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ABSTRACT

In 2001, the discovery of the intermetallic compound superconductor MgB2 having

a critical temperature of 39K stirred up great interest in using a generalization of the

Ginzburg-Landau model, namely the two-band time-dependent Ginzburg-Landau (2B-

TDGL) equations, to model the phenomena of two-band superconductivity. In this work,

various mathematical and numerical aspects of the two-dimensional, isothermal, isotropic

2B-TDGL equations in the presence of a time-dependent applied magnetic field and a

time-dependent applied current are investigated. A new gauge is proposed to facilitate

the inclusion of a time-dependent current into the model. There are three parts in this work.

First, the 2B-TDGL model which includes a time-dependent applied current is derived.

Then, assuming sufficient smoothness of the boundary of the domain, the applied magnetic

field, and the applied current, the global existence, uniqueness and boundedness of weak

solutions of the 2B-TDGL equations are proved. Second, the existence, uniqueness, and

stability of finite element approximations of the solutions are shown and error estimates are

derived. Third, numerical experiments are presented and compared to some known results

which are related to MgB2 or general two-band superconductivity. Some novel behaviors

are also identified.

xii



CHAPTER 1

Introduction

The discovery of the intermetallic compound superconductor MgB2 stirred up intense

research to investigate the novel properties of this material. The compound MgB2 differs

from conventional low critical temperature (Tc) superconductors and cuprate- based high

Tc superconductor compounds mainly in its possession of two distinct energy gaps; the

other superconductors are known to only have one energy gap. It is its two-band structure

that gives MgB2 many novel properties unseen in any other superconductors; for example,

interband phase soliton textures occur in a two-band superconductor [27]. Because of the

existence of multiple distinct energy gaps in a multiband superconductor, there exists multi-

ple distinct order parameters which interact with each other through a Josephson tunneling

like mechanism. The conventional isotropic or anisotropic time-dependent Ginzburg-Landau

(TDGL) model [31] which has been widely accepted as a successfully phenomenological model

for a single-band superconductor sample at temperatures near its critical temperature does

not include any appropriate coupling terms to account for the coupling interactions that

are shown to be significant factors in determining the novel properties of a multiband

superconductor such as MgB2. Therefore, the TDGL model is not a correct model for

multiband superconductivity. [32] investigates the breakdown of the anisotropic GL model

in modeling MgB2. The 2B-TDGL model generalizes the TDGL model by adding coupling

terms to model the interband interaction of the two distinct order parameters corresponding

to the two distinct energy bands. The 2B-TDGL model has now been widely used by the

physics community as a phenomenological model to investigate the properties of multiband

superconductor such as MgB2.
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1.1 Previous Work and Outline of Present Work

Recently, there have been many research papers which investigated new properties of

MgB2 and of other multiband superconductors. Many of the papers that investigated the

phenomenological properties of two-band superconductivity used the 2B-TDGL model and

its variants. However, to our knowledge, none of the published papers using the 2B-TDGL

model have done a full investigation of the analytical properties of the 2B-TDGL model such

as the existence, uniqueness and boundedness of weak solutions; or the properties of the finite

element approximations such as the existence, uniqueness, stability and error estimates for

approximate solutions. The purpose of the present work is to examine these issues associated

with the 2B-TDGL model and then present some two-dimensional numerical results.

It should be mentioned that analogous analytical and approximation issues for the TDGL

model and its variations have been addressed in part or in whole by many authors. For

example, to show existence and uniqueness of solutions of the TDGL equations, Du in [2],

[3] used Galerkin finite dimensional approximation and compactness methods similar to the

methods used by Temam for the Navier-Stokes equations [45]. Du used the zero-electric-

potential (ZEP) gauge on a modified TDGL equations with a regularization term ǫ∇(∇·A)

added to the equations. Existence and uniqueness of the original TDGL equations is then

proved by passage to the limit ǫ→ 0. Chen, Hoffmann and Liang in [8] adopted the Lorentz

guage φ = −∇ · A and used the Leray-Schauder fixed point theorem. Tang and Wang in

[7] used the London gauge ∇ · A = 0, and the same methods as in [45]. However, all of

these papers did not include an applied current into their analyses and only Chen et al. in [8]

included an applied magnetic field in their analysis. Pelle, Kaper and Takac in [9] and Zaouch

in [10] used semigroup methods to show the existence, uniqueness and long-time asymptotic

behavior of the TDGL equations under a generalized gauge φ = −ω(∇ · A), ω > 0, in the

presence of a time-dependent applied magnetic field.

In this work, we follow the methods used by Du in [2] to prove the existence and

uniqueness of the 2B-TDGL in the presence of a time-dependent applied magnetic field

and a time-dependent applied current. We choose Du’s approach mainly because we want to

generalize the zero-electric-potential gauge to a “current gauge” which allows us to include

time-dependent current into the 2B-TDGL model. Basically the “current gauge” replaces

the electric potential φ in the 2B-TDGL equations with a predefined auxiliary function φa.
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As a result, unlike all the other gauges mentioned before other than the ZEP gauge, this

“current gauge” does not change the coercivity of the non-coercive 2B-TDGL equations.

In order to facilitate the proofs of the existence and regularity theorems, we also add a

regularization term −ǫ∇(divA) to the 2B-TDGL equation for the magnetic potential A to

make the equation coercive. Du’s method is designed specifically to handle the convergence

of this modified problem. We want to point out that as in the zero-electric-potential gauge

case, our “current gauge” is well-suited for numerical computation.

We organize this work as follows. In section 1.2, we introduce some general concepts and

properties of superconductivity, the conventional TDGL model, some properties of MgB2

and the 2B-TDGL model. In chapter 2, We first present our model- the isotropic, isothermal

2B-TDGL equations. After we nondimensionalize the 2B-TDGL equations, we then discuss

some issues of adding current to TDGL models. The “current gauge” which takes the time-

dependent applied current into account is introduced into the nondimensionalzed 2B-TDGL

equations. In chapter 3, we start our analytical studies. The weak form of the gauged

equations are presented first, then based on a modified weak form, the existence, uniqueness

and boundedness of two-dimensional solutions are proved. After the analytical studies, we

move to the two-dimensional Galerkin approximations in chapter 4. We first present a

fully discretized problem using the backward Euler scheme for the time discretization and

conforming finite element methods for the space discretization. Then, the existence and

uniqueness of the approximate solutions, stability and error estimates of the approximation

scheme are examined. In chapter 5, numerical results based on a two-dimensional backward

Euler finite element approximation are presented. Finally, conclusions and future research

are discussed in chapter 6.

1.2 Models and Phenomena of Superconductivity

Superconductivity is a very fascinating and remarkable physical phenomenon which was

first discovered in 1911 by H.K Onnes. The two hallmark properties of superconductivity

are perfect conductivity and perfect diamagnetism. When a superconductor is cooled to a

temperature below its critical temperature Tc, which is one of the material characteristic

parameters of the superconductor, its electric resistivity is reduced to a negligible, if not

zero, value. In other words, in the superconducting state, the superconductor behaves like a
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perfect conductor. In addition to this striking characteristic, a superconductor cooled below

its Tc also exhibits a novel perfect diamagnetism phenomenon called the Meissner effect.

When a sufficiently small magnetic field is applied to a superconductor cooled below its Tc,
no magnetic field can penetrate into the superconductor. Moreover, if a superconductor

is cooled through its critical temperature in the present of a magnetic field, it expels the

field from inside. The conductivity of a superconductor can be destroyed by a large enough

magnetic field strength or applied current. Thus in addition to the critical temperature Tc,
there are also critical magnetic field Hc and critical current jc associated with a particular

superconductor.

The first sucessful microscopic description of superconductivity was proposed by Bardeen,

Cooper, and Schrieffer in their seminal BCS theory in 1957. Before the BCS theory, various

theories were proposed, including the London equations in 1935, and the Ginzburg-Landau

macroscopic theory in 1950. The Ginzburg-Landau (GL) theory was not appreciated until,

in 1959, Gorkov proved that the GL theory is actually a limiting case of the BCS theory.

The GL theory is now commonly accepted as a successful phenomenological model for

superconductivity.

1.2.1 Ginzburg-Landau phenomenological model of superconduc-
tivity

The Ginzburg-Landau (GL) theory generalizes the London theory of second-order phase

transitions. In the Ginzburg-Landau model, a complex-valued order parameter ψ = |ψ|eθ is

introduced with |ψ|2 representing the local density of superconducting electrons. Under the

assumption that the temperature is close to the transition temperature below Tc, and ψ varies

slowly spatially, the free energy of the superconductor can be expanded and approximated

in terms of the order parameter and its gradients. Then the total free energy is:

G =

∫

Ω

[

fn + α|ψ|2 +
β

2
|ψ|4 +

1

2m∗

∣

∣

∣

∣

(−i~∇− e∗

c
A)ψ

∣

∣

∣

∣

2

+
|h|2
8π

]

dΩ (1.1)

:= Fs +

∫

Ω

|h|2
8π

dΩ,

where α and β are two temperature dependent material constants, c is the speed of light, ~

is the Planck’s constant m∗ is the effective mass and e∗ is the effective electron charge, A

is the magnetic vector potential, h = curlA is the magnetic field. The first term fn is the
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normal state energy density without a magnetic field and the last term is the magnetic field

energy density.

The gradient term in equation (1.1) is the momentum operator form of kinetic energy of

the supercurrent in the presence of a magnetic field, and is gauge invariant as required by

the fact that the physically observable free energy, superconducting electron density |ψ|2 and

magnetic field h do not change when a mathematical gauge transformation Gχ is performed

simultaneous on ψ and A to give (ψ′,A′):

Gχ : (ψ,A) 7→ (ψ′,A′) = (ψeiχ,A +
~c

e∗
∇χ), (1.2)

where χ is an arbitrary but sufficiently smooth single-valued scalar function of the spatial

coordinates. Both (ψ,A) and (ψ′,A′) represent the same physical state of the system and

this physical state determines the same physically observable variables mentioned above,

namely, F , |ψ|2 and h.

In the presence of an external applied magnetic field He, the superconductor acquires an

energy density −h·He/4π. The total energy then becomes

E = Fs +

∫

Ω

[ |h|2
8π

− h·He

4π

]

dΩ. (1.3)

For mathematical convenience, the last magnetic field integrands in (1.3) are replaced by

|curlA − He|2/8π and the new energy functional becomes

F = Fs +

∫

Ω

|curlA − He|2
8π

dΩ. (1.4)

The energy functional F is nonnegative and it gives the same minimizer as E when they

are minimized. This is the free energy functional we will consider later.

Thermodynamic principles require that when in equilibrium, the free energy of the

superconductor is minimized. The material parameters α and β are temperature dependent.

α is positive when the superconductor is in the normal state (T > Tc) and is negative when

in the superconducting state (T < Tc). β is positive or else F has no minimizer. For T close

to Tc, α and β are approximated as

α(T ) ≈ α(0)

[T
Tc

− 1

]

, β ≈ β(0),

where α(0) and β(0) are the corresponding parameters at absolute zero (T = 0).
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Taking the first variation of the free energy functional F given in (1.4) with respect to

ψ, ψ∗ and A gives

δtotalF =

∫

Ω

[(

αψ + β|ψ|2 +
1

2m∗ (−i~∇− e∗

c
A)2ψ

)

δψ∗ + c.c.

]

dΩ

+

∫

Ω

[

curl(curlA − He)

8π
− e∗

2m∗c

(

ψ∗(−i~∇− e∗

c
A)ψ + c.c.

)]

δA dΩ

+

∫

∂Ω

[

δψ∗(−i~∇− e∗

c
A)ψ·n + c.c.+

1

8π
(curlA − He) × n· δA

]

d∂Ω, (1.5)

where c.c. denotes the complex conjugate and δψ, δψ∗ and δA are the variation variables.

We minimize the energy functional F by taking δtotalF = 0. Setting δtotalF/δψ∗ = 0

gives the first stationary GL equation

αψ + β|ψ|2 +
1

2m∗ (−i~∇− e∗

c
A)2ψ =

δFs

δψ∗ = 0 in Ω. (1.6)

Setting δtotalF/δA = 0 gives the second stationary GL equation

js
c

=
curl2A − curlHe

4π
= −δFs

δA
(1.7)

=
e∗

2m∗c

(

ψ∗(−i~∇− e∗

c
A)ψ + c.c.

)

= −i e
∗
~

2m∗c
(ψ∗ ∇ψ − ψ∇ψ∗) − e∗2

m∗c2
|ψ|2A

=
e∗

m∗ |ψ|
2

(

~∇θ − e∗

c
A

)

in Ω, (1.8)

where js is the supercurrent density and θ is the phase of the order parameter ψ. The natural

boundary conditions resulting from the minimization process are

(−i~∇− e∗

c
A)ψ·n = 0 on ∂Ω (1.9)

and

(curlA − He) × n = 0 on ∂Ω. (1.10)

If the domain Ω is a bounded region in R
3, we need to consider the effect of the Maxwell

system in R
3 \ Ω. But when we are considering Ω as a simply connected bounded region

with smooth boundary in R
2, it can be shown that we can omit the Maxwell system outside

Ω [59]. For simplicity, we will only work on domains in R
2. We can then assume that

the magnetic field outside of Ω is equal to the applied magnetic field He and use only the
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natural boundary conditions (1.9)-(1.10) as the boundary conditions (B.C.s) for the partial

differential equations (PDE) system.

The second boundary condition (1.10) ensures that the magnetic field is continuous in

the tangential direction along the boundary. The first boundary condition (1.9) ensures that

no supercurrent passes through the boundary. De Gennes [61] showed from a microscopic

theory that this boundary condition is correct for an insulator-superconductor interface but

for a superconductor-normal metal (S-N) interface in which the proximity effects occur, a

more general boundary condition

(−i~∇− e∗

c
A)ψ·n = i~γψ on ∂Ω (1.11)

must be used, also see [1], [62], where γ is an real-valued constant and is equal to zero for

insulator. Note that (1.11) still implied that js·n = 0 on ∂Ω, i.e. no supercurrent passes

through the boundary. The boundary condition (1.11) can be derived from the energy

functional F +
∫

∂Ω
γ̃|ψ|2dS, for some constant γ̃. However, Chapman, et al. in [5] showed

that this B.C. is still not general enough and thus proposed a modified GL model to include

the free energy of the normal material in the form of GL free energy with positive parameter

α, as if the normal material is in its normal state above its critical temperature. This model

allows the existence of superelectrons in the normal material and thus takes into account the

effect of magnetic field in the normal material on the superconductor through the coupling

of the GL equations in the bulk and exterior of the superconductor. The magnetic field in

the normal material is created by the supercurrent diffused from the superconductor through

the proximity effects, and will in return affect the solution of the superconductor. In our

present work, the S-N type B.C. (1.11) will be considered.

The stationary GL equations (1.6)-(1.7) and (1.9)-(1.10) has two particular solutions. In

case α is positive, ψ = 0 and curlA = He minimizes the functional F , this corresponds to the

normal state. In case of α < 0 with zero field and homogeneous B.C. (with zero gradient),

equation (1.6) has one solution |ψ|2 = −α/β, this corresponds to the superconducting state

at T < Tc.

1.2.2 The Time-Dependent Ginzburg-Landau Model

The solution of the stationary GL equations with external field absent puts the superconduc-

tor in equilibrium state. The time-dependent Ginzburg-Landau (TDGL) model (see [22] and
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[60]) generalizes the stationary Ginzburg-Landau model by including relaxation processes

driven by deviations from equilibrium state. The validity of the TDGL model needs T to be

close to Tc and that deviations from the equilibrium state are small. When a superconductor

is deviated from equilibrium, the relaxation rate of ψ back to the equilibrium state depends

on the deviation from equilibrium, expressed mathematically as

Γ
∂ψ

∂t
= − δF

δψ∗ , (1.12)

where Γ is a positive damping constant. The equation (1.12) should be gauge invariant under

the gauge transformation

Gχ : (ψ,A, φ) 7→ (ψeiχ,A +
~c

e∗
∇χ, φ− ~

e∗
∂χ

∂t
), (1.13)

where χ is an arbitrary but sufficiently smooth single-valued scalar function of time and

spatial coordinates, and φ is a scalar electric potential. We change equation (1.12) into a

gauge invariant form by adding the electric potential φ to the equation, which gives

Γ

(

∂ψ

∂t
+
ie∗

~
φψ

)

= − δF
δψ∗ .

Maxwell’s equations give the normal current density as

jn = σnE = σn

(

−1

c

∂A

∂t
−∇φ

)

, (1.14)

where σn is the conductivity in the normal state and E is the electric field that induces the

normal current.

The total current j = (c/4π)curl2A in the superconductor can be contributed from a

supercurrent js, from a normal current jn induced by an electric field by the relation (1.14),

and from a current jm = (c/4π)curlHe induced by the external field He. Therefore, the total

current becomes

j =
c

4π
curl2A = jn + js + jm

= jn − c
∂Fs

∂A
+

c

4π
curlHe. (1.15)

The complete TDGL model is

Γ

(

∂ψ

∂t
+
ie∗

~
φψ

)

+ αψ + β|ψ|2 +
1

2m∗ (−i~∇− e∗

c
A)2ψ = 0 in Ω,
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c

4π
(curl2A − curlHe)

= σn

(

−1

c

∂A

∂t
−∇φ

)

− i
e∗~

2m∗ (ψ∗ ∇ψ − ψ∇ψ∗) − e∗2

m∗c
|ψ|2A in Ω.

In addition to the boundary conditions (1.11) and (1.10), repeated below, we also have

two initial conditions. Together they are

(−i~∇− e∗

c
A)ψ·n = iγψ on ∂Ω,

(curlA − He) × n = 0 on ∂Ω,
ψ(x, 0) = ψ0(x) in Ω,
A(x, 0) = A0(x) in Ω,

where ψ0 and A0 are given functions.

As mentioned before, the TDGL equations are gauge invariant and any two solutions

that are gauge equivalent through the gauge transformation Gχ (1.13) produce physically

indistinguishable observables such as current, magnetic field and density of superconducting

electrons |ψ|2, and thus represent the same physical solution. Because of this gauge invariant

equivalent relation, the TDGL initial-boundary-value problem (IBVP) is not mathematically

well-posed since it has infinite number of solutions. Therefore, we need to choose a fixed

gauge function χ in our TDGL equations in order to obtain a unique solution in our analytical

and numerical studies of the TDGL IBVP. The good point is that we can choose any gauge

function χ to fit our convenient need and to simplify our problem. There are many possible

choices of the gauge; for example, one can choose the zero electric potential gauge to eliminate

the electric potential φ in the TDGL equations and this gauge is well-suited for computation,

see e.g., [2]; and [13] for other choices of gauge.

1.2.3 Characteristic Lengths

There are two important temperature dependent material parameters which arise from the

GL model that characterize the phenomenological properties of a superconductor. First is

the coherence length ξ defined as:

ξ(T ) =

(

~
2

2m∗|α(T )|

)
1

2

. (1.16)

This parameter specifies the spatial width of the transition layer of the order parameter

ψ in the neighborhood of the boundary between a normal region and a superconducting

region. Within the transition layer, the magnitude of the order parameter which represents
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the density of the superconducting electrons can rise from zero at the boundary to a value

|ψ∞|2 inside the superconductor. As a result of this layer, the order parameter on the

normal-superconducting boundary can not change abruptly. We will see in the section

1.2.5 concerning the Josephson effects that the proximity effect occurs near the boundary

of a normal-superconductor interface causes the continuity of the order parameter on the

boundary.

The second characteristic parameter is the temperature dependent spatial penetration

depth λ defined as:

λ(T ) =

(

m∗c2β(T )

4πe∗2|α(T )|

)
1

2

. (1.17)

An external applied magnetic field can penetrate the superconductor in the neighbor-

hood of the boundary of a normal-superconducting region to a distance specified by the

penetration depth. As a result, the magnetic field does not drop abruptly to zero inside the

superconductor but decays exponentially within the penetration depth where the screening

supercurrent flows. We will see that the parameters ξ and λ form the fundamental length

scales among others for the nondimensionalization of the TDGL equations.

1.2.4 Type-I and Type-II Superconductors and Vortices

The ratio between the two charateristic lengths ξ and λ is called the Ginzburg-Landau

parameter

κ =
λ

ξ
=

(

m∗2c2β

2πe∗2~2

)
1

2

. (1.18)

The significance of this parameter is that when κ > 1/
√

2, negative surface energy

is formed on any normal-superconducting surface in the presence of magnetic field with

magnitude in the range between Hc1 and Hc2 [61], where Hc1 and Hc2 are the temperature-

dependent lower critical field and upper critical field, respectively. Thus if the decrease in

surface energy surpasses the increase in energy in the normal region, it is energetically more

favorable to form normal regions inside the superconductor than to maintain the Meissner

state. A mixed state is reached when the normal regions are formed in such a way to give

maximum surface area relative to the volume of the normal regions. It is shown that each

such normal region formed can only allow magnetic flux in an integer multiple of quantum

unit Φ0 = 2π~c/e∗ called fluxion to pass. In the mixed state, the magnetic flux is allowed to

10



penetrate the superconductor in the form of flux tubes or vortices with each isolated vortex

carrying a fluxion. We call any such superconductor with κ > 1√
2

a type-II superconductor.

On the contrary, a normal region inside a superconductor with κ < 1√
2

gives positive surface

energy and is thus energetically unfavorable, and we call such superconductors as type-

I superconductors. Type-I superconductors have no mixed state, when the magnitude of

an applied magnetic field, denoted as He, is lower than the characteristic thermodynamic

critical field Hc of a type-I superconductor, the phase of the type-I superconductor changes

into the Meissner state, and when Ha is higher than Hc, the phase of the superconductor

changes to the normal state. As we have just mentioned at the beginning of this section,

the mixed state in a type-II superconductor happens when Hc1 < He < Hc2. These three

temperature-dependent fields are defined on Φ0, ξ, λ and κ as

H(T ) =
Φ0

2
√

2πξ(T )λ(T )
,

Hc1(T ) =
Φ0lnκ

4πλ2(T )
=
Hc(T )lnκ√

2κ
,

Hc2(T ) =
Φ0

2πξ2(T )
=

√
2κHc(T ),

and they satisfy the relation

Hc1(T ) < Hc(T ) < Hc2(T ).

When He < Hc1, the type-II superconductor is in the Meissner state, and when He > Hc2,

the superconductor is in the normal state. Together with the thermodynamic critical field

Hc, the upper and lower critical fields form three characteristic field strengths intrinsic to

the type-II superconductor.

Since vortices carry magnetic flux, they can be moved by many means, for example, by

the Lorentz force J×Φ0 induced by an applied current of density J acting on each vortex, by

mutual vortex repulsion, by Magnus “lift” force which exerts on spinning moving object in

a fluid medium [63], or by thermal fluctuations. Suppose a vortex moves at a velocity of vφ,

then an electric field E = vΦ × µ0J, where µ0 is the permeability of the superconductor, is

generated which in turn generates an ohmic loss J·E as heat dissipation which may drive the

superconductor into the normal state. Thus, it is desirable to trap or pin down the vortices

from moving. Intensive research is being done to create sufficiently strong pinning forces and

optimal pinning locations to reduce heat dissipation and allow the maximal current flow. The
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maximal current that can flow through the superconductor before the pinned vortices start

to move or before it is pushed to the normal state is called the critical current Jc, and it is

another characteristic parameter of the superconductor.

1.2.5 Josephson Effects

Electron tunneling is a common quantum mechanical phenomenon in which electrons con-

fined in a space by an energy barrier have a probability to cross the barrier. Tunneling

involving quasiparticles, which are the energetic excited superconducting electrons (super-

electrons), occurs in superconductive “weak link” structures composed of a barrier made of a

thin insulator sandwiched between two superconductors (S-I-S) or between a superconductor

and a normal material (S-I-N). Such tunneling requires an application of a biased voltage

across the link to shift the energy level in one superconductor on one side of the barrier to

facilitate the current flow. In 1962, B.D. Josephson made a prediction based on microscopic

theory that a remarkable tunneling effect involving only superelectrons can occur across a

S-N-S weak link without the need of voltage bias. This non-voltage tunneling effect was

confirmed experimentally shortly later in 1963. It is now understood that this effect also

occurs, in addition to the S-N-S link, in more general links such as a narrow constriction which

joints two pieces of superconductors of the same kind continuously, and a superconductor-

normal metal direct contact whereby the superelectrons from the supercondcutor diffuse

into the normal metal by a proximity effect. The supercurrent tunneling effect is called the

Josephson effect and all these links are collectively called Josephson junctions.

A variety of behaviors of the Josephson effects can be described by or derived from the

Josephson relations:

js = jcsin∆θ, (1.19)

and
d(∆θ)

dt
=

2e

~
V, (1.20)

where ∆θ = θ1 − θ2, and θi is the phase of the order parameter ψi. (Note: In the presence of

a magnetic field, the phase difference ∆θ must be generalized to the gauge invariant phase

difference Θ = ∆θ − (2π/Φ0)
∫

A· ds, as now Θ enters the gauge invariant gradient term in

(1.8).)
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The first equation (1.19) says that the tunneling current is a function of the phase

difference between the two distinct order parameters of the two materials across the junction.

The maximum current density flows across the junction is bounded by the critical current

density jc that the junction can sustain. The current flow can occur even in the absence

of an applied voltage across the junction and in this case, by (1.20) ∆θ is a constant over

time across the junction and thus by (1.19) the current is stationary. This effect is called

the direct current (dc) Josephson effect.

The second equation (1.20) says that the rate of change of the phase difference ∆θ in

time is proportional to the applied voltage across the junction. Suppose the voltage V is

independent of time, then we have:

∆θ(t) = θ0 +
2e

~
V t, (1.21)

and thus

j s = j c sin(νt+ θ0), (1.22)

where ν = 2eV/~ is called the Josephson frequency. Equation (1.22) shows that an applied

voltage across the junction causes the the current flow to alternate at frequency ν with

amplitude j c. This effect is called the alternating current (ac) Josephson effect. More

complicated Josephson effects can be derived based on the two Josephson relations; following

are some examples (see, e.g., [62], [63] and [64]):

1. Inverse ac Josephson effect occurs when an radio frequency ac or electromagnetic field

excitation such as a microwave is imposed into the junction, a dc voltage is generated across

the unbiased junction. A “staircase” like I versus V (current-voltage) characteristic pattern

is the hallmark of this type of effect (see e.g., chapter 13 in [63]).

2. In the presence of a magnetic field, the behaviors of the Josephson effects, depending

on the structural configuration of the junction and the orientation of the magnetic field,

are rich and complicated. Consider the case when a magnetic field is applied parallel to

a “short” S-N-S junction which we mean the size of the junction is small enough that the

magnetic field (screening field) generated by the junction current is negligible as compared

to the applied field. The net tunneling current across the junction in this case is attenuated
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from the zero field current by the factor:

imax
ic(0)

=

∣

∣

∣

∣

sin(πΦ/Φ0)

πΦ/Φ0

∣

∣

∣

∣

, (1.23)

where ic(0) is the critical current at zero applied magnetic field, Φ is the applied flux and Φ0

is the quantum flux unit described in section 1.2.4. Equation (1.23) is called the Josephson

diffraction equation and it shows that the net current vanishes when the magnetic flux Φ

has values equal to nΦ0, where n is an integer, and the net current has (decaying) local

maximum when Φ = (n + 1/2)Φ0. This accounts for the fact that Θ (the gauge invariant

phase difference) changes as a spatial function along the entire cross section of the junction

parallel to the direction of the magnetic field. Suppose the phase difference is 2nπ across the

entire length of the junction perpendicular to the field, then according to the first Josephson

relation (1.19), the current changes sign 2n times cancelling itself and thus produces a zero

net current; but then it forms n current loops along the entire length. Each current loop

encircles magnetic flux of a quantum flux unit Φ0, and is called Josephson vortex.

For a “long” Josephson junction in which its screening field produced by the tunneling

current is not negligible as compared to the applied field, the resulting behaviors are even

more complicated. In general, its behaviors can be described by a Sine-Gordon equation:

(

△− 1

c2
∂2

∂t

)

Θ =
1

λ2
j

sin Θ, (1.24)

where c is a constant and λj is the Josephson penetration depth which measure how

significant is the screening field compared to the applied field and thus is used to distinguish

what we called the short and long junctions. If the size of the junction is very small compared

to λj, the screening effect is insignificant and we call this junction a short junction. On the

opposite, we call the junction a long junction. The solutions of the Sine-Gondon equation

are solitary waves (solitons) and represent the dynamics of the vortices in the Josephson

effect context (see, e.g., [62] and [64]).

1.2.6 The Two-Band Superconductivity

Discovery of MgB2

Superconductors with multiple superconducting energy gaps (multiband superconductors)

have been an interest of theoretical study based on the microscopic BCS theory since the
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paper of H. Suhl, et al. [21] was published in 1959. However materials containing two or more

distinct energy gaps had never been observed in an experiment. In 2001, Japanese physicists

discovered experimentally the novel superconductor magnesium diboride MgB2 which has a

remarkably high critical temperature of 39 K, twice the highest transition temperature ever

recorded in any conventional metallic superconductors [23]. Theis class of superconductors

is classified as low Tc superconductors, as opposed to the high Tc superconductors which are

commonly fabricated in the form of copper-oxide compounds. In 2002 theorists predicted

that MgB2 contains two superconducting energy gaps on the Fermi surface which is the

highest occupied electron energy state [24]. In 2003 experiments conducted by Japanese and

US physicists confirmed that MgB2 contains two energy gaps [25].

