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ABSTRACT

The nature of embedded systems development places a great deal of importance on

meeting strict requirements in areas such as static code size, power consumption, and

execution time. Due to this, embedded developers frequently generate and tune assembly

code for applications by hand. The phase ordering problem is a well-known problem affecting

the design of optimizing compilers. VISTA is an optimizing compiler framework that employs

iteration of optimization phase sequences and a genetic algorithm search for effective phase

sequences in an effort to minimize the effects of the phase ordering problem. Hand-generated

code is susceptible to an analogous problem to phase ordering, but there has been little

research in mitigating its effect on the quality of the generated code. One approach for

adjusting the phase ordering of such previously optimized code is to de-optimize the code

by undoing the potential work done by prior optimization phases. This thesis presents

an extension of the VISTA framework for investigating the effect and potential benefit

of performing de-optimization before re-optimizing assembly code. The construction of a

translator tool suite for the purpose of converting assembly code to the VISTA RTL input

format is discussed. The design and implementation of algorithms for de-optimization of

both loop-invariant code motion and register allocation, along with results of performing

experiments regarding de-optimization and re-optimization of previously generated assembly

code are also presented.

ix



CHAPTER 1

INTRODUCTION

The phase ordering problem is a long-standing problem involved in the development of

compilers and related tools [20]. Simply put, the phase ordering problem is that there exists

no single sequence of optimization phases that will produce optimal code for every function in

every application on every architecture. Different optimizations can enable or disable further

optimizations depending on the characteristics of the current function being compiled as well

as the target architecture [21]. These enabling or disabling factors can greatly impact the

design and implementation of optimizing compilers. One of the most critical enabling or

disabling factors is register pressure. Many optimization phases consume registers, thus

increasing register pressure. Optimization phases performed after this point will then have

fewer available registers to use. Depending on the chosen optimization phase order, later

phases may be prohibited from having any effect at all. Embedded systems are even at

greater risk of trouble due to the phase ordering problem, since these systems typically have

non-orthogonal instruction sets and fewer registers, contributing to even greater register

pressure.

One approach towards minimizing the effects of the phase ordering problem is to produce

a compiler with the ability to apply phases repeatedly and in any given order. The Very

Portable Optimizer (VPO) was developed in an attempt to provide these exact features [1].

VISTA (VPO Interactive System for Tuning Applications) is an enhancement developed for

VPO to provide a graphical interactive compilation framework which application developers

can use to finely tune generated code [22]. VISTA provides static and dynamic measurement

information to allow the programmer to more effectively guide the optimization process [13].

Additionally, the VISTA framework supports automatic tuning of code through the use of

static and dynamic profile data combined with a genetic algorithm search for effective phase

1



sequence orderings [15]. All of these features make VISTA an attractive environment for the

study of optimizing compiler technology.

Embedded devices are experiencing a great surge in popularity. As the demand for

embedded devices increases, so too does the demand for embedded software development.

With embedded software development, size and timing constraints are both more important

and more stringent than they are in traditional software. This increased focus forces a great

deal of embedded applications development to be done using assembly language, since the

ability to hand-tune code typically produces smaller and faster executables than comparable

high-level languages with good optimizing compilers.

Hand-generated assembly code may appear to be an adequate solution for the require-

ments of embedded software development, however it is still subject to the phase ordering

problem albeit in a slightly different manner. Clearly the majority of optimization phases

need not be performed in exactly the same manner by an assembly programmer who is

hand-coding a function. Transformations from different optimization phases can be mixed

and combined at many different points during the code generation and hand tuning process.

Thus there is not truly an explicit phase ordering being applied to the function. Instead,

the programmer modifies the code based on intuitions and educated decisions in an attempt

to decrease the static and dynamic instruction counts. However these judgments are clearly

similar to phase ordering decisions made by an optimizing compiler, so it is possible that a

better solution exists even with hand-tuned assembly code.

It is thus natural to attempt to alleviate the phase ordering problem with hand-generated

assembly code by making some modifications to the facilities available in the VISTA

framework. First a translator must be constructed to convert the assembly code to an input

format which VISTA can understand. To handle the phase ordering problem, the concept of

de-optimization will be applied. Prior optimizations that affect the phase ordering problem

can be undone in a safe manner, so that different phase sequences can then be applied and

tested. For the purpose of this thesis, both loop-invariant code motion and register allocation

will be de-optimized since they have a great impact on register pressure and thus the phase

ordering problem. Other optimizations were not selected because they either do not have

much of an impact on the phase ordering problem (branch chaining), or there is no way

to reconstruct the necessary information (dead assignment elimination). After performing

2
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Figure 1.1: Assembly De-optimization and Re-optimization

the required de-optimizations, VISTA can then be instructed to automatically retune the

de-optimized code sequence using its genetic algorithm search for effective optimization

sequences. Figure 1.1 shows the process of re-optimizing assembly code with VISTA.

The rest of this thesis can be broken down as follows: Chapter 2 presents additional

preliminary information, including a detailed look at the VISTA framework, which will be

used for all testing. The next chapter discusses the process of assembly translation, including

the implementation of the ASM2RTL translator suite for converting assembly source code

to the VISTA RTL format. Chapter 4 focuses on the actual design and development of

de-optimizations within the VISTA framework. Chapter 5 describes the optimization reverse

copy propagation, which was added to VISTA to improve de-optimized and re-optimized

code. The results of performing the proposed experiments are then examined, along with

a discussion of the analyzed data. Related work is then reviewed for the areas of assembly

translation and de-optimization. Additional benefits of the work done in this thesis are

highlighted in Chapter 8. Chapter 9 considers some of the potential future improvements

3



that can be made to the de-optimization strategy. The final chapter contains concluding

remarks regarding the use of de-optimizations for re-optimizing code.
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CHAPTER 2

EXPERIMENTAL SETTING

The general setup for the de-optimization experiment is described in detail in this

chapter. The first section discusses VISTA, the compiler framework for which the proposed

de-optimizations will be implemented and tested. The next section contains information

concerning the necessary hardware and software for adequately testing the de-optimizations.

This also includes detailed descriptions of the benchmarks as well as the compilers used for

the experiment. The last section describes the actual test plan which will be used to evaluate

the potential effects of de-optimization on the optimization process.

2.1 VPO Interactive System for Tuning
Applications (VISTA)

In order to investigate the potential benefits of de-optimization with respect to re-

sequencing optimization phases, it was necessary to modify the VISTA (VPO Interactive

System for Tuning Applications) compiler framework [22, 15]. VISTA was developed as

an interactive compiler that would allow a knowledgeable programmer to finely tune the

optimization phase order performed on a given function. To facilitate this, VISTA provides

a graphical interface that interacts with a VPO (Very Portable Optimizer) backend. Using

this GUI, a programmer can tailor the phase sequence based on immediate performance

feedback information generated using EASE (Environment for Architecture Study and Ex-

perimentation). However the most attractive feature of VISTA is the ability to automatically

search for effective phase sequences using a genetic algorithm. This is particularly beneficial

in the case of attempting to reapply transformations on de-optimized assembly code, since

we are assuming that the original phase ordering may have been suboptimal.

5



2.1.1 Very Portable Optimizer (VPO)

A fundamental component of VISTA is VPO, the actual compiler backend with which

it communicates. VPO [2] was designed to be both portable and efficient, accepting an

intermediate language known as RTLs (Register Transfer Lists), and producing assembly

code. These RTLs provide a machine-independent representation of the effects of machine

instructions. By operating on these RTLs, various code-improving transformations found in

VPO can be written in a machine-independent manner (e.g. loop-invariant code motion),

with only a small portion of the code requiring any information about the specifications of the

target machine. Thus the amount of work necessary for porting VPO to a new architecture

is reduced.

VPO also incorporates EASE (Environment for Architecture Study and Experimenta-

tion) [7] for instrumenting generated assembly files to collect performance data. Both static

information (code size) and dynamic information (instructions executed, memory references)

can be collected through the use of this profile data. VISTA enables the programmer to query

these frequency measures at any point during the compilation process, and thus facilitates

fine tuning of the code.

2.1.2 Searching for Effective Phase Sequences

Due to the nature of embedded application development, longer compile times are often

tolerated to allow further improvements to the generated code, since code size and timing

requirements are typically very inflexible. Evolutionary algorithms are effective in dealing

with large search spaces for which the interaction between parameters is not well understood.

Since the phase ordering problem has been characterized in this manner [6], a genetic

algorithm approximation is a good solution. The VISTA framework provides such a genetic

algorithm search for effective phase sequences [13, 15, 14].

Figure 2.1 depicts the genetic algorithm search window with various parameters that are

able to be adjusted by the programmer. The parameters include the optimization phases

available to the algorithm, the maximum number of phases to perform, the population size,

the number of generations, the type of search to perform, as well the fitness criteria to

use in evaluating the phase sequences. When selecting the fitness criteria, the programmer

6



Figure 2.1: VISTA Genetic Algorithm Search Parameters

can choose between optimizing for code size, instructions executed, or a mixture of both.

Optimization phase sequences are then tested systematically by the genetic algorithm to

locate the most beneficial ordering it can find based on the fitness criteria selected.

The genetic algorithm can also be prematurely stopped by the programmer if the desired

level of optimizations are achieved before completing the entire specified search. Figure 2.2

shows a search in progress after 448 attempted sequences. Note that invalid sequences

are displayed and recorded to assist in the debugging of new optimizations and features

added to VISTA. Both the current sequence being tested and the best found sequence are

displayed using simple letters to represent the various optimization phases. Statistics about

the performance of the best sequence can be found at the bottom of the window. Sequence

317 produces code that is 47% of the original code size as well as only executing 48.4% of its

original instructions. In this example, the fitness criteria is mixed 50%/50% for static and

dynamic count measures, thus showing a 47.7% relative fitness for the best sequence found

in the search to this point.

2.2 Hardware and Software Platform

The proposed modifications to VISTA were tested using an Intel StrongARM SA-110

processor running Netwinder Linux. Due to the low clock speed of the StrongARM processor,

several other machines were used for cross-compiling for static code size only if the function

being optimized was not executed by an application given the sample test data. In such

7



Figure 2.2: VISTA Genetic Algorithm Search (In Progress)

cases, only the static code size measure could be extracted and thus used to guide VISTA in

the automatic tuning of the code. VISTA typically uses the dynamic instruction count as a

tie-breaker for cases where the function is executed by the application. The machines used

for cross-compiling included a Sun Ultra SPARC III as well as an Athlon XP.

Due to the proprietary nature of most embedded applications, it is quite a challenge

to find hand-generated assembly programs that are representative of the typical workload.

To the best of our knowledge, there are no currently available embedded benchmark

suites written in assembly code. Rather than devising a new set of hand-tuned assembly

benchmarks for embedded systems, an optimizing compiler could be used instead with

a comparable existing high-level source code benchmark suite. Although using actual

hand-tuned assembly code would be better, the use of known optimization techniques with

a known benchmark suite provides a legitimate testing framework for evaluating the effects

of de-optimization when re-optimizing code.

8



2.2.1 MiBench Embedded Applications
Benchmark Suite

In order to effectively gauge the effectiveness of performing de-optimizations on optimized

assembly, we selected an appropriate benchmark suite. The applications available in the

MiBench embedded applications benchmark suite are described as representative of common

programs used in embedded systems [9]. The suite consists of several programs from the

following six categories: Automotive/Industrial, Network, Telecommunications, Consumer,

Security, and Office. For the experiments performed, one application was selected from each

area as shown in Table 2.1.

Table 2.1. MiBench Benchmarks Used for Experiments
Category Program Description

Automotive/Industrial bitcount Bit manipulation tests
Network dijkstra Dijkstra’s shortest path algorithm
Telecomm fft Computes a Fast Fourier Transform
Consumer jpeg Creates a jpeg image from a ppm
Security sha NIST Secure Hash Algorithm
Office stringsearch String pattern matcher

Three benchmark programs required minor changes in order to translate and compile

correctly using the modified version of VISTA. In the benchmark stringsearch, a large local

array was changed to static in order to not require additional information to be supplied

to the translator. This change does not impact the experimental comparison since neither

GCC nor VISTA modify the placement of local arrays on the stack. In the fft benchmark,

several functions were adjusted to pass a pointer to a data structure containing floating-point

arguments instead of each individual argument. This change was necessary as calling

conventions for the ARM are complex when dealing with floating-point arguments that

get passed in registers and on the stack. This further complicates the process of translating

these parameters appropriately. Performing this fix will inhibit performance slightly as

an additional pointer dereference is now required to access each argument. This fix helps

during translation to reduce the amount of outside information necessary for correct behavior.

Additionally, for the jpeg benchmark, the function parse switches was not able to be tested

9



using VISTA. This was due to a problem with code expansion during the translation pushing

global variable references further from the actual global variable locations. Further discussion

of assembly code requirements for translation and information loss is available in Chapter 3

and Chapter 4.

2.2.2 Generating Assembly Code

In order to allow a fair test of the the proposed de-optimization strategy, it was necessary

to run each program through an optimizing compiler. Each of the programs from the

MiBench suite was compiled and optimized using the GNU Compiler Collection’s C compiler

version 3.3 [8] for the ARM. The exact command line used to compile each of the C source

files was as follows:

gcc -O2 -S -c -fno-optimize-sibling-calls -ffixed-lr -ffixed-fp filename.c

This command line can be broken down as shown in Table 2.2. The options specified are

necessary to provide for as little information loss as possible when translating from the

assembly. Level 2 optimization allows a fair comparison to hand-generated assembly since it

does not invoke additional phases that will contribute to increased space requirements. The

-S and -c flags force GCC to generate assembly code as output. Translating from object code

is possible, but would add an additional unnecessary complexity to the translation process

for our purposes.

The -f flags that were selected disable specific phases of the -O2 optimization process.

Optimizing sibling calls is a transformation that allows leaf or sibling functions to omit save

and restore instructions. Allowing GCC to perform these optimizations makes it harder for

the translator to analyze where the function exits. Additionally VISTA will automatically

re-perform this translation on the code both for the GCC baseline code as well as the

experimental code. The two -ffixed flags force GCC to disallow the use of these registers

as general purpose registers. This is necessary to perform a fair comparison since VISTA

currently does not support using either the Frame Pointer or the Link Register in a different

manner than that for which they were intended.
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Table 2.2. GCC Optimization Flags
Flag Meaning

-O2 Level 2 optimizations (Standard)
-S Generate assembly file but do not assemble
-c Compile and do not link
-fno-optimize-sibling-calls Do not perform optimizations for leaf

or sibling functions
-ffixed-lr Do not use the Link Register (LR)

as a general purpose register
-ffixed-fp Do not use the Frame Pointer (FP)

as a general purpose register

2.3 Experimental Test Plan

Using the MiBench benchmark programs, each GCC-generated assembly file is translated

to RTL format using the ASM2RTL translator as discussed in Chapter 3. These input

files are then compiled using VISTA and tested for correctness. These results form the

baseline for our further measurements. After verifying the newly translated code, each

function is tested for immediate code improvements from the traditional optimization phases

performed by VISTA. Additional optimization phase orderings are selected using the genetic

algorithm search with three different fitness criteria: 50% code size/50% dynamic instruction

count, 100% code size, and 100% dynamic instruction count. Next the de-optimizations are

turned on before applying further VISTA optimization phases, and data is again collected

using the three fitness criteria. For the de-optimizations, first loop-invariant code motion

is undone, followed by the de-optimization of register allocation. Further details of the

entire de-optimization process are described in Chapter 4. For each of the test cases, 14

optimization phases are available from which the genetic algorithm can choose. These

phases are described in greater detail in the top portion of Table 2.3. The bottom portion

of the table displays two required phases for the genetic algorithm. Register assignment is

performed after register allocation is de-optimized and fix entry exit is performed as the final

phase for each function compiled.

