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ABSTRACT 

The fast increasing length of random number streams, the application of more powerful cores and 

emerging various Random Number Generators (RNGs) lead to a revolution from traditional RNGs. 

The authentic RNGs are mainly based on the physical environments, such as sound waves, light 

photons, etc. They obtain the advantage of unpredictable, and thus, are random with no doubt. 

However, in practical applications like Cryptography, lottery, and some academic requirements, etc., 

reproducibility is a very important attribute. People are searching different ways for generating 

random number streams to simulate the authentic ones. Because being generated not naturally, they 

are called Pseudo Random Number Generators (PRNGs). To distinguish the quality of these PRNGs, 

a level to gauge how similar are they as authentic random numbers is essential. Statistical tests are 

considered as accurate and efficient tests. Along with the fast development of RNGs and PRNGs, it 

takes a new theme that how to improve the statistical tests. In this article, we are introducing some 

practical test suites, including DIEHARD, NIST, TestU01, SPRNG, etc., and trying to elaborate how 

to use them. Meanwhile, I notice similar characteristics, which lead to the idea that tests in one suite 

could imitate tests in another suite. Then I’ve composed a combination file that could use all the 

testing suites. Due to the high comprehensiveness, TestU01 is used as mother board of this file. 

Afterward, I’ll trace the newest trends of PRNGs, to detect the principle of counter-based PRNG – 

Random123, and show the testing results from both BigCrush test in TestU01 and combination file. 

Also, hardware RNGs, which generate authentic random numbers, are also tested to show the quality 

of statistical tests. Last but not least, parallel tests, whose advantages are more significant, especially 

when random number streams are getting bigger, are also discussed, and so are software and 

hardware support.  

Keywords: RNG, Statistical test, test suites, NIST, SPRNG, TestU01, Random123, GRANG. 
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CHAPTER ONE 

BACKGROUND 

 

RNGs and PRNGs 

Randomness is a common phenomenon. Simply as flipping a coin, randomness works. 

Although we are living in a random world, it's not easy to trace the random events which happen 

around us. For example, we know the lottery numbers are within a range from 1 to 60, but don't 

know which numbers are chosen. People are trying to simulate the randomness by sequences of 

numbers. Actually, lottery is a general application of random number, however, it's used more 

widely than this. In areas that people want to simulate random, such as molecular movement on 

Physics, random sample selection on Statistics, forecasting weather, generating secret keys, etc., 

huge amount of random numbers are needed. Then, people have to think about how to collect the 

random numbers. An intuitive idea is based on a physical phenomena where random happens, 

denote results as numbers and record them. Just imagine toss a coin, and denote head as 1 

whereas tail as 0. Some more complex methods are utilized for continuously generating random 

number sequences, such as entropy distillation process. We could name the non-deterministic 

sources (i.e., the entropy source), along with some processing function (i.e., the entropy 

distillation process) as an RNG [1].  

Note that RNGs are based on non-deterministic sources, the random numbers they generated 

should be unpredictable. However, for some applications, we need predictable results. In early 

20th century, people recorded a sequence of random numbers into a book. Whenever they need a 

segment of random numbers, a random page is open and a serial of numbers are chosen. This is 

the earliest method, which appears to be very naive nowadays. Along with the increasing quality 

and quantity requirement, people gradually realize that generating random numbers can not 

follow the pace if only by human powers. Then, by means of computational and physical 

devices, according to some particular algorithms, endless numbers could be generated. At this 

point, people don't need to search the book for numbers, but just need to design the algorithms 
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for the devices that could generate numbers which seem to be random. The composition of a 

particular device and the algorithm executing on it is a PRNG (Pseudo RNG).  

All the algorithms could not start the PRNG without any initial input (or called seeds). If we 

just input seeds which have particular pattern, the generating result will also be following some 

particular pattern, which lost the randomness. Simply taking recursive generators (abbr. MRGs) 

as an example:  

xn = (xn-1 + … + xn-k) mod m 

If the seeds (xn-1 … xn-k) are increasing arithmetic series, so are every m/(xn-1 - xn-2) number 

sequences. Hence, seeds are required to be randomly chosen. As we mentioned in the beginning 

of this article, the output of RNG is random, then they could be used as seeds of PRNG. Actually 

we do this way in applications.  

 

RNG tests 

Now we know how to generate random numbers, either by RNGs or by PRNGs. However, 

they are just kind of simulating randomness. It's very hard for us to determine if they have the 

attribute as true random numbers, especially for PRNG and when the number sequence is 

tremendous long. We need some evidences which could persuade ourselves, in another word, 

before they are putting into applications, we need to do some tests. 

In a few cases, true random numbers appear to be non-random in some segments, whereas 

some pseudo random number sequences appear more random than true random numbers. They 

are unavoidable. When these cases happen, tester will mislead us to an opposite answer. Hence, a 

number sequence passes one test only shares us confidence that it is random, but could not 

guarantee. Generally speaking, a number sequence passes more tests, we can believe more it's 

random. Meanwhile, the test method is very important. An improper test could not increase any 

confidence. Due to its strong theoretical and practical support, statistical tests are commonly 

applied. 

The early RNG tests could be tracked back to 18th century. In 1777, Georges-Louis Leclerc, 

Comte de Buffon proposed a famous problem: Suppose we have a paper with parallel lines on it, 

each the same width with another neighbor one, and we drop a needle whose length is less than 

the width between lines, onto the paper (Figure 1). What is the probability that the needle will lie 

across a line? 

http://en.wikipedia.org/wiki/Floor
http://en.wikipedia.org/wiki/Sewing_needle
http://en.wikipedia.org/wiki/Probability
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He conceived that the probability p could be roughly calculated by equation: 

p=2l/( t) 

Where l is the length of needle, and t is the width between two neighbor parallel lines.   

 
 

 

Figure 1 
 

 
For verifying his idea, he invited the witnesses to toss the needles one by one, and record if the 

needle cross a line or not. The length of the needles l is set as exactly half of the width t. After 

tossing 2212 times, he pronounced that the crosses happen for 704 times. 2212 divided by 704 

was 3.142, which is very close to  . 

The principle of this test is not complex. Let’s call the middle point of the needle is M. 

Suppose the distance between M and the its closest line is x, and the acute angle between needle 

and parallel lines is   (Figure 2). Then where a needle is located after random tossing could be 

denoted by (x ,  ). 

 

   

 

Figure 2 
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The uniform probability density function of x between 0 and t/2 is: 

      :    0      

0   :   elsewhere 

 

The uniform probability density function of   between 0 and  /2 is: 

      :    0      

0   :   elsewhere 

 

Obviously, the x and   are independent, so the joint probability density function is the product:  

 

                    
      :    0     , 0      

0   :   elsewhere 

 

The needle crosses a line if: 

x   
         

To get the probability that the needle will cross a line, we only need to integrating the joint 

probability density function gives: 

P =                           = 
     

Like what Buffon did, if we set l to be the half length as t, the probability should be closed to 

1/  .  

This test was duplicated by different people for many times. A very famous approximation of  , 355/113, is concluded by Italian mathematician Mario Lazzarini in 1901, by following the 

same experiment [22].  The length of needle is not limited within the width between two neighbor 

lines, either. A couple of years ago, people applied this experiment into higher dimensions for 

particle movement research [23], another level of Monte Carlo simulation. 

http://en.wikipedia.org/w/index.php?title=Mario_Lazzarini&action=edit&redlink=1
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Originally, this experiment was used to calculate the approximation of  . It’s also a very good 

example to simulate random number streams and testers. Once tossing, record cross as 1 and not 

cross as 0. Repeat it for n times, we get a n bit stream. Then we could use the relationship 

between this stream and the estimator   to estimate if it is random. This is a prototype of 

statistical tests.  

A statistical test provides a mechanism for making quantitative decisions about a process or 

processes. The intent is to determine whether there is enough evidence to "reject" a conjecture or 

hypothesis about the process [2]. The conjecture is called the null hypothesis (denoted as  0). 

During the experiment, two kind of errors may happen: originally the  0 is correct, but we reject 

it(which is called the error of the first type), and originally the  0 is incorrect, but we accept 

it(which is called the error of the second type). We are more willing to reduce the second one 

than the first, so the principle is try to reduce the error of the second type while keeping the error 

of the first type in an acceptable level (Table 1). 

 
 

Table 1   0 hypothesis 

Assumption of  0 
Conclusion 

Accept  0 Reject  0  0 is true No Error Error of 1st Type  0 is false Error of 2nd Type No Error 

 
 
Again, let's take flipping a coin for example. Suppose in an experiment, we are required to flip 

for 100 times, and record every face as sample. It' estimated that both head and tail may appear 

for roughly equal times, then we could predefine the  0 as "this coin is not biased towards 

heads(or tails)", and set 1% as threshold. In most cases,  0 will be accepted, however, there still 

exist a chance, for instance, that the heads appears 90 times or more while tail appears 10 times 

or less. Then according to probability formula: 

Prob = 
                    

the result is less that 1%, then  0 is rejected. In this situation, the error of the first type happens. 

Similar instance but change  0 into its opposite proposition -- "this coin is biased towards 
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heads(or tails)" may leads to be rejected in most cases, and may cause the error of the second 

type as well. 

In different statistical tests, respective estimators are used. We will discuss them in second part of 

this paper. 
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CHAPTER TWO 

STATISTACAL TESTS 

    As discussed, a number sequence passes a statistical test cannot guarantee that it is random, 

but builds more confidence. People usually pack several RNG testers which test in different 

ways into a battery, then use the test result as a whole to evaluate the randomness. Here I’ll cite 

four random number test suites who are widely applied. Detailed explanations of distinct 

statistical test methods are provided.  I’m also trying to show the connection between different 

test suites. 

 

Testing theory  

    In statistical hypothesis testing, p-value is a probability. It is used to estimate the difference 

between the testing sample and other tested samples, when assuming the null hypothesis  0 is 

true. The significant level (usually denoted as  ) is often 5%, which means the extraordinary any 

result that is within the most extreme 5% of all possible results under  0. When p-value is less 

than  ,  0 is traditionally rejected, and the result is said to be statistically significant. Especially, 

when p-value is less that 1%, it’s said to be very statistically significant.  

There are multiple methods for calculating p-value. In RNG testing, it could be generally 

separated into two steps. The first step is to choose a statistical estimator for a sample. Then go 

to the second step, calculate the p-value by calling special functions.  

For discrete distributions, due to most of the existed samples follow uniform distribution, Chi-

square (   ) is most commonly used as estimator in the test suites. Also, normal distribution, 

Poisson distribution and binary distribution are followed in some existed samples, then 

respective estimators are adopted. These could be found in any entry-level Statistic books, so it is 

not necessary to narrate more. For continuous distributions, Kolmogorov-Smirnov test (K-S test) 

is an advanced option. It tries to determine if two datasets differ significantly.  

  Before test, it requires the cumulative distribution function of the testing sample, and decides 

which distribution the sample follows, so it has the advantage of making no assumption about the 

distribution of data. 
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Cumulative Distribution Function      = 
            du 

Next, compute the maximum distance between this distribution and the exact tested 

distribution D (Figure 1), and multiple D with the square root of number of samples. Here 

absolute distance is taken, so D should be positive. 

After obtaining the estimator results, calculating p-value could be executed by calling 

respective functions. 

 

Complementary Error Function 

erfc(z) = 
             

 

Gamma Function      =              

 

Incomplete Gamma Function 

P(a,x)   
                              

 

complementary Incomplete Gamma Function (igamc) 

Q(a,x)   1- P(a,x)                                

 

Depending on the values of its parameters a and x, the incomplete gamma function may be 

approximated using either a continued fraction development or a series development. The 

specific functions that are utilized are igamc (for the complementary incomplete gamma 

function) and lgam (for the logarithmic gamma function). In last segment of this chapter, how to 

use the estimator and the special functions to calculate p-value is demonstrated. 
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Figure 3 
 

 

Commonly used test suites 

NIST/FIPS 

National Institute of Standards and Technology (NIST), through its Information Technology 

Laboratory (ITL), provides leadership, technical guidance, and coordination of government 

efforts in the development of standards and guidelines for The Federal Information Processing 

Standards Publication Series (FIPS PUB Series) [4]. In FIPS PUB 140-2, it pronounces security 

requirements for cryptographic modules, in which it provides four increasing qualitative levels of 

security. The standard stipulates that an approved RNG shall be used for generation of 

cryptographic keys used by an approved security function. For ensuring a module is functioning 

properly, it is required to pass some particular tests within which statistical tests are contained. 

For cryptographic applications, ITL at the NIST also prompts a statistical test suite for RNGs and 

PRNGs.  

  There are four statistical tests in FIPS statistical test, include Monobit test, Poker test, Runs test 

and the test for the longest run of 1s in a block. All of them has been included in different test 

suites, so I’ll not repeat explanation here. The NIST Test Suite is a statistical package consisting 

of 15 tests that were developed to test the randomness of (arbitrarily long) binary sequences 

produced by either hardware or software based cryptographic random or pseudorandom number 

generators, including the monobit test, monobit test within a block, the runs test, test for the 

longest-run-of-ones in a block, the binary matrix rank test, the spectra test, the non-overlapping 

and overlapping template matching test, the linear complexity test, Maurer’s “universal 
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statistical” test, the serial test, the approximate entropy test, the cumulative sums test, the random 

excursions test and the random excursions variant test. The tests are designed from various 

aspects, and verify the randomness from distinct directions, consequently. Next, I’ll make a high 

level description for each test.  

    Before expanding the narrative, I’d like to introduce something in common. In this suite, the 

length of testing sequence is usually between 103 and 107. In order to facilitate the description, 

I’ll only show how a test runs in a relatively shorter length. The tests are applying the same rules 

to the rest of the sequence. In addition, most of the tests are using standard normal and chi-

square (  ) as reference distribution. The standard normal distribution is used to compare the 

value of the test statistic obtained from the RNG with the expected value of the statistic under the 

assumption of randomness. It has the form:          

where x is the sample test value,   is the expected value and    is the variance. The    

distribution is used to compare the goodness-of-fit of the observed frequencies of a sample 

measure to the corresponding expected frequencies of hypothesized distribution. The test statistic 

is of the form:                   

where     and    are the observed and expected frequencies of occurrence of the measure, 

respectively.  

Unless specified, the length of instance sequence is n, and the tested stream which is composed 

by 0s and 1s could be denoted as:                  

Additional information may be found at http://www.itl.nist.gov/div893/staff/soto/jshome.html.  

 

 Monibit test 

  This test focusing on the 0s or 1s in stream  . As we could easily imagine, like the game of 

tolling coin, that both sides should be roughly equal. This test access the closeness of the fraction 

of 1s to 
  .  It’s also called Frequency test, and is also employed in FIPS test suite. This is a very 

basic test. Although there is no requirement for testing sequences, Monobit test is suggested to 
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be executed before implementing other tests, because if the stream fails this test, it could be 

expected that there will be a big trouble when executing other tests. 

   In this test, Sobs is used as test statistic:                  

where         . The reference distribution is half normal, which means we are using 
          

instead of 
       when the latter is normal distribution. If the tested stream contains too many 1s of 

0s,      will be forward away from the origin of number axis, which will lead the 

P-value=erfc          

to be out of range (0.01, 0.99), then fail the test. 

 

 Frequency Test within a Block 

  In this test, the tested stream is divided into multiple blocks, each of which has length M. The 

rest part, if exist, is discarded. So there will be totally        non-overlapping blocks. If the 

length of block is equal to the length of stream, it is degenerated to Monobit test. Then the test 

calculates the proportion of 1s in each block using the equation:                     

After collecting the different proportions, we could compute the    statistic: 

                     
    

The         will be applied into Incomplete Gamma Function with the number of blocks N, and 

calculate the 

P-value=igamc                

If the P-value is falling into (0.01, 0.99), the stream passes the test, otherwise fails. 

 

 Runs Test 
  In a stream, if the following bit or bits are the same with the current bit, we call the identical 

segment a ‘Run’. In another word, a ‘Run’ is a segment of at least two identical bits with both 

sides are neighbor with a different bit. For example, if  



 

12 

 

             

then        = 111,      = 00,      = 11 are all the three Runs in this stream. This test is caring 

about the frequency of runs in a stream, and inspecting if the bits in a tested stream is changing 

too fast or too slow comparing to truly random streams.  

  Before executing Runs test, we need to guarantee the necessity of going on. If the stream has 

too many 0s or 1s, it will be treated as non-random directly, the P-value will set to 0.000 and no 

more steps are needed. This pretest is less complex than Monobit test, and the result has no 

reference value to other tests. 

  First, a threshold value   is pre-defined as       . Then calculate the proportion of 1s in the 

stream:             

Next we need to check if         . If the inequality doesn’t stand, the stream fails the pretest, 

and fails the Runs test consequently.  

  If the stream passes the pretest, the total number of runs should be counted. Here we denote it 

by        : 

                  
    

where        if        , and        if        . Next we could use the Complementary 

Error Function to calculate P-value: 

P-value = erfc                                

If the P-value is falling into (0.01, 0.99), the stream passes the test, otherwise fails. 

 

 Test for the Longest Run of Ones in a Block 

  This test is mainly focus on the longest runs of 1s in M-bits blocks. For each block with length 

of M, the test will execute more than 10 times, then record the longest runs of 1s and use    

statistic to evaluate the P-value, so the length of the stream should be much bigger than block 

size. The purpose of this test is to determine whether the length of the longest runs of 1s within 

the tested stream is consistent with the length of that would be expected in a truly random stream. 

Under normal circumstance, the number of 1s and 0s are roughly equal. The irregular length of 
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runs of 1s always implies the irregular length of runs of 0s. So executing the same test on runs of 

0s is unnecessary. 

  The first step is same with the Frequency Test within A Block: dividing the stream into        non-overlapping blocks with length of M. The test code has preset 3 length values for 

test, and provides the minimum lengths of streams when using the values respectively: 

M = 8       n   128 

M = 128       n   6272 

M = 10,000       n   750,000 

  The next step is recording the frequencies of the longest runs of 1s in each block. For clearly 

illustration, the record is shown as table 2:  

 
 

Table 2  Record of longest runs of 1s 

vi M = 8 M = 128 M = 10,000 

v0           

v1 2 5 11 

v2 3 6 12 

v3    7 13 

v4  8 14 

v5     15 

v6       

N 16 49 75 

K 3 5 6 

 
 

Where the vi is the frequency of each length, K indicate how many possible frequencies there are, 

and N denotes how many blocks is the stream divided into. After collecting all of these 

parameters, the test could start calculating the    statistic: 

                     
 

    

Where the    are theoretical probability. They have been preset. People could look up [26] for 

more information. 
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  Next we could use the Complementary incomplete gamma function to calculate P-value: 

P-value = igamc                

If the P-value is falling into (0.01, 0.99), the stream passes the test, otherwise fails. 

 

 Binary Matrix Rank Test 

  This test will divide the stream into blocks whose length is determined by the sub-matrices, 

then calculating the rank of these matrices to evaluating the linear correlation. A truly random 

number stream should have only a few linear correlations between the sub-sequences. If too 

many sub-matrices have a small rank, the whole stream is considered to be linear independence, 

and will fail this test. 

  First, the size of the sub-matrices should be decided. The test gives 32 32 as default. Users 

could set the number of rows M and number of columns Q with preference. However, the 

approximation E1, E2, E3 (M   3) in the following procedure should also be changed.  

  The tested stream is divided into N =        sub-sequences and form N sub-matrices. The first 

line of each matrix is the first Q bits set in each sub-sequence, the second line is the second Q 

bits set in each sub-sequence   Then calculating the rank of every sub-matrix, and record the 

result: 

FM = full rank (the number of matrices with rank is M) 

FM-1 = full rank – 1 (the number of matrices with rank is M-1) 

Fr = N – FM – FM-1 (the number of matrices remaining) 

We don’t need to go through into every rank. The rank less than M-1 could be treated as high 

correlation and classified into Fr. To every class, there is a fixed approximation. The 

approximations vary according to the (M , Q). By default, which means (M , Q) = (32 , 32), (E1, 

E2, E3) = (0.2888, 0.5776, 0.1336). Because the matrices are classified into 3 groups, the result 

is a    distributation:                                                     

Next we could use the Complementary incomplete gamma function to calculate P-value: 

P-value = igamc                           

If the P-value is falling into (0.01, 0.99), the stream passes the test, otherwise fails. 
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 Discrete Fourier Transform Test 

  This test is also called Spectral test. Discrete Fourier Transform (DFT) is a method always 

applied in Fourier analysis. It’s used to transform one function which is often in time domain 

into another function which is frequency domain representation. The DFT requires an input 

function that is discrete. In this test, we will mainly focus on the peak heights in the DFT of the 

sequence. Through observing whether the number of peaks exceeding the 95% threshold is 

significantly different than 5%, we could detect the periodic features in the tested stream and 

evaluate how big the deviation between the tested stream and the assumption of randomness. The 

test statistic being adopted is d: the normalized difference between the observed and the expected 

number of frequency components that are beyond the 95% threshold. 

  In the beginning, the stream needs to be substituted to streams with 1s and -1s by function         .The same trick has been used in Monobit test. Then implement DFT to the new 

stream:                       
    

Where  

                                                                    

 

Because of the symmetry of complex-value transform, only the values from 0 to        are 

considered, which means we only need to keep              . For obtaining the peak heights, 

modulus function will be implemented on the f sequence:                                        
So far the operation on the sequence has been done. According to the assumption, 95% of the M 

values should be less than: 
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It’s easy to count how many Ms is less than T, and denote it by N1. And we could also compute 

the expected theoretical numbers of peaks that are less than T. Notice the symmetry, the 

expected number          . The test statistic:                       

Next we could use the Complementary Error Function to calculate P-value: 

P-value = erfc         

If the P-value is falling into (0.01, 0.99), the stream passes the test, otherwise fails. 