Electronic Structure of MgB2

MgB2 is an intermetallic compound and is known now as an electron-phonon mediated

superconductor with two distinct energy gaps and therefore two order parameters. Its

crystal structure consists of hexagonal honeycombed layers of boron atoms separated by

planes of magnesium atoms. It has four distinctive Fermi surface sheets. Electrons form

superconducting pairs on different sheets with different binding or gap energies. The

superconducting energy gaps on the two σ bands which form in two nested Fermi cylindrical

sheets confined in the Boron planes have values around 7 meV. The energy gaps on the two

π bands which form in two “webbed tunnels” Fermi sheets have values around 2 meV. The

strong intraband electron pairing in the σ bands is considered to be the main contribution

for the high temperature superconductivity , see [24],[25],[26] and its references. MgB2 is

a type-II superconductor with estimated London penetration depth λ(0K) = 125-140 nm,

coherence length ξ(0K) = 5.2 nm, and GL parameter κ(0K) = 26 [28].

The Isotropic Two-Band Time-Dependent Ginzburg-Landau (2B-TDGL) Model

Due to its two-band nature with two distinct energy gaps associated to two separate group

of Fermi surfaces, MgB2 has many peculiar properties not explainable by standard one-band

BCS and one-band TDGL models, and their variants such as the anisotropic TDGL model

[31], [32]. Generalization of the microscopic BCS models such as the two-band BCS theory

and the two-band Eliashberg theory are used by many authors to predict or explain the

quantitative characteristics of two-band superconductors, for example, energy gaps, specific

15



heat and critical fields [24], [41], [26]. The TDGL model is also generalized into the two-

band TDGL model from the two-band BCS theory [41] and is used to predict and explain

the phenomenological behaviors of two-band superconductors such as vortices [41], [36],

penetration depth [28], critical fields [29] and interband phase texture [27].
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CHAPTER 2

The Isothermal, Isotropic 2B-TDGL Equations

The two-band time-dependent Ginzburg-Landau model generalizes the conventional one-

band Ginzburg-Landau model essentially by coupling the two order parameters with coupling

terms analogous to that of a Josephson junction. As in the one-band TDGL equations, the

derivation of the 2B-TDGL equations are also based on the first variations of a free energy,

but now the free energy of a two-band superconductivity model consists of two distinct energy

contributions, each from a distinct order parameter. There are also interband coupling energy

terms to account for the interband interactions. The 2B-TDGL equations are given by

Γµ

(

∂ψµ
∂t

+
ie∗

~
φψµ

)

= −δF12

δψ∗
µ

µ = 1, 2, (2.1)

σn

(

1

c

∂A

∂t
+ ∇φ

)

= −c∂F12

∂A
, (2.2)

where

F12(ψ1, ψ2) =

∫

Ω

( f1 + f2 + f12 + fm) dΩ, (2.3)

with

fµ = αµ|ψµ|2 +
βµ
2
|ψµ|4 +

1

2m∗
µ

∣

∣

∣

∣

(−i~∇− e∗

c
A)ψµ

∣

∣

∣

∣

2

µ = 1, 2, (2.4)

f12 = ǫ[ψ∗
1ψ2 + c.c.] + ǫ1

[

(i~∇− e∗

c
A)ψ∗

1(−i~∇− e∗

c
A)ψ2 + c.c.

]

, (2.5)

fm =
1

8π
|curlA − He|2 , (2.6)

where c.c. denotes the complex conjugate, and the real numbers ǫ and ǫ1 are coupling

parameters describing the interband interactions of the two order parameters and their

gradients, respectively. Here f1 and f2 are the conventional one-band free energy densities
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for the order parameters ψ1 and ψ2, respectively. All the other parameters are the same as

those found in the TDGL equations.

In general, the critical temperature for each order parameter in a multiband supercon-

ductor is distinct from each other. To take into account this situation, we retain the explicit

temperature dependences of αµ = αµ(T ) and βµ = βµ(T ) in the 2B-TDGL equations and

approximate them as

αµ = αµ(0)

[ T
Tcµ

− 1

]

, βµ = βµ(0), (2.7)

where αµ(0) > 0 and βµ(0) > 0 are the corresponding parameters at absolute zero

(T = 0), and Tcµ is the critical temperature of the band µ. From the one-band Ginzburg-

Landau theory, the above approximations are valid for small variation of T near the critical

temperature Tc of each individual band. However, the Tc of one band may be several times

larger or smaller than the Tc of another band. In order to correctly model a phenomenon,

we may need to set the operating temperature T below both Tc1 and Tc2. As a result, the

temperature T may be slightly below the lowest critical temperature, say Tc1, but becomes

deviated largely below the highest critical temperature, Tc2. In this case, whether this 2B-

TDGL model remains qualitatively valid needs further investigation.

We want to emphasize that the temperature T in our model is a given fixed value. In

other words, we only consider an isothermal 2B-TDGL model and neglect the effect of Joule

heating produced by the interchanging of thermal energy and electro-magnetic energy loss

which can be generated by a time-varying current or a time-varying magnetic field. As a

limitation to this isothermal simplification in simulations of real world situations, we may

only consider a time-dependent applied current or a magnetic field that varies slowly in time.

For non-isothermal TDGL model, we refer the reader to papers such as [14] and [15].

From equations (2.1) and (2.2), we obtain the following dimensional isothermal isotropic

2B-TDGL equations:

Γ1

(

∂ψ1

∂t
+
ie∗

~
φψ1

)

+ α1ψ1 + β1|ψ1|2ψ1 +
1

2m∗
1

(

−i~∇− e∗

c
A

)2

ψ1

+ ǫ ψ2 + ǫ1

(

−i~∇− e∗

c
A

)2

ψ2 = 0 in Ω × (0,T),
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Γ2

(

∂ψ2

∂t
+
ie∗

~
φψ2

)

+ α2ψ2 + β2|ψ2|2ψ2 +
1

2m∗
2

(

−i~∇− e∗

c
A

)2

ψ2

+ ǫ ψ1 + ǫ1

(

−i~∇− e∗

c
A

)2

ψ1 = 0 in Ω × (0,T),

c

4π
curl2A =

c

4π
curlHe + σn

(

−1

c

∂A

∂t
−∇φ

)

+
e∗

m∗
1

[

i~

2
(ψ1∇ψ∗

1 − ψ∗
1∇ψ1) −

e∗

c
|ψ1|2A

]

+
e∗

m∗
2

[

i~

2
(ψ2∇ψ∗

2 − ψ∗
2∇ψ2) −

e∗

c
|ψ2|2A

]

− ǫ1i~e
∗(ψ∗

1∇ψ2 − ψ1∇ψ∗
2 + ψ∗

2∇ψ1 − ψ2∇ψ∗
1)

− ǫ1
2e∗2

c
A(ψ1ψ

∗
2 + ψ2ψ

∗
1) in Ω × (0,T),

or equivalently,

c

4π
curl2A =

c

4π
curlHe + σn

(

−1

c

∂A

∂t
−∇φ

)

+ e∗ψ∗
1

[

1

2

1

m∗
1

(

−i~∇ψ1 −
e∗

c
Aψ1

)

+ ǫ1

(

−i~∇ψ2 −
e∗

c
Aψ2

)]

+ e∗ψ1

[

1

2

1

m∗
1

(

i~∇ψ∗
1 −

e∗

c
Aψ∗

1

)

+ ǫ1

(

i~∇ψ∗
2 −

e∗

c
Aψ∗

2

)]

+ e∗ψ∗
2

[

1

2

1

m∗
2

(

−i~∇ψ2 −
e∗

c
Aψ2

)

+ ǫ1

(

−i~∇ψ1 −
e∗

c
Aψ1

)]

+ e∗ψ2

[

1

2

1

m∗
2

(

i~∇ψ∗
2 −

e∗

c
Aψ∗

2

)

+ ǫ1

(

i~∇ψ∗
1 −

e∗

c
Aψ∗

1

)]

in Ω × (0,T). (2.8)

The first variations of the energy functional (2.3)-(2.6) give the natural dimensional

boundary conditions, together with the initial conditions; they are:
[

1

2

1

m∗
1

(

−i~∇ψ1 −
e∗

c
Aψ1

)

+ ǫ1

(

−i~∇ψ2 −
e∗

c
Aψ2

)]

· n = 0 on ∂Ω × (0,T), (2.9)

[

1

2

1

m∗
2

(

−i~∇ψ2 −
e∗

c
Aψ2

)

+ ǫ1

(

−i~∇ψ1 −
e∗

c
Aψ1

)]

· n = 0 on ∂Ω × (0,T), (2.10)

curlA × n = He × n on ∂Ω × (0,T),

ψ1(x, 0) = ψ10(x) in Ω,

ψ2(x, 0) = ψ20(x) in Ω,

A(x, 0) = A0(x) in Ω.
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Note that the above PDEs and boundary conditions are gauge invariant, i.e., given a

solution (ψ1, ψ2,A, φ), let Gχ be a gauge transformation defined as

Gχ : (ψ1, ψ2,A, φ) 7→ (ψ′
1, ψ

′
2,A

′, φ′) = (ψ1e
iχ, ψ2e

iχ, A +
~c

e∗
∇χ, φ− ~

e∗
∂χ

∂t
), (2.11)

where χ is an arbitrary but sufficiently smooth single-valued scalar function of time and

spatial coordinates, then the transformed solution (ψ′
1, ψ

′
2,A

′, φ′) is also a solution for the

2B-TDGL system.

For a superconductor-normal metal (S-N) interface, the boundary conditions (2.9) and

(2.10) should be modified to the De Gennes’s S-N type boundary conditions (see (1.11))

which are implied by the requirement that the normal component of the supercurrent does

not cross the superconductor sample, i.e., js · n = 0 on ∂Ω, see [1] and [61]. Imposing this

S-N interface requirement on equation (2.8), we get:
[

1

2

1

m∗
1

(

−i~∇ψ1 −
e∗

c
Aψ1

)

+ ǫ1

(

−i~∇ψ2 −
e∗

c
Aψ2

)]

· n = i
~

2m∗
1

γ1ψ1 + ǫ1i~γ2ψ2

on ∂Ω × (0,T), (2.12)
[

1

2

1

m∗
2

(

−i~∇ψ2 −
e∗

c
Aψ2

)

+ ǫ1

(

−i~∇ψ1 −
e∗

c
Aψ1

)]

· n = i
~

2m∗
2

γ2ψ2 + ǫ1i~γ1ψ1

on ∂Ω × (0,T). (2.13)

Here γ1 and γ2 are assumed to be nonnegative real valued functions satisfing γi(x) ≥ 0,

for x ∈ ∂Ω and γi ∈ L∞(∂Ω). For the above set of boundary conditions, we need γ1 = γ2 to

be satisfied in order to satisfy the S-N interface requirement.

By adding the additional term
∫

∂Ω

(

~
2

2m∗
1

γ1|ψ1|2 +
~

2

2m∗
2

γ2|ψ2|2 + ǫ1(~
2γ1ψ1ψ

∗
2 + ~

2γ1ψ
∗
1ψ2 + ~

2γ2ψ2ψ
∗
1 + ~

2γ2ψ
∗
2ψ1)

)

dS

to the energy functional (2.3), boundary conditions (2.12) and (2.13) become the natural

boundary conditions of this new functional’s Euler-Lagrange equations.

Other possible boundary conditions which also satisfy the S-N interface requirement and

replace the boundary conditions (2.9) and (2.10) are
[

1

2

1

m∗
1

(

−i~∇ψ1 −
e∗

c
Aψ1

)

+ ǫ1

(

−i~∇ψ2 −
e∗

c
Aψ2

)]

· n = i
~

2m∗
1

γ1ψ1

on ∂Ω × (0,T), (2.14)
[

1

2

1

m∗
2

(

−i~∇ψ2 −
e∗

c
Aψ2

)

+ ǫ1

(

−i~∇ψ1 −
e∗

c
Aψ1

)]

· n = i
~

2m∗
2

γ2ψ2

on ∂Ω × (0,T). (2.15)
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By adding the additional term

∫

∂Ω

(

~
2

2m∗
1

γ1|ψ1|2 +
~

2

2m∗
2

γ2|ψ2|2
)

dS

to the energy functional (2.3), boundary conditions (2.14) and (2.15) become the natural

boundary conditions of this new functional’s Euler-Lagrange equations.

Note that when ǫ1 = 0, we recover the boundary conditions proposed by De Gennes in

both cases:

(−i~∇− e∗

c
A)ψi·n = i~γψi on ∂Ω.

2.1 Nondimensionalization of the 2B-TDGL
Equations

We non-dimensionalize the 2B-TDGL equations with the following non-dimensional variables

(those with ′) and parameters

For µ = 1, 2,

x = x0x
′, t =

Γ1

|α1(0)|t
′,

φ =
~|α1(0)|
2Γ1e∗

φ′, ψµ =

( |αµ(0)|
βµ(0)

)
1

2

ψ′
µ,

A =

(

8π|α1(0)|2
β1(0)

)
1

2

x0A
′, He =

√
2

(

4π|α1(0)|2
β1(0)

)
1

2

H′
e =

√
2H1

c (0)H′
e,

ξµ =

(

~
2

2m∗
µ|αµ(0)|

)
1

2

, λµ =

(

c2m∗
µβµ(0)

4πe∗2|αµ(0)|

)

1

2

,

κµ =

(

c2m∗2
µ βµ(0)

2πe∗2~2

)

1

2

, ν =

( |α1(0)|2β2(0)

|α2(0)|2β1(0)

)
1

2

=

(

λ2(0)ξ2(0)

λ1(0)ξ1(0)

)

,

η = ǫ

(

β1(0)|α2(0)|
β2(0)|α1(0)|

)
1

2 1

|α1(0)| , η1 = ǫ12(m∗
1m

∗
2)

1

2 ,

Γ =
Γ2|α1(0)|
Γ1|α2(0)| , σ =

σnm
∗
1β1(0)

Γ1e∗2
,











































































































(2.16)

where

H1
c (0) =

(

4π|α1(0)|2
β1(0)

)
1

2
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is the thermodynamic critical field of the first band at T = 0.

Define

T1 =

[

1 − T
Tc1

]

, T2 =

[

1 − T
Tc2

]

. (2.17)

Then the non-dimensionalized 2B-TDGL equations (with ′ dropped) are:
(

∂ψ1

∂t
+ i φψ1

)

+
(

|ψ1|2 − T1

)

ψ1 +

(

−i ξ1
x0

∇− x0

λ1

A

)2

ψ1

+ ηψ2 + η1
ξ1
ξ2

1

ν

(

−i ξ2
x0

∇− ν
x0

λ2

A

)2

ψ2 = 0 in Ω × (0,T), (2.18)

Γ

(

∂ψ2

∂t
+ i φψ2

)

+
(

|ψ2|2 − T2

)

ψ2 +

(

−i ξ2
x0

∇− ν
x0

λ2

A

)2

ψ2

+ ην2ψ1 + η1
ξ2
ξ1
ν

(

−i ξ1
x0

∇− x0

λ1

A

)2

ψ1 = 0 in Ω × (0,T), (2.19)

curl2A = curlHe + σ

(

−x
2
0

λ2
1

∂A

∂t
− 1

κ1

∇φ
)

+ i
1

2

1

κ1

(ψ1∇ψ∗
1 − ψ∗

1∇ψ1) −
x2

0

λ2
1

|ψ1|2A

+ i
1

2

1

ν

1

κ2

(ψ2∇ψ∗
2 − ψ∗

2∇ψ2) −
x2

0

λ2
2

|ψ2|2A

− η1i
1

2

ξ1
λ2

(ψ∗
1∇ψ2 − ψ1∇ψ∗

2 + ψ∗
2∇ψ1 − ψ2∇ψ∗

1)

− η1
x2

0

λ1λ2

A(ψ1ψ
∗
2 + ψ2ψ

∗
1) in Ω × (0,T). (2.20)

As in the dimensional case, the first possible set of non-dimensional S-N interface

boundary conditions together with the initial conditions are:
[(

−i ξ1
x0

∇ψ1 −
x0

λ1

Aψ1

)

+ η1
1

ν

(

−i ξ2
x0

∇ψ2 − ν
x0

λ2

Aψ2

)]

· n = iγ1
ξ1
x0

ψ1 + iη1
1

ν
γ2
ξ2
x0

ψ2

on ∂Ω × (0,T), (2.21)
[(

−i ξ2
x0

∇ψ2 − ν
x0

λ2

Aψ2

)

+ η1ν

(

−i ξ1
x0

∇ψ1 −
x0

λ1

Aψ1

)]

· n = iγ2
ξ2
x0

ψ2 + iη1νγ1
ξ1
x0

ψ1

on ∂Ω × (0,T), (2.22)

curlA × n = He × n on ∂Ω × (0,T),

ψ1(x, 0) = ψ10(x) in Ω,

ψ2(x, 0) = ψ20(x) in Ω,

A(x, 0) = A0(x) in Ω.
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Here for i = 1, 2, γi(x) ≥ 0, for x ∈ ∂Ω and γi ∈ L∞(∂Ω). Boundary conditions (2.21)

and (2.22) together require γ1 = γ2 to be satisfied in order to satisfy the S-N interface

requirement.

As in the dimensional case, other possible S-N interface boundary conditions which

replace the boundary conditions (2.21)-(2.22) are

[(

−i ξ1
x0

∇ψ1 −
x0

λ1

Aψ1

)

+ η1
1

ν

(

−i ξ2
x0

∇ψ2 − ν
x0

λ2

Aψ2

)]

· n = iγ1
ξ1
x0

ψ1

on ∂Ω × (0,T),
[(

−i ξ2
x0

∇ψ2 − ν
x0

λ2

Aψ2

)

+ η1ν

(

−i ξ1
x0

∇ψ1 −
x0

λ1

Aψ1

)]

· n = iγ2
ξ2
x0

ψ2

on ∂Ω × (0,T),

The physical meanings associated to each of these two sets of boundary conditions have

yet to be investigated.

2.2 2B-TDGL Equations with Time-Dependent
Applied Current and Magnetic Field

For the rest of this work, we assume that the domain Ω is an open, bounded, simply

connected 2-D domain with Lipschitz boundary ∂Ω; in particular, we are interested in convex

polygonal domains. Following the notations used in [2] and [3], let Hs(Ω) be a real-valued

Sobolev space of order integer s in the domain Ω; let Hs be the corresponding space of

complex-valued functions, with real and complex parts belong to Hs(Ω); and let Hs(Ω)

be the corresponding space of vector-valued functions, with each component belonging to

Hs(Ω), i.e., Hs(Ω) = [Hs(Ω)]n. We will use the same notation ‖.‖s to denote the norms of

Hs(Ω), Hs(Ω) and Hs(Ω) without any ambiguity. Similarly, Let Lq(Ω), Lq(Ω) and Lq(Ω) be

the real-valued Lebesgue space, its corresponding complex-valued and vector-valued spaces

respectively. We will use ‖.‖0 to denote the norms of any of these L2 Lebesgue spaces, and

‖.‖0,q for any of these Lq spaces, 1 ≤ q ≤ ∞, q 6= 2. We will also denote by n the unit

outward normal vector on the boundary ∂Ω.
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We first define some notations for vector-valued spaces:

H(curl; Ω) = {v ∈ L2(Ω)| curlv ∈ L2(Ω) in Ω},

H0(curl; Ω) = {v ∈ H(curl; Ω)| v × n|∂Ω = 0},

H(div; Ω) = {v ∈ L2(Ω)| div v ∈ L2(Ω)},

H(div0; Ω) = {v ∈ H(div; Ω)| div v = 0 in Ω},

Hn(div0; Ω) = {v ∈ H(div; Ω)| div v = 0 in Ω, v · n|∂Ω = 0},

H1
0(div0; Ω) =

{

v ∈ H1
0(Ω)| div v = 0 in Ω

}

,

H1
n(Ω) =

{

v ∈ H1(Ω)|v·n = 0 on ∂Ω
}

,

H1
n(div; Ω) =

{

v ∈ H1
n(Ω)| div v = 0 in Ω

}

.

We quote a result from Girault and Raviart [44]: If Ω is an open, bounded and simply

connected domain in R
2 with a boundary ∂Ω of class C1,1 or with a piecewise smooth ∂Ω

with no reentrant corners, such as a bounded convex polygon, then for any A ∈ H1
n(Ω), we

have

C||A||H1(Ω) ≤ ||A||H1
n(Ω) := ||divA||L2(Ω) + ||curlA||L2(Ω). (2.23)

Next we define some time dependent Sobolev spaces. For any given T > 0, and Banach

space X, define the spaces

Lp(0, T ;X) =

{

u
∣

∣u(·, t) ∈ X, t ∈ (0, T ) a.e.;

[
∫ T

0

‖u(·, t)‖pXdt
]

1

p

<∞
}

,

L∞(0, T ;X) =
{

u
∣

∣u(·, t) ∈ X, t ∈ (0, T ) a.e.; ess sup0≤t≤T‖u(·, t)‖X <∞
}

,

H1(0, T ;X) =

{

u
∣

∣u(·, t) ∈ X, t ∈ (0, T ) a.e.;

[
∫ T

0

(

‖u(·, t)‖2
X + ‖u′(·, t)‖2

X

)

dt

]

1

2

<∞
}

.

The corresponding complex-valued and vector-valued spaces are defined in an analogous

way. In 2-D, we know that curlφ = (∂φ/∂x2,−∂φ/∂x1) is a vector, while curlv = ∂v2/∂x1−
∂v1/∂x2 is a scalar. We also understand that in 2-D, curlφ×n|∂Ω = curlφ·τ |∂Ω = −∇φ·n|∂Ω

in the trace sense, where n and τ are the unit vectors outward normal to and tangential to

the boundary ∂Ω, respectively.

Now we want to generalize the 2B-TDGL to include the effects of an applied current. First

let us discuss how other authors include an applied current into a one-band time-dependent
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Ginzburg-Landau model with various gauge adoptions. Assume a superconductor occupying

the domain Ω in the normal state possesses some material properties which will be stated

later. Then the total current inside and outside the superconductor is j = curl2A. Since it is

divergence free, by using a standard method used in electromagnetics (see for example [65],

sec. 2.8), we can derive the following boundary condition that must be satisfied on ∂Ω

[j · n] = [curl2A · n] = 0 on ∂Ω,

where [·] denotes the jump of the enclosed quantity across the boundary ∂Ω. In other words,

if an applied current ja is applied to the superconductor either through direct metal lead

contacts or by indirect means such as an external electrogmagnetic field, we must have

j · n = curl2A · n = ja · no on ∂Ω, (2.24)

where n and no are the unit outward normal vector and unit inward normal vector on the

boundary ∂Ω, respectively. We will called a current which is applied to the superconductor

through metal leads a Type-A current, and a current which is applied to the conductor by

means of an external electromegnetic field induction a Type-B current. In the case where

there is only a Type-B current source, ja is equal to curlHe, with He being the external

electromagnetic field which induces the current and is assumed throughout this work to be

the same inside and outside of the superconductor, and unaffected by the magnetic field or

demagnetization created by the superconductor.

Consider a case where there exists a Type-A current ja and a Type-B current induced by

He. Then we have (with some parameters dropped)

j = curl2A = −σ(
∂A

∂t
+ ∇φ) + curlHe + js in Ω,

curl2A = ja + curlHe outside Ω,

where js is the superconcurrent. Now since the normal component of the supercurrent

vanishes on the boundary, i.e., js · n|∂Ω = 0, then by the continuity boundary condition

(2.24), the normal current must satisfy

−σ(
∂A

∂t
+ ∇φ) · n = ja · n on ∂Ω, (2.25)

where in the above equation, the term curlHe · n|∂Ω has been cancelled out on both sides

since by our assumption on He, it is the same throughout the region inside and outside of

the superconductor sample.
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We now investigate how currents are added to the TDGL equations under different gauge

choices.

(I) Suppose the divergence-free Coulomb gauge (∇ · A = 0 and A · n|∂Ω = 0) is applied

to the TDGL model, then the continuity boundary condition (2.25) becomes

−σ∇φ · n = ja · n on ∂Ω. (2.26)

This means that we have to solve for the electric potential φ which has to satisfy the

TDGL equations and its standard boundary conditions in addition to the boundary condition

(2.26) at every computational step solving for ψ and A. Because of this and the divergence

free requirement, the Coulomb gauge adoption is not suitable for computation.

(II) Suppose the Lorenz gauge (φ = −∇ · A and A · n|∂Ω = 0) is used, then the electric

potential φ is eliminated from the TDGL equations and the continuity B.C. (2.25) becomes

∇(∇ · A) · n = ja · n on ∂Ω. (2.27)

(III) Suppose the zero electric potential (ZEP) gauge (φ = 0 and A · n|∂Ω = 0) is used,

the right hand side of the continuity B.C. (2.25) vanishes, this means the ZEP gauge can

only be used when ja|∂Ω = 0.

The above discussion shows that the Coulomb gauge, Lorentz gauge and the ZEP gauge

are not suitable for the modeling of Type-A current explicitly. One viable way to add applied

current into the TDGL model is to add Type-B current through external electromagnetic

field He by the relation je = curl2Ae = curlHe. But there is a limitation to this approach-

it can not be used to model a Type-A current because such a normal (stationary or slowly

varying) current vanishes inside a superconducting superconductor away from the boundary

(see [60], sec. 1.2 and sec. 11.4) and the curlHe term can not model this phenomenon from

the outside and without knowledge of the dynamics of the superconductor.

(IV) One way to add a Type-A current explicitly to the TDGL model is to use an

extension of the ZEP gauge. For instance, in [4], a gauge which satisfies φ = φc in Ω and

A · n = 0 on ∂Ω is adopted to the TDGL equations. Here φc satisfies the relation ∇φc = ja

in Ω. By utilizing this gauge, it is easy to see that the continuity B.C. (2.25) is satisfied.

Moreover, unlike (2.26), now φ = φc is a fixed function that is independent of the TDGL

equations and thus may be calculated ahead of each computational step solving for ψ and A

of the TDGL equations. The point here is that the role of φc now only serves as an auxiliary
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variable and does not represent the true electric potential occurring in the superconductor.

However, this gauge choice can only model Type-A applied current of constant value either

in space or in time. The reason will be stated in the remark below.

We want to generalize the above gauge choice (IV) to one which can also model time-

dependent Type-A applied current of spatial function. For simplicity, throughout the rest

of this work we will assume that the superconductor when in the normal state is a linear,

isotropic and nondispersive material. We also assume that the superconductor in the normal

state is a good conductor with a large but finite conductivity σ, i.e., a metallic superconductor

such as theMgB2 (but it is not an isotropic material). Assume that a time-dependent current

jc exists in the superconductor in the normal state, i.e. as a conductor, then the electric field

Ec, electric displacement Dc, magnetic field Hc, magnetic potential Ac and electric potential

φc associated with the applied current must satisfy the following Maxwell equations and some

constitutive relations

Ec = −
(

x2
0

λ2
1

∂Ac

∂t
+

1

κ1

∇φc
)

, (2.28)

jc = σEc, (2.29)

∇ · jc = −∂ρv
∂t

, (2.30)

Dc = ǫEc, (2.31)

∇ · Dc = ρv, (2.32)

curlHc = curl2Ac = jc +
∂Dc

∂t
, (2.33)

∇ · Hc = 0, (2.34)

Bc = µH, (2.35)

where ρv, ǫ and µ are nondimensionalized parameters corresponding to the charge density,

the absolute permittivity and permeability of the superconductor, respectively. Since we

assumed that the superconductor is a linear and isotropic material, the constitutive relations

(2.31) and (2.35) hold with constant permittivity and permeability, respectively. In addition,

we assumed that the superconductor is also a nondispersive material, so the constitutive

relation (2.29) is stationary and σ is a constant. We will also assume that the applied

current varies slowly in time (e.g., length of circuit << wavelength of current or σ/ωǫ >> 1,

where ω is the frequency of the current) and satisfies a smoothness regularity in time which

will be stated later. With the above assumptions, the displacement current ∂Dc/∂t can be
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ignored and equation (2.33) can be approximated as

curl2Ac = jc in Ω, (2.36)

curlAc × n = 0 on ∂Ω. (2.37)

Here for the purpose of exploring the relationship of Ac and later of φc to jc, we need not

consider other external field and so we assumed that there is no external magnetic field

applied to the sample. Other boundary conditions will be determined by proper gauge

choice.

From the above Maxwell equations, the consequences of the approximation that

∂Dc/∂t = 0 are ∂ρv/∂t = 0, ρv = 0 and ∇ · jc = 0. This implies that the Kirchoff’s

law holds across the sample, i.e.,
∫

S
jc · ndS = 0, for any closed surface S. As discussed

before, the divergence free condition of the current jc gives a continuity condition across the

boundary of the domain in the normal direction (see for example [65], sec. 2.8 and sec.3.2.2),

namely

[curl2A · n] = [jc · n] = 0 on ∂Ω, (2.38)

where [.] denotes the jump of the enclosed quantity across ∂Ω.

When we are considering the case that an applied current ja is supplied to the boundary

of the superconductor sample in the normal state through current leads, we can only specify

the applied current on the sample boundary as ja|∂Ω. We find j̃c(t) as an extension of ja|∂Ω

to Ω, for t ≥ 0, by solving

∇ · j̃c(t) = 0 in Ω, (2.39)

j̃c(t) = ja(t) on ∂Ω, (2.40)

where ja satisfies
∫

∂Ω
ja · ndS = 0.

For each t ≥ 0, given a prescribed ja(t)|∂Ω ∈ H
1

2 (∂Ω) with
∫

∂Ω
ja · ndS = 0, the solution

of the above problem exists and is unique up to an additive function in V := H1
0(div0; Ω),

see [44]. Moreover, we have

||̃jc(t)||H1(Ω)/V ≤ C||ja(t)||
H

1
2 (∂Ω)

, (2.41)

where the constant C is independent of the time t. The following lemma shows that we can

find a particular solution.
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Lemma 2.2.1 For t ≥ 0, there exists a solution jc(t) ∈ H1(Ω) of the BVP (2.39)-(2.40)

that satisfies

||jc(t)||H1(Ω) = ||̃jc(t)||H1(Ω)/V := inf
v∈V

||(̃jc + v)(t)||H1(Ω) ≤ C||ja(t)||
H

1
2 (∂Ω)

, (2.42)

where j̃c is obtained from the BVP (2.39)-(2.40).

