.

What we have just calculated is, in fact, only the contribution to the free energy from
one \shell". In order to determine the total free energy change due to the source terms,
which we denote by�f (�), we simply add together the contributions from all shells. The
free energy thus reduces to an integral over̀:

�f (�) = �
m�

16�

32X

i =1

Z 1

0
d` e� 4` [� ph

i (`)]2
4X

a=1

� ph
a;i � a(� 3è ; te2` )

�
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16�

16X

i =1

Z 1

0
d` e� 4` j� pp

i (`)j2
4X

a=1

� pp
a;i � a(� 3è ; te2` ): (7.29)

The � coe�cients are

� ph
1=2;i = 8 � Tr[( O(i ) � 314)2]; (7.30)

� ph
3=4;i = � 1

2 f Tr[( O(i )1� 11)2] � Tr[( O(i ) � 3� 11)2]

� Tr[( O(i )1� 21)2] + Tr[( O(i ) � 3� 21)2]g: (7.31)

and

� pp
1=2;i = 8 � Tr[( ~O(i ) � 314)2]; (7.32)

� pp
3=4;i = 1

2 f Tr[( ~O(i )1� 11)2] � Tr[( ~O(i ) � 3� 11)2]

� Tr[( ~O(i )1� 21)2] � Tr[( ~O(i ) � 3� 21)2]g: (7.33)

The susceptibilities are then simply given by second derivatives of the free energy with
respect to the bare values of the appropriate source terms,

� ph
i = �

@2f
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i (` = 0)] 2

; (7.34)

� pp
i = �

@2f
@[Re � pp

i (` = 0)] 2 = �
@2f

@[Im � pp
i (` = 0)] 2 : (7.35)

Using Equations (7.14) and (7.29), we �nd that the susceptibilities given above may be
written as

� ph=pp
i =

m�

8�

4X

a=1

� ph=pp
a;i

Z 1

0
d` e2
 ph=pp

i (` ) � a(� 3è ; te2` ): (7.36)

Note that the source terms, � ph=pp
i (` = 0), being auxiliary �elds, do not appear.

Any divergence in the susceptibilities has to come from the regions oflarge ` in Equation
(7.29) where the asymptotic expressions derived earlier hold. Therefore, since, fort = tc > 0,
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the asymptotic behavior of the � functions is e� 2` , the condition for the divergence of a
susceptibility in a particle-hole or particle-particle channel i is

� ph=pp
i > 1: (7.37)

Next, we will relate the anomalous dimensions of the source terms� ph=pp
i to the suscep-

tibility exponents  ph=pp
i .

For t > t c, but su�ciently close to tc, the asymptotic behavior of the coupling constants
is still approximately described by Equation (6.59). If we integrate it from `0 to `, both
of which are asymptotically large (and temperature independent), butnot in�nite, then we
�nd

1
gr (`; t )

=
1
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4t

�
e� 2`0 � e� 2`

�
: (7.38)

At tc we have 1=gr (`0; tc) = A (r )e� 2`0 =4tc and we can write the above equation as
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Since`0 is �nite, gr (`0; t) is analytic in t at tc and can be expanded as
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+ : : : ; (7.40)

where \: : :" represents terms of order (t � tc)2 and higher. Therefore
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where
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1
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�
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+
A (r )

4t2
c

e� 2`0 : (7.42)

Note that cr A (r ) > 0 sincegr (`0; t) increases in magnitude ast ! t+
c .

The ow of the source terms at large ` at t > t c is determined by substituting the above
result into Equations (7.5) and (7.6) and taking the asymptotic limit of the � functions at
large `:

d ln � ph
i

d`
= 2 +

Bph
i (r )

2t
e� 2`
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(7.43)
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Integrating from `0 to ` and substituting to Equation ( 7.29), we �nd that the singular
contribution to the susceptibility for the symmetry breaking sou rce term � i is

� ph=pp
i � (t � tc)

�  ph=pp
i (7.45)

where
 ph=pp

i = � ph=pp
i � 1: (7.46)

Clearly, the susceptibility for a particular order diverges if the condition given in Equation
(7.37) is satis�ed. Note that only if � ph=pp

i = 2 do the susceptibility exponents acquire their
mean-�eld values. This is in general not the case here, as will be elaborated on in the next
section.

It is also important to stress that these exponents are obtained within the one-loop
approximation of the fermionic theory and are therefore not expected to be accurate. They
are also not expected to be equal to the one-loop exponents obtained within an � -expansion
of the corresponding bosonic theory, with the Landau functional for the ordering �eld. The
ultimate critical behavior is determined by the universality cl ass of such a bosonic theory.
As an example, the �nite temperature phase transition into the nematic state belongs to the
two dimensional 3-state Potts model [51] universality class for which the exponent = 13=9
(see Reference [79]). However, within our one-loop fermionic RG treatment,  does not
exceed 2=3. Nevertheless, the exponents calculated within the present approximation give
us important information about the physical character of the dominant ordering tendency,
without any a priori bias towards any given order.

7.3 Determination of �xed ratios and leading instabilities

We are now ready to determine the possible leading instabilities that may appear in our
system. To do this, we look at what happens to the couplings and susceptibilities at large
`. This allows us to enumerate all the possible phases regardless of theinitial interactions.

Previously, we discussed the asymptotic behaviour of the RG equations at t = tc > 0.
We know that at least one coupling will diverge asgr (`) � e2` . We divide all the other
couplings by that particular coupling and �nd the � functions for the ratios, � (r )

j = gj =gr ,
to be

d� (r )
j
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X

k;l

� (r )
k � (r )

l

�
A (a)

jkl � A (a)
rkl � (r )

j

�
� a(� 3è ; te2` ): (7.47)

Here, a dot over a coupling constant represents a derivative with respect to `. In the large
` limit, these equations become

_� (r )
j =

8tc

A (r )

X

k;l

� (r )
k � (r )

l

2X

a=1

�
A (a)

jkl � A (a)
rkl � j

�
: (7.48)

We now ask if these equations have any �xed points, or, in our terminology, �xed rays.
These are obtained by demanding that the right hand sides of all 8 equations (7.48) are
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simultaneously equal to zero. After �nding the �xed rays, we need to determine whether
each ray is stable, unstable, or mixed by analyzing eigenvalues of the stability matrix Sjk =

@_� (r )
j =@�(r )

k . SinceA (r ) is already de�ned in Equation (6.60) in terms of the ratios, the entire
stability matrix has well-de�ned eigenvalues for each \�xed ray" solu tion. In addition, the
sign of A (r ) determines the sign of the diverging coupling that we divide the others by; see
Equation (6.59).

If we �nd that a ray is stable, then, if we start with the coupling con stants su�ciently
close to the �xed ray, then the ratios of the couplings approach the givenset of values
as ` ! 1 . Such a ow leads to a divergent susceptibility in at least one channel. If a
ray is mixed or unstable, then, in the absence of �ne-tuning, the RGow cannot take the
couplings toward such a ratio; even if the ow starts in such a direction for small `, it will be
redirected toward some other ray that is stable. We therefore conclude that all the solutions
that have even one positive eigenvalue in their stability matrix are physically irrelevant. It
is possible that some rays are marginal in certain directions, meaning that some of the
eigenvalues of the stability matrix are zero, and stable in others. We do,in fact, �nd such
physically relevant solutions.

Following the procedure described above for all possible choices ofthe divergent coupling,
we �nd that the stable solutions of the RG ow are situated either on a manifold that we
call the \target plane" or on one of four isolated �xed rays. The \target plane" r epresents
a set of stable rays that are marginal in two directions and stable in six others. The target
plane and the phases corresponding to each point within are shown in Figure 7.4. We
parameterize the plane in the following way. We choose as our parameters the following
two coupling constant ratios:

x = lim
` !1

gEu

gEg

�
�
�
�
t= tc

(7.49)

y = lim
` !1

gEK

gEg

�
�
�
�
t= tc

: (7.50)

Since, for certain �xed rays, gEu and/or gEK diverge, while gEg does not, these parameters
take values in the interval (�1 ; 1 ), including in�nite values. With the chosen parameter-
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ization, we express each coupling at largè as

gA 1g

G(`)

�
�
�
�
t= tc

= 0 ; gA 2g

�
�
�
�
t= tc

=
(1 + x + 2y)2

C(x; y)
G(`);

(7.51)

gEg

�
�
�
�
t= tc

=
� 2(1 + x + 2y)

C(x; y)
G(`); gA 1u

�
�
�
�
t= tc

=
4y2

C(x; y)
G(`);

(7.52)

gA 2u

�
�
�
�
t= tc

=
4x

C(x; y)
G(`); gEu

�
�
�
�
t= tc

=
� 2x(1 + x + 2y)

C(x; y)
G(`);

(7.53)

gA 1K

�
�
�
�
t= tc

=
4xy

C(x; y)
G(`); gA 2K

�
�
�
�
t= tc

=
4y

C(x; y)
G(`);

(7.54)

gEK

�
�
�
�
t= tc

=
� 2y(1 + x + 2y)

C(x; y)
G(`);

(7.55)

where C(x; y) is a square root of a quartic polynomial and the \overall" coupling G(`) =
hP 9

j =1 g2
j

i 1=2
is a positive de�nite function of ` that diverges as` ! 1 . The expression for

C(x; y) can be readily obtained from the de�nition of G(`), but is unwieldly, and thus we
do not include it here. The ratios of any two couplings at large` depend only onx and y,
although sometimes these ratios may be in�nite.

The values of � (r )
j = gj =gr are readily obtained from (7.51){( 7.55). Without loss of

generality we now setgr = gEg in Equation ( 6.59). We obtain

A (Eg ) = � 6
3 + 2x + 3x2 + 4y + 4xy + 8y2

1 + x + 2y
m�

4�
: (7.56)

We may obtain Bi; (Eg ) from Eqs. (7.19) and (7.20). We can now determine the anomalous
dimensions of the symmetry-breaking source terms de�ned in Equation (7.18). Remarkably,
we see that the anomalous dimensions are continuous functions of the two parameters x
and y. For each point in the target plane, we determine the phases for which� i > 1, i.e.,
the inequality Equation ( 7.37) holds. If more than one phase satis�es this inequality, then
we list all such phases regardless of the value of� i .

We are, in fact, able to determine the region inside which a given susceptibility diverges
analytically. The boundaries of these regions are de�ned by the sign of the susceptibility
exponent  i , as given by Equation (7.46), for a given phase; whenever it is positive, the
susceptibility diverges, and an instability towards the corresponding phase is present. The
value of A (Eg ) is given by Equation (7.56). We may obtain Bi; (Eg ) from Eqs. (7.19) and

(7.20) and from the coupling constant ratios � (Eg )
i given in Equations (7.51){( 7.55). Because

of this, all of the  i will have the form,

 i =
Qi (x; y)

3 + 2x + 3x2 + 4y + 4xy + 8y2 ; (7.57)
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whereQi (x; y) is an inhomogeneous quadratic function ofx and y. The denominator of this
expression is positive de�nite, so that the sign of the exponent is determined entirely by
Qi (x; y). Our condition that  i be positive thus requires that Qi (x; y) > 0. We therefore
see that the phase boundaries, given byQi (x; y) = 0, are all conic sections.

As discussed before, whenever two or more susceptibilities diverge, we cannot decide
within our RG framework if the system chooses only one of these phases orif there is a
coexistence. The resulting list of phases towards which our system is unstable is shown in
Figure 7.4. We now describe the properties of these phases:

a) Nematic (N): The nematic state is gapless, but it reconstructs the low-energy spec-
trum such that two out of four Dirac cones in each valley become gapped. Thetwo
massless Dirac cones are slightly displaced from the� K points, with the size of the
displacement given by the magnitude of the order parameter and the direction of the
displacement by its direction.

b) Layer antiferromagnet (AF): In this state the magnetization on each undimerized
site is �nite, with the magnetization within one layer pointing in on e direction, and
that in the other layer in the opposite direction.

c) Layer-polarized state (LP): In this phase, which is gapped, there is an imbalance of
the electron occupation number between the two layers. One layer is more occupied
and the opposite layer is equally less occupied with respect to the symmetric, high-
temperature, state.

d) Quantum spin Hall state (QSH): In this state, which is gapped, there is a spin
current around each plaquette circulating in the same direction in both layers.

e) s++ superconductor ( s++ SC): This state opens a superconducting gap in both lay-
ers with the same sign on each layer.

f ) Kekul�e current phase (KC): This phase breaks lattice translational symmetry and
time-reversal symmetry. In this phase a supercell, consistingof three regular unit
cells, is formed. Within the supercell, two plaquettes carry a circulating current, both
in the same direction. This phase is gapped.

g) Magnetoelectric phase (ME2): The order parameter for this phase transforms ac-
cording to the Eu charge representation. In this phase, currents forming a bow-tie
pattern within a plaquette appear. Like the nematic phase, this phaseis gapless, but
it reconstructs the low lying spectrum by lifting two of the four Dirac cones.

h) Kekul�e state (K): In this phase, a supercell made of three unit cells is formed, much
like the Kekul�e current phase. The di�erence is that, in this p hase, there are no
currents. Instead, there is a modi�cation of the hopping integrals such that the
hoppings in one unit cell are unchanged, while, in the two other unit cells, the hoppings
on alternating bonds are changed [76]. The phase is gapped.

i) Staggered spin current state (SSC): This phase is characterized by circulating spin
currents in each plaquette owing in opposite directions in each layer. This phase
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is not gapped, corresponds to a compensated semimetal, and the order parameter
belongs to theA1u spin representation.

j) s+ � superconducting state ( s+ � SC): Since a particle-particle susceptibility diverges
in this case, a superconducting gap opens on both layers. The gaps are, however, not
independent; they have opposite signs. The order parameter of this phase is a (charge
2) A2u spin singlet.