From the data collected, comparisons will be made between code size and dynamic

instruction count of both the optimized code and the de-optimized plus re-optimized code
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for each benchmark. The potential benefit of assembly translation and further optimization

can be shown between the GCC-generated code and the results of optimizing that code.

Potential benefits of de-optimization plus re-optimization will be shown by comparing with

the results of the optimized VISTA translated assembly code.
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Table 2.3. VISTA Genetic Algorithm Candidate and Required Phases
Optimization Phase Description

Branch Chaining Replaces a branch or jump target with the target
of the last jump in a jump chain.

Common Subexpression Elimination Eliminates fully redundant calculations which also
includes constant and copy propagation.

Remove Unreachable Code Removes basic blocks that cannot be reached
from the entry block of the function.

Remove Useless Blocks Removes empty basic blocks from the control
flow graph.

Dead Assignment Elimination Removes assignments when the assigned value
is never used.

Block Reordering Removes a jump by reordering basic blocks when
the jump target has only a single predecessor.

Minimize Loop Jumps Removes a jump associated with a loop by
duplicating a portion of the loop.

Register Allocation Replaces references to a variable within a specific
live range with a register.

Loop Transformations Performs loop-invariant code motion, induction
variable elimination, and loop strength reduction
on each loop, ordered by loop nesting level.

Merge Basic Blocks Merges two consecutive basic blocks a and b
when a is only followed by b and b is only
preceded by a.

Strength Reduction Replaces an expensive operation with one or more
cheaper ones.

Reverse Jumps Eliminates an unconditional jump by reversing
a conditional branch when it branches over
the jump.

Instruction Selection Combine instructions together and perform
constant folding when the combined effect is
a legal instruction.

Remove Useless Jumps Removes jumps and branches whose target is
the following block.

Register Assignment Maps all pseudo-registers to hardware registers
and generates any necessary spill code

Fix Entry Exit Arranges remaining local variables on the stack
and generates all necessary save and restore code
for function entry and exit points.
Performs predication of RTLs if possible.
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CHAPTER 3

DEVELOPMENT OF ASM2RTL TOOLS

This chapter focuses on the translation of assembly source code to the VISTA RTL

format, and the ASM2RTL tool suite that was developed to facilitate this process. The

first section covers the basics of assembly translation and re-optimization as well as why this

can be such an attractive option for embedded applications development. Next we explain

some of the problems surrounding the translation process itself, specifically with regard to

maintaining program correctness. The next section discusses some implementation strategies

to make the tool suite as robust as possible. Difficulties encountered during the translation

process as well as the chosen solutions are then presented in the following section. The final

section describes additional translators that were developed for use with the ASM2RTL tool

suite, but not used for the purposes of this study.

3.1 Assembly Translation and Re-optimization

The process of assembly translation discussed in this thesis refers to the conversion of

assembly source code to an intermediate language for use with an optimizing compiler.

Translation enables an iterative process for re-optimizing programs with potentially different

compilers and optimization techniques. SALTO is a tool for assembly transformation and

optimization that is employed in such an iterative process [18]. Low-level optimizations

are applied to assembly code by SALTO as part of an iterative sequence including both a

high-level restructurer and an optimizing compiler. However, only information about the

transformations performed by SALTO are passed back to the original optimizing compiler

for the next pass. In this way, no translation is performed to convert the assembly code

back to the intermediate language. This is slightly different from the proposed strategy for

re-optimization presented in this thesis, where optimized assembly code is actually translated

into the appropriate intermediate form.
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Figure 3.1 shows one potential view of an iterative process for the further optimization of

assembly source code. One of the main advantages of this arrangement is the ability to use

various independent optimizing compilers for each stage of the optimization, so long as an

appropriate translator has been constructed for its corresponding intermediate language. A

high-level source file can be compiled with a traditional compiler or a hand-tuned assembly

file can be used as the initial input to the system. Assembly code is then translated to an

intermediate language format and fed to a corresponding optimizing compiler. This process

can be be repeated with additional translators and optimizing compilers as many times as

necessary. Additional passes could also be substituted with hand-tuning of the assembly code

by a programmer. It is easy to see that this scheme can be further extended to incorporate

profiling data with each optimizing compiler pass, exposing even further opportunities for

fine-tuning the code.

Although performing optimization passes in an iterative manner will be more time-

consuming, the benefit may be invaluable, particularly for applications with strict require-

ments. Embedded applications can have real-time considerations or code size limitations

that must be rigidly adhered to. These types of constraints make complex optimization

strategies such as an iterative model attractive since the increased optimization benefits can

outweigh the additional overhead cost.

This thesis focuses on the effects and possible benefits of reordering optimization phases

via de-optimization and re-optimization. To study this, it was necessary to construct

a translator from native ARM assembly code to VISTA RTLs (Register Transfer Lists).

This translator is part of a larger suite of ASM2RTL tools, a group of translators in

which each converts instructions from a given assembly language to RTLs. The current

version of ASM2RTL supports assembly instructions from the Sun Ultra SPARC III, the

Texas Instruments TMS320c54x and the Intel StrongARM. Assembly translation to the

intermediate RTL form which VISTA accepts appears to be mostly straightforward, but it

does contain several potential pitfalls.

Almost every problem that can occur is due to the loss of semantic content needed for

correct operation. However there are other potential problems in translation, such as the lack

of support from the VPO compiler for a very context-specific instruction (e.g. predicated

return instruction). If a compiler cannot produce a particular instruction, it must be replaced
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Figure 3.1: Iterative Re-optimization of Assembly Code

by a semantically equivalent sequence of instructions that preserve all other aspects of the

current program state.

3.2 Preservation of Program Semantics

3.2.1 Information Loss

It is well known that translating from a high level language to assembly language is easier

than translating from assembly language back to a high level language. The information

contained within a program can be characterized as flowing from its highest level source

code down to the final machine code. As a program progresses through various intermediate
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representations, each lower level form carries less information than preceding higher level

forms. Thus it becomes increasingly difficult (if not impossible) to extract the entire

original program representation from a low level form. When attempting to reconstruct

original semantic content for a compiled program, one problematic area is the detection and

characterization of local variables. Another problem is maintaining consistency with the

calling conventions of the given instruction set architecture (ISA).

3.2.2 Local Variables

Local variables (or automatic variables) are those which are kept on the run-time

stack. Modern ISAs support memory accesses of fixed size increments. As an example

the StrongARM supports memory access sizes of 1 byte, 2 bytes, 4 bytes, and 8 bytes.

However data that is larger than these sizes can only be accessed by breaking it into pieces

that conform with these sizes. Arrays and structures are typically larger than these fixed

sizes and are thus handled by moving the necessary pieces into registers using these standard

memory-accessing instructions. From a low-level assembly representation of such a program,

it is difficult to distinguish between scalar and array data.

This is problematic when doing translation and re-optimization, since the VISTA RTL

representation (like most intermediate languages) handles local variables symbolically. This

means that the original numeric offset information is lost during the translation, and the

ordering of local variables on the stack can change. This reordering can cause the generated

code to be semantically incorrect, since local variables larger than 4 bytes may be split

apart and spread out on the stack. This is especially true for local structures where certain

fields may be manipulated while others are ignored. Calling a function using a pointer to

such a split structure would cause other local variables to be incorrectly read and written in

memory, since the C language assumes each function uses the same structure layout. The

same argument holds for arrays as well, since they are merely a constrained structure where

each field is of the same data type.

Figure 3.2 shows an example where optimized ARM assembly code can easily be

misinterpreted. The corresponding RTLs are shown as comments to the right of each

instruction. Both code snippets come from the function fft float() in the FFT benchmark.

The top selection of code shows the movement of a double from memory (using the ldmia
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Double placed in two integer registers

Line Instruction RTLs and Comments

. . .

1 add r2, sp, #8 r[2]=r[11]+LOC[8];

2 ldmia r2, {r2r3} r[2]=R[r[2]];r[3]=R[r[2]+4];

3 str r2, [r5, #16] R[r[5]+16]=r[2];

4 str r3, [r5, #20] R[r[5]+20]=r[3];

. . .

Two integer loads coalesced in same manner

Line Instruction RTLs and Comments

. . .

1 add r2, sp, #40 r[2]=r[11]+LOC[40];

2 ldmia r2, {r2, r3} r[2]=R[r[2]];r[3]=R[r[2]+4];

3 add r3, r3, r2 r[3]=r[3]+r[2];

. . .

Figure 3.2: Local Variable Confusion

instruction) to two integer registers. This is typically performed for function calls which

pass up to the first four parameters (including floating point values) in integer registers. In

order to generate correct code, the local variable at location sp+8 must always be considered

a double and should not be allowed to be split into two 4-byte integers by VISTA. The

bottom portion of code starts off in a similar fashion, loading two registers using a single

stack offset with a multiple load instruction. These two registers are then added together,

clearly something that is not typical for two 4-byte halves of a double. However it could

also be possible that this is part of an integer array where the first two elements are added

together (potentially as in a hashing algorithm). As it turns out, these two local variables

are indeed just two distinct integers, but that conclusion could not be made without having

some additional information provided alongside the assembly code.

3.2.3 Calling Conventions

Another important factor in performing the translation of assembly code to VISTA RTL

format is maintaining proper calling conventions. The RTL format requires that registers

used as function arguments as well as the size of the arguments passed on the stack be
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specified explicitly. The registers containing return values must also be specified explicitly.

The StrongARM calling conventions can be summarized as follows:

1. As many as 4 arguments to a function may be placed in registers using the following

order: r0, r1, r2, r3. Additional arguments (beyond 4 words) to functions are to be

placed on the runtime stack.

2. Floating point arguments will be placed starting in integer registers, and will be split

(e.g. r3 and the first argument on the stack) if necessary. The same holds true for

structures.

3. Variable argument length functions place data in registers similarly, and all additional

arguments are pushed onto the runtime stack in reverse order.

4. Integer returns are handled using r0. Floating point data is returned via f0. Data

structures smaller than 4 words can be returned using as many registers from r0-r3 as

necessary. Data larger than this size is handled via an additional address parameter

to a structure.

The important considerations here are to make sure that no information is lost during

the translation process. If registers that are used as arguments are not specified, then it is

possible that VISTA will detect sets to these registers as dead assignments and thus eliminate

them. Additionally if registers that contain return values from function calls are not specified

appropriately, VISTA will generate spill code around the function call to handle reads from

these registers. In each particular case, this will cause incorrect code to be generated for the

function, and thus needs to be handled carefully.

3.3 Implementation Strategy

The ASM2RTL translator suite was implemented to facilitate retargetability for the

source assembly language. Thus there is a large portion of code which is machine-

independent. The machine-dependent portions of the code are relatively easy to construct,

requiring the modification of several subroutines to perform activities correctly such as

operand parsing or assembly instruction identification. The simplified program structure
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of the translator is displayed in Figure 3.3. Each phase of the translation process will be

discussed, but not necessarily in the order in which they took place.

To make the translation process as fast as possible, lines were translated individually

in the file, maintaining only a small amount of state information concerning things such

as local variables, global variables, function return types and argument counts. Once the

instructions were converted to RTL file format, VISTA would be able to reconstruct any

additional information it needed by performing the standard analysis phases that it would

normally perform with any other supplied input file.

The ASM2RTL translator begins by reading in all necessary configuration information

(Line 1). This required information is discussed further in Section 3.4. Using the ASM2RTL

translator, each line of the assembly file is parsed and translated into a semantically

equivalent sequence of RTLs (Lines 3-5). These RTLs are maintained in a list for output at

the end of the program (Line 8). Typically the correspondence is one-to-one, but whenever a

global variable or local variable is first encountered, additional RTLs for declarations are also

generated. Additionally there are some instructions which are not representable via a single

RTL currently and thus the translator will produce an equivalent sequence of instructions

instead. Functions are handled one at a time (Line 2), and a post-pass is performed on each

function before proceeding to translate the next function (Line 6). After translating each

line in the input file, the translator will then proceed to generate the RTL file by emitting

all necessary global declarations first (Line 7) and then finally each of the function’s RTL

lists in order (Line 8).

Input: Assembly source file, [function information file], [local structure information]

Output: Register Transfer List (RTL) representation of file

1 read configuration data
2 foreach function ∈ file do
3 foreach line ∈ function do
4 parse line and pass to appropriate handler
5 add generated RTLs to function list

6 generate appropriate local variable information for RTLs

7 output RTL style declarations of globals
8 output all RTLs from function lists

Figure 3.3: ASM2RTL Program Structure
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3.4 Translation Difficulties

The two major problems faced when performing translation of assembly code to the

VISTA RTL format are maintaining memory consistency and abiding by the calling conven-

tions of the target environment. Both of these problems occur due to the loss of information

as the program is converted from a high level source language to assembly language. In

some cases, no additional information is necessary to be supplied to the translator, as

ASM2RTL can use a few simple techniques to recover such information from the underlying

code structure of the assembly file. However, some assembly code is not able to be translated

correctly without supplemental information.

3.4.1 Memory Consistency

Maintaining proper memory layout information for local structures is vital to obtaining

correct code with VISTA. If structures, arrays or even the two 4-byte halves of a double are

allowed to be reorganized with VISTA, then the resulting code will be semantically incorrect.

Additionally, memory errors such as segmentation faults and buffer overflows will occur when

running the new code. Thus to protect against these types of translation errors, additional

information concerning the locations and sizes of local variables is necessary.

This is handled in ASM2RTL by supplying an additional command line parameter along

with a file containing function names, followed by lists of structure location, structure size

pairs. If specified, this file is read in by ASM2RTL on startup and an additional post-pass for

fixing structure locations is invoked before completing the code translation for a particular

function.

The method used for producing correct memory layout information is shown in Figure 3.4.

First all local variable references that relate to function arguments (either incoming parame-

ters or outgoing arguments) are fixed as static offsets, similarly to the code that the standard

VISTA frontend compilers generate (Line 1). Next we perform the structure modifications

if they were indeed specified by the user (Line 2). We compare each structure in the list

with each local variable offset we have seen (Lines 3-5). If a local is found to be part of a

larger data structure, we immediately calculate a new offset for it and replace all references

to the original local variable with the structure location plus new offset in the function’s
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RTLs (Line 6). Since all references to this symbolic local variable have been replaced, we

can now safely remove it from the local variable symbol table (Line 7).