 

 Non-overlapping Template Matching Test 

  This test is mainly focus on the repetitive of template (denoted by B) within the tested stream. 

The template is a pre-defined specified non-periodic m-bit stream, and the tested stream is 

divided into N blocks (N is fixed at 8 in this suite), each with length M. The test is running a 

virtual sliding window. From the start of the tested stream, the window is stuffed by the initial m 

bits. If the stream in the window does not match the template, the window slide one bits position 

and continue comparing. Once a matching happens, the counter for this block plus one and the 

window slides m bits position directly, which equals to throw away current stream and stuff the 

following m bits in the tested stream inside the window.  Suppose there is a block of 10 bits:             = 1100101101, and B = 010. Obviously, m = 3. The bits in initial window will be        = 110   010 = B. So the window slides one position, and the current stream will be        = 100. The same case continues until the window contains        = 010 = B. Then the 

counter for this block plus 1, and the window slide 3 bits position. Now the stream in the window 

should be        = 110. After getting the matching frequencies of each block, the   is used as 

test statistic. 

  The theoretical mean   and variance   is simple:               
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If using the Wi to denote the matching frequency in the ith block, the test statistic: 

                    
    

Then we could use the Complementary incomplete gamma function to calculate P-value: 

P-value = igamc                

If the P-value is falling into (0.01, 0.99), the stream passes the test, otherwise fails. 

 

 Overlapping Template Matching Test 

  This test is similar with Non-Overlapping Template Matching Test. Both of them all divide 

stream into blocks, implement a virtual slide window on tested sub-streams. The difference is 

this test always slide window by one position even when the matching happens. Besides, this test 

does count the matching times of each block, however, this number is not used to calculate the    statistic directly, but accumulate to different frequencies of times. Then execute    test on 

these frequencies and evaluate the randomness. This test rejects streams which show too many or 

too few occurrences of m-bit runs of 1s, but can be modified to detect irregular occurrences of 

any periodic B. For the former application, B is always set to be a sequence of identical 1s. 

  Like the previous test, B denotes the template to be matched, m denotes the length of window 

and B, M denotes the length of sub-streams, N denotes the number of independent blocks of n. In 

this test suite, the M and N are preset to be 1032 and 968 respectively. Wi denotes the number of 

matching in the ith block. After collecting all the Wi, a new set of parameters are added in. vj is 

used to denote the frequency of j appears in all the Wi. Every single Wi is following the Poisson 

distribution, and all the vi are the    distribution. 

  In the first step, we could directly get all the Wi by using the same method with the previous test 

except always sliding the window by one position. Then for each Wi, plus one to vj if j = Wi. The 

following step is a little complex. For dealing with Poisson distribution, we need to count   in 

advance:                                 
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  If U denotes a random variable with the compound Poisson asymptotic distribution, then for      with      : 

                         
   

                        

There are also some requirements for the value of   and  . However, then are concerning on 

another concept: degrees of freedom K. This is more related to Statistic, so this paper will not 

involve it. The test predefines K to be 5. 

  When we found all the parameters we need, the     could be calculated: 

                      
 

    

After obtaining the   , the P-value could be computed by Complementary incomplete gamma 

function: 

P-value = igamc                

If the P-value is falling into (0.01, 0.99), the stream passes the test, otherwise fails. 

 

 Maurer’s “Universal Statistical” Test 

  This test is designed by Ueli Maurer in 1992. It is working in a unique way. It focuses on the 

distance between two matching patterns. A stream with relatively short such distances is 

regarded as that could be significantly compressed without loss of information, thus lack of 

randomness and fail the test. This test play an important role in Cryptography as the author 

asserted “it is the correct quality measure for a secret-key source”. He also claimed it “measure 

the actual cryptographic significance of a defect because it is related to the running time of an 

enemy’s optimal key-search strategy”.  

  The tested stream is partitioned into blocks. The block size L could be defined by users. In this 

test, the first Q blocks are used as initialization sequence. The rest part could be divided into at 

most K blocks, and the rest bits are discarded (Figure 4). 

  Next, a table is created for each possible L-bit value. Hence, there will be   entries. For each 

entry, it only need to record one thing, i.e., the block number (denoted by Tj, where       ) 

of the last occurrence of this entry. If an entry never happens before, the number under it should 

be 0.  
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Figure 4 
 

 
  After initialization, the rest K blocks are examined one by one. For each block, check the 

number of blocks since the last occurrence of the same K-bit block, replace the value in the table 

with the number of the current block. Add the calculated distance between re-occurences of the 

same L-bit block to an accumulating log2 sum of all the differences detected in the K blocks, i.e. 

sum = sum +           , where i is the current block number, and Tj is the number under the 

matching block in the table. The test is using the sum of the log2 distances between matching 

blocks as test statistic. It should follow the half-normal distribution. The test statistic could be 

computed as follow: 

                   
      

Thus the P-value could be computed by Complementary Error Function: 

P-value = erfc                            

Where the expectedValue(L) and variance are taken from a table of pre-computed values [27]. 

Under an assumption of randomness, the sample mean, expectedValue(L), is the theoretical 

expected value of the computed statistic for the given L-bit length. The theoretical standard 

deviation is given by: 

                  

Where: 
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If the P-value is falling into (0.01, 0.99), the stream passes the test, otherwise fails. 

 

 Linear Complexity Test 

  This test related to a kind of RNG which is called Linear Feedback Shift Register (LFSR). 

Before introducing this test, a brief introduction of LFSR is necessary. A linear feedback shift 

register (LFSR) is a shift register whose input bit is a linear function of its previous state. The 

most commonly used linear function of single bits is XOR. Thus, an LFSR is most often a shift 

register whose input bit is driven by the XOR of some bits of the overall shift register value 

(Figure 5). The initial value is called the seed. Once the seed is given, the whole circle is fixed. 

So it’s very important of picking a seed. A bad seed will lead to a short period, thus lose 

randomness. With each clock tick, certain tapped bits of the LFRS are evaluated by a feedback 

function. The output of this feedback function is then shifted into the register. The output of the 

register is the bit that is shifted out. In Figure 5, the feedback algorithm is: 

                           

  This test is caring about the length of a LFSR. The length of a LFSR will decide the possible 

period of the stream. A long LFSR may have a long period, which depends on the seed. However, 

a short LFSR is destined to be with short period. The purpose of this test is to determine whether 

or not the stream is complex enough to be considered random. 

  At first, the stream is partitioned to N blocks, each with length M. Then implement Berlekamp-

Massey algorithm [27] on every block. The B-M algorithm could calculate the lowest degree 

feedback polynomial of LFSRs to a particular binary stream. Record the lowest degree Li of the 

feedback polynomial of the ith block. For each block, calculate a value of Ti: 

                    

Where   is the theoretical mean: 

http://en.wikipedia.org/wiki/Shift_register
http://en.wikipedia.org/wiki/Linear#Boolean_functions
http://en.wikipedia.org/wiki/Linear#Boolean_functions
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The distribution graph of Ti reveals that the most of them are concentrated in the interval (-2.5, 

2.5). Next, record the Ti value in         as follows: 

                                                                                                        

                                                                                             

                                                                                                  

                          

The theoretical probabilities            of these intervals have been pre-calculated and given 

below: 

                                            

                                 

After collecting all the parameters, the    statistic could be calculated: 

                      
 

    

 And then the P-value could be computed by Complementary incomplete gamma function: 

P-value = igamc               

If the P-value is falling into (0.01, 0.99), the stream passes the test, otherwise fails. 
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Figure 5 

 

 

 Serial Test 

  The focus of this test is the frequency of every m-bit permutation stream in the tested stream. In 

a truly random stream, all the    possible patterns should have roughly equivalent occurrences. 

This test is checking if one pattern of m-bit stream appears approximately the same as other 

patterns in a tested stream. When m = 1, this test degenerates to Monobit test. 

  The length value m could be chosen by user. The test will not only check all the possible m-bit 

overlapping permutation streams, but also check m-1-bit and m-2-bit if    . When executing 

checking a m-bit stream, the tested stream is required to add the initial m-1 bits to the tail. The m-

2 or m-3 initial bits will add to the tail when checking a m-1-bit or m-2-bit stream respectively. 

The test statistic will show how well the observed frequencies of m-bit patterns match the 

expected frequencies with the same length.  

  For each m-bit pattern      , the number of matching through the tested stream will be 

recorded in       . Similarly, the appearance of each m-1-bit pattern         and m-2-bit 

pattern         will be recorded in          and          respectively. 

  The test will count all the appearances of these stream, and then compute: 
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The test statistic needs the difference and square of difference between these accumulations:                                             

  Both of the upper test statistics could be used to evaluate P-value by Complementary 

incomplete gamma function: 

P-value1 = igamc                 and      P-value2 = igamc               

If the P-value is falling into (0.01, 0.99), the stream passes the test, otherwise fails. 

 

 Approximate Entropy Test 

  Similar with the Series Test, this test is also interested in the frequency of all possible m-bit 

permutation streams, but it evaluates the randomness in a different way. Given a length value m, 

in addition to the counting of all the m-bit patterns, the test also counts all the possible m+1-bit 

permutation streams. The difference between these two situations is compared with the 

difference in truly random number sequences and decide whether the tested stream is random or 

not.  

  Here the same denotations with the former test are used. Counting the occurrences is following 

the same way, so more repeat is not necessary. Suppose the collecting of all the        and          has been done. Compute:                           and                                   

for all the       and        . This is the proportion of matching times of each sub-stream in 

the overlapping tested stream. Then compute: 

                  
                                             

         
Where             and                 respectively. The difference between these two values 

could be used as test statistic: 
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 And then the P-value could be computed by Complementary incomplete gamma function: 

P-value = igamc             

If the P-value is falling into (0.01, 0.99), the stream passes the test, otherwise fails. 

 

 Cumulative Sums Test 

  In a random number stream, the number of 1s and 0s should be roughly equal to each other. 

This is a basic consensus and has been applied into tests by different way. This test reaffirms this 

rule. It provides two scanning orders and use a parameter mode to control: mode = 0 means scan 

forward and mode = 1 for backward. Without loss of generality, suppose mode = 0 in following 

introduction. It turns the tested stream into bits of 1s and -1s by a trick which has been played for 

several times: the new stream is            where         , then accumulate them 

together. The function of the test is like a man who is walking from origin point. When 

processing the ith bit, it equals to let the man move one step to left if      , or right if     . 

The distance after each step, Si, should be recorded. After processing all the bits, it will compare 

all the Si  and get                , which means the maximum distance from origin point to 

the man when he was walking. Obviously, z will follow normal distribution. Hence the P-value 

could be calculated by: 

P-Value =                                                                                                

Where   is the standard normal cumulative probability distribution function:                 
     

If the P-value is falling into (0.01, 0.99), the stream passes the test, otherwise fails. 

 

 Random Excursions Test 

  This test is interested in the same thing with the previous test: the walking distance from the 

origin point. However, this one is in a more complex manner. It more focuses on the number of 

circles having exactly K visits in a cumulative sum random walk. A ‘circle’ means the walking 

man leaves the origin point and walk back again. The purpose of this test is to determine if the 
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number of visits to a particular state within a cycle deviates from what one could expect for a 

random sequence.  This test contain a series of eight tests, each conclude a P-value separately. 

The same parameters with the previous test will follow the same denotations. The initial steps are 

also normalizing tested stream   to X, and record the distance Si after each step, then form the set               .  

  Next the set S should be installed in head and tail with a 0 separately and form   ,                    . If using J to denote the circles hidden in   , J =  the total number of 0s in    
- 1. In the test suite, if a long bit stream with       , it will be treated less of randomness and 

the test doesn’t continue any more. 

  Afterward, for each cycle and for each non-zero state value x having values in set                      , compute the frequency of each x within each cycle. Then for each of 

the eight states of x, compute       = the total number of cycles in which state x occurs exactly k 

times among all cycles, for          . All the frequencies greater than 5 are stored in      . 

Note that             . For each of the eight states x,      ,               could be used to 

compute test statistic   : 

                                
    

Where       is the probability that the state x occur k times in a truly random distribution. For 

each state of x, the P-value could be computed by complementary incomplete gamma function: 

P-value = igamc                

If the P-value is falling into (0.01, 0.99), the stream passes the test, otherwise the stream fails the 

test. In this test, it will generate eight P-values. If some of them are within (0.01, 0.99) yet some 

are not, further streams should be examined to determine whether or not this behavior is typical 

of the generator. 

 

 Random Excursions Variant Test 

  This test is interested in the same thing with the previous test: the walking distance from the 

origin point. However, it’s concerning on the occurrence of distance after each move. The 

purpose of this test is to detect deviations from the expected number of visit to various states in 

the random walk. To a long bit streams, even when it’s truly random, it’s possible that a segment 
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contains a lot of 1s but a few 0s or reverse situation. This will cause a temporary great distance in 

either direction. For better evaluating the randomness, the test set eighteen states which covers 

the distance from -9 to 9, each conclude a P-value separately. 

  The same parameters with the previous test will follow the same denotations. The initial steps 

are also normalizing tested stream   to X, and record the distance Si after each step, then form the 

set  S and                    . The      is used to denote the frequency of occurrence of the 

given state x. As just introduced,                                                 . 

For each x, calculate     . Then for each     , compute P-value: 

by Complementary Error Function: 

P-value = erfc                       

If the P-value is falling into (0.01, 0.99), the stream passes the test, otherwise fails. The same as 

the previous test, if some of them are within (0.01, 0.99) yet some are not, further streams should 

be examined to determine whether or not this behavior is typical of the generator. 

 

DIEHARD 

  DIEHARD test suite is developed by George Marsaglia. It’s first published on a CD-ROM of 

random numbers in 1995. All the 15 tests in this suite is concerning on concrete statistical tests. 

They are using different statistical estimators to calculate p-values. Some of them are also 

implying K-S test. 

 

 Birthday Spacing Test 

  This test is based on an analogy: choosing m birthdays from a year of n days, then record the 

distance, also called spacing, between every two neighbor birthdays. Using j to denote the 

number of spacing occurred more than once, j is asymptotically Poisson distribution with mean       . According to the principle of birthday attack, the size of container, n, should be large 

enough. The experience also supports this point. Normally, n is required to be larger than    . In 

this test suite,           , so that the underlying distribution for j is taken to be Poisson 

with         . 

  To implement this test, a sample of 500 j’s is taken. It’s using chi-square test to provide a p-

value. The The first test uses bits 1-24 (counting from the left) from integers in the specified file. 
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Then the file is closed and reopened. Next, bits 2-25 are used to provide birthdays, then 3-26 and 

so on to bits 9-32. Each set of bits provides a p-value, and the nine p-values provide a sample for 

a K-S test.  

 

 The Overlapping 5-Permutation Test 

  This test requires a sequence of one million 32-bit random integers. Taking five consecutive 

integers and compare them, and number each integer by the order. For example, the sequence 

(11,2,4,5,3) could be numbered as (5,1,3,4,2). Consequently, there will be 5!=120 permutations 

of possible orders. As many thousands of state transitions are observed, cumulative counts are 

made of the number of occurrences of each state.  Then the quadratic form in the weak inverse of 

the 120x120 covariance matrix yields a test equivalent to the likelihood ratio test that the 120 cell 

counts came from the specified (asymptotically) normal distribution with the specified 120x120 

covariance matrix (with rank 99).  

 

 Binary Rank Test 

  There are two scales of binary rank test, one is 32x32 matrices and another is 6x8 matrices. The 

test for 32x32 matrices is almost the same with the Binary Matrix Rank Test in Testu01 suite, 

except a specified number -- 40,000 matrices are implemented in this suite. As to the 6x8 

matrices, it’s also very similar with the previous one. However, the ranks 0, 1, 2, 3 are rare, so all 

of them are pooled with those for rank 4. This test will take 100,000 6x8 random matrices and 

chi-square test is performed on counts for ranks 4, 5, and 6. 

 

 The Bitstream Test 

  In this test, the tested sequence is bit streams. Treat every bit as a ‘letter’, and a consecutive of 

20 bits is grouped as a ‘word’. Here it’s using overlapping, which means from the first bit to the 

twentieth bit is one letter, from the second to the twenty-first forms another one, and so on so 

forth. Obviously, there will be totally 220 possible words. After composing all the words, it will 

observe how many words have never appeared.  

  The bit stream is required as long as to be enough for composing 221 overlapping 20-bit words, 

so the minimum string will contain 221 + 19 bits. In this case, the number of missing words j 

should be (very close to) normally distributed with                    . Thus 
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should be a standard normal variate that leads to a uniform         p-value. The test is repeated 

twenty times. 

 

 The OccupancyTest 

  There are totally three tests in Occupancy test: OPSO (Overlapping-Pairs-Sparse-Occupancy), 

OQSO (Overlapping-Quadruples-Sparse-Occupancy) and DNA. These tests are very similar as 

Bitstream Test. However, they are taking shorter word length and letters are chosen from a big 

pool. 

  The OPSO test considers 2-letter words from an alphabet of 1024 letters.  Each letter is 

determined by specified bits from a 32-bit integer in the sequence to be tested. OPSO generates 

221 (overlapping) 2-letter words (from 221+ 1 "keystrokes") and counts the number of missing 

words j -- that is 2-letter words which do not appear in the entire sequence. That count should be 

very close to normally distributed with                    . Thus 
            should be a 

standard normal variable. The OPSO test takes 32 bits at a time from the test file and uses a 

designated set of ten consecutive bits. It then restarts the file for the next designated 10 bits, and 

so on. 

  OQSO means Overlapping-Quadruples-Sparse-Occupancy. The test OQSO is similar, except 

that it considers 4-letter words from an alphabet of 32 letters, each letter determined by a 

designated string of 5 consecutive bits from the test file, elements of which are assumed 32-bit 

random integers. The mean number of missing words in a sequence of 221 four-letter words, 

(221+3 "keystrokes"), is again                    .  The   is based on theory;   comes 

from extensive simulation.  

  The DNA test considers an alphabet of 4 letters: C,G,A,T, determined by two designated bits in 

the sequence of random integers being tested.  It considers 10-letter words, so that as in OPSO 

and OQSO, there are 2^20 possible words, and the mean number of missing words from a string 

of 221 (over-lapping) 10-letter words (221+9 "keystrokes") is 141909. The standard deviation       was determined as for OQSO by simulation.  (  for OPSO, 290, is the true value to 

three places), not determined by simulation.  

  This test is also known as a kind of Monkey test. A monkey test means the test runs with no 

specific test in mind, like a monkey invented unintentionally. 
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 Count-The-1’s Test 

  This test requires a 32-bit integer stream, but only uses byte of each integer, for example, the 

leftmost byte. Each byte contains 8 bits. The number of 1s in each byte may be 0, 1, 2, 3, 4, 5, 6, 

7, 8 with possibility 
    ,     ,      , 

     , 
     , 

     , 
     , 

    , 
    , respectively. Then denote different 

occurrence of 1s as a letter. In order to balance the possibilities, both the head and tail 

occurrences are pooled into one letter, say 0, 1, 2   A, 3   B, 4   C, 5   D, 6, 7, 8   E, with 

possibility of 
     , 

     , 
     , 

     , 
     , respectively.  

  Now there are two ways to implement this test. The first is to takes five specific bytes from five 

successive integers, and the second one is to take five bytes continuously from the byte streams. 

Then count 1s in each byte and compose a word by the corresponding letters. So there will be 

totally 25 possible compositions. A sample of 256,000 overlapping words is implemented and 

counts are made on frequencies of each word. The quadratic form in the weak inverse of the 

covariance matrix of the cell counts provides a chi-square test. The difference of the naive 

Pearson sums of 
                             on counts for 5-letter and 4-letter cell counts. 

 

 Parking Lot Test 

  Suppose there is a square parking garage with each side 100 parking lots. There are totally 

10,000 parking lots. Once a car is coming, it attempts to park in a random lot. If the lot is empty, 

then park it there and increase the successful parking list. OR, the lot has been taken by another 

car, the crash increase one and it needs to find another parking lot. If plotting the number of 

attempts n versus the number of successfully parked k, the curve on the graph should be similar 

to those provided by a perfect RNG.  

  However, the graph display is not provided in this test suite. A simple characterization o 

random experiment is used. Suppose there are k cars parking successfully after          

attempts. Obviously, k is following normal distribution and Simulations shows that                   . Thus 
             should be a standard normal variable. This will be executed 

for ten times, all the results are passed into a K-S test. 
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 The Minimum Distance Test 

  In this test, another bigger square with side of 10,000 is provided. Randomly picking        

points on it and find the d, the minimum distance between each pairs of points. In a truly and 

independently random case, the d2 is exponentially distributed with mean 0.995. Thus                
 is uniform on        . The test will repeats 100 times and get 100 d, then pass 100 ts to K-

S test.  

 

 The 3D Spheres Test 

  Similar as the previous test, this test is also based on the minimum distance between two points. 

However, the execution happens in three-dimension. A cubic with each edge of 1000 is provided. 