Proof Let m = inf
v∈V

||̃jc + v||H1(Ω). Let {vn} ⊂ V be a sequence such that {j̃c + vn} is a

minimizing sequence of m, i.e.,

||̃jc + vn||H1(Ω) → m as n→ ∞.

Then by the inequality (2.41) m is bounded, so {j̃c + vn} is uniformly bounded in H1(Ω).

Therefore, there exists a bounded subsequence, again denoted as {j̃c+vn}, converges weakly

in H1(Ω) to a limit jc ∈ H1(Ω), i.e.,

{j̃c + vn}⇀ jc in H1(Ω) as n→ ∞. (2.43)

Since the linear, bounded mapping u ∈ H1(Ω) 7→ ||u||H1(Ω) is compact, then by passing to

yet another subsequence if necessary, we obtain

||̃jc + vn||H1(Ω) → ||jc||H1(Ω) = m as n→ ∞. (2.44)

Since the Hilbert space H1(Ω) is locally uniformly convex, the convergences in (2.43) and

(2.44) together imply a strong convergence (see [53])

{j̃c + vn} → jc in H1(Ω) as n→ ∞. (2.45)

Now since the Sobolev trace operator γ0 : H1(Ω) 7→ H
1

2 (∂Ω) defined as γ0(v) = v|∂Ω in the

trace sense, is linear and continuous, the strong convergence (2.45) implies γ0(̃jc + vn) →
γ0(jc) as n → ∞. A passage to the limit n → ∞ of the sequence {j̃c + vn} in the BVP

(2.39)-(2.40) shows that jc also satisfies the BVP (2.39)-(2.40).

By the above lemma, we assume without loss of generality that given a prescribed

boundary current ja|∂Ω we can always extend it to a current jc ∈ H1(Ω) defined in the

domian Ω. We can decompose ja|∂Ω as ja|∂Ω = ja · τ + ja · n, where τ is the unit tangential

vector on ∂Ω. We will see later that we actually only concern about ja · n|∂Ω. The result

29



of lemma 2.2.1 also implies jc ∈ H(div; Ω) and thus jc · n|∂Ω = ja · n|∂Ω ∈ H− 1

2 (Ω). By

Sobolev’s extension theorem on trace, there is a lifting function Φ ∈ H(div; Ω) such that

Φ · n|∂Ω = jc · n|∂Ω, see [44]. Clearly, jc can be such a lifting function. Therefore, from the

extension theorem, we obtain that for t ≥ 0,

||jc(t)||H(div;Ω) ≤ ||ja(t) · n||H−
1
2 (∂Ω)

. (2.46)

By the same reasoning, we can find a divergence free lifting function ∂jc/∂t ∈ H(div0; Ω)

of ∂jc/∂t · n|∂Ω = ∂ja/∂t · n|∂Ω ∈ H− 1

2 (∂Ω). Moreover, for t ≥ 0, we have

||∂jc
∂t

(t)||H(div;Ω) ≤ ||∂ja
∂t

(t) · n||
H−

1
2 (∂Ω)

. (2.47)

Therefore, from the norm estimates (2.46) and (2.47), if ja ·n, ∂ja/∂t·n ∈ Lq(0, T ;H− 1

2 (∂Ω)),

we have jc, ∂jc/∂t ∈ Lq(0, T ;H(div0; Ω), for q ∈ [1,∞].

In view of the results obtained above, we may now prescribe the applied current either

inside or on the boundary of the superconductor sample. We want to point out that jc

in Ω only represent a current flowing in a conductor occupying the region Ω, it does not

represent the true normal current occurring inside the superconductor in the superconducting

state. As we stated before, inside a superconducting superconductor there is zero normal

current away from the boundary. In other words, any jc as a divergence free lifting function

will serve our purpose, albeit it is not unique. Without loss of generality, we assume

jc, ∂jc/∂t ∈ Lq(0, T ;H(div0; Ω)). From (2.28) and (2.29), we have for almost all t ∈ [0, T ],

jc(t) = −σ
(

x2
0

λ2
1

∂Ac(t)

∂t
+

1

κ1

∇φc(t)
)

, (2.48)

where A satisfies the BVP (2.36)-(2.37). Since jc ∈ L2(Ω), by applying the Helmholtz

decomposition (see [44], section 3 of chapter I) to jc, we know for a.e. t ∈ [0, T ],

φc(t) ∈ H1(Ω)/R is the only solution of

(∇φc(t), ∇v) = (−κ1

σ
jc(t),∇v) ∀v ∈ H1(Ω), (2.49)

which has the following distributional interpretation

∇2φc(t) = −κ1

σ
∇ · jc(t) = 0 in Ω, (2.50)

∂φc(t)

∂n
= −κ1

σ
jc(t) · n on ∂Ω. (2.51)
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Here since jc(t) ∈ H(div; Ω), jc(t) · n ∈ H− 1

2 (∂Ω) is well-defined. From the above elliptic

BVP, we have for a.e. t ∈ [0, T ], φc(t) ∈ H1(Ω), unique up to an additive function of time

only and

||φc(t)||H1(Ω) ≤ C||jc(t) · n||H−
1
2 (∂Ω)

, (2.52)

where the constant C is independent of the time t. Here in the above estimate, we have

used the fact that the semi-norm | · |H1(Ω) is always smaller or equal to the quotient norm

|| · ||H1(Ω)/R, and that H1(Ω)/R is isomorphic to the space {v ∈ H1(Ω);
∫

Ω
v dΩ = 0} in

which by the Poincaré-Friedrichs type inequality we have || · ||H1(Ω) ≤ C| · |H1(Ω). From the

above estimate, we get φc ∈ Lq(0, T ;H1(Ω)) if jc ∈ Lq(0, T ;H(div0; Ω)), for q ∈ [1,∞]. Note

that the condition
∫

Ω
v dΩ = 0 allows us to find a unique solution in φc ∈ Lq(0, T ;H1(Ω)).

Indeed, suppose p1 := φc(t)+C1(t) and p2 := φc(t)+C2(t) are two solutions in Lq(0, T ;H1(Ω))

which differ in an additive time function, then
∫

Ω
(p1 − p2)dΩ =

∫

Ω
(C1(t) − C2(t))dΩ = 0,

this gives C1(t) − C2(t) = 0 for almost all t ∈ [0, T ]. Hereafter, we will set H1(Ω)/R = {v ∈
H1(Ω);

∫

Ω
v dΩ = 0}.

Analogous to the finding of φc, we can find, for almost all t ∈ [0, T ], a unique

∂φc/∂t(t) ∈ H1(Ω)/R = {v ∈ H1(Ω);
∫

Ω
v dΩ = 0}, by solving ζ ∈ H1(Ω)/R in

∇2ζ(t) = −κ1

σ
∇ · ∂jc(t)

∂t
= 0 in Ω, (2.53)

∂ζ(t)

∂n
= −κ1

σ

∂jc(t)

∂t
· n on ∂Ω. (2.54)

Here since ∂jc(t)/∂t ∈ H(div; Ω), ∂jc(t)/∂t · n ∈ H− 1

2 (∂Ω) is well-defined. From the

above elliptic BVP, we have for almost all t ∈ [0, T ],

||ζ(t)||H1(Ω) ≤ C||∂jc(t)
∂t

· n||
H−

1
2 (∂Ω)

, (2.55)

where the constant C is independent of the time t. Clearly, ζ = ∂φc/∂t. From the above

estimate, we get ∂φc/∂t ∈ Lq(0, T ;H1(Ω)) if ∂jc(t)/∂t ∈ Lq(0, T ;H(div0; Ω)), for q ∈ [1,∞].

Summarizing the above regularity information, we have that if jc ∈ H1(0, T ;H(div0; Ω)) ∩
L∞(0, T ;H(div0; Ω)), then φc ∈ H1(0, T ;H1(Ω)) ∩ L∞(0, T ;H1(Ω)). This further implies

φc ∈ C([0, T ];H1(Ω)).

By the uniqueness of the Helmholtz orthogonal decomposition and equation (2.48), for

almost all t ∈ [0, T ], ∂Ac(t)/∂t is the only solution defined as

x2
0

λ2
1

∂Ac(t)

∂t
= −jc(t) −

σ

κ1

∇φc(t). (2.56)
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Moreover, we have ∂Ac(t)/∂t ∈ Hn(div0; Ω). However, we will find Ac and ∂Ac/∂t by

solving the BVPs (2.36)-(2.37) which will be repeated below to give us some norm estimates

of higher regularity.

Remark In general ∂Ac(x, t)/∂t is not identically zero in (2.56) for almost all t ∈ [0, T ],

this is because if it was indeed equal to 0, then we would have jc(t) = − σ
κ1

∇φc(t) for almost

all t ∈ [0, T ]. This would imply that we must have curl jc(t) = 0 for almost all t ∈ [0, T ].

But in general curl jc(t) 6= 0 for almost all t ∈ [0, T ]. In other words, if we want to keep

jc(t) = − σ
κ1

∇φc(t) as is needed in the gauge choice discussed in case (IV), then we are bound

to consider only a limited set of ja which makes jc in Ω satisfying divjc = curl jc = 0 (see

[44], Theorem 2.9 which holds when Ω is simply connected) such as a constant ja in space.

Or we can consider only stationary ja, in this case ∂Ac(x, t)/∂t simply vanishes in (2.56).

As in the gauge choice case (IV) discussed before, both φc and Ac, and even the jc which

is defined inside of Ω, need not have accurate physical meanings or actually reflect a physical

situation. What we need is to ensure that they together satisfy the equation (2.36) and

(2.48). Our plan is to use these functions as auxiliary variables to fix a gauge from which the

continuity boundary condition (2.25) on ∂Ω can be established and thus the applied current

on the boundary is included into the 2B-TDGL model implicitly.

The space Hn(div0; Ω) prompts us to apply the Coulomb gauge with ∇ · Ac = 0 in Ω

and Ac · n|∂Ω = 0 to equation (2.48) and (2.36)-(2.37). Adopting the Coulomb gauge, we

can find, for almost all t ∈ [0, T ], a unique Ac(t) ∈ H1
n(div; Ω) by solving

(curlAc , curlv) = (jc , v) ∀v ∈ H1
n(div; Ω). (2.57)

This is equivalent to the following stongly elliptic problem

curl2Ac(t) = jc(t) in Ω, (2.58)

∇ · Ac(t) = 0 in Ω, (2.59)

Ac(t) · n = 0 on ∂Ω, (2.60)

curlAc(t) × n = 0 on ∂Ω. (2.61)

By utilizing the equivalence of norms (2.23), the existence and uniqueness of Ac(t) as a

weak solution is guaranteed by the Lax-Milgram theorem. Moreover, we have the following
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estimate

||Ac(t)||H1(Ω) ≤ C||jc(t)||L2(Ω), (2.62)

where the constant C is independent of the time t. From the above estimate, we get

Ac ∈ Lq(0, T ;H1
n(div; Ω)) if jc ∈ Lq(0, T ;L2(Ω)), for q ∈ [1,∞].

Analogous to the finding of Ac, for almost all t ∈ [0, T ], we can also find the unique

∂Ac(t)/∂t ∈ H1
n(div; Ω) by solving B ∈ H1

n(div; Ω) in

(curlB , curlv) = (
∂jc(t)

∂t
, v) ∀v ∈ H1

n(div; Ω). (2.63)

which gives the estimate

||B(t)||H1(Ω) ≤ C||∂jc(t)
∂t

||L2(Ω), (2.64)

where the constant C is independent of the time t. Clearly, B = ∂Ac/∂t. From the above

estimate, we get ∂Ac/∂t ∈ Lq(0, T ;H1
n(div; Ω)) if ∂jc/∂t ∈ Lq(0, T ;L2(Ω)), for q ∈ [1,∞].

Summarizing up the spaces we see that if jc ∈ H1(0, T ;L2(Ω)) ∩ L∞(0, T ;L2(Ω))

then Ac ∈ H1(0, T ;H1
n(div; Ω)) ∩ L∞(0,T;H1

n(div; Ω)), and this further implies Ac ∈
C([0, T ];H1

n(div; Ω)). Thus we have Ac(0) ∈ H1
n(div; Ω) and so ∇ · Ac(0) = 0.

We will apply the “current gauge” defined by the following gauge transformation to the

2B-TDGL equations. Given (ψ̃1, ψ̃2,B,Φ),

(ψ1, ψ2,A, φ) = Gχ(ψ̃1, ψ̃2,B,Φ),

where ψ1 = ψ̃1e
iκ1χ, ψ2 = ψ̃2e

iκ1χ, A = B + (λ2
1/x

2
0)∇χ and φ = Φ− κ1(∂χ/∂t), and χ solve

the following problem:

κ1
∂χ

∂t
= Φ − φc in Ω, (2.65)

λ2
1

x2
0

∇χ · n = −B · n on ∂Ω for t ≥ 0, (2.66)

−λ
2
1

x2
0

△χ = divB in Ω at t = 0. (2.67)

This amounts to saying that under this “current gauge”, we have φ = φc in Ω for t > 0,
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A·n = 0 on ∂Ω for t ≥ 0 and divA = 0 in Ω at t = 0. From equation (2.48), we have

− σ

κ1

∇φc = jc + σ
x2

0

λ2
1

∂Ac

∂t
in Ω. (2.68)

= curlHc + σ
x2

0

λ2
1

∂Ac

∂t
in Ω. (2.69)

= curl2Ac + σ
x2

0

λ2
1

∂Ac

∂t
in Ω. (2.70)

Under this “current gauge”, from the above equations, we can have various forms to

formulate the 2B-TDGL equations, depending on what terms are substituted into the

equations. One form is to substitute ∇φc by equation (2.70), which gives

(

∂ψ1

∂t
+ i φcψ1

)

+
(

|ψ1|2 − T1

)

ψ1 +

(

−i ξ1
x0

∇− x0

λ1

(A + Ac)

)2

ψ1

+ ηψ2 + η1
ξ1
ξ2

1

ν

(

−i ξ2
x0

∇− ν
x0

λ2

(A + Ac)

)2

ψ2 = 0 in Ω × (0,T),(2.71)

Γ

(

∂ψ2

∂t
+ i φcψ2

)

+
(

|ψ2|2 − T2

)

ψ2 +

(

−i ξ2
x0

∇− ν
x0

λ2

(A + Ac)

)2

ψ2

+ ην2ψ1 + η1
ξ2
ξ1
ν

(

−i ξ1
x0

∇− x0

λ1

(A + Ac)

)2

ψ1 = 0 in Ω × (0,T),(2.72)

curl2A = curlHe − σ
x2

0

λ2
1

∂A

∂t

+ i
1

2κ1

(ψ1∇ψ∗
1 − ψ∗

1∇ψ1) −
x2

0

λ2
1

|ψ1|2(A + Ac)

+ i
1

ν

1

2κ2

(ψ2∇ψ∗
2 − ψ∗

2∇ψ2) −
x2

0

λ2
2

|ψ2|2(A + Ac)

− η1i
1

2

ξ1
λ2

(ψ∗
1∇ψ2 − ψ1∇ψ∗

2 + ψ∗
2∇ψ1 − ψ2∇ψ∗

1)

− η1
x2

0

λ1λ2

(A + Ac)(ψ1ψ
∗
2 + ψ2ψ

∗
1) in Ω × (0,T), (2.73)

here T1 and T2 are defined in (2.17), and A := A − Ac. Since the normal component of the

supercurrent js vanishes on the boundary ∂Ω, by trace extension, equation (2.73) yields that

for almost all t ∈ [0, T ],

curl2A · n = (−σx
2
0

λ2
1

∂A

∂t
+ curlHe) · n on ∂Ω.
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Note that later in Theorem (3.2.26) we will show that ∂(divA)/∂t ∈ L2(0, T ;L2(Ω)),

and we already knew that ∂Ac/∂t ∈ Lq(0, T ;H1
n(div; Ω)). As a result ∂A/∂t, ∂A/∂t ∈

L2(0, T ;H(div; Ω)) and thus (∂A/∂t) · n, (∂A/∂t) · n ∈ L2(0, T ;H− 1

2 (∂Ω)). By the

construction of jc, we have curl2Ac = jc and jc = ja on ∂Ω (by (2.40)), this gives

curl2A · n = (curl2Ac − σ
x2

0

λ2
1

∂A

∂t
+ curlHe) · n on ∂Ω

= (curl2Ac + curlHe) · n on ∂Ω,

= (jc + curlHe) · n on ∂Ω,

= (ja + curlHe) · n on ∂Ω, (2.74)

where in the first equation the time derivative term vanishes because (A−Ac) ·n = 0 on ∂Ω

for t ≥ 0. Therefore the continuity B.C. (2.24) (and thus (2.25)) is satisfied, since from the

outside of Ω we also have (ja+curlHe) ·n on ∂Ω. Thus the continuity B.C. is automatically

satisfied and needed not be included explicitly into the model as a boundary condition.

The complete set of boundary and initial conditions now becomes

(

−i ξ1
x0

∇ψ1 − iη1
1

ν

ξ2
x0

∇ψ2

)

· n = iγ1
ξ1
x0

ψ1 on ∂Ω × (0,T), (2.75)

(

−i ξ2
x0

∇ψ2 − iη1ν
ξ1
x0

∇ψ1

)

· n = iγ2
ξ2
x0

ψ2 on ∂Ω × (0,T), (2.76)

curlA × n = He × n on ∂Ω × (0,T), (2.77)

A · n = 0 on ∂Ω × (0,T), (2.78)

ψ1(x, 0) = ψ10(x) in Ω, (2.79)

ψ2(x, 0) = ψ20(x) in Ω, (2.80)

A(x, 0) = A(x, 0) − Ac(x, 0) in Ω, (2.81)

∇ · A(x, 0) = 0 in Ω. (2.82)

Note that by the B.C. (2.61), curlAc × n = 0 on ∂Ω. The B.C. (2.78) is from the gauge

which gives A·n = 0, and from Ac·n = 0 on ∂Ω. The last I.C. is also from the gauge

∇ ·A(x, 0) = 0 and by ∇ ·Ac(x, 0) = 0. This condition is required in later proof. Hereafter,

we will denote A(0,x) = A0. We will also denote the above initial-boundary-value problem

(2.71)-(2.73) and (2.75)-(2.82) corresponding to the first approach of adding Type-A current

as IBVP1.
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We notice that in (2.74) ∂A/∂t actually plays no role in satisfying the continuity B.C.,

since it’s normal component always vanishes on the boundary. So it is reasonable to exclude

this term in the addition of Type-A current to the model. We propose our second approach

below which is equivalent to the first approach.

Consider again that ja|∂Ω is specified only on the boundary. We find a unique φa ∈
H1(Ω)/R = {v ∈ H1(Ω);

∫

Ω
v dΩ = 0} by solving the following BVP

∇2φa(t) = 0 in Ω, (2.83)

∂φa(t)

∂n
= −κ1

σ
ja(t) · n on ∂Ω. (2.84)

This BVP is exactly the same as the BVP (2.50)-(2.51) which results from the Helmholtz

decomposition (2.48) for jc, but now we skip the process to find jc. We also skip the process

to find ∂Ac/∂t. As in (2.65)-(2.67), we use the same “current gauge”. However now since

we don’t have the knowledge of jc and ∂Ac/∂t, we don’t have the relationship (2.68)-(2.70).

This means that even if we have jc ready, ∇φa 6= jc in Ω and thus this “current gauge” is

different from the gauge discussed in case (IV). In our second approach, we simply replace φ

in the 2B-TDGL for ψi by φa and ∇φ in the 2B-TDGL equation for A by ∇φa. The gauged

2B-TDGL equations now become

(

∂ψ1

∂t
+ i φaψ1

)

+
(

|ψ1|2 − T1

)

ψ1 +

(

−i ξ1
x0

∇− x0

λ1

A

)2

ψ1

+ ηψ2 + η1
ξ1
ξ2

1

ν

(

−i ξ2
x0

∇− ν
x0

λ2

A

)2

ψ2 = 0 in Ω × (0,T), (2.85)

Γ

(

∂ψ2

∂t
+ i φaψ2

)

+
(

|ψ2|2 − T2

)

ψ2 +

(

−i ξ2
x0

∇− ν
x0

λ2

A

)2

ψ2

+ ην2ψ1 + η1
ξ2
ξ1
ν

(

−i ξ1
x0

∇− x0

λ1

A

)2

ψ1 = 0 in Ω × (0,T), (2.86)

36



curl2A = curlHe − σ
x2

0

λ2
1

∂A

∂t
− σ

κ1

∇φa

+ i
1

2κ1

(ψ1∇ψ∗
1 − ψ∗

1∇ψ1) −
x2

0

λ2
1

|ψ1|2A

+ i
1

ν

1

2κ2

(ψ2∇ψ∗
2 − ψ∗

2∇ψ2) −
x2

0

λ2
2

|ψ2|2A

− η1i
1

2

ξ1
λ2

(ψ∗
1∇ψ2 − ψ1∇ψ∗

2 + ψ∗
2∇ψ1 − ψ2∇ψ∗

1)

− η1
x2

0

λ1λ2

A(ψ1ψ
∗
2 + ψ2ψ

∗
1) in Ω × (0,T). (2.87)

It is easy to check that the continuity B.C. is satisfied, indeed

−σ(
x2

0

λ2
1

∂A

∂t
+

1

κ1

∇φ) · n = − σ

κ1

∇φa · n

= ja · n on ∂Ω,

where the last equality is obtained from (2.84). The benefit of using this approach is that

it is simpler than the previous method in which we have to evaluate Ac in addition to φc,

and to do that we have to find a non-unique jc in Ω first. In this approach, we only need φa

which can be found once ja is given on the boundary ∂Ω and is unique. So this is a clean

way to add a Type-A current to the model. To add a Type-B current, as we have already

done so, we just add curlHe to the equation for A as presented above.

The complete set of boundary and initial conditions now becomes
(

−i ξ1
x0

∇ψ1 − iη1
1

ν

ξ2
x0

∇ψ2

)

· n = iγ1
ξ1
x0

ψ1 on ∂Ω × (0,T), (2.88)

(

−i ξ2
x0

∇ψ2 − iη1ν
ξ1
x0

∇ψ1

)

· n = iγ2
ξ2
x0

ψ2 on ∂Ω × (0,T), (2.89)

curlA × n = He × n on ∂Ω × (0,T), (2.90)

A · n = 0 on ∂Ω × (0,T), (2.91)

ψ1(x, 0) = ψ10(x) in Ω, (2.92)

ψ2(x, 0) = ψ20(x) in Ω, (2.93)

A(x, 0) = A0 in Ω, (2.94)

∇ · A(x, 0) = 0 in Ω. (2.95)

Hereafter, we will denote the above initial-boundary-value problem (2.85)-(2.87) and

(2.88)-(2.95) corresponding to the second approach of adding Type-A current as IBVP2.
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Compared to the first approach IBVP1, the second approach IBVP2 is more suitable

for numerical computation. However, in the theoretical analysis of the existence of a weak

solution to the 2B-TDGL equations with a Type-A current involved, it is more convenient

to work directly on IBVP1. As a result, we will use IBVP1 in our existence and uniqueness

analysis and in our finite-element analysis, but in the computational section, we will use

IBVP2 to obtain and present our computational results.
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CHAPTER 3

Analysis

In this chapter, we focus on the mathematical analysis of the solutions of the 2B-TDGL

equations gauged with the “current gauge” in the case where we assume that the supercon-

ductor in consideration has null gradient coupling effect, i.e., with η1 = 0. Future work

will investigate the case where η1 6= 0. We will work on the initial-boundary-value problem

IBVP1 and prove that there exists a unique weak solution to the 2B-TDGL equations under

the “current gauge”, by a method used by Du in his paper [2]. We will also proof that the

solution is uniformly bounded in Ω × [0, T ].

We define

V = L∞(0, T ; H1(Ω)) ∩H1(0, T ;L2(Ω)), (3.1)

V = L∞(0, T ;H1
n(Ω)) ∩ H1(0, T ;L2(Ω)), (3.2)

and denote the L2 inner products (f, g) =
∫

Ω
fg∗dΩ; (f, g)∂Ω =

∫

∂Ω
fg∗dS.

We assume that the following regularity assumptions hold throughout our work

RA: Assume that A0 := A(0,x) ∈ H1
n(div; Ω) ∩ H2(Ω) and for i = 1, 2, γi = γi(x) ≥ 0

for x ∈ ∂Ω and γi ∈ L∞(∂Ω), ψi0 := ψi(x, 0) = ψǫi (x, 0) ∈ H2(Ω) and |ψi0| ≤ a,

where a is defined in Theorem 3.2.16. For the external magnetic field, we assume He ∈
L∞(0, T ;L2(Ω)) ∩ L2(0, T ;H1(Ω)) ∩ H1(0, T ;H(curl; Ω)). For the Type-A applied current,

we assume ja|∂Ω ∈ H1(0, T ;H
1

2 (∂Ω)) ∩ L∞(0, T ;H
1

2 (∂Ω)).

Remark From the norm estimates (2.46) and (2.47), we can see that ja · n|∂Ω ∈
H1(0, T ;H− 1

2 (∂Ω)) ∩ L∞(0, T ;H− 1

2 (∂Ω)) implies jc ∈ H1(0, T ;H(div0; Ω)) ∩ L∞(0, T ;

H(div0; Ω)) ∩ C([0, T ];H(div0; Ω)). From this, the norm estimates (2.52) and (2.55) im-

ply that φc ∈ H1(0, T ;H1(Ω)) ∩ L∞(0, T ;H1(Ω)) ∩ C([0, T ];H1(Ω)); and also the norm
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estimates (2.62) and (2.64) imply that Ac ∈ H1(0, T ;H1
n(div; Ω)) ∩ L∞(0,T;H1

n(div; Ω)) ∩
C([0,T];H1

n(div; Ω)). The last three relations implies jc(x, 0) ∈ H(div0; Ω), φc(x, 0) ∈ H1(Ω)

and Ac(x, 0) ∈ H1
n(div; Ω), respectively. The regularity of He implies He(x, 0) ∈ L2(Ω). In

the course of the development of our mathematical analysis, we will show why and how we

impose these regularities.

3.1 Weak Formulations

We want to find a unique weak solution (ψ1, ψ2,A) = (ψ1, ψ2,A + Ac) ∈ V × V × V.

However, since Ac is known, we can instead find (ψ1, ψ2,A) in the following weak formulation

corresponding to the problem IBVP1 (2.71)-(2.73) and (2.75)-(2.82) with the “current

gauge” applied. After we have obtained all the results for the case of (ψ1, ψ2,A), we will

come back to investigate the case for (ψ1, ψ2,A).

Problem (WP): Under the regularity assumption RA, seek (ψ1, ψ2,A) = (ψ1, ψ2,A −
Ac) ∈ V × V × V, where Ac is given (see the space requirement below), by finding

(ψ1, ψ2,A) ∈ V × V × V such that for a.e. t ∈ [0, T ],

d

dt
(ψ1, ψ̃) + (iφcψ1, ψ̃) +

(

(|ψ1|2 − T1)ψ1, ψ̃
)

+

(

−i ξ1
x0

∇ψ1 −
x0

λ1

(A + Ac)ψ1, −i
ξ1
x0

∇ψ̃ − x0

λ1

(A + Ac)ψ̃

)

+ η(ψ2, ψ̃)

+ η1
ξ1
ξ2

1

ν

(

−i ξ2
x0

∇ψ2 − ν
x0

λ2

(A + Ac)ψ2, −i
ξ2
x0

∇ψ̃ − ν
x0

λ2

(A + Ac)ψ̃

)

+ γ1
ξ2
1

x2
0

(

ψ1, ψ̃
)

∂Ω
= 0 ∀ ψ̃ ∈ H1(Ω), (3.3)

Γ
d

dt
(ψ2, ψ̃) + Γ(iφcψ2, ψ̃) +

(

(|ψ2|2 − T2)ψ2, ψ̃
)

+

(

−i ξ2
x0

∇ψ2 − ν
x0

λ2

(A + Ac)ψ2, −i
ξ2
x0

∇ψ̃ − ν
x0

λ2

(A + Ac)ψ̃

)

+ ην2(ψ1, ψ̃)

+ η1
ξ2
ξ1
ν

(

−i ξ1
x0

∇ψ1 −
x0

λ1

(A + Ac)ψ1, −i
ξ1
x0

∇ψ̃ − x0

λ1

(A + Ac)ψ̃

)

+ γ2
ξ2
2

x2
0

(

ψ2, ψ̃
)

∂Ω
= 0 ∀ ψ̃ ∈ H1(Ω), (3.4)
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(curlA, curlÃ) + σ
x2

0

λ2
1

d

dt

(

A, Ã
)

+ ℜ
(

i
1

κ1

∇ψ1, ψ1Ã

)

+
x2

0

λ2
1

(

|ψ1|2(A + Ac), Ã
)

+ ℜ
(

i
1

ν

1

κ2

∇ψ2, ψ2Ã

)

+
x2

0

λ2
2

(

|ψ2|2(A + Ac), Ã
)

+ η1

(

ℜ
(

i
ξ1
λ2

∇ψ2, ψ1Ã

)

+ ℜ
(

i
ξ1
λ2

∇ψ1, ψ2Ã

))

+ η1
x2

0

λ1λ2

(

(ψ1ψ
∗
2 + ψ2ψ

∗
1)(A + Ac), Ã

)

= (He, curlÃ) ∀ Ã ∈ H1
n(Ω), (3.5)

with the initial conditions

ψ1(x, 0) = ψ10 ∈ H2(Ω) (3.6)

ψ2(x, 0) = ψ20 ∈ H2(Ω) (3.7)

A(x, 0) = A0 − Ac(x, 0) with A0 ∈ H2(Ω), (3.8)

where A0 = A(0,x).