Strictly speaking, when either x or y becomes in�nite or they satisfy 1 + x + 2y = 0, we
are not allowed to divide by gEg as this coupling is not divergent. It shows up in Equation
(7.56) as a divergent A (Eg ) . Instead, these cases are explored by dividing by some other
coupling. We follow the same procedure as described above in the casewhere we divided
by gEg . Interestingly, since both A (Eg ) and Bi; (Eg ) diverge in the same way, the� i 's are
independent of the choice of the coupling that we divide by.

In addition to the target plane, we also �nd the following four isolated stable �xed
points.

R1:

lim
` !1

gA 1g

gEg

�
�
�
�
t= tc

= 3 ;

lim
` !1

gj

gEg

�
�
�
�
t= tc

= 1 8 j 6= A1g; (7.58)

with gEg (` ! 1 ) > 0. In this case, only the ferromagnetic (A1g spin) susceptibility
diverges.

R2:

lim
` !1

gj

gA 2g

�
�
�
�
t= tc

= 0 8 j 6= A2g; (7.59)

and gA 2g (` ! 1 ) < 0. The only divergent susceptibility in this case is towards the
anomalous quantum Hall state [74] (A2g charge). Here, charge currents circulate in
each layer [58], and in the same direction in both layers.

R3:

lim
` !1

gj

gA 1u

�
�
�
�
t= tc

= 0 8 j 6= A1u ; (7.60)

and gA 1u (` ! 1 ) < 0. This yields a loop current order [75], or \orbital antiferromag-
net" ( A1u charge). Like the above phase, there are charge currents circulating in each
layer, but in opposite directions. Note that the order parameter, � 31, can be thought
of as a chemical potential shift with opposite signs in each valley. Therefore, at weak
coupling, this phase corresponds to a compensated semimetal with electron and hole
pockets.
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R4:

lim
` !1

gj

gA 1g

�
�
�
�
t= tc

= 0 8 j 6= A1g; (7.61)

with gA 1g (` ! 1 ) < 0. Although we would intuitively expect this �xed point to favor
a superconducting state, we �nd no particle-particle susceptibilites diverging. Only
the A1g charge susceptibility, or equivalently the electronic compressibility, diverges.
Therefore, we conclude that the system enters a phase segregated state.

For a graphical illustration of some of these phases, see Figures7.1 and 7.2.
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Figure 7.4: A plot of all of the phases found in the �xed plane described by
Equations (7.51){( 7.55). We �nd nematic (N, Eg charge), Kekul�e (K, A1K charge),
spontaneous current, or magnetoelectric (ME2,Eu charge), layer-polarized (LP,
A2u charge), Kekul�e current (KC, A2K charge), staggered spin current (SSC,A1u

spin), antiferromagnetic (AF, A2u spin), quantum spin Hall (QSH, A2g spin), s++

superconductor (s++ SC, A1g singlet), and s+ � superconductor (s+ � SC, A2u

singlet) states. In addition to this �xed plane, we also �nd four isolat ed �xed
points, which are described in the text.
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CHAPTER 8

LEADING INSTABILITIES AS A FUNCTION
OF INTERACTION RANGE

Having determined all of the possible instabilities that may be exhibited by our system, we
now specialize to the case of �nite-range density-density interactions [40].

8.1 Relation of coupling constants to a microscopic
�nite-range interaction

Our �rst step is to go back to our original microscopic Hamiltonian, Equation (5.1) and
introduce density-density interaction terms,

H k
I = 1

2

2X

k=1

X

r 6= r 0

Vk(r � r 0)[nk (r ) � 1][nk (r 0) � 1] + Vk(0)
2X

k=1

X

r

[nk" (r ) � 1
2 ][nk#(r ) � 1

2 ] (8.1)

and
H ?

I =
X

rr 0

V? (r � r 0)[n1(r ) � 1][n2(r 0) � 1]: (8.2)

Here, r runs over all projections of the position vectors of the lattice sitesonto the plane
of the sample, and thus is entirely in the xy plane. ck� (r ) is the annihilation operator
for a particle at site r , and nk (r ) =

P
� cy

k� (r )ck� (r ). The interaction V (r ) is assumed to
depend only on distance, i.e.,V (r ) = V (jr j). For convenience, we introduced the notation
Vk(r ) = V (r ) and V? (r ) = V (r � cẑ), where c � 3:7 �A is the distance between the two
layers. The system represented by these terms plus Equation (5.1) will be at half �lling
when the chemical potential is zero. This follows from the fact that the Hamiltonian is
invariant under the particle-hole transformation,

a1� (r ) = ~ay
1� (r ); (8.3)

a2� (r ) = � ~ay
2� (r ); (8.4)

b1� (r ) = � ~by
1� (r ); (8.5)

b2� (r ) = ~by
2� (r ): (8.6)
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Using this, the calculated expectation value of the particle number ona given site can be
shown to be 1.

To determine the low-energy theory associated with this Hamiltonian, we �rst write it
in coherent-state path integral form. For now, we will ignore the e�ects of trigonal warping,
so that  3 = 0. We then integrate out the a �elds in a cumulant expansion, using the term
in the action corresponding to the H ?

0 term as the \bare" action. We go to �rst order in
the interaction terms and second order only to generate the \kinetic" term. Note that, by
doing this, we are working under the assumption that the interaction V (r ) may be treated
as weak. After performing this integration, we obtain

L e� =
X

R ;�

by
� (R

@
@�

b� (R ; � )

+
 2

0

 1

X

R ;�;� 0;�

[b�
1� (R + �; � )b2� (R � �; � ) + b�

2� (R � �; � )b1� (R + �; � )]

+ 1
2

2X

k=1

X

R 6= R 0

V(R � R 0)[nbk(R + ( � 1)k� 1�; � )nbk(R 0+ ( � 1)k� 1�; � )

� 2nbk(R + ( � 1)k� 1�; � )]

+ 1
2Vk(0)

2X

k=1

X

R

[nbk" (R + ( � 1)k� 1�; � )nbk#(R + ( � 1)k� 1�; � )

� 1
2nbk(R + ( � 1)k� 1�; � )]

+
X

RR 0

V? (R � R 0+ 2 � )[nb1(R + �; � )nb2(R 0� �; � ) � nb1(R + �; � ) � nb2(R 0� �; � );

(8.7)

where nbk� (R ; � ) = b�
k� (R ; � )bk� (R ; � ) and nbk(R ; � ) =

P
� nbk� (R ; � ). We now obtain the

low-energy theory by performing a Fourier transform with respect to position,

bj� (R ; � ) =
1

p
Nuc

X

k

bj� (k ; � )ei k �r ; (8.8)

and expanding the result around the� K points, similarly to how we found the low-energy
theory in the non-interacting case. If we do this, we �nd that the �r st two terms of Equation
(8.7), which are the \kinetic" terms of the theory, become identical to t he low-energy theory
derived before in the case thatv3 = 0. We now turn our attention to the interaction terms.
As an example, let us consider the quartic part of the interlayer interaction,

X

RR 0

V? (R � R 0+ 2 � )nb1(R + �; � )nb2(R 0� �; � ): (8.9)

Let us de�ne
V? ;� (r ) = V? (r + � ) (8.10)

and its Fourier transform,

V? ;� (r ) =
1

p
Nuc

X

q

V? ;� (q)ei q�r : (8.11)
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We also note that, because the above quartic interaction term does not depend on our choice
of � , we could just as well write it as an average of the same term over all possible choices:

1
3

X

�

X

RR 0

V? (R � R 0+ 2 � )nb1(R + �; � )nb2(R 0� �; � ) (8.12)

If we now introduce the Fourier transform of V? ;� de�ned above, as well as the transforms
for nbk(R ),

nbk(q; � ) =
1

p
Nuc

X

k ;G

b�
k� (k ; � )bk� (k + q + G; � ); (8.13)

where G is a reciprocal lattice vector, and sum overR and R 0, we obtain

1
3

p
Nuc

X

q

"
X

�

V? ;� � (q)

#

nb1(� q; � )nb2(q; � ): (8.14)

We now impose a low-energy cuto�; i.e., we restrictq to reside near� K . We may do this
in Equation ( 8.13) by restricting q so that k and k + q + G both reside near one of the� K
points. This is possible if q is close to 0 or� 2K . We may write these in terms of the �elds
 (k ; � ) as

nbk(q; � ) =
1

p
Nuc

X

k ;G

 y(k ; � )M (f )
k  (k + q + G; � ); (8.15)

nbk(2K + q; � ) =
1

p
Nuc

X

k ;G

 y(k ; � )(M (b)
k )T  (k + q + G; � ); (8.16)

and
nbk(� 2K + q; � ) =

1
p

Nuc

X

k ;G

 y(k ; � )M (b)
k  (k + q + G; � ): (8.17)

The matrices M (f )
k and M (b)

k are given in Reference [46], and we repeat them here for
convenience:

M (f )
1 =

2

6
6
4

1 0 0 0
0 0 0 0
0 0 1 0
0 0 0 0

3

7
7
5 
 12; M (f )

2 =

2

6
6
4

0 0 0 0
0 1 0 0
0 0 0 0
0 0 0 1

3

7
7
5 
 12; (8.18)

and

M (b)
1 =

2

6
6
4

0 0 1 0
0 0 0 0
0 0 0 0
0 0 0 0

3

7
7
5 
 12; M (b)

2 =

2

6
6
4

0 0 0 0
0 0 0 1
0 0 0 0
0 0 0 0

3

7
7
5 
 12; (8.19)

where 12 in the above expression is the 2� 2 identity matrix. We now expand the potential
in the quartic term around these points. We only keep the constant term because all
higher-order terms are irrelevant under RG. Using Equations (8.15){( 8.17), we obtain, upon
transforming back to position space,

X

R

[V? ;N ( yM (f )
1  )(  yM (f )

2  )
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+ V? ;N; 2K ( yM (b)
1  )(  y(M (b)

2 )T  )

+ V �
? ;N; 2K ( y(M (b)

1 )T  )(  yM (b)
2  ); (8.20)

where
V? ;N = 1

3

X

R ;�

V? (R � � ) (8.21)

and
V? ;N; 2K = 1

3

X

R ;�

V? (R � � )e2i K �(R � � ) : (8.22)

It may be shown that V? ;N; 2K is zero due to the symmetry of the honeycomb lattice that
the b sites form. Our quartic term is therefore just

V? ;N

X

R

( yM (f )
1  )(  yM (f )

2  ); (8.23)

or, in the continuum limit,

V? ;N Auc

Z
d2R ( yM (f )

1  )(  yM (f )
2  ); (8.24)

Performing this procedure on all terms in the Lagrangian, we �nd that the interaction terms
become

L I; e� = 1
2Auc

Z
d2R

2X

k=1

f V0( yM (f )
k  )2 + V2K [( y[M (b)

k ]T  )(  yM (b)
k  )

+ (  yM (b)
k  )(  y[M (b)

k ]T  )]g

+ V? ;N Auc

Z
d2R ( yM (f )

1  )(  yM (f )
2  ) � � 0

Z
d2R  y : (8.25)

Note that our theory includes a quadratic, chemical potential-like, term. We may think
of the undetermined constant� 0as being chosen in such a way as to cancel out the quadratic
terms that are generated from the quartic terms under RG. We requirethat this occur
because we know that our original lattice model is at half �lling (that is , it possesses
particle-hole symmetry), and therefore this must be reected in our e�ective low-energy
theory as well.

We could, in principle, have also determined the value of� 0 when we wrote down the
above e�ective low-energy theory. Strictly speaking, we should notsimply drop all of the
modes above the cuto�, as we did here, but rather integrate them out in a perturbative
scheme similar to what is done in an RG analysis. This, at �rst order, will not change our
quartic terms because it only generates the tree-level quartic terms. However, it will gen-
erate both tree-level and one-loop contributions to the quadratic terms. It would, however,
be somewhat cumbersome and, given the above particle-hole symmetry arguments, equally
unnecessary, to determine these one-loop contributions to the chemical potential.

We can rewrite Equation (8.25) in terms of the SU(8) generators of the form, � i � j 1.
Upon doing so, we �nd that the only non-zero coupling constants are given by

gA 1g = 1
2(Vk;0 + V? ;N )Auc; (8.26)

gA 2u = 1
2(Vk;0 � V? ;N )Auc; (8.27)

gEK = 1
4Vk;2K Auc; (8.28)
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where

Vk;0 =
X

R

Vk(R ); (8.29)

V? ;N = 1
3

X

R ;�

V? (R � � ); (8.30)

Vk;2K =
X

R

Vk(R ) cos(2K � R ): (8.31)

We note that gA 1g and gA 2u depend only onq = 0 Fourier components of the interaction,
and thus we may say that they give us a measure of the strength of the forward scattering
induced by said interaction. Likewise, we note that gEK only depends on theq = � 2K
Fourier components, and thus it gives us a measure of the strength of theback scattering.
Furthermore, we see thatgA 2u depends on the di�erence between an intra-layer interaction
and an inter-layer interaction, and thus it may be seen as a measure of the imbalance
between these two interactions. We will therefore refer togA 1g , gA 2u , and gEK as forward
scattering, layer imbalance scattering, and back scattering, respectively.

8.2 Determination of leading instabilities

We are now ready to describe the results of our RG analysis. We consider two forms of
the microscopic interaction, which are given by Equations (5.36) and (5.37). In both cases,
we determine our initial couplings by �rst using Equations ( 8.26){( 8.28) to determine the
ratios, gA 2u =gA 1g and gEK =gA 1g , as a function of the range of the interaction. We then
consider di�erent values of gA 1g to multiply these ratios by; we may therefore think of this
value of gA 1g as determining the overall strength of the interaction. We then usethese
couplings as the initial conditions for the RG equations given by Equation(6.49), which we
integrate numerically. The initial energy scale for these equations is given by the hopping
between dimerized sites, 1, since it is only below this energy scale that our low-energy
theory holds. We then apply the procedure outlined in the previouschapter to determine
the leading instabilities.