The test randomly chooses 4000 points in it, and to every point, center a sphere which is large 

enough to reach the closest point. Thus the volume of the smallest such sphere is close to 

exponentially distributed with mean 40 , and the radius cubed is exponential with mean 30 

which is obtained by extensive simulation. The test will repeat 20 times, each time it will 

generate 4000 such spheres. Each minimum radius cubed leads to a uniform variable by means 

of           
, then a K-S test is done on the 20 p-values. 

 

 The Squeeze Test 

  Given a huge integer, multiplied by a sequence of random floats between        , how fast will it 

reduce? This is the point that the test cares about. Initially, the huge integer k=2
31

-

1=2147483647. The tested sequence will be converted to floats on        . Every time, it uses k to 

multiple a number in the float stream, then keep the ceiling of the result to multiple the next one, 

and so on so forth until the result is 1. This test will repeat 100,000 times, then count the 

occurrence of how many floats are using in every single test. The number of times is classified as 

j:              . j is used to provide a chi-square test for cell frequencies.  

 

 The Overlapping Sums Test 

  This test requires the tested stream to be float on        . Add overlapping sequences of 100 

consecutive floats, for example,                   ,                      

where U(i) is uniform float. The S’s are virtually normal with a certain covariance matrix. A 
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linear transformation of S’s converts them to a sequence of independent standard normal, which 

are converted to uniform variables or a K-S test. The p-value from ten K-S test are given still 

another K-S test. 

 

 The Runs Test 

  This test is the same as the Runs Test in Testu01, so no more explanations here. It tests 10,000 

integers and repeats 10 times. 

 

 The Craps Test 

  This test is concerning on the very popular gambling game Craps. In this game, the gambler 

will toss two dices, and expects to get a favorable point. In this test, the tested stream is 

converted to floats on        . For each float, multiple it by 6, and retrieve the integer part and 

plus 1 for simulating toss a dice. The Craps will be played for 200,000 times. The wins and 

number of toss for ending each game is recorded. With the winning ratio of         , the number 

of wins should be close to a normal with                              . 

Theoretically, the game could runs infinitely. However, in practice, the game will be completed 

by tossing within 20 times, so it lumps all tossing times larger than 20 with 21. All the counts of 

number of throws are passed into a chi-square test. 

 

  George Marsaglia provided the source code written by C and FORTRAN, which could be 

downloaded on http://www.stat.fsu.edu/pub/diehard. More relative information could also be 

found there.  

 

SPRNG 

  Scalable parallel pseudorandom number generator (SPRNG) has excellent property on 

generating large scale random numbers in parallel, so it’s suited to parallel Monte Carlo 

applications. It also contains a RNG test suite. The tests in it is mainly based on Knuth’s book [5], 

in which he describes several empirical tests, and also a few other tests. People could use this test 

suite to test either a single random number stream or correlations between streams in a parallel 

random number generator. Besides, the test suite is capsulated well and easy to be handled. Users 

could also test their own RNGs by this suite. The detailed manual description is published on 
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http://sprng.cs.fsu.edu, and a test wizard is demonstrated there. The code is in C and FORTRAN. 

People can download the latest version SPRNG 4.0 on the same webpage. Recently, the SPRNG 

development group is going to publish a clean version which excluding FORTRAN. Then it’ll be 

easily compiled only by C compiler. The newest version is still in the trail, and could be 

downloaded in http://ww2.cs.fsu.edu/~brailsfo/.  The applicable systems which have been tested 

including Ubuntu 11.10 and Fedora 17. 

In SPRNG test suite, the sequential tests include collisions test, coupon collector’s test, equal 

distribution test, gap test, maximum-of-t test, permutations test, poker test, runs up test, and 

serial test. It also contains an inherently parallel test – sum of independent distributions test. 

Furthermore, two physical model tests are also included in this suite, which are Ising model tests 

and Random walk tests [6, 7]. This paper will not go through there.  

 

 Collisions Test 

  The tested stream is converted to integers on interval        . Every integer could be treated 

as a ‘letter’. A ‘word’ is composed by taking md consecutive letters. If two words are same, a 

collision happens. The test takes n words and counts the number of distinct words, and use n to 

subtract this number to get the number of collisions.  

  This test is like throw balls into urns. There are dmd urns and n balls. For getting better statistical 

results, it requires                , and n should be less than the number of possible 

words, 232. Users could set the parameters n,       , and       when calling this test in the 

test suite. 

 

 Coupon Collector’s Test 

  The tested stream is converted to integers on interval        . The integers could be regarded 

as coupons. A collector achieves success when he get all the d kinds of coupons. For example,                               , when d = 4. The collector could not finish the game when 

he has collected         , because the coupon ‘0’ is not in his hand. After taking    = 0, the 

collector successes and game over. The next round will start from   . 

  This test needs to finish n round games. The occurrence of lengths in every round will be 

compared with expected distribution. In some unfortunate case, one round may run very far 

when all the coupons could be collected. In order to avoid a few extreme cases, lengths larger 

http://ww2.cs.fsu.edu/~brailsfo/
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than t will be lumped into case t. Users could set the parameters n, t, and d when calling this test 

in the test suite. 

 

 Equal-distribution Test 

  This test is simply testing the uniformity. The tested stream is converted to integers on interval        , and the test evaluate if every integer has equal probability. The parameters d and n 

could be set by users. 

 

 Gap Test 

  The tested stream is converted to floats on interval        . A measuring gap               has 

been preset. The test will count how many successive floats will fall into the gap. For example,                 , and                                           , then the first round 

will start from    and count the consecutive 3 floats. Ignoring the    who is out of gap, the next 

round will start from   .  

  The test will run n rounds and record the lengths of each round. Then it counts the occurrence 

of each length. All the lengths larger than t will be lumped into case t. Users could set the 

parameters n, t, a, and b when calling this test in the test suite. Attention:                      . 

 

 Maximum-of-t Test 

  The tested stream is converted to floats on interval        . The test cut the tested stream into n 

non-overlapping subsequence of each with length t. Then for every subsequence, record the 

largest float. The n numbers should be compared with exponential distribution. The parameters n 

and t could be preset by users. 

 

 Permutations Test 

  The tested stream is converted to floats on interval        . Every non-overlapping m successive 

floats compose a subsequence. A total of n subsequences are composed. In each subsequence, 

rank the numbers according to their magnitude, that is, the smallest float is ranked 1,  , the 

biggest float is ranked m. For example, when m = 6:                                                             
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There will be m! possible permutations. The test counts the occurrence of each permutation, and 

checks if everyone is roughly equally probable. m and n could be preset by users. 

 

  Poker Test 

  The tested stream is converted to integers on interval        . This test will separate the 

tested stream into non-overlapping subsequences with equal length k and count the numbers of 

distinct numbers obtained, denoted by l. For example, if d = 3 and k = 4,                                        

then in the first subsequence, there are 3 distinct integers, whereas in the second one only have 2. 

The test implements n subsequences and counts the occurrence of ls. Users could set the 

parameters n, k, and d when calling this test in the test suite. 

 

 Runs Up Test 

  This test is same with Runs Test in Testu01. In this test suite, it only has ascendant mode. The 

total number of ascendant sequences n and upper bound of group t could be predefined by users. 

The runs who are longer than t will be lumped into group t. No further explanation will be 

narrated here.  

 

 Serial Test 

  The tested stream is converted to integers on interval        . This test simply generates n 

pairs of integers. Each of the d2 pairs should be equally likely occur. n and d could be predefined 

by users. 

 

TestU01 

TestU01 is a software library implemented in ANSI C language. It is organized by four 

modules -- RNGs, statistical tests, pre-defined batteries of tests, and tools for applying tests to 

entire families of generators. In the first two parts, it covers most existing RNGs and RNG tests. 

The third part involves three testing batteries, composed by different tests and different size of 

random numbers. The forth part is designed to perform systematic studies of the interaction 

between certain types of tests and the structure of the point sets produced by given families of 

RNGs, and to see at which sample size n0 the test starts to reject the RNG decisively.  
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Another good attribute of TestU01 is that it provides strong API for other RNGs and PRNGs. 

The users who want to test their own RNGs or PRNGs could easily connect to respective 

interface to feed the particular tests in TestU01. The API could accept three kinds of RNs: 

unif01_Gen *unif01_CreateExternGen01 (char *name, double (*gen01)(void)); 

implements a pre-existing external generator gen01 that is not part of TestU01. It must be a 

C function taking no argument and returning a double in the interval [0, 1). Parameter name is 

the name of the generator. No more than one generator of this type can be in use at a time.  

unif01_Gen *unif01_CreateExternGenBits (char *name, unsigned int (*genB)(void)); 

implements a pre-existing external generator genB that is not part of TestU01. It must be a C 

function taking no argument and returning an integer in the interval [0, 232−1]. If the generator 

delivers less than 32 bits of resolution, then these bits must be left shifted so that the most  

significant bit is bit 31 (counting from 0). Parameter name is the name of the generator. No 

more than one generator of this type can be in use at a time. 

unif01_Gen *unif01_CreateExternGenBitsL (char *name, unsigned long (*genB)(void)); 

similar to unif01_CreateExternGenBits, but with unsigned long instead of unsigned int. 

The generator genB must also return an integer in the interval [0, 232− 1]. 

Besides, this suite could also test the random number files. The files could be either floating-

point number in [0, 1) or binary format. Users could use the functions below to call file tests: 

unif01_Gen * ufile_CreateReadText (char *fname, long nbuf); 

reads numbers (assumed to be in text format) from input file fname. The numbers must be floating-point 

numbers in [0, 1), separated by whitespace characters. Numbers in the file can be grouped in any way: 

there may be blank lines, some lines may contain many numbers, others only one. The file must contain 

only valid real numbers, nothing else. The numbers are read in batches of nbuf at a time and kept in an 

array (if nbuf is very large, a smaller but still large array will be used instead). 

void ufile_InitReadText (void); 

ieinitializes the generator obtained from ufile_CreateReadText to the beginning of the file.  

unif01_Gen * ufile_CreateReadBin (char *fname, long nbuf); 

reads numbers from input file fname. This file is assumed to be in binary format. The numbers are read in 

batches of 4 nbuf unsigned char’s at a time, transformed into nbuf unsigned 32-bit integers and kept in an 

array (if nbuf is very large, a smaller but still large array will be used instead). This function is used in 

order to test (random) bit sequences kept in a file. 

void ufile_InitReadBin (void); 



 

36 

 

reinitializes the generator obtained from ufile_CreateReadBin to the beginning of the file. 

    All the functions above are included in head file ‘unif01.h’. 

In Chapter 4, I’ll try to use the TestU01 to test the philox4x32, which is one of Random123 generator. 

A simple wrapper could help to connect the generating function in philox4x32 to BigCrush test in 

TestU01. The wrapper code could be found in APPENDIX I and testing result could be found in 

APPENDIX II. 

    Also in the same chapter, a 915GB binary file, which is generated by RdRand, is fed to BigCrush test 

in TestU01. The wrapper code could be found in APPENDIX I and testing result could be found in 

APPENDIX III.   

    The source code and users’ manual could be downloaded on 

http://www.iro.umontreal.ca/~simardr/testu01/tu01.html. 

 

Relationships between RNG testing suites 

    In different testing suites, some tests share the same or similar properties. So here comes an 

idea that if people could call all these tests within one suite, then they can save a lot of troubles, 

such as installing other suites, learn how to call testing functions in different suites, find the 

interface of random number streams in different modules, or even learn various programming 

languages. This is significant to people who is working on RNGs and relative fields.  

As just introduced, TestU01 contains most existing RNGs and statistical tests. Besides, it 

break limitations other suites suffered, such as the test function parameters are fixed in package, 

the library directory need to be prefixed before calling tests, the testing integer is required to be 

in specific length, poor portability, etc.. So it could be used to play a role as platform, on which 

almost all the tests could be implemented. Below I will try to show the correspondence of tests in 

TestU01 and other suites. (Table2, Table3) 

For tests in FIPS, TestU01 has already composed functions in which all the four tests could be 

implemented as a group: 

void bbattery_FIPS_140_2 (unif01_Gen *gen); 
  void bbattery_FIPS_140_2File (char *filename); 

The difference between them is the input of the first one is a stream of 1s and 0s, whereas of the 

second one is a binary data file’s name. All the four tests are also included in NIST test suite, so 

no repeated list here. 

    TestU01 has also composed a battery function,  

http://www.iro.umontreal.ca/~simardr/testu01/tu01.html
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void bbattery_pseudoDIEHARD (unif01_Gen *gen), 

for calling correspond tests in DIEHARD. However, the developer doesn’t recommend users to 

call this function as the DIEHARD can allow many mediocre generators pass it. Here the 

contents in this battery will not be listed. Parameters that decide the size of testing random 

number stream and the testing procedure has been pre-set, and could be reset as users‟ 

requirement when calling each test. People who are going to implement DIEHARD tests by 

TestU01 only need to call this function directly. 

    Although SPRNG tests are based on Knuth’s tests, they could also be orientated to parallel 

tests. In testing procedure, SPRNG could get the random number sequences in different streams 

in parallel, which will be explained in detail in section 4 of this paper. There is not an exact 

correspondence between SPRNG and TestU01. The Table 4 only cites the analogous functions 

 

 
Table 3 The correspondence between tests in NIST and TestU01 

Tests in NIST Test purpose Testing functions in TestU01 Backup 

Monobit test 

to determine whether the number of ones and zeros in a 

sequence are approximately the same as would be 

expected for a truly random sequence. 

sstring_HammingWeight2 L = n 

Frequency test 

within a block 

to determine whether the frequency of ones in an M-bit 

block is approximately M/2 
sstring_HammingWeight2  

Runs test 
to determine whether the number of runs of ones and 

zeros of various lengths is as expected 
sstring_Run  

Test for the 

Longest Run of 

Ones in a Block 

to determine whether the length of the longest run of 

ones within the tested sequence is consistent with the 

length of the longest run of ones that would be expected 

sstring_LongestHeadRun  

Binary Matrix 

Rank Test 

to check for linear dependence among fixed length 

substrings of the original sequence. 
smarsa_MatrixRank  

Discrete Fourier 

Transform 

(Spectral) Test 

[15] 

to detect periodic features (i.e., repetitive patterns that 

are near each other) in the tested sequence that would 

indicate a deviation from the assumption of randomness. 

sspectral_Fourier1  

Non-overlapping 

Template 

Matching Test to detect generators that produce too many occurrences 

of a given non-periodic (aperiodic) pattern 

smarsa_MonkeyBits 
The difference is 

whether the window 

moves one bit or the 

length of window when 

matching is found 

Overlapping 

Template 

Matching test 

Not a exact matching function in TestU01, 

but smultin_MultinomialBitsOver is 

similar and even more powerful 

Maurer’s 

“Universal 

Statistical” Test 

to detect whether or not the sequence can be significantly 

compressed without loss of information 
svaria_AppearanceSpacings  

Linear 

Complexity Test 

to determine whether or not the sequence is complex 

enough to be considered random 
scomp_LinearComp 

the Berlekamp-Massey 

algorithm [8] is used 

Serial Test 

to determine whether the number of occurrences of the 

2m m-bit 

overlapping patterns is approximately the same 

smultin_MultinomialBitsOver Delta = 1 
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Table 3 – continued 

Tests in NIST Test purpose Testing functions in TestU01 Backup 

Approximate 

Entropy 

to compare the frequency of overlapping blocks of two 

consecutive/adjacent lengths (m and m+1) 

smultin_MultinomialBitsOver Delta = 0 

sentrop_EntropyDiscOver  

sentrop_EntropyDiscOver2  

Cumulative 

Sums (Cusum) 

Test 

to determine whether the cumulative sum of the partial 

sequences occurring in the tested sequence is too large or 

too small 

swalk_RandomWalk1  

Random 

Excursions Test 

to determine if the number of visits to a particular state 

within a cycle deviates from what one would expect for a 

random sequence 

Not a exact matching function in TestU01, 

but similar with swalk_RandomWalk1 
 

Random 

Excursions 

Variant Test 

to detect deviations from the expected number 

of visits to various states in the random walk. 

Not a exact matching function in TestU01, 

but similar with swalk_RandomWalk1, 

Based on the times that the excursion 

returns to 0. 

 

 
 

Table 4 The correspondance between tests in SPRNG and TestU01   
Tests in SPRNG Testing Functions in Testu01 Parameters Backup 

Collisions test 
void sknuth_CollisionPermut 
and 
void smultin_Multinomial 

if sknuth_CollisionPermut, 2   t   18 and t!/n < 
231. if smultin_Multinomial, Sparse = TRUE and 
smultin_GenerCell = smultin_GenerCellSerial 

2nd method needs to 

call setup functions 

Coupon collector’s test void sknuth_CouponCollector 
1 < d < 62 

d means the RNG range is in interval [0, d-1] 

if d is too large for a 

given n, 

there will be only 1 

class for the chi-square 

and the test will not be 

done 

Equidistribution test void smultin_Multinomial 

Sparse = FALSE and smultin_GenerCell = 

smultin_GenerCellPermut 

set division to be 1 

 

use par->GenerCell to generate sequence [0 .. d - 1] 

Equals to apply 

multinomial tests on 

single numbers which 

are from 0 to d - 1 

Gap test void sknuth_Gap 

0 < a < b < 1 

a,b are fraction numbers, means the upper and lower 

boundary 

 

Maximum-of-t test void sknuth_MaxOft 

n/d   gofs_MinExpected. 

n means number of groups, each group has t numbers 

d means values of X are partitioned into d categories 

 

Permutations test 1. void sknuth_Permutation 
2. smultin_Multinomial 

n/t!   gofs_MinExpected and 

2   t   18 

if 2. Sparse = FALSE and smultin_GenerCell = 

smultin_GenerCellPermut 

2nd method needs to 

call setup functions 

Poker test void sknuth_SimpPoker 

d < 128 and k < 128 

d means the RNG range is in interval [0, d-1] 

k means k numbers in each group 

It’s strongly 

recommended that k 

and d should be 

equivalent 
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Table 4 – continued 
Tests in SPRNG Testing Functions in Testu01 Parameters Backup 

Runs up test void sknuth_RunIndep 
The last parameter in function should be set to TRUE, 

which means ascending.. 

In this test function, it 

only counts the 

sequences that longer 

than 6 

Serial test sknuth_Serial The last parameter, the dimension, should be set to 2.  

. 
 

A testing instance 

I’ll try to show how to implement a Runs Test on a given bit stream. Runs test is a common 

test being included in NIST, TestU01 and DIEHARD test suite. It counts the uninterrupted 

sequence of identical bits, and determines whether the oscillation between 0s and 1s is too fast or 

too slow. 

Let n denote the length of the testing sequence, and  i (0 i n) denote the ith bit in this stream, 

thus the whole stream is  = 1 2… n. Vn(obs) is used to denote the total number of runs. The 

distribution of Vn(obs) should obey the    distribution.  

Suppose the tested stream has 100 bits (n=100): 

   = 1110101001101011010110101001001101010110 

    1101010010011011101001100110110100110100 

 

It’s required to pre-test if this stream could pass the Monobit Test. If the difference between 

proportion of 1s (denoted as  ) and 1/2 greater than a preset threshold, usually is 2/  , then the 

stream could not pass the Monobit test. In this situation, the stream is rejected by Runs Test as 

well by default, further test is unnecessary, and p-value could be directly set to 0.00000. In this 

instance: 

 

|  – 1/2|= |43/100 – 1/2| = 0.07 < 2/   = 0.2 

 

Thus, further test is applicable. Next step is computing the test statistic Vn(obs)=             , where r(k)=0 if  k= k+1, and r(k)=1 otherwise. In this instance: 

 

Vn(obs) = (0+0+1+1+…+1+0) = 55 
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  After getting Vn(obs), P-value could be calculated: 

 

P-value = erfc                                = erfc                                                 0.222 > 0.01 

 

  Consequently, the stream   is accepted as random by Runs Test. 
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CHAPTER THREE 

RANDOM NUMBER GENERATORS 

 

    Before executing RNG tests, I’d like to introduce the RNGs and PRNGs contained in this 

article. 

Pseudo-random numbers are important in practice for their speed in number generation and 

their reproducibility.  The numbers could be floats, integers or bits of 0 or 1. Actually, they could 

be treated as same situation by using transformation among float, integer and binary. The 

integers could not be unlimited large because of the computer storage limitations. Meanwhile, 

the period is required to be as long as possible. Otherwise, the random numbers will be used out 

very soon. Another defect is that this stream will be easily guessed by other people, and could 

not be applied in confidential usages. In applications, people usually use a large prime number as 

modulus, because theoretically, the longest period under this situation is as large as the prime 

itself. In the latter case, the good news is bits include only 0 and 1, so there will not exist upper 

bound. However, it also needs to meet the long period requirement.  

 

PRNG 

    Let’s focus on the PRNGs first. After acquiring the basic requirements, people keep on 

searching the PRNGs with better and better attributes. The existing applications are included in 

different areas such as Cryptography, Molecular Physics, Monte Carlo simulations, etc. However, 

along with the increasing processing speed, the larger period and faster generating speed is 

required. Many PRNGs have been outdated and thrown into trash bin. Parallel PRNGs are 

gradually stepping onto stage. In this chapter, I’ll cite several PRNGs who are currently still in 

use, explain their working principles, show the different views, and try to analysis their potential 

development orientation in future. Because in next chapter, the statistical tests are mainly 

executed by functions in suite Testu01, I’ll also illustrate how to call the following PRNGs by 

random number generator functions in the suite. All of these PRNGs has been fed to BigCrush 
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test. The result of LCG with module 232 and MLFG are very representative, and illustrated in 

APPENDIX III.  