The problem (WP) is not coercive in the current gauge because the curl bilinear form in

the weak form for Aǫ is not coercive; this theoretical difficulty can be avoided by working

on the following modified problem in which a regularization term in bilinear form of the

divergence operator is added.

Problem (WPǫ): Under the regularity assumption RA and for arbitrary 0 < ǫ ≤ 1, seek

(ψǫ1, ψ
ǫ
2,A

ǫ) = (ψǫ1, ψ
ǫ
2,A

ǫ − Ac) ∈ V × V × V, where Ac is given as in Problem (WP ), by

finding (ψǫ1, ψ
ǫ
2,A

ǫ) ∈ V × V × V such that for a.e. t ∈ [0, T ],

d

dt
(ψǫ1, ψ̃) + (iφcψ

ǫ
1, ψ̃) +

(

(

|ψǫ1|2 − T1

)

ψǫ1, ψ̃
)

+

(

−i ξ1
x0

∇ψǫ1 −
x0

λ1

(Aǫ + Ac)ψ
ǫ
1, −i

ξ1
x0

∇ψ̃ − x0

λ1

(Aǫ + Ac)ψ̃

)

+ η(ψǫ2, ψ̃) + γ1
ξ2
1

x2
0

(

ψǫ1, ψ̃
)

∂Ω
= 0 ∀ ψ̃ ∈ H1(Ω), (3.9)

Γ
d

dt
(ψǫ2, ψ̃) + Γ(iφcψ

ǫ
2, ψ̃) +

(

(

|ψǫ2|2 − T2

)

ψǫ2, ψ̃
)

+

(

−i ξ2
x0

∇ψǫ2 − ν
x0

λ2

(Aǫ + Ac)ψ
ǫ
2, −i

ξ2
x0

∇ψ̃ − ν
x0

λ2

(Aǫ + Ac)ψ̃

)

+ ην2(ψǫ1, ψ̃) + γ2
ξ2
2

x2
0

(

ψǫ2, ψ̃
)

∂Ω
= 0 ∀ ψ̃ ∈ H1(Ω), (3.10)
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σ
x2

0

λ2
1

d

dt

(

Aǫ, Ã
)

+ ǫ(divAǫ, divÃ) + (curlAǫ, curlÃ)

+ ℜ
(

i
1

κ1

∇ψ1, ψ1Ã

)

+
x2

0

λ2
1

(

|ψ1|2(Aǫ + Ac), Ã
)

(3.11)

+ ℜ
(

i
1

ν

1

κ2

∇ψ2, ψ2Ã

)

+
x2

0

λ2
2

(

|ψ2|2(Aǫ + Ac), Ã
)

= (He, curlÃ) ∀Ã ∈ H1
n(Ω),

The initial conditions are the same as the original problem (WP), but here for the proof

of existence and uniqueness of the solutions to this modified problem, we only need

ψ10, ψ20 ∈ H1(Ω). A H2 regularities for the initial conditions will be needed when we try to

seek for higher regularities for the time derivatives of the solutions. The initial conditions

are

ψǫ1(x, 0) = ψ10 ∈ H1(Ω) (3.12)

ψǫ2(x, 0) = ψ20 ∈ H1(Ω) (3.13)

Aǫ(x, 0) = A0 − Ac(x, 0) ∈ H1(Ω). (3.14)

We will also work with (ψǫ1, ψ
ǫ
2,A

ǫ) instead of (ψǫ1, ψ
ǫ
2,A

ǫ
), and come back to the later

case after all the results have been obtained for the first case.

We will use the standard techniques used by Lions in [46] and Temam in [45], namely,

Galerkin finite dimensional approximations and compactness methods to prove the existence

and uniqueness of the solutions of the modified semilinear parabolic problem (WPǫ). The

existence and uniqueness of the original problem (WP) is then proved by passage to the limit

ǫ→ 0, a method used in Du’s paper [2].

Since H1(Ω) and H1
n(Ω) are separable Hilbert spaces, there exists linearly independent

total sets {z1, . . . , zm, . . . } ∈ H1(Ω) and {w1, . . . ,wm, . . . } ∈ H1
n(Ω) such that span{zi} =

H1(Ω) and span{wi} = H1
n(Ω). Let Zn = span{z1, . . . , zn} and Λn = span{w1, . . . ,wn} be

the n-dimensional subspaces of H1(Ω) and H1
n(Ω) respectively.

For each n > 0, define approximate solutions ψǫ1n, ψ
ǫ
2n ∈ Zn and Aǫ

n ∈ Λn for the problem

(WPǫ) as

ψǫ1n =
n

∑

i=1

a1ni(t)zi(x), ψǫ2n =
n

∑

i=1

a2ni(t)zi(x), and Aǫ
n =

n
∑

i=1

bni(t)wi(x), (3.15)

such that ψǫ1n, ψ
ǫ
2n and Aǫ

n solve the following finite dimensional problem
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Problem (WPǫ
n
): For arbitrary ǫ, 0 < ǫ ≤ 1, find (ψǫ1n, ψ

ǫ
2n,A

ǫ
n) = (ψǫ1n, ψ

ǫ
2n,A

ǫ

n − Ac) ∈
Zn ×Zn × Λn such that for a.e. t ∈ [0, T ],

d

dt
(ψǫ1n, ψ̃n) + (iφcψ

ǫ
1n, ψ̃n) +

(

(|ψǫ1n|2 − T1)ψ
ǫ
1n, ψ̃n

)

+

(

−i ξ1
x0

∇ψǫ1n −
x0

λ1

(Aǫ
n

+ Ac)ψ
ǫ
1n, −i

ξ1
x0

∇ψ̃n −
x0

λ1

(Aǫ
n + Ac)ψ̃n

)

+ η(ψǫ2n, ψ̃n) + γ1
ξ2
1

x2
0

(

ψǫ1n, ψ̃n

)

∂Ω
= 0 ∀ ψ̃n ∈ Zn, (3.16)

Γ
d

dt
(ψǫ2n, ψ̃n) + Γ(iφcψ

ǫ
2n, ψ̃n) +

(

(|ψǫ2n|2 − T2)ψ
ǫ
2n, ψ̃n

)

+

(

−i ξ2
x0

∇ψǫ2n − ν
x0

λ2

(Aǫ
n

+ Ac)ψ
ǫ
2n, −i

ξ2
x0

∇ψ̃n − ν
x0

λ2

(Aǫ
n

+ Ac)ψ̃n

)

+ ην2(ψǫ1n, ψ̃n) + γ2
ξ2
2

x2
0

(

ψǫ2n, ψ̃n

)

∂Ω
= 0 ∀ ψ̃n ∈ Zn, (3.17)

σ
x2

0

λ2
1

d

dt

(

Aǫ
n, Ãn

)

+ ǫ(divAǫ
n, divÃn) + (curlAǫ

n, curlÃn)

+ ℜ
(

i
1

κ1

∇ψǫ1n, ψ1Ãn

)

+
x2

0

λ2
1

(

|ψ1|2(Aǫ
n + Ac), Ãn

)

(3.18)

+ ℜ
(

i
1

ν

1

κ2

∇ψǫ2n, ψ2Ãn

)

+
x2

0

λ2
2

(

|ψ2|2(Aǫ
n + Ac), Ãn

)

= (He, curlÃn) ∀Ãn ∈ Λn.

The initial conditions are:

ψǫ1n(x, 0) = ψ10n, (3.19)

ψǫ2n(x, 0) = ψ20n, (3.20)

Aǫ
n(x, 0) = A0n, (3.21)

where ψi0n is the orthogonal projection in H1(Ω) of ψi0 onto Zn, and A0n is the orthogonal

projection in H1
n(Ω) of A0 − Ac(x, 0) onto Λn.

As a result of the projections, we have

ψi0n → ψi0 in H1(Ω) as n → ∞, (3.22)

||ψi0n||1 ≤ ||ψi0||1, (3.23)

A0n → A0 − Ac(x, 0) in H1
n(Ω) as n → ∞, (3.24)

||A0n||1 ≤ ||A0||1. (3.25)
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3.2 Existence, Uniqueness and Boundedness of
Solutions

We begin our mathematical analysis by showing that the nonlinear system of ODEs obtained

from the problem (WPǫ
n) has a unique solution.

Lemma 3.2.1 Given any ǫ > 0 and n > 0, there exists a unique solution (ψǫ1n, ψ
ǫ
2n,A

ǫ
n)

satisfying the problem (WPǫ
n) in some time interval [0, Tn], where 0 < Tn ≤ T .

Proof It is well-known that the nonlinear system of ODEs for a one-band TDGL system

without the presence of time-dependent current and magnetic field is autonomous and

has a unique solution in [0, Tn]. Similarly this is true for a nonlinear ODE system for

a 2B-TDGL system without time-dependent current and field. With the presence of

the time dependent electric potential φc, vector potential Ac and applied magnetic field

He, the resulting nonlinear system of ODEs now becomes non-autonomous in the form

d
dt
U = F(U, t) = Fαβ(U, t), with α = 1, · · · , 3n; β = 1, · · · ,m, where U represents the

coefficient vector {a1n1, · · · , a1nn, a2n1, · · · , a2nn, bn1, · · · , bnn}, F is a matrix function and

m is the maximum number of terms in each of the individual equations (3.16)-(3.18). But

with the regularity assumptions that φc ∈ C([0, T ];H1(Ω)), Ac ∈ C([0, T ];H1
n(div; Ω)) and

He ∈ C([0, T ];L2(Ω)), all the functions Fαβ involving the time-dependent φc, Ac He are

Lipschitz in U and Lebesgue integrable in t for fixed U. Thus by the standard ODEs theory

(see, e.g., theorem II.3.2 in [58]), the system has a unique solution U which consists of

absolutely continuous functions in [0, Tn].

Remark By the standard theory of ODEs, the solution is defined on a maximal interval of

existence [0, Tn]. If Tn < T then we must have one of the coefficients {a1ni(t)}i, {a2ni(t)}i
or {bni(t)}i with magnitude tending to ∞ as t → Tn. However the a priori estimates that

we are going to prove later in the following lemmas and corollaries will show that all the

norms ||ψǫ1n||0, ||ψǫ2n||0 and ||Aǫ
n||0 are always bounded in [0, T ], for any T > 0. This in turn

shows that the magnitudes of the coefficients are actually bounded in [0, T ], thus we must

have Tn = T .
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Define an energy functional corresponding to the (steady state) PDEs of the modified

problem (WPǫ
n) as

F ǫ
n(ψ

ǫ
1n, ψ

ǫ
2n,A

ǫ
n) =

∫

Ω

{

1

2
(|ψǫ1n|2 − T1)

2 +

∣

∣

∣

∣

(

i
ξ1
x0

∇ +
x0

λ1

(Aǫ
n + Ac)

)

ψǫ1n

∣

∣

∣

∣

2

+
1

ν2

[

1

2
(|ψǫ2n|2 − T2)

2 +

∣

∣

∣

∣

(

i
ξ2
x0

∇ + ν
x0

λ2

(Aǫ
n + Ac)

)

ψǫ2n

∣

∣

∣

∣

2
]

+ ǫ|divAǫ
n|2 + |curlAǫ

n − He|2 + η(ψǫ1nψ
ǫ∗
2n + ψǫ∗1nψ

ǫ
2n)

}

dΩ

+

∫

∂Ω

{

γ1

∣

∣

∣

∣

ξ1
x0

ψǫ1n

∣

∣

∣

∣

2

+ γ2

∣

∣

∣

∣

1

ν

ξ2
x0

ψǫ2n

∣

∣

∣

∣

2 }

dS. (3.26)

Due to the interband coupling term η(ψǫ1nψ
ǫ∗
2n+ψǫ∗1nψ

ǫ
2n), F ǫ

n(ψ
ǫ
1n, ψ

ǫ
2n,A

ǫ
n) is not necessar-

ily a nonnegative functional. For mathematical convenience, we will work on the nonnegative

functional E ǫn defined as

E ǫn(ψǫ1n, ψǫ2n,Aǫ
n) =

∫

Ω

{

1

2

(

|ψǫ1n|2 − (T1 + |η|)
)2

+

∣

∣

∣

∣

(

i
ξ1
x0

∇ +
x0

λ1

(Aǫ
n + Ac)

)

ψǫ1n

∣

∣

∣

∣

2

+
1

ν2

[

1

2

(

|ψǫ2n|2 − (T2 + ν2|η|)
)2

+

∣

∣

∣

∣

(

i
ξ2
x0

∇ + ν
x0

λ2

(Aǫ
n + Ac)

)

ψǫ2n

∣

∣

∣

∣

2
]

+ ǫ(divAǫ
n)

2 + |curlAǫ
n − He|2 + |η|

∣

∣ψǫ1n + sign(η)ψǫ2n
∣

∣

2
}

dΩ

+

∫

∂Ω

{

γ1

∣

∣

∣

∣

ξ1
x0

ψǫ1n

∣

∣

∣

∣

2

+ γ2

∣

∣

∣

∣

1

ν

ξ2
x0

ψǫ2n

∣

∣

∣

∣

2 }

dS. (3.27)

The relationship between these two functionals is E ǫn = F ǫ
n +(T1 +T2)|η|+(1+ ν2)|η|2/2.

Clearly, both E ǫn and F ǫ
n have the same minimizer and give the same Euler-Lagrange

equations, namely the steady state 2-band GL equations.

Lemma 3.2.2 For any ǫ > 0, n > 0 and T > 0, and for t ∈ (0, T ), we have

dE ǫn
dt

+ 2||∂ψ
ǫ
1n

∂t
||20 + 2

Γ

ν2
||∂ψ

ǫ
2n

∂t
||20 + 2

σx2
0

λ2
1

||∂A
ǫ
n

∂t
||20

= 2

∫

Ω

φc

{

ℑ
(

ψǫ1n
∂ψǫ∗1n
∂t

)

+
Γ

ν2
ℑ

(

ψǫ2n
∂ψǫ∗2n
∂t

) }

dΩ

− 2

∫

Ω

∂He

∂t
· (∇× A − He)dΩ, (3.28)

where ℑ denotes the imaginary part.
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Proof Let the test function ψ̃n =
∂ψǫ

1n

∂t
in the weak form (3.16), and ψ̃n =

∂ψǫ
2n

∂t
in the weak

form (3.17). Also let Ãn = ∂Aǫ
n

∂t
in the weak form (3.18). Then we have

(∂ψǫ1n
∂t

,
∂ψǫ1n
∂t

)

+
(

iφcψ
ǫ
1n,

∂ψǫ1n
∂t

) =
( δE ǫn
δψǫ1n

,
∂ψǫ1n
∂t

)

,

Γ

ν2

(∂ψǫ2n
∂t

,
∂ψǫ2n
∂t

)

+
Γ

ν2

(

iφcψ
ǫ
2n,

∂ψǫ2n
∂t

) =
( δE ǫn
δψǫ2n

,
∂ψǫ2n
∂t

)

,

σ
x2

0

λ2
1

(∂Aǫ
n

∂t
,
∂Aǫ

n

∂t

)

=
( δE ǫn
δAǫ

n

,
∂Aǫ

n

∂t

)

.

On the other hand,

−1

2

d

dt
E ǫn(ψǫ1n, ψǫ2n,Aǫ

n) = ℜ
( δE ǫn
δψǫ1n

,
∂ψǫ1n
∂t

)

+ ℜ
( δE ǫn
δψǫ2n

,
∂ψǫ2n
∂t

)

+
( δE ǫn
δAǫ

n

,
∂Aǫ

n

∂t

)

+

∫

Ω

∂He

∂t
· (∇× A − He)dΩ.

Lemma 3.2.2 says that the energy functional E ǫn is not dissipative, i.e., it is not true that

dE ǫn/dt ≤ 0, unless φc = 0 and ∂He/∂t = 0. In other words, if there is an external current or

a non-stationary magnetic field applied to the superconductor, the energy functional E ǫn(t),
for t > 0, is not bounded by its initial value E ǫn(0). However, the next lemma tells us that

E ǫn(t) is nevertheless bounded as long as φc and (He)t is bounded in some norms.

Lemma 3.2.3 For any ǫ > 0, n > 0 and T > 0, and for t ∈ [0, T ],

E ǫn(t) ≤ eT
[

E ǫn(0) + ε
(

||ψǫ1n||4L4(0,T ;L4(Ω)) + ||ψǫ2n||4L4(0,T ;L4(Ω))

)

+Cε||φc||4L4(0,T ;L4(Ω)) + ||(He)t||2L2(0,T ;L2(Ω))

]

, (3.29)

where ε > 0 is some constant, and Cε is a constant depends on ε. Note that here ε 6= ǫ.
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Proof From lemma 3.2.2, we have

dE ǫn
dt

= −2||∂ψ
ǫ
1n

∂t
||20 − 2

Γ

ν2
||∂ψ

ǫ
2n

∂t
||20 − 2

σx2
0

λ2
1

||∂A
ǫ
n

∂t
||20

+ 2

∫

Ω

φc

{ [

ℑ
(

ψǫ1n
∂ψǫ∗1n
∂t

)

+
Γ

ν2
ℑ

(

ψǫ2n
∂ψǫ∗2n
∂t

)]

− ∂He

∂t
· (∇× A − He)

}

dΩ

≤ −2||∂ψ
ǫ
1n

∂t
||20 − 2

Γ

ν2
||∂ψ

ǫ
2n

∂t
||20 − 2

σx2
0

λ2
1

||∂A
ǫ
n

∂t
||20

+ 2||φc||0,4||ψǫ1n||0,4||
∂ψǫ1n
∂t

||0 + 2
Γ

ν2
||φc||0,4||ψǫ2n||0,4||

∂ψǫ2n
∂t

||0
+ 2||(He)t||0||∇ × A − He||0

≤ −||∂ψ
ǫ
1n

∂t
||20 −

Γ

ν2
||∂ψ

ǫ
2n

∂t
||20 − 2

σx2
0

λ2
1

||∂A
ǫ
n

∂t
||20

+ ||φc||20,4||ψǫ1n||20,4 +
Γ

ν2
||φc||20,4||ψǫ2n||20,4

+ ||(He)t||20 + ||∇ × A − He||20 (3.30)

≤
(

||ψǫ1n||20,4 +
Γ

ν2
||ψǫ2n||20,4

)

||φc||20,4 + ||(He)t||20 + E ǫn. (3.31)

The second to last inequality is obtained by using Young’s inequality. By Gronwall’s

inequality, we get, for some constant ε > 0,

E ǫn ≤ eT
[

E ǫn(0) +
(

||ψǫ1n||2L4(0,T ;L4(Ω)) +
Γ

ν2
||ψǫ2n||2L4(0,T ;L4(Ω))

)

||φc||2L4(0,T ;L4(Ω))

+ ||(He)t||2L2(0,T ;L2(Ω))

]

≤ eT
[

E ǫn(0) +
ε

2

(

||ψǫ1n||4L4(0,T ;L4(Ω)) + ||ψǫ2n||4L4(0,T ;L4(Ω))

)

+
1

2ε
(1 +

Γ2

ν4
)||φc||4L4(0,T ;L4(Ω)) + ||(He)t||2L2(0,T ;L2(Ω))

]

. (3.32)

Again, the last inequality is obtained by using Young’s inequality.

Lemma 3.2.4 Assume ψi0 ∈ H1(Ω) and A0, Ac(x, 0) ∈ H1
n(Ω), He(x, 0) ∈ L2(Ω), and also

φc ∈ L4(0, T ;L4) and (He)t ∈ L2(0, T ;L2(Ω)), then for any ǫ > 0, n > 0 and T > 0,

||ψǫ1n||4L∞(0,T ;L4(Ω)) + ||ψǫ2n||4L∞(0,T ;L4(Ω))

≤ C(Ω, T, ε1)
[

E ǫn(0) + ||φc||4L4(0,T ;L4(Ω)) + ||(He)t||2L2(0,T ;L2(Ω)) + 1
]

, (3.33)

where ε1 is some fixed constant. Therefore, the sequences {ψǫ1n} and {ψǫ1n} are uniformly

bounded, all independent of ǫ and n, in L∞(0, T ;L4(Ω)).
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Proof From the energy functional (3.27) we have, for any t ∈ [0, T ],

E ǫn ≥
∫

Ω

[

1

2

(

|ψǫ1n|2 − (T1 + |η|)
)2

+
1

ν2

1

2

(

|ψǫ2n|2 − (T2 + ν2|η|)
)2

]

dΩ

≥ 1

4

(

||ψǫ1n||40,4 +
1

ν2
||ψǫ2n||40,4

)

− C|Ω|.

Here in the last inequality, we have used the inequality |a − b|2 ≥ (1/2)|a|2 − |b|2.
Combining this inequality with the result of lemma 3.2.3, then for any t ∈ [0, T ],

1

4

(

||ψǫ1n||40,4 +
1

ν2
||ψǫ2n||40,4

)

− C(Ω) ≤ eT
[

E ǫn(0) + ε
(

||ψǫ1n||4L4(0,T ;L4(Ω)) + ||ψǫ2n||4L4(0,T ;L4(Ω))

)

+Cε||φc||4L4(0,T ;L4(Ω)) + ||(He)t||2L2(0,T ;L2(Ω))

]

.

By using the embedding L∞(0, T ;L4(Ω)) →֒ L4(0, T ;L4(Ω)) and rearranging the terms

in the above inequality, we get

(
1

4
− eT εD)||ψǫ1n||4L∞(0,T ;L4(Ω)) + (

1

4

1

ν2
− eT εD)||ψǫ2n||4L∞(0,T ;L4(Ω))

≤ C(Ω) + eT
[

E ǫn(0) + Cε||φc||4L4(0,T ;L4(Ω)) + ||(He)t||2L2(0,T ;L2(Ω))

]

,

where the constantD is the Sobolev embedding constant which depends only on Ω. If the first

three assumptions in lemma 3.2.4 hold, then by the initial conditions (3.19)-(3.21) and the

projection relations (3.22)-(3.25), we have ψǫin(x, 0) ∈ H1(Ω) and Aǫ
n(x, 0) ∈ H1

n(Ω). Also by

the trace theorem, we have ψǫin|∂Ω(x, 0) ∈ L2(∂Ω). Then from the energy functional (3.27),

we have E ǫn(0) ≤ E1
n(0) := E ǫ=1

n (0) bounded by a constant which depends only on ||ψi0||H1(Ω),

||A0||H1(Ω) and ||He(x, 0)||L2(Ω), and is thus independent of ǫ and n. Furthermore, if the

last two assumptions in lemma 3.2.4 hold, then the right hand side of the above inequality

is bounded. Therefore, by choosing a small enough ε = ε1 to make the constant on the

L.H.S. of the above inequality greater than zero, {ψǫ1n} and {ψǫ1n} are uniformly bounded in

L∞(0, T ;L4(Ω)), all independent of ǫ and n.

Corollary 3.2.5 Suppose the assumptions in lemma 3.2.4 hold, then for any ǫ > 0, n > 0

and T > 0, and for t ∈ [0, T ],

0 ≤ E ǫn(t) ≤ eTE <∞, (3.34)

where E = C(Ω, T, ε1)
[

E1
n(0) + ||φc||4L4(0,T ;L4(Ω)) + ||(He)t||2L2(0,T ;L2(Ω)) + 1

]

is a constant

independent of ǫ and n. Here ε1 is the constant picked in the proof of lemma 3.2.4.
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Proof This is a consequence of the embedding L∞(0, T ;L4(Ω) →֒ L4(0, T ;L4(Ω), lemma

3.2.3 and lemma 3.2.4. Recall that E ǫn is a nonnegative functional by definition in (3.27).

Lemma 3.2.6 Suppose the assumptions in lemma 3.2.4 hold, then for any ǫ > 0, n > 0 and

T > 0,

||∂ψ
ǫ
1n

∂t
||2L2(0,T ;L2(Ω)) + ||∂ψ

ǫ
2n

∂t
||2L2(0,T ;L2(Ω)) + ||∂A

ǫ
n

∂t
||2

L2(0,T ;L2(Ω)) ≤ (1 + eTT )E, (3.35)

where the constant E is defined in corollary 3.2.5. Therefore, the sequences {∂ψ
ǫ
1n

∂t
} and

{∂ψ
ǫ
2n

∂t
} are uniformly bounded in L2(0, T ;L2(Ω)), and {∂Aǫ

n

∂t
} is uniformly bounded in

L2(0, T ;L2(Ω)), all independent of ǫ and n.

Proof From the inequality (3.30)-(3.31),

dE ǫn
dt

+ ||∂ψ
ǫ
1n

∂t
||20 +

Γ

ν2
||∂ψ

ǫ
2n

∂t
||20 + 2

σx2
0

λ2
1

||∂A
ǫ
n

∂t
||20

≤
(

||ψǫ1n||20,4 +
Γ

ν2
||ψǫ2n||20,4

)

||φc||20,4 + ||(He)t||20 + E ǫn. (3.36)

Integrating the above inequality w.r.t. time over [0, T ] and by using Young’s inequality,

we get

||∂ψ
ǫ
1n

∂t
||2L2(0,T ;L2(Ω)) +

Γ

ν2
||∂ψ

ǫ
2n

∂t
||2L2(0,T ;L2(Ω)) + 2

σx2
0

λ2
1

||∂A
ǫ
n

∂t
||2

L2(0,T ;L2(Ω))

≤ E ǫn(0) − E ǫn(T ) + ε1

(

||ψǫ1n||4L4(0,T ;L4(Ω)) + ||ψǫ2n||4L4(0,T ;L4(Ω))

)

+Cε1||φc||4L4(0,T ;L4(Ω)) + ||(He)t||2L2(0,T ;L2(Ω)) +

∫ T

0

E ǫn(t)dt.

≤ E ǫn(0) + ε1

(

||ψǫ1n||4L4(0,T ;L4(Ω)) + ||ψǫ2n||4L4(0,T ;L4(Ω))

)

+Cε1||φc||4L4(0,T ;L4(Ω)) + ||(He)t||2L2(0,T ;L2(Ω)) + eTTE (by corollary 3.2.5)

≤ E + eTTE,

here the constant ε1 appeared in the above inequalities is the same constant picked in the

proof of the lemma 3.2.4. Note that the terms, excluding the last term in the second

inequality above are exactly the same as those in the right hand side of the inequality

(3.29) in lemma 3.2.3 from which and lemma 3.2.4 with the choice of ε1, we equal these

terms to the constant E defined in corollary 3.2.5.
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Lemma 3.2.7 Suppose the assumptions in lemma 3.2.4 hold and He ∈ L∞(0, T ;L2(Ω)),

then for any ǫ > 0, n > 0 and T > 0,

ǫ||divAǫ
n||2L∞(0,T ;L2(Ω)) +

1

2
||curlAǫ

n||2L∞(0,T ;L2(Ω)) ≤
(

eTE + ||He||2L∞(0,T ;L2(Ω))

)

, (3.37)

where the constant E is defined in corollary 3.2.5. Therefore, the sequence {Aǫ
n} is uniformly

bounded in L∞(0, T ;H1
n(Ω)), independent of n but dependent on ǫ.

Proof From equation (3.27), we have for any t ∈ (0, T ],

E ǫn ≥ ǫ||divAǫ
n||20 + ||curlAǫ

n − He||20
≥ ǫ||divAǫ

n||20 +
1

2
||curlAǫ

n||20 − ||He||20.

Then corollary 3.2.5 gives the inequality (3.37). Now since the norm for the space H1
n(Ω)

is equal to ||divAǫ
n||0 + ||curlAǫ

n||0, see (2.23), we have

||Aǫ
n||2L∞(0,T ;H1

n(Ω)) ≤ 1

min{ǫ, 1
2
}
(

eTE + ||He||2L∞(0,T ;L2(Ω))

)

.

Thus if He ∈ L∞(0, T ;L2(Ω)), the sequence {Aǫ
n} is uniformly bounded in L∞(0, T ;H1

n(Ω)),

independent of n but dependent on ǫ.

Lemma 3.2.8 Suppose the assumptions in lemma 3.2.7 hold and Ac ∈ L∞(0, T ;L4(Ω)),

then for any ǫ > 0, n > 0 and T > 0,

||∇ψǫ1n||2L∞(0,T ;L2(Ω)) + ||∇ψǫ2n||2L∞(0,T ;L2(Ω)) (3.38)

≤ C1

[

eTE + C2

(

||ψǫ1n||2L∞(0,T ;L4(Ω)) + ||ψǫ2n||2L∞(0,T ;L4(Ω))

)

||(Aǫ
n + Ac)||2L∞(0,T ;L4(Ω))

]

,

where the constant E is defined in corollary 3.2.5, and C1 and C2 are independent of ǫ and

n. Therefore, the sequences {ψǫ1n} and {ψǫ2n} are uniformly bounded in L∞(0, T ;H1(Ω)),

independent of n but dependent on ǫ.
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Proof
∫

Ω

∣

∣

∣

∣

(

i
ξ1
x0

∇ +
x0

λ1

(Aǫ
n + Ac)

)

ψǫ1n

∣

∣

∣

∣

2

dΩ

=

∫

Ω

{

( ξ1
x0

)2|∇ψǫ1n|2 +
(x0

λ1

)2|(Aǫ
n + Ac)|2|ψǫ1n|2

+ i
ξ1
λ1

(Aǫ
n + Ac) · (ψǫ∗1n∇ψǫ1n − ψǫ1n∇ψǫ∗1n)

}

dΩ

≥
∫

Ω

{

( ξ1
x0

)2|∇ψǫ1n|2 − 2
ξ1
λ1

|ψǫ∗1n∇ψǫ1n| · (Aǫ
n + Ac)

}

dΩ

≥
( ξ1
x0

)2||∇ψǫ1n||20 −
1

ε

( ξ1
λ1

)2||ψǫ1n||20,4||Aǫ
n + Ac||20,4 − ε||∇ψǫ1n||20.