8.2.1 Screened Coulomb-like interaction; two-plate case

The �rst interaction form that we will consider is a screened Coulomb-like interaction,
with the screening being due to two in�nite planar conducting plates, between which the
charge is located (see Figure8.1). Our consideration of this case is motivated by experimen-
tal setups, such as those of the experiments in References [49] and [6]; in these cases, the
two gates that are present will serve as the conducting plates. As we will see shortly, the
interaction will be screened by the presence of the gates, thus rendering them �nite-ranged,
with the range set by the distance between the gates. This opens up the possibility of
controlling the range of the interaction, and thus what state the systemis unstable to, by
changing the distance between the gates. We will assume that the distance between the
plates is much larger than the distance between the two layers so that we may assume that
the particles are exactly halfway between the two plates. If the distance between the plates
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Figure 8.1: Illustration of the double-gate con�guration, which leads to the poten-
tial given by Equation ( 8.32).

is � , then the interaction is given by

V(r ) = U0

1X

n= �1

(� 1)n
p

(r=� )2 + n2
: (8.32)

We will now demonstrate that Equation ( 5.37) is the correct long-range behavior of the
screened Coulomb-like interaction, Equation (8.32). We start by rewriting the sum using
the identity,

1
r

=
2

p
�

Z 1

0
du e� r 2u2

; (8.33)

obtaining

V (R ) =
2

p
�

U0

Z 1

0
du e� u2 (R=� )2

1X

n= �1

(� 1)ne� n2u2
: (8.34)

We may evaluate the sum in terms of the Jacobi theta function,

#4(z; q) =
1X

n= �1

(� 1)nqn2
e2niz ; (8.35)

to obtain

V (R ) =
2

p
�

U0

Z 1

0
du e� u2 (R=� )2

#4(0; e� u2
): (8.36)

We now use the identity,

#4(z; q) =
2
p

�
p

� logq
e(4z2+ � 2 )=4 log q

1X

k=0

ek(k+1) � 2= log q

� cosh
�

(2k + 1) �z
logq

�
; (8.37)
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so that

V (R ) = 4 U0

1X

k=0

Z 1

0
du

1
u

e� u2 (R=� )2
e� (k+1 =2)2 � 2=u2

: (8.38)

This integral can be evaluated in terms of modi�ed Bessel functions ofthe second kind; the
result is

V (R ) = 4 U0

1X

k=0

K 0

�
(2k + 1) �

R
�

�
: (8.39)

For large values ofx, the modi�ed Bessel function K n (x) can be approximated as

K n (x) �

r
�
2x

e� x : (8.40)

We see that, in the above sum, the most dominant term forR � � is the k = 0 term,
since the values of successive terms decrease exponentially withincreasingk. Therefore, we
arrive at Equation ( 5.37). This form is useful in practice when evaluating the values of the
initial coupling constants. In the opposite limit, jr j � � , we may simply approximate the
interaction with the �rst few terms of the sum around n = 0.
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Figure 8.2: Map of the leading instabilities for the two-plate screenedCoulomb-like
interaction, Equation ( 8.32), as a function of the dimensionless coupling strength
m �

4� gA 1g and the interaction range � in units of the lattice spacing a. For very
short ranges, the leading instability is towards an antiferromagnetic (AF) phase,
in which the spins possess a ferrimagnetic arrangement within each layer (i.e., the
spins alternate in direction between neighboring sites, but are of unequal magni-
tude), and are oppositely directed between the two layers; an illustration of this
phase may be found in Fig. 1(a) of Reference [4]. As we increase the range, we
enter a region where the susceptibilities toward both the AF and nematic (N)
phases diverge as we lower the temperature. Determining whetheror not these
two phases truly coexist requires a theory valid below the critical temperature, the
development of which is beyond the scope of the present work. As we increase the
range further, the instability towards the AF state disappears, leaving only that
towards the nematic state, in which the parabolic degeneracy points each split into
two Dirac-like cones. Note that the critical range for each of these transitions is
weakly dependent on the coupling strength, and corresponds to e�ectively turning
o� back scattering.

Note that, as is, the on-site interaction given by our formula is in�nite , and thus it
would give us in�nite values for the initial coupling constants. However, we recognize that,
for two electrons on the lattice that are su�ciently close, the elect rons are not localized at a
single point, but rather their wave functions have a �nite extent in space. This will render
the on-site interaction �nite. As a simple model of this e�ect, we set the on-site interaction
equal to some constant� times the nearest-neighbor interaction. In our calculations, we set
� = 1 :2.

Our results for the leading instabilities are shown in Figure8.2. We see that, for very
short ranges of the interaction � , the system is unstable to an antiferromagnetic state,
in which the spins possess a ferrimagnetic arrangement within each layer (i.e., the spins
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alternate in direction between neighboring sites, but are of unequalmagnitude), and are
oppositely directed between the two layers; an illustration of this phase is given in Figure
8.3; a similar illustration may be found in Figure 1(a) of Reference [4]. In this phase,

a2

b2

a1

b1

Figure 8.3: Illustration of the AF phase. The black circles represent sites on the
bottom layer (1), while the red squares represent sites on the top layer (2). The
arrows indicate the overall spin polarization on a given site. Each layer possesses
a ferrimagnetic arrangement of spins (i.e., the spins alternate in direction between
neighboring sites, but have unequal magnitudes), and are oppositely directed be-
tween the two layers.

the operator, 12� 3s3, acquires a non-zero expectation value. This result is in agreement
with the zero-temperature results obtained in the previous work [46]. As we increase the
range, we will enter a region in which both the AF and nematic susceptibilities diverge.
This happens when� is larger than about two lattice spacings. This indicates a possible
coexistence of the two phases. However, to determine if such a coexistence is in fact present
would require a theory valid below the critical temperature. The construction of such
a theory is beyond the scope of the present work. As we increase the rangefurther, the
antiferromagnetic instability disappears, leaving only that towards a nematic state, in which
the operators, 12� 112 and � 3� 212, acquire non-zero expectation values. In this phase, the
parabolic degeneracy points each split into two Dirac-like cones that are displaced slightly
from the parabolic degeneracy points. The size of this displacement isset by the magnitude
of the order parameter, while the direction of the splitting is set by the order parameter's
direction. If we rotate the order parameter by � , then we obtain an identical con�guration,
much like the molecules in a nematic liquid crystal. This result is, again, in agreement with
the previous work [51]. This happens when� exceeds about 10 lattice spacings. Note that
there is a weak dependence of these critical ranges on the initial value of gA 1g .
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Figure 8.4: Illustration of the single-gate con�guration, which leads to the potential
given by Equation (8.41).

8.2.2 Screened Coulomb-like interaction; one-plate case

The second form of the interaction that we consider is a dipole-like interaction much
like the one produced by an electron in the presence of a single in�nite conducting plate
(see Figure8.4). This interaction has the form,

V (r ) = U0

"
1

r=�
�

1
p

(r=� )2 + 1

#

; (8.41)

This interaction has a longer range than in the two-plate case, since thisfalls o� as r � 3

for long distances, rather than as an exponential. As in the previous case,this formula, as
is, will give us an in�nite on-site interaction. We use the same method as before to render
this interaction �nite, and we again set � = 1 :2. The resulting instabilities are shown in
Figure 8.5. We note that it is qualitatively identical to that obtained from the pr evious
case, except that the critical ranges are smaller. We �nd that an instability towards the
nematic phase appears when� exceeds a value between 0:4 and 0:6 lattice spacings and
that the AF instability disappears when � exceeds a value between 4 and 6 lattice spacings,
depending on the initial gA 1g .

Note that, throughout this section, we have been working with monotonically-decreasing
repulsive density-density interactions, and thus we only observe two of the possible insta-
bilities that we may �nd in the system. For short-range interactions , we start in the upper-
right-hand corner of Figure 8.6, which maps out the leading instability as a function of the
initial value of gA 2u and gEK when gA 1g = 0 :014�

m � , corresponds to the AF instability. As
we increase the range, we move toward the center of the diagram, while staying within the
upper-right quadrant, passing through the AF + nematic \coexistence" region and ending
in the pure nematic region. While, for � = 1 :2, we only �nd instabilities toward the AF and
nematic phases for the one- and two-plate cases that we considered, there are more possi-
ble instabilities, even for density-density interactions. For example, for � < 1, such that
the on-site repulsion isweakerthan the nearest-neighbor repulsion, and thus the repulsive
interaction is non-monotonic in real space, the initial value ofgEK may become negative.
Under such conditions, we will �nd that the susceptibility toward the quantum spin Hall
phase will diverge, though never along with the antiferromagnetic susceptibility. This is
illustrated in Figure 8.6.
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Figure 8.5: Map of the leading instabilities for the one-plate screenedCoulomb-like
interaction, Equation ( 8.41), as a function of the coupling strength gA 1g and the
interaction range � . The map is qualitatively identical to that obtained for the
two-plate case, except that the ranges at which the AF instability disappears and
that at which the nematic instability appears are smaller.

Note that the results presented in Figure 8.6 were obtained in the presence of trigonal
warping, while those presented earlier in this section were obtained in its absence. On the
basis of the results shown in Figure8.6, we expect that the inclusion of trigonal warping will
not qualitatively change our results; it will only change the \critical r ange" at which the
antiferromagnetic instability disappears and that at which the nematic instability appears.
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Figure 8.6: Map of the leading instabilities as a function of the initial value of
gA 2u and gEK for an initial value of gA 1g = 0 :014�

m � ; the initial values of all other
couplings are zero, corresponding to a density-density interaction. In this case,
trigonal warping is present, with v3 = 0 :178 �

2m � , and the critical temperature is
�xed to Tc = 0 :01 � 2

2m � . For predominantly forward scattering, we see that the
system is unstable to the nematic phase. When the initial di�erence between the
inter- and intralayer scattering ( gA 2u ) and/or the backscattering (gEK ) become
considerable, however, other instabilities appear, namely the layer antiferromagnet
(AF), the layer-polarized state (LP), the quantum spin Hall state (QSH) , the
Kekul�e current phase (KC), and the s++ superconducting phase (s++ SC). We use
a plus sign to denote an instability towards multiple phases. To determine whether
or not there is truly a coexistence of the listed phases requires the development
of a theory (such as a Landau theory) that is valid belowTc, which is beyond the
scope of the present work.
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CHAPTER 9

ANALYSIS OF THE ANTIFERROMAGNETIC
STATE IN A FINITE MAGNETIC FIELD

Having established the existence of an instability towards an antiferromagnetic state in the
previous chapter for short-ranged electron-electron interactions, we now turn our attention
to analyzing said state in the presence of an applied magnetic �eld [40]. This investigation
is motivated by the fact that a gap is observed in some experiments [50, 6]. We will
investigate these e�ects within the framework of variational mean �eld theory. We employ
this method, rather than RG, because, in the presence of a perpendicular magnetic �eld, the
non-interacting energy spectrum for our problem is discrete, rather than continuous, and
thus an RG analysis of the type employed in the previous chapters would be more di�cult.
We start by writing down a Hamiltonian corresponding to our e�ective l ow-energy �eld
theory and introducing the orbital e�ects of the magnetic �eld via mi nimal substitution.
We will neglect the Zeeman e�ect in this case, since the spin splitting ( m� =me)g� B B �
(m� =me)! c is small compared to the orbital splitting � ! c. The Hamiltonian that we obtain
is simply Equation (5.34), but with the momentum p replaced with � = p � e

cA , where A
is the magnetic vector potential.

9.1 Variational mean �eld method

Our variational mean �eld calculation will proceed as follows. We start by adding and
subtracting a source term for the antiferromagnetic order parameter,

�
Z

d2r  y(r )12� 3s3 (r ); (9.1)

in the Hamiltonian. Here, � is the antiferromagnetic order parameter, whi ch corresponds
to the magnitude of the moment on the undimerized sites on each layer.We now de�ne two
parts to the Hamiltonian, a \non-interacting" part, H0,

H0 =
Z

d2r  y(r )

 
� 2

x � � 2
y

2m� � x +
� x � y + � y � x

2m� � y

!

 (r ) + �
Z

d2r  y(r )12� 3s3 (r );

(9.2)
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and an \interaction", H I ,

H I = 1
2

X

S

Z
d2r gS[ y(r )S (r )]2 � �

Z
d2r  y(r )12� 3s3 (r ): (9.3)

Here, we are usingS to stand in for the three coupling constants that are non-zero in the
case of a microscopic density-density interaction and their associated matrices. We then
exactly diagonalizeH0, �nd the expectation value of the full Hamiltonian with respect to
the (trial) ground state of H0, and minimize the result with respect to �.