 

Linear Congruential Generators 

    LCG is the one of the oldest and best known PRNG. It generates integer streams. All the 

LCGs are sharing a same pattern: 

Xn+1 = (aXn + c) (mod m) 

Where the 

Xn is the output random integers; 

m is the modulus, it’s always a large prime; 

a  is the multiplier, naturally a could be any integer, however, for saving calculating time, a is 

usually taken from the interval (0 , m), besides, in the example below, we’ll see how important of 

picking the a; 

c  is an additive, the different value of c could not intervene the period, but only decide different 

order of random numbers; 

    Before starting a LCG, we need to preset the value of parameters, including m, a, c. Then we 

need to feed it a seed X0. Seed is a very important value in all the PRNGs. The bad seed could 

lead the result generated by a good PRNG into a disaster. Usually, the seeds are required to be 

taken from truly random numbers. FIPs [4] stipulated the restrictions of seeds for feeding PRNGs 

whose result would be for Cryptography applications. In the following part, we will see the 

importance of choosing seeds by comparing the expression by picking different random number 

streams as seeds. However, to a single value, it lost the randomness. We could pick any number 

as a seed. 

    The working procedure of LCG is not hard to understand. To show how exactly the large scale 

LCG works, I’d like to explain the principle by demonstrating a small scale one. 

Let’s preset the parameters and seeds before starting the LCG: 

 

m = 13 

a = 6 

c = 0 

X0 = 8 
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    Then we could get a number sequence: 

 

(X0, X1, X2, X3, X4, X5, X6, X7, X8, X9, X10, X11, X12) = (8, 9, 2, 12, 7, 3, 5, 4, 11, 1, 6, 10, 8) 

[Stream 1] (m, a, c X0) = (13, 6, 0, 8) 

 

    Now X0 = X12 = 8, the following sequence will repeat the segment again and again, If we set 

X0 to be 1, the output stream will be: 

 

(X0, X1, X2, X3, X4, X5, X6, X7, X8, X9, X10, X11, X12) = (1, 6, 10, 8, 9, 2, 12, 7, 3, 5, 4, 11, 1) 

[Stream 2] (m, a, c X0) = (13, 6, 0, 1) 

 

    It’s very clear that the sequence order in stream 2 is the same with that in stream 1. The 

difference is initial number. How about the additive value c? How will it affect the sequence? In 

Condition 1, if we change the additive c to another number, say from 1 to 12, the output stream 

will be: 

 

(X0, X1, X2, X3, X4, X5, X6, X7, X8, X9, X10, X11, X12) = (8, 10, 9, 3, 6, 11, 2, 0, 1, 7, 4, 12, 8) 

[Stream 3] (m, a, c X0) = (13, 6, 1, 8) 

(X0, X1, X2, X3, X4, X5, X6, X7, X8, X9, X10, X11, X12) = (8, 11, 3, 7, 5, 6, 12, 9, 4, 0, 2, 1, 8) 

[Stream 4] (m, a, c X0) = (13, 6, 2, 8) 

(X0, X1, X2, X3, X4, X5, X6, X7, X8, X9, X10, X11, X12) = (8, 12, 10, 11, 4, 1, 9, 5, 7, 6, 0, 3, 8) 

[Stream 5] (m, a, c X0) = (13, 6, 3, 8) 

(X0, X1, X2, X3, X4, X5, X6, X7, X8, X9, X10, X11, X12) = (8, 0, 4, 2, 3, 9, 6, 1, 10, 12, 11, 5, 8) 

[Stream 6] (m, a, c X0) = (13, 6, 4, 8) 

(X0, X1, X2, X3, X4, X5, X6, X7, X8, X9, X10, X11, X12) = (8, 1, 11, 6, 2, 4, 3, 10, 0, 5, 9, 7, 8) 

[Stream 7] (m, a, c X0) = (13, 6, 5, 8) 

(X0, X1, X2, X3, X4, X5, X6, X7, X8, X9, X10, X11, X12) = (8, 2, 5, 10, 1, 12, 0, 6, 3, 11, 7, 9, 8) 

[Stream 8] (m, a, c X0) = (13, 6, 6, 8) 

(X0, X1, X2, X3, X4, X5, X6, X7, X8, X9, X10, X11, X12) = (8, 3, 12, 1, 0, 7, 10, 2, 6, 4, 5, 11, 8) 

[Stream 9] (m, a, c X0) = (13, 6, 7, 8) 

(X0, X1, X2, X3, X4, X5, X6, X7, X8, X9, X10, X11, X12) = (8, 4, 6, 5, 12, 2, 7, 11, 9, 10, 3, 0, 8) 
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[Stream 10] (m, a, c X0) = (13, 6, 8, 8) 

(X0, X1, X2, X3, X4, X5, X6, X7, X8, X9, X10, X11, X12) = (8, 5, 0, 9, 11, 10, 4, 7, 12, 3, 1, 2, 8) 

[Stream 11] (m, a, c X0) = (13, 6, 9, 8) 

(X0, X1, X2, X3, X4, X5, X6, X7, X8, X9, X10, X11, X12) = (8, 6, 7, 0, 10, 5, 1, 3, 2, 9, 12, 4, 8) 

[Stream 12] (m, a, c X0) = (13, 6, 10, 8) 

(X0, X1, X2, X3, X4, X5, X6, X7, X8, X9, X10, X11, X12) = (8, 7, 1, 4, 9, 0, 11, 12, 5, 2, 10, 6, 8) 

[Stream 13] (m, a, c X0) = (13, 6, 11, 8) 

(X0, X1, X2, X3, X4, X5, X6, X7, X8, X9, X10, X11, X12) = (8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8) 

[Stream 14] (m, a, c X0) = (13, 6, 12, 8) 

 

    From the Stream 1 to Stream 13, except Stream 2, we can see that different additive will lead 

to a different number sequence. A further observation reveal that these sequences are not linear 

correlated.  Consequently, to a particular LCG, if people want to reuse it for several times, 

changing c may be a good idea. It could effectively avoid correlations between different 

generated streams by a same LCG.  However, in Stream 14, the output stream is an unique 

number. According to number theory, this situation will always happen whenever the (m, a, X0) 

is given. Excluding this situation, the c value will have no effect on the period of a LCG. People 

should pay special attention to this when they choose parameters.  

    The upper examples show us that changing X0 could not affect the period of a LCG, and 

various additive c will lead to various number sequences. Then what will happen if multiplier a 

is changed? In Condition 1, if we set a to be 4, the output stream will be: 

 

(X0, X1, X2, X3, X4, X5, X6, X7, X8, X9, X10, X11, X12) = (8, 6, 11, 5, 7, 2, 8, 6, 11, 5, 7, 2, 8) 

[Stream 15] (m, a, c X0) = (13, 4, 0, 8) 

 

    The period is shortened into half of original length. For verifying the conclusion we get above, 

in this situation, if set c to be 5, the output stream will be: 

 

 (X0, X1, X2, X3, X4, X5, X6, X7, X8, X9, X10, X11, X12) = (8, 11, 10, 6, 3, 4, 8, 11, 10, 6, 3, 4, 8) 

[Stream 16] (m, a, c X0) = (13, 4, 5, 8) 
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    The period is still half of original length. This strengthened that the c will not affect the period. 

However, the situation will get even worse if we give another a, say 3: 

 

(X0, X1, X2, X3, X4, X5, X6, X7, X8, X9, X10, X11, X12) = (8, 11, 7, 8, 11, 7, 8, 11, 7, 8, 11, 7, 8) 

[Stream 17] (m, a, c X0) = (13, 3, 0, 8) 

 

    The period in Stream 17 is 1/4 of the original length. From the demonstrations, we realize how 

important the multiplier a is: the period of the LCG may turn into half or even smaller value. 

In currently using LCGs, the smallest modulus m is larger than 230. It’s more and more difficult 

for people to find a prime when the number is getting bigger and bigger. Some companies are 

using LCGs with composite modulus under another requirement: the multiplier a and modulus m 

should be relatively prime. This could definitely not get a stream as long as the modulus m is, 

however, it save a lot trouble of finding huge primes. If choosing m and a properly, it still could 

generate a stream with long period and good randomness. 

 

Multiple Recursive Generators 

  Multiple Recursive Generators are generating integer based on a linear recurrence. The new 

state is generated according to its former k states. They are sharing a common pattern: 

 

Xn = (a1Xn−1 + · · · + akXn−k) mod m 

 

k is called the order of the recurrence. a1,   , ak are parameters. For generating integer sequences, 

they should be integers as well. Knuth proposed that the big prime modulus m will bring better 

quality [15]. To a particular prime module, the parameter and order will affect the period. Let’s 

make some tests in small scales. First we give the parameters as follow: 

 

[Stream 18] (a1, a2, a3, X1, X2, X3, m) = (1, 1, 1, 1, 1, 1, 3) 

(X1, X2, X3, X4, X5, X6, X7, X8, X9, X10, X11, X12, X13, X14, X15, X16, X17, X18, X19, X20,  , X40, X41, X42) =  

(1, 1, 1, 0, 2, 0, 2, 1, 0, 0, 1, 1, 2, 1, 1, 1, 0, 2, 0, 2, 1, 0, 0, 1, 1, 2, 1, 1, 1, 0, 2, 0, 2, 1, 0, 0, 1, 1, 2, 1, 1, 1) 
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    The tuple (X1, X2, X3) = (X40, X41,X42) = (1,1,1), then we could guess the following sequence 

will be a repeat of (X1,   , X39). The period is 39. If we are using another arbitary set of 

parameters: 

 

[Stream 19] (a1, a2, a3, X1, X2, X3, m) = (4, 7, 10, 10, 10, 6, 3) 

(X1, X2, X3, X4, X5, X6, X7, X8, X9, X10, X11, X12, X13, X14) = (10, 10, 6, 2, 0, 2, 2, 1, 0, 1, 1, 2, 0, 2) 

 

    The tuple (X4, X5, X6) = (X12, X13,X14) = (2,0,2), and the following sequences could also be 

predicted as the same segment as (X4,   , X11), and the period shrunk to 8. Actually according to 

the congruence properties, the parameter tuple in Stream 19, (4, 7, 10, 10, 10, 6, 3), will lead to a 

same sequence as using tuple (1, 1, 1, 1, 1, 0, 3). 

Will enlarging the modulus help to extend the period?  If we increase the modulus to 5, and 

observe the generated sequence: 

 

 [Stream 20] (a1, a2, X1, X2, X3, X4, m) = (1, 1, 1, 1, 1, 1, 5) 

(X1, X2, X3, X4, X5, X6, X7, X8, X9, X10, X11, X12, X13, X14, X15, X16, X17, X18, X19, X20, X21, X22, X23, X24) =  

(1, 1, 1, 1, 2, 3, 0, 3, 3, 1, 4, 0, 4, 4, 3, 2, 0, 2, 2, 4, 1, 0, 1, 1) 

 

    The tuple (X3,X4) = (X23,X24) = (1,1), and the following sequence will be a copy of (X4,   , 

X11). The period here is only 20, even less than the Stream 18, the situation when modulus is 3. 

Let’s try another direction, remain the same seeds increase the order a little bit: 

 

[Stream 21] (a1, a2, a3, X1, X2, X3, X4, m) = (1, 1, 1, 1, 1, 1, 1, 5) 

(X1, X2, X3, X4, X5, X6, X7, X8,   , X97, X98, X99) = (1, 1, 1, 1, 3, 0, 4, 2,   , 3, 0, 4) 

 

    The tuple (X5, X6, X7,) = (X97, X98,X99) = (3,0,4),the period make a considerable progress. In 

fact, both the coefficient and the order could affect the length of period, but the latter is crucial. 

To a particular modulus m, there will be mk permutations. Only if the k-tuple in the initial part 

appears again in the preceding sequence, the generator get into a circle. Consequently, the period 
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of MRG could achieve mk 
 - 1, theoretically. However, like what we calculated in the streams 

above, the peak period is not easy to get unless the coefficients are properly set. Once it does, it 

will get a much better properties than the MLCGs which are using the same modulus. Besides, 

MRGs are calculating fast and easy to implement. 

    In around 20 years ago, P. L'Ecuyer suggest the order k be in the interval [1,7], and modulus                 . He even implemented the CMG by Pascal and C. Along with the 

increasing speed of calculation, the modulus has been achieved around 264, and order is choosing 

loosely, either. For improving the performance, people turn their research interest to combined 

multiple recursive generators, which combine two or more MRGs of the same order together. I’ll 

not go through it in this paper. 

We’ve introduced the effects to period from both coefficient and order. Because this generator is 

in view of number sequences,  people also want to exploit better properties by setting the seeds. 

Fibonacci sequence has the characteristic: each member is the summation of its previous two 

member, excluding the first two numbers. Usually, this sequence starts from 0, 1.  

0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, 233, 377, 610, 987,   

It is famous for its wonderful and mysterious features, especially the approximation of golden 

ratio between neighbor members.  

    Additive Lagged Fibonacci Generators are based on this sequence. They are also MRGs, but 

usually only two terms are used. They have the common form: 

Fn = ( Fn-s + Fn-t ) mod m,  0 < j < t 

The seed (F0,   , Fs+t-1) are from Fibonacci sequence, and should be preset. m is usually a power 

of 2, like 232 or 264. The addition could also be substituted by subtraction. Under either situation, 

the generator will have maximum period: 2M-1
(2

t
 - 1). From the expression, we could guess the 

bigger the order is, the longer the period will have. However, parameter couple (s, t) must be 

given carefully, or the generated sequence will unfortunately get into recurrence very soon. 



 

48 

 

Here is a trick of the trade for choosing (s, t). If people want to achieve the maximum period, the 

polynomial: 

F(x) = x
s
 + x

t
 +1 

must be primitive, which means it’s irreducible. Popular pairs which have been proved to be 

good performance including: 

 

(24,55), (38,89), (37,100), (30,127), (83,258), (107,378), (273,607), (1029,2281),   

 

and see also on page 29 of Volume 2 of The Art of Computing Programming [15]. 

 

Multiplicative Lagged Fibonacci Generator 

    Similar with additive LFGs, multiplicative LFGs are also using members in Fibonacci 

sequence as seeds. The difference is instead of addition, the MLFGs operate multiplication on 

two integers. They could be denoted by the common pattern: 

Fn = ( Fn-k   Fn-l ) mod   ,  0 < k < l 

 k and l are called the lags. M is often chosen to be 64, which will lead it to be very easy to 

calculate – ignoring the most significant bit. However, this setting will bring an obvious defect. 

To show this point, let’s start from some small scale generators again. Suppose (k,l,m) = (3,7,4), 

the seed sequence should be preset: 

(F1, F2, F3, F4, F5, F6, F7) = (1, 2, 3, 5, 8, 13, 21) 

Then we can start generating integer sequences: 

 

[Stream 22]   (k,l,m) = (3,7,4) 

(F8,F9,F10,F11,F12,F13,F14, F15,F16,F17,F18,F19,F20,  ) = (8,10,15,8,0,3,8,0,14,8,0,0,0,  ) 

 

It’s not hard to imagine once a 0 appears in the sequence, the following part will be nothing but a 

series of 0s. Even when we change the modulus to a huge number, say 232, the problem cannot 

be resolved. Actually it will happen very soon, within generating less than 100 numbers. What 

causes this disaster? The answer is even numbers. When generating a new number, once a 
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multiplier with a factor of exponent of 2, it could not be diminished by mod another exponent of 

2, but accumulated. When the exponent of 2 contained within two multipliers is bigger than M, 

the first 0 will appear, and will lead the whole sequence to 0s. To avoid this situation, the seeds 

are required to be odd numbers only. Because the multiplication of two odd numbers then 

subtract an even number is still an odd number.  So, as you could guess, the whole sequence 

contains only odd numbers. The maximum period of multiplicative LFGs could reach           . Even with a small lag, they still have good properties. 

  Multiplicative LFGs obtains almost all the advantages of additive LFGs, furthermore, the 

multiplication will increase more significantly, and consequently lead the current state to a 

random number, which could effectively avoid fractional linear correlations. In fact, the 

statistical test results that will be shown in next chapter can also help us confirm this.  

  Multiplicative LCGs could be easily applied in parallel random number generations, and 

perform very well. They could generate             distinct streams, and pass almost all the 

inter-correlation and inner-correlation tests. Dr.Mascagni and Dr.Srinivasan made deep research 

on it and explained in detail in the paper Parameterizing parallel multiplicative lagged-Fibonacci 

generators. They also implemented it in the SPRNG suite. 

 

XORshift Generator 

  Xorshift generator was first proposed by Marsaglia [13], and after him, Panneton and L’´Ecuyer 

made deeper research [24]. Because all the operations are based directly on bits, the generating 

speed is very fast.   

  The main operations including left shift (denoted as ‘<<’), right shift (denoted as ‘>>’), and xor 

(exclusive or). Just for reminder, exclusive or computing follows: 

      = 0                                              

 

Which is very similar to bit addition without carry. 

  A xorshift operation is defined as follows: replace the w-bit block by a bitwise xor (exclusiveor) 

of the original block with a shifted copy of itself by a positions either to the right or to the left, 

where 0 < a < w.  
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  The seed should be pre-given. It’s usually a vector with 32 bits or 64 bits, depends on the 

generator.  In every step, one or more xorshift operations are executed on the vector and get the 

next state. 

   Obviously, the xorshift operations are linear. So we could use a matrix to denote the combined 

operations. Suppose the generator is operated on a vector x of 64 bits. x could be denoted as:             

 

 If we want to execute left shift one bit, we could use the L left multiple x, where L is a 64 x 64 

matrix with 1s on its main sub-diagonal and 0s otherwise (Figure 4). Similarly, x >> 1 could be 

denoted as Rx, where R is a 64 x 64 matrix with 1s on its main super-diagonal and 0s otherwise 

(Figure 5). 

 
 

   
   
                                             

   
 
 

 Figure 6    

 
 

   
   
                                             

   
 
 

Figure 7    

 
 
For moving n times, we only need to multiple L or R by n times respectively, and left multiple x. 

The last step is to calculate the xor between the original vector x and the new vector x0 we get 

after shifting, which is Ls
R

t
x (suppose x << s and then >>t). According to the xor computing 

principle, we only need to add x itself to x0. So the current state xc could be calculated by: 
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xc =  (I + L
s
R

t
)x 

 

Where I is the 64 x 64 unit matrix. 

   After acquiring the basic knowledge, let’s see how is a XORshift generator working. There is 

not a universal pattern, different XORshift show various of effect. Specifically, some ways for 

generating better random bit streams has been found [14]. Here I’ll illustrate the generator 

described in suite Testu01, which is representative. The generator is defined by a recurrence of 

form:   

 

vi =              

 

The summation in ∑ is using bit addition without carry. vi’s are 32 or 64 bits vectors, Aj is either 

the unit or the product of several L and R matrixes, and p is a positive integer. At step i, the 

generator’s state is demonstrated in Figure 6, where r is the number of vectors the generator 

could store. 

 
 

                                                             

Figure 8 

 

 
And the output is: 

 

               
    

 

Where                   . 
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Random123 

All the PRNGs I introduced above are sequentially dependent, which means the new status is 

based on the former statuses. Thus, the generators have to maintain a data list for both calling the 

former statuses from it and storing new status into it. This procedure doesn’t consume a long 

time if just execute once, however, to generate Terabytes will be a tremendous consuming of 

time. Random123 RNG suite is designed to avoid this great waste.  

Random123 is a composition of counter-based PRNGs, which means the current status doesn’t 

rely on the former statuses any more. Instead, it will depend on the pre-set key-dependent 

function and counters bijection. 

 
 

 
Figure 9   

  
 

Figure 6 illustrates the working function of Random123. It is similar to traditional Feistel 

function, whose function is to map input (L,R) to output (  ,   ). Fk is an arbitrary key-dependent 

function. In addition to Feistel function, a bijection function Bk is used to map R to   . The inner 

scope of the pre-constructed function could be simulated as Figure 7. 
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Figure 10   

 
 

Figure 7 shows a 16-to-16 bijection box. There will be totally 16! different 16-to-16 bijection 

boxes with equal possibilities. In applications, usually a 32-to-32 or 64-to-64 bijection is called. 

More bits bijection means more bijection possibilities, and consequently increase the space for 

randomness.  

The Random123 PRNG suite is mainly inspired by and designed for confidential applications. 

It contains three major families of counter-based PRNGs: Threefry which is extended from 

threefish and designed to perform a relatively large number of very simple round functions, 

Philox which is designed as a supplementary to run a smaller number of more complex round 

functions, and ARS which is extended from AES. More specifically, each family has various 

PRNGs, including threefry2x32, threefry4x32, threefry2x64, threefry4x64, philox2x32, 

philox2x64, philox4x32, philox4x64, ars4x32. All these PRNGs obtain very good randomness 

and could pass most part of BigCrush test. The testing result of philox4x32 and threefry2x32 is 

attached in APPENDIX II. 

 

RNG 

     RNGs are commonly generated by hardware. Compared to PRNGs, the current status depends 

on real-time physical environment, such as entropy, sound, photon, etc. instead of calculating 

former status, so they are generating quite faster than PRNGs, and appear more randomness. It 

has also been proved in the tests. However, the disadvantage is being not reproducible. 

Consequently, they are mainly utilized to Monte Carlo simulation, completely randomized 

design, providing seeds for PRNGs, etc. 