Similarly, we have

∫

Ω

∣

∣

∣

∣

(

i
ξ2
x0

∇ + ν
x0

λ2

(Aǫ
n + Ac)

)

ψǫ2n

∣

∣

∣

∣

2

dΩ

≥
( ξ2
x0

)2||∇ψǫ2n||20 −
1

ε

(

ν
ξ1
λ1

)2||ψǫ2n||20,4)||Aǫ
n + Ac||20,4 − ε||∇ψǫ2n||20.

From the energy functional (3.27), we have for t ∈ (0, T ],

∫

Ω

[
∣

∣

∣

∣

(

i
ξ1
x0

∇ +
x0

λ1

(Aǫ
n + Ac)

)

ψǫ1n

∣

∣

∣

∣

2

+

∣

∣

∣

∣

(

i
ξ2
x0

∇ + ν
x0

λ2

(Aǫ
n + Ac)

)

ψǫ2n

∣

∣

∣

∣

2 ]

dΩ ≤ E ǫn.

Combining the above inequalities, we get for t ∈ (0, T ],

[( ξ1
x0

)2 − ε
]

||∇ψǫ1n||20 +
[( ξ2
x0

)2 − ε
]

||∇ψǫ2n||20

≤ eTE +
1

ε

( ξ1
λ1

)2||ψǫ1n||20,4||Aǫ
n + Ac||20,4 +

1

ε

(

ν
ξ1
λ1

)2||ψǫ2n||20,4||Aǫ
n + Ac||20,4.

Now by lemma 3.2.4, {ψǫ1n} and {ψǫ2n} are uniformly bounded in L∞(0, T ;L4(Ω)). Also

by lemma 3.2.7, {Aǫ
n} is uniformly bounded in L∞(0, T ;H1

n(Ω)), dependent on ǫ. So if in

addition Ac ∈ L∞(0, T ;L4(Ω)), then by choosing ε small enough, we arrive at the inequality

(3.38) and thus the lemma is proved.

Up to this point, we summarize the requirement of the spaces for φc, Ac and He. We need

φc ∈ L4(0, T ;L4) and Ac ∈ L∞(0, T ;L4(Ω)). For He, we require He ∈ H1(0, T ;L2(Ω)) ∩
L∞(0, T ;L2(Ω)). For the initial conditions, we need ψi0 ∈ H1(Ω) and A0, Ac(x, 0) ∈ H1

n(Ω),

and also He(x, 0) ∈ L2(Ω).
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Hereafter unless otherwise stated, we will assume that the following regularity assump-

tions are satisfied throughout the rest of this work:

RA1: Assume that ψi0 ∈ H1(Ω), A0, Ac(x, 0) ∈ H1
n(Ω), He(x, 0) ∈ L2(Ω), φc ∈

L4(0, T ;H1(Ω)), Ac ∈ L∞(0, T ;H1
n(Ω)) (Ac · n = 0, see equation (2.60)) and He ∈

H1(0, T ;L2(Ω)) ∩ L∞(0, T ;L2(Ω)).

Now with all the a priori estimates established, the remark following lemma 3.2.1 says

that Tn = T .

Corollary 3.2.9 Given ǫ > 0, n > 0 and T > 0, there exists a unique global solution

(ψǫ1n, ψ
ǫ
2n,A

ǫ
n) ∈ V × V × V satisfying the problem (WPǫ

n) in [0, T ].

Corollary 3.2.10 Given ǫ > 0 and T > 0, the sequence {(ψǫ1n, ψǫ2n,Aǫ
n)} is uniformly

bounded in V × V × V, independent of n only.

The following standard lemma and corollary can be found, for example, in [2] and [46].

Lemma 3.2.11 (Aubin-Lions) Let B be a Banach space and Bi, i = 0, 1, be Hilbert spaces.

Suppose that B0 →֒→֒ B, i.e., the embedding is compact, and suppose that B →֒ B1, i.e., the

embedding is continuous, then

Lp(0, T ;B0) ∩W 1,q(0, T ;B1) →֒→֒ Lp(0, T ;B) ∀1 < p, q <∞.

Corollary 3.2.12 Given ǫ > 0 and T > 0, there exists an element (ψǫ1, ψ
ǫ
2,A

ǫ) ∈ V×V×V,

and subsequences {ψǫ1nk
}, {ψǫ2nk

} and {Aǫ
nk
} such that as n→ ∞,

ψǫ1nk
⇀ ψǫ1 weakly (and

∗
⇀ weakly∗) in V ,

ψǫ2nk
⇀ ψǫ2 weakly (and

∗
⇀ weakly∗) in V ,

Aǫ
nk

⇀ Aǫ weakly (and
∗
⇀ weakly∗) in V,

and

ψǫ1nk
→ ψǫ1 strongly in Lp(0,T;Lq(Ω)),

ψǫ2nk
→ ψǫ2 strongly in Lp(0,T;Lq(Ω)),

Aǫ
nk

→ Aǫ strongly in Lp(0,T;Lq(Ω)),

where p ∈ (1,∞), and q ∈ (1,∞) for d = 2 and q ∈ (1, 6) for d = 3.

52



With the weak (weak*) and strong convergence of the limits, we can pass to the limit

nk → ∞ to prove that the limits together form a solution satisfying the modified problem

(WPǫ).

Theorem 3.2.13 Given ǫ > 0 and T > 0, the weak (weak*) limit (ψǫ1, ψ
ǫ
2,A

ǫ) in corollary

3.2.12 is a solution of the problem (WPǫ).

Proof We want to show that when passing to the limit nk → ∞, the system equations (3.16)-

(3.21) in the problem (WPǫ
n) converge to the system equations (3.9)-(3.14) in the problem

(WPǫ), respectively. Once we have shown the convergence of the following nonlinear terms,

it remains to be a standard procedure to show the convergence of the system equations and

the initial conditions, see for example [45], [46]. For convenience, we will write an element

of a subsequence, for example, ψǫ1nk
simple as ψǫ1n.

For ϕ ∈ C∞
0 [0, T ] and ψ̃ ∈ Zn,

(I)

∣

∣

∣

∣

∫ T

0

(

|ψǫ1n|2ψǫ1n − |ψǫ1|2ψǫ1, ψ̃
)

ϕdt

∣

∣

∣

∣

≤
∫ T

0

∫

Ω

[

(∣

∣|ψǫ1n|2 − |ψǫ1|2
∣

∣

)

|ψǫ1n| + |ψǫ1|2 |ψǫ1n − ψǫ1|
]

|ϕψ̃| dΩdt

=

∫ T

0

∫

Ω

[

(
∣

∣|ψǫ1n| − |ψǫ1|
∣

∣

)

(|ψǫ1n| + |ψǫ1|) |ψǫ1n| + |ψǫ1|2 |ψǫ1n − ψǫ1|
]

|ϕψ̃| dΩdt

≤
∫ T

0

||ψǫ1n − ψǫ1||0
[

(||ψǫ1n||1 + ||ψǫ1||1) ||ψǫ1n||1 + ||ψǫ1||21
]

||ϕψ̃||1 dt

≤ ||ψǫ1n − ψǫ1||L2(0,T ;L2(Ω))

[

(

||ψǫ1n||L∞(0,T ;H1(Ω)) + ||ψǫ1||L∞(0,T ;H1(Ω))

)

||ψǫ1n||L∞(0,T ;H1(Ω))

+ ||ψǫ1||2L∞(0,T ;H1(Ω))

]

||ϕψ̃||L2(0,T ;H1(Ω))

→ 0 as n→ ∞.

Here in the above second inequality, we have use the Sobolev embedding H1(Ω) →֒ Lq(Ω),

for 1 ≤ q ≤ 6. The convergence in the last inequality is justified by the fact that ψǫ1n → ψǫ1

strongly in L2(0, T ;L2(Ω)) by corollary 3.2.12, and that ψǫ1n, ψ
ǫ
1 ∈ L∞(0, T ;H1(Ω)) by lemma

3.2.8 and corollary 3.2.12, respectively.

For the convergence of the nonlinear term in

(

−i ξ1
x0

∇ψǫ1n −
x0

λ1

(Aǫ
n

+ Ac)ψ
ǫ
1n, −i

ξ1
x0

∇ψ̃ − x0

λ1

(Aǫ
n + Ac)ψ̃

)

,
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we have, after dropping the constants,

(II)

∣

∣

∣

∣

∫ T

0

∫

Ω

[

(Aǫ
n + Ac) · ∇ψǫ1n − (Aǫ + Ac) · ∇ψǫ1

]

ϕψ̃ dΩdt

∣

∣

∣

∣

≤
∫ T

0

∫

Ω

[

∣

∣(∇ψǫ1n −∇ψǫ1) · (Aǫ + Ac)ϕψ̃
∣

∣ +
∣

∣∇ψǫ1n · (Aǫ
n − Aǫ)ϕψ̃

∣

∣

]

dΩdt

≤
∫ T

0

(

(∇ψǫ1n −∇ψǫ1), (Aǫ + Ac)ϕψ̃
)

dt

+ ||∇ψǫ1n||L∞(0,T ;L2(Ω)) ||Aǫ
n − Aǫ||L2(0,T ;L4) ||ϕψ̃||L2(0,T ;H1) dt

→ 0 as n→ ∞.

In the above last inequality, the first right hand side (R.H.S.) term converges to zero

by the fact that ψǫ1nk

∗
⇀ ψǫ1 in L∞(0, T ;H1(Ω)) as shown in corollary 3.2.12, and note

that now by the regularity of Aǫ and Ac, we have (Aǫ + Ac)ϕψ̃ ∈ L∞(0, T ;L2(Ω))d ⊂
L1(0, T ;L2(Ω))d, here d = 2, 3. The second R.H.S. term converges to zero because

Aǫ
n → Aǫ strongly in L2(0,T;L4(Ω)), again from corollary 3.2.12.

(III)

∣

∣

∣

∣

∫ T

0

∫

Ω

[

(Aǫ
n + Ac)ψ

ǫ
1n − (Aǫ + Ac)ψ

ǫ
1

]

· ϕ∇ψ̃ dΩdt
∣

∣

∣

∣

≤
∫ T

0

∫

Ω

[

∣

∣(Aǫ
n − Aǫ) · ψǫ1nϕ∇ψ̃

∣

∣ +
∣

∣(ψǫ1n − ψǫ1)(A
ǫ − Ac) · ϕ∇ψ̃

∣

∣

]

dΩdt

≤ ||Aǫ
n − Aǫ||L2(0,T ;L4) ||ψǫ1n||L∞(0,T ;L4(Ω)) ||ϕ∇ψ̃||L2(0,T ;L2) dt

+ ||ψǫ1n − ψǫ1||L2(0,T ;L4(Ω)) ||Aǫ − Ac||L∞(0,T ;L4) ||ϕ∇ψ̃||L2(0,T ;L2)

→ 0 as n→ ∞.

Again, the above convergence is justified by lemma 3.2.7, lemma 3.2.8 and corollary

3.2.12.

Now for the boundary term, first note that the trace operator

γ : Lq(0, T ;H1(Ω)) → Lq(0, T ;H 1

2 (∂Ω))

defined upon the usual trace operator γ0 as

γ(ψ(t)) = γ0(ψ(t)) := ψ(t)|∂Ω in the trace sense, ∀t ∈ [0,T],

is linear and continuous. Indeed, if ψn → ψ in Lq(0, T ;H1(Ω)) as n→ ∞, then by the trace

theorem, we have
∫ T

0

||γ0ψn − γ0ψ||qH 1
2 (∂Ω))

≤ C

∫ T

0

||ψn − ψ||qH1(Ω)) → 0 as n→ ∞.
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Therefore the operator γ is also weakly continuous [53]. As a result, we have

ψǫ1n ⇀ ψǫ1 in L2(0,T;H1(Ω)) =⇒ γ(ψǫ1n) ⇀ γ(ψǫ1) in L2(0,T;H 1

2 (∂Ω)). (3.39)

So by the weak convergence, and note that γ(ϕψ̃) ∈ L2(0, T ;L2(∂Ω)) ⊂ L2(0, T ;H− 1

2 (∂Ω)),

we have

(IV )

∣

∣

∣

∣

∫ T

0

〈 [

γ0(ψ
ǫ
1n) − γ0(ψ

ǫ
1)

]

, γ0(ϕψ̃)
〉

∂Ω
dt

∣

∣

∣

∣

→ 0 as n→ ∞,

here 〈·, ·〉∂Ω denotes the duality pairing on the boundary ∂Ω.

The convergence of rest of the other terms can be derived either analogous to the proof

in (I) or in (II). For instance, following the steps in (I), we get

∣

∣

∣

∣

∫ T

0

∫

Ω

[

|Aǫ
n + Ac|2ψǫ1n − |Aǫ + Ac|2ψǫ1

]

ϕψ̃ dΩdt

∣

∣

∣

∣

→ 0 as n→ ∞.

Lemma 3.2.14 Given ǫ > 0 and T > 0, let (ψǫ11 , ψ
ǫ1
2 ,A

ǫ1) and (ψǫ21 , ψ
ǫ2
2 ,A

ǫ2) be any

two solutions of the problem (WPǫ); let (ψǫ11 (x, 0), ψǫ12 (x, 0),Aǫ1(x, 0)) = (ψ1
10, ψ

1
20,A

1
0) and

(ψǫ21 (x, 0), ψǫ22 (x, 0),Aǫ2(x, 0)) = (ψ2
10, ψ

2
20,A

2
0) be any two corresponding initial conditions.

Also let ψ̃ǫ1 = ψǫ11 − ψǫ21 , ψ̃ǫ2 = ψǫ12 − ψǫ22 , and Ãǫ = Aǫ1 − Aǫ2, then for t ∈ [0, T ],

||ψ̃ǫ1(t)||20 + ||ψ̃ǫ2(t)||20 + ||Ãǫ(t)||20
≤ C(T )

(

||ψ1
10 − ψ2

10||20 + ||ψ1
20 − ψ2

20||20 + ||A1
0 − A2

0||20
)

, (3.40)

where the constant C(T ) is dependent of T but independent of ǫ.

Proof Let the weak form (3.9) of the problem (WPǫ) be denoted as G1((ψǫ1, ψ
ǫ
2,A

ǫ); ψ̃),

then G1((ψǫ11 , ψ
ǫ1
2 ,A

ǫ1); ψ̃ǫ1) −G1((ψǫ21 , ψ
ǫ2
2 ,A

ǫ2); ψ̃ǫ1) gives

∫ t

0

∫

Ω

{

∂ψ̃ǫ1
∂t

ψ̃ǫ∗1 + iφc|ψ̃ǫ1|2 +
(

(|ψǫ11 |2 − T1)ψ
ǫ1
1 − (|ψǫ21 |2 − T1)ψ

ǫ2
1

)

ψ̃ǫ∗1

+
( ξ1
x0

)2|∇ψ̃ǫ1|2 + i
ξ1
λ1

(Aǫ1 + Ac) · (ψ̃ǫ∗1 ∇ψǫ11 − ψǫ11 ∇ψ̃ǫ∗1 )

− i
ξ1
λ1

(Aǫ2 + Ac) · (ψ̃ǫ∗1 ∇ψǫ21 − ψǫ21 ∇ψ̃ǫ∗1 )

+
(x0

λ1

)2|Aǫ1 + Ac|2ψǫ11 ψ̃ǫ∗1 −
(x0

λ1

)2|Aǫ2 + Ac|2ψǫ21 ψ̃ǫ∗1 + η ψ̃ǫ2ψ̃
ǫ∗
1

}

dΩds

+

∫ t

0

∫

∂Ω

γ1
ξ2
1

x2
0

|ψ̃ǫ1|2d∂Ωds = 0.
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Taking the real part of the above equation, we get for t ∈ [0, T ] that

1

2

∫ t

0

d

dt
||ψ̃ǫ1||20 ds+

( ξ1
x0

)2
∫ t

0

||∇ψ̃ǫ1||20 ds

≤
∫ t

0

∫

Ω

ℜ
{

(

(|ψǫ21 |2 − T1)ψ
ǫ2
1 − (|ψǫ11 |2 − T1)ψ

ǫ1
1

)

ψ̃ǫ∗1

− i
ξ1
λ1

(Aǫ1 + Ac) · (ψ̃ǫ∗1 ∇ψǫ11 − ψǫ11 ∇ψ̃ǫ∗1 )

+ i
ξ1
λ1

(Aǫ2 + Ac) · (ψ̃ǫ∗1 ∇ψǫ21 − ψǫ21 ∇ψ̃ǫ∗1 )

−
(x0

λ1

)2|Aǫ1 + Ac|2ψǫ11 ψ̃ǫ∗1 +
(x0

λ1

)2|Aǫ2 + Ac|2ψǫ21 ψ̃ǫ∗1 − η ψ̃ǫ2ψ̃
ǫ∗
1

}

dΩds

≤
∫ t

0

∫

Ω

ℜ
{

−
[

(|ψǫ11 |2 − T1)ψ̃
ǫ
1 + (ψǫ1∗1 ψ̃ǫ1 + ψǫ21 ψ̃

ǫ∗
1 )ψǫ21

]

ψ̃ǫ∗1

− i
ξ1
λ1

Ãǫ · (ψ̃ǫ∗1 ∇ψǫ11 − ψǫ11 ∇ψ̃ǫ∗1 ) − i
ξ1
λ1

(Aǫ2 + Ac) · (ψ̃ǫ∗1 ∇ψ̃ǫ1 − ψ̃ǫ1∇ψ̃ǫ∗1 )

−
(x0

λ1

)2[
Ãǫ · (Aǫ1 + Aǫ2 + 2Ac)ψ

ǫ1
1 ψ̃

ǫ∗
1 + |Aǫ2 + Ac|2|ψ̃ǫ1|2

]

− η ψ̃ǫ2ψ̃
ǫ∗
1

}

dΩds

≤
∫ t

0

{

|T1| ||ψ̃ǫ1||20 + ||ψǫ11 ||0,4||ψǫ21 ||0,4||ψ̃ǫ1||20,4 + |η| ||ψ̃ǫ2||0||ψ̃ǫ1||0

+
ξ1
λ1

[

||Ãǫ||0,4 ||ψ̃ǫ1||0,4 ||∇ψǫ11 ||0 + ||Ãǫ||0,4 ||ψǫ11 ||0,4 ||∇ψ̃ǫ1||0

+ 2||Aǫ2 + Ac||0,4 ||ψ̃ǫ1||0,4 ||∇ψ̃ǫ1||0
]

+
(x0

λ1

)2||Ãǫ||0,4 ||Aǫ1 + Aǫ2 + 2Ac||0,4 ||ψǫ11 ||0,4 ||ψ̃ǫ1||0,4
}

ds

≤
∫ t

0

{

|T1| ||ψ̃ǫ1||20 + ||ψǫ11 ||0,4||ψǫ21 ||0,4||ψ̃ǫ1||20,4 +
|η|
2

(||ψ̃ǫ2||20 + ||ψ̃ǫ1||20)

+
ξ1
2λ1

[

||Ãǫ||20,4||∇ψǫ11 ||20 + ||ψ̃ǫ1||20,4 +
1

ε
||Ãǫ||20,4 ||ψǫ11 ||20,4 + ε||∇ψ̃ǫ1||20

+
1

ε
||Aǫ2 + Ac||20,4 ||ψ̃ǫ1||20,4 + 2ε||∇ψ̃ǫ1||20

]

+
(x0

λ1

)2
[

||Ãǫ||20,4 (||Aǫ1 + Ac||20,4 + ||Aǫ2 + Ac||20,4) ||ψǫ11 ||20,4 + ||ψ̃ǫ1||20,4
]}

ds
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≤
∫ t

0

{

|T1| ||ψ̃ǫ1||20 + ||ψǫ11 ||0,4||ψǫ21 ||0,4
(

Cε′||ψ̃ǫ1||20 + ε′||∇ψ̃ǫ1||20
)

+
|η|
2

(||ψ̃ǫ2||20 + ||ψ̃ǫ1||20)

+
ξ1
2λ1

[

(

||∇ψǫ11 ||20 +
1

ε
||ψǫ11 ||20,4

) (

Dε′′||Ãǫ||20 + ε′′||∇Ãǫ||20
)

+
(

1 +
1

ε
||Aǫ2 + Ac||20,4

) (

Cε′||ψ̃ǫ1||20 + ε′||∇ψ̃ǫ1||20
)

+ 3ε||∇ψ̃ǫ1||20
]

+
(x0

λ1

)2
[

(||Aǫ1 + Ac||20,4 + ||Aǫ2 + Ac||20,4) ||ψǫ11 ||20,4
(

Dε′′||Ãǫ||20 + ε′′||∇Ãǫ||20
)

+
(

Cε′||ψ̃ǫ1||20 + ε′||∇ψ̃ǫ1||20
)

]}

ds.

In the last inequality, we have used the following Sobolev inequality

||u||20,4 ≤ C||u||0 ||u||1
= C||u||0 (||u||20 + ||∇u||20)

1

2

≤ C2 1

2ε
||u||20 +

ε

2
(||u||20 + ||∇u||20)

≤ Cε||u||20 +
ε

2
||∇u||20.

Rearranging the terms gives

1

2

∫ t

0

d

dt
||ψ̃ǫ1||20 ds

+

∫ t

0

{[

( ξ1
x0

)2 − ε′||ψǫ11 ||1||ψǫ21 ||1

− ξ1
2λ1

(

3ε+ ε′
(

1 +
1

ε
||Aǫ2 + Ac||21

)

)

− ε′
(x0

λ1

)2
]

||∇ψ̃ǫ1||20

− ε′′
[

ξ1
2λ1

(

||∇ψǫ11 ||20 +
1

ε
||ψǫ11 ||21

)

+
(x0

λ1

)2
(||Aǫ1 + Ac||21 + ||Aǫ2 + Ac||21) ||ψǫ11 ||21

]

||∇Ãǫ||20
}

ds

≤
∫ t

0

{[

|T1| +
|η|
2

+ Cε′

(

||ψǫ11 ||1||ψǫ21 ||1 +
ξ1
2λ1

(

1 +
1

ε
||Aǫ2 + Ac||21

)

+
(x0

λ1

)2
)]

||ψ̃ǫ1||20

+Dε′′

[

ξ1
2λ1

(

||∇ψǫ11 ||20 +
1

ε
||ψǫ11 ||21

)

+
(x0

λ1

)2
(||Aǫ1 + Ac||21

+ ||Aǫ2 + Ac||21) ||ψǫ11 ||21
]

||Ãǫ||20 +
|η|
2
||ψ̃ǫ2||20

}

ds. (3.41)
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Similarly, for ψ̃ǫ2, we have

1

2

∫ t

0

d

dt
||ψ̃ǫ2||20 ds

+

∫ t

0

{[

( ξ2
x0

)2 − ε′||ψǫ12 ||1||ψǫ22 ||1 − ν
ξ2
2λ2

(

3ε+ ε′
(

1 +
1

ε
||Aǫ2 + Ac||21

)

)

− ε′
(

ν
x0

λ2

)2
]

||∇ψ̃ǫ2||20

− ε′′
[

ν
ξ2
2λ2

(

||∇ψǫ12 ||20 +
1

ε
||ψǫ12 ||21

)

+
(

ν
x0

λ2

)2
(||Aǫ1 + Ac||21 + ||Aǫ2 + Ac||21) ||ψǫ12 ||21

]

||∇Ãǫ||20
}

ds

≤
∫ t

0

{[

|T2| + ν2 |η|
2

+ Cε′

(

||ψǫ12 ||1||ψǫ22 ||1 + ν
ξ2
2λ2

(

1 +
1

ε
||Aǫ2 + Ac||21

)

+
(

ν
x0

λ2

)2
)]

||ψ̃ǫ2||20

+Dε′′

[

ν
ξ2
2λ2

(

||∇ψǫ12 ||20 +
1

ε
||ψǫ12 ||21

)

+
(

ν
x0

λ1

)2
(||Aǫ1 + Ac||21

+ ||Aǫ2 + Ac||21) ||ψǫ12 ||21
]

||Ãǫ||20 + ν2 |η|
2
||ψ̃ǫ1||20

}

ds. (3.42)

As for Ãǫ, first let the weak form (3.11) of the problem (WPǫ) be denoted as

G2((ψǫ1, ψ
ǫ
2,A

ǫ); Ã), then G2((ψǫ11 , ψ
ǫ1
2 ,A

ǫ1); Ãǫ) −G2((ψǫ21 , ψ
ǫ2
2 ,A

ǫ2); Ãǫ) gives

σ
x2

0

2λ2
1

∫ t

0

d

dt
||Ãǫ||20 ds+

∫ t

0

[

ǫ||divÃǫ||20 + ||curlÃǫ||20
]

ds

+

∫ t

0

{

ℜ
(

i
1

κ1

(∇ψǫ11 ψǫ1∗1 −∇ψǫ21 ψǫ2∗1 ), Ãǫ

)

+
x2

0

λ2
1

(

|ψǫ11 |2(Aǫ1 + Ac) − |ψǫ21 |2(Aǫ2 + Ac), Ã
ǫ
)

+ ℜ
(

i
1

ν

1

κ2

(∇ψǫ12 ψǫ1∗2 −∇ψǫ22 ψǫ2∗2 ), Ãǫ

)

+
x2

0

λ2
2

(

|ψǫ12 |2(Aǫ1 + Ac) − |ψǫ22 |2(Aǫ2 + Ac), Ã
ǫ
)

}

ds = 0.
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This gives

σ
x2

0

2λ2
1

∫ t

0

d

dt
||Ãǫ||20 ds+

∫ t

0

[

ǫ||divÃǫ||20 + ||curlÃǫ||20
]

ds

≤
∫ t

0

{

−ℜ
(

i
1

κ1

(∇ψǫ11 ψ̃ǫ∗1 + ∇ψ̃ǫ1ψǫ2∗1 ), Ãǫ

)

− x2
0

λ2
1

(

|ψǫ11 |2Ãǫ + (|ψǫ11 |2 − |ψǫ21 |2)(Aǫ2 + Ac), Ã
ǫ
)

− ℜ
(

i
1

ν

1

κ2

(∇ψǫ12 ψ̃ǫ∗2 −∇ψ̃ǫ2ψǫ2∗2 ), Ãǫ

)

− x2
0

λ2
2

(

|ψǫ12 |2Ãǫ + (|ψǫ12 |2 − |ψǫ22 |2)(Aǫ2 + Ac), Ã
ǫ
)

}

ds

≤
∫ t

0

{

1

κ1

[

||∇ψǫ11 ||0||ψ̃ǫ1||0,4 + ||∇ψ̃ǫ1||0 ||ψǫ21 ||0,4
]

||Ãǫ||0,4

+
x2

0

λ2
1

||ψ̃ǫ1||0,4
(

||ψǫ11 ||0,4 + ||ψǫ21 ||0,4
)

||Aǫ2 + Ac||0,4 ||Ãǫ||0,4

+
1

ν

1

κ2

[

||∇ψǫ12 ||0||ψ̃ǫ2||0,4 + ||∇ψ̃ǫ2||0 ||ψǫ22 ||0,4
]

||Ãǫ||0,4

+
x2

0

λ2
2

||ψ̃ǫ2||0,4
(

||ψǫ12 ||0,4 + ||ψǫ22 ||0,4
)

||Aǫ2 + Ac||0,4 ||Ãǫ||0,4
}

ds

≤
∫ t

0

{

1

2κ1

[

||∇ψǫ11 ||20
(

Dε′′||Ãǫ||20 + ε′′||∇Ãǫ||20
)

+
(

Cε′||ψ̃ǫ1||20 + ε′||∇ψ̃ǫ1||20
)

+
1

ε
||ψǫ21 ||21

(

Dε′′||Ãǫ||20 + ε′′||∇Ãǫ||20
)

+ ε||∇ψ̃ǫ1||20
)

]

+
x2

0

λ2
1

[

(

||ψǫ11 ||21 + ||ψǫ21 ||21
)

||Aǫ2 + Ac||21
(

Dε′′||Ãǫ||20 + ε′′||∇Ãǫ||20
)

+
(

Cε′||ψ̃ǫ1||20 + ε′||∇ψ̃ǫ1||20
)

]

+
1

ν

1

2κ2

[

||∇ψǫ12 ||20
(

Dε′′||Ãǫ||20 + ε′′||∇Ãǫ||20
)

+
(

Cε′||ψ̃ǫ2||20 + ε′||∇ψ̃ǫ2||20
)

+
1

ε
||ψǫ22 ||21

(

Dε′′||Ãǫ||20 + ε′′||∇Ãǫ||20
)

+ ε||∇ψ̃ǫ2||20
)

]

+
x2

0

λ2
2

[

(

||ψǫ12 ||21 + ||ψǫ22 ||21
)

||Aǫ2 + Ac||21
(

Dε′′||Ãǫ||20 + ε′′||∇Ãǫ||20
)

+
(

Cε′||ψ̃ǫ2||20 + ε′||∇ψ̃ǫ2||20
)

]}

ds.
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Rearranging the terms gives

σ
x2

0

2λ2
1

∫ t

0

d

dt
||Ãǫ||20 ds+

∫ t

0

{[

ǫC − ε′′
(

1

2κ1

(

||∇ψǫ11 ||20 +
1

ε
||ψǫ21 ||21

)

+
x2

0

λ2
1

(

||ψǫ11 ||21 + ||ψǫ21 ||21
)

||Aǫ2 + Ac||21 +
1

ν

1

2κ2

(

||∇ψǫ12 ||20 +
1

ε
||ψǫ22 ||21

)

+
x2

0

λ2
2

(

||ψǫ12 ||21 + ||ψǫ22 ||21
)

||Aǫ2 + Ac||21
)]

||∇Ãǫ||20

−
( 1

2κ1

(ε′ + ε) +
x2

0

λ2
1

ε′
)

||∇ψ̃ǫ1||20 −
(1

ν

1

2κ2

(ε′ + ε) +
x2

0

λ2
2

ε′
)

||∇ψ̃ǫ2||20
}

ds

≤
∫ t

0

{

Dε′′

[

1

2κ1

(

||∇ψǫ11 ||20 +
1

ε
||ψǫ21 ||21

)

+
x2

0

λ2
1

(

||ψǫ11 ||21 + ||ψǫ21 ||21
)

||Aǫ2 + Ac||21

+
1

ν

1

2κ2

(

||∇ψǫ12 ||20 +
1

ε
||ψǫ22 ||21

)

+
x2

0

λ2
2

(

||ψǫ12 ||21 + ||ψǫ22 ||21
)

||Aǫ2 + Ac||21
]

||Ãǫ||20

+ Cε′

[

( 1

2κ1

+
x2

0

λ2
1

)

||ψ̃ǫ1||20 +
(1

ν

1

2κ2

+
x2

0

λ2
2

)

||ψ̃ǫ2||20
]}

ds. (3.43)

In the left hand side (L.H.S.) of the last inequality, we have used the following inequality

which is from (2.23)

ǫC||∇Ãǫ||20 ≤ ǫ||divÃǫ||20 + ||curlÃǫ||20 ∀A ∈ H1
n(Ω).