1 fix all function arguments on the stack as unmodifiable
2 if fix structs flag then
3 foreach struct ∈ structs list do
4 foreach var ∈ local vars do
5 if struct.loc < var < (struct.loc + struct.size) then
6 replace var in RTLs with struct.loc + #(var - struct.loc)
7 remove var from local vars

8 extract locs from local symbol table
9 sort locs by offset in increasing order

10 foreach var ∈ locs do
11 var.size = nextvar.offset - var.offset

12 prepend local variable declaration RTLs to function list

Figure 3.4: Local Variable Reconstruction

After fixing all local structure references appropriately, the algorithm proceeds to a local

variable size auto-detection phase. Each local variable is taken from the symbol table and

sorted in increasing order by offset (Lines 8-9). This list can then be traversed in order to

access the next neighbor for each particular local offset. Using this method, the size of a

local can be calculated as the difference between its next neighbor’s offset and its own offset

(Lines 10-11). Since we have the total stack size from an initial stack pointer save instruction

at the start of the function, we also know the size of the last local variable on the stack.

Finally, each local variable has a declaration RTL constructed for it. This RTL is prepended

to the current function’s list of RTLs (Line 12).

Due to the last phase of reconstruction (Lines 10-11), any array or structure that only

has its starting address taken will require no additional information to be supplied in the

structs file. This is beneficial in that it reduces the amount of inspection a user must do for

the incoming assembly code to detect such memory layout problems. Since array elements

are rarely accessed directly by offset (e.g. arr[5]), and structures tend to be dynamically

allocated in the heap, the need for user-supplied structure information is minimal.
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3.4.2 Following Calling Conventions

A typical RTL input file contains extra information regarding registers and memory

locations that are used for special purposes relating to the calling conventions of the Stron-

gARM. Examples of such meta-information RTLs are USELINEs (implicit uses of registers),

SETLINEs (implicit sets of registers), PARMLINEs (parameters to a function), CSLINEs

(caller save registers), and RESLINEs (registers that are reserved). In order to produce

these RTLs properly, it was necessary to detect incoming register arguments, incoming

stack-placed arguments, outgoing register arguments, outgoing stack-placed arguments, as

well as registers containing return values. It is possible to argue that this data is unnecessary,

since all necessary arguments and return values have been set up correctly in the incoming

assembly file. This approach could work if VISTA was only to be used for converting the

RTLs directly to assembly instructions, however various analyses could be miscalculated

without this information and thus code-improving transformations might eliminate necessary

instructions.

Live register and variable analysis could be used to detect some incoming parameters

and outgoing parameters in a function. To perform live register and variable analysis, the

entire control flow graph of the program needs to be constructed. Even at this point,

some of the information, such as the size of incoming stack arguments, would still be

unavailable as it was lost already at a higher level. Since performing such inter-procedural

analysis is time-consuming and may not even yield entirely correct information in these cases,

ASM2RTL was set up to strictly perform line-by-line translation. Thus information about

live registers and variables for functions needed to be supplied in some other manner than

the original input assembly file. To remedy this problem, we allow ASM2RTL to read in

configuration information about functions used by the application being translated.

ASM2RTL scans for configuration information about functions when started. Simple text

files are parsed for information about function return types and incoming argument sizes in

32-bit words (the smallest unit of allocation for the StrongARM). Data about functions was

split into two files, one for globally accessible functions (library or system calls), and one

for locally accessible functions (functions defined by the application). This information can

then be used during the translation process to reconstruct the appropriate meta-information
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in RTL format. As an example, knowing the return type of a function allows ASM2RTL to

generate appropriate RTLs for maintaining this data as live when exiting the function, so that

an RTL updating the return value register is not inappropriately deleted when performing

dead assignment elimination. Local configuration files can be created by either inspecting

the assembly code and interpreting the necessary information, or easily extracted from the

original high level source code (if available). The global function configuration file was easily

created using library and system call information found in references for the standard C

libraries.

Variable length argument functions such as printf () prove to be problematic when

translating as well. Because the number of arguments can exceed the number of argument

registers, the remaining arguments placed on the stack cannot be reorganized. Thus it is

necessary for ASM2RTL to know the exact number of variable parameters used for each call.

This is another example of the information lost during the compilation process, so it must

be resupplied to the translator. To correct for this, a simple tool was constructed to search

for common variable length argument functions in the initial C source files. Using this tool,

each variable argument function’s name was suffixed with the size of its arguments. In this

manner, the configuration file could specify printf5 () as having 5 32-bit words of parameters.

Function pointers create another problem since the number of parameters to the actual

function is only truly known in the initial source file. In the generated assembly file, the call

instruction uses a single register for the actual function address. With ASM2RTL, all calls

through function pointers are assumed to use 4 register parameters. Although this would

invalidate some C code with more than 4 register parameters, this is not a very common

situation, so the tradeoff of having to rewrite offending code is acceptable. Out of all 6 of

the tested benchmark programs, there was but a single function that used function pointers,

and it only used 3 register parameters.

3.4.3 Translation Tradeoffs

The ASM2RTL tool adopts various strategies for coping with problems that can affect

proper translation. Each of these strategies is not without drawbacks. These strategies

require the programmer to inspect the supplied input assembly code and extract necessary

information from it. There is a tradeoff involved since it is possible to assume a worst case
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scenario for each of the problems. In this way, no additional information is needed from the

programmer, but code improvability is sacrificed.

With the local variable layout problem, one can assume that all elements on the stack

belong to one large structure or array. In this case none of the elements are replaceable

or reorderable. Doing this, however, will inhibit any further optimizations concerning these

variables since arrays and structures are often ignored by the majority of code improving

transformations.

In the case of following calling conventions, there are two requirements for guaranteeing

consistency without additional information. First of all, the function must be assumed to be

using its entire stack for argument space, and thus it is not able to be reorganized in any way.

This is merely the same requirement as above for structures and arrays. Additionally, all

argument registers and return registers must be marked as live using the meta-information

RTLs in appropriate places. This will serve to inhibit many of VISTA’s transformation phases

from improving the code. One example of this would be the inability of dead assignment

elimination to adequately detect dead assignments to argument or return registers.

3.5 Additional Translators

Development of the ASM2RTL tool suite started with the SPARC architecture, since the

ISA is RISC-based and thus very orthogonal. Additionally, the SPARC port of VISTA has

had the most extensive testing. The SPARC however was not chosen for this study, since

we expected the largest gains to be due to undoing and re-performing register allocation.

Preliminary tests showed that the MiBench benchmarks were just too small to create a

significant amount of register pressure in the SPARC’s 32 integer and 32 floating point

register environment.

After completing the SPARC translator, a TMS320c54x-based translator was developed.

Since its main use is as a Digital Signal Processor (DSP), the ISA is CISC-based and it

has several addressing modes that make accurate decoding of instructions more difficult.

Unfortunately, we found that the TMS320c54x-based port of VISTA was much less robust,

so additional addressing modes were added to further facilitate the translation of assembly

instructions. Even so, several instructions that the native TI compiler exploited were not
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able to be realized within the VISTA environment. This led to significant decreases in

performance, so a more appropriate embedded architecture was chosen for this study instead.

The StrongARM fits all criteria that we needed. It is an embedded processor having

only 16 integer registers and 8 floating point registers. The ISA is very orthogonal with

only a small number of instructions being hard to exploit by a compiler. Additionally the

StrongARM port of VISTA is very robust and thus provided an excellent framework within

which the proposed de-optimization strategy could be adequately evaluated.
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CHAPTER 4

DEVELOPMENT OF DE-OPTIMIZATIONS

This chapter describes in detail the development and implementation of two new de-

optimization phases to be added to the VISTA framework. Additionally the motivation

for performing each de-optimization is also discussed. These de-optimizations were selected

because each produces a noticeable effect depending on the phase order in which they are

performed. The first de-optimization that is described deals with loop-invariant code motion.

Next, the de-optimization of register allocation and register assignment is covered. Finally

we discuss some of the implementation issues concerning the correctness of de-optimized

code.

4.1 Loop-Invariant Code Motion

Loop-invariant code motion is a code-improving transformation that focuses on placing

instructions outside of the loop, if they do not change the program state while in the loop.

Such an instruction or RTL is called loop-invariant. A loop-invariant RTL is moved to the

loop preheader. The preheader is a basic block that is the predecessor to the loop header, but

is not in the loop itself. The preheader is only allowed to have the loop header as its successor.

If more than one preheader exists for a loop, then a new preheader is constructed before the

loop header. For an RTL to be considered loop-invariant, the following 4 conditions must

hold true:

1. All source operands must be loop-invariant. This means that all operands are either

immediate values, defined prior to entering the loop, or they are set by other loop-

invariant RTLs.

2. The RTL must dominate all exits of the loop. This is to ensure that the RTL is

executed on each iteration of the loop.
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3. Any register that is set by the RTL cannot be set by any other RTL within the loop.

A register that can change values is clearly not invariant.

4. Any register set by the RTL cannot be used prior to it being set by the RTL. Clearly

a use before set in this case means that an RTL from outside the loop has set this

register. Such a register can potentially be changing its value after an iteration of the

loop causing the RTL to no longer be considered invariant.

VPO abides by each of these rules when performing loop-invariant code motion. In

addition to attempting to move loop-invariant assignments to loop preheaders, VPO also

attempts to place any loop-invariant expressions or memory references into registers, which

can then potentially be accessed faster than the original reference. This approach requires

and consumes additional registers for the purpose of allocation.

In the GCC-compiled code for the ARM, arrays typically have a starting address

calculated and then later an offset is added to this address to access a particular array

element. In a loop, the starting address calculation may be loop-invariant. Thus it can be

moved to the loop preheader, thereby saving one dynamic instruction execution for each

iteration of the loop. For deeply nested loops or those with high iteration counts, this can

add up to a substantial savings in execution time.

4.1.1 Motivation for Undoing Loop-Invariant Code Motion

Loop-invariant code motion is a transformation that requires the use of additional

registers to have the greatest benefit. These registers can be used to hold values such

as loop-invariant variable loads, or complex arithmetic calculations that cannot be further

simplified using traditional strength reduction or instruction selection. Increased register

pressure in this case may inhibit additional code-improving transformations from being as

beneficial as they possibly can be.

Undoing loop-invariant code motion provides VISTA with the possibility of applying

additional code-improving transformations before potentially reapplying loop-invariant code

motion. The re-insertion of loop-invariant instructions into loops will allow for other

transformations to clean up the code, potentially reducing register pressure and exposing

new opportunities for improvement. This provides a chance for suboptimal phase orderings
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to be improved, where traditional optimizers would be unable to exploit any additional

transformations due to existing constraints from prior phases.

The de-optimization of loop-invariant code motion can possibly be even more beneficial

when applied to hand-generated assembly code. With hand-generated code, the testing of

optimization phase sequences is orders of magnitude slower than with machine optimization.

Thus it is even more necessary to rely on heuristics for knowing when to perform code

motion and when not to. With loop constructs, it is very tempting to move all temporary

values that are constant into registers outside of the loop, thus mimicking the effects of

loop-invariant code motion. Such choices however could have terrible repercussions, as this

naturally consumes a register that could otherwise be used for a different purpose. Careful

visual inspection and testing can alleviate the overuse of code motion, but it is possible for

more effective phase sequences to be masked due to what appears to be a good choice for

loop-invariant code motion.

4.1.2 De-optimizing Loop-Invariant Code Motion

The strategy implemented for performing the de-optimization of loop-invariant code

motion is shown in Figure 4.1. The algorithm focuses on placing loop-invariant RTLs back

into loops before RTLs where a register they set is used. By setting these registers prior

to any use within the loop, the initial loop-invariant RTL in the preheader can usually

be removed from the program representation via dead assignment elimination. However

if any set register is live on exiting the loop, the RTL cannot be safely removed at this

time, and instead must remain intact. The nature of VISTA and its VPO backend relies on

transformations such as dead assignment elimination and instruction selection to perform

all unnecessary RTL removal, and thus the potential removal of a loop-invariant RTL from

the preheader is postponed until such a phase is next performed.

This de-optimization algorithm can be broken down as follows: Loops are handled from

the outermost to innermost (Line 1). This is in direct contrast with traditional loop-invariant

code motion, where loops are handled starting from the most deeply nested. The loop is then

subjected to loop-invariant analysis, to detect live register information in the context of the

loop (Line 2). The de-optimization process begins by examining RTLs in the preheader of

the loop in reverse order (Line 3). By working in reverse, loop-invariant analysis information
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1 foreach loop ∈ loops sorted outermost to innermost do
2 perform loop invariant analysis() on loop
3 foreach rtl ∈ loop→preheader sorted last to first do
4 if rtl is invariant then
5 foreach blk ∈ loop→blocks do
6 foreach trtl ∈ blk do
7 if trtl uses a register set by rtl then
8 insert a copy of rtl before trtl

9 update loop invariant analysis() data

Figure 4.1: De-optimize Loop-Invariant Code Motion

is kept up to date (Line 9), and loop-invariant RTLs are easier to detect and move into

the loop. When a loop-invariant RTL is found in the preheader (Line 4), every basic block

comprising the loop (Line 5) has its RTLs examined (Line 6). The algorithm then proceeds

to insert a copy of the invariant RTL (Line 8) prior to any use of a register that it sets (Line

7).

The top portion of Figure 4.2 depicts a group of RTLs corresponding to a loop that has

had loop-invariant code motion performed on it. In the example, the loading of a global

variable containing the starting address of an array (Line a1) is a loop-invariant instruction

that was moved out of the loop. The loop (Lines a3-a8) is performed 80 times using an

induction variable that is set prior to beginning the loop (Line a2). Inside the loop, the

loop-invariant register r[10] is used as part of an address calculation with the loop counter

r[6]. The loop consists of only a single basic block (Lines a3-a8) and there exists a loop

preheader (Lines a1-a2).

If the de-optimization procedure from Figure 4.1 is applied to this code, the following

steps are performed. Loop-invariant analysis shows that the register r[10] is invariant for the

loop, since it is live when the loop is entered, and it is not set anywhere inside of the loop. We

then look at the last RTL in the loop preheader (Line a2). Examining this RTL shows us that

it sets register r[6] which is not loop-invariant, and thus the instruction is skipped. Next we

continue to scan backwards through the loop preheader and encounter another instruction

(Line a1). This instruction sets register r[10], which is loop-invariant. The source operand

for this instruction is a memory location, which must be verified as invariant for the loop.

30



RTLs Before DeOptimization

Line Label RTLs Comments

. . .

a1 +r[10]=R[L44] ⊲ Load a global variable (loopinvariant)

a2 +r[6]=0 ⊲ Initialize loop counter

a3 L11

a4 +r[2]=r[10]+(r[6]{2) ⊲ Calculate array address (global + counter)

a5 +r[5]=r[5]+R[r[2]] ⊲ Add array value from memory to register

a6 +r[6]=r[6]+1 ⊲ Loop counter increment

a7 +c[0]=r[6]79:0 ⊲ Set condition codes register

a8 +PC=c[0]’0,L11 ⊲ Perform loop 80 times

. . .