In this segment, I’ll introduce two hardware RNGs, RdRand and Letech GRANG box. Each of 

them have a very strong RN generating ability, and the RNs could pass the BigCrush test easily. 

http://en.wikipedia.org/wiki/Completely_randomized_design
http://en.wikipedia.org/wiki/Completely_randomized_design
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RdRand 

RdRand is an instruction for generating RNs from an on-chip RNG. It origins from an Intel 

hardware RNG plan which is committed to solve the ‘platform entropy problem’. Entropy is 

valuable for confidential uses. As a scarce resource, entropy had to be accumulated and used to 

seed/reseed a software PRNG that could cryptographically spread that entropy resource out over 

numerous requests with acceptable performance. Entropy was slowly gathered in small quantities 

from sources of true entropy at slow rates, however, the demands increasing very fast. Based on 

this contradiction, Intel creates the Digital Random Number Generator (DRNG). The basic 

function for DRNG is to build a circuit that is reusable across all Intel process, design, and 

manufacturing environments, and embed it in each family of Intel silicon products in the most 

effective way for that family (Figure 8).  

 

 

 
Figure 11i  

 

 
The RdRand provides an instruction for the software interface. It retrieves a hardware 

generated random value from DRNG and stores it in the destination register given as an 

argument to the instruction.  

The Rdrand instruction code is called Bull Mountain. It could be downloaded from 

http://software.intel.com/en-us/articles/download-the-latest-bull-mountain-software-

implementation-guide/. The code is fairly succinct and API is very straightforward. Users could 

                                                   
i Red dotted line is the DRNG’s FIPS boundary 

http://software.intel.com/en-us/articles/download-the-latest-bull-mountain-software-implementation-guide/
http://software.intel.com/en-us/articles/download-the-latest-bull-mountain-software-implementation-guide/
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also generate a RN file in command line. Recently, Intel released Ivy Bridge (IVB) processors 

which strongly support the DRNG. IVB processors will be backwards-compatible with the 

Sandy Bridge platform, but might require a firmware update. It has built Bull Mountain inside. 

The generating speed is impressively fast. To generate 1GB binary file only cost less than 3 

secondsii. In APPENDIX I, I’ve listed the code for connecting RdRand to BigCrush test and in 

APPENDIX III the testing result could be found.  

 

Letech GRANG 

Genuine Random Number Generator (GRANG) is developed by Letech company. In view of a 

fact that there is no guarantee that the pulse sequence generated via an electric procedure is truly 

random even if thermal noise from a physical element like resistor is really random phenomena, 

Letech developers intended to use the obedience to the principle in physics that time intervals of 

a random events is given by a Poisson arrival time distribution. GRANG comes with a self-

testing function to verify the randomness. A comparison between the generated random numbers 

and a Poisson arrival time distribution is executed by this function to assure the randomness of 

physical random numbers. On the other hand, it is important to detect natural environmental 

noises like a radio wave, an electric discharge and lightning, as well as a malicious attack [29]. 

GRANG create a GUI for both Windows OS and Linux-like system (Figure 9). Users could 

setup parameters directly on the control panel and generate random number blocks to specific 

location. Furthermore, the real-time generating status and self-test result could also be observed 

on the panel. By this GUI, Users could achieve their intentions easily.  

    The products include different sizes corresponding to different RN generating speed, which 

varies from 0.3MB/s to 550MB/s. All size of the chips could be connected to computer either by 

inserting to motherboard or through USB. I’m using GRANG-SATA-8CH in my test, which has 

50MB/s generating speed. It has been proved that this hardware could be successfully utilized 

under windows 7, Fedora 17 and Ubuntu 11.10. However it could only generate 1GB file every 

time. Users could execute ‘cat’ command to heap up the 1GB files. I did the same way and 

generated a 143GB file finally, then feed it to BigCrush test. The result could be found in 

APPENDIX II. 

                                                   
ii By Ivy Bridge/ Intel Core i5-3550 3.30GHz x 4 / 3.7GB RAM  



 

56 

 

 
 

 
Figure 12   
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CHAPTER FOUR 

TESTING RESULTS 

 

According to the correspondence between tests in TestU01 and other test suites, I’ll try to 

show the testing results by calling these testing functions. The Confidence interval for p-value 

is (0.001, 0.999). And eps is used to define when p-value < 1.0e-300, eps1 is used to define 

when p-value < 1.0e-15. Notice that some tests in TestU01 also calculate Two-level tests such 

as DN
+, DN

-, Anderson-Darling statistic, etc., which are not discussed in this paper. In the 

following tests, only the p-values for    are listed. LCG (Linear Congruential Generator) with 

module 232, MRG (Multiple Recursive Generator) and Xorshift generator are tested. Due to the 

space limitation, the BigCrush testing results could not be totally posted here. In APPENDIX II 

and APPENDIX III, readers could find testing results for some RNGs and PRNGsiii.    

LCG is simply defined by the recurrence: 

xi = (axi-1 + c) mod m 

where the multiplier a, increment c and modulus m are set differently in order to getting 

various sequences. For better performance, two LCGs could be combined together as a new 

sequence [16]. The widely used configuration contains (Table 5): 

 
 

Table 5  Parameters of some common LCGs 

m A c Reference 

224 1140671485 12820163 Microsoft VB 

231-1 16807 0 IBM[11] 

231 134775813 1 Turbo Pascal 

231 1103515245 12345 rand() in ANCI C 

235 513 0 Apple 

248 25214903917 11 Unix’s rand48() 

 
 

Here I’ll only test the property of the second LCG, which means a = 16807, c = 0, m = 2
31

-1. 

The others could be tested by simply modifying parameters. Testing results are listed in Table 6: 

 

                                                   
iii  
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Table 6 Testing results for LCG 

Test Statistic p-value Acc/Rej 

NIST 
Monobit    0.63 Accept 

Monibit test within a blocik    1-eps1 Reject 

Runs 
   eps Reject 

normal eps Reject 
Longest Run of Ones in a Block    0.04 Accept 

Binary Matrix Rank    0.7 Accept 

Discrete Fourier Transform normal 0.75 Accept 
Non-overlapping Template Matching Poisson 1-eps1 Reject 

Overlapping Template Matching 
Poisson 0.24 Accept 

normal 0.17 Accept 
Maurer’s Universal Statistical normal 0.9928 Accept 

Lempel-Ziv Compression normal 0.28 Accept 

Linear Complexity 
   0.94 Accept 

normal 0.34 Accept 
Serial normal 0.84 Accept 

Approximate Entropy    0.44 Accept 

Cumulative Sums test    
eps for H,M,J,R 

0.0033 for S 
Reject for H,M,J,R 

FIPS 

Monobit`    0.33 Accept 

Poker    0.36 Accept 

Runs     All Accept 

Longest Run of Zeros in a Block    0.50 Accept 

Longest Run of Ones in a Block    0.46 Accept 
DIEHARD 

Binary Rank Tests for Matrices    eps Reject 

All other tests in DIEHARD are passed 

 

 
MRGs are based on linear recurrence of order k, module m: 

xn = (a1xn−1 + · · · + akxn−k) mod m 

where a1,a2,…,ak are fixed parameters, and xn is generated based on the previous values, then 

use un = xn/m as output. For better performance, two or more MRGs could be combined together 

[17, 18] as well. Picking parameters and setting seeds are important, because they will determine 

the property of MRG [12]. LFGs (Lagged-Fibonacci Generators) are special cases of MRGs, and 

often used as seeds. I’ll preset the Fibonacci sequence from f1 = 1, f2 = 1, to f17 = 1597, and 

generate 

fn = ( fn-5 - fn-17 ) mod m 
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for testing. The results are listed in Table 7: 

 

 
Table 7 Testing results for fn = ( fn-5 - fn-17 ) mod m 
Test Statistic p-value Acc/Rej 

NIST 

Monobit    0.32 Accept 

Monibit test within a blocik    0.24 Accept 

Runs 
   eps Reject 

normal eps Reject 

Longest Run of Ones in a Block    0.59 Accept 

Binary Matrix Rank    0.13 Accept 
Discrete Fourier Transform normal 0.90 Accept 

Non-overlapping Template Matching Poisson 1-eps1 Reject 

Overlapping Template Matching 
Poisson 0.06 Accept 

normal 0.23 Accept 
Maurer’s Universal Statistical normal 0.68 Accept 

Lempel-Ziv Compression normal 0.54 Accept 

Linear Complexity 
   0.27 Accept 

normal 0.02 Accept 
Serial normal 0.17 Accept 

Approximate Entropy    0.29 Accept 

Cumulative Sums test    
H,M,J,R,C are all 

within (0.001, 0.999) Accept  
FIPS 

Monobit`    0.99 Accept 

Poker    0.55 Accept 
Runs     All Accept 

Longest Run of Zeros in a Block    0.50 Accept 

Longest Run of Ones in a Block    0.46 Accept 
DIEHARD 

Binary Rank Tests for Matrices    eps Reject 

BirthdaySpacings    eps1 Reject 

All other tests in DIEHARD are passed 

 
 

The upper RNGs are all concerning on integers. Although they could have beautiful 

randomness, time consuming is a big problem. In practice, generating random number 

sequences directly on bits is always a good option, because it could save a lot of time.  
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Table 8 Testing results for Xorshift 

Test Statistic p-value Acc/Rej 
     NIST 

Monobit    0.11 Accept 

Monibit test within a blocik    0.59 Accept 

Runs 
   eps Reject 

normal eps Reject 
Longest Run of Ones in a Block    3.6e-6 Reject 

Binary Matrix Rank    eps Reject 

Discrete Fourier Transform normal 0.61 Accept 

Non-overlapping Template Matching Poisson 1-eps1 Reject 

Overlapping Template Matching 
Poisson 0.50 Accept 

normal 0.81 Accept 
Maurer’s Universal Statistical normal 0.76 Accept 

Lempel-Ziv Compression normal 0.05 Accept 

Linear Complexity 
   0.96 Accept 

normal 1-eps1 Reject 
Serial normal 0.28 Accept 

Approximate Entropy    0.24 Accept 

Cumulative Sums test    eps for H,M,J,R,C Reject 
     FIPS 

Monobit`    0.99 Accept 

Poker    0.55 Accept 

Runs     All Accept 

Longest Run of Zeros in a Block    0.50 Accept 

Longest Run of Ones in a Block    0.46 Accept 
     DIEHARD 

Binary Rank Tests for Matrices    eps Reject 

All other tests in DIEHARD are passed 

 
 

Xorshift operates as bits shifting, and under some configurations, it could reach good 

randomness [13, 14, 19]. The sequence could be generated by calling function   

unif01_Gen* uxorshift_CreateXorshift64 (int a, int b, int c, ulonglong x); 

which will implement Xorshift generator: 

y = yn-1   (yn-1 H1 a) 

y = y   (y H2 b) 

yn = y   (y H3 c) mod 2
32

 

where H1 will be ‘>>’ if a < 0, ‘<<’ if a > 0, so is H2 and H3. a, b and c could not indicate that 

all the bits are shifted out, so -64 < a,b,c < 64. Here I’ll call: 

uxorshift_CreateXorshift32 (13, -17, 5, 2463534242) 
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as generator, and list the results in Table 8. 
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CHAPTER FIVE 

PARALLEL RNGS AND PARALLEL TESTS 

 

For large-scale Monte Carlo simulations, the traditional sequential RNG has been of poor 

quality. Even generators perform well in standard statistical tests for randomness may be 

unreliable for particular applications, as has been seen many times in the computational science 

literature [9]. One reason leads to this problem is that the sequential RNG runs out of its period. 

For example, a LCG with module of 232 will go repeating when the stream is longer than 232 

(which is very easy to achieve nowadays within several seconds), and loss the randomness 

consequently. Another reason is that generating the random numbers will take a long time when 

enlarging the period. This seems to be a paradox when executing a RNG on single stream. 

People are attempting to generate multiple random streams in parallel and finding the better 

attribute. Actually, single stream is falling into disuse, meanwhile more and more people are 

concentrating on parallel RNGs. 

There are several main techniques for generating random numbers in parallel. A main idea is 

taking several segments, which are non-correlated, from a tremendously long period stream. 

Three generating methods are often implemented: 

Leap frog – the sequence is partitioned among the N processors in a cyclic fashion. Each 

processor starts from a different point on the common sequence and keep its own leaping span, 

which is decided by different parameters of the common RNG. 

Sequence splitting – the sequence is divided into non-overlapping, contiguous sections, and each 

processor executes on a different section. 

Independent sequences – this method has a high requirement of choosing the seeds for each 

processor so that they are producing disjoint subsequences.  

Another idea is trying to prolong the period of single RNGs, which have been proven as good 

randomness. For illustration purpose, suppose there are 3 processors A, B and C. The processor 

A generates sequence A1, A2, …, processor B generates sequence B1, B2,…, and so on. One 

method is taking a fixed length of each sequence in a cyclic fashion and compose a new random 

number sequence, such as A1, A2, B1, B2, C1, C2, A3, A4, B3, …. Another method is using random 

numbers in one stream to reorder the other streams. For example, taking the A1
th number in 
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sequence B to the first place, and A2
th number in the second place and so on. 

For either method we are choosing, parallel RNG tests should be executed for ensuring the 

randomness. Actually, people are used to focusing on developing algorithms for parallel RNGs, 

however, relatively little research are concerning on applying methods for testing them. From 

historical experience, the final random number stream generated by parallel RNGs fails the 

statistical tests are most probably due to the correlations that occur between different generating 

streams, which is also very intuitive. Hence, the parallel testing is concentrating on if the 

different RNG streams correlate to each other. 

People should pay attention to that when saying a test is ‘parallel; it doesn’t mean executing 

the test on each stream (which simply equals to execute the test on single random number 

stream), but means to test the correlations between parallel RNGs. Consequently, before 

applying the tests, the numbers generated from different processors are needed to be mixed up by 

some means. 

SPRNG testing suite demonstrates its superiority on parallel testing. Within statistical testing 

functions discussed before, several streams could be interleaved and produce a new stream by 

adjusting some parameters, and then apply the test on the new stream (Figure 2). The SPRNG 

test suite is using K-S percentile to judge the randomness. Similarly like single steam test, if the 

K-S percentile for testing the new stream is falling into the confidential interval, usually [0.01, 

0.99], then we believe the test regard the parallel RNGs as non-correlated. 

The latest SPRNG test suite version is SPRNG 4.4. It could be downloaded from 

http://ww2.cs.fsu.edu/~brailsfo/, and the installing instruction is on 

http://sprng.cs.fsu.edu/Version4.0/quick-start.html. After correctly installed, all the tests could be 

found in directory ~/sprng4/TESTS. When calling a test, users need to input a command line as 

follow format: 

test.sprng rngtype nstreams ncombine seed param nblocks skip test_parameters 

Test.sprng is the test name. Following seven parameters are common to all the tests, whereas the 

others are specified to different tests. For example, if user would like to run a permutation test for 

a 48-bit LCG, the command line should be as follow: 

./perm.sprng 1 4 6 0 0 5 10 3 100000 

‘1’ is specified to 48-bit LCG, ‘4’ indicates four new streams are composed by interleaving ‘6’ 

parallel streams, and test ‘5’ blocks of random numbers from each new stream. The first ‘0’ 

http://sprng.cs.fsu.edu/Version4.0/quick-start.html


 

64 

 

implies the RNG are using the 0th encoded seed, and the second ‘0’ is a parameter for the 

generator. Before testing next block, ‘10’ bits are skipped, which is designed for increasing the 

testing effect. The rest ‘3’ and ‘100000’ are specified to permutation test. If user plans to test a 

single stream, the third parameter ncombine should be set to 1. 

 
 

 

Figure 13 
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CHAPTER SIX 

CONCLUSIONS 

 

RNGs play a significant role not only in scientific disciplines, such as Physics, Statistics, 

Cryptography, etc., but also in everyday life, like government-run lotteries. Because of these 

applications, large amount of random numbers are generated. When enjoying the convenience 

brought us by RNGs, we also need to worry about the ‘quality’ of these random numbers. 

Random number testers are like the bureau of quality supervision. 

In this article, we mainly focus on statistical tests, and addressed the problem of analysis of 

statistical results. Many users find it convenient to have predefined suites (or batteries) of more 

or less standard statistical tests, with fixed parameters, that can be applied to a given RNG. Four 

popular test suites are introduced with their advantages and disadvantages. Furthermore, due to 

its comprehensiveness, we illustrated how to execute tests which are in other test suites by 

calling respective functions or batteries in TestU01, based on the relationship between these 

testing methods. A wrapper code is also written (here I name it as combination test), but could 

not post here because of the space limitation. By this mean, people don’t need to install several 

testing packages and execute tests individually. It not only save time and space, but achieve a 

higher level encapsulation. People who are interested in this wrapper could contact the author 

directly.  

Then we implement three PRNGs on these tests, and list the results in tables in Chapter 4. The 

more tests accept a PRNG, the more confidence that it could be used to simulate truly random 

number is built. We could also see the functionality of TestU01 as a platform. One obvious 

evidence is that G. Marsaglia stated that [a,b,c,y] = [13,-17,5, 2463534242] will be a good ideal 

presetting and will pass all the DIEHARD tests except the binary rank test [13, 21]. The testing 

result in Table 8 verifies it accurately.  

Furthermore, in order to provide comparison, LCG with module 232 and MLFG were fed to 

BigCrush test. The result in APPENDIX III shows that the former failed most tests whereas the 

latter passes all tests. From the terrible appearance of the former, and compare with the fact that 

it could pass most of combination tests, we could come to the conclusion that combination tests 

are less convincible because the shorter length of testing sequence and less dimension. Besides, 
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MLFG is a reliable PRNG because it has the same performance with hardware RNGs and 

meanwhile, it obtains the advantage of PRNGs. 

We’ve also touched several recently emerged PRNGs and RNGs, including Random123, 

Letech GRANG and RdRand. We were going through into each one to acquire their working 

functions, APIs and latest products. Then by means of the strong hardware support, I fed the 

generated numbers to BigCrush in TestU01 and obtained the testing results, partly of which are 

posted in APPENDIX II and APPENDIX III. It’s quite evident that hardware RNGs could pass 

the BigCrush tests easily. As to Random123, tf2x32, tf4x32, ph2x32 and ph4x32 failed several 

tests, especially sknuth_Gap test, whereas tf2x64, tf4x64, ph2x64 and ph4x64 pass all tests.  

Due to the faster computers and better algorithms, Monte Carlo and other stochastic 

simulations proposed higher requirements. The PRNGs with longer period, faster generating 

speed are being chased. Meanwhile, it’s also important to search for more precise and varied 

tests of the randomness properties of these RNGs. In this case, parallel RNGs are the main trend. 

However, only little parallel tests are developed, which can not follow the pace of inventing 

parallel RNG algorithms. SPRNG show advantages in parallel testing. So we also showed its 

working principle and the command line of calling tests in this suite. According to some other  

materials [10, 11], another kind of test – physical test is more stringent, especially when being 

operated on large scale random numbers.  

Although threefry and philox generators have been tested, I’m still looking for a solution on 

how to test ARS. Besides, the Letech GRANG has a ‘1GB roof’ in various OS. I need also figure 

out how to generate a huge file by it directly instead of using ‘cat’. After figuring out these 

questions, I think there will be enough data for me to finish a paper on executing BigCrush test 

on currently popular RNGs. In future, parallel PRNG is main trend. The random numbers might 

have not only facing to inter-correlations but also inner-correlations. How to detect them 

effectively is an important subject. I’ll keep working on that area. 
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APPENDIX I 

Wrapper codes for connect users’ RNGs to TestU01 BigCrush 

 

In this part, I’ll list some codes that I used to make BigCrush test. All the wrappers are 

inspired by the instructions from manual of TestU01. I was using the version TestU01-1.2.3. So 

the working space is under directory ~/TestU01-1.2.3. 

 

 Wrapper for testing philox4x32 by TestU01: 

Prerequisites: Random123 should be correctly installed in folder TestU01-1.2.3. The latest 

Random123 version could be downloaded on http://www.deshawresearch.com/resources_random123.html. 

The latest version, 1.06 is strongly recommended. Unpack the downloaded file. In order to 

linking to ‘philox.h’, the code should be run in folder ~/TestU01-1.2.3/Random123-

1.06/include/Random123.      

 

#include “unif01.h”         

#include  “swrite.h”            // control the result output 

#include “ bbattery.h”        // BigCrush are included into this header file 
#include “philox.h”             

 
unsigned long long ph4x32(void); 

 
int main(void) 

{ 
  unif01_Gen *gen;                                                                          // All the RNGs have an uniform class “unif01_Gen *”   

    gen = unif01_CreateExternGenBits (“ph4x32”, ph4x32);           //  Implements a pre-existing external generator genB that is not  

                                                                                                                           // part of TestU01.  
  bbattery_BigCrush(gen);                                                               // execute BigCrush test 

  unif01_DeleteExternGenBits (gen);                                             // clearance function 
  return 0; 

}  
 

Static unsigned long long c1 = 0; 
Static unsigned long long c2 = 0; 

Static unsigned long long c3 = 0; 

Static unsigned long long c4 = 0; 
Static unsigned long long k1 = 0xdeadbeef; 

Static unsigned long long k2 = 0xfeedbee; 
Static unsigned long long k3 = 0x10101010; 

Static unsigned long long k4 = 0x01010101;                                 // All the initial seeds and keys could be defined by user randomly 
 

unsigned long long ph4x32(void)                                                   // philox4x32 generator which is written by C.  
{ 

  philox4x32_ctr_t ctr = {{c1, c2, c3, c4}}; 

  philox4x32_key_t key = {{k1, k2, k3, k4}}; 
  c1++; 

  philox4x32_ctr_t rand = philox4x32(ctr, key); 
  return rand.v[0];                                                                             // Return an integer in the interval [0, 232-1] each time. 