Now choose ε, ε′ and ε′′ small enough such that the integrands in the L.H.S. of the

inequalities (3.41), (3.42) and (3.43) are all positive, then combining these three inequalities,

we get for t ∈ [0, T ] that

1

2

[

||ψ̃ǫ1(t)||20 + ||ψ̃ǫ2(t)||20 + σ
x2

0

2λ2
1

||Ãǫ(t)||20
]

+

∫ t

0

{

C ′
1||∇ψ̃ǫ1(t)||20 + C ′

2||∇ψ̃ǫ2(t)||20 + C ′
ǫ||∇Ãǫ(t)||20

}

ds

≤ 1

2

[

||ψ̃ǫ1(0)||20 + ||ψ̃ǫ2(0)||20 + σ
x2

0

2λ2
1

||Ãǫ(0)||20
]

+

∫ t

0

{

C ′
3||ψ̃ǫ1(t)||20 + C ′

4||ψ̃ǫ2(t)||20 + C ′
5||Ãǫ(t)||20

}

ds, (3.44)

where all the constants are greater than zero and bounded independent of time. They are

bounded independent of time because all the norms appearing in these constants involve

only ||ψǫji ||m and/or ||Aǫj||m, where i, j,m = 0, 1; and recall that ψǫ1, ψ
ǫ
2 ∈ L∞(0, T ;H1(Ω))

and Aǫ ∈ L∞(0, T ;H1(Ω)). Also note that all these constants, except C ′
ε, are implicitly
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dependent on ǫ, this is because the bound of the norm ||Aǫ||L∞(0,T ;H1(Ω)) is dependent of

ǫ. In theorem 3.2.22, we will show that this bound is actually independent of ǫ, thus the

constants on the R.H.S. of the inequality (3.44) are actually independent of ǫ. This fact is

reflected in the statement of this lemma. Applying Gronwall’s inequality in integral form to

the inequality (3.44) gives the continuous data dependency of the solution (ψǫ1, ψ
ǫ
2,A

ǫ) on

the initial data, as expressed in (3.40).

By setting (ψ1
10, ψ

1
20,A

1
0) = (ψ2

10, ψ
2
20,A

2
0), we conclude that all weakly (and weakly*)

convergence subsequences have the same limit. This gives us the following theorem.

Theorem 3.2.15 Given ǫ > 0 and T > 0, the sequence {(ψǫ1n, ψǫ2n,Aǫ
n)} converges weakly

(and weakly*) in V × V × V to the unique solution (ψǫ1, ψ
ǫ
2,A

ǫ) of the problem (WPǫ).

We want to stress that the uniqueness of (ψǫ1, ψ
ǫ
2,A

ǫ) depends on the choice of a particular

Ac which in turn depends on the choice of jc. Recall that jc as a divergence free lifting

function of ja · n|∂Ω is not unique.

Next we state that the solutions ψǫ1 and ψǫ2 satisfy the “maximum” principle.

Theorem 3.2.16 For any ǫ > 0 and T > 0, let (ψǫ1, ψ
ǫ
2,A

ǫ) be a solution of the problem

(WPǫ), and let Υ = max{|T1|, |T2|}, η∗ = max {|η|, |η|ν2} and a =
√

4η∗ + Υ. Suppose

|ψǫ1(x, 0)| = |ψ10| ≤ a and |ψǫ2(x, 0)| = |ψ20| ≤ a a.e. in Ω, then |ψǫ1(x, t)| ≤ a and

|ψǫ2(x, t)| ≤ a a.e. in Ω × [0, T ].

Proof Let ψ1 = f1 exp (iθ1) and ψ2 = f2 exp (iθ2), where f1 = |ψ1| and f2 = |ψ2|, and θ1

and θ2 are the phases of ψ1 and ψ2, respectively. Then we have

ℜ
{

(

∂ψǫ1
∂t

+ i φaψ
ǫ
1

)

+
(

ψǫ1|2 − T1

)

ψǫ1 +

(

−i ξ1
x0

∇− x0

λ1

A

)2

ψǫ1 + ηψǫ2

}

= (f1)t −
ξ1
x0

△f1 + |x0

λ1

A − ξ1
x0

∇θ1|2f1 + (f 2
1 − 1)f1 + ηf2 cos(θ2 − θ1)

= 0 in Ω × (0,T),(3.45)

ℜ
{

Γ

(

∂ψǫ2
∂t

+ i φaψ
ǫ
2

)

+
(

|ψǫ2|2 − T2

)

ψǫ2 +

(

−i ξ2
x0

∇− ν
x0

λ2

A

)2

ψǫ2 + ην2ψ1

}

= Γ(f2)t −
ξ2
x0

△f2 + |ν x0

λ2

A − ξ2
x0

∇θ2|2f2 + (f 2
2 − 1)f2 + ην2f1 cos(θ2 − θ1)

= 0 in Ω × (0,T). (3.46)
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And f1 and f2 also satisfy the real parts of the boundary and initial conditions, namely,

the following boundary and initial conditions:

∇f1 · n = −γ1f1 on ∂Ω × (0,T), (3.47)

∇f2 · n = −γ2f2 on ∂Ω × (0,T), (3.48)

f1(x, 0) = |ψǫ1(x, 0)| in Ω, (3.49)

f2(x, 0) = |ψǫ2(x, 0)| in Ω. (3.50)

Recall that γi ∈ L∞(∂Ω) and γi(x) ≥ 0 on ∂Ω.

Assume momentarily that a, with a ≥ 1, is an unknown constant to be determined.

Define time-independent subdomain Ω+ = {f1 > a or f2 > a} for almost all t ∈ [0, T ], and

define time-dependent subdomain Ωt
+ = {f1(t) > a or f2(t) > a} for a specific t ∈ [0, T ].

Then for a specific t ∈ [0, T ], Ωt
+ = Ωt

1 ∪ Ωt
2 ∪ Ωt

3, where Ωt
1 = {f1(t) > a and f2(t) > a},

Ωt
2 = {f1(t) > a and f2(t) ≤ a} and Ωt

3 = {f1(t) ≤ a and f2(t) > a}.
We want to find an appropriate value of a such that the measure |Ω+| = 0. Multiplying

both sides of equations (3.45) and (3.46) by (f1 − a)+ and (f2 − a)+ respectively, then

integrating over Ω, we get

0 =
1

2

d

dt

∫

Ω

((f1 − a)+)2dΩ +
ξ1
x0

∫

Ω

|∇(f1 − a)+|2dΩ

+

∫

Ω

|x0

λ1

A − ξ1
x0

∇θ1|2f1(f1 − a)+dΩ

+

∫

Ω

[

(f 2
1 − T1)f1 + ηf2 cos(θ2 − θ1)

]

(f1 − a)+dΩ

−
∫

∂Ω

∇f1(f1 − a)+ · n dS

=
1

2

d

dt

∫

Ω

((f1 − a)+)2dΩ +
ξ1
x0

∫

Ω

|∇(f1 − a)+|2dΩ

+

∫

Ω

|x0

λ1

A − ξ1
x0

∇θ1|2f1(f1 − a)+dΩ

+

∫

Ω

[

(f 2
1 − T1)f1 + ηf2 cos(θ2 − θ1)

]

(f1 − a)+dΩ

+

∫

∂ΩN

γ1f1(f1 − a)+ dS, by boundary condition (3.47). (3.51)
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And similarly,

0 =
1

2

d

dt

∫

Ω

Γ((f2 − a)+)2dΩ +
ξ2
x0

∫

Ω

|∇(f2 − a)+|2dΩ

+

∫

Ω

|ν x0

λ2

A − ξ2
x0

∇θ2|2f2(f2 − a)+dΩ

+

∫

Ω

[

(f 2
2 − T2)f2 + ην2f1 cos(θ2 − θ1)

]

(f2 − a)+dΩ

+

∫

∂ΩN

γ2f2(f2 − a)+ dS, by boundary condition (3.48). (3.52)

Then by adding equations (3.51) and (3.52), dropping some positive terms including the

boundary integrals, and replacing cos(θ2 − θ1) with −1, we get

0 ≥ 1

2

d

dt

∫

Ω

[

((f1 − a)+)2 + Γ((f2 − a)+)2
]

dΩ

+

∫

Ω

[

(f 2
1 − T1)f1(f1 − a)+ + (f 2

2 − T2)f2(f2 − a)+

]

dΩ

−
∫

Ω

η∗ [f2(f1 − a)+ + f1(f2 − a)+] dΩ (3.53)

For the integrand in the second term of the above inequality (3.53), we have

2
∑

i=1

(f 2
i − Ti)fi(fi − a)+ ≥

2
∑

i=1

(f 2
i − Υ)fi(fi − a)+. (3.54)

Applying the Chebyshev’s sum inequality 1
n

∑n
i=1 aibi ≥ ( 1

n

∑n
i=1 ai)(

1
n

∑n
i=1 bi) twice to

the above inequality (3.54), we get

2
∑

i=1

(f 2
i − Ti)fi(fi − a)+ ≥ 1

4

[

2
∑

i=1

(f 2
i − Υ)

] [

2
∑

i=1

fi

] [

2
∑

i=1

(fi − a)+

]

. (3.55)

For the integrand in the third term of the inequality (3.53), we get

−η∗ [f2(f1 − a)+ + f1(f2 − a)+] ≥ −η∗
[

f 2
1 + f 2

2

]
1

2

[

((f1 − a)+)2 + ((f2 − a)+)2
]

1

2

≥ −2η∗ [f1 + f2] [(f1 − a)+ + (f2 − a)+] . (3.56)

In the above inequality (3.56), the first inequality is obtained by applying the Cauchy-

Schwarz inequality
∑

aibi ≤ (
∑

a2
i )

1

2 (
∑

b2i )
1

2 , and the second inequality is by applying the

inequality |a+ b| 12 ≤ 2
1

2 (|a| 12 + |b| 12 ).
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Combining these two inequalities, (3.53) becomes

0 ≥ 1

2

d

dt

∫

Ω

[

((f1 − a)+)2 + Γ((f2 − a)+)2
]

dΩ

+

∫

Ω

[

1

4

(

(f 2
1 − Υ) + (f 2

2 − Υ)
)

− 2η∗
]

[f1 + f2]

× [(f1 − a)+ + (f2 − a)+] dΩ. (3.57)

Now we investigate the conditions (values of a) that make the last integral in the above

inequality (3.57) greater or equal to zero, in particular, in the term 1
4
((f 2

1 − Υ) + (f 2
2 − Υ))−

2η∗.

If for some t ∈ [0, T ], the integration domain is Ωt
1, i.e., both f1(t) and f2(t) > a ≥ 1,

then we need

inf
Ωt

1

{(f 2
1 + f 2

2 − 2Υ)} ≥ 8η∗.

We set inf f1 = inf f2 = a in Ωt
1 and this gives

a2 − Υ ≥ 4η∗.

Thus we require

a ≥
√

4η∗ + Υ. (3.58)

Therefore, if we set a =
√

4η∗ + Υ, then the last integrand in (3.57) is always greater or

equal to zero in Ωt
1.

Now we want to consider the case in Ωt
2 and Ωt

3. First suppose for some t ∈ [0, T ], the

integration domain is in Ωt
2, i.e., f1(t) > a ≥ 1 and f2(t) ≤ a, then from equation (3.53) all

terms involving f2 vanish so we have

0 ≥ 1

2

d

dt

∫

Ω

((f1 − a)+)2dΩ +

∫

Ω

[

(f 2
1 − T1)f1 − η∗f2

]

(f1 − a)+dΩ

≥ 1

2

d

dt

∫

Ω

((f1 − a)+)2dΩ +

∫

Ω

[

(f 2
1 − Υ)f1 − η∗a

]

(f1 − a)+dΩ. (3.59)

Here we have replaced max f2 in Ωt
2 with a in the last integral. We set inf f1 = a ≥ 1 in

Ωt
2, and use the value of a we obtained previously, i.e., a =

√
4η∗ + Υ, then we have

inf
Ωt

2

{(f 2
1 − Υ)f1 − η∗a} = (a2 − Υ)a− η∗a

= (4η∗ − η∗)a

≥ 0. (3.60)
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Therefore in the case of Ωt
2, we have

0 ≥ 1

2

d

dt

∫

Ω

((f1 − a)+)2dΩ. (3.61)

This same argument for Ωt
2 but now with f1 ≤ a and f2 > a ≥ 1 gives us the same result

for the case in Ωt
3, i.e.,

0 ≥ 1

2

d

dt

∫

Ω

Γ((f2 − a)+)2dΩ. (3.62)

Combining all the above three cases, we conclude that for almost all t ∈ [0, T ],

d

dt

∫

Ω

[

((f1 − a)+(x, t))2 + Γ((f2 − a)+(x, t))2
]

dΩ

=
d

dt

[

∫

Ω

[

((f1 − a)+(x, t))2 + Γ((f2 − a)+(x, t))2
]

χΩt
1

(x, t) dΩ

+

∫

Ω

((f1 − a)+(x, t))2χΩt
2

(x, t) dΩ +

∫

Ω

Γ((f2 − a)+(x, t))2χΩt
3

(x, t) dΩ
]

≤ 0, (3.63)

where χΩt
i
(x, t) is the characteristics function dependent on time, since Ωt

i is time-dependent.

Integrating (3.63) w.r.t. time from 0 to t, we get
∫

Ω

[

((f1 − a)+(x, t))2 + Γ((f2 − a)+(x, t))2
]

dΩ

≤
∫

Ω

[

((f1 − a)+(x, 0))2 + Γ((f2 − a)+(x, 0))2
]

dΩ. (3.64)

But the R.H.S. of equation (3.64) is equal to zero, since by assumption f1(x, 0) ≤ a and

f2(x, 0) ≤ a. This implies that |Ω+| = 0. Therefore we must have fi(x, t) = |ψi(x, t)| ≤ a

a.e. in Ω × [0, T ], for both i = 1, 2. This completes the proof.

From lemma 3.2.7 we know that ||divAǫ||L∞(0,T ;L2)(Ω) is not uniformly bounded w.r.t. ǫ

and hence {(ψǫ1, ψǫ2,Aǫ)} is not uniformly bounded in V×V×V. In order to pass to the limit

ǫ → 0 to obtain a solution for the original problem (WP), we need to establish a uniform

bound on ||divAǫ||L∞(0,T ;L2)(Ω). This implies that ||Aǫ||L∞(0,T ;H1(Ω)) is uniformly bounded,

independent of ǫ which in turn, from lemma 3.2.8 implies that {ψǫ1} and {ψǫ2} are uniformly

bounded in L∞(0, T ;H1(Ω)), independent of ǫ. Finally, this says that {(ψǫ1, ψǫ2,Aǫ)} is

uniformly bounded in V × V × V, independent of ǫ.

We will prove that ||divAǫ||L∞(0,T ;L2) is uniformly bounded in theorem 3.2.22. But first

we need to establish some results of higher regularities for later proofs. By expanding and
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rearranging the terms in the PDEs (2.71)-(2.73), the differential equations corresponding to

the problem (WPǫ) can be rewritten as the following two boundary-value problems:

Problem (P1): For i = 1, 2,

− ξ
2
i

x2
0

△ψǫi = fi in Ω,×(0, T ), (3.65)

∂ψǫi
∂n

= −γiψǫi on ∂Ω × (0, T ), (3.66)

where γi(x) ≥ 0, for x ∈ ∂Ω and γi ∈ L∞(∂Ω). And

f1 = −
(

∂ψǫ1
∂t

+ i φcψ
ǫ
1

)

− (|ψǫ1|2 − T1)ψ
ǫ
1 − i

ξ1
λ1

(

(Aǫ + Ac) · ∇ψǫ1 −∇ · (ψǫ1(Aǫ + Ac))
)

− x2
0

λ2
1

|Aǫ + Ac|2ψǫ1 − ηψǫ2, (3.67)

f2 = −Γ

(

∂ψǫ2
∂t

+ i φcψ
ǫ
2

)

− (|ψǫ2|2 − T2)ψ
ǫ
2 − i

ξ2
λ2

(

(Aǫ + Ac) · ∇ψǫ2 −∇ · (ψǫ2(Aǫ + Ac))
)

− x2
0

λ2
2

|Aǫ + Ac|2ψǫ2 − ηψǫ1. (3.68)

And for Aǫ,

Problem (P2):

−ǫ∇divAǫ + curl(curlAǫ − He) = g Ω × (0, T ), (3.69)

Aǫ · n = 0 on ∂Ω,×(0, T ), (3.70)

(curlAǫ − He) × n = 0 on ∂Ω × (0, T ), (3.71)

where

g = −σx
2
0

λ2
1

∂Aǫ

∂t

+ i
1

2κ1

(ψǫ1∇ψǫ∗1 − ψǫ∗1 ∇ψǫ1) −
x2

0

λ2
1

|ψǫ1|2(Aǫ + Ac)

+ i
1

ν

1

2κ2

(ψǫ2∇ψǫ∗2 − ψǫ∗2 ∇ψǫ2) −
x2

0

λ2
2

|ψǫ2|2(Aǫ + Ac). (3.72)

Clearly the unique solution (ψǫ1, ψ
ǫ
2,A

ǫ) of the weak problem (WPǫ) in [0, T ] is weak

solutions of the above boundary-value problems (P1) and (P2). Since (ψǫ1, ψ
ǫ
2,A

ǫ) ∈ V ×V×
V, together with the regularity assumptions made in RA1 and note that the compatibility

condition
∫

Ω
fi dΩ = 〈γiψǫi , 1〉∂Ω is satisfied by the weak form with ψ̃ = 1, then after two
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successive applications of the theory of H2-regularity on elliptic BVPs on a convex polygon Ω

(see e.g., [44]), we obtain for i = 1, 2, fi ∈ L2(0, T ;L2(Ω)), ∂ψǫi/∂n|∂Ωj
∈ L2(0, T ;H 1

2 (∂Ωj)),

where ∂Ωj ∈ {edges of the polygon}, and thus ψǫi ∈ L2(0, T ;H2(Ω)).

With this new regularity result of ψǫi , plus the regularity assumptions RA1, we can

see from equation (3.72) that g ∈ L2(0, T ;L2(Ω)). Then by using the result of Helmholtz

decomposition of L2(Ω) (see e.g.,[44]), we obtain the following lemma.

Lemma 3.2.17 For a.e. t ∈ [0, T ], assume g ∈ L2(Ω) and He ∈ H1(Ω). Then the problem

(P2) has a unique weak solution Aǫ ∈ H1
n(Ω) such that div Aǫ ∈ H1(Ω) and curlAǫ ∈ H1(Ω).

Proof The proof is similar to that of Theorem 2.1 in [17] with minor modification to take

into account the regularization coefficient ǫ.

Again using Helmholtz decomposition, for a.e. t ∈ [0, T ], g can be decomposed as

g = ∇q + curl θ, (3.73)

where q ∈ H1(Ω)/R is the only solution of

(∇q,∇v) = (g,∇v) ∀v ∈ H1(Ω), (3.74)

and θ ∈ H1
0 (Ω) (in R

2 case) is the only solution of

(curl θ, curlw) = (g −∇q, curlw) ∀w ∈ H1
0 (Ω). (3.75)

Comparing to equations (3.69), we set

q = −ǫdivAǫ, (3.76)

θ = curlAǫ −He, (3.77)

and provided He ∈ L2(0, T ;H1(Ω)) (here in 2D, we assumed that He = Hez), then we can

see that by the results in theorem (3.2.17) and by virtue of the lemma 3.2.20 below, equation

(3.69)-(3.71) satisfies equation (3.74). From the Neumann problem (3.74), we get

||ǫdivAǫ||1 ≤ ||∇q||0
≤ ||g||0, (3.78)
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where the first inequality are obtained by the fact stated after the inequality (2.52), and

the second inequality (3.78) follows directly from equation (3.74). We can also see that

equation (3.69) with (3.76)-(3.77) satisfies (3.75). From the fact that in R
2, (curlu, curl v) =

(∇u, ∇v) for all u, v ∈ H1(Ω), we obtain from the Dirichlet problem (3.75) and Poincaré

inequality that

||curlAǫ||1 ≤ ||∇θ||0
≤ C||g||0. (3.79)

Therefore, from the H1 norm estimates (3.78) and (3.79), we get divAǫ ∈ L2(0, T ;H1(Ω))

and curlAǫ ∈ L2(0, T ;H1(Ω)).

Next we want to show that ∂Aǫ/∂t ∈ L2(0, T ;H1(Ω)). We start with a lemma.

Lemma 3.2.18 Given a fixed ǫ > 0, assume f ∈ L2(0, T ; (H1
n(Ω))′), H ∈ L2(0, T ;H(curl; Ω))

and A(0) ∈ L2(Ω). Then the following IBVP has a unique weak solution A ∈
L2(0, T ;H1

n(Ω)) ∩ H1(0, T ; (H1
n(Ω))′).

∂A

∂t
− ǫ∇(div A) + curl2A = f + curlH in Ω (3.80)

A · n = 0 on ∂Ω, (3.81)

(curlA − H) × n = 0 on ∂Ω, (3.82)

A(0) = A0 in Ω. (3.83)

Proof We demonstrate the proof by using Rothe’s method (see, e.g. [47] and [45]) which

is useful to find higher regularity for time-dependent problem. First consider the following

problem

−ǫ∇(div A) + curl2A + τA = f + curlH in Ω

A · n = 0 on ∂Ω,

(curlA − H) × n = 0 on ∂Ω,

where τ is a real positive constant. Denote V = H1
n(Ω). Define L̃ : V 7→ V′ as

〈L̃(A), B〉 = ǫ(div A, div B) + (curlA, curlB) + τ(A, B) ∀A, B ∈ V.

Then the weak form of the above problem can be written as

〈L̃(A), B〉 = 〈f , B〉 + 〈H, curlB〉 ∀B ∈ V,
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By Lax-Milgram’s theorem, the above problem has a unique weak solution A ∈ V.

Let k = T/n, for n ≥ 1, and tm = mk. Define L : L(0, T ;V) 7→ L(0, T ;V′) as

〈L(A), B〉 = ǫ(div A, div B) + (curlA, curlB).

Also define fm,Hm ∈ V′, 1 ≤ m ≤ n as

fm =
1

k

∫ tm

tm−1

f(t)dt,

Hm =
1

k

∫ tm

tm−1

H(t)dt.

Define the following problem from which we want to use Rothe’s method to show that it’s

solution when pass to limit is a solution of the problem (3.80)-(3.83).

Problem (FP): Find Am ∈ V, for m = 1, · · · , n, such that

Am − Am−1

k
+ L(Am) = Fm in V′, (3.84)

A0 = A0,

where 〈Fm, B〉 = 〈fm, B〉 + 〈Hm, curlB〉, for all B ∈ V.

Then by the result above, there is a unique solution Am ∈ V. Thus this problem is

well-defined.

Next we get a priori estimate independent of k. By applying the identity 2(a − b, a) =

|a|2 − |b|2 + |a− b|2 to the following equation

(Am − Am−1, Am) + kǫ(div Am, div Am) + k(curlAm, curlAm) = k〈fm, Am〉 + (Hm, curlAm)

we get

||Am||20 − ||Am−1||20 + ||Am − Am−1||20 + 2kǫ||divAm||20 + 2k||curlAm||20
≤ k

δ
||fm||V′ + δk||Am||V + k||Hm||20 + k||curlAm||20

≤ k

δ
||fm||V′ + δkC(||div Am||20 + ||curlAm||20) + k||Hm||20 + k||curlAm||20.

By choosing δ = ǫ/C and using the discrete Gronwall’s inequality, we get

max
1≤m≤n

||Am||20 +
n

∑

1

||Am − Am−1||20 + ǫk

n
∑

1

||div Am||20 + (1 − ǫ)k
n

∑

1

||curlAm||20

≤ ||A0||20 +
kC

ǫ

n
∑

1

||fm||2
V′ + k

n
∑

1

||Hm||20

≤ ||A0||20 +
C

ǫ
||f ||2

L2(0,T ;V′) + ||H||2
L2(0,T ;L2(Ω)), (3.85)
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where we have used the inequality (see [45])

k

n
∑

1

||fm||2
V′ ≤

∫ T

0

||f(t)||2
V′dt, k

n
∑

1

||Hm||20 ≤
∫ T

0

||H(t)||20dt

From (3.84), we get

∣

∣

∣

∣

∣

∣

∣

∣

Am − Am−1

k

∣

∣

∣

∣

∣

∣

∣

∣

V′

≤ ||L(Am)||V′ + ||Fm||V′

≤ ǫ||div Am||0 + ||curlAm||0 + ||fm||V′ + ||Hm||0. (3.86)

Using the result in (3.85) and summing the inequality above from m = 1 to n, we get

k
n

∑

1

∣

∣

∣

∣

∣

∣

∣

∣

Am − Am−1

k

∣

∣

∣

∣

∣

∣

∣

∣

2

V′

≤ Cǫ(||A0||20 + ||f ||2
L2(0,T ;V′) + ||H||2

L2(0,T ;L2(Ω))). (3.87)

Define An : [0, T ] 7→ V as An(t) = Am, for t ∈ [(m − 1)k, mk], m = 1, · · · , n. Also

define Ãn : [0, T ] 7→ V as Ãn(t) = Am − (tm − t)(Am − Am−1)/k, for t ∈ [(m − 1)kmk],

m = 1, · · · , n. Note that

∂Ãn

∂t
(t) =

Am − Am−1

k
for (m− 1)k < t < mk.

Then from the estimates (3.85) and (3.87), we have

{An} and {Ãn} uniformly bounded in L∞(0, T ;L2(Ω)) ∩ L2(0, T ;V),

{∂(Ãn)

∂t
} uniformly bounded in L2(0, T ;V′).

As a result, there are subsequences {Ank
} of {An} and {Ãnk

} of {Ãn} such that

Ank
⇀ A in L2(0, T ;V), (3.88)

∗
⇀ A in L∞(0, T ;L2(Ω)), (3.89)

Ãnk
⇀ Ã in L2(0, T ;V), (3.90)

∗
⇀ Ã in L∞(0, T ;L2(Ω)), (3.91)

∂Ãnk

∂t
⇀ (Ã)t in L2(0, T ;V′). (3.92)

Now we show that An → Ãn in L2(0, T ;L2(Ω)). Indeed, since

Ãn − An =
t−mk

k
(Am − Am−1) for (m− 1)k ≤ t ≤ mk,
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this gives

n
∑

1

∫ mk

(m−1)k

||Ãn − An||20dt =
n

∑

1

k

3
||Am − Am−1||20.

By the estimate in (3.85), the right hand side turns to zero as k → 0, i.e., as n→ ∞.

From this result, we know that the weak limits are the same, i.e., A = Ã.

Now we are ready to pass to the limit n → ∞ in equation (3.84) of problem (FP).

Equation (3.84) can be rewritten as

∂Ãn

∂t
+ L(An) = Fn, (3.93)

where Fn is defined as Fn(t) = Fm for (m− 1)k ≤ t ≤ mk, m = 1, · · · , n. It can be shown

that 〈Fn, B〉 → 〈f , B〉 + (H, curlB) as n→ ∞ for any B ∈ L2(0, T ;V) (see [45]).

Now by the weak convergence of An and (Ã)t in L(0, T ;V′), a passage of the limit n→ ∞
in equation (3.93) gives

∂A

∂t
+ L(A) = F, (3.94)

where F is defined as 〈F, B〉 = 〈f , B〉 + (H, curlB) for B ∈ L2(0, T ;V).

Finally, because of (3.90) and (3.92), Ãn ∈ C([0, T ];L2(Ω)), thus

〈Ãn(t),Φ〉 → 〈A(t),Φ〉 ∀Φ ∈ V′, ∀t ∈ [0, T ],

this gives

A(0) = Ãn(0) = A0. (3.95)

Together the (3.94) and (3.95) show that A ∈ L2(0, T ;H1
n(Ω))∩H1(0, T ; (H1

n(Ω))′) is a weak

solution of the problem (3.80)-(3.83). We omit the standard uniqueness proof.