RTLs After DeOptimization

Line Label RTLs Comments

. . .

b1 +r[10]=R[L44] ⊲ Load a global variable (loopinvariant)

b2 +r[6]=0 ⊲ Initialize loop counter

b3 L11

b4 +r[10]=R[L44] ⊲ Loopinvariant load (moved back into loop)

b5 +r[2]=r[10]+(r[6]{2) ⊲ Calculate array address (global + counter)

b6 +r[5]=r[5]+R[r[2]] ⊲ Add array value from memory to register

b7 +r[6]=r[6]+1 ⊲ Loop counter increment

b8 +c[0]=r[6]79:0 ⊲ Set condition codes register

b9 +PC=c[0]’0,L11 ⊲ Perform loop 80 times

. . .

Figure 4.2: De-optimizing Loop-Invariant Code Motion

There are only memory reads inside the loop itself, and no proceeding RTL in the preheader

modifies memory, so this memory reference is considered loop-invariant. Since the RTL now

meets all the criteria for loop-invariance, it can safely be moved back into the loop by the

de-optimization. Each RTL that makes up the loop is examined, and a use of r[10] is found

(Line a4). A copy of the loop-invariant RTL is then inserted before this RTL that uses

r[10] (before Line a4). The bottom portion of Figure 4.2 shows the loop after this invariant

code has been moved back in. Even when the inserted RTLs do not dominate all loop exits,

the original loop-invariant RTL (Line b1) will be removed by dead assignment elimination,

provided that r[10] is not live leaving the loop.
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4.2 Register Allocation and Register Assignment

Register allocation is a code-improving transformation that attempts to place local

variable live ranges into registers because memory accesses are more expensive operations

than register accesses. Moving local variable live ranges into registers also helps to

enable additional code-improving transformations such as instruction selection and common

subexpression elimination, which are more effective with register expressions. This process

consumes registers as any conflicts with existing assigned register live ranges must be avoided.

Register allocation has been traditionally treated as a graph coloring problem, which

can be defined as finding the minimum number of colors needed to color all vertices in

a graph such that no two connected vertices share the same color. Graph coloring is

considered NP-Complete, and as such an optimal solution is computationally expensive.

Thus approximation algorithms are used instead. The application of graph coloring to

register allocation treats registers as colors and live ranges as vertices. Live ranges that

overlap or conflict with one another are connected by edges in the graph.

The graph used for performing register allocation is called an interference graph. Nodes

are created for each local variable live range. Each node contains information about the local

variable live range: sets, uses, allocated register (if any), a list of live registers, and a list

of other nodes that conflict with the live range. Once the graph is constructed, nodes are

colored by assigning an unused register for that particular live range. Since the number of

registers available to the compiler is finite, the entire graph may not be color-able. It is also

true that the allocation of non-scratch registers can add additional costs due to the necessity

of saving and restoring their values on function entry and exit. Over-allocation is a problem

that can be caused by allocating local variables that are only accessed infrequently. Critical

choices must be made by the compiler as to which live ranges should be allocated and which

potentially should never be allocated even if registers are available. Priority-based coloring

is an approach that attempts to weight live ranges according to various heuristics so that a

good solution can be obtained in a relatively short amount of time [4]. Similar approaches

have been adopted by both GCC and VPO.

VPO traditionally receives input from a frontend that produces RTLs which does not

make choices as to which registers should be used if possible. Instead the RTLs contain
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references to pseudo-registers which do not actually exist. Certain registers, such as those

used for parameter passing or return values must be specified by the frontend. Register

assignment is the process by which pseudo-register references are then converted to actual

hardware registers. The use of pseudo-registers facilitates certain phases in VPO such as

evaluation order determination since choices for registers can be postponed until necessary.

The process of register assignment is similar to register allocation in many ways, since

conflicts of register live ranges must be avoided. In this case however, any pseudo-registers

that cannot be allocated must have appropriate spill code generated.

4.2.1 Motivation for Undoing Register Allocation

Register allocation by definition requires the use of additional registers. This increased

usage results in fewer registers available for other register-consuming transformations such as

loop-invariant code motion. Similar to undoing loop-invariant code motion, the undoing of

register allocation will also serve to decrease register pressure. The newly available registers

can then be used with other potential transformations.

Whereas loop-invariant code motion can save cycles by not executing redundant in-

structions, register allocation enables local variable memory references to be converted to

register references. Depending on the speed of memory accesses, this can be a huge gain,

since functions tend to contain several local variables. However functions with many local

variables are the problem, as choosing poor candidates for allocation can lead to decreased

allocation opportunities for other local variable live ranges. Since other code-improving

transformations can eliminate the need for register loads and stores, it makes sense that

performing register allocation at different times in the phase sequence can yield varying

results. With de-optimization, even temporaries that did not start the function as a local

variable can be re-mapped using new local variable references (loads and stores). Register

allocation can then be applied at a later stage to assign registers to the local variable live

ranges that appear to give the greatest benefit.

The undoing of register assignment will potentially allow for even fewer registers to be

used in various code sections, thus freeing up even more registers for other transformations.

It is possible that the choices made during the initial run of register assignment require
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additional stores and loads to preserve scratch registers around function calls. Changing the

assignment could alleviate the need for such spill code entirely.

4.2.2 Register Interference Graphs

Figure 4.3 shows the procedure for constructing a register interference graph or RIG. The

graph is constructed first by looking at each individual basic block (Lines 1-25). Later in the

algorithm, the live ranges found in each basic block are connected together (Lines 27-34).

The interference graph can be described as a collection of interconnected nodes. Each basic

block in the function contains two new lists for the nodes, one called blkins which signifies

the incoming register live ranges to the block and another list called blkouts, which represents

the live ranges that are live on block exit. During the process of constructing the actual

interference graph, blkouts contains the list of register live ranges for the current basic block.

Initially, each basic block inserts all valid incoming registers as nodes into blkins (Lines

2-3). After this is done, the blkins are copied into the blkouts, since all incoming registers

are still live at this point (Line 4). Next, each RTL in the basic block is examined (Lines

5-21). Each RTL type is handled slightly differently. One RTL type is the parameter line,

which signifies that the registers contained in the RTL are to be passed as parameters to a

function. In this case, these registers should not be ever de-allocated since doing so would

result in functions called with the wrong register parameters. Thus these RTLs are marked

as not replaceable in the blkouts (Lines 6-7). With any other RTL, the registers used are

examined and searched for in the blkouts (Lines 9-10). Any uses that are actually found

have their node information updated, so that we can later revisit these RTLs (Line 11). If

a matching live node is not found, then that means a return value from a function has been

detected. In this case, a new node is created in blkouts, but it is marked unreplaceable

(Lines 12-13).

Next, the RTL is checked for being a reserve line (Lines 14-15). Reserve lines are used

to mark hardware registers as being already used. Typically these lines are associated with

the assignment of function return values to different registers. Every RTL is then examined

for registers that are set (Line 17). Each set register is then searched for in the blkouts,

and if found, the node information is updated (Lines 18-19). Any register that is not found

has a new node created and added to the blkouts (Lines 20-21). Finally the dead registers
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1 foreach blk ∈ function basic blocks do
2 foreach reg live on entry to blk do
3 add new node to blk→blkins with rtl live register data

4 copy all blk→blkins into blk→blkouts
5 foreach rtl ∈ blk do
6 if rtl is a parameter line then
7 mark all parameter registers as not replaceable in blk→blkouts

8 else
9 foreach reg used ∈ rtl do

10 if reg used ∈ blk→blkouts then
11 update found node with rtl reg used data

12 else
13 add new unreplaceable node to blk→blkouts with rtl reg used data

14 if rtl is a reserve line then
15 add new node to blk→blkouts with return data
16 else
17 foreach reg set ∈ rtl do
18 if reg set ∈ blk→blkouts then
19 update found node with rtl reg set data

20 else
21 add new node to blk→blkouts with rtl reg set data

22 foreach reg dead ∈ rtl do
23 search for node using reg dead in blk→blkouts
24 update found node with rtl reg dead data
25 remove node from blk→blkouts

26 foreach blk that can exit the function do mark all blk→blkouts as not replaceable
27 foreach blk ∈ function basic blocks do
28 foreach pblk ∈ blk→preds do
29 foreach node ∈ blk→blkins do
30 foreach pnode ∈ pblk→blkouts do
31 if node and pnode use the same register then
32 connect node and pnode as siblings
33 if node or pnode are not replaceable then
34 mark all siblings as not replaceable

Figure 4.3: Constructing a Register Interference Graph
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associated with the RTL are examined and searched for within the blkouts (Lines 22-23).

Sanity checks are also performed here, since no dead register can exist that is not currently

live, thus existing in blkouts. When the proper node is located, its information is updated

with the location of the dead register RTL (Line 24). Additionally, the node is removed from

the current live range list known as blkouts (Line 25).

Any basic block that exits the function could potentially be returning a result to the

calling function. Thus all live range nodes leaving such a block must be marked unreplaceable

(Line 26). At this stage in the RIG construction process, all necessary nodes have been

created and all that is left is the proper interconnection of live ranges. We proceed to connect

live ranges of nodes by examining each basic block along with its predecessors (Lines 27-28).

Each node live on entry to the basic block is compared with nodes leaving the predecessor’s

block (Lines 29-30). If both nodes work with the same register, then these nodes really

correspond to a single register live range that spans multiple basic blocks (Line 31). In

such a case, the two nodes are linked together in a circular list of siblings (Line 32). If

either node is not replaceable (Line 33), then the entire list of siblings must be traversed to

mark every node in the multi-block live range as irreplaceable (Line 34). This guarantees

that unreplaceable nodes such as those belonging to incoming parameter registers are not

inappropriately deallocated while they are still live, even if the basic block being examined

is past the function entry block.

4.2.3 De-optimizing Register Allocation

The undoing of register allocation is analogous to the initial process of performing

register allocation. In the case of undoing register allocation, however, the interference

graph constructed is for register live ranges and not local variable live ranges. Any live

range that can be de-allocated is assigned a new local variable which is loaded into a

pseudo-register before any potential use. Additionally, any set is then followed by a store

of that pseudo-register back to the new local variable location. It is also at this point that

the pseudo-register is marked dead, so that each set or use requires individual store and

load instructions. This serves to give the VPO optimizer the most flexibility when later

re-performing register allocation.
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The process of actually de-optimizing register allocation and register assignment is shown

in Figure 4.4. Analysis phases for live variable information and dead register calculation

are performed initially before attempting to de-optimize register allocation (Line 1-2). A

register interference graph is then constructed via the procedure set forth in Figure 4.3 (Line

3). Each replaceable node in the RIG is then examined in turn (Lines 4-6). Nodes in the

RIG can be either classified as intrablock or interblock. Intrablock nodes are those nodes

which correspond to a live range that exists completely within a single basic block (Line 8).

Alternatively, interblock nodes mark live ranges that span multiple basic blocks (Line 10).

For the purposes of de-optimization, any intrablock live range that can be deallocated will

only be assigned a pseudo-register (Line 9). Creating a new local variable for this case will not

impact results since a local variable that is only live for a single basic block will almost always

just be reallocated as a register. Interblock live ranges that are replaceable will have both a

pseudo-register and a new local variable assigned to them (Lines 12-13). Each sibling node

for this live range will also be updated with the local variable and pseudo-register information

before being marked as done (Line 14). Nodes that are marked as not replaceable will not

be assigned any pseudo-register or local variable.

Further analysis is then performed by VPO to handle the newly allocated pseudo-registers

(Line 15). The second pass through the RIG will again examine each replaceable node in the

RIG (Lines 16-18). Each intrablock node will replace any sets or uses of the original register

with references to the newly allocated pseudo-register (Lines 20-22). The pseudo-register

will then be marked as dead wherever the original register was marked dead. For intrablock

live ranges, first the uses are replaced (Lines 26-28). Each use in an RTL will be replaced

with the pseudo-register. The RTL will also have the pseudo-register marked as dead after

this replacement. A new RTL must also be inserted before the RTL using the register,

loading the appropriate pseudo-register with the allocated local variable. Next, each set is

examined and replaced with a reference to the pseudo-register (Lines 29-30). An additional

store instruction is inserted after the RTL, storing the pseudo-register’s value back to its

corresponding local variable (Line 31). The pseudo-register is then marked dead in the new

store instruction RTL.

VISTA then re-performs register assignment at this point, minimizing the number of

registers needed for the function to operate correctly (Line 32). A final call to instruction
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1 calculate live variable information
2 calculate dead register information
3 RIG = construct register interference graph()

4 mark all nodes in RIG as not done
5 foreach node ∈ RIG do
6 if ¬node→done ∧ node→can replace then
7 node→done = TRUE
8 if node is an intrablock live range then
9 node→pseudo = new pseudoregister()

10 else
11 ⊲ node is an interblock live range
12 node→local = new local variable()

13 node→pseudo = new pseudoregister()

14 update all siblings with local/pseudo and mark them done

15 recalculate necessary analysis for pseudo-registers in VPO
16 mark all nodes in RIG as not done
17 foreach node ∈ RIG do
18 if ¬node→done ∧ node→can replace then
19 node→done = TRUE
20 if node is an intrablock live range then
21 for ref ∈ node→sets ∪ node→uses do
22 replace ref with node→pseudo

23 else
24 ⊲ node is an interblock live range
25 for sib ∈ node ∪ node→sibs do
26 for use ∈ sib→uses do
27 insert load of node→local into node→pseudo before use
28 replace use with node→pseudo

29 for set ∈ sib→sets do
30 replace set with node→pseudo
31 insert store of node→pseudo into node→local after set

32 re-perform register assignment() to assign all pseudo-registers
33 perform instruction selection() to clean up code

Figure 4.4: De-optimize Register Allocation
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selection is then made to clean up redundant instructions that now appear due to the

de-optimization process. Typically the resulting function representation will contain very few

distinct registers. Most references will be to argument registers, reusable scratch registers

and hardware-specific registers (frame pointer, stack pointer). Any unused registers are then

available for the various code-improving transformations to use.

4.2.4 Example De-optimization of Register Allocation

This section walks through the steps of re-optimizing a function after de-optimizing

register allocation. The initial code for the function being compiled is shown in Figure 4.5.