} 
 

http://www.deshawresearch.com/resources_random123.html
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 Wrapper for testing binary file which is generated from RdRand by TestU01:  

Prerequisites: A 915GB binary file, GB915.dat, is generated by RdRand and moved to 

directory ~/TestU01-1.2.3, since all the tests are executed in that directory. Make sure there 

are still several Gigabytes left on hard disk for temporarily loading the testing bits. 

 

#include “unif01.h”         
#include  “swrite.h”            // control the result output 

#include “ bbattery.h”        // BigCrush are included into this header file 
 

int main(void) 
{ 

  unif01_Gen *gen; 

  gen = ufile_CreateReadBin (“~/TestU01-1.2.3/GB915.dat”, 4);          //Reads numbers from file. The numbers are read in batches of  
                                                                                                                  // 4 chars at a time. 

  ufile_InitReadBin();                                                                               // reinitialize the generator to the beginning of the file 
  bbattery_BigCrush (gen); 

  ufile_DeleteGen(gen);                                                                             // clearance function 
} 

 

      RNs generated by Letech GRANG box are tested by the same way. 

 Wrapper for feeding RNs generated by RdRand directly to TestU01:  

Prerequisites: An Ivy Bridge system is required. Users could inquire the Intel for internal 

library file and manual. Then make sure the RdRadn is successfully installed under directory 

~/TestU01-1.2.3.  

 

#include “unif01.h”         

#include  “swrite.h”                // control the result output 
#include “ bbattery.h”            // BigCrush are included into this header file 

#inlcude <unistd.h> 

#include “aes128k128d.h”      
 

static unsigned prob; 
 

unsigned retrieve(void) 
{ 

  int status; 
  asm(“\n\ 

                      rdrand %%eax;\n\ 

                      mov $1, %%edx;\n\ 
                      cmovae %%eax,%%edx;\n\ 

                      move %%edx,%1;\n\ 
                      mov %%eax,%0;”:”=r”(prob).”=r”(status)::”%eax”.”%edx”); 

    return prob; 
}  

 
int main() 

{ 

  unif01_Gen *gen; 
  gen = unif01_CreateExternGenBits(“IVB”, retrieve); 

  bbattery_BigCrush(gen); 
  unif01_DeleteExternGenBits(gen); 

  return 0; 
} 
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APPENDIX II 

BigCrush tests results of hardware RNGs 

 

The table 9 lists all the BigCrush tests in TestU01 suite. A binary file whose size is 143GB, 

generated by Letech GRANG, is tested. Another file whose size is 915GB, generated by RdRand 

are also tested. However, both of them could not satisfy the minimum data size requirement of 

BigCrush, that means the tests consume out the data and suspend. Then it’s required to reset the 

tests manually and continue. It’s estimated that to run a whole BigCrush test, a file should be as 

large as 1.9TB. However, limited by the current storage, I could not achieve it. Also, due to the 

strong API of TestU01 suite and RdRand, the RNs could be generated by RdRand and directly 

feed BigCrush tests. That’s what I showed in the last column – ‘On the fly’. 

In some tests, there are more than one statistic, so multiple p-values could be calculated to 

evaluate the quality of randomness. To spread out all the statistics, I create some sub-tables to 

show them. For example, sub1-2 means the p-values in this blank could be found in the sub-table 

1, and labeled 2. P-values are in interval                are considered as regular, in interval                 are suspicious and should be tested again, and be marked by green. Eps1 means 

p-value is in interval                whereas eps means in interval           . Both of them 

mean the RNG failed the test, and are marked by red. 

 
 

Table 9  BigCrush tests on hardware RNGs 

Test function N n r s Other parameters 

P-value of 

Letech 

GRANG 

P-value of 

IVB 

platform 

P-value of 

IVB 

platform 

(on the fly) 

Acc/Rej 

smarsa_SerialOver 1     0 - d =   , t = 3 0.47 0.69 0.16 Acc 

smarsa_SerialOver 1     22 - d =   , t = 3 0.09 0.88 0.62 Acc 

smarsa_CollisionOver 30       0     t = 2 0.48 0.47 0.45 Acc 

smarsa_CollisionOver 30       9     t = 2 0.55 0.48 0.07 Acc 

smarsa_CollisionOver 30       0     t = 2 0.62 0.09 0.10 Acc 

smarsa_CollisionOver 30       16     t = 2 0.35 0.11 0.85 Acc 

smarsa_CollisionOver 30       0 64 t = 2 0.01 0.23 0.64 Acc 

smarsa_CollisionOver 30       24 64 t = 2 0.51 0.78 0.01 Acc 
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Table 9 - continued 

Test function N n r s Other parameters 

P-value of 

Letech 

GRANG 

P-value of 

IVB 

platform 

P-value of 

IVB 

platform 

(on the fly) 

Acc/Rej 

smarsa_CollisionOver 30       0 8 t = 2 0.47 0.43 0.25 Acc 

smarsa_CollisionOver 30       27 8 t = 2 0.51 0.54 0.69 Acc 

smarsa_CollisionOver 30       0 4 t = 2 0.97 0.48 4.9e-3 Acc 

smarsa_CollisionOver 30       28 4 t = 2 0.06 0.89 0.91 Acc 

smarsa_BirthdaySpacings 100     0     t = 2, p = 1 0.05 0.03 0.81 Acc 

smarsa_BirthdaySpacings 20       0     t = 3, p = 1 0.44 0.38 0.9977 Acc 

smarsa_BirthdaySpacings 20       14     t = 4, p = 1 0.66 0.11 0.52 Acc 

smarsa_BirthdaySpacings 20       0    t = 7, p = 1 0.49 2.2e-3 0.58 Acc 

smarsa_BirthdaySpacings 20       7    t = 7, p = 1 0.79 0.85 0.27 Acc 

smarsa_BirthdaySpacings 20       14    t = 8, p = 1 0.45 0.30 0.45 Acc 

smarsa_BirthdaySpacings 20       22    t = 8, p = 1 0.10 0.55 0.85 Acc 

smarsa_BirthdaySpacings 20       0    t = 16, p = 1 0.27 0.71 0.10 Acc 

smarsa_BirthdaySpacings 20       26    t = 16, p = 1 0.31 0.17 0.14 Acc 

snpair_ClosePairs 30       0 - t = 3, p = 0, m = 30 Sub 1-1 Sub 1-5 Sub 1-9 Acc 

snpair_ClosePairs 20       0 - t = 5, p = 0, m = 30 Sub 1-2 Sub 1-6 Sub 1-10 Acc 

snpair_ClosePairs 10       0 - t = 9, p = 0, m = 30 Sub 1-3 Sub 1-7 Sub 1-11 Acc 

snpair_ClosePairs 5       0 - t = 16, p = 0, m = 30 Sub 1-4 Sub 1-8 Sub 1-12 Acc 

sknuth_SimpPoker 1       0 - d = 8, k = 8 0.46 0.85 0.68 Acc 

sknuth_SimpPoker 1       27 - d = 8, k = 8 0.54 0.83 0.05 Acc 

sknuth_SimpPoker 1     0 - d = 32, k = 32 0.41 0.53 0.11 Acc 

sknuth_SimpPoker 1     25 - d = 32, k = 32 0.05 0.98 0.23 Acc 

sknuth_CouponCollector 1       0 - d = 8 0.95 0.13 0.60 Acc 

sknuth_CouponCollector 1       10 - d = 8 0.69 0.17 0.36 Acc 

sknuth_CouponCollector 1       20 - d = 8 0.38 0.17 0.18 Acc 

sknuth_CouponCollector 1       27 - d = 8 0.92 0.64 0.88 Acc 

sknuth_Gap 1       0 - Alpha = 0, Beta = 1/16 6.2e-3 0.82 0.33 Acc 

sknuth_Gap 1       25 - Alpha = 0, Beta = 1/32 0.42 0.12 0.31 Acc 

sknuth_Gap 1     0 - Alpha = 0, Beta = 1/128 0.34 0.57 0.76 Acc 

sknuth_Gap 1     20 - Alpha = 0, Beta = 1/256 0.34 0.93 0.29 Acc 

sknuth_Run 5     0 - Up = FALSE Sub 2-1 Sub 2-38 Sub 2-75 Acc 

sknuth_Run 5     15 - Up = TRUE Sub 2-2 Sub 2-39 Sub 2-76 Acc 

sknuth_Permutation 1     0 - t = 3 0.13 0.82 0.38 Acc 

sknuth_Permutation 1     0 - t = 5 0.52 0.97 0.07 Acc 

sknuth_Permutation 1       0 - t = 7 0.23 0.46 0.31 Acc 

sknuth_Permutation 1       10 - t = 10 0.30 0.53 0.46 Acc 

sknuth_CollisionPermut 20       0 - t = 14 0.67 0.74 0.99 Acc 

sknuth_CollisionPermut 20       10 - t = 14 0.60 0.12 0.46 Acc 

sknuth_MaxOft 40     0 - d =   , t = 8 Sub 2-3 Sub 2-40 Sub 2-77 Acc 

sknuth_MaxOft 30     0 - d =   , t = 16 Sub 2-4 Sub 2-41 Sub 2-78 Acc 

sknuth_MaxOft 20     0 - d =   , t = 24 Sub 2-5 Sub 2-42 Sub 2-79 Acc 
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Table 9 – continued 

Test function N n r s Other parameters 

P-value of 

Letech 

GRANG 

P-value of 

IVB 

platform 

P-value of 

IVB 

platform 

(on the fly) 

Acc/Rej 

sknuth_MaxOft 20     0 - d =   , t = 32 Sub 2-6 Sub 2-43 Sub 2-80 Acc 

svaria_SampleProd 40     0 - t = 8 Sub 2-7 Sub 2-44 Sub 2-81 Acc 

svaria_SampleProd 20     0 - t = 16 Sub 2-8 Sub 2-45 Sub 2-82 Acc 

svaria_SampleProd 20     0 - t = 24 Sub 2-9 Sub 2-46 Sub 2-83 Acc 

svaria_SampleMean       30 0 - - Sub 2-10 Sub 2-47 Sub 2-84 Acc 

svaria_SampleMean       30 10 - - Sub 2-11 Sub 2-48 Sub 2-85 Acc 

svaria_SampleCorr 1       0 - k = 1 0.51 0.60 0.98 Acc 

svaria_SampleCorr 1       0 - k = 2 0.79 0.71 0.34 Acc 

svaria_AppearanceSpacings 1 - 0 3 Q=   ,K=    , L=15 0.89 0.12 0.07 Acc 

svaria_AppearanceSpacings 1 - 27 3 Q=   ,K=   , L=15 0.93 0.40 0.29 Acc 

svaria_WeightDistrib 1       0 - Alpha = 0,Beta = -1/4, k=256 0.32 0.06 0.03 Acc 

svaria_WeightDistrib 1       20 - Alpha = 0,Beta = -1/4, k=256 0.11 0.90 0.75 Acc 

svaria_WeightDistrib 1       28 - Alpha = 0,Beta = -1/4, k=256 0.16 0.61 0.04 Acc 

svaria_WeightDistrib 1       0 - Alpha =0,Beta =-1/16, k=256 0.01 0.43 0.90 Acc 

svaria_WeightDistrib 1       10 - Alpha =0,Beta =-1/16, k=256 0.41 0.84 0.64 Acc 

svaria_WeightDistrib 1       26 - Alpha =0,Beta =-1/16, k=256 6.5e-9 0.67 0.92 Acc 

svaria_SumCollector 1       0 - g = 10 0.54 0.36 0.72 Acc 

smarsa_MatrixRank 10     0 5 L = k = 30 Sub 2-12 Sub 2-49 Sub 2-86 Acc 

smarsa_MatrixRank 10     25 5 L = k = 30 Sub 2-13 Sub 2-50 Sub 2-87 Acc 

smarsa_MatrixRank 1 5000 0 4 L = k = 1000 Sub 2-14 Sub 2-51 Sub 2-88 Acc 

smarsa_MatrixRank 1 5000 26 4 L = k = 1000 Sub 2-15 Sub 2-52 Sub 2-89 Acc 

smarsa_MatrixRank 1 80 15 15 L = k = 5000 Sub 2-16 Sub 2-53 Sub 2-90 Acc 

smarsa_MatrixRank 1 80 0 30 L = k = 5000 Sub 2-17 Sub 2-54 Sub 2-91 Acc 

smarsa_Savir2 10     10 - m =    , t = 30 Sub 2-18 Sub 2-55 Sub 2-92 Acc 

smarsa_GCD 10 5x    0 30 - Sub 2-19 Sub 2-56 Sub 2-93 Acc 

swalk_RandomWalk1 1     0 5 L0 = L1 = 50 Sub 3-1 Sub 3-7 Sub 3-13 Acc 

swalk_RandomWalk1 1     25 5 L0 = L1 = 50 Sub 3-2 Sub 3-8 Sub 3-14 Acc 

swalk_RandomWalk1 1     0 10 L0 = L1 = 1000 Sub 3-3 Sub 3-9 Sub 3-15 Acc 

swalk_RandomWalk1 1     20 10 L0 = L1 = 1000 Sub 3-4 Sub 3-10 Sub 3-16 Acc 

swalk_RandomWalk1 1     15 15 L0 = L1 = 10000 Sub 3-5 Sub 3-11 Sub 3-17 Acc 

swalk_RandomWalk1 1     15 15 L0 = L1 = 10000 Sub 3-6 Sub 3-12 Sub 3-18 Acc 

scomp_LinearComp 1       0 1 - Sub 4-1 Sub 4-7 Sub 4-13 Acc 

scomp_LinearComp 1       29 1 - Sub 4-2 Sub 4-8 Sub 4-14 Acc 

scomp_LempelZiv 10 - 0 30 k = 27 Sub 2-20 Sub 2-57 Sub 2-94 Acc 

scomp_LempelZiv 10 - 15 15 k = 27 Sub 2-21 Sub 2-58 Sub 2-95 Acc 

sspectral_Fourier3     - 0 3 k = 14 Sub 2-22 Sub 2-59 Sub 2-96 Acc 

sspectral_Fourier3     - 27 3 k = 14 Sub 2-23 Sub 2-60 Sub 2-97 Acc 

sstring_LongestHeadRun 1 1000 0 3 L =     Sub 4-3 Sub 4-9 Sub 4-15 Acc 

sstring_LongestHeadRun 1 1000 27 3 L =     Sub 4-4 Sub 4-10 Sub 4-16 Acc 

sstring_PeriodsInStrings 10       0 10 - Sub 2-24 Sub 2-61 Sub 2-98 Acc 
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Table 9 – continued 

Test function N n r s Other parameters 

P-value of 

Letech 

GRANG 

P-value of 

IVB 

platform 

P-value of 

IVB 

platform 

(on the fly) 

Acc/Rej 

sstring_PeriodsInStrings 10       20 10 - Sub 2-25 Sub 2-62 Sub 2-99 Acc 

sstring_HammingWeight2 10     0 3 L =     Sub 2-26 Sub 2-63 Sub 2-100 Acc 

sstring_HammingWeight2 10     27 3 L =     Sub 2-27 Sub 2-64 Sub 2-101 Acc 

sstring_HammingCorr 1     10 10 L = 30 0.07 0.35 0.36 Acc 

sstring_HammingCorr 1     10 10 L = 300 0.60 0.31 0.45 Acc 

sstring_HammingCorr 1     10 10 L = 1200 0.27 0.69 0.42 Acc 

sstring_HammingIndep 10       0 3 L = 30, d = 0 Sub 2-28 Sub 2-65 Sub 2-102 Acc 

sstring_HammingIndep 10       27 3 L = 30, d = 0 Sub 2-29 Sub 2-66 Sub 2-103 Acc 

sstring_HammingIndep 1       0 4 L = 300, d = 0 Sub 2-30 Sub 2-67 Sub 2-104 Acc 

sstring_HammingIndep 1       26 4 L = 300, d = 0 Sub 2-31 Sub 2-68 Sub 2-105 Acc 

sstring_HammingIndep 1     0 5 L = 1200, d = 0 Sub 2-32 Sub 2-69 Sub 2-106 Acc 

sstring_HammingIndep 1     25 5 L = 1200, d = 0 Sub 2-33 Sub 2-70 Sub 2-107 Acc 

sstring_Run 1       0 3 - Sub 4-5 Sub 4-11 Sub 4-17 Acc 

sstring_Run 1       27 3 - Sub 4-6 Sub 4-12 Sub 4-18 Acc 

sstring_AutoCor 10     0 3 d = 1 Sub 2-34 Sub 2-71 Sub 2-108 Acc 

sstring_AutoCor 10     0 3 d = 3 Sub 2-35 Sub 2-72 Sub 2-109 Acc 

sstring_AutoCor 10     27 3 d = 1 Sub 2-36 Sub 2-73 Sub 2-110 Acc 

sstring_AutoCor 10     27 3 d = 3 Sub 2-37 Sub 2-74 Sub 2-111 Acc 

 
 
 

Sub-table 1 
Lable Testing name AD A2 Nm Y AD(mNP2) AD(mnp2-S) 

1 snpair_ClosePairs 0.78 0.08 0.61 0.48 0.39 0.08 

2 snpair_ClosePairs 0.42 0.52 0.72 0.91 0.02 0.81 

3 snpair_ClosePairs 0.79 0.81 0.87 0.62 0.47 0.26 

4 snpair_ClosePairs 0.19 0.16 0.86 0.35 0.23 0.26 

5 snpair_ClosePairs 0.94 0.12 0.62 0.16 0.66 0.15 

6 snpair_ClosePairs 0.68 0.70 0.46 0.52 0.89 0.78 

7 snpair_ClosePairs 0.76 0.61 0.53 0.71 0.16 0.61 

8 snpair_ClosePairs 0.56 0.34 0.25 0.83 0.15 0.21 

9 snpair_ClosePairs 0.82 0.90 0.59 0.27 0.90 0.09 

10 snpair_ClosePairs 0.35 0.56 0.26 0.91 0.55 4.7e-3 

11 snpair_ClosePairs 0.36 0.53 0.34 0.06 0.75 0.75 

12 snpair_ClosePairs 0.35 0.09 0.27 0.99 0.94 0.79 
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Sub-table 2 

Lable Test name 
    statistic     statistic Sample 

Variance D+ D- A2    - - - 

1 sknuth_Run 0.44 0.27 0.46 0.29 - - - - 

2 sknuth_Run 0.63 0.52 0.98 0.44 - - - - 

  
   with 99999 degrees of freedom Anderson-Darling test 

 
D+ D- A2    D+ D- A2 

3 sknuth_MaxOft 0.02 0.99 0.06 0.97 0.71 0.12 0.29 - 

4 sknuth_MaxOft 0.62 0.14 0.31 0.21 0.04 0.88 0.13 - 

5 sknuth_MaxOft 0.08 0.72 0.22 0.84 0.36 0.77 0.82 - 

6 sknuth_MaxOft 0.75 0.30 0.72 0.26 0.93 8.2e-3 0.02 - 

  End of MaxOft test 

7 svaria_SampleProd 0.25 0.20 0.24 - - - - - 

8 svaria_SampleProd 0.42 0.08 0.37 - - - - - 

9 svaria_SampleProd 0.95 5.1e-3 0.02 - - - - - 

10 svaria_SampleMean 0.30 0.91 0.69 - - - - - 

11 svaria_SampleMean 0.14 0.9934 0.17 - - - - - 

12 smarsa_MatrixRank 0.15 0.80 0.42 0.81 - - - - 

13 smarsa_MatrixRank 0.88 0.17 0.45 0.26 - - - - 

14 smarsa_MatrixRank - - - 0.80 - - - - 

15 smarsa_MatrixRank - - - 0.78 - - - - 

16 smarsa_MatrixRank - - - 0.65 - - - - 

17 smarsa_MatrixRank - - - 0.41 - - - - 

18 smarsa_Savir2 0.78 0.02 0.14 0.18 - - - - 

19 smarsa_GCD 0.03 0.94 0.21 0.92 - - - - 

20 scomp_LempelZiv 0.51 0.62 0.84 0.52 - - - 0.38 

21 scomp_LempelZiv 0.71 0.09 0.27 0.13 - - - 0.71 

22 sspectral_Fourier3 0.46 0.64 0.83  - - - - 

23 sspectral_Fourier3 0.39 0.25 0.47  - - - - 

24 sstring_PeriodsInStrings 0.52 0.33 0.60 0.55 - - - - 

25 sstring_PeriodsInStrings 0.08 0.79 0.15 0.83 - - - - 

26 sstring_HammingWeight2 0.83 0.05 0.18 0.13 - - - - 

27 sstring_HammingWeight2 0.64 0.57 0.95 0.57 - - - - 

28 sstring_HammingIndep 0.61 0.58 0.91 0.42 - - - - 

29 sstring_HammingIndep 0.92 0.32 0.32 0.07 - - - - 

30 sstring_HammingIndep - - - 0.32 - - - - 

31 sstring_HammingIndep - - - 0.85 - - - - 

32 sstring_HammingIndep - - - 0.02 - - - - 

33 sstring_HammingIndep - - - 0.9914 - - - - 

34 sstring_AutoCor 0.84 0.17 0.35 0.20 - - - 0.29 

35 sstring_AutoCor 0.18 0.95 0.33 0.90 - - - 0.59 

36 sstring_AutoCor 0.70 0.53 0.91 0.38 - - - 0.64 

37 sstring_AutoCor 0.74 0.21 0.71 0.34 - - - 0.87 
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Sub-table 2 – continued 