Now with lemma 3.2.18, we are ready to show ∂Aǫ/∂t ∈ L2(0, T ;H1(Ω)). Consider the

following IBVP

σ
x2

0

λ2
1

∂ Φ

∂t
− ǫ∇(div Φ) + curl2Φ = ft + curl (He)t in Ω (3.96)

Φ · n = 0 on ∂Ω, (3.97)

(curl Φ − (He)t) × n = 0 on ∂Ω, (3.98)

Φ(0) = Φ0 in Ω, (3.99)
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where

f = i
1

2κ1

(ψǫ1∇ψǫ∗1 − ψǫ∗1 ∇ψǫ1) −
x2

0

λ2
1

|ψǫ1|2(Aǫ + Ac)

+ i
1

ν

1

2κ2

(ψǫ2∇ψǫ∗2 − ψǫ∗2 ∇ψǫ2) −
x2

0

λ2
2

|ψǫ2|2(Aǫ + Ac).

ft = − 1

κ1

ℑ ((ψǫ1)t∇ψǫ∗1 + ψǫ1∇(ψǫ∗1 )t) −
1

ν

1

κ2

ℑ ((ψǫ2)t∇ψǫ∗2 − ψǫ2∇(ψǫ∗2 )t)

− 2
x2

0

λ2
1

ℜ((ψǫ1)tψ
ǫ∗)(Aǫ + Ac) −

x2
0

λ2
1

|ψǫ1|2((Aǫ)t + (Ac)t)

− 2
x2

0

λ2
2

ℜ((ψǫ2)tψ
ǫ∗)(Aǫ + Ac) −

x2
0

λ2
2

|ψǫ2|2((Aǫ)t + (Ac)t),

Φ0 = f(0) + ǫ∇(div Aǫ(0)) − curl2Aǫ(0) + curlHe(0).

From the regularity results we obtained so far, we know that ψǫi ∈ L(0, T ;H2(Ω))∩L∞(Ω×
(0, T )) ∩ H1(0, T ;L2(Ω)) and Aǫ ∈ L∞(0, T ;H1(Ω)) ∩ H1(0, T ;L2(Ω)). Assume Ac ∈
L2(0, T ;H1(Ω)) ∩ H1(0, T ;L2(Ω)) also, we can show that ft ∈ L2(0, T ; (H1

n(Ω))′). Further

assume (He)t ∈ L2(0, T ;H(curl; Ω)), then the right hand side of equation (3.96) belongs

L2(0, T ; (H1
n(Ω))′). For the initial conditions Φ0, first assume that Ac(0) ∈ H(div0; Ω), then

divAc(0) = 0. Also if jc(0) ∈ H(div0; Ω), then curl2Ac(0) = curlHc(0) ∈ L2(Ω), where

Hc(0) ∈ H1(Ω) is a solution of curlHc(0) = jc(0). The existence of Hc(0) is guaranteed

since divjc(0) = 0 and 〈jc(0) · n, 1〉∂Ω = 0, see [44]. Now if we assume A0 ∈ H2(Ω), then

since Aǫ(0) = A0 − Ac(0), we can see that ∇(div Aǫ(0)) − curl2Aǫ(0) ∈ L2(Ω). Further

assume that ψǫi (0) ∈ H2(Ω), He(0) ∈ H(curl; Ω) and Ac(0) ∈ H1(Ω), then we can show

that Φ(0) = Φ0 ∈ L2(Ω). Therefore, an application of lemma 3.2.18 gives us that the IBVP

(3.96)-(3.99) has a unique solution Φ ∈ L2(0, T ;H1
n(Ω)) ∩ (H1(0, T ;H1

n(Ω))′). It can be

shown that (Aǫ)t = Φ, see, for example, [50].

By this new results together with an additional assumption that φc ∈ L2(0, T ;H1(Ω)) ∩
H1(0, T ;L2(Ω)) and φc(0) ∈ H1(Ω), the same method presented above can also be applied

to equations (3.65)-(3.68) to get ∂ψǫi/∂t ∈ L2(0, T ;H1(Ω)). Consider the following IBVP

∂ θ

∂t
− ξ2

1

x2
0

△θ = (f1)t in Ω, (3.100)

∂ θ

∂n
+ γ1ϕ = 0 on ∂Ω, (3.101)

θ(0) = θ0 in Ω, (3.102)
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where

f1 = −i φcψǫ1 − (|ψǫ1|2 − T1)ψ
ǫ
1 − i

ξ1
λ1

(

(Aǫ + Ac) · ∇ψǫ1 −∇ · (ψǫ1(Aǫ + Ac))
)

− x2
0

λ2
1

|Aǫ + Ac|2ψǫ1 − ηψǫ2,

(f1)t = −i((φc)tψǫ1 + φc(ψ
ǫ
1)t) − (|ψǫ1|2 − T1)(ψ

ǫ
1)t − 2ℜ((ψǫ1)tψ

ǫ∗
1 )

− i
2ξ1
λ1

[

((Aǫ)t + (Ac)t) · ∇ψǫ1 + (Aǫ + Ac) · ∇(ψǫ1)t
]

− i
ξ1
λ1

[

(ψǫ1)t∇ · (Aǫ + Ac) + ψǫ1∇ · ((Aǫ)t + (Ac)t)
]

− x2
0

λ2
1

[

|Aǫ + Ac|2(ψǫ1)t + 2((Aǫ)t + (Ac)t)(A
ǫ + Ac)ψ

ǫ
1

]

− η(ψǫ2)t,

θ0 = f1(0) +
ξ2
1

x2
0

△ψǫ1(0).

With the above additional assumptions on φc and φc(0), we can show that (f1)t ∈
L2(0, T ; (H1(Ω))′) and θ0 ∈ L2(Ω). Then by the standard theory of parabolic IBVP with

homogeneous Robin boundary condition, the IBVP (3.100)-(3.102) has a unique solution

θ ∈ L2(0, T ;H1(Ω)) ∩ H1(0, T ; (H1(Ω))′). We can show that (ψǫ1)t = θ. Similarly, we get

(ψǫ2)t ∈ L2(0, T ;H1(Ω)) ∩H1(0, T ; (H1(Ω))′).

Summarizing all the regularity results we have obtained, we arrive at the following

theorem.

Theorem 3.2.19 In addition to the regularity assumptions RA1, assume that Ac ∈
L2(0, T ;H1(Ω)) ∩ H1(0, T ;L2(Ω)), He ∈ L2(0, T ;H1(Ω)) ∩ H1(0, T ;H(curl; Ω)), Ac(0) ∈
H(div0; Ω), jc(0) ∈ H(div0; Ω), A0 ∈ H2(Ω), ψǫi (0) = ψi0 ∈ H2(Ω) and |ψi0| ≤ a for i = 1, 2,

where a is defined in Theorem 3.2.16. Then given ǫ > 0 and T > 0,

ψǫ1, ψ
ǫ
2 ∈ L2(0, T ;H2(Ω)), (3.103)

curlAǫ ∈ L2(0, T ;H1(Ω)), (3.104)

divAǫ ∈ L2(0, T ;H1(Ω)), (3.105)
∂Aǫ

∂t
∈ L2(0, T ;H1

n(Ω)) ∩ (H1(0, T ; (H1
n(Ω))′). (3.106)

If in addition, φc ∈ L2(0, T ;H1(Ω))∩H1(0, T ;L2(Ω)) and φc(0) ∈ H1(Ω), then we also have

∂ψǫ1
∂t

,
∂ψǫ2
∂t

∈ L2(0, T ;H1(Ω)) ∩H1(0, T ; (H1(Ω))′). (3.107)

Moreover, the bound of the respective norm of each function depends on ǫ.
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These regularity results will be used in lemma 3.2.21 to find the uniform bound of divAǫ

in L∞(0, T ;L2(Ω)), independent of ǫ. The proof of this lemma follows that of lemma 3.11 in

Du’s paper [2]. We first show the following lemma.

Lemma 3.2.20 Recall that H(curl; Ω) = {u ∈ L2(Ω)| curlu ∈ L2(Ω) in Ω} and

H0(curl; Ω) = {u ∈ H(curl; Ω)|u × n|∂Ω = 0}. The norm for H(curl; Ω) is ||u||H(curl;Ω) =

(||u||2
L2(Ω) + ||curlu||2

L2(Ω))
1/2. Then for u ∈ H0(curl; Ω) and v ∈ H(curl; Ω), we have

∫

Ω

curlu · v dΩ =

∫

Ω

u · curlv dΩ. (3.108)

Proof We quote a fact that the closure of C∞(Ω) in the H(curl; Ω) norm is the space

H(curl; Ω), see, e.g., [57]. Let the sequence {Φn} ⊂ C∞(Ω) be such that Φn → v, then by

integration by parts we have

∫

Ω

curlu · Φn dΩ =

∫

Ω

u · curl Φn dΩ +

∫

∂Ω

n × u · Φn d∂Ω.

But since u ∈ H0(curl; Ω), the above boundary integral vanishes. So by the continuity

of each integral on the function Φn in Ω, we have

∫

Ω

curlu · v dΩ −
∫

Ω

u · curlv dΩ = lim
n→∞

{
∫

Ω

curlu · Φn dΩ −
∫

Ω

u · curl Φn dΩ

}

= 0.

Lemma 3.2.21 Suppose the assumptions in theorem 3.2.19 hold, then given ǫ > 0 and

T > 0, we have for t ∈ [0, T ],

σ
x2

0

λ2
1

||divAǫ(t)||L2(Ω) + ǫ

∫ t

0

||∇divAǫ(s)||L2(Ω)ds

=

∫ t

0

ℜ
{(

∂ψǫ1(s)

∂t
+ i φc(s)ψ

ǫ
1(s), i

x2
0

ξ1λ1

divAǫ(s)ψǫ1(s)

)}

ds

+ Γ

∫ t

0

ℜ
{(

∂ψǫ2(s)

∂t
+ i φc(s)ψ

ǫ
2(s), i

x2
0

ξ2λ2

divAǫ(s)ψǫ2(s)

)}

ds. (3.109)

Proof Let the test function in the weak form (3.9) in the problem (WPǫ) be ψ̃ =

i
x2

0

ξ1λ1

ψǫ1∇ · Aǫ. Note that by theorem 3.2.16, ψǫi is uniformly bounded in Ω × [0, T ] and

so by theorem 3.2.19, we know that ψǫ1∇ ·Aǫ ∈ L2(0, T ;H1(Ω)). Then taking the real parts,
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we have

ℜ
{

−i ξ1
x0

∇ψǫ1 −
x0

λ1

(Aǫ + Ac)ψ
ǫ
1, −i

ξ1
x0

∇(i
x2

0

ξ1λ1

ψǫ1∇ · Aǫ) − x0

λ1

(Aǫ + Ac) · (i
x2

0

ξ1λ1

ψǫ1∇ · Aǫ)

}

= ℜ
∫

Ω

{

[

− i
ξ1
x0

∇ψǫ1 −
x0

λ1

(Aǫ + Ac)ψ
ǫ
1

]

·
[x0

λ1

(ψǫ∗1 ∇(∇ · Aǫ) + ∇ψǫ∗1 ∇ · Aǫ)

+ i
x3

0

ξ1λ2
1

(Aǫ + Ac)ψ
ǫ∗
1 ∇ · Aǫ)

]

}

dΩ

= ℜ
∫

Ω

{

x0

λ1

ψǫ∗1
(

− i
ξ1
x0

∇ψǫ1 −
x0

λ1

(Aǫ + Ac)ψ
ǫ
1

)

· ∇(∇ · Aǫ)

− i
ξ1
λ1

|∇ψǫ1|2∇ · Aǫ − x2
0

λ2
1

(Aǫ + Ac) · ψǫ1∇ψǫ∗1 ∇ · Aǫ

+
x2

0

λ2
1

(Aǫ + Ac) · ψǫ∗1 ∇ψǫ1∇ · Aǫ − i
x4

0

ξ1λ3
1

|Aǫ + Ac|2|ψǫ1|2∇ · Aǫ

}

dΩ

= ℜ
∫

Ω

{

x0

λ1

ψǫ∗1
(

− i
ξ1
x0

∇ψǫ1 −
x0

λ1

(Aǫ + Ac)ψ
ǫ
1

)

· ∇(∇ · Aǫ)

+
x2

0

λ2
1

(Aǫ + Ac) ·
(

ψǫ∗1 ∇ψǫ1 − ψǫ1∇ψǫ∗1
)

∇ · Aǫ

}

dΩ

= ℜ
∫

Ω

x0

λ1

ψǫ∗1
(

− i
ξ1
x0

∇ψǫ1 −
x0

λ1

(Aǫ + Ac)ψ
ǫ
1

)

· ∇(∇ · Aǫ) dΩ.

Similarly, substituting ψ̃ = i 1
ν

x2

0

ξ2λ2

ψǫ2∇ · Aǫ in the weak form (3.10), we get

ℜ
{

−i ξ2
x0

∇ψǫ2 − ν
x0

λ2

(Aǫ + Ac)ψ
ǫ
2, −i

ξ2
x0

∇(i
x2

0

ξ2λ2

ψǫ2∇ · Aǫ) − ν
x0

λ2

(Aǫ + Ac) · (i
x2

0

ξ2λ2

ψǫ2∇ · Aǫ)

}

= ℜ
∫

Ω

1

ν

x0

λ2

ψǫ∗2
(

− i
ξ2
x0

∇ψǫ2 − ν
x0

λ2

(Aǫ + Ac)ψ
ǫ
2

)

· ∇(∇ · Aǫ) dΩ.

For the two η coupling terms, when adding them together, we get

ηℜ
(

ψǫ2, i
x2

0

ξ1λ1

ψǫ1∇ · Aǫ
)

+ ν2ηℜ
(

ψǫ1, i
1

ν

x2
0

ξ2λ2

ψǫ2∇ · Aǫ
)

= ηℜ
{

∫

Ω

i

[

x2
0

ξ1λ1

ψǫ∗1 ψ
ǫ
2 +

ξ2
2λ

2
2

ξ2
1λ

2
1

ξ1λ1

ξ2λ2

x2
0

ξ2λ2

ψǫ1ψ
ǫ∗
2

]

∇ · Aǫ dΩ

}

= ηℜ
{

∫

Ω

i
x2

0

ξ1λ1

[

ψǫ∗1 ψ
ǫ
2 + ψǫ1ψ

ǫ∗
2

]

∇ · Aǫ dΩ

}

= 0.

We also have for j = 1, 2,

ℜ
{

(|ψǫj|2 − Tj)ψ
ǫ
j, i

x2
0

ξjλj
ψǫj∇ · Aǫ

}

= 0,

ℜ
{

ψǫj, i
x2

0

ξjλj
ψǫj∇ · Aǫ

}

∂Ω

= 0.
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Therefore, we get for t ∈ [0, T ],

∫ t

0

ℜ
(∂ψǫ1
∂t

+ iφcψ
ǫ
1, i

x2
0

ξ1λ1

ψǫ1∇ · Aǫ
)

+ Γℜ
(∂ψǫ2
∂t

+ iφcψ
ǫ
2, i

1

ν

x2
0

ξ2λ2

ψǫ2∇ · Aǫ
)

ds

= −
∫ t

0

ℜ
∫

Ω

[

x0

λ1

ψǫ∗1
(

− i
ξ1
x0

∇ψǫ1 −
x0

λ1

(Aǫ + Ac)ψ
ǫ
1

)

· ∇(∇ · Aǫ)

+
1

ν

x0

λ2

ψǫ∗2
(

− i
ξ2
x0

∇ψǫ2 − ν
x0

λ2

(Aǫ + Ac)ψ
ǫ
2

)

· ∇(∇ · Aǫ)

]

dΩds. (3.110)

Next we multiply the PDE for Aǫ, repeated below, by −∇(∇ · Aǫ) and integrate on Ω,

σ
x2

0

λ2
1

∂Aǫ

∂t
− ǫ∇(∇ · Aǫ) = −curl2Aǫ + curlHe

+ ℜ
[x0

λ1

ψǫ∗1
(

− i
ξ1
x0

∇− x0

λ1

(Aǫ + Ac)
)

ψǫ1
]

+ ℜ
[1

ν

x0

λ2

ψǫ∗2
(

− i
ξ2
x0

∇− ν
x0

λ2

(Aǫ + Ac)
)

ψǫ2
]

then through integrations by parts, we obtain for t ∈ [0, T ] that

∫ t

0

σ
x2

0

λ2
1

〈∂∇ · Aǫ

∂t
, ∇ · Aǫ〉ds+ ǫ

∫ t

0

||∇(∇ · Aǫ)||20ds

=

∫ t

0

∫

Ω

(curlAǫ − He) · curl(∇(∇ · Aǫ)) dΩds

−
∫ t

0

ℜ
∫

Ω

[

x0

λ1

ψǫ∗1
(

− i
ξ1
x0

∇ψǫ1 −
x0

λ1

(Aǫ + Ac)ψ
ǫ
1

)

· ∇(∇ · Aǫ)

+
1

ν

x0

λ2

ψǫ∗2
(

− i
ξ2
x0

∇ψǫ2 − ν
x0

λ2

(Aǫ + Ac)ψ
ǫ
2

)

· ∇(∇ · Aǫ)

]

dΩds.

Since we have proved in theorem 3.2.19 that ∂A/∂t ∈ L2(0, T ;H1
n(Ω)), the integration

by parts involving the time derivative term can be justified. The integral involving the

curl operator on the R.H.S. of the inequality above is obtained by the integration by parts

showed in lemma 3.2.20. This integral vanishes by the identity curl∇ϕ = 0. By the

regularity results (3.105)-(3.106), we have for a.e. t ∈ [0, T ] that 〈∂∇·Aǫ(t)/∂t, ∇·Aǫ(t)〉 =

(d/2dt)||∇·Aǫ(t)||20, see, for example, [53]. Therefore by using equation (3.110), for t ∈ [0, T ],

we get
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σ
x2

0

2λ2
1

[

||∇ · Aǫ(t)||20 + ||∇ · Aǫ(0)||20
]

+ ǫ

∫ t

0

||∇(∇ · Aǫ)||20 ds

=

∫ t

0

ℜ
(∂ψǫ1
∂t

+ iφcψ
ǫ
1, i

x2
0

ξ1λ1

ψǫ1∇ · Aǫ
)

ds+ Γ

∫ t

0

ℜ
(∂ψǫ2
∂t

+ iφcψ
ǫ
2, i

1

ν

x2
0

ξ2λ2

ψǫ2∇ · Aǫ
)

ds

≤ x2
0

ξ1λ1

[

||ψǫ1||L∞(Ω×[0,T ])

∫ t

0

||∂ψ
ǫ
1

∂t
||0 ds+ ||ψǫ1||2L∞(Ω×[0,T ])

∫ t

0

||φc||0 ds
]

||∇ · Aǫ||0ds

+
Γ

ν

x2
0

ξ2λ2

[

||ψǫ2||L∞(Ω×[0,T ])

∫ t

0

||∂ψ
ǫ
2

∂t
||0 ds+ ||ψǫ2||2L∞(Ω×[0,T ])

∫ t

0

||φc||0ds
]

||∇ · Aǫ||0 ds

≤ C

∫ t

0

[

||∂ψ
ǫ
1

∂t
||0 + ||φc||0

]2

ds+

∫ t

0

||∇ · Aǫ||20 ds

+ C

∫ t

0

[

||∂ψ
ǫ
2

∂t
||0 + ||φc||0

]2

ds+

∫ t

0

||∇ · Aǫ||20 ds, (3.111)

here we have used the fact from theorem 3.2.16 that ψǫi ∈ L∞(Ω × [0, T ]) to obtain the

constant C which is independent of ǫ. This proves the lemma.

Theorem 3.2.22 Suppose the assumptions in theorem 3.2.19 hold and A0 ∈ H1
n(div; Ω),

then for any ǫ > 0 and T > 0,

||divAǫ||L∞(0,T ;L2(Ω))

≤ C(1 +DTeDT )

[

||∂ψ
ǫ
1

∂t
||2L2(0,T ;L2(Ω)) + ||∂ψ

ǫ
2

∂t
||2L2(0,T ;L2(Ω)) + 2||φc||2L2(0,T ;L2(Ω))

]

,(3.112)

where the constant C and D are independent of ǫ. Since from lemma 3.2.6, both {∂ψǫ1/∂t}
and {∂ψǫ2/∂t} are uniformly bounded in L2(0, T ;L2(Ω)) independent of ǫ, so {divAǫ} is

uniformly bounded in L∞(0, T ;L2(Ω)), independent of ǫ. As a result, {(ψǫ1, ψǫ2,Aǫ)} is

uniformly bounded in V × V × V, independent of ǫ.

Proof Applying Gronwall’s inequality in integral form to the inequality (3.111), we get for

a.e. t ∈ [0, T ],

||∇ · Aǫ||L∞(0,T ;L2(Ω)) ≤ C(1 +DTeDT )

(

||∇ · Aǫ(0)||20 + ||∂ψ
ǫ
1

∂t
||2L2(0,T ;L2(Ω))

+ ||∂ψ
ǫ
2

∂t
||2L2(0,T ;L2(Ω)) + 2||φc||2L2(0,T ;L2(Ω))

)

By the assumption of A0 and since Aǫ(0) = A0, we have divAǫ(0) = 0. This gives the

inequality (3.112). By using the same a priori estimates for the problem (WPǫ
n) as before,
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but now for {(ψǫ1, ψǫ2,Aǫ)}, we get the uniform boundedness of the solution in V × V × V

In theorem 3.2.19 and theorem 3.2.22 we see that in addition to the regularity assumptions

RA1, we also need Ac ∈ L2(0, T ;H1(Ω)) ∩ H1(0, T ;L2(Ω)), φc ∈ L2(0, T ;H1(Ω)) ∩
H1(0, T ;L2(Ω)), He ∈ L2(0, T ;H1(Ω)) ∩ H1(0, T ;H(curl; Ω)), A0 ∈ H1

n(div; Ω) ∩ H2(Ω),

jc(0) ∈ H(div0; Ω), Ac(0) ∈ H(div0; Ω), φc(0) ∈ H1(Ω), ψi0(0) ∈ H2(Ω) with |ψi0| ≤ a for

i = 1, 2. Therefore, hereafter unless otherwise stated, we will assume that the following

updated regularity assumptions are satisfied throughout the rest of this work:

RA2: Assume that ψi0 ∈ H2(Ω) with |ψi0| ≤ a for i = 1, 2, where a is defined in Theorem

3.2.16, A0 ∈ H1
n(div; Ω) ∩ H2(Ω), jc(x, 0) ∈ H(div0; Ω), Ac(x, 0) ∈ H(div0; Ω), φc(x, 0) ∈

H1(Ω). We also assume Ac ∈ L∞(0, T ;H1
n(Ω)) ∩ H1(0, T ;L2(Ω)), φc ∈ L4(0, T ;H1(Ω)) ∩

H1(0, T ;L2(Ω)) and He ∈ L∞(0, T ;L2(Ω))∩L2(0, T ;H1(Ω))∩H1(0, T ;H(curl; Ω)). The last

relation gives He(x, 0) ∈ H(curl; Ω).

Remark Now up to this point the regularity requirements are all clear and we want to

derive the regularity requirement of the Type-A applied current ja · n|∂Ω such that that

regularity requirements for both Ac and φc as listed in RA2 can all be satisfied. From the

norm estimates in inequalities (2.52) and (2.55), (2.62), (2.64), and the comments following

them, we can see that if jc ∈ H1(0, T ;H(div0; Ω))∩L∞(0, T ;H(div0; Ω)), then we have φc ∈
H1(0, T ;H1(Ω))∩L∞(0, T ;H1(Ω))∩C([0, T ];H1(Ω)), and also Ac ∈ H1(0, T ;H1

n(div; Ω))∩
L∞(0,T;H1

n(div; Ω)) ∩ C([0,T];H1
n(div; Ω)). These regularities imply φc(x, 0) ∈ H1(Ω)

and Ac(x, 0) ∈ H1
n(div; Ω). Lastly, from the norm estimates (2.46) and (2.47), we see

that it is enough to have the Type-A applied current satisfying the regularity ja · n|∂Ω ∈
H1(0, T ;H− 1

2 (∂Ω)) ∩ L∞(0, T ;H− 1

2 (∂Ω)) in order to obtain jc ∈ H1(0, T ;H(div0; Ω)) ∩
L∞(0, T ;H(div0; Ω)). The last relation implies jc(x, 0) ∈ H(div0; Ω). However, to guarantee

that the internal current jc is divergence free as a solution to the BVP (2.39)-(2.40), we need

to define ja|∂Ω ∈ H1(0, T ;H
1

2 (∂Ω)) ∩ L∞(0, T ;H
1

2 (∂Ω)).

The regularity assumptions RA found at the beginning of our analysis section summa-

rized all the regularity requirements we needed in our analysis.

Now we are ready to pass to the limit ǫ→ 0. Analogous to corollary 3.2.12 with the role

of n replaced by ǫ, we obtain a weak (weak*) and strong limit (ψ1, ψ2,A) as ǫk → 0.
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Lemma 3.2.23 Given T > 0, there exists an element (ψ1, ψ2,A) ∈ V × V × V, and

sebsequences {ψǫk1 }, {ψǫk2 } and {Aǫk} such that as ǫk → 0,

ψǫk1 ⇀ ψ1 weakly (and
∗
⇀ weakly∗) in V ,

ψǫk2 ⇀ ψ2 weakly (and
∗
⇀ weakly∗) in V ,

Aǫk ⇀ A weakly (and
∗
⇀ weakly∗) in V,

ψǫk1 → ψ1 strongly in LP(0,T;Lq(Ω)),

ψǫk2 → ψ2 strongly in LP(0,T;Lq(Ω)),

Aǫk → A strongly in LP(0,T;Lq(Ω)),

where p ∈ (1,∞), and q ∈ (1,∞) for d = 2 and q ∈ (1, 6) for d = 3.

Observe that with the uniform boundedness of the divAǫ term asserted in theorem 3.2.22,

the term involving ǫdivAǫ in the modified problem (WPǫ) now tends to zero as ǫ → 0.

Following the proof of theorem 3.2.13 in passing to the limit, now with ǫk → 0, and we can

show that (ψ1, ψ2,A) is a solution for the original problem (WP).

Theorem 3.2.24 Given T > 0, the weak (weak*) limit (ψ1, ψ2,A) in lemma 3.2.23 is a

solution of the original problem (WP).

Following the proof of theorem 3.2.15, we can show that the solution (ψ1, ψ2,A) also

satisfies the “maximum” principle as stated below.

Theorem 3.2.25 For any ǫ > 0 and T > 0, let (ψ1, ψ2,A) be a solution of the problem

(WP), and let Υ = max{|T1|, |T2|}, η∗ = max {|η|, |η|ν2} and a =
√

4η∗ + Υ. Suppose

|ψ1(x, 0)| = |ψ10| ≤ a and |ψ2(x, 0)| = |ψ20| ≤ a a.e. in Ω, then |ψ1(x, t)| ≤ a and

|ψ2(x, t)| ≤ a a.e. in Ω × [0, T ].

Theorem 3.2.26 Given T > 0,

ψ1, ψ2 ∈ L2(0, T ;H2(Ω)),
∂ψ1

∂t
,
∂ψ2

∂t
∈ L2(0, T ;H1(Ω)) ∩H1(0, T ; (H1(Ω))′),

curlA ∈ L2(0, T ;H1(Ω)),

divA ∈ L∞(0, T ;L2(Ω)),
∂divA

∂t
∈ L2(0, T ;L2(Ω)).

Moreover, the bounds of the norms are independent of ǫ.
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Proof Each of the first four relations follows from theorem 3.2.22 and the weak or weak*

convergence of its ǫ counterpart sequence. We now show that ∂(divA)/∂t ∈ L2(0, T ;L2(Ω)),

with bound of its norm independent of ǫ. By taking the divergence of equation (2.73) with

η1 = 0, we get

σ
x2

0

λ2
1

∂divA

∂t
= − 1

κ1

ℑ
(

ψ1∇2ψ∗
1

)

− x2
0

λ2
1

[

2ℜ (ψ1∇ψ∗
1) · (A + Ac) + |ψ1|2 div(A + Ac)

]

− 1

κ2

ℑ
(

ψ2∇2ψ∗
2

)

− x2
0

λ2
2

[

2ℜ (ψ2∇ψ∗
2) · (A + Ac) + |ψ2|2 div(A + Ac)

]

. (3.113)

From theorem 3.2.25, we have ψ1, ψ2 ∈ L∞(Ω × (0, T )) and from previous regularity

results, we have ψ1, ψ2 ∈ L2(0, T ;H2(Ω)), A ∈ L2(0, T ;H1
n(Ω)) and Ac ∈ L2(0, T ;H1

n(Ω)),

with bounds of their norms independent of ǫ. From these regularities, the terms on the right

hand side of equation (3.113) belong to L2(0, T ;L2(Ω)) with bound of its norm independent

of ǫ.

By using the result of theorem 3.2.25 and following the proof of theorem 3.2.14 with some

minor modifications, we arrive at the following theorem.

Theorem 3.2.27 Given T > 0, let (ψ1
1, ψ

1
2,A

1) and (ψ2
1, ψ

2
2,A

2) be any two solutions of the

problem (WP) with initial conditions (ψ1
10, ψ

1
20,A

1
0) and (ψ2

10, ψ
2
20,A

2
0) respectively, then for

t ∈ [0, T ],

||ψ1
1(t) − ψ2

1(t)||20 + ||ψ1
2(t) − ψ2

2(t)||20 + ||A1(t) − A2(t)||2
L2(Ω)

≤ C
(

||ψ1
10 − ψ2

10||20 + ||ψ1
20 − ψ2

20||20 + ||A1
0 − A2

0||20
)

. (3.114)

Corollary 3.2.28 Given T > 0, the sequence {(ψǫ1, ψǫ2,Aǫ)} converges weakly (and weakly*)

in V × V × V to the unique solution (ψ1, ψ2,A) of the problem (WP).