9.2 Diagonalization of the \non-interacting" Hamiltonian

To diagonalize H0, we �rst note that the source term is diagonal in layer, valley, and
spin space, while the \kinetic" term is only diagonal in valley and spin space. This allows
us to split the problem into the diagonalization of four 2 � 2 matrices; our wave functions
will have a de�nite valley pseudospin and real spin orientation. Let us consider the block
corresponing to the +K valley and spin up. We must solve

"
� (� x � i� y )2

2m �

(� x + i� y )2

2m � � �

#

 (x; y) = E (x; y); (9.4)

where  (x; y) is a two-component spinor corresponding to the +K valley and spin up
components of the full eight-component spinor; the other six components are all zero. We
will work in the Landau gauge, in which A = � By x̂ . For this gauge, the above becomes

"
� 1

2m �

�
px + eB

c y � ipy
� 2

1
2m �

�
px + eB

c y + ipy
� 2

� �

#

 (x; y) = E (x; y):

(9.5)

Let us now assume the following form for (x; y):

 (x; y) =
1

p
L x

eikx � k (y); (9.6)

where � k (y) is another two-component spinor. Upon substitution into our equation, we
obtain

"
� 1

2m �

�
k + eB

c y � ipy
� 2

1
2m �

�
k + eB

c y + ipy
� 2

� �

#

� k (y) = E � k (y):

(9.7)

We may now write this in terms of the operators,

ak =

r
m� ! c

2

�
k

m� ! c
+ y + i

py

m� ! c

�
; (9.8)
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where ! c = eB
m � c is the cyclotron frequency of the electrons in our system. These operators

may be veri�ed to satisfy the commutation relation, [ ak ; ay
k ] = 1. In terms of these operators,

the equation becomes �
� ! c(a

y
k )2

! ca2
k � �

�
� k (y) = E � k (y): (9.9)

Let us now de�ne normalized functions � k;n (y) such that ay
kak � k;n (y) = n� k;n (y); these will

just be the usual harmonic oscillator-like wave functions that emergein the solution of the
free electron gas in a magnetic �eld. These functions may be shown tosatisfy the relations,
ak � k;n (y) =

p
n� k;n � 1(y) and ay

k � k;n (y) =
p

n + 1 � k;n +1 (y). We now assume the following
form for � k (y):

� k (y) =
�

� k;n � k;n (y)
� k;n � k;n � 2(y)

�
(9.10)

We �nd that this form satis�es our equation, provided that � k;n and � k;n satisfy
�

� ! c
p

n(n � 1)
! c

p
n(n � 1) � �

� �
� k;n

� k;n

�
= E

�
� k;n

� k;n

�
(9.11)

and j� k;n j2 + j� k;n j2 = 1. We have thus reduced the problem to solving for the eigenvalues
and eigenvectors of a 2� 2 matrix. The eigenvalues areE = � En , where

En =
p

n(n � 1)! 2
c + � 2; (9.12)

and the corresponding eigenvectors are given by

� k;n = �
1

p
2

r

1 �
�
En

; � k;n =
1

p
2

r

1 �
�
En

: (9.13)

In the � K valley, the positions of the creation and annihilation operatorsay
k and ak will be

interchanged; in this case, we must instead assume that

� k (y) =
�
� k;n � k;n � 2(y)
� k;n � k;n (y)

�
: (9.14)

This will give us the same eigenvalue problem as before. For the spin down case, we simply
reverse the sign on � in our equations; we obtain the same eigenvalues as before, but � k;n

and � k;n will switch values. This implies that, at least for n � 2, each of our energy levels
is four-fold degenerate, due to valley and spin degeneracies. Forn = 0 or 1, on the other
hand, there is no valley degeneracy for a given spin. In these cases, the eigenfunctions are

� k (y) =
�
� k;n (y)

0

�
(9.15)

in the + K valley and

� k (y) =
�

0
� k;n (y)

�
(9.16)

in the � K valley. The former corresponds to the energy eigenvalue,E = �, while the other
corresponds toE = � �. Each of these levels is still four-fold degenerate, but this time
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due to orbital and spin degeneracies. Note that we may still use the wave functions quoted
earlier even for this case if we adopt the convention that� k;n (y) is identically zero if n < 0.

We may now rewrite the �eld operators in terms of these eigenstates:

 (x; y) =
X

k;n;�;s

[ +
k;n;�;s (x; y)ak;n;�;s +  �

k;n;�;s (x; y)by
k;n;�;s ]; (9.17)

where  +( � )
k;n;�;s represents the positive (negative) energy state for a given wave number and

orbital, valley, and spin indices. We have chosen our operatorsa and b such that they
annihilate the trial ground state j0i .

9.3 Derivation of the minimization condition

Having diagonalized the \non-interacting" Hamiltonian, we are now ready to � nd the
energy of our trial ground state and minimize it with respect to �. Throu ghout this
derivation, we will assume that � > 0. We start by rewriting the �eld operators in our
Hamiltonian in terms of the eigenstates of theH0 derived above; the formula for this is
given by Equation (9.17). If we label the positive energy eigenvalues asEk;n;�;s = En =p

n(n � 1)! 2
c + � 2, then H0 becomes

H0 =
X

k;n;�;s

Ek;n;�;s (ay
k;n;�;s ak;n;�;s + by

k;n;�;s bk;n;�;s )

�
X

k;n;�;s

Ek;n;�;s : (9.18)

The expectation value ofH0 with respect to the ground state j0i is then

h0j H0 j0i = �
X

k;n;�;s

Ek;n;�;s = � 4d
X

n

En � 4dj� j; (9.19)

where d is the degeneracy of each Landau level due to the wave numberk.
Now we turn our attention to the interaction, starting with the quadrat ic term,

H (2)
I = � �

Z
d2r  y(r )12� 3s3 (r ): (9.20)

In terms of the eigenstates ofH0, this becomes

H (2)
I = � �

Z
d2r

X

mn

 y
m (r )12� 3s3 n (r )ay

m an : (9.21)

Here, we let the indicesm and n stand for all of the quantum numbers characterizing a
given eigenstate, and we useam to stand for either a positive or negative energy state,
with the understanding that the negative energy state is given byam = by

m . Upon taking
the expectation value of this term with respect to the ground state, we �nd that only the
negative energy states contribute:

h0j H (2)
I j0i = � �

Z
d2r

X

m

( �
m )y(r )12� 3s3 �

m (r ) (9.22)
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Evaluating all of the sums and integrals using the expressions given above for the wave
functions, we may write this as

h0j H (2)
I j0i = � L xL y �Tr(1 2� 3s3� � ); (9.23)

where

� � =
X

m

 �
m (r )(  �

m )y(r )

=
1

4�` 2
B

! c(N 18 + � 3� 312 � � 312� 3 � Y12� 3s3): (9.24)

Evaluating the trace, we obtain

h0j H (2)
I j0i =

L xL y

2�l 2
B

� Y; (9.25)

where lB =
p

c=eB is the magnetic length, L x and L y are the dimensions of our system,
and

Y =
X

n� 2

�
En

+ 1 : (9.26)

We now consider the quartic terms. Each of these terms, neglectingthe coupling con-
stants and integrals over position, has the form,

[ y(r )S (r )]2; (9.27)

where S is a matrix. Substituting in Equation ( 9.17), and adopting the same conventions
as before, this becomes

X

mnpq

[ y
m (r )S n (r )][ y

p(r )S q(r )]ay
m anay

paq: (9.28)

We now take the expectation value of this expression with respect tothe ground state.
This expectation value will involve the expression,h0j ay

m anay
paq j0i . The only way for this

to be non-zero is ifm and q are negative-energy states. We must also require thatn and
p either be both positive-energy states or both negative-energy states.In the former case,
we obtain, using the anticommutation relations for fermions,

h0j bm anay
pby

q j0i = � mq � np :

In the latter case, we obtain

h0j bm by
nbpby

q j0i = � mn � pq:

Putting these results together, the above quartic form becomes
X

m;n

[( �
m )y(r )S +

n (r )][(  +
n )y(r )S �

m (r ) +
X

m;p

[( �
m )y(r )S �

m (r )][(  �
p )y(r )S �

p (r )]; (9.29)
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Upon evaluating all sums and integrals, this becomes

Tr( S� + S� � ) + [Tr( S� � )]2; (9.30)

where

� + =
X

m

 +
m (r )(  +

m )y(r )

=
1

4�` 2
B

! c(N 18 + � 3� 312 + � 312� 3 + Y12� 3s3): (9.31)

Evaluating the traces, we �nd that the total energy Evar = h0j H j0i of our system is, noting
that d = L xL y=(2�l 2

B ),

Evar = �
2L xL y

�` 2
B

0

@
X

n� 2

En + �

1

A +
2L xL y

�` 2
B

� Y + 4L xL y(gA 1g + gA 2u + 4gEK )

�

" �
N

4�` 2
B

� 2

�
�

Y
4�` 2

B

� 2
#

+ 1
2L xL ygA 1g

�
2N
�` 2

B

� 2

; (9.32)

where
N =

X

n� 2

1 + 1: (9.33)

We will now minimize this energy with respect to �. First, we tak e the derivative of the
above expression, which may be written as

@Evar

@�
=

2L xL y

�l 2
B

�
� �

1
4�l 2

B
(gA 1g + gA 2u + 4gEK )Y

� X

n� 2

1
En

�
1 �

� 2

E 2
n

�
: (9.34)

We now set this derivative to zero. We note that the second factor can never be zero, since
En > � for all n � 2, and therefore it is always positive. We may therefore drop this factor.
The remainder, upon simplifying and noting that lB = 1=

p
m� ! c, thus yields, assuming

� > 0, the minimization condition on �,

ge� ! c

 
NX

n=2

�
En

+ 1

!

= � ; (9.35)

where

ge� =
m�

4�
(gA 1g + gA 2u + 4gEK ) (9.36)

and N is an upper cuto� on the orbital index, which we impose because our theory only
works for low energies and because, in reality, we do not have electronic states in our system
at arbitrarily large energies. In the limit of zero magnetic �eld, we may treat the sum as a
Riemann sum, with � = n! c and �� = ! c; our equation then reduces to

ge� ! c

Z 


0

d�
p

� 2 + � 2
0

= 1 ; (9.37)
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where 
 is an upper cuto� on the energy and we introduce � 0 as the value of the AF order
parameter in the absence of an applied magnetic �eld;N is related to the energy cuto�
by 
 = ! c

p
N (N � 1). We have veri�ed this result with a separate calculation. As is, we

cannot send the upper cuto� to in�nity in our equation without encount ering a divergence
in the sum, since the summand only decreases as1n . We can, however, rewrite the equation
in such a way that we can do this if we eliminatege� in favor of � 0.

We now wish to rewrite Equation (9.35) in such a way that we may send the upper
cuto� to in�nity. We start be rewriting the sum as an integral over a \D irac comb":

! c

 Z N

3=2
d�

1
p

� (� � 1)! 2
c + � 2

1X

n= �1

� (� � n) +
1
�

!

=
1

ge�
: (9.38)

We now use the identity,
1X

n= �1

� (� � n) =
1X

k= �1

e2�ik� ; (9.39)

to obtain

! c

Z N

3=2
d�

1
p

� (� � 1)! 2
c + � 2

+ 2 ! c

1X

k=1

Z N

3=2
d�

cos(2�k� )
p

� (� � 1)! 2
c + � 2

+
! c

�
=

1
ge�

: (9.40)

The integral that appears in the sum converges for allk � 1, so we may already send the
upper limit to in�nity. However, we must still take care of the �rs t integral, which will
diverge if we do the same with it. We may use the zero-�eld equation,Equation (9.37),
to rewrite the right-hand side such that we eliminate ge� from the equation. If we do this
and also introduce the change of variables,� 2 = � (� � 1)! 2

c , into the �rst integral, we may
then move the �rst integral to the right-hand side, obtaining an inte gral that converges if
we send the upper limit to in�nity, namely

! c

Z 1
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Z ! c
p

3=2

0
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�
q
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4 ! 2

c

1
p

� 2 + � 2
;

(9.41)

where � 0 is the value of � at zero magnetic �eld. Upon evaluating this integral, our
equation becomes

2! c

1X

k=1

Z 1

3=2
d�

cos(2�k� )
p

� (� � 1)! 2
c + � 2

+
! c

�
= ln

0

@! c

� 0
+

q
� 2 + 3

4 ! 2
c

� 0

1

A : (9.42)

This equation may be rewritten in terms of the dimensionless parameters, � = � =! c and
� = ! c=� 0:

2
1X

k=1

Z 1

3=2
d�

cos(2�k� )
p

� (� � 1) + � 2
+

1
�

� ln
�

1 +
q

� 2 + 3
4

�
= ln �: (9.43)
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We can see that the left-hand side is a monotonically-decreasing function of � for � > 0.
In fact, as � ! 0+ , the left-hand side increases inde�nitely due to the second term, while,
as � ! 1 , the expression decreases inde�nitely due to the third term. This equation
therefore has a single positive solution for� for any given value of � . While we would
need to solve the equation numerically for general values of� , we can derive approximate
solutions analytically for very large and very small values of� .