Lable Test name 
    statistic     statistic Sample 

Variance D+ D- A2    - - - 

39 sknuth_Run 0.31 0.11 0.26 0.53 - - - - 

     with 99999 degrees of freedom Anderson-Darling test  

  D+ D- A2    D+ D- A2  

40 sknuth_MaxOft 0.36 0.71 0.79 0.64 0.20 0.78 0.52 - 

41 sknuth_MaxOft 0.83 0.42 0.72 0.24 0.60 0.29 0.43 - 

42 sknuth_MaxOft 0.55 0.36 0.72 0.51 0.63 0.48 0.97 - 

  D+ D- A2    D+ D- A2  

43 sknuth_MaxOft 0.78 0.42 0.93 0.47 0.12 92 0.11 - 

  End of MaxOft test - 

44 svaria_SampleProd 0.37 0.46 0.48 - - - - - 

45 svaria_SampleProd 0.79 0.18 0.26 - - - - - 

46 svaria_SampleProd 0.17 0.23 0.19 - - - - - 

47 svaria_SampleMean 0.40 0.80 0.82 - - - - - 

48 svaria_SampleMean 0.29 0.17 0.14 - - - - - 

49 smarsa_MatrixRank 0.64 0.69 0.29 0.64 - - - - 

50 smarsa_MatrixRank 0.26 0.69 0.27 0.85 - - - - 

51 smarsa_MatrixRank - - - 0.65 - - - - 

52 smarsa_MatrixRank - - - 0.99 - - - - 

53 smarsa_MatrixRank - - - 0.17 - - - - 

54 smarsa_MatrixRank - - - 0.09 - - - - 

55 smarsa_Savir2 0.51 0.64 0.89 0.44 - - - - 

56 smarsa_GCD 0.73 0.12 0.23 0.20 - - - - 

57 scomp_LempelZiv 0.97 0.40 0.77 0.20 - - - 0.51 

58 scomp_LempelZiv 0.88 0.12 0.18 0.07 - - - 0.74 

59 sspectral_Fourier3 0.79 0.37 0.77 - - - - - 

60 sspectral_Fourier3 0.41 0.39 0.76 - - - - - 

61 sstring_PeriodsInStrings 0.62 0.82 0.9982 0.57 - - - - 

62 sstring_PeriodsInStrings 0.47 0.79 0.92 0.67 - - - - 

63 sstring_HammingWeight2 0.75 0.41 0.44 0.16 - - - - 

64 sstring_HammingWeight2 0.45 0.28 0.62 0.55 - - - - 

65 sstring_HammingIndep 0.50 0.31 0.68 0.37 - - - - 

66 sstring_HammingIndep 0.63 0.32 0.69 0.50 - - - - 

67 sstring_HammingIndep - - - 0.05 - - - - 

68 sstring_HammingIndep - - - 0.24 - - - - 

69 sstring_HammingIndep - - - 0.64 - - - - 

70 sstring_HammingIndep - - - 0.80 - - - - 

71 sstring_AutoCor 0.13 0.24 0.28 0.56 - - - 0.9950 

72 sstring_AutoCor 0.36 0.94 0.62 0.82 - - - 0.38 

73 sstring_AutoCor 0.74 0.30 0.70 0.30 - - - 0.88 

74 sstring_AutoCor 0.76 0.20 0.68 0.27 - - - 0.51 
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Sub-table 2 – continued 

Lable Test name 
    statistic     statistic Sample 

Variance D+ D- A2    - - - 

76 sknuth_Run 0.88 0.34 0.60 0.23 - - - - 

     with 99999 degrees of freedom Anderson-Darling test  

  D+ D- A2    D+ D- A2  

77 sknuth_MaxOft 0.87 0.10 0.14 0.09 0.66 0.28 0.76 - 

78 sknuth_MaxOft 0.49 0.32 0.40 0.28 0.91 0.06 0.16 - 

79 sknuth_MaxOft 0.05 0.94 0.12 0.95 0.51 0.03 0.08 - 

80 sknuth_MaxOft 0.90 0.06 0.19 0.07 0.28 0.81 0.71 - 

 End of MaxOft test 

81 svaria_SampleProd 0.61 0.50 0.96 - - - - - 

Lable Test name 
    statistic     statistic Sample 

Variance D+ D- A2    - - - 

83 svaria_SampleProd 0.22 0.40 0.47 - - - - - 

84 svaria_SampleMean 0.86 0.17 0.54 - - - - - 

85 svaria_SampleMean 0.23 0.65 0.62 - - - - - 

86 smarsa_MatrixRank 0.91 0.24 0.18 0.10 - - - - 

87 smarsa_MatrixRank 0.58 0.49 0.90 0.42 - - - - 

88 smarsa_MatrixRank - - - 0.94 - - - - 

89 smarsa_MatrixRank - - - 0.91 - - - - 

90 smarsa_MatrixRank - - - 0.48 - - - - 

91 smarsa_MatrixRank - - - 0.72 - - - - 

92 smarsa_Savir2 0.91 0.02 0.09 0.07 - - - - 

93 smarsa_GCD 0.82 0.21 0.35 0.17 - - - - 

94 scomp_LempelZiv 0.59 0.10 0.20 0.14 - - - 0.12 

95 scomp_LempelZiv 0.04 0.82 8.4e-3 0.9939 - - - 0.02 

96 sspectral_Fourier3 0.78 0.80 0.9983 - - - - - 

97 sspectral_Fourier3 0.29 0.28 0.29 - - - - - 

98 sstring_PeriodsInStrings 0.25 0.84 0.60 0.74 - - - - 

99 sstring_PeriodsInStrings 0.86 0.25 0.54 0.20 - - - - 

100 sstring_HammingWeight2 0.84 0.08 0.23 0.11 - - - - 

101 sstring_HammingWeight2 0.26 0.95 0.35 0.89 - - - - 

102 sstring_HammingIndep 0.13 0.87 0.43 0.83 - - - - 

103 sstring_HammingIndep 0.48 0.64 0.88 0.62 - - - - 

104 sstring_HammingIndep - - - 0.31 - - - - 

105 sstring_HammingIndep - - - 0.95 - - - - 

106 sstring_HammingIndep - - - 0.26 - - - - 

107 sstring_HammingIndep - - - 0.34 - - - - 

108 sstring_AutoCor 0.84 0.24 0.59 0.20 - - - 0.74 

109 sstring_AutoCor 0.01 0.60 0.10 0.86 - - - 0.90 

110 sstring_AutoCor 0.64 0.74 0.9954 0.52 - - - 0.29 

111 sstring_AutoCor 0.96 0.21 0.40 0.10 - - - 0.49 
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Sub-table 3 

Lable Test name 
Test on the value of the statistic 

H M J R C 

1 swalk_RandomWalk1 0.06 0.86 0.98 0.72 0.87 

2 swalk_RandomWalk1 0.36 0.36 0.79 0.62 0.58 

3 swalk_RandomWalk1 0.75 0.29 0.25 0.21 0.26 

4 swalk_RandomWalk1 0.39 0.04 0.39 0.43 0.04 

5 swalk_RandomWalk1 0.36 0.67 0.09 0.04 0.71 

6 swalk_RandomWalk1 0.08 0.19 6.6e-3 0.62 0.17 

 

8 swalk_RandomWalk1 0.17 0.52 0.67 0.20 0.25 

9 swalk_RandomWalk1 0.02 0.34 0.77 0.87 0.19 

10 swalk_RandomWalk1 0.86 0.26 0.09 0.11 0.53 

11 swalk_RandomWalk1 0.59 0.91 0.30 0.13 0.10 

12 swalk_RandomWalk1 0.29 0.69 0.64 0.19 0.81 

 

13 swalk_RandomWalk1 0.71 0.19 0.45 0.77 0.70 

14 swalk_RandomWalk1 0.03 0.19 0.65 0.03 0.30 

15 swalk_RandomWalk1 0.69 0.73 0.46 0.91 0.88 

16 swalk_RandomWalk1 0.75 0.73 0.09 0.54 0.41 

17 swalk_RandomWalk1 0.12 0.79 0.32 0.25 0.96 

18 swalk_RandomWalk1 0.73 0.19 0.78 0.16 0.12 

       

19 swalk_RandomWalk1 0.52 0.51 0.85 0.74 0.44 

20 swalk_RandomWalk1 0.35 0.71 0.40 0.87 0.95 

21 swalk_RandomWalk1 0.91 0.27 0.15 0.83 0.44 

22 swalk_RandomWalk1 0.48 0.42 0.09 0.59 0.65 

23 swalk_RandomWalk1 0.64 0.71 0.92 0.50 0.92 

24 swalk_RandomWalk1 0.39 2.5e-3 0.21 0.77 0.25 
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Sub-table 4 

Lable Test name 
Statistic    Normal 

1 scomp_LinearComp 0.29 0.22 

2 scomp_LinearComp 0.55 0.34 

3 sstring_LongestHeadRun 0.55 0.90 

4 sstring_LongestHeadRun 0.97 0.69 

5 sstring_Run 0.90 0.63 

6 sstring_Run 0.58 0.77 

    

7 scomp_LinearComp 0.15 0.52 

8 scomp_LinearComp 0.48 0.19 

9 sstring_LongestHeadRun 0.77 0.50 

10 sstring_LongestHeadRun 0.08 0.44 

11 sstring_Run 0.09 0.84 

12 sstring_Run 0.12 0.59 

    

13 scomp_LinearComp 0.47 0.74 

14 scomp_LinearComp 0.62 0.17 

15 sstring_LongestHeadRun 0.65 0.69 

16 sstring_LongestHeadRun 0.52 0.69 

17 sstring_Run 1-6.3e-5 0.45 

18 sstring_Run 0.9997 0.51 

 

19 scomp_LinearComp 0.94 0.35 

20 scomp_LinearComp 0.35 0.99 

21 sstring_LongestHeadRun 0.25 0.25 

22 sstring_LongestHeadRun 0.55 0.02 

23 sstring_Run 0.60 0.57 

24 sstring_Run 0.58 0.18 
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APPENDIX III 

BigCrush tests results of PRNGs 

 

The table 10 lists all the BigCrush tests in TestU01 suite.  The PRNGs tested here include 

threefry2x32 and philox4x32 in Random123, LCG with module     and MLFG.  

In some tests, there are more than one statistic, so multiple p-values could be calculated to 

evaluate the quality of randomness. To spread out all the statistics, I create some sub-tables to 

show them. For example, sub1-2 means the p-values in this blank could be found in the sub-table 

1, and labeled 2. P-values are in interval                are considered as regular, in interval                 are suspicious and should be tested again, and be marked by green. Eps1 means 

p-value is in interval                whereas eps means in interval           . Both of them 

mean the RNG failed the test, and are marked by red. 

 
 

Table 10  BigCrush tests on PRNGs 
Test function N n r s Other parameters Ph4x32 Tf2x32 LCG MLFG 

smarsa_SerialOver 1     0 - d =   , t = 3 0.11 0.28 1-eps1 0.84 

smarsa_SerialOver 1     22 - d =   , t = 3 0.62 0.04 1-eps1 0.50 

smarsa_CollisionOver 30       0     t = 2 0.47 0.21 1-eps1 0.83 

smarsa_CollisionOver 30       9     t = 2 0.47 0.60 1-eps1 0.47 

smarsa_CollisionOver 30       0     t = 2 0.09 0.70 1-eps1 0.50 

smarsa_CollisionOver 30       16     t = 2 0.89 0.42 1-eps1 0.02 

smarsa_CollisionOver 30       0 64 t = 2 0.94 0.25 1-eps1 0.91 

smarsa_CollisionOver 30       24 64 t = 2 0.66 0.01 1-eps1 0.31 

smarsa_CollisionOver 30       0 8 t = 2 0.30 0.16 1-eps1 0.19 

smarsa_CollisionOver 30       27 8 t = 2 0.08 0.12 1-eps1 0.99 

smarsa_CollisionOver 30       0 4 t = 2 0.57 0.13 1-eps1 0.21 

smarsa_CollisionOver 30       28 4 t = 2 0.46 0.92 1-eps1 0.95 

smarsa_BirthdaySpacings 100     0     t = 2, p = 1 0.66 0.58 eps 0.96 

smarsa_BirthdaySpacings 20       0     t = 3, p = 1 0.43 0.28 eps 0.72 

smarsa_BirthdaySpacings 20       14     t = 4, p = 1 0.55 0.13 eps 0.92 

smarsa_BirthdaySpacings 20       0    t = 7, p = 1 0.55 0.70 eps 0.85 

smarsa_BirthdaySpacings 20       7    t = 7, p = 1 0.78 0.72 eps 0.53 

smarsa_BirthdaySpacings 20       14    t = 8, p = 1 0.34 0.87 eps 0.94 

smarsa_BirthdaySpacings 20       22    t = 8, p = 1 0.25 0.03 eps 0.42 

smarsa_BirthdaySpacings 20       0    t = 16, p = 1 0.22 0.26 eps 0.94 

smarsa_BirthdaySpacings 20       26    t = 16, p = 1 0.9999 0.71 eps 0.17 
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Table 10 – continued 
Test function N n r s Other parameters Ph4x32 Tf2x32 LCG MLFG 

snpair_ClosePairs 30       0 - t = 3, p = 0, m = 30 Sub 5-1 Sub 5-5 Sub 5-9 Sub 5-13 

snpair_ClosePairs 20       0 - t = 5, p = 0, m = 30 Sub 5-2 Sub 5-6 Sub 5-10 Sub 5-14 

snpair_ClosePairs 10       0 - t = 9, p = 0, m = 30 Sub 5-3 Sub 5-7 Sub 5-11 Sub 5-15 

snpair_ClosePairs 5       0 - t = 16, p = 0, m = 30 Sub 5-4 Sub 5-8 Sub 5-12 Sub 5-16 

sknuth_SimpPoker 1       0 - d = 8, k = 8 0.16 0.20 0.04 0.54 

sknuth_SimpPoker 1       27 - d = 8, k = 8 0.90 0.42 0.06 0.67 

sknuth_SimpPoker 1     0 - d = 32, k = 32 0.50 0.36 8.2e-3 0.87 

sknuth_SimpPoker 1     25 - d = 32, k = 32 0.76 0.69 9.2e-3 0.52 

sknuth_CouponCollector 1       0 - d = 8 0.04 0.96 eps 0.46 

sknuth_CouponCollector 1       10 - d = 8 0.21 0.10 eps 0.76 

sknuth_CouponCollector 1       20 - d = 8 0.33 0.35 eps 0.79 

sknuth_CouponCollector 1       27 - d = 8 0.54 0.27 eps 0.77 

sknuth_Gap 1       0 - Alpha = 0, Beta = 1/16 eps 2.2e-16 eps 0.18 

sknuth_Gap 1       25 - Alpha = 0, Beta = 1/32 eps eps eps 0.46 

sknuth_Gap 1     0 - Alpha = 0, Beta = 1/128 eps eps eps 0.71 

sknuth_Gap 1     20 - Alpha = 0, Beta = 1/256 eps eps eps 0.77 

sknuth_Run 5     0 - Up = FALSE Sub 6-1 Sub 6-38 Sub 6-75 Sub 6-112 

sknuth_Run 5     15 - Up = TRUE Sub 6-2 Sub 6-39 Sub 6-76 Sub 6-113 

sknuth_Permutation 1     0 - t = 3 0.86 0.54 0.75 0.9967 

sknuth_Permutation 1     0 - t = 5 0.07 0.38 1-3.9e-8 0.89 

sknuth_Permutation 1       0 - t = 7 0.28 0.58 eps 0.90 

sknuth_Permutation 1       10 - t = 10 0.27 0.83 1-eps1 0.86 

sknuth_CollisionPermut 20       0 - t = 14 0.27 0.08 1-1.2e-8 2.0e-3 

sknuth_CollisionPermut 20       10 - t = 14 0.62 0.02 1-7.2e-10 0.32 

sknuth_MaxOft 40     0 - d =   , t = 8 Sub 6-3 Sub 6-40 Sub 6-77 Sub 6-114 

sknuth_MaxOft 30     0 - d =   , t = 16 Sub 6-4 Sub 6-41 Sub 6-78 Sub 6-115 

sknuth_MaxOft 20     0 - d =   , t = 24 Sub 6-5 Sub 6-42 Sub 6-79 Sub 6-116 

sknuth_MaxOft 20     0 - d =   , t = 32 Sub 6-6 Sub 6-43 Sub 6-80 Sub 6-117 

svaria_SampleProd 40     0 - t = 8 Sub 6-7 Sub 6-44 Sub 6-81 Sub 6-118 

svaria_SampleProd 20     0 - t = 16 Sub 6-8 Sub 6-45 Sub 6-82 Sub 6-119 

svaria_SampleProd 20     0 - t = 24 Sub 6-9 Sub 6-46 Sub 6-83 Sub 6-120 

svaria_SampleMean       30 0 - - Sub 6-10 Sub 6-47 Sub 6-84 Sub 6-121 

svaria_SampleMean       30 10 - - Sub 6-11 Sub 6-48 Sub 6-85 Sub 6-122 

svaria_SampleCorr 1       0 - k = 1 0.59 0.32 0.35 0.31 

svaria_SampleCorr 1       0 - k = 2 0.84 0.75 0.55 0.08 

svaria_Appearancepsacings 1 - 0 3 Q=   ,K=    , L=15 0.58 0.11 0.12 0.34 

svaria_Appearancepsacings 1 - 27 3 Q=   ,K=   , L=15 0.91 0.45 0.37 0.15 

svaria_WeightDistrib 1       0 - Alpha = 0,Beta = -1/4, k=256 7.0e-3 0.65 0.03 0.77 

svaria_WeightDistrib 1       20 - Alpha = 0,Beta = -1/4, k=256 0.08 0.07 1.7e-4 0.84 

svaria_WeightDistrib 1       28 - Alpha = 0,Beta = -1/4, k=256 0.01 0.10 1.5e-5 0.46 

svaria_WeightDistrib 1       0 - Alpha =0,Beta =-1/16, k=256 0.31 0.05 9.9e-6 0.46 

svaria_WeightDistrib 1       10 - Alpha =0,Beta =-1/16, k=256 0.39 8.4e-4 0.10 0.11 
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Table 10 – continued 
Test function N n r s Other parameters Ph4x32 Tf2x32 LCG MLFG 

svaria_WeightDistrib 1       26 - Alpha =0,Beta =-1/16, k=256 0.03 2.3e-4 0.02 0.87 

svaria_SumCollector 1       0 - g = 10 3.6e-10 2.3e-4 eps 0.54 

smarsa_MatrixRank 10     0 5 L = k = 30 Sub 6-12 Sub 6-49 Sub 6-86 Sub 6-123 

smarsa_MatrixRank 10     25 5 L = k = 30 Sub 6-13 Sub 6-50 Sub 6-87 Sub 6-124 

smarsa_MatrixRank 1 5000 0 4 L = k = 1000 Sub 6-14 Sub 6-51 Sub 6-88 Sub 6-125 

smarsa_MatrixRank 1 5000 26 4 L = k = 1000 Sub 6-15 Sub 6-52 Sub 6-89 Sub 6-126 

smarsa_MatrixRank 1 80 15 15 L = k = 5000 Sub 6-16 Sub 6-53 Sub 6-90 Sub 6-127 

smarsa_MatrixRank 1 80 0 30 L = k = 5000 Sub 6-17 Sub 6-54 Sub 6-91 Sub 6-128 

smarsa_Savir2 10     10 - m =    , t = 30 Sub 6-18 Sub 6-55 Sub 6-92 Sub 6-129 

smarsa_GCD 10 5x    0 30 - Sub 6-19 Sub 6-56 Sub 6-93 Sub 6-130 

swalk_RandomWalk1 1     0 5 L0 = L1 = 50 Sub 7-1 Sub 7-7 Sub 7-13 Sub 7-19 

swalk_RandomWalk1 1     25 5 L0 = L1 = 50 Sub 7-2 Sub 7-8 Sub 7-14 Sub 7-20 

swalk_RandomWalk1 1     0 10 L0 = L1 = 1000 Sub 7-3 Sub 7-9 Sub 7-15 Sub 7-21 

swalk_RandomWalk1 1     20 10 L0 = L1 = 1000 Sub 7-4 Sub 7-10 Sub 7-16 Sub 7-22 

swalk_RandomWalk1 1     15 15 L0 = L1 = 10000 Sub 7-5 Sub 7-11 Sub 7-17 Sub 7-23 

swalk_RandomWalk1 1     15 15 L0 = L1 = 10000 Sub 7-6 Sub 7-12 Sub 7-18 Sub 7-24 

scomp_LinearComp 1       0 1 - Sub 8-1 Sub 8-7 Sub 8-13 Sub 8-19 

scomp_LinearComp 1       29 1 - Sub 8-2 Sub 8-8 Sub 8-14 Sub 8-20 

scomp_LempelZiv 10 - 0 30 k = 27 Sub 6-20 Sub 6-57 Sub 6-94 Sub 6-131 

scomp_LempelZiv 10 - 15 15 k = 27 Sub 6-21 Sub 6-58 Sub 6-95 Sub 6-132 

sspectral_Fourier3     - 0 3 k = 14 Sub 6-22 Sub 6-59 Sub 6-96 Sub 6-133 

sspectral_Fourier3     - 27 3 k = 14 Sub 6-23 Sub 6-60 Sub 6-97 Sub 6-134 

sstring_LongestHeadRun 1 1000 0 3 L =     Sub 8-3 Sub 8-9 Sub 8-15 Sub 8-21 

sstring_LongestHeadRun 1 1000 27 3 L =     Sub 8-4 Sub 8-10 Sub 8-16 Sub 8-22 

sstring_PeriodsInStrings 10       0 10 - Sub 6-24 Sub 6-61 Sub 6-98 Sub 6-135 

sstring_PeriodsInStrings 10       20 10 - Sub 6-25 Sub 6-62 Sub 6-99 Sub 6-136 

sstring_HammingWeight2 10     0 3 L =     Sub 6-26 Sub 6-63 Sub 6-100 Sub 6-137 

sstring_HammingWeight2 10     27 3 L =     Sub 6-27 Sub 6-64 Sub 6-101 Sub 6-138 

sstring_HammingCorr 1     10 10 L = 30 0.02 0.15 0.04 0.70 

sstring_HammingCorr 1     10 10 L = 300 0.90 0.43 0.56 0.93 

sstring_HammingCorr 1     10 10 L = 1200 0.57 0.46 0.50 0.02 

sstring_HammingIndep 10       0 3 L = 30, d = 0 Sub 6-28 Sub 6-65 Sub 6-102 Sub 6-139 

sstring_HammingIndep 10       27 3 L = 30, d = 0 Sub 6-29 Sub 6-66 Sub 6-103 Sub 6-140 

sstring_HammingIndep 1       0 4 L = 300, d = 0 Sub 6-30 Sub 6-67 Sub 6-104 Sub 6-141 

sstring_HammingIndep 1       26 4 L = 300, d = 0 Sub 6-31 Sub 6-68 Sub 6-105 Sub 6-142 

sstring_HammingIndep 1     0 5 L = 1200, d = 0 Sub 6-32 Sub 6-69 Sub 6-106 Sub 6-143 

sstring_HammingIndep 1     25 5 L = 1200, d = 0 Sub 6-33 Sub 6-70 Sub 6-107 Sub 6-144 

sstring_Run 1       0 3 - Sub 8-5 Sub 8-11 Sub 8-17 Sub 8-23 

sstring_Run 1       27 3 - Sub 8-6 Sub 8-12 Sub 8-18 Sub 8-24 

sstring_AutoCor 10     0 3 d = 1 Sub 6-34 Sub 6-71 Sub 6-108 Sub 6-145 

sstring_AutoCor 10     0 3 d = 3 Sub 6-35 Sub 6-72 Sub 6-109 Sub 6-146 

sstring_AutoCor 10     27 3 d = 1 Sub 6-36 Sub 6-73 Sub 6-110 Sub 6-147 
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Table 10 – continued 
Test function N n r s Other parameters Ph4x32 Tf2x32 LCG MLFG 

sstring_AutoCor 10     27 3 d = 3 Sub 6-37 Sub 6-74 Sub 6-111 Sub 6-148 

 
 