This function is dequeue from the dijkstra MiBench benchmark. The dequeue function was

chosen for its simplicity in demonstrating the benefits of de-optimization. Notice that the

function has a NULL pointer check (Line 3) as well as a single call to the free library function

(Line 8). The function takes three integer pointer parameters and returns void.

void dequeue (int *piNode, int *piDist, int *piPrev)
begin

1 static QITEM *qKill;
2 qKill = qHead;
3 if qHead then
4 *piNode = qHead→iNode;
5 *piDist = qHead→iDist;
6 *piPrev = qHead→iPrev;
7 qHead = qHead→qNext;
8 free(qKill);
9 g qCount–;

end

Figure 4.5: Dequeue from Dijkstra Benchmark

Figure 4.6 shows the starting RTL representation of the function after performing

assembly translation on the GCC-generated assembly file. There are three basic blocks

in the function, each separated by an additional horizontal line. Line 4 shows the check

for the NULL pointer. Lines 6-8 show the saving of the argument registers r[0]r[2] in

non-scratch registers for later use. Line 10 ends the first basic block with a conditional

branch to an exit block labeled L0001 if the qHead pointer is NULL. The second basic block
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Line RTLs Deads Comments

1 r[6]=R[L21];

2 r[12]=R[r[6]+0];

3 r[3]=R[L21+4];

4 c[0]=r[12]0:0; ⊲ Check for NULL pointer

5 R[r[3]+0]=r[12]; r[3]

6 r[4]=r[1]; r[1] ⊲ Saving argument r[1]

7 r[3]=r[0]; r[0] ⊲ Saving argument r[0]

8 r[5]=r[2]; r[2] ⊲ Saving argument r[2]

9 r[0]=r[12];

10 PC=c[0]:0,L0001; c[0] ⊲ If NULL then goto L0001

11 r[2]=R[r[12]+0];

12 R[r[3]+0]=r[2]; r[2]r[3]

13 r[3]=R[r[12]+4];

14 R[r[4]+0]=r[3]; r[3]r[4]

15 r[2]=R[r[12]+8];

16 r[1]=R[r[12]+12]; r[12]

17 R[r[5]+0]=r[2]; r[2]r[5]

18 R[r[6]+0]=r[1]; r[1]r[6]

19 ST=free; =r[0]; ⊲ Call free() with r[0]

20 r[2]=R[L21+8];

21 r[3]=R[r[2]+0];

22 r[3]=r[3]1;

23 R[r[2]+0]=r[3]; r[2]r[3]

24 PC=RT; ⊲ Return

25 L0001: ⊲ Label

26 PC=RT; ⊲ Return

Figure 4.6: Dequeue Prior To De-optimizing Register Allocation

performs the necessary pointer updates from the function. The call to free is found in Line

19, and it uses the register r[0] as its argument. Both lines 24 and 26 show return RTLs,

signifying the end of the function dequeue.

After constructing the RIG and replacing hardware register references with pseudo-

registers and memory operations, we obtain the RTLs shown in Figure 4.7. This figure

only shows RTLs from the first basic block. If an RTL from the initial representation has

been expanded into multiple RTLs from the de-optimization, the line numbers are suffixed

alphabetically and the group of RTLs is separated out by horizontal lines. Lines 1a-1b

show the new pseudo-register and memory version of the first original RTL. Notice that the
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Line RTLs Deads Comments

1a r[32]=R[L21]; ⊲ r[6] → r[32]

1b R[r[13]+ dequeue 0]=r[32]; r[32] ⊲ Store set of pseudoregister r[32]

2a r[32]=R[r[13]+ dequeue 0]; ⊲ Load use of pseudoregister r[32]

2b r[33]=R[r[32]+0]; r[32] ⊲ Perform actual operation

2c R[r[13]+ dequeue 1]=r[33]; r[33] ⊲ Store set of pseudoregister r[33]

3 r[34]=R[L21+4]; ⊲ Intrablock live range so replace

⊲ with only pseudoregister r[34]

4a r[33]=R[r[13]+ dequeue 1];

4b c[0]=r[33]0:0; r[33] ⊲ c[0] is not replaceable

5a r[33]=R[r[13]+ dequeue 1];

5b R[r[34]+0]=r[33]; r[33]r[34] ⊲ Death of Intrablock r[34]

6a r[35]=r[1]; r[1] ⊲ r[1] is incoming argument

6b R[r[13]+ dequeue 2]=r[35]; r[35] ⊲ so not replaceable

7a r[36]=r[0]; r[0] ⊲ r[0] is incoming argument

7b R[r[13]+ dequeue 3]=r[36]; r[36] ⊲ so not replaceable

8a r[37]=r[2]; r[2] ⊲ r[2] is incoming argument

8b R[r[13]+ dequeue 4]=r[37]; r[37] ⊲ so not replaceable

9a r[33]=R[r[13]+ dequeue 1]; ⊲ r[0] in this case is

9b r[0]=r[33]; r[33] ⊲ outgoing argument to free()

10 PC=c[0]:0,L0001; c[0] ⊲ Conditional branch uses only

. . . ⊲ c[0] so no replacements at all

Figure 4.7: Dequeue After De-optimization of Register Allocation

hardware register r[6] has now been re-mapped to pseudo-register r[32] for this particular

live range. Since this live range exists across multiple basic blocks, its value is also assigned

the new local variable dequeue 0. The register r[13] corresponds to the stack pointer. It is

verifiable that r[6] was still live going into the second basic block of the initial code example

by looking at Line 18 from Figure 4.6. Notice that storing the pseudo-register also marks

the pseudo-register as dead. The second RTL in the original function used the original r[6],

and so it is now loaded before the use in Line 2b. Using the same pseudo-register (in this

case r[32]) allows VPO to keep the number of distinct pseudo-registers used in the function

to a minimum. A new pseudo-register r[33] is chosen for the live range of r[12]. Line 2c

contains the appropriate store instruction required due to the set of r[33] in Line 2b.

Intrablock live ranges were only assigned pseudo-registers and not new local variable

locations. In Line 3, this is the case as r[3] is mapped to r[34] for its duration. This live

range of the original r[3] spans to Line 5 in the original RTLs, so r[34] is marked dead
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finally in Line 5b. With the ARM, it is not possible to map certain hardware registers

to pseudo-registers. These hardware registers include argument registers, return registers,

and the condition codes register c[0]. Lines 4b, 6b, 7b, 8b and 9b show that such register

requirements are indeed respected in this function representation. Since the ARM only uses

the register c[0] for conditional branches, instructions such as the one in Line 10 are never

modified by the de-optimization algorithm.

The RTL representation of dequeue after re-performing register assignment is shown in

Figure 4.8. Only the first basic block of the function is shown again. All pseudo-registers

have been re-mapped to hardware registers, however the loads and stores will still remain

present as register allocation has not been re-performed at this point in time. In Lines

1a-1b, the register r[12] is assigned to pseudo-register r[32] by VPO’s register assignment

procedure. Since this live range does not cross any call instructions (it only spans the 2

lines), VPO will assign the first available scratch register, r[12]. Since it is marked dead in

Line 1b, it is available again for assignment in Line 2a. Not only is it assigned for the live

range of r[32], it is also assigned for r[33] since these ranges do not overlap each other. Of

course r[12] is marked dead in Line 2c, where r[33] was previously marked dead due to the

store inserted by the de-optimization process.

Lines 4a-4b show the use of a new hardware register, r[3] due to the existence of two live

register ranges at this point in the basic block. The register r[12] is live due to its set as an

intrablock live range in Line 3. Lines 6a-8b show the saving of incoming register arguments

to new local variables. This function takes three integer pointers, and so registers r[0], r[1],

and r[2] are saved appropriately. Since Line 9b sets r[0] as a parameter to the free function,

it is still live exiting this basic block. The same is true for the stack pointer r[13] which will

be live until the last reference to any local variable is seen.

The RTLs shown in Figure 4.9 are generated after performing several further opti-

mizations including dead code elimination, strength reduction, instruction selection, register

allocation, common subexpression elimination, dead variable elimination, and fix entry exit.

Clearly all remaining local variable references have been eliminated due to the lack of any load

or store instructions. This is consistent with the initial function. However the re-mapping

of live register ranges has enabled additional transformations to be effective in reducing the

number of RTLs. Originally the function required the saving of all three incoming register
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Line RTLs Deads Comments

1a r[12]=R[L21]; ⊲ r[12] is first nonargument

1b R[r[13]+ dequeue 0]=r[12]; r[12] ⊲ scratch register

2a r[12]=R[r[13]+ dequeue 0]; ⊲ Note the use of r[12] to

2b r[12]=R[r[12]+0]; ⊲ combine two distinct live

2c R[r[13]+ dequeue 1]=r[12]; r[12] ⊲ ranges in these 3 lines

3 r[12]=R[L21+4];

4a r[3]=R[r[13]+ dequeue 1]; ⊲ First appearance of r[3] since

4b c[0]=r[3]0:0; r[3] ⊲ there are currently 2 live ranges

5a r[3]=R[r[13]+ dequeue 1];

5b R[r[12]+0]=r[3]; r[3]r[12]

6a r[12]=r[1]; r[1] ⊲ Save argument r[1]

6b R[r[13]+ dequeue 2]=r[12]; r[12]

7a r[12]=r[0]; r[0] ⊲ Save argument r[0]

7b R[r[13]+ dequeue 3]=r[12]; r[12]

8a r[12]=r[2]; r[2] ⊲ Save argument r[2]

8b R[r[13]+ dequeue 4]=r[12]; r[12]

9a r[12]=R[r[13]+ dequeue 1];

9b r[0]=r[12]; r[12]

10 PC=c[0]:0,L0001; c[0] ⊲ Live registers leaving block are

. . . ⊲ r[0] and r[13] (stack pointer)

Figure 4.8: Dequeue After Re-performing Register Assignment

arguments. After re-performing register assignment the saves of registers r[1] and r[2]

became redundant. Since the final use of r[1] and r[2] occur in Lines 14 and 17 respectively

without any interceding function calls, these RTLs could use the registers directly. The

missing save RTLs are evident as the two lines numbered 6 and 8.

4.3 De-optimization Difficulties

Several problems were encountered while trying to implement the various de-optimization

strategies in a manner that preserved the semantic content of a function. Calling conventions

posed a problem with the detection of registers that were able to be safely deallocated.

Additionally, the expansion of code due to the insertion of new RTLs caused compatibility

problems with global variable offsets specified in RTLs that were no longer syntactically valid

in ARM assembly.
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Line RTLs Deads Comments

1 r[5]=R[L21];

2 r[4]=R[r[5]];

3 r[12]=R[L21+4];

4 c[0]=r[4]:0;

5 R[r[12]]=r[4]; r[12]

6 ⊲ RTL r[4]=r[1] now unnecessary

7 r[8]=r[0]; r[0]

8 ⊲ RTL r[5]=r[2] now unnecessary

9 r[0]=r[4];

10 PC=c[0]:0,L0001; c[0]

11 r[12]=R[r[4]];

12 R[r[8]]=r[12]; r[8]r[12]

13 r[12]=R[r[4]+4];

14 R[r[1]]=r[12]; r[1]r[12] ⊲ r[1] live until here now

15 r[12]=R[r[4]+8];

16 r[1]=R[r[4]+12]; r[4]

17 R[r[2]]=r[12]; r[2]r[12] ⊲ r[2] live until here now

18 R[r[5]]=r[1]; r[1]r[5]

19 ST=free; =r[0];

20 r[12]=R[L21+8];

21 r[1]=R[r[12]];

22 r[1]=r[1]1;

23 R[r[12]]=r[1]; r[1]r[12]

24 PC=RT;

25 L0001:

26 PC=RT;

Figure 4.9: Dequeue After Additional Optimizations

4.3.1 Calling Conventions Revisited

When implementing the de-optimize register allocation phase, calling conventions had to

be maintained for proper function execution. This means that function arguments and return

values need to remain in proper registers in order to interface properly with other compiled

functions. This problem becomes a limiting factor for de-optimizations however, since

hardware register references for such sequences must not be replaced with pseudo-registers

or loads and stores. This limits the effectiveness of de-optimization in this case, since these

references will never be able to be modified.
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The algorithm shown in Figure 4.4 shows how this information can be extracted properly

from the function which is being compiled. The detection of incoming parameters to the

function can be done by checking for a use before a set (Line 13). Additionally, return values

can be detected by looking at the outgoing live registers of all basic blocks that can exit the

function (Line 25). Any parameters being passed to a called function are also unreplaceable

and are found by inspecting all parameter line RTLs (Lines 6-7). Replacement information

is further propagated to sibling nodes in the register interference graph (Line 32-33).

Other hardware registers that could not be replaced also needed to be detected and

flagged. Since this de-optimization process was designed to be machine independent,

additional machine-dependent information needed to be provided to indicate which registers

should never be deallocated. For the ARM, such registers included the frame pointer, stack

pointer, program counter, link register, and condition codes register. In the case of each

register, they perform a function that is not able to be provided by any other register. Thus

deallocating in these cases could never be beneficial.

4.3.2 Code Expansion and Global Variable Offsets

For the ARM architecture, loads of global variables can be handled by using a PC-relative

immediate offset as the address. This offset is specified as a 12-bit value. An example

instruction can be found in Line 1 of Figure 4.6. High level language compilers are free

to place globals as needed and generate appropriate instructions for accessing globals that

may be out of immediate reach. The generated assembly code from GCC attempts to place

globals appropriately and switches to an indirect register mechanism for loading the address

of a global if absolutely necessary. This poses a problem with direct assembly translation

however, as any potential expansion in code size can push a symbolic offset just out of reach.

Such a mistake will yield code that the assembler cannot handle.

During the translation process, there are certain block load and store instructions

generated by GCC that must be expanded to multiple loads and stores in order to be handled

correctly with VISTA. This expansion was enough to break two functions (parse switches

from jpeg, and main from fft) from all of the functions within the six tested programs for this

study. The expansion problem is only exacerbated when performing de-optimizations on the

assembly file, since each of the specified de-optimizations only modifies and adds RTLs while
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never deleting any existing RTLs. If the resulting expanded code is not vastly improved by

later optimization phases, it may contain global offsets that are out of reach and thus be

unable to be assembled correctly.

Initial solutions to this problem included the construction and use of an additional

peephole optimizer post-pass on the assembly files before assembling them. The peephole

optimizations included were able to reconstruct a large number of the block memory

access instructions, but not all. The parse switches function was never able to be re-

compressed properly even from optimized code, and thus this function was externally

linked to the final executable and excluded from test results. Even with the peephole

optimizer condensing instruction sequences, de-optimizations caused greater trouble, since

many times the corresponding optimization phase was not reinvoked by VISTA using the

genetic algorithm. This led to code that retained additional loads and stores or loop-invariant

instructions, thus pushing global offsets out of bounds. It was eventually decided to eliminate

this additional optimizer from the process. Instead, all phase sequences that produced code

that could not be assembled were identified as invalid sequences and rejected by the genetic

algorithm.
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CHAPTER 5

REVERSE COPY PROPAGATION

This chapter discusses the optimization phase reverse copy propagation that has been

added to the VISTA framework to enable additional benefits from the de-optimization

of code. The first section describes the motivation for this optimization phase. Next we

describe the implementation in detail. Finally we present an example showing reverse copy

propagation in action.