Before we do this, however, let us �rst rewrite this equation in an equivalent form. We
start by changing variables in the �rst term to x = � � 1

2 , obtaining

2
1X

k=1

(� 1)kRe
Z 1

1
dx

e2�ikx
q

x2 + � 2 � 1
4

+
1
�

� ln
�

1 +
q

� 2 + 3
4

�
= ln �:

We now note that, as a function of x, the integral is analytic in the entire complex plane,
except for a branch cut. For � < 1

2 , this branch cut can be chosen to be on the real axis and

in the interval �
q

1
4 � � 2 < x <

q
1
4 � � 2. For � > 1

2 , on the other hand, the branch cut
may be chosen to lie along the imaginary axis. In either case, we may integrate this function
over a large quarter circle centered at the point,x = 1, in the complex plane and with one
of the radii along the positive real axis and the other parallel to the positive imaginary
axis and obtain zero since we will always avoid the branch cut. The contribution from the
circular arc will vanish as we increase the radius to in�nity since the integrand decreases
exponentially as we do so. This leaves only contributions from the radii. The contribution
from the radius along the real axis is just the integral that appears in theequation. This
means that the contribution from the radius parallel to the imaginary axis is equal to this
integral. We may therefore write

Re
Z 1

1
dx

e2�ikx
q

x2 + � 2 � 1
4

= Re

2

4i
Z 1

0
dx0 e� 2�kx 0

q
(1 + ix 0)2 + � 2 � 1

4

3

5 :

Note that we dropped a factor of e� 2�ik ; sincek is an integer, this factor is always equal to
1. If we substitute this back into the equation, we �nd that the sum on k is just a geometric
series with a common ratio of� e� 2�x 0

. We may therefore perform the summation, obtaining

I (� ) +
1

j� j
� ln

�
1 +

q
� 2 + 3

4

�
= ln �; (9.44)

where

I (� ) = 2Re

2

4
Z 1

0
dx0 � i

q
(1 + ix 0)2 + � 2 � 1

4

1
e2�x 0 + 1

3

5 :

(9.45)

We can see that the integral I (� ) converges for all values of� ; the integrand is analytic
everywhere on the interval of integration and decreases exponentiallyfor large x0. At large
values of� , we can show that this integral falls o� as � � 3. We �rst note that the integral is

100



dominated by small values ofx0 due to the Fermi occupation factor-like expression. With
this in mind, we may pull out a factor of � from the square root, obtaining

� 2Re

2

4i
Z 1

0
dx0 1

�

"

1 +
(1 + ix 0)2 � 1

4

� 2

#� 1=2
1

e2�x 0 + 1

3

5 :

Since� is large, we now have a small parameter with respect to which we may perform an
expansion of the square root. The constant term in this expansion gives no contribution,
since the total result will be purely imaginary. The lowest-order non-zero contribution will,
in fact, be given by

�
2

� 3

Z 1

0
dx0 x0

e2�x 0 + 1
= �

1
24� 3 :

We see that this term is of the order � � 3, as asserted earlier.
We may derive a good closed-form approximation toI (� ) as follows. Let us �rst expand

the square root in the integrand in powers ofx0. To the lowest non-vanishing order, we
obtain

I (� ) � � 2
Z 1

0
dx0 x0

� 3
4 + � 2

� 3=2

1
e2�x 0 + 1

= �
1

3(3 + 4� 2)3=2
:

We now rewrite this expression so that its value at� = 0 matches the exact value ofI (0).
Doing so, we obtain

I (� ) � �
2

[(� 1
2 I (0)) � 2=3 + 4 � 62=3� 2]3=2

: (9.46)

If we were to plot this expression alongside the exact expression forI (� ), then we would see
that it follows the exact expression very closely. In fact, if we usethis expression to solve
Equation (9.44), then the solution that we obtain is very close to the solution obtainedfrom
the exact I (� ).

While Equation ( 9.44) must, in general, be solved numerically, we may obtain analytic
expressions in two limiting cases, namely the large and small� limits (equivalently, for large
and small applied magnetic �elds). Let us �rst consider the large � limit. This means that
the right-hand side of our equation is large and positive, and thus, as implied by our above
discussion,� should be small. In this limit, we may set the �rst and third terms on the left
to their values at � = 0, since both are �nite at this point, while the second term diverges.
Our equation becomes

1
�

� C = ln �; (9.47)

where C is the value of the �rst and third terms at � = 0; its value is approximately 0:67.
Here, we are assuming that� is positive. Solving for � , we �nd that

� =
1

ln � + C
;

or
� =

! c

ln( ! c=� 0) + C
: (9.48)
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We see that the behavior is almost linear in the magnetic �eld, but with a logarithmic
correction.

Next, we consider the small� limit. In this case, the right-hand side of Equation (9.35)
becomes large and negative, and thus� should become large. We would be tempted to
drop all but the third term, since the �rst two terms go to zero for l arge values of� . This
would give us a result that is only accurate at constant order in� , however. This is because,
if we expand the third term in powers of � � 1, then the next-lowest order term after the
logarithmic term is of order � � 1, and the second term in our equation is also of this order;
in fact, it cancels this term exactly. We may still drop the �rst te rm, since, as stated above,
the lowest-order term that it contributes is of order � � 3. In this case, our equation becomes

1
�

� ln
�

1 +
q

� 2 + 3
4

�
= ln �: (9.49)

Again, we are assuming that� > 0. If we take the exponential of both sides, we get

e� 1=�
�

1 +
q

� 2 + 3
4

�
=

1
�

:

We will now expand the left-hand side in powers of� � 1 to the order � � 2. Doing so, but
�rst pulling out a factor of � from the second factor, we get

�
�

1 �
1

8� 2

�
=

1
�

:

If we rearrange this, we �nally arrive at the quadratic equation,

8�� 2 � 8� � � = 0 :

If we solve this equation and take the positive solution, we get

� =
1 +

q
1 + 1

2 � 2

2�
�

1
�

+
�
8

:

Rewriting this result in terms of � and ! c, we get

� = � 0 +
! 2

c

8� 0
: (9.50)

We see that, for low �elds, the antiferromagnetic order parameter increases quadratically
with the �eld.

We now solve Equation (9.44) numerically; the numerical result, along with the low- and
high-�eld limits derived above, is plotted in Figure 9.1. If we look at our low- and high-�eld
expressions, we see that the slope of our low-�eld approximation increases withB , while our
high-�eld approximation has a decreasing slope. This implies that there should be a maxi-
mum slope to the exact curve. We determined the maximum slope of the�( B )=� 0 versus
! c=� 0 curve, and found that it is about 0:2681, and occurs when! c=� 0 � 2:432. These
values are independent of the values ofm� and � 0. Using the experimentally-determined
value [5] of the e�ective mass, m� = 0 :028me, and the experimentally-determined value of
the order parameter at zero �eld [6], � 0 = 0 :95 meV we may determine the maximum slope
of the �( B ) versus B curve. We �nd that the slope is 1:11 meV

T , and that it occurs at a
�eld of about 0 :56 T.
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Figure 9.1: Plot of the solution to Equation (9.44). The solid line is the numerical
solution, while the dashed lines are the solutions in the low- and high-�eld limits.
The vertical axis is the value of the order parameter � divided by its z ero-�eld
value � 0. The bottom horizontal axis is the cyclotron frequency ! c = eB=m� c
divided by � 0, while the top horizontal axis is the applied magnetic �eld B divided
by � 0; in determining the latter from the former, we assumed that the e�ective
massm� = 0 :028me [5], and � 0 = 0 :95 meV [6].

9.4 The excitation spectrum, comparison with
experimental results

We would now like to compare our theoretical results to the experimental data [6]. First
of all, we note that � is not the energy gap in our system. In fact, the energy eigenvalues
stated earlier are an \auxiliary spectrum", and do not represent the true (many-body)
energy spectrum of our system. As an approximation to the actual energy gap,we will
consider particle-hole excitations of the \vacuum", or trial ground state, for our system.
We construct a state, ay

� by
� j0i , where � and � stand for the full sets of quantum numbers

describing the particle and hole states, respectively, and �nd the di�erence between the
expectation value of our Hamiltonian for this state and that for the trial ground state. For
both states, we assume the value of � that is obtained from the minimizati on condition,
Equation (9.44). The states � and � that result in the lowest value of the excitation energy
will be taken to give the actual energy gap.

Throughout this calculation, we assume that the AF order parameter � > 0. Let
us begin with the quartic terms. If we take the di�erence in expectation value of these
terms between the excited state and the ground state, we �nd, after straightforward but
tedious application of anticommutation relations and dropping terms that will vanish in the
thermodynamic limit, that the contribution to the excitation ener gy is

�E 4 =
X

S

gS[Tr( S� �� )Tr( S� � ) + 1
2Tr( S� + � S� �� )];

(9.51)
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where

� + � =
X

n

[ +
n (r )(  +
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n (r )(  �

n )y(r )]; (9.52)
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d2r [ +
� (r )(  +
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� (r )(  �

� )y(r )]:

(9.53)

We may now evaluate the sums and integrals in the above expressions, obtaining

� + � =
m�

2�
! c(Y12� 3s3 + � 312s3) (9.54)

and
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(9.55)

Here, � n is 0 if n < 0, or 1 otherwise. We may now evaluate the traces in Equation (9.51).
Doing so, and using the fact that

m�

4�
! c(gA 1g + gA 2u + 4gEK )Y = � ; (9.56)

we �nd that

�E 4 = � 2
�

1
En �

+
1

En �

�

+
m�

4�
! c(gA 1g + gA 2u � 4gEK )( � � s� � � � s� ):

(9.57)

We now consider the quadratic terms. One of these terms simply gives us the single-particle
\auxiliary spectrum", while the other is the quadratic term that we ch ose to consider as
part of the interaction term. We �nd, upon application of anticommutation r elations as
before, that the contribution from these terms to the excitation energy is

�E 2 = En � + En � � �Tr(1 � 3s3� �� ): (9.58)

Upon evaluating the trace, we obtain

�E 2 = En � + En � � � 2
�

1
En �

+
1

En �

�
: (9.59)
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Combining these two contributions, we obtain

Eex = En � + En � +
m�

4�
g� ! c(� � s� � � � s� ); (9.60)

where g� = gA 1g + gA 2u � 4gEK . Here, � k = � 1 if the state exists in the � K valley,
and sk = +1 ( � 1) for a spin up (down) state. The single-particle energies areEn =p

n(n � 1)! 2
c + � 2. Note that this energy does not depend on the wave numbers of the

states, and only depends on the valley and spin indices via their products. If one of the
states is one of the lowest Landau levels, given bynk = 0 or 1, then these products are
locked to a speci�c value. To be exact, ifn� = 0 or 1, then � � s� = 1. Similarly, if n� = 0
or 1, then � � s� = � 1. We see that this energy includes a term linear in the magnetic
�eld, and is in agreement with the results obtained in Reference [73]. The key di�erence
between our derivation and that presented in Reference [73] is that we did not need to
assume the presence of another \order parameter" (in fact, as we will explain shortly, this
other paramter is not really an order parameter in the sense that it breaksany additional
symmetries), corresponding to the matrix � 312s3 in the notation of the present paper, or a
\staggered spin current" state (see Table7.1) to obtain this linear term, assuming that we
properly calculate the excitation energy (i.e., we calculate it from the full Hamiltonian rather
than assume that the gap in the single-particle \auxiliary spectrum" is the observed gap).
In fact, the above result would not have changed had we had included this parameter in our
variational analysis, assuming that it was su�ciently small | it would ha ve only introduced
a constant shift to the energies in the \auxiliary spectrum" and left the associated wave
functions unchanged.

We present a plot of part of this excitation spectrum in Fig. 9.2. We �nd that the gap
for low �elds is, in fact, not given by taking n� and n� to both be either 0 or 1, which would
correspond to the lowest-energy states in the \auxiliary spectrum". Instead, it is given by
taking n� = n� = 2, with � � s� = � 1 and � � s� = 1. At higher �elds, however, we �nd that
excitations with n� and n� both equal to either 0 or 1 do, in fact, give us the actual gap.
To obtain the value for g� , we �t the slope of our predicted high-�eld gap at around 2:5 T
to the slope found in Reference [6] of 5:5 meV

T . Assuming that the e�ective mass is given
by the experimental value [5] of m� = 0 :028me, where me is the mass of an electron, we
obtain m �

4� g� = 0 :44. Note that this di�ers slightly from the value used in Reference [73],
namely m �

4� g� = 0 :4; this is the value that we would obtain if we instead �t the slope of the
high-�eld gap at the point where the AF order parameter reaches its maximum slope to the
experimental value. For the value ofge� that we use, we �nd that the gap has a minimum
at a non-zero value of the �eld; the minimum is reached at a �eld of B � 0:047 T, and is
Eg � 1:91� 0. We also �nd a \kink" in the �eld dependence of the gap, at which the gap
goes from being given byn� = n� = 2, � � s� = � 1, and � � s� = 1 to being given by n� and
n� either 0 or 1. This \kink" appears at a �eld of B � 0:45 T.

We also considered the data from Reference [50]. In this case, we �t our expression to
the � = 0 gap presented therein. Note that, from the low-�eld data, it is uncl ear what
the size of the energy gap, if any, is. Nevertheless, we can still obtaina �t to the slope of
the gap at high �elds, since the zero-�eld value of the order parameter only enters via a
small logarithmic correction to the high-�eld slope. The experimentally-determined slope
is 1:7 meV

T . If we perform our �t in the same way as before, we obtain m �

4� g� = � 0:018. In
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Figure 9.2: (Left panel) Plot of the excitation spectrum, Equation (9.60), for
m �

4� g� = 0 :44, which is the value used to �t the experimental data in Reference
[6]. The vertical axis is the excitation energy in units of � 0, and the horizontal
axes are the same as in Fig.9.1. As before, in determining the upper horizontal
axis, we take m� = 0 :028me [5] and � 0 = 0 :95 meV [6]. Each curve is labeled
according to which electron and hole states are occupied, with a labelof the form
(electron, hole), with the orbital index n and the sign of the product of the valley
and spin indices,�s , indicated. (Right panel) Zoomed-in view of the lowest three
excitations over the range, 1:5 � ! c

� 0
� 2:5, to better illustrate the \kink" in the

gap.

this case, since we obtain a negative value forg� , we will �nd that energy of the n� and n�

equal to 0 or 1 excitation has a non-monotonic dependence on the magnetic �eld. In fact, it
gives us the energy gap for all �elds. It possesses a very shallow minimum of 1:99985� 0 at
a �eld of about 0:017 T and, unlike the previous case, there is no \kink". In this case, we
cannot completely rule out the possibility of the gap actually possessing such a minimum
on the basis of the data given in Reference [50] alone, due to the lack of data at low �elds.
Note that we required a negative value ofg� , which would imply that 4 gEK > gA 1g + gA 2u ,
to �t the data. Satisfying this inequality would require either an at tractive interaction or
one that is non-monotonic; this may be seen by noting that it is equivalent to Vk;2K > Vk;0,
which cannot be satis�ed for any monotonically-decreasing repulsive interaction.