Sub-table 5 
Lable Testing name AD A2 Nm Y AD(mNP2) AD(mnp2-S) 

1 snpair_ClosePairs 0.53 0.79 0.01 0.88 0.80 0.03 

2 snpair_ClosePairs 0.41 0.39 0.64 0.74 0.71 0.85 

3 snpair_ClosePairs 0.88 0.46 0.28 0.93 0.25 0.32 

4 snpair_ClosePairs 0.65 0.92 0.27 0.32 0.59 0.16 

 

5 snpair_ClosePairs 0.28 0.22 0.81 0.31 0.43 0.49 

6 snpair_ClosePairs 0.20 0.28 0.53 0.30 0.39 0.89 

7 snpair_ClosePairs 0.56 0.35 0.86 0.48 0.66 0.40 

8 snpair_ClosePairs 0.99 0.22 0.78 0.27 0.67 0.33 

 

9 snpair_ClosePairs eps eps eps 1-eps1 - - 

10 snpair_ClosePairs eps eps eps 1-eps1 - - 

11 snpair_ClosePairs 3.2e-157 3.2e-157 eps 1-eps1 - - 

12 snpair_ClosePairs 1.8e-79 1.8e-79 eps 1-eps1 - - 

 

13 snpair_ClosePairs 0.14 0.82 0.13 0.90 0.20 0.66 

14 snpair_ClosePairs 0.65 0.36 0.03 0.94 0.97 0.25 

15 snpair_ClosePairs 0.56 0.07 5.1e-3 0.89 0.09 0.61 

16 snpair_ClosePairs 0.88 0.95 0.11 0.10 0.24 0.73 

 
 

Sub-table 6 

Lable Test name 
    statistic     statistic Sample 

Variance D+ D- A2    - - - 

1 sknuth_Run 0.22 0.79 0.62 0.80 - - - - 

2 sknuth_Run 0.59 0.13 0.40 0.17 - - - - 

  
   with 99999 degrees of freedom Anderson-Darling test 

- 
D+ D- A2    D+ D- A2 

3 sknuth_MaxOft 0.20 0.87 0.73 0.77 0.18 0.98 0.33 - 

4 sknuth_MaxOft 0.31 0.53 0.70 0.36 0.83 0.66 0.9945 - 

5 sknuth_MaxOft 0.13 0.52 0.20 0.83 0.51 0.17 0.42 - 

6 sknuth_MaxOft 0.67 0.25 0.60 0.24 0.40 0.78 0.67 - 

  End of MaxOft test 

7 svaria_SampleProd 0.46 0.11 0.30 - - - - - 

8 svaria_SampleProd 0.74 0.16 0.35 - - - - - 

9 svaria_SampleProd 0.34 0.73 0.90 - - - - - 

10 svaria_SampleMean 0.42 0.47 0.67 - - - - - 
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Sub-table 6 – continued 

Lable Test name 
    statistic     statistic Sample 

Variance D+ D- A2    - - - 

12 smarsa_MatrixRank 0.59 0.58 0.76 0.19 - - - - 

13 smarsa_MatrixRank 0.33 0.42 0.51 0.77 - - - - 

14 smarsa_MatrixRank - - - 0.68 - - - - 

15 smarsa_MatrixRank - - - 0.92 - - - - 

16 smarsa_MatrixRank - - - 0.81 - - - - 

17 smarsa_MatrixRank - - - 0.03 - - - - 

18 smarsa_Savir2 0.15 0.80 0.20 0.73 - - - - 

19 smarsa_GCD 0.91 1.1e-3 0.01 0.01 - - - - 

20 scomp_LempelZiv 0.09 0.71 0.22 0.90 - - - 0.76 

21 scomp_LempelZiv 0.58 0.26 0.76 0.45 - - - 0.58 

22 sspectral_Fourier3 0.21 0.58 0.69 - - - - - 

23 sspectral_Fourier3 0.13 0.83 0.22 - - - - - 

24 sstring_PeriodsInStrings 0.89 0.19 0.40 0.18 - - - - 

25 sstring_PeriodsInStrings 0.82 0.46 0.75 0.28 - - - - 

26 sstring_HammingWeight2 0.76 0.55 0.99 0.45 - - - - 

27 sstring_HammingWeight2 0.05 0.87 0.18 0.93 - - - - 

28 sstring_HammingIndep 0.9913 8.1e-3 0.03 0.01 - - - - 

29 sstring_HammingIndep 0.47 0.18 0.38 0.57 - - - - 

30 sstring_HammingIndep - - - 0.06 - - - - 

31 sstring_HammingIndep - - - 0.02 - - - - 

32 sstring_HammingIndep - - - 0.36 - - - - 

33 sstring_HammingIndep - - - 0.79 - - - - 

34 sstring_AutoCor 0.59 0.56 0.96 0.36 - - - 0.34 

35 sstring_AutoCor 0.31 0.50 0.38 0.59 - - - 0.03 

36 sstring_AutoCor 0.82 0.15 0.32 0.13 - - - 0.77 

37 sstring_AutoCor 0.18 0.97 0.20 0.94 - - - 0.77 

 

38 sknuth_Run 0.50 0.20 0.56 0.42 - - - - 

39 sknuth_Run 0.35 0.67 0.88 0.47 - - - - 

 
 

   with 99999 degrees of freedom Anderson-Darling test - 
 D+ D- A2    D+ D- A2 

40 sknuth_MaxOft 0.21 0.85 0.23 0.93 0.43 0.53 0.63 - 

41 sknuth_MaxOft 0.95 0.12 0.14 0.04 0.50 0.08 0.26 - 

42 sknuth_MaxOft 0.50 0.13 0.17 0.40 0.79 0.39 0.75 - 

43 sknuth_MaxOft 0.51 0.74 0.73 0.76 0.41 0.56 0.76 - 

  End of MaxOft test - 

44 svaria_SampleProd 0.05 0.9920 0.03 - - - - - 

45 svaria_SampleProd 0.33 0.69 0.67 - - - - - 

46 svaria_SampleProd 0.72 0.58 0.97 - - - - - 

47 svaria_SampleMean 0.22 0.11 0.24 - - - - - 

48 svaria_SampleMean 0.67 0.31 0.56 - - - - - 
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Sub-table 6 – continued 

Lable Test name 
    statistic     statistic Sample 

Variance D+ D- A2    - - - 

49 smarsa_MatrixRank 0.74 0.06 0.19 0.18 - - - - 

51 smarsa_MatrixRank - - - 0.75 - - - - 

52 smarsa_MatrixRank - - - 0.40 - - - - 

53 smarsa_MatrixRank - - - 0.59 - - - - 

54 smarsa_MatrixRank - - - 0.87 - - - - 

55 smarsa_Savir2 0.67 0.52 0.98 0.49 - - - - 

56 smarsa_GCD 0.03 0.96 0.04 0.98 - - - - 

57 scomp_LempelZiv 0.21 0.91 0.44 0.86 - - - 0.76 

58 scomp_LempelZiv 0.43 0.82 0.68 0.75 - - - 0.31 

59 sspectral_Fourier3 8.2e-3 0.79 0.06 - - - - - 

60 sspectral_Fourier3 0.36 0.38 0.51 - - - - - 

61 sstring_PeriodsInStrings 0.12 0.41 0.46 0.66 - - - - 

62 sstring_PeriodsInStrings 0.41 0.59 0.78 0.54 - - - - 

63 sstring_HammingWeight2 0.93 0.12 0.26 0.06 - - - - 

64 sstring_HammingWeight2 0.21 0.83 0.61 0.72 - - - - 

65 sstring_HammingIndep 0.90 0.41 0.88 0.29 - - - - 

66 sstring_HammingIndep 0.35 0.86 0.78 0.77 - - - - 

67 sstring_HammingIndep - - - 0.83 - - - - 

68 sstring_HammingIndep - - - 0.29 - - - - 

69 sstring_HammingIndep - - - 0.65 - - - - 

70 sstring_HammingIndep - - - 0.32 - - - - 

71 sstring_AutoCor 0.73 0.28 0.63 0.19 - - - 0.63 

72 sstring_AutoCor 0.15 0.89 0.55 0.80 - - - 0.67 

73 sstring_AutoCor 0.34 0.13 0.28 0.26 - - - 0.97 

74 sstring_AutoCor 0.22 0.76 0.34 0.86 - - - 0.31 

 

75 sknuth_Run 2.5e-3 0.97 1.7e-3 0.9993 - - - - 

76 sknuth_Run 1.0e-7 0.9921 4.9e-7 1-1.3e-7 - - - - 

 
 

   with 99999 degrees of freedom Anderson-Darling test 
- 

 D+ D- A2    D+ D- A2 

77 sknuth_MaxOft 1.0e-97 1-2.3e-13 3.4e-205 1-eps1 0.98 0.18 0.08 - 

78 sknuth_MaxOft eps 1-eps1 eps 1-eps1 0.90 0.01 0.12 - 

79 sknuth_MaxOft eps 1-eps1 eps 1-eps1 0.9927 0.02 2.2e-3 - 

80 sknuth_MaxOft eps 1-eps1 eps 1-eps1 0.9959 3.6e-4 308e-4 - 

 End of MaxOft test 

81 svaria_SampleProd 0.95 1.0e-3 6.3e-3 - - - - - 

82 svaria_SampleProd 0.96 0.01 0.01 - - - - - 

83 svaria_SampleProd 0.98 2.6e-3 0.02 - - - - - 

84 svaria_SampleMean 0.68 0.24 0.48 - - - - - 

85 svaria_SampleMean 0.93 0.33 0.78 - - - - - 

86 smarsa_MatrixRank 0.78 0.28 0.81 0.40 - - - - 

87 smarsa_MatrixRank 0.23 0.62 0.70 0.71 - - - - 



 

84 

 

Sub-table 6 – continued 

Lable Test name 
    statistic     statistic Sample 

Variance D+ D- A2    - - - 

88 smarsa_MatrixRank - - - 0.54 - - - - 

89 smarsa_MatrixRank - - - 0.77 - - - - 

91 smarsa_MatrixRank - - - 0.29 - - - - 

92 smarsa_Savir2 0.53 0.34 0.61 0.45 - - - - 

93 smarsa_GCD 0.58 0.68 0.89 0.56 - - - - 

94 scomp_LempelZiv 0.94 0.08 0.05 0.02 - - - 0.49 

95 scomp_LempelZiv 0.97 0.12 0.11 0.03 - - - 0.50 

96 sspectral_Fourier3 1.4e-40 1.8e-44 3.9e-72 - - - - - 

97 sspectral_Fourier3 1.6e-49 6.7e-48 1.9e-80 - - - - - 

98 sstring_PeriodsInStrings 8.6e-12 0.9979 5.1e-12 1-5.9e-12 - - - - 

99 sstring_PeriodsInStrings 2.1e-14 0.9939 5.8e-13 1-2.2e-12 - - - - 

100 sstring_HammingWeight2 0.56 0.31 0.67 0.41 - - - - 

101 sstring_HammingWeight2 0.60 0.38 0.74 0.62 - - - - 

102 sstring_HammingIndep 0.38 0.76 0.81 0.64 - - - - 

103 sstring_HammingIndep 0.57 0.67 0.96 0.61 - - - - 

104 sstring_HammingIndep - - - 0.27 - - - - 

105 sstring_HammingIndep - - - 0.89 - - - - 

106 sstring_HammingIndep - - - 0.99 - - - - 

107 sstring_HammingIndep - - - 0.32 - - - - 

108 sstring_AutoCor 0.34 0.35 0.46 0.57 - - - 0.96 

109 sstring_AutoCor 0.34 0.57 0.74 0.48 - - - 0.83 

110 sstring_AutoCor 0.44 0.22 0.41 0.40 - - - 0.98 

111 sstring_AutoCor 0.52 0.56 0.89 0.61 - - - 0.76 

 

112 sknuth_Run 0.77 0.44 0.82 0.27 - - - - 

113 sknuth_Run 0.77 0.37 0.80 0.31 - - - - 

 
 

   with 99999 degrees of freedom Anderson-Darling test 
- 

 D+ D- A2    D+ D- A2 

114 sknuth_MaxOft 0.31 0.84 0.77 0.69 0.16 0.35 0.24 - 

115 sknuth_MaxOft 0.96 0.29 0.44 0.12 0.38 0.41 0.60 - 

116 sknuth_MaxOft 0.72 0.16 0.64 0.48 0.56 0.67 0.92 - 

117 sknuth_MaxOft 0.61 0.71 0.83 0.55 0.32 0.83 0.86 - 

 End of MaxOft test 

118 svaria_SampleProd 0.37 0.51 0.66 - - - - - 

119 svaria_SampleProd 0.54 0.53 0.84 - - - - - 

120 svaria_SampleProd 0.17 0.74 0.19 - - - - - 

121 svaria_SampleMean 0.39 0.56 0.80 - - - - - 

122 svaria_SampleMean 0.78 0.48 0.69 - - - - - 

123 smarsa_MatrixRank 0.39 0.82 0.84 0.79 - - - - 

124 smarsa_MatrixRank 0.94 0.39 0.84 0.31 - - - - 

125 smarsa_MatrixRank - - - 0.70 - - - - 

126 smarsa_MatrixRank - - - 0.79 - - - - 
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Sub-table 6 – continued 

Lable Test name 
    statistic     statistic Sample 

Variance D+ D- A2    - - - 

127 smarsa_MatrixRank - - - 0.74 - - - - 

128 smarsa_MatrixRank - - - 0.96 - - - - 

129 smarsa_Savir2 0.65 0.50 0.87 0.34 - - - - 

131 scomp_LempelZiv 0.93 0.02 0.21 0.12 - - - 0.82 

132 scomp_LempelZiv 0.12 0.98 0.10 0.97 - - - 0.69 

133 sspectral_Fourier3 0.54 0.61 0.90 - - - - - 

134 sspectral_Fourier3 0.89 0.10 0.14 - - - - - 

135 sstring_PeriodsInStrings 0.89 0.35 0.55 0.19 - - - - 

136 sstring_PeriodsInStrings 3.7e-3 0.91 0.01 0.9917 - - - - 

137 sstring_HammingWeight2 0.08 0.92 0.21 0.93 - - - - 

138 sstring_HammingWeight2 0.97 0.14 0.20 0.06 - - - - 

139 sstring_HammingIndep 0.75 0.52 0.87 0.41 - - - - 

140 sstring_HammingIndep 0.47 0.46 0.78 0.43 - - - - 

141 sstring_HammingIndep - - - 0.84 - - - - 

142 sstring_HammingIndep - - - 0.29 - - - - 

143 sstring_HammingIndep - - - 0.35 - - - - 

144 sstring_HammingIndep - - - 0.55 - - - - 

145 sstring_AutoCor 0.15 0.89 0.20 0.94 - - - 0.56 

146 sstring_AutoCor 0.94 0.14 0.20 0.08 - - - 0.15 

147 sstring_AutoCor 0.10 0.60 0.48 0.49 - - - 0.34 

148 sstring_AutoCor 0.78 0.01 0.04 0.04 - - - 0.98 
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Sub-table 7 

Lable Test name 
Test on the value of the statistic 

H M J R C 

1 swalk_RandomWalk1 0.06 0.86 0.98 0.72 0.87 

2 swalk_RandomWalk1 0.36 0.36 0.79 0.62 0.58 

3 swalk_RandomWalk1 0.75 0.29 0.25 0.21 0.26 

4 swalk_RandomWalk1 0.39 0.04 0.39 0.43 0.04 

5 swalk_RandomWalk1 0.36 0.67 0.09 0.04 0.71 

6 swalk_RandomWalk1 0.08 0.19 6.6e-3 0.62 0.17 

 

7 swalk_RandomWalk1 0.65 0.59 0.09 0.15 0.56 

8 swalk_RandomWalk1 0.17 0.52 0.67 0.20 0.25 

9 swalk_RandomWalk1 0.02 0.34 0.77 0.87 0.19 

10 swalk_RandomWalk1 0.86 0.26 0.09 0.11 0.53 

11 swalk_RandomWalk1 0.59 0.91 0.30 0.13 0.10 

12 swalk_RandomWalk1 0.29 0.69 0.64 0.19 0.81 

 

13 swalk_RandomWalk1 0.71 0.19 0.45 0.77 0.70 

14 swalk_RandomWalk1 0.03 0.19 0.65 0.03 0.30 

15 swalk_RandomWalk1 0.69 0.73 0.46 0.91 0.88 

16 swalk_RandomWalk1 0.75 0.73 0.09 0.54 0.41 

17 swalk_RandomWalk1 0.12 0.79 0.32 0.25 0.96 

18 swalk_RandomWalk1 0.73 0.19 0.78 0.16 0.12 

       

19 swalk_RandomWalk1 0.52 0.51 0.85 0.74 0.44 

20 swalk_RandomWalk1 0.35 0.71 0.40 0.87 0.95 

21 swalk_RandomWalk1 0.91 0.27 0.15 0.83 0.44 

22 swalk_RandomWalk1 0.48 0.42 0.09 0.59 0.65 

23 swalk_RandomWalk1 0.64 0.71 0.92 0.50 0.92 

24 swalk_RandomWalk1 0.39 2.5e-3 0.21 0.77 0.25 
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Sub-table 8 

Lable Test name 
Statistic    Normal 

1 scomp_LinearComp 0.29 0.22 

2 scomp_LinearComp 0.55 0.34 

3 sstring_LongestHeadRun 0.55 0.90 

4 sstring_LongestHeadRun 0.97 0.69 

5 sstring_Run 0.90 0.63 

6 sstring_Run 0.58 0.77 

    

7 scomp_LinearComp 0.15 0.52 

8 scomp_LinearComp 0.48 0.19 

9 sstring_LongestHeadRun 0.77 0.50 

10 sstring_LongestHeadRun 0.08 0.44 

11 sstring_Run 0.09 0.84 

12 sstring_Run 0.12 0.59 

    

13 scomp_LinearComp 0.47 0.74 

14 scomp_LinearComp 0.62 0.17 

15 sstring_LongestHeadRun 0.65 0.69 

16 sstring_LongestHeadRun 0.52 0.69 

17 sstring_Run 1-6.3e-5 0.45 

18 sstring_Run 0.9997 0.51 

 

13 scomp_LinearComp 0.94 0.35 

14 scomp_LinearComp 0.35 0.99 

15 sstring_LongestHeadRun 0.25 0.25 

16 sstring_LongestHeadRun 0.55 0.02 

17 sstring_Run 0.60 0.57 

18 sstring_Run 0.58 0.18 
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