5.1 Motivation for Reverse Copy Propagation

The re-performing of register assignment after de-optimization provides an opportunity

for the compiler to improve on the original assembly code. An improved assignment

of registers can reduce register pressure by freeing up valuable registers that will later

enable further optimizations. However this opportunity works both ways and leads to

the biggest potential problem, which is choosing a register assignment that inhibits further

transformations that standard re-optimization can detect and perform.

The VPO compiler chooses register assignments based on what registers are available

for the live range. If the live range does not cross a function call, then a scratch register

is a good choice, since it need not be saved or restored. When a live range does cross a

function call, non-scratch registers are best, since it will be the called function’s responsibility

to provide necessary save and restore code if such a register is used. The real problem

exists when register assignment is performed with less information. After performing

de-optimizations, register assignment works with extremely short register live range spans.

These short spans usually then have scratch registers assigned to them. When performing

additional optimization phases later, live ranges may be extended and the choice of a scratch

register may be suboptimal since it will result in spills or register moves. The following
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example demonstrates the shortcomings of re-performing register allocation before additional

optimizations.

Figure 5.1 shows four sequences of RTLs at different stages of the optimization process,

corresponding to the function keymatch from the jpeg benchmark. The topmost portion

shows the initial input RTLs as translated from the GCC-generated assembly file (Lines

a1-a3). There is a save of incoming parameter register r[0] (Line a1). This saved copy is

then used to access data one byte at a time in a loop (Lines a2-a3). The second part of

the figure shows the first few RTLs after performing de-optimizations as well as re-assigning

registers (Lines b1-b6). It is noticeable that register r[12] is assigned the most work. It is

constantly being loaded and stored, since it is the first available scratch register for the ARM

and there are no intervening function calls. Additionally live range spans are relatively short

for registers in the de-optimized state, typically being between 1 and 3 instructions. This

is where the problem begins, since register r[12] is clearly not a good choice when these

register live ranges are coalesced after re-performing register allocation.

The third section shows the RTLs after re-performing register allocation (Lines c1-c6).

The local variable keymatch 0 has been allocated the register r[8]. All memory references

to allocated variables are then replaced by the new registers (Lines c2, c3, c5, c6). In VPO,

excess RTLs are cleaned up by performing additional optimization phases such as instruction

selection and dead assignment elimination. In this case, the iteration of instruction selection

causes several of the RTLs to be combined in the function. Lines c1-c3 can be combined and

replaced with line d1. Lines c4 and c6 are combined to obtain Line d2. The bottom section

in the figure shows the final results after re-performing instruction selection on the entire

function. Clearly an additional RTL has been added that was not necessary in the original

code (Line d3).

The standard version of VPO does not have the ability to perform a code-improving

transformation that would allow the r[12] references in Lines d1-d3 to be changed to

references to r[8]. Such a transformation can best be described as a copy propagation

phase that works in reverse. The application of such a transformation in this particular case

is obvious from just simple code inspection. Such a transformation would allow the removal

of the RTL in Line d3 during dead assignment elimination, since it would result in a register

to register copy using the same source and destination.
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Translated Input RTLs

Line RTLs Deads Comments

a1 r[6]=r[0]; r[0] Copy/save parameter r[0]

a2 r[4]=B[r[6]]&255;r[6]=r[6]+1; Initial load of value

. . . r[6] live this entire time

a3 r[4]=B[r[6]]&255;r[6]=r[6]+1; Load inside loop

. . .

Deoptimized RTLs After Register Reassignment

Line RTLs Deads Comments

b1 r[12]=r[0]; r[0] Copy/save parameter r[0]

b2 R[r[13]+ keymatch 0]=r[12]; r[12] Interblock live range

b3 r[12]=R[r[13]+ keymatch 0]; so use loads/stores

b4 r[1]=B[r[12]]&255;r[12]=r[12]+1;

b5 R[r[13]+ keymatch 0]=r[12]; r[12]

b6 R[r[13]+ keymatch 1]=r[1]; r[1]

. . .

RTLs After Register Reallocation

Line RTLs Deads Comments

c1 r[12]=r[0]; r[0] Copy/save parameter r[0]

c2 r[8]=r[12]; r[12] r[8] allocated for keymatch 0

c3 r[12]=r[8]; r[8]

c4 r[1]=B[r[12]]&255;r[12]=r[12]+1;

c5 r[8]=r[12]; r[12]

c6 r[6]=r[1]; r[1] r[6] allocated for keymatch 1

. . .

RTLs After Instruction Selection

Line RTLs Deads Comments

d1 r[12]=r[0]; r[0] Copy/save parameter r[0]

d2 r[6]=B[r[12]]&255;r[12]=r[12]+1; Initial load of value

d3 r[8]=r[12]; r[12] Copy/save r[12]

. . . r[8] live this entire time

d4 r[4]=B[r[8]]&255;r[8]=r[8]+1; Load inside loop

. . .

Figure 5.1: Register Re-assignment with Keymatch
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5.2 Implementing Reverse Copy Propagation

Reverse copy propagation was designed to work independent of traditional copy propaga-

tion as implemented in VPO. Copy propagation is performed during the common subexpres-

sion elimination phase of VPO, so reverse copy propagation is added as a final pass during

that phase as well. The algorithm for performing reverse copy propagation requires both

forward and backward spanning searches into the function control flow graph. The complete

process is defined by three algorithms. One is the main algorithm for actually performing

Reverse copy propagation. The other two algorithms recursively assist in computing the

fixed point of register live ranges and validating the transformations. They are Backward

Scan and Forward Scan and are covered after describing the main algorithm. The primary

algorithm behind reverse copy propagation is shown in Figure 5.2.

Reverse copy propagation works by examining each RTL in each basic block of a given

function (Lines 1-2). When a register move is detected with a dead source register (the

register value that is being copied), the algorithm will attempt to replace all references to

that source register in prior RTLs with references to the destination register instead (Lines

3-25). To do this the algorithm keeps track of two lists: a backlist containing backward

spanning references to the register and a forwardlist containing forward spanning references

to the register. Initially we add the preceeding RTLs before the move instruction to the

backlist for validity checking (Lines 6-7). If the move starts a basic block, then we must add

all predecessor blocks to the backlist instead (Line 9).

At this point we have elements in the backlist, but no elements in the forwardlist. We

now will add elements to each list in order to effectively capture the live range of the source

register. The main loop of the optimization will terminate when either the replacement is

seen as invalid or there are no further backward or forward spans to verify (Lines 12-18). Both

backscan and forwardscan examine a given list element checking the RTLs for replacement

validity (Lines 15,17). Both scanning functions will mark the reverse copy propagation invalid

if there are register conflicts (Line 18).

If the entire live range of the register is able to be reconstructed without detecting any

conflicts, the replacement can then proceed (Lines 19-25). Each element of the backlist and

forwardlist are scanned for references to the source register, which are then replaced by the
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1 foreach blk ∈ function basic blocks do
2 foreach rtl ∈ blk do
3 if rtl is a move with dead source register then
4 dst ← destination register of move
5 src ← source register of move
6 if rtl has preceeding rtls then
7 add preceeding rtl list to the backlist

8 else
9 add all predecessor blocks to the backlist

10 changes ← TRUE
11 valid ← TRUE
12 while changes and valid do
13 changes ← FALSE
14 foreach elem ∈ backlist do
15 changes | = backscan(elem)

16 foreach elem ∈ forwardlist do
17 changes | = forwardscan(elem)

18 valid ← FALSE if scanning detects conflicts

19 if valid then
20 foreach elem ∈ backlist do
21 foreach trtl ∈ elem→rtls do
22 replace all src references in trtl with dst

23 foreach elem ∈ forwardlist do
24 foreach trtl ∈ elem→rtls do
25 replace all src references in trtl with dst

Figure 5.2: Reverse Copy Propagation

destination register (Lines 22, 25). After all replacements are made, the algorithm proceeds

to examine other potential candidates for reverse copy propagation.

Figure 5.3 shows the method in which backward scans are made. First the element is

checked for previous backward scanning (Line 1). If it has not been seen before, it is marked

as scanned backwards (Line 2). Now, each RTL in the block is examined in reverse, searching

for potential conflicts (Lines 3-9). If an RTL sets or uses the destination register from the

move instruction we are trying to eliminate, then there is a conflict, so the propagation is

51



invalid (Lines 4-6). If an RTL sets the source register from the move instruction but does

not use that same source register, then all successor RTLs are added to the forwardlist and

the function returns signifying a change to the scan lists (Lines 7-9). If neither terminating

condition is reached, then the predecessors of the current basic block are examined (Lines

10-17) to determine validity. If the block has no predecessors, then clearly a conflict exists,

as the move that we are attempting to eliminate contains an incoming parameter register

(Lines 10-12). If there are predecessors however, the algorithm adds each predecessor to the

backlist and recursively scans it (Lines 14-16). Any changes to the scanlists are propagated

as a return value (Lines 16-17). If the element had already been scanned, no changes are

returned (Line 18).

1 if elem has not been scanned backwards already then
2 mark elem as scanned backwards
3 foreach rtl moving backwards through elem→rtls do
4 if rtl sets or uses dst then
5 valid ← FALSE
6 return FALSE
7 else if rtl sets src and does not use src then
8 add successor rtls to the forwardlist
9 return TRUE

10 if elem has no predecessor blocks then
11 valid ← FALSE
12 return FALSE
13 changes ← FALSE
14 foreach pred ∈ elem→preds do
15 add pred to backlist
16 changes | = backscan(pred)

17 return changes

18 else return FALSE

Figure 5.3: Backward Scan

Forward scans are done in the manner shown in Figure 5.4. The element is checked

for previous forward scans to prevent the main algorithm from looping forever (Line 1).

Unmarked blocks are then marked as forward scanned (Line 2). Each RTL in the block is

examined going forward to search for conflicts or the terminating condition (Lines 3-9). If

the RTL shows the source register as being dead, the preceeding RTLs are added to the
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backlist and the function returns showing that a change has been made to the scanning

lists (Lines 4-6). If the RTL sets or uses the destination register, then the transformation is

invalidated due to the conflict (Lines 7-9). If no terminating conditions are reached before

the RTL list is exhausted, then we must examine the successors of the block (Lines 10-17).

If the current block is an exit block then we are attempting to rename a return register

which is not allowed (Lines 10-12). If this is not an exit block, then we will examine each

successor block in turn (Line 14-16). Each successor block is added to the forward list and

then scanned (Lines 15-16). Change information is collected and propagated back to the

calling function (Lines 16-17). If the element had been previously scanned, no changes are

returned (Line 18).

1 if elem has not been scanned forwards already then
2 mark elem as scanned forwards
3 foreach rtl moving forwards through elem→rtls do
4 if rtl has death of src then
5 add preceeding rtl list to the backlist
6 return TRUE
7 else if rtl sets or uses dst then
8 valid ← FALSE
9 return FALSE

10 if elem is exit block then
11 valid ← FALSE
12 return FALSE
13 changes ← FALSE
14 foreach succ ∈ elem→succs do
15 add succ to forwardlist
16 changes | = forwardscan(succ)

17 return changes

18 else return FALSE

Figure 5.4: Forward Scan

5.3 Reverse Copy Propagation Example

This section goes through a simple example of performing reverse copy propagation on

a de-optimized and re-optimized function. For simplicity, the initial motivating example
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of keymatch from jpeg is used. Figure 5.1 shows the original de-optimization and re-

optimization causing code expansion. Figure 5.5 depicts several of the important steps

in applying reverse copy propagation to the code. The top block (Lines a1-a4) show the

starting code after being de-optimized and re-optimized. The first register move in not able

to be transformed since it uses a register that is an incoming parameter (Line a1). There is

another register move saving the scratch register r[12] for use in a later loop (Line a3).

To start the process of reverse copy propagation, we perform a backwards scan (Lines

b1-b3). The preceeding RTLs (Line b2 backwards) are currently the only elements in the

backlist. Line b2 shows use of the source register (r[12]) and line b1 shows the set of the

source register. Now the following RTLs are added to the forwardlist (Line b2 forwards).

The third box shows the process of forward scanning to determine any potential live range

conflicts (Lines c1-c3). The scan begins on line c2 and continues through to line c3, where

it sees the death of source register r[12]. At this point the transformation can proceed since

we have determined that there is no conflict across the live range.

Lines d1-d3 show the replacement steps for reverse copy propagation. In line d1, the r[12]

is replaced by the destination register r[8]. All other references to r[12] are also replaced by

r[8] for the duration of the live range as determined by the forward and backward scanning.

Line d3 shows the final necessary replacement, leaving a register move with the same source

and destination. Notice that the r[12] reference in the dead register list has been removed.

Instruction selection will later remove the unnecessary RTL in line d3, yielding the final code

as shown in lines e1-e3.
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Candidate for Reverse Copy Propagation

Line RTLs Deads Comments

a1 r[12]=r[0]; r[0] Copy/save parameter r[0]

a2 r[6]=B[r[12]]&255;r[12]=r[12]+1; Initial load of value

a3 r[8]=r[12]; r[12] RCP candidate

. . . r[8] live this entire time

a4 r[4]=B[r[8]]&255;r[8]=r[8]+1; Load inside loop

. . .

Backwards Scanning during Reverse Copy Propagation

Line RTLs Deads Comments

b1 r[12]=r[0]; r[0] Scan sees the set of dst

b2 r[6]=B[r[12]]&255;r[12]=r[12]+1; Scan sees use of src here

b3 r[8]=r[12]; r[12] Start backwards scan

. . . Remainder of function

Forward Scanning during Reverse Copy Propagation

Line RTLs Deads Comments

c1 r[12]=r[0]; r[0] Start forwards scan

c2 r[6]=B[r[12]]&255;r[12]=r[12]+1; Scan sees use of src here

c3 r[8]=r[12]; r[12] Scan sees death of src here

. . . Remainder of function

Replacement during Reverse Copy Propagation

Line RTLs Deads Comments

d1 r[8]=r[0]; r[0] Replacement

d2 r[6]=B[r[8]]&255;r[8]=r[8]+1; Replacement

d3 r[8]=r[8]; Replacement with elimination of death

. . . Remainder of function

After Further Optimizations

Line RTLs Deads Comments

e1 r[8]=r[0]; r[0] Copy/save parameter r[0]

e2 r[6]=B[r[8]]&255;r[8]=r[8]+1; Initial load of value

. . . r[8] live this entire time

e3 r[4]=B[r[8]]&255;r[8]=r[8]+1; Load inside loop

. . .

Figure 5.5: Reverse Copy Propagation with Keymatch
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CHAPTER 6

EXPERIMENTAL TESTING

This chapter presents the results of running the experiments described in Chapter 2.

These experiments were designed to demonstrate the efficacy of performing de-optimizations

before re-optimizing code. Actual statistics for running VISTA’s genetic algorithm search

for effective optimization sequences are compared both with and without de-optimizations

in the first section. The second section presents an expanded discussion of the experimental

results. This includes an analysis of some of the problems encountered that caused the

implemented de-optimization phases to be less effective than originally anticipated.