Note that, while we are able to �t the experimental data [ 50, 6] at high �elds, we
also predict �ner features at low �elds that are not resolved in these experiments, namely
a slight non-monotonic behavior of the gap and, in the case of our �t to the data from
Reference [6], a \kink". It is possible that such features are, in fact, present, but cannot
be observed in the experiments due, for example, to the fact that, at�nite temperature,
any sharp features that would have appeared at zero temperature are \washed out", thus
introducing uncertainty into any energy gaps extracted from the data. It is also possible
that these features, which are predicted from a mean-�eld calculation, will be removed once
uctuations are taken into account. The development of a more sophisticated method for
treating this problem is therefore of interest, but it is beyond the scope of the present paper.
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9.5 Symmetry analysis in the presence of an applied
magnetic �eld

In the absence of a magnetic �eld, the honeycomb bilayer lattice considered in this
paper possesses aD3d point group symmetry. The AF and \staggered spin current" orders
transform under di�erent representations of this group | the AF state t ransforms under
the A2u representation, while the \staggered spin current" state transformsunder the A1u

representation (see Table7.1). Physically, this means that the AF order parameter is even
under mirror reections and odd under C0

2 rotations, while the \staggered spin current"
order parameter is odd under mirror reections and even underC0

2 rotations. Note that
both orders are odd under inversion. In fact, the two also transform di�erently under time
reversal; the AF order parameter is odd, while the \staggered spin current" is even. This
means that the expectation value of the \staggered spin current" operator must vanish in
the AF state.

When we apply a magnetic �eld, however, the point group is reduced toS6. This is
because the magnetic �eld is an axial vector that is odd under mirror reections and even
under inversion. In this case, the AF and \staggered spin current" orders transform under
the same representation, namely theA1u representation [43]. Physically, this is because
the mirror reection and C0

2 symmetries are no longer present. As pointed out above,
the two order parameters transform di�erently under time reversal; however, time reversal
symmetry is broken in the presence of a magnetic �eld. This means that the two orders
no longer break di�erent symmetries, and thus there is nothing preventing the system from
acquiring a non-zero expectation value of one of these order parameters in the presence of
the other.

The development of a �nite expectation value of the \staggered spin current" operator
was correctly pointed out in Reference [73], but was attributed to \the emergence of the
n = 0 ; 1 Landau levels (LLs) and the peculiar property of their wave-functionsto reside on
only one sublattice in each valley". Here, we show that it must be present on much more
general grounds, and is not tied to the properties of the Landau levels.

At B = 0, the AF order parameter breaks time reversal and inversion symmetry, but
it preserves mirror reection symmetry, as we see from Table7.1. Therefore, the wave
functions for this state are eigenstates of the reection operators as well, and may be
classi�ed as even or odd under them. Let us now consider the expectation value of an
observableO that transforms under the A1u representation of theD3d point group, such as
the \staggered spin current" order parameter. This operator will have the property that
any mirror reection � d will anticommute with it, i.e. � dO = � O� d. Because of this, the
expectation value of the \staggered spin current" operator with respectto the AF state of
the Hamiltonian must be zero.

Let us now consider the case in whichB 6= 0. As stated before, this will break the
mirror reection symmetry of our system. However, it is symmetric under such a reection
followed by a reversal of the magnetic �eld (i.e.,B ! � B ). This means that we may classify
all eigenstates as even or odd under this combination of operations. This means that, in
terms of the eigenstates of the Hamiltonian atB = 0, we may write the new AF state of
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the Hamiltonian in the presence of an applied �eld as

jAF (B )i =
X

i

[� (e)
i (B ) ji; ei + � (o)

i (B ) ji; oi ]; (9.61)

where ji; ei (ji; oi ) is a general even (odd) state of the zero-�eld Hamiltonian. One set of
the � coe�cients (i.e., � (e)

i or � (o)
i ) must be even functions ofB , while the other must be

odd. If we now calculate the expectation value ofO with respect to this state, only matrix
elements that mix states of opposite parity under reections will appear:

hOi =
X

i;j

(� (e)
i ) � � (o)

j hi; ej O jj; o i + c.c. (9.62)

Since one of either the� (e)
i or � (o)

i must be even functions ofB , while the others must be
odd, we see that the expectation value ofO must be an odd function of B .

If we calculate the expectation value of the \staggered spin current" operator for the
trial ground state that we work with above, we �nd that it is a linear func tion of B . This is
consistent with our general conclusions and with the observation made byKharitonov [ 73].
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CHAPTER 10

CONCLUSIONS: ELECTRON-ELECTRON
INTERACTIONS IN BILAYER GRAPHENE

In this work, we used weak-coupling perturbative RG methods to identify the conditions on
the electron-electron interactions under which various electronic ordering tendencies, if any,
dominate in half-�lled bilayer graphene. Our results for the ordered states are summarized
in Figure 7.4. Aside from our use of one-loop RG, no further approximations are made.
Therefore, our results can be stated rigorously at the level of mathematical theorems. We
discover that, in principle, a large number of di�erent instabili ties towards various phases
are possible in the entire nine-dimensional space of couplings, as one can see from Figure
7.4.

We also employed these results to determine the leading instabilities of a system fermions
on a honeycomb bilayer lattice with �nite-range density-density interactions in the absence
of trigonal warping. The use of these methods is justi�ed since we onlyinclude nearest-
neighbor hopping terms, resulting in a band structure with two quadratic degeneracy points
and therefore in a �nite density of states at the Fermi level at half �l ling. We considered two
forms of the interaction, a screened Coulomb-like interaction much like the one produced
by a point charge situated exactly halfway between two in�nite parall el conducting plates,
as well as that produced by a point charge in the presence of a single conducting plate. For
all cases, we determined what phase the system enters as a function ofthe range of the
interaction by determining which phase has its susceptibility diverge �rst as we lower the
temperature, i.e., by determining the leading instability.

Even though our determination of the instabilities in the case of �nite-range interactions
was carried out in the absence of trigonal warping, our methods would be justi�ed even in
its presence. As shown in Reference [39], even when the trigonal warping velocity is set
to realistic values, we obtain an instability towards a symmetry-breaking phase for a small
initial value of gA 1g in the case of forward scatering only.

We found that the system, for both forms of the interaction, is unstable towards an
antiferromagnetic state for short ranges and towards a nematic state for longranges, in
agreement with the previous work [46, 51]. For intermediate ranges, we �nd that the
susceptibilities towards both the antiferromagnetic and nematic phases diverge, though not
necessarily with the same exponent. This indicates a possible coexistence of the two phases.
To determine whether the phases truly coexist, or if only one appears, would require a theory
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that is valid below the critical temperature. The development of such a theory is a problem
of great interest, but is beyond the scope of the present work.

It may initially appear that the rangesat which we see these transitions are too short
to explain why the experiment in Reference [5], which was done with a single gate, observes
evidence for a nematic state, while that in Reference [6], which was done with two gates,
and thus, as we argue, would have shorter-ranged interactions, observesa gap. In both
setups, the gate separation is about 300 nm, which would result in an interaction with a
range of over 2; 000 lattice spacings, thus placing both experiments well within theregion
where we predict a nematic state. How does one reconcile our resultswith the experimental
observations? In the present paper, we only determined theleading instability that appears
as we lower the temperature of the system for a given interaction form,range, and over-
all strength. At exactly T = 0 there is an instability towards both the AF and quantum
spin Hall states [39] even when forward scattering dominates when the e�ects of trigonal
warping are taken into account. Under the same conditions, but atT 6= 0, our calculations
predict that the �rst instability as the temperature is lowered i s towards a nematic state.
This implies that, in addition to a nematic order parameter, there are also antiferromag-
netic and quantum spin Hall correlations, with correlation lengths that grow as we lower
the temperature below the nematic ordering temperature and diverge at T = 0. This di-
vergence must happen at exactlyT = 0 because the antiferromagnetic and quantum spin
Hall states both break a continuous symmetry, namelySU(2) spin symmetry, and thus no
�nite-temperature transition into either state is possible in a two-dimensional system. Our
�ndings therefore imply that, in the experiment in Reference [6], in addition to the AF
order at T = 0, there should be a nematic order present, and that, as the temperature of
the sample is raised, there will be a phase transition in which the nematic order disappears.
Since the measurements presented therein are only sensitive tothe presence of a gap, and
not to any breaking of rotational symmetry, we cannot rule out this possibility based on
their data alone.

One issue with our results, however, is the fact that we predict aninstability towards
an antiferromagnetic phase, which breaks a continuousSU(2) spin symmetry. As pointed
out earlier, it is impossible for any two-dimensional system to entersuch a phase at �nite
temperature. We should therefore view the divergence of the susceptibility towards this
phase as identifying the dominant ordering tendency in this case. We expect that, if the
RG could be carried out exactly, we would �nd no divergent susceptibility towards the
antiferromagnetic phase at �nite temperature in this case. However, this susceptibility may
still diverge at zero temperature, and in fact we expect that, as the temperature is lowered,
the antiferromagnetic correlation length will grow and diverge at exactly T = 0; i.e., we will
see strong tendencies towards the antiferromagnetic phase at su�ciently low temperatures,
even if the system is not truly unstable towards it. There are currently no known systematic
extensions of the approximate RG analysis used here that would be powerful enough to
capture the Mermin-Wagner physics, and thus the development of such methods would be
of great interest. We also wish to point out that the nematic phase that we predict only
breaks a discrete symmetry, namely the C3 rotational symmetry of the lattice. Such a
broken symmetry is allowed in a two-dimensional system at �nite temperatures, and thus
we would expect to �nd an instability towards this phase at a non-zero temperature even
in an exact analysis.
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As a simple illustration of our point, let us consider a similar approach to the Hubbard
model in one spatial dimension [64]. It is found therein that there are divergences in the
scattering amplitudes at �nite temperature, naively suggesting a � nite temperature phase
transition, which we know cannot happen. Nevertheless, among many possibilities, the
method does identify the correct channels for which long, but �nite, correlation lengths
develop. For example, the low-energy e�ective �eld theory for the course-grained half-�lled
Hubbard model does correctly determine that the dominant correlations appear in either
the pairing (attractive, or negative U) or AF (repulsive, or positive U) channel [80]. Away
from any special �lling, a metallic state is also correctly predicted [81].

As further justi�cation of our methods, they also reproduce known exact properties of
the Hubbard model on a bipartite lattice, such as that formed by the b sites on bilayer
graphene [39]. In this case, the non-zero coupling constants satisfygA 1g = gA 2u = 2gEK .
One such property is that one can map an attractive Hubbard model onto its repulsive coun-
terpart. This guarantees that the AF instability predicted for a given repulsive Hubbard
model will have the same critical temperature at which the instability occurs as the insta-
bility towards the layer-polarized state that happens in the attract ive counterpart. Another
property that our methods reproduce is a dynamical SO(4) symmetry [82] that allows one
to \rotate" a layer-polarized state onto an s++ superconducting state, both of which are
good ground states for an attractive Hubbard model, since the interactionpromotes on-site
pairing. This implies that, in this case, the susceptibilities towards both states should be
the same. This is, in fact, proven analytically within the framework of our RG equations
and veri�ed numerically [ 39].

We also considered the e�ects of an applied perpendicular magnetic �eld on the system
when it is in the antiferromagnetic phase. In this case the uctuations e�ects are weaker
than at B = 0 since the broken continuous symmetry is theU(1) subgroup of the full
spin SU(2) group. At B 6= 0 a �nite temperature transition into a power-law correlated
state is in fact possible. Our variational mean �eld investigation was motivated by the
fact that we �nd an instability towards an antiferromagnetic state in our R G calculations
for short-ranged interactions, as well as by experimental data[50, 6] on the gap size as a
function of an applied magnetic �eld. We �nd that the antiferromagnetic or der parameter
increases quadratically with the �eld for low �elds, then acquires a dependence of the form
B= ln(B=B0) for large �elds. We also determined the gap by considering the energyrequired
to create particle-hole excitations of our variational ground state. We �nd that this energy
is the sum of the energies of the particle and the hole given by the single-particle \auxiliary
spectrum", plus a term linear in the magnetic �eld. The excitation t hat gave us the smallest
such energy was assumed to determine the energy gap in the system. Wefound that the
gap has a slight non-monotonic behavior for low �elds, followed by a quasi-linear increase
at higher �elds. We also compared this prediction to the experimental data and found that
good agreement can be achieved.

One reason for our switch to mean-�eld methods for treating this problem is that we
have already established via RG methods the presence of the antiferromagnetic instability
for very short-ranged interactions. As long as we are considering a case inwhich we know
this phase to be present, and because said phase is gapped, we expect that an expansion
around the mean-�eld solution will be convergent, thus justifying our use of such methods in
studying the phenomenology of the phase. Another reason for our use of mean-�eld methods
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as opposed to the RG methods used previously in the zero-�eld case isthe fact that the
energy spectrum for the non-interacting problem is discrete, rather than continuous, and
momentum k is not a good quantum number, making the use of RG methods more di�cult.
While we expect our mean-�eld methods to be fairly accurate, such methods are still only
approximate. The problem of developing a more sophisticated technique for determining
the AF order parameter and the energy gap in the system is therefore of greatinterest.
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APPENDIX A

DERIVATION OF THE SITE-DEPENDENT
PHASE

We now provide a derivation of Equation (2.22), which gives the site-dependent phase
entering into our Hamiltonian for YBCO in the mixed state. The equations satis�ed by this
phase are

r � r � = 2 � ẑ
X

i

� (r � r i ); (A.1)

where r i is the position of a vortex core, andr 2� = 0. We may consider the vortex lattice
to be a rectangular lattice with primitive vectors R = m` x x̂ + n` y ŷ , where m and n are
integers, and with a basis, with one vortex displaced by a vectorr (2) � r (1) = 1

2(`x x̂ + `y ŷ )
with respect to the other.

Let us start by considering a single vortex; i.e., we determine thecontribution to the
phase,

r � r � i = 2 � ẑ� (r � r i ); (A.2)

from the vortex at r i . One way to solve this equation would be to consider a closed circular
contour centered at the position of the vortex and rewrite the equation in terms of a line
integral of r � i . If we do this, then we obtain

r � i =
1
a

�
Im

�
1

z � zi

�
x̂ + Re

�
1

z � zi

�
ŷ

�
; (A.3)

where z = x
a + y

a i is a complex number corresponding to position in units of the atomic
lattice spacing a, and zi corresponds similarly to the position of the vortex core. One might
then be tempted to add all of the contributions so obtained together to obtain the total
phase. However, the resulting sum will be divergent. To �x this problem, we note that,
in reality, Equation ( A.1) only determines the phase up to the gradient of an arbitrary
function. Let us add the gradient of following function to all of the phases except for those
coming from the vortices in the unit cell at the origin (i.e., m = n = 0):

f (r ) =
x i y � yi x
x2

i + y2
i

+
(x2

i � y2
i )xy � x i yi (x2 � y2)

(x2
i + y2

i )2 (A.4)

The gradient of this function is

r f = Im
�

1
zi

+
z
z2

i

�
x̂ + Re

�
1
zi

+
z
z2

i

�
ŷ : (A.5)
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Upon adding this to the phase contributions, as before, we �nd that the total phase is now

r � =
1
a

X

j =1 ;2

�
Im

�
�

�
z � z(j ) j

1
2L x ; 1

2 iL y
��

x̂ + Re
�
�

�
z � z(j ) j

1
2L x ; 1

2 iL y
��

ŷ
	

; (A.6)

where the sum onj is over vortex positions relative to the unit cell z(j ) (i.e., the actual

position is R + r (j ) ), L x;y = `x;y
a and � (zj! 1; ! 2) is the Weierstrass zeta function with

half-periods ! 1 and ! 2:

� (zj! 1; ! 2) =
1
z

+
X

m;n 6=0

�
1

z � 
 mn
+

1

 mn

+
z


 2
mn

�
; (A.7)

where 
 mn = 2m! 1 + 2n! 2. We have thus rendered the sum over all vortex positions
convergent.

We now wish to render the superuid velocity,

vs =
�h

2m

�
r � �

2e
�hc

A
�

; (A.8)

periodic. In the symmetric gauge that we are working in,

r � �
2e
�hc

A =
1
a

X

j =1 ;2

�
Im

�
�

�
z � z(j ) j

1
2L x ; 1

2 iL y
��

x̂ + Re
�
�

�
z � z(j ) j

1
2L x ; 1

2 iL y
��

ŷ
	

+
2�

`x `y
(yx̂ � xŷ ): (A.9)

Using the properties of the Weierstrass zeta functions that

� (z + 2 ! j ) = � (z) + 2 � (! j ) (A.10)

and that
2� (! 1)! 2 � 2� (! 2)! 1 = 1

2 �i; (A.11)

we obtain
�

r � �
2e
�hc

A
�

(x + `x ; y) =
�

r � �
2e
�hc

A
�

(x; y) � `x

�
2�

`x `y
�

1
a

4
`x

�
� 1

2L x j 1
2L x ; 1

2 iL y
�
�

ŷ

(A.12)
and

�
r � �

2e
�hc

A
�

(x; y + `y) =
�

r � �
2e
�hc

A
�

(x; y) � `y

�
2�

`x `y
�

1
a

4
`x

�
� 1

2L x j 1
2L x ; 1

2 iL y
�
�

x̂ :

(A.13)
By inspection of Equation (A.7), one can convince oneself that�

� 1
2L x j 1

2L x ; 1
2 iL y

�
is a real

number. We see that, as is, the superuid velocity is not periodic. This, however, may be
corrected by adding the gradient of

g(r ) = 2 
X

j =1 ;2

x � x(j )

a

y � y(j )

a
; (A.14)
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where
 =

�
2L xL y

�
1

L x
�

� 1
2L x j 1

2L x ; 1
2 iL y

�
; (A.15)

to the gradient of the phase, thus obtaining

r � =
1
a

X

j =1 ;2

�
Im

�
�

�
z � z(j ) j

1
2L x ; 1

2 iL y
��

x̂ + Re
�
�

�
z � z(j ) j

1
2L x ; 1

2 iL y
��

ŷ
	

+
2
a


X

j =1 ;2

��
y � y(j )

a

�
x̂ +

�
x � x(j )

a

�
ŷ

�
: (A.16)

To �nd the phase itself, we simply perform a line integral of the above expression. Using
the fact that

Im[f (z)] dx + Re[f (z)] dy = Im[ f (z) dz] (A.17)

and that
d
dz

ln � (zj! 1; ! 2) = � (zj! 1; ! 2); (A.18)

where � (zj! 1; ! 2) is the Weierstrass sigma function with half-periods! 1 and ! 2, we �nally
arrive at Equation ( 2.22).
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APPENDIX B

SPIN-LATTICE RELAXATION RATE IN
TERMS OF MAGNETIC SUSCEPTIBILITY

Here, we provide a derivation of Equation (3.31), which gives the spin-lattice relaxation
rate in terms of a spin susceptibility of our system.

B.1 Relaxation Rate in Terms of Correlation Functions

Our �rst task will be to �nd the transition rates Wmn (r ) for a nucleus at site r to
go from state n to state m. Rather than use Fermi's Golden Rule, we will use �rst-order
time-dependent perturbation theory directly. Let us consider a system consisting of a single
nucleus at point r and a gas of electrons. Let the state vectorjnQi represent the system
with the nucleus in state n and the electrons in stateQ. We now introduce the hyper�ne
interaction Ĥ I , which is given by

Ĥ I (r ; t) =  e n �h2
X

r 0

A(r � r 0)Î (r ; t) � Ŝ(r 0; t): (B.1)

In the interaction picture and to �rst order in the interaction, the state vector for our system
evolves according to

j I (r ; t)i = jnQi +
1
i �h

Z t

t0

Ĥ I (r ; t0) jnQi dt0: (B.2)

The amplitude for our system to evolve into a state jmQ0i is thus given by



mQ0 j I (r ; t)i = � mn � QQ0 +

1
i �h

Z t

t0



mQ0

�
� Ĥ I (r ; t0) jnQi dt0: (B.3)

We now substitute the form of the interaction into the above expression and introduce an
adiabatic \switching on" of said interaction by including an exponential factor e�t 0

, where
� is a small quantity that we will take to zero at the end of our calculation, and by letting
t0 ! �1 . We obtain



mQ0 j I (r ; t)i = � mn � QQ0 � i e n �h

Z t

�1
e�t 0 X

r 0

A(r � r 0)�
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�


mQ0

�
�
h

1
2 Î + (r ; t0)Ŝ� (r 0; t0) + 1

2 Î � (r ; t0)Ŝ+ (r 0; t0) + Î z(r ; t0)Ŝz(r 0; t0)
i

jnQi dt0: (B.4)

We note that this expression is only non-zero ifm = n or m = n � 1. We will not consider
the m = n case here because it will not contribute to 1

T1
. Let us �rst consider the case

where m = n + 1. The above amplitude becomes



mQ0 j I (r ; t)i = � 1

2 i e n �h
Z t

�1
e�t 0 X

r 0

A(r � r 0)


mQ0

�
� Î + (r ; t0)Ŝ� (r 0; t0) jnQi dt0: (B.5)

We may factor the matrix element occurring in the integral into a part involving only the
nuclear states and one only involving the electronic states. We will also factor out the time
dependence of the nuclear state by rewriting the raising operator̂I + (r ; t) in the Schr•odinger
representation. This gives us



n + 1 ; Q0 j I (r ; t)i = � 1

2 i e n �h hn + 1 j Î + (r ) jni
Z t

�1
ei (En +1 � En )t0=�he�t 0

�

�
X

r 0

A(r � r 0)


Q0

�
� Ŝ� (r 0; t0) jQi dt0: (B.6)

For convenience, we will introduce the nuclear resonance frequency, ! N = En � En � 1
�h . The

magnitude squared of the above amplitude is then

�
�
 n + 1 ; Q0 j I (r ; t)i

�
�2 = 1

4  2
e  2

n �h2
�
�
�hn + 1 j Î + (r ) jni

�
�
�
2

Z t

�1

Z t

�1
e� i! N (t0� t00)e� (t0+ t00) �

�
X

r 0r 00

A(r � r 0)A(r � r 00)


Q0

�
� Ŝ� (r 0; t0) jQi hQj Ŝ+ (r 00; t00)

�
�Q0� dt0dt00: (B.7)

We may now �nd the probability for the nucleus to transition from stat e n to state n + 1.
In doing so, we assume that the electron gas was initially in thermal equilibrium, and that
the �nal state is unrestricted. We thus obtain

Pn+1  n (r ; t) = 1
4  2

e  2
n �h2

�
�
�hn + 1 j Î + (r ) jni

�
�
�
2

Z t

�1

Z t

�1
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X

r 0r 00

A(r � r 0)A(r � r 00)
D

Ŝ+ (r 00; t00)Ŝ� (r 0; t0)
E

dt0dt00; (B.8)

where h�i represents a thermal average. We recognize the thermal average occurring in this
expression as a spin-spin correlation function:

S+ � (r ; r 0; t0� t) =
D

Ŝ+ (r 0; t0)Ŝ� (r ; t)
E

; (B.9)

where we have assumed invariance under time translation. We may then write

Pn+1  n (r ; t) = 1
4  2

e  2
n �h2

�
�
�hn + 1 j Î + (r ) jni

�
�
�
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�1

Z t

�1
e(� � i! N )t0

e(� + i! N )t00
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X

r 0r 00

A(r � r 0)A(r � r 00)S+ � (r 0; r 00; t00� t0) dt0dt00: (B.10)
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We now introduce the Fourier transform of the correlation function with respect to time,

S+ � (r 0; r ; t) =
1

2�

Z 1

�1
S+ � (r 0; r ; 
) e� i 
 t d
 ; (B.11)

so that
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Upon performing the time integrals and simplifying the result, we get
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We can now �nd the transition rate,

Wn+1 ;n (r ; t) =
dPn+1  n (r ; t)

dt
: (B.14)

Taking this derivative, we get
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We now take the limit of � ! 0. Upon doing this, the transition rate becomes independent
of time. We obtain

Wn+1 ;n (r ) = 1
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or, eliminating the delta function,

Wn+1 ;n (r ) = 1
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The only other case we need to consider now ism = n � 1. The calculation is similar, and
we obtain

Wn� 1;n (r ) = 1
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e  2
n �h2
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�hn � 1j Î � (r ) jni
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2 X

r 0r 00
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We can now �nd 1
T1

using Equation (1.13). If we de�ne the energy di�erence En � En� 1 =
�E , we may write

1
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Because the matrix elementshmj Î + (r ) jni will only be non-zero when m = n + 1, and
similarly for hmj Î � (r ) jni , we may write the above as
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B.2 Generalized Fluctuation-Dissipation Theorem

We now wish to rewrite our expression for 1
T1

in terms of spin susceptibilities. However,
because our correlation functions depend on position, we may no longer use the uctuation-
dissipation theorem in the form,

S(! ) =
2�h

1 � e� �h!=k B T
� 00(! ); (B.21)

where � 00(! ) is the imaginary part of the spin susceptibility. However, we can easily gener-
alize the theorem to the case of interest. We start by writing down the Fourier transform
of the correlation function:
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QQ0

e� EQ =kB T hQj Ŝ� (r 0; t)
�
�Q0� 


Q0
�
� Ŝ� (r ; 0) jQi dt

=
1
Z

Z 1

�1

X

QQ0

e� EQ =kB T ei (EQ � EQ 0+�h! )t=�h hQj Ŝ� (r 0)
�
�Q0� 


Q0
�
� Ŝ� (r ) jQi dt

=
2� �h
Z

X

QQ0

e� EQ =kB T hQj Ŝ� (r 0)
�
�Q0� 


Q0
�
� Ŝ� (r ) jQi � (EQ � EQ0 + �h! )(B.22)

We now wish to relate this to the Fourier transform of the spin susceptibility,

� �� (r ; r 0; t) =
i
�h

� (t)
Dh

Ŝ� (r 0; t); Ŝ� (r ; 0)
iE

: (B.23)

Taking the Fourier transform, we get

� �� (r ; r 0; ! ) =
i
�h

1
Z

Z 1

0
ei!t

X

QQ0

h
e� EQ =kB T hQj Ŝ� (r 0; t)

�
�Q0� 


Q0
�
� Ŝ� (r ; 0) jQi
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� e� EQ =kB T hQj Ŝ� (r ; 0)
�
�Q0� 


Q0
�
� Ŝ� (r 0; t) jQi

i
dt; (B.24)

or, in the Schr•odinger representation,

� �� (r ; r 0; ! ) =
i
�h

1
Z

Z 1

0

X

QQ0

h
e� EQ =kB T ei (EQ � EQ 0+�h! )t=�h hQj Ŝ� (r 0)

�
�Q0� 


Q0
�
� Ŝ� (r ) jQi

� e� EQ =kB T ei (EQ 0� EQ +�h! )t=�h hQj Ŝ� (r )
�
�Q0� 


Q0
�
� Ŝ� (r 0) jQi

i
dt:(B.25)

If we interchange Q and Q0 in the second term, we get, after introducing a convergence
factor e� �t into the integrand,

� �� (r ; r 0; ! ) =
i
�h

1
Z

Z 1

0

X

QQ0

�
e� EQ =kB T � e� EQ 0=kB T

�
ei (EQ � EQ 0+�h! )t=�he� �t �

� h Qj Ŝ� (r 0)
�
�Q0� 


Q0
�
� Ŝ� (r ) jQi dt: (B.26)

We may now perform the time integration, obtaining

� �� (r ; r 0; ! ) =
1
Z

X

QQ0

e� EQ =kB T � e� EQ 0=kB T

EQ0 � EQ � �h(! + i� )
hQj Ŝ� (r 0)

�
�Q0� 


Q0
�
� Ŝ� (r ) jQi : (B.27)

Let us now de�ne a \discontinuity" operator, which we will denote by D i f (: : : ; ! ):

Di f (: : : ; ! ) =
f (: : : ; ! + i0+ ) � f (: : : ; ! + i0� )

2i
(B.28)

We �nd that

Di � �� (r ; r 0; ! ) =
1
Z

X

QQ0

�h�
�

e� EQ =kB T � e� EQ 0=kB T
�

(EQ0 � EQ � �h! )2 + �h2� 2
hQj Ŝ� (r 0)

�
�Q0� 


Q0
�
� Ŝ� (r ) jQi ;

(B.29)
or, in the limit � ! 0,

Di � �� (r ; r 0; ! ) =
�
Z

X

QQ0

�
e� EQ =kB T � e� EQ 0=kB T

�
hQj Ŝ� (r 0)

�
�Q0� 


Q0
�
� Ŝ� (r ) jQi �

� � (EQ0 � EQ � �h! ): (B.30)

In the �rst factor inside the summation, we may replace EQ0 with EQ + �h! because of the
delta function. When we do this, we get

Di � �� (r ; r 0; ! ) =
�
Z

�
1 � e� �h!=k B T

� X

QQ0

e� EQ =kB T hQj Ŝ� (r 0)
�
�Q0� 


Q0
�
� Ŝ� (r ) jQi �

� � (EQ0 � EQ � �h! ): (B.31)

Comparing this expression to Equation (B.22), we see that

S�� (r ; r 0; ! ) =
2�h

1 � e� �h!=k B T
Di � �� (r ; r 0; ! ): (B.32)
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This is the appropriate generalization of the uctuation-dissipation th eorem we sought. In
the case where the spin-spin correlation function and the spin susceptibility are independent
of position, this formula reduces to Equation (B.21).