6.1 Experimental Results

Each benchmark program was instrumented during compilation using the EASE frame-

work to obtain both static code size and dynamic instruction execution counts. The

GCC-generated code for each benchmark was translated to the RTL format and both static

and dynamic counts are collected as baseline measures after performing a simple compilation

pass with VISTA. This pass included performing instruction selection and predication during

the fix entry exit phase. The GCC-generated code used as the baseline did have the potential

to obtain a slight benefit in this case, since VISTA may detect additional sequences that are

able to be predicated, as well as other instruction sequences that can be combined into fewer

RTLs. The benchmark programs that were tested are described in Table 2.1.

Table 6.1 shows the results of running the experiments for the StrongARM architecture.

Each of the six tested benchmarks (bitcount, dijkstra, fft, jpeg, sha, and stringsearch) is

presented individually. The field labeled Compiler Strategy denotes whether just the genetic

algorithm search was performed (opt) or if de-optimization phases were enabled prior to

executing the genetic algorithm search (deopt). Additionally, reverse copy propagation was

added as an additional pass of the common subexpression elimination optimization phase.
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Table 6.1. Effect of De-optimization on Static and Dynamic Instruction Count
Compiler Opt. for Space Opt. for Both Opt. for Speed

Benchmark Strategy static dynamic static dynamic static dynamic
count count count count count count

bitcount opt -2.32 % 0.00 % -2.32 % 0.00 % -2.32 % 0.00 %
de-opt -2.32 % 0.00 % -2.32 % 0.00 % -2.32 % 0.00 %

dijkstra opt -1.30 % -2.70 % -1.30 % -2.70 % -1.30 % -2.70 %
de-opt -2.16 % -2.73 % -3.03 % -2.73 % -3.03 % -2.73 %

fft opt -0.19 % 0.00 % -0.19 % 0.00 % -0.19 % 0.00 %
de-opt -0.19 % -0.35 % 0.00 % 0.00 % 0.00 % 0.00 %

jpeg opt -4.30 % -10.61 % -4.30 % -10.61 % -4.30 % -10.61 %
de-opt -5.20 % -10.53 % -4.97 % -8.12 % -4.94 % -10.53 %

sha opt -5.99 % -4.39 % -5.99 % -4.39 % -3.89 % -6.27 %
de-opt -5.69 % -4.36 % -5.69 % -4.36 % -2.69 % -6.17 %

stringsearch opt -0.92 % -0.09 % -0.92 % -0.09 % -0.92 % -0.09 %
de-opt -3.23 % -0.09 % -3.23 % -0.09 % -3.23 % -0.09 %

average opt -2.50 % -2.97 % -2.50 % -2.97 % -2.15 % -3.28 %
de-opt -3.08 % -3.01 % -3.16 % -2.55 % -2.65 % -3.25 %

Measurements were taken using three different criteria for VISTA’s genetic algorithm search

for effective phase sequences. The three configurations that were tested varied the weight of

potential tradeoffs such as code size and dynamic instruction count. The tested criteria for

these experiments included optimizing for static code size (Opt. for Space), optimizing for

dynamic instruction execution count (Opt. for Speed), and optimizing for a combination

of the two, weighting each equally (Opt. for Both). The initial translated RTLs from the

GCC-generated code are used as a baseline measure to which all tested configurations for

de-optimization and genetic algorithm searching can be compared. Results are calculated

by comparing experimental static and dynamic instruction counts to the initial static and

dynamic instruction counts for the GCC-generated code for each benchmark. Differences

are expressed in the table as percentages.

Results show that performing de-optimizations before re-optimizing allows for some

potential benefits. In both the dijkstra and bitcount benchmarks, de-optimizing provides

benefits for each of the three fitness criteria tested. De-optimizations also benefit the

optimizing for space criteria for both the fft and jpeg benchmarks. In the cases of bitcount and
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sha, de-optimizing proved to be detrimental, leading to situations where semantic information

was unavailable to obtain further improvements to the code. Many of the functions in

theses two benchmarks showed individual improvements due to de-optimization, however

the negative impact was much higher from other functions.

Overall results show that by performing re-optimizations alone, VISTA was successful

in decreasing static code size by an average of 2.50% and dynamic instructions counts by

an average of 3.28% across all benchmarks when compared to the original GCC-generated

code. De-optimizing before re-optimizing yielded even greater success with decreasing static

code size, with an average of 3.16%, winning against re-optimization alone in 4 out of 6

cases. Decrease in dynamic instruction counts reached an average of 3.25%, thus falling

slightly short of the benefit of pure re-optimization. In all cases, re-optimization with or

without de-optimization yields improvements to the original GCC-generated code. A closer

look at the data shows that no primary or secondary fitness measure performs worse than

the baseline GCC-generated code for an entire benchmark although some functions did

experience an increase in code size when compiling for speed or an increase in executed

instructions when compiling for reduced space. Such increases were later canceled out by

other functions in the benchmark that benefited from decreased space requirements.

6.2 Discussion of Results

Looking at the results of these experiments, there are several critical points to note. De-

optimization before re-optimization benefited the code in several cases, while detracting from

performance in other cases. Despite the fact that not every benchmark saw improvement, the

experiments produced some very interesting results. This section will provide an overview

of the knowledge gained from running the de-optimization experiments. Several factors

contributed to the performance of the de-optimization strategy including various interactions

with other optimization phases, inherent randomness with the genetic algorithm, and the

lack of more detailed dynamic execution statistics. Each of these items will be discussed

in this section, as well as potential methods for improving the de-optimization strategy to

overcome these problems.
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6.2.1 Re-optimization Benefits

The GCC-generated code clearly benefited from the performing of additional optimization

phases. One benefit of assembly translation and re-optimization is the potential to apply

different optimizations that were not available or applied to the original code. Sometimes it

is just a different implementation and set of heuristics for an optimization that can improve

existing optimized code. As an example, VISTA is able to predicate several additional RTLs,

leading to decreased code size (due to the lack of extra branch instructions) and potentially

decreased dynamic execution counts (for predicates that are frequently true).

6.2.2 Effectiveness of Register Re-assignment

Examining the results of several benchmark runs, it became clear that register re-

assignment played a critical role in the performance of the de-optimization strategy. Initial

results without reverse copy propagation showed that de-optimization could not compete with

pure re-optimization of code. The addition of reverse copy propagation helped in eliminating

problems due to register re-assignment while also providing the pure re-optimization strategy

with benefits as well. Despite improving the pure re-optimization strategy, de-optimization

benefited enormously, overcoming just re-optimization in many cases for static code size and

dynamic instruction count.

6.2.3 Genetic Algorithm Behavior

One area of confusion found in Table 6.1 is the comparison of static code size for the

jpeg benchmark when looking at code that is de-optimized. For the mixed static/dynamic

search criteria, the improvement in static code size (-4.97%) is not as good as optimizing for

code size alone (-5.20%) considering that the code size only results also yield better dynamic

counts. There are other portions of the table that exhibit similarly confusing results.

For these benchmarks, it would appear that the search criteria was ignored to some extent,

or that there is a fundamental flaw in the VISTA genetic algorithm search for effective

optimization phase sequences. However, this effect can be explained due to the inherent

randomness of evolutionary algorithms. Random choices are made for initial population

chromosomes, crossover pairs and mutations during the compilation of every function. The
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application of a genetic algorithm is an attempt to trim a large search space in a logical

manner, consistent with the fitness criteria. In each peculiar case shown in the results, the

better sequences for a particular fitness criteria were just never uncovered in the search

process.

There are several ways to limit the effects of randomness on the resulting compiled

functions. One method is to adjust the variable configuration options for the genetic search

algorithm. The sequence length can be made longer, to create more opportunities for

re-optimizing code. The population size and the number of generations can be increased

to allow for an even greater number of different chromosomes (phase orderings) to be tested.

However the process still remains dependent on randomness, hence the best solution for one

fitness criteria may not be found during a search using that particular fitness criteria.

6.2.4 Dynamic Execution Statistics

One of the biggest potential benefits of de-optimizing register allocation is the ability to

change which variable live ranges will reside in memory and which will reside in registers.

Register movement operations can be faster than memory movement operations like loads

and stores. However, the dynamic instruction count obtained by VISTA only measures the

total number of instructions executed, and thus loads and register move operations count the

same. In general, register allocation replaces loads and stores with register move operations.

It is very common for register move operations to become redundant after being manipulated

via common subexpression elimination and other transformations. VISTA relies on code

improving transformations such as instruction selection and dead assignment elimination to

clean up the code by combining and removing any unnecessary RTLs.

Several functions had local variable allocations that differed from the original allocation

performed by GCC. Since de-optimizations can sometimes suffer from the register re-

assignment problem, register moves to save scratch registers (such as r[12]) can remain

in the code. When executing this code for dynamic measures, what was once a store may

now show up as a move. The dynamic count will remain the same, even though inspection

could show this as a winning situation. Dynamic instructions counts also do not take

into account any effects from the memory hierarchy. Cache hits and misses can greatly

impact dynamic performance. Some instructions may even require multiple cycles or have
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misprediction penalties associated with branching. VISTA supports optimizations such as

strength reduction that can help to alleviate the increased cost of powerful instructions by

replacing them with a sequence of cheaper instructions. Such a sequence might also go

unnoticed as an improvement over the original complex instruction.

The best way to correct these problems is to obtain more accurate information concerning

the dynamic execution behavior of the function. One particular method for obtaining

precise behavior information is through the use of hardware simulation. By simulating

all characteristics of the target machine (StrongARM), statistics including cycle-accurate

execution times may be extracted. Additionally, behavioral characteristics of the memory

hierarchy may be obtained, such as the actual cache hit rate, or the page fault count. VISTA

can then be modified to interface with such a simulator to obtain more accurate fitness testing

when searching for the most effective optimization phase sequence.
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CHAPTER 7

RELATED WORK

This chapter focuses on research areas that overlap in some manner with this work. To

the best of our knowledge, there has been no other research in using de-optimizations to

enhance the re-optimization of assembly code. However there has been related work in the

fields of assembly translation and de-optimization. Different aspects of these areas are used

to facilitate reverse engineering, legacy binary translation, link-time optimizations, as well

as the development of symbolic debuggers that can handle optimized code.

Binary translation is the process of converting an executable program from one particular

platform to a different platform. Platform differences can include instruction set, application

binary interface (ABI) specifications, operating system, and executable file format. The

translation of binary programs has particular importance in the porting of legacy software

for which source code is unavailable to new hardware. There are a few key differences between

binary translation and the ASM2RTL tools discussed in this work. With binary translators,

the stack layout remains constant and thus arrays and structures cannot be accidentally

placed incorrectly. This also limits the effectiveness of re-optimizations since even scalar

local variables cannot be adjusted. Additionally, the ASM2RTL tools work at the level of

assembly code and not binary executables.

Existing systems that perform binary translation include the Executable Editing Library

(EEL) and the University of Queensland Binary Translator (UQBT). EEL is a library

developed at the University of Wisconsin to facilitate the construction of tools that edit

executables such as binary translators and optimizers [16]. EEL has also been used to

construct programs that instrument executables for the purpose of gathering performance

data. UQBT is a binary translator developed at the University of Queensland that was

designed to be easily retargeted [5]. Similar to this work, UQBT accepts SPARC and ARM

input files among other formats. UQBT features several backends generating various types of
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output suitable for translation purposes, including Java virtual machine language (JVML),

C, object code and VPO RTL. Although UQBT did have some success with smaller programs

using the RTL backend, the overall RTL target required too much analysis information to be

useful within the UQBT framework. Having additional analysis information being supplied

statically to ASM2RTL before the start of the translation process helps to alleviate some

of the problems encountered by UQBT. Additionally, ASM2RTL can always fall back on

translations that maintain safety at reduced opportunity for improvement such as keeping

all local variables in the same initial order on the stack.

Link-time optimizations are closely related to the process of binary translation, in that

they both operate on a similar amount of semantic content. Link-time optimizations focus

on interprocedural opportunities that were not able to be addressed during the compilation

of individual functions or modules. Alto is a link-time optimizer targeting the Compaq

Alpha that features optimizations such as register allocation, inlining, instruction scheduling,

and profile-directed code layout [17]. In contrast, the de-optimization and re-optimization

components of VISTA are designed to work with the function as a basic unit. Link-time

optimizations could later be applied to the resulting re-optimized functions to further improve

performance.

The process of de-optimizing code has been applied for several purposes, ranging from

the debugging of optimized code to the reverse engineering of executable files. Symbolic

debuggers are one of critically valuable tools of a programmer. Due to the use of optimizing

compilers and the development of more complicated optimizations, debuggers have a need for

additional information to provide proper interactive feedback when working with optimized

executables. Hennessy addressed the problem of noncurrent variables when symbolically

debugging optimized executables [10]. These are variables that may not contain their

correct current value when walking through the optimized executable, perhaps due to

common subexpression elimination or dead assignment elimination. Hölzle, Chambers

and Ungar presented another approach for debugging optimized code using dynamic de-

optimization [11]. Their system however was limited to only debug the SELF object-oriented

language and also requires the original compiler to instrument the executable with all

necessary de-optimization information at various interrupt points within the program.
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Reverse engineering is the technique of extracting high-level source information from

binary executable files. The reconstruction of control flow graphs (CFGs) is a primary step in

the reverse engineering process, allowing input assembly instructions to be better represented

as the common loop and test constructs seen in a high-level language. CFGs for binary code

also tend to be more complicated than corresponding CFGs for the initial high-level source

code. This increased complexity is only further exacerbated by optimizations that modify

control flow such as predication, speculation and instruction scheduling. Snavely, Debray

and Andrews have experimented with performing de-optimizations on CFGs generated by

reverse engineering Itanium executables [19]. Results indicate that de-optimizations allow

for reductions in both complexity and size of the generated CFGs.
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CHAPTER 8

ADDITIONAL BENEFITS OF THIS WORK

There are several other projects that are currently using portions of this work for

different purposes. This chapter discusses two particular instances. One is the use of the

TI TMS320c54x-based translator from ASM2RTL in DSP-driven laboratory experiments for

students. Another use of this work is found in the current implementation of VISTA’s genetic

algorithm search for effective optimization sequences. In particular, register interference

graphs are constructed and used to detect similarities between generated code for different

phase orderings.

8.1 Use of ASM2RTL in DSP-driven Labs

Currently the course ECE 320: Digital Signal Processing Laboratory employs

the use of the ASM2RTL tool suite and a modified VISTA compiler [12]. The course is

taught by Dr. Douglas Jones at the University of Illinois at Urbana-Champaign. It is an

undergraduate course focusing on concepts for DSP (Digital Signal Processor) systems and

software development. Laboratory experiments cover topics such as FIR (Finite Impulse

Response) and IIR (Infinite Impulse Response) filtering, sampling, multi-rate processing,

elliptical low-pass filters, FFTs (Fast Fourier Transform), and quadrature phase-shift keying.

Students write code for each laboratory experiment in C or in assembly. For the assembly

code, students can then use the ASM2RTL component known as ti2rtl to convert the source

into VISTA RTL format for further optimization. At this point, the VISTA compiler

framework can be used to fine tune and further optimize the code. Students can step

through the application of various optimizations using the VISTA viewer, gaining some

insight into the process of improving assembly code. Additionally, the students can specify

hand transformations to the code that could not be automatically detected by VISTA.
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8.2 Detecting Homomorphic Code in VISTA

Traditionally genetic algorithms have used hash tables to keep track of already computed

solutions, in order to eliminate any unnecessary and costly steps involved in testing the fitness

of a particular chromosome. The portion of the genetic algorithm search process in VISTA

that takes the longest time is the actual assembling, linking and running of the compiled

code. The VISTA system employs several hash tables to eliminate redundant executions of

the time-consuming portions of the genetic algorithm [14].

VISTA employs four methods to detect previously tested functions. Each method detects

a superset of the preceding method’s matches, but requires additional analysis and checking

time. Thus each hash table check is performed individually and if a match is ever found, the

performance results stored in the table are used for the current sequence. VISTA first checks

to see if the current optimization phase sequence has already been tested. If not, then the

phases are applied. Phases that alter the code representation are classified as active. Active

phases in the current sequence are then searched for in a different hash table. If this set of

active sequences has not been tested, then the next step is to examine the function RTLs.

The RTL sequence is checked for exact matches with previously tested functions via the use

of a cyclic redundancy code (CRC) checksum.

The final redundancy check performed by VISTA is for equivalent or homomorphic code.

This can be described as code that is structurally similar, but with a differing assignment

of register names. This check employs a register interference graph (RIG) as described in

Chapter 4. After the RIG is constructed, hardware register live ranges are all re-mapped to

pseudo-registers as the basic blocks of the function are traversed in order. After performing

the re-mapping, this new pseudo-register variant of the RTLs has its CRC computed. Any

other matching CRC from the corresponding hash table will show the current optimization

phase sequence as producing code that is equivalent to another sequence.

Figure 8.1 depicts register re-mapping for the purpose of homomorphic code detection.

The top portion shows register allocation before loop-invariant code motion, and the bottom

portion shows the reverse. Comparing the original RTLs for each example shows that the

live ranges of r[1], r[2], and r[3] are different. These registers are displayed in bold

in the example. If each register live range however is replaced with the next numeric
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Register Allocation Before Code Motion

Line Label RTLs Remapped RTLs

a1 r[2]=0; r[32]=0;

a2 r[0]=L21; r[33]=L21;

a3 r[3]=4000+r[0]; r[34]=4000+r[33];

a4 L3

a5 r[1]=R[r[0]]; r[35]=R[r[33]];

a6 r[2]=r[2]+r[1]; r[32]=r[32]+r[35];

a7 r[0]=r[0]+4; r[33]=r[33]+4;

a8 c[0]=r[0]?r[3]; c[0]=r[33]?r[34];

a9 PC=c[0]<0,L3; PC=c[0]<0,L3;

Code Motion Before Register Allocation

Line Label RTLs Remapped RTLs

b1 r[3]=0; r[32]=0;

b2 r[0]=L21; r[33]=L21;

b3 r[1]=4000+r[0]; r[34]=4000+r[33];

b4 L3

b5 r[2]=R[r[0]]; r[35]=R[r[33]];

b6 r[3]=r[3]+r[2]; r[32]=r[32]+r[35];

b7 r[0]=r[0]+4; r[33]=r[33]+4;

b8 c[0]=r[0]?r[1]; c[0]=r[33]?r[34];

b9 PC=c[0]<0,L3; PC=c[0]<0,L3;

Figure 8.1: Two Functions with Homomorphic Code

pseudo-register, then the mapping shown on the right is obtained for each function. It is

easy to see from this mapping that both functions are in fact structurally equivalent besides

the different assignment of registers.
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CHAPTER 9

FUTURE WORK

This chapter discusses potential areas for further investigation into the effectiveness of

de-optimization on the re-optimization process. Improvements can be made in the testing of

the de-optimization process or to the de-optimization process itself. Several improvements to

the experiments can be made, including experimenting with a greater number and variety of

benchmarks, as well as working with actual hand-tuned assembly code. The de-optimization

process itself could be improved by the addition of further de-optimizations, mechanisms

for selecting the amount and types of de-optimization, as well as specialized code-improving

transformations designed to enhance de-optimized code.

9.1 More Extensive Experiments

In this study, six benchmarks from the MiBench embedded benchmark suite were

selected for comparison. Results indicated that improvements are possible, but hard to

come by. Working with additional benchmarks could potentially show the benefits of the

de-optimization process more clearly. A large number of embedded applications are both

programmed and optimized purely in assembly code. The use of industry-grade hand-written

assembly code could lend additional credibility to the effectiveness of de-optimization before

re-optimizing code. De-optimizations may even be more effective on hand-written code,

where there is a possibility that suboptimal choices involving optimization can be very

detrimental to the actual code. For example, poor register assignment for temporary values

can lead to increased register pressure, which inhibits many code-improving transformations.

Additionally, it has already been noted that even though hand-tuning of assembly code

can provide improvements that a compiler cannot, such methods require a great deal

of programmer time and thus cannot be expected to test a large number of different

potential transformation orderings. De-optimization and re-optimization could be used
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to improve hand-written assembly code without requiring an extraordinary amount of

additional programming time.

Chapter 6 discusses some of the problems encountered when using dynamic instruction

count to measure the executable performance of compiled code. VISTA can be extended to

interface with a simulator for the StrongARM, thus providing greater accuracy in determining

the fitness value for a particular phase ordering. The SimpleScalar tool-set is a popular and

widely-used simulation tool for gathering accurate performance data [3]. Recently it has

been extended to support the StrongARM processor, providing accurate cycle timing as well

as detailed statistics about memory hierarchy performance. Such information could help to

better distinguish the effect of performing each optimization during the genetic algorithm

search of VISTA.

9.2 Improving De-optimization

This work focuses on two de-optimizations, specifically targeting the actual optimization

phases loop-invariant code motion and register allocation. These two optimizations were

chosen for their complementary nature as well as the observation that each performs a

role that requires and consumes registers in the resulting compiled code. Thus the order

in which these two optimizations are performed during the compilation of a function can

produce dramatically different results. There are other optimization phases that also have a

different impact depending on the phase order, and thus may benefit from de-optimization

before being re-optimized. Common subexpression elimination is one particular phase that

would be a good candidate for potential de-optimization. Additionally, the selection of

which de-optimizations to enable for a particular function could be made into an adjustable

parameter within VISTA. Thus de-optimizations which do not enable any further benefits

for a function will be selected against by the genetic algorithm. Additionally, such a selection

could turn off de-optimizations entirely if they prove to be disadvantageous, as they were for

several of the functions tested in this study.

Another potential enhancement is the creation of further specific code-improving transfor-

mations to enable de-optimizations to regain potential lost benefits. The de-optimization of

register allocation and register assignment showed poor performance when scratch registers
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were used during the re-assignment of registers. A reverse copy propagation phase was

developed to correct for this particular situation. Additional phases could be designed and

implemented to enable poorly de-optimized code to attain its former representation at worst,

and might further expose additional opportunities for improvement.
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CHAPTER 10

CONCLUSIONS

Embedded systems development is dominated by requirements which can include rigid

constraints on code size, power consumption, and time. It is common then for applications

to be written in assembly code and hand-tuned to meet these expectations. Yet, just as

traditional optimizing compilers are subject to the phase ordering problem, hand-generated

assembly code can experience an analogous problem depending on programmer choices

during the tuning process. The undoing of prior optimizations, or de-optimization of

assembly code is one potential method of alleviating the negative effects of the phase ordering

problem in such cases. This thesis has presented an extension of the VISTA framework

suitable for investigating the effectiveness of de-optimizations on the re-optimization of

previously generated assembly code.

There were several interesting results concerning the implementation and use of de-

optimizations prior to re-optimizing assembly code. De-optimizations that reduce register

pressure, such as loop-invariant code motion and register allocation were selected for

evaluation, since registers are typically a limited resource in embedded systems. Results

from the experiments performed showed that de-optimizations could be very beneficial in

the re-optimization process, although it can potentially be detrimental as well. The added

optimization phase reverse copy propagation allowed de-optimization to reattain previous

code quality in particular sequences where register re-assignment produced code that could

not be further optimized. Overall, it has been shown that de-optimizing assembly code can

provide an additional opportunity for reordering optimization phases that may have already

been performed on previously generated assembly code.

We have also shown that assembly translation is both a viable and a suitable method for

the interconnection of different optimizing compilers in an iterative fashion. The ASM2RTL

translator suite was designed and constructed for converting assembly code to VISTA RTL
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format. ASM2RTL contains support for several assembly languages, but the StrongARM

was chosen for experimentation. De-optimization and re-optimization of GCC-generated

code using the genetic algorithm search features of VISTA provided decreases in static

code size on average of 3.16% and decreases in dynamic instruction count on average of

3.25% when compiling for each individually. Additional code optimizers and corresponding

assembly translators can be constructed for specific environments and ordered in a manner

that provides the greatest benefit to the resulting code. In the embedded devices arena,

more complex and longer optimization processes are acceptable since a large number of units

are typically produced and code requirements may be more stringent than with traditional

applications. The development of tools such as the ASM2RTL translator suite opens up new

possibilities for the further optimization of code, particularly for hand-tuned assembly and

legacy applications.

72



REFERENCES

[1] Benitez, M. E., and Davidson, J. W. A portable global optimizer and linker.
In Proceedings of the SIGPLAN’88 conference on Programming Language Design and
Implementation (1988), ACM Press, pp. 329–338.

[2] Benitez, M. E., and Davidson, J. W. Target-specific global code improvement:
Principles and applications. Tech. Rep. CS-94-42, 4, 1994.

[3] Burger, D., and Austin, T. M. The simplescalar tool set, version 2.0. Tech. Rep.
1342, University of Wisconsin - Madison, Computer Science Dept., June 1997.

[4] Chow, F. C., and Hennessey, J. L. Register allocation by priority-based coloring.
In Proceedings of the SIGPLAN ’84 Symposium on Compiler Construction (June 1984),
pp. 222–232.

[5] Cifuentes, C., Van Emmerik, M., Lewis, B. T., and Ramsey, N. Experience
in the design, implementation and use of a retargetable static binary translation
framework. Tech. Rep. TR-2002-105, Sun Microsystems Laboratories, January 2002.

[6] Cooper, K. D., Schielke, P. J., and Subramanian, D. Optimizing for reduced
code space using genetic algorithms. In Proceedings of the ACM SIGPLAN 1999
workshop on Languages, compilers, and tools for embedded systems (1999), ACM Press,
pp. 1–9.

[7] Davidson, J. W., and Whalley, D. B. A design environment for addressing archi-
tecture and compiler interactions. Microprocessors and Microsystems 15, 9 (November
1991), 459–472.

[8] Free Software Foundation. Gnu compiler collection 3.3. http://gcc.gnu.org/,
2004.

[9] Guthaus, M. R., Ringenberg, J. S., Ernst, D., Austin, T. M., Mudge, T.,
and Brown, R. B. Mibench: A free, commercially representative embedded bench-
mark suite. IEEE 4th Annual Workshop on Workload Characterization (December
2001).

[10] Hennessy, J. Symbolic debugging of optimized code. ACM Transactions on Program-
ming Languages and Systems 4, 3 (July 1982), 323–344.

[11] Hölzle, U., Chambers, C., and Ungar, D. Debugging optimized code with
dynamic deoptimization. In Proceedings of the ACM SIGPLAN Conference on Pro-
gramming Language Design and Implementation (June 1992).

73



[12] Jones, D., Kramer, M., Berry, M., Wade, B., Moussa, D., Haun, M.,
Appadwedula, S., Janevitz, J., and Sachs, D. ECE 320 Digital Signal Processing
lab notes. http://cnx.rice.edu/content/col10078/latest/, 2004.

[13] Kulkarni, P. Performance driven optimization tuning in vista. Master’s thesis,
Florida State University, Tallahassee, Florida, 2003.

[14] Kulkarni, P., Hines, S., Hiser, J., Whalley, D., Davidson, J., and Jones,
D. Fast searches for effective optimization phase sequences. In Proceedings of the ACM
SIGPLAN Conference on Programming Language Design and Implementation (2004),
pp. 171–182.

[15] Kulkarni, P., Zhao, W., Moon, H., Cho, K., Whalley, D., Davidson, J.,
Bailey, M., Paek, Y., and Gallivan, K. Finding effective optimization phase
sequences. In Proceedings of the ACM SIGPLAN Conference on Languages, Compilers,
and Tools for Embedded Systems (2003), pp. 12–23.

[16] Larus, J., and Schnarr, E. Eel: Machine-independent executable editing. In
Proceedings of the ACM SIGPLAN Conference on Programming Language Design and
Implementation (1995).

[17] Muth, R., Debray, S., Watterson, S., and De Bosschere, K. alto: A link-time
optimizer for the compaq alpha. Software - Practice and Experience 31 (January 2001),
67–101.

[18] Rohou, E., Bodin, F., Seznec, A., Le Fol, G., Charot, F., and Raimbault,
F. SALTO : System for assembly-language transformation and optimization. In
Proceedings of the 6th Workshop on Compilers for Parallel Computers (December 1996),
no. RR-2980, pp. 261–272.

[19] Snavely, N., Debray, S., and Andrews, G. Unscheduling, unpredication,
unspeculation: Reverse engineering itanium executables. In Proceedings of the 2003
Working Conference on Reverse Engineering (November 2003), pp. 4–13.

[20] Vegdahl, S. R. Phase coupling and constant generation in an optimizing microcode
compiler. In Proceedings of the fifteenth annual workshop on microprogramming (1982),
pp. 125–133.

[21] Whitfield, D. L., and Soffa, M. L. An approach for exploring code improv-
ing transformations. ACM Transactions on Programming Languages and Systems
(TOPLAS) 19, 6 (1997), 1053–1084.

[22] Zhao, W., Cai, B., Whalley, D., Bailey, M. W., van Engelen, R., Yuan, X.,
Hiser, J. D., Davidson, J. W., Gallivan, K., and Jones, D. L. Vista: a system
for interactive code improvement. In Proceedings of the joint conference on Languages,
Compilers, and Tools for Embedded Systems (2002), ACM Press, pp. 155–164.

74



BIOGRAPHICAL SKETCH

Stephen R. Hines

Stephen Hines was born on March 28, 1979 in Staten Island, New York. He attended the

Illinois Institute of Technology, graduating with high honors in the Spring of 2001 with a

Bachelor of Science Degree in Computer Engineering. In the Summer of 2004, he graduated

from The Florida State University with a Master of Science Degree in Computer Science.

Currently he is pursuing his Ph.D. in Computer Science at The Florida State University

under the direction of Dr. David Whalley. His main areas of interest are compilers, computer

architecture, and embedded systems.

75


	The Florida State University
	DigiNole Commons
	4-30-2004

	Using De-optimization to Re-optimize Code
	Stephen Roderick Hines
	Recommended Citation