There is one other relation that we will �nd useful in what follows. Let us interchange
the labels Q and Q0 in Equation ( B.30):

Di � �� (r ; r 0; ! ) =
�
Z

X

QQ0

�
e� EQ 0=kB T � e� EQ =kB T

� 

Q0

�
� Ŝ� (r 0) jQi hQj Ŝ� (r )

�
�Q0� �

� � (EQ � EQ0 � �h! ) (B.33)

Rearranging terms, we get

Di � �� (r ; r 0; ! ) = �
�
Z

X

QQ0

�
e� EQ =kB T � e� EQ 0=kB T

�
hQj Ŝ� (r )

�
�Q0� 


Q0
�
� Ŝ� (r 0) jQi �

� � (EQ0 � EQ + �h! ) = � Di � �� (r 0; r ; � ! ):(B.34)

B.3 Relaxation Rate in Terms of Spin Susceptibilities

We are now ready to write 1
T1

in terms of spin susceptibilities. Using the generalized
uctuation-dissipation theorem, we get

1
T1(r )

= 1
8  2

e  2
n �h2(�E )2

 
X

n

E 2
n

! � 1

�

�
X

mn

" �
�
�hmj Î + (r ) jni

�
�
�
2 X

r 0r 00

A(r � r 0)A(r � r 00)
2�h

1 � e� �h! N =kB T
Di � + � (r 0; r 00; ! N )+

+
�
�
�hmj Î � (r ) jni

�
�
�
2 X

r 0r 00

A(r � r 0)A(r � r 00)
2�h

1 � e�h! N =kB T
Di � � + (r 0; r 00; � ! N )

#

: (B.35)

We now use Equation (B.34) to obtain

1
T1(r )

= 1
8  2

e  2
n �h2(�E )2

 
X

n

E 2
n

! � 1

�

�
X
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" �
�
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2 X

r 0r 00

A(r � r 0)A(r � r 00)
2�h

1 � e� �h! N =kB T
Di � + � (r 0; r 00; ! N )+

�
�
�
�hmj Î � (r ) jni

�
�
�
2 X

r 0r 00

A(r � r 0)A(r � r 00)
2�h

1 � e�h! N =kB T
Di � + � (r 00; r 0; ! N )

#

: (B.36)

We may interchange the position vectorsr 0 and r 00in the second term to get

1
T1(r )

= 1
8  2

e  2
n �h2(�E )2

 
X

n

E 2
n

! � 1

�

�
X

mn

" �
�
�hmj Î + (r ) jni

�
�
�
2 X

r 0r 00

A(r � r 0)A(r � r 00)
2�h

1 � e� �h! N =kB T
Di � + � (r 0; r 00; ! N )+

121



�
�
�
�hmj Î � (r ) jni

�
�
�
2 X

r 0r 00

A(r � r 0)A(r � r 00)
2�h

1 � e�h! N =kB T
Di � + � (r 0; r 00; ! N )

#

: (B.37)

We now make an approximation|typically, the resonance frequency of our nucleus is much
smaller than the temperature scale; that is, �h! N � kB T. Because of this, one often works
in the limit ! N ! 0. In this limit, we may write

1
T1(r )

= 1
4  2

e  2
n �h3kB T(�E )2

 
X

n

E 2
n

! � 1

�

�
X

mn

� �
�
�hmj Î + (r ) jni

�
�
�
2

+
�
�
�hmj Î � (r ) jni

�
�
�
2
� X

r 0r 00

A(r � r 0)A(r � r 00) lim
! ! 0

Di � + � (r 0; r 00; ! )
�h!

:(B.38)

We may rewrite the sum on m and n in terms of Î x and Î y , obtaining

1
T1(r )

= 1
2  2

e  2
n �h3kB T(�E )2

 
X

n

E 2
n

! � 1

�

�
X

m

hmj
h
Î 2

x (r ) + Î 2
y (r )

i
jmi

X

r 0r 00

A(r � r 0)A(r � r 00) lim
! ! 0

Di � + � (r 0; r 00; ! )
�h!

: (B.39)

We can rewrite the sum ofE 2
n as
X

n

E 2
n = ( �E )2

X

n

hnj Î 2
z (r ) jni : (B.40)

We have thus reduced these sums to traces of̂I 2
x , Î 2

y , and Î 2
z . The traces of these three

operators are all equal; upon evaluating them, we obtain Equation (3.31).

122



APPENDIX C

FIERZ REDUCTION OF THE FOUR-FERMION
INTERACTION TERMS

We now provide details on the Fierz reduction of the interaction terms, Equation (5.31),
appearing in our low-energy theory for bilayer graphene. The analysis will closely follow
that of Reference [46], though it di�ers in some mathematical details.

First, however, we wish to derive the identity, Equation (5.32). Let us start with the
fact that any 8 � 8 matrix can be expanded in terms of theSU(8) generators � i :

A = 1
8

X

i

Tr( A� i )� i (C.1)

We may write this in component form as

A �� = 1
8

X

i

X

�

A � � i;� � i;�� (C.2)

Rewriting the left-hand side in terms of the indices  and � , we obtain
X

�

� � � �� A � = 1
8

X

i

X

�

A � � i;� � i;�� : (C.3)

Equating like terms in the two sums, we obtain

� � � �� = 1
8

X

i

� i;� � i;�� : (C.4)

Let us now consider a product of two matrix elements,S�� T�� . This product may be
written as X

���

� � � �� S� � �� � �� T�� : (C.5)

If we rearrange the order of the delta functions and use Equation (C.4), we obtain
X

���

� � � �� S� � �� � �� T�� = 1
64

X

���

X

i;j

� i;�� � i;� � j;�� � j;�� S� T�� : (C.6)

We may now readily rewrite this in terms of traces, thus obtaining Equation (5.32).

123



We are now ready to show how to perform the Fierz reduction of the interaction term in
Equation (5.31). Let us �rst write down a 64-component vector of the squares of bilinears
of the form, ( y� k  )2. We will arrange them in the order, V64 = [ X 1; Xs 1; Xs 2; Xs 3]T ,
where

X = [1 4; � 11; � 21; � 31; 1� 1; � 1� 1; � 2� 1; � 3� 1; 1� 2; � 1� 2; � 2� 2; � 3� 2; 1� 3; � 1� 3; � 2� 3; � 3� 3]T :
(C.7)

We now note that, if we apply the Fierz identity, Equation ( 5.33), to (  y� k  )2, then only
terms for which i = j will be non-zero. This means that, if we apply the Fierz identity to
V64, then the result will simply be V64 = � V64, where

� ij = � 1
64Tr(� i � j � i � j ): (C.8)

Since the � i = � ai � bi sci are simply direct products of three SU(2) generators, the matrix
product appearing in � ij is also such a direct product, and the trace of it is just the product
of the traces of the three \component" matrices. In other words, we may write

� ij = � 1
64Tr( � ai � aj � ai � aj )Tr( � bi � bj � bi � bj )Tr( sci scj sci scj ): (C.9)

Each of these traces is equal to 2 if either both matrices appearing in the matrix product
are equal, or if at least one is the identity. Otherwise, the trace will be � 2 due to the
anticommutative nature of the Pauli matrices. As a result, we obtain

� = � 1
8(� 
 � ) 
 �; (C.10)

where

� =

2

6
6
4

1 1 1 1
1 1 � 1 � 1
1 � 1 1 � 1
1 � 1 � 1 1

3

7
7
5 : (C.11)

We now perform a similarity transformation, MV64 = ( M � M � 1)MV64. The matrix M is
given by

M =

2

6
6
4

Q 0 0 0
0 Q Q Q
0 2Q � Q � Q
0 0 Q � Q

3

7
7
5 ; (C.12)
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where the 16� 16 matrix Q is

Q =

2

6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
4

1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 1 1 0 0 0 0 0 0 0 0 0 0 1 1 0
0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0
0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1
0 � 1 1 0 0 0 0 0 0 0 0 0 0 � 1 1 0
0 � 1 � 1 0 0 0 0 0 0 0 0 0 0 1 1 0
0 1 � 1 0 0 0 0 0 0 0 0 0 0 � 1 1 0
0 0 0 0 � 1 0 0 0 0 0 0 1 0 0 0 0
0 0 0 0 0 � 1 1 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 � 1 1 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 � 1 1 0 0 0 0 0

3

7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
5

: (C.13)

The �rst nine rows of this matrix correspond to the irreducible re presentations of the space
group of bilayer graphene, as enumerated in Table5.2, while the last seven are \orthogonal"
linear combinations to the multi-dimensional representations. Therefore, rows 1{9 and 17{
25 of M correspond to the \charge" and \spin" representations. We thus �nd that rows
1{9 of MV64 correspond to the symmetry-allowed \charge" interaction terms, in the order
of A1g, EK , A1u , Eg, A1K , Eu , A2K , A2u , and A2g, while rows 17{25 are the corresponding
\spin" interactions. If we perform the similarity transformation on � gi ven by M , we �nd
that

M � M � 1 =

2

6
6
4

QAQ � 1 QAQ � 1 0 0
3QAQ � 1 � QAQ � 1 0 0

0 0 2QAQ � 1 0
0 0 0 4QAQ � 1

3

7
7
5 ; (C.14)

whereA = � 1
8 � 
 � . We have thus reduced � to block form. All that remains is to evaluate

QAQ � 1. Upon doing so, we obtain

QAQ � 1 =
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2

6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
4

� 1
8 � 1

8 � 1
8 � 1

8 � 1
8 � 1

8 � 1
8 � 1

8 � 1
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� 1
2 0 1

2 0 0 0 0 � 1
2

1
2 0 0 0 0 0 0 0

� 1
8

1
8 � 1
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8

1
8 � 1

8
1
8 � 1

8 � 1
8 0 0 0 0 0 0 0

� 1
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4 0 1

4
1
4

1
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� 1
4 0 1

4 � 1
4 0 1

4 0 1
4 � 1

4 0 0 0 0 0 0 0
� 1

4 0 � 1
4 0 1

4 0 � 1
4

1
4

1
4 0 0 0 0 0 0 0

� 1
4 0 1

4
1
4 0 � 1

4 0 1
4 � 1

4 0 0 0 0 0 0 0
� 1

8 � 1
8 � 1

8
1
8

1
8

1
8

1
8 � 1

8 � 1
8 0 0 0 0 0 0 0

� 1
8

1
8 � 1

8
1
8 � 1

8
1
8 � 1

8 � 1
8 � 1

8 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 � 1

2 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 � 1

2 0 1
2 0

0 0 0 0 0 0 0 0 0 0 0 0 0 1
2 0 1

2
0 0 0 0 0 0 0 0 0 0 � 1

4 0 � 1
4 0 � 1

4 0
0 0 0 0 0 0 0 0 0 0 0 1

4 0 � 1
4 0 1

4
0 0 0 0 0 0 0 0 0 0 1

4 0 � 1
4 0 � 1

4 0
0 0 0 0 0 0 0 0 0 0 0 1

4 0 1
4 0 � 1

4

3

7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
5

:

(C.15)

We have thus reducedA to block form as well|a 9 � 9 block and a 7� 7 block. From
this and the above expression forM � M � 1, we see that rows 1{9 and 17{25 ofMV64 only
couple to one another, but not to any other row. If we denote byV components 1{9 and
17{25 of MV64 and by F 0 the elements ofM � M � 1 that act on these components, we have
F 0V = V. Therefore, to obtain the Fierz matrix F such that F V = 0 that we seek, we
simply subtract the 18 � 18 identity from F 0. Denoting the 9 � 9 block of QAQ � 1 by A0,
we �nd that

F =
�
A0� I A 0

3A0 � A0� I

�
: (C.16)

If we �nd the eigenvalues of this matrix, we �nd that it has nine zero e igenvalues. Therefore,
there are nine independent couplings, as asserted in the main text.
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