As in lemma 3.2.14, we want to stress that the uniqueness of (ψ1, ψ2,A) depends on the

choice of Ac which in turn depends on the choice of jc. As stated at the beginning of section

3.1, we are eventually interested in the total solution (ψ1, ψ2,A) = (ψ1, ψ2,A + Ac). From

the regularity of Ac as stated in the regularity assumption RA2, we find the total solution

(ψ1, ψ2,A) ∈ V × V × V by adding up A as A + Ac.
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Theorem 3.2.29 Given T > 0, there exist a weak total solution (ψ1, ψ2,A) = (ψ1, ψ2,A +

Ac) ∈ V×V×V to the problem IBVP1 and IBVP2. Let (ψ1
1, ψ

1
2,A

1
) and (ψ2

1, ψ
2
2,A

2
) be any

two weak solutions of the problem IBVP1 and IBVP2 with initial conditions (ψ1
10, ψ

1
20,A

1
0)

and (ψ2
10, ψ

2
20,A

2
0) respectively, where for i = 1, 2, in the case of IBVP1, Ai

0 = A
i
(x, 0) −

Ac(x, 0), and in the case of IBVP2, Ai
0 = A

i
(x, 0). Then for t ∈ [0, T ],

||ψ1
1(t) − ψ2

1(t)||20 + ||ψ1
2(t) − ψ2

2(t)||20 + ||A1
(t) − A

2
(t)||2

L2(Ω)

≤ C
(

||ψ1
10 − ψ2

10||20 + ||ψ1
20 − ψ2

20||20 + ||A1
0 − A2

0||20
)

. (3.115)

Hence, the total solution (ψ1, ψ2,A) is unique, independent of the choice of Ac.

Proof The existence of the weak total solution of the problem IBVP1 is obvious. We only

need to show the uniqueness of the total solution. As mentioned in the previous remark,

the solution (ψ1, ψ2,A) depends on the choice of Ac, so our question is whether a different

choice of Ac would give the same total solution. First recall that φc is uniquely determined

by a Type-A applied current ja in the form ja · n|∂Ω (see 2.50)-(2.51)). In view of equation

(2.70), repeated below

− σ

κ1

∇φc = curl2Ac + σ
x2

0

λ2
1

∂Ac

∂t
in Ω,

and also by the construction of Ac that we have divAc = 0 in Ω, Ac ·n = 0 and curlAc×n = 0

on ∂Ω, we can see that by setting φc = φa the first approach problem IBVP1 as in (2.71)-

(2.73) and (2.75)-(2.95) are equivalent to the second approach problem IBVP2 as in (2.85)-

(2.87) and (2.88)-(2.95). By this equivalent relation, it is clear that there exists the same

weak total solution for the problem IBVP2. Following exactly the same proof of lemma

3.2.14 but with the superscript ǫ and Ac removed everywhere and Aj replaced by A
j
,

j = 1, 2, and notice that the terms involving ∇φa are cancelled out in the proof, we obtain

the data-dependency inequality (3.115). From this, we see that given a unique φa, the weak

solution (ψ1, ψ2,A) for IBVP2 is unique. In other words, given ja · n, there exists a unique

weak solution (ψ1, ψ2,A) to the problem IBVP2. By the equivalence of IBVP1 and IBVP2,

the same data-dependency equation holds for the same weak total solution for the problem

IBVP1. This completes the proof.

The exact result in theorem 3.2.25 hold for (ψ1, ψ2,A), as shown in the next corollary.
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Corollary 3.2.30 For any ǫ > 0 and T > 0, let (ψ1, ψ2,A) be the weak total solution of

the problem IBVP1 and IBVP2, and let Υ = max{|T1|, |T2|}, η∗ = max {|η|, |η|ν2} and

a =
√

4η∗ + Υ. Suppose |ψ1(x, 0)| = |ψ10| ≤ a and |ψ2(x, 0)| = |ψ20| ≤ a a.e. in Ω, then

|ψ1(x, t)| ≤ a and |ψ2(x, t)| ≤ a a.e. in Ω × [0, T ].

However, due to the fact that Ac only has spatial regularity of up to H1, we don’t have

the same higher regularity for A as in theorem 3.2.26 for A.

Corollary 3.2.31 Given T > 0,

ψ1, ψ2 ∈ L2(0, T ;H2(Ω)),
∂ψ1

∂t
,
∂ψ2

∂t
∈ L2(0, T ;H1(Ω)) ∩H1(0, T ; (H1(Ω))′),

divA ∈ L∞(0, T ;L2(Ω)),

∂divA

∂t
∈ L2(0, T ;L2(Ω)).

Moreover, the bounds of the norms are independent of ǫ.
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CHAPTER 4

Finite Element Approximations

4.1 Backward Euler Finite Element Approximations

Throughout this work, we will use ‖.‖0 to denote the norms of any L2 Lebesgue spaces, be

it a real, complex or vector valued space; and ‖.‖r,q for any W r,q(Ω) spaces, for 1 ≤ q ≤ ∞,

q 6= 2. Also, we use ‖.‖s for any Hs(Ω) spaces, and ‖.‖s,∂Ω for any norms defined on the

boundary ∂Ω.

We assume Ω ⊂ R
2 is at least a simply connected bounded domain with a boundary

∂Ω of C1,1 class or is piecewise smooth with no reentrant corners. When higher regularities

are needed for the solution ψ1, ψ2 and A as are required in the error estimates that we

will present later, we may need a smoother domain. However we will not go into details

to elaborate the necessary requirements in order to attain the required regularities of the

solution. With the first assumption on Ω, we have [44]

||A||1 ≤ C(||divA||0 + ||curlA||0) ∀A ∈ H1
n(Ω). (4.1)

We will discretize the problem (WPǫ) in time by using backward Euler scheme, and in

space by finite element methods. In time, let ∆t = T/N , where N is a positive integer, be the

time step. Let t0 = 0, tn = tn−1+∆t, for n = 1, ..., N . Also let ψn = ψǫ(·, tn), An = Aǫ(·, tn),
and define δtψ

n = (ψn−ψn−1)/∆t and δtA
n = (An−An−1)/∆t. In space, let {Th} be a family

of regular, quasi-uniform triangulations over Ω with h defined as h = maxK∈Th
{diam(K)}.

Let Zh ⊂ H1(Ω) and Λh ⊂ H1
n(Ω) be the H1 conforming finite element spaces under the Th

triangulation with

Zh = {ψ ∈ C(Ω) : ψ|K ∈ Pk, for each K ∈ Th},

Λh = {A ∈ C(Ω) : A|K ∈ Pk, for each K ∈ Th} ∩ H1
n(Ω),

83



where Pk and Pk are polynomial spaces of degree up to k.

We now state some of the approximation properties of our underlying finite element

spaces. Let Ih : C(Ω) → Zh and Ih : C(Ω) → Λh be finite element global interpolation

operators. So for ψ ∈ C(Ω) and A ∈ C(Ω), we have

Ihψ =
N

∑

j=1

ψ(aj)ϕj, IhA =
N

∑

j=1

A(aj)Φj,

where {ϕj}Nj=1 and {Φj}Nj=1 are the nodal bases of the spaces Zh and Λh, respectively, with

the associated global nodes {aj}Nj=1. Then for 0 ≤ m ≤ s+1 and 1 ≤ s ≤ k, the interpolation

errors in Ω satisfy

|ψ − Ihψ|m ≤ Chs+1−m|ψ|s+1 ∀ψ ∈ Hs+1(Ω), (4.2)

|A − IhA|m ≤ Chs+1−m|A|s+1 ∀ψ ∈ Hs+1(Ω). (4.3)

Let γ0 be the trace operator. Let Iγ0h and Iγ0h be the interpolants of continuous functions

on the boundary, i.e., for g ∈ C(∂Ω) and g ∈ C(∂Ω),

Iγ0h g =
∑

{j|aj∈∂Ω}
g(aj)γ0(ϕj), Iγ0h g =

∑

{j|aj∈∂Ω}
g(aj)γ0(Φj).

Then for 1
2
≤ m ≤ r and 1 < r ≤ k, the interpolation errors on the boundary ∂Ω satisfy

|γ0ψ − Iγ0h (γ0ψ)|m− 1

2
,∂Ω ≤ Chr−m|γ0ψ|r− 1

2
,∂Ω ∀ψ ∈ Hr− 1

2 (∂Ω), (4.4)

|γ0A − Iγ0h (γ0A)|m− 1

2
,∂Ω ≤ Chr−m|γ0A|r− 1

2
,∂Ω ∀ψ ∈ Hr− 1

2 (∂Ω), (4.5)

Note that for u ∈ C(Ω) ∩ H1(Ω), we have γ0(Ihu) = Iγ0h (γ0u). Similarly, for u ∈
C(Ω) ∩ H1(Ω), we have γ0(Ihu) = Iγ0h (γ0u).

The spaces Zh and Λh also satisfy the inverse inequalities:,

||ψh||1 ≤ Ch−1||ψh||0 ∀ψh ∈ Zh, (4.6)

||Ah||1 ≤ Ch−1||Ah||0 ∀A ∈ Λh, (4.7)

||ψh||0,∞ ≤ Ch−
d
2 ||ψh||0 ∀ψh ∈ Zh, (4.8)

||Ah||0,∞ ≤ Ch−
d
2 ||Ah||0 ∀Ah ∈ Λh, (4.9)

where d is the dimension of the domain Ω.
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We also assume that for sufficiently smooth ψ and A, the finite element spaces Zh and

Λh satisfy the approximability properties, see [19],

lim
h→0

[

sup
t∈[0,T ]

inf
ϕh∈Zh

(

||ψ(t) − ϕh||∞ + h−
d
2 ||ψ(t) − ϕh||0

)

]

= 0, (4.10)

lim
h→0

[

sup
t∈[0,T ]

inf
Bh∈Λh

(

||A(t) − Bh||∞ + h−
d
2 ||A(t) − Bh||0

)

]

= 0. (4.11)

Hereafter, we will use C to denote a generic constant. The context should make clear

that the same constant C appearing at different places refers to the same or different values.

Throughout the rest of the work, we assume that φc, Ac and He are given, and that φc,

Ac, He, ψ1, ψ2, and A satisfy the following regularity assumptions:

RA3: For 1 ≤ k and s = 2 if k = 1, otherwise s = k if k ≥ 2, assume that

ψǫ1, ψ
ǫ
2 ∈ C([0, T ];Hk+1(Ω)), (4.12)

∂ψǫ1
∂t

,
∂ψǫ2
∂t

∈ L2(0, T ;Hs(Ω)), (4.13)

Aǫ ∈ C([0, T ];Hk+1(Ω) ∩ H1
n(Ω)), (4.14)

∂Aǫ

∂t
∈ L2(0, T ;Hs(Ω) ∩ H1

n(Ω)), (4.15)

φc ∈ C([0, T ];L4(Ω)), (4.16)
∂φc
∂t

∈ L2(0, T ;L4(Ω)), (4.17)

Ac ∈ C([0, T ];H1
n(Ω)), (4.18)

∂Ac

∂t
∈ L2(0, T ;L2(Ω)), (4.19)

He ∈ C([0, T ];L2(Ω)), (4.20)
∂He

∂t
∈ L2(0, T ;L2(Ω)), (4.21)

ψ10, ψ20 ∈ Hk+1(Ω), (4.22)

A0 ∈ Hk+1(Ω) ∩ H1
n(div; Ω)). (4.23)

The fully discretized approximation of the problem (WPǫ) is defined as the following

problem.
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Problem (DPǫ): For each fixed ǫ, where 0 < ǫ ≤ 1, and n = 0, 1, . . . N , find (ψnh1, ψ
n
h2,A

n
h) ∈

Zh ×Zh × Λh such that for t ∈ [0, T ],

(δtψ
n
1h, ψ̃h) + (iφncψ

n
1h, ψ̃h) +

(

(|ψn1h|2 − T1)ψ
n
1h, ψ̃h

)

+

(

−i ξ1
x0

∇ψn1h −
x0

λ1

(An
h + An

c )ψ
n
1h, −i

ξ1
x0

∇ψ̃h −
x0

λ1

(An
h + An

c )ψ̃h

)

+ η(ψn2h, ψ̃h) +

(

γ1
ξ2
1

x2
0

ψn1h, ψ̃h

)

∂Ω

= 0 ∀ ψ̃h ∈ Zh, (4.24)

Γ(δtψ
n
2h, ψ̃h) + Γ(iφncψ

n
2h, ψ̃h) +

(

(|ψn2h|2 − T2)ψ
n
2h, ψ̃h

)

+

(

−i ξ2
x0

∇ψn2h − ν
x0

λ2

(An
h + An

c )ψ
n
2h, −i

ξ2
x0

∇ψ̃h − ν
x0

λ2

(An
h + An

c )ψ̃h

)

+ ην2(ψn1h, ψ̃h) +

(

γ2
ξ2
2

x2
0

ψn2h, ψ̃h

)

∂Ω

= 0 ∀ ψ̃h ∈ Zh, (4.25)

σ
x2

0

λ2
1

(

δtA
n
h, Ãh

)

+ (curlAn
h, curlÃh) + ǫ(divAn

h, divÃn
h)

−ℜ
(

(

− i
ξ1
x0

∇ψn1h −
x0

λ1

(An
h + An

c )ψ
n
1h

)

,
x0

λ1

ψn1hÃh

)

−ℜ
(

(

− i
ξ2
x0

∇ψn2h − ν
x0

λ2

(An
h + An

c )ψ
n
2h

)

,
1

ν

x0

λ2

ψn2hÃh

)

= (Hn
e , curlÃh) ∀ Ãh ∈ Λh. (4.26)

with the initial conditions ψ0
1h = Ihψ10 = Ihψ

0
1 ∈ Zh, ψ

0
2h = Ihψ20 = Ihψ

0
2 ∈ Zh, and

A0
h = IhA0 = IhA

0 ∈ Λh.

4.2 Existence and Uniqueness of the Problem (DPǫ)

Theorem 4.2.1 Assume Ac, He, ψ10, ψ20 and A0 satisfy the regularity assumptions (4.18),

(4.20), (4.22) and (4.23), respectively, then for small enough ∆t
1

2/h and for 1 ≤ n ≤ N ,

there exists a unique solution (ψn1h, ψ
n
2h,A

n
h) ∈ Zh ×Zh × Λh to the problem (DPǫ).

Proof We will use Banach’s fixed-point theorem to prove the existence and uniqueness of

the solution to the problem (DPǫ).

Define a finite-dimensional Hilbert space

B = Zh ×Zh × Λh,
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with norm

||(ψ1h, ψ2h, Ah)||B = ||ψ1h||1 + ||ψ2h||1 + ||Ah||1.

Let ǫ > 0 be given. For each fixed n, given a unique (ψn−1
1h , ψn−1

2h ,An−1
h ) ∈ B with

(ψ0
1h, ψ

0
2h,A

0
h) = (Ihψ10, Ihψ20, IhA0), define an operator Gh : B → B as follows: for

(ψ̃1h, ψ̃2h, Ãh) ∈ B, Gh(ψ̃1h, ψ̃2h, Ãh) = (ψ1h, ψ2h,Ah) is the solution to the following

problem:

a1(ψ1h, ϕ) = 〈f1(ψ̃1h, ψ̃2h, Ãh), ϕ〉 ∀ϕ ∈ Zh (4.27)

a2(ψ2h, ϕ) = 〈f2(ψ̃1h, ψ̃2h, Ãh), ϕ〉 ∀ϕ ∈ Zh (4.28)

b(Ah, Φ) = 〈g(ψ̃1h, ψ̃2h, Ãh), Φ〉 ∀Φ ∈ Λh (4.29)

where 〈·, ·〉 is the duality pairing in Ω; and for i = 1, 2, ai : Zh × Zh → C is a sesquilinear

form, and b : Λh × Λh → R
d is a bilinear form defined as

a1(ψ1h, ϕ) = ∆t
ξ2
1h

x2
0

(∇ψ1h, ∇ϕ) + (1 + i∆tφnc )(ψ1h, ϕ) + ∆tγ1(ψ1h, ϕ)∂Ω, (4.30)

a2(ψ2h, ϕ) = ∆t
ξ2
2h

x2
0

(∇ψ2h, ∇ϕ) + Γ(1 + i∆tφnc )(ψ2h, ϕ) + ∆tγ2(ψ2h, ϕ)∂Ω, (4.31)

b(Ah, Φ) = ǫ∆t(divAh, divΦ) + ∆t(curlAh, curlΦ) + σ
x2

0

λ2
1

(Ah, Φ), (4.32)

and

〈f1(ψ̃1h, ψ̃2h, Ãh), ϕ〉 =
〈[

ψn−1
1h − ∆t(|ψ̃1h|2 − T1)ψ̃1h

−i∆t ξ1
λ1

(

(Ãh + Ac) · ∇ψ̃1h + ∇ ·
(

ψ̃1h(Ãh + Ac)
))

−∆t
x2

0

λ2
1

|Ãh + Ac|2ψ̃1h − η∆tψ̃2h

]

, ϕ
〉

, (4.33)
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〈f2(ψ̃1h, ψ̃2h, Ãh), ϕ〉 =
〈[

Γψn−1
2h − ∆t(|ψ̃2h|2 − T2)ψ̃2h

−i∆t ξ2
λ2

(

(Ãh + Ac) · ∇ψ̃2h + ∇ ·
(

ψ̃2h(Ãh + Ac)
))

−∆t
x2

0

λ2
2

|Ãh + Ac|2ψ̃2h − η∆tψ̃1h

]

, ϕ
〉

, (4.34)

〈g(ψ̃1h, ψ̃2h, Ãh), Φ〉 = 〈He, curlΦ〉 +
〈[

σ
x2

0

λ2
1

An−1
h

−∆t
1

κ1

ℜ(iψ̃∗
1h∇ψ̃1h) − ∆t

x2
0

λ2
1

|ψ̃1h|2(Ãh + Ac)

−∆t
1

ν

1

κ2

ℜ(iψ̃∗
2h∇ψ̃2h) − ∆t

x2
0

λ2
2

|ψ̃2h|2(Ãh + Ac)
]

, Φ
〉

(4.35)

:= 〈He, curlΦ〉 + 〈h(ψ̃1h, ψ̃2h, Ãh), Φ〉. (4.36)

Note that the above problem is equivalent to the following distributional problem:

−∆t
ξ2
1h

x2
0

△ψ1h + (1 + i∆tφnc )ψ1h = f1(ψ̃1h, ψ̃2h, Ãh) in Ω,×[0, T ],

∂ψ1h

∂n
= −γ1ψ1h on ∂Ω × [0, T ],

−∆t
ξ2
2h

x2
0

△ψ2h + Γ(1 + i∆tφnc )ψ2h = f2(ψ̃2h, ψ̃2h, Ãh) in Ω,×[0, T ],

∂ψ2h

∂n
= −γ2ψ2h on ∂Ω × [0, T ],

−ǫ∆t∇divAh + ∆tcurl2Ah + σ
x2

0

λ2
1

Ah = curlHe + h(ψ̃1h, ψ̃2h, Ãh) Ω × [0, T ],

(curlAh − He) × n = 0 on ∂Ω × [0, T ],

Ah · n = 0 on ∂Ω,×[0, T ],

where h(ψ̃1h, ψ̃2h, Ãh) is defined in the last term in (4.36).

We first show that the operator is well-defined. We note that the sesquilinear form a1

and a2 are continuous and strongly coercive. Indeed, we have

|ai(ψh, ψh)| =
∣

∣α∆t||∇ψh||20 + β

∫

Ω

(1 + i∆tφnc ) |ψh|2 + γ∆t||ψh||20,∂Ω

∣

∣

≥ α∆t||∇ψh||20 + β ||ψh||20
≥ min(α∆t, β)||ψh||21,

where α, β and γ are positive real constants.

Similarly, the bilinear form b is continuous and coercive.
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It is easy to show that f1, f2 ∈ (H1)′ ⊂ Z ′
h and g ∈ (H1

n)
′ ⊂ Λ′

h. So by the Lax-Milgram

theorem, given (ψ̃1h, ψ̃2h, Ãh), there is a unique solution (ψ1h, ψ2h,Ah) = Gh(ψ̃1h, ψ̃2h, Ãh) ∈
B. Therefore the operator Gh is well-defined.

Next we show that the operator Gh is strictly contractive when ∆t
1

2/h is chosen

sufficiently small. Let (ψ̃1
1h, ψ̃

1
2h, Ã

1
h) and (ψ̃2

1h, ψ̃
2
2h, Ã

2
h) be two elements in the space B.

Also let ψ̃1 = ψ̃1
1h − ψ̃2

1h, ψ̃2 = ψ̃1
2h − ψ̃2

2h and Ã = Ã1
h − Ã2

h. Then for any ϕ ∈ Zh,

〈f1(ψ̃
1
1h, ψ̃

1
2h, Ã

1
h) − f1(ψ̃

2
1h, ψ̃

2
2h, Ã

2
h), ϕ〉

= −∆t

∫

Ω

[

(|ψ̃1
1h|2 − T1)ψ̃

1
1h − (|ψ̃2

1h|2 − T1)ψ̃
2
1h

]

ϕdt

− i∆t
2ξ1
λ1

∫

Ω

[

(Ã1
h + Ac) · ∇ψ̃1

1h − (Ã2
h + Ac) · ∇ψ̃2

1h

]

ϕdt

− i∆t
ξ1
λ1

∫

Ω

[

ψ̃1
1h∇ · (Ã1

h + Ac) − ψ̃2
1h∇ · (Ã2

h + Ac)
]

ϕdt

−∆t
x2

0

λ2
1

∫

Ω

[

|Ã1
h + Ac|2ψ̃1

1h − |Ã2
h + Ac|2ψ̃2

1h

]

ϕdt− η∆t

∫

Ω

ψ̃2ϕdt

≤ −∆t

∫

Ω

[

(|ψ̃1
1h|2 − T1)ψ̃1 + (ψ̃1∗

1hψ̃1 + ψ̃2
1hψ̃

∗
1)ψ̃

2
1h

]

ϕdt

− i∆t
2ξ1
λ1

∫

Ω

[

Ã · ∇ψ̃1
1h + (Ã2

h + Ac) · ∇ψ̃1

]

ϕdt

− i∆t
ξ1
λ1

∫

Ω

[

ψ̃1∇ · (Ã1
h + Ac) + ψ̃2

1h∇ · Ã
]

ϕdt

−∆t
x2

0

λ2
1

∫

Ω

[

Ã · (Ã1
h + Ã2

h + 2Ac)ψ̃
1
1h + |Ã2

h + Ac|2ψ̃1

]

ϕdt− η∆t

∫

Ω

ψ̃2ϕdt

≤ C∆t

[

(||ψ̃1
1h||20,4 + |T1|) ||ψ̃1||0,4

+
(

||ψ̃1
1h||0,4 ||ψ̃1||0,4 + ||ψ̃2

1h||0,4 ||ψ̃1||0,4
)

||ψ̃2
1h||0,4

+ ||Ã||0,4 ||∇ψ̃1
1h||0 + ||(Ã2

h + Ac)||0,4 ||∇ψ̃1||0
+ ||ψ̃1||0,4 ||∇ · (Ã1

h + Ac)||0 + ||ψ̃2
1h||0,4 ||∇ · Ã||0

+ ||Ã||0,4 ||(Ã1
h + Ã2

h + 2Ac)||0,4 ||ψ̃1
1h||0,4 + ||Ã2

h + Ac||20,4 ‖|ψ̃1||0,4

+||ψ̃2||0,4
]

||ϕ||0,4

≤ C∆t
[

||ψ̃1||1 + ||ψ̃2||1 + ||Ã||1
]

||ϕ||0,4. (4.37)

In the above last two inequalities, we have used the embedding relation H1(Ω) →֒
L4(Ω) →֒ L2(Ω). We will use this relation repeatedly later.
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Likewise, we have

〈f2(ψ̃
1
1h, ψ̃

1
2h, Ã

1
h) − f2(ψ̃

2
1h, ψ̃

2
2h, Ã

2
h), ϕ〉 ≤ C∆t

[

||ψ̃1||1 + ||ψ̃2||1 + ||Ã||1
]

||ϕ||0,4. (4.38)

As for the functional g, for any Φ ∈ Λh we have

〈g(ψ̃1
1h, ψ̃

1
2h, Ã

1
h) − g(ψ̃2

1h, ψ̃
2
2h, Ã

2
h), Φ〉

= −∆t
1

κ1

∫

Ω

ℜ
(

iψ̃1∗
1h∇ψ̃1

1h − iψ̃2∗
1h∇ψ̃2

1h

)

· ΦdΩ

−∆t
x2

0

λ2
1

∫

Ω

[

|ψ̃1
1h|2(Ã1

h + Ac) − |ψ̃2
1h|2(Ã2

h + Ac)
]

· ΦdΩ

−∆t
1

ν

1

κ2

∫

Ω

ℜ
(

iψ̃1∗
2h∇ψ̃1

2h − iψ̃2∗
2h∇ψ̃2

2h

)

· ΦdΩ

−∆t
x2

0

λ2
2

∫

Ω

[

|ψ̃1
2h|2(Ã1

h + Ac) − |ψ̃2
2h|2(Ã2

h + Ac)
]

· ΦdΩ

≤ −∆t
1

κ1

∫

Ω

ℜ
(

iψ̃∗
1∇ψ̃1

1h + iψ̃2∗
1h∇ψ̃1

)

· ΦdΩ

−∆t
x2

0

λ2
1

∫

Ω

[

|ψ̃1
1h|2Ã + (|ψ̃1

1h|2 − |ψ̃2
1h|2)(Ã2

h + Ac)
]

· ΦdΩ

−∆t
1

ν

1

κ2

∫

Ω

ℜ
(

iψ̃∗
2∇ψ̃1

2h + iψ̃2∗
2h∇ψ̃2

)

· ΦdΩ

−∆t
x2

0

λ2
2

∫

Ω

[

|ψ̃1
2h|2Ã + (|ψ̃1

2h|2 − |ψ̃2
2h|2)(Ã2

h + Ac)
]

· ΦdΩ

≤ C∆t

[

||ψ̃1||0,4 ||∇ψ̃1
1h||0 + ||ψ̃2

1h||0,4 ||∇ψ̃1||0

+||ψ̃1
1h||20,4 ||Ã||0,4 + ||ψ̃1||0,4

(

||ψ̃1
1h||0,4 + ||ψ̃2

1h||0,4
)

||Ã2
h + Ac||0,4

+ ||ψ̃2||0,4 ||∇ψ̃1
2h||0 + ||ψ̃2

2h||0,4 ||∇ψ̃2||0

+||ψ̃1
2h||20,4 ||Ã||0,4 + ||ψ̃2||0,4

(

||ψ̃1
2h||0,4 + ||ψ̃2

2h||0,4
)

||Ã2
h + Ac||0,4

]

||Φ||0,4.

≤ C∆t
[

||ψ̃1||1 + ||ψ̃2||1 + ||Ã||1
]

||Φ||0,4. (4.39)

Now Let (ψ1
1h, ψ

1
2h,A

1
h) = Gh(ψ̃

1
1h, ψ̃

1
2h, Ã

1
h) and (ψ2

1h, ψ
2
2h,A

2
h) = Gh(ψ̃

2
1h, ψ̃

2
2h, Ã

2
h). Also

let ψ1 = ψ1
1h − ψ2

1h, ψ2 = ψ1
2h − ψ2

2h and A = A1
h − A2

h.

Then by using (4.30) and (4.37),

ℜ a1(ψ1, ψ1) = ℜ 〈f1(ψ̃
1
1h, ψ̃

1
2h, Ã

1
h) − f1(ψ̃

2
1h, ψ̃

2
2h, Ã

2
h), ψ1〉
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gives

||ψ1||20 + ∆t
ξ2
1h

x2
0

||∇ψ1||20 + γ1||ψ1||2∂Ω

≤ C∆t
[

||ψ̃1||1 + ||ψ̃2||1 + ||Ã||1
]

||ψ1||0,4
≤ C∆t

[

||ψ̃1||21 + ||ψ̃2||21 + ||Ã||21
]

+ ∆t
[

Cε||ψ1||20 + ε||∇ψ1||20
]

,

here the last term enclosed in brackets is obtained from the following inequality which is a

result of the Nirenberg-Gagliardo inequality

||ψ1||20,4 ≤ C||ψ1||0 ||ψ1||1

≤ C

4ε
||ψ1||20 + ε||ψ1||21

≤ C

4ε
||ψ1||20 + ε

[

||ψ1||20 + ||∇ψ1||20
]

= Cε||ψ1||20 + ε||∇ψ1||20. (4.40)

This gives

(1 − Cε∆t)||ψ1||20 + ∆t
(ξ2

1h

x2
0

− ε
)

||∇ψ1||20 ≤ C∆t
[

||ψ̃1||21 + ||ψ̃2||21 + ||Ã||21
]

.

Therefore by choosing ε small enough such that ξ2
1h/x

2
0 − ε > 0, and ∆t small enough

such that 1 − Cε∆t > 0, we get

||ψ1||20 ≤ C∆t
[

||ψ̃1||21 + ||ψ̃2||21 + ||Ã||21
]

. (4.41)

Similarly, by using (4.31) and (4.38), we get

||ψ2||20 ≤ C∆t
[

||ψ̃1||21 + ||ψ̃2||21 + ||Ã||21
]

. (4.42)

By using (4.32) and (4.39),

b(A, A) = 〈g(ψ̃1
1h, ψ̃

1
2h, Ã

1
h) − g(ψ̃2

1h, ψ̃
2
2h, Ã

2
h), A〉,

gives

σ
x2

0

λ2
1

||A||20 + ǫ∆t||divA||20 + ∆t||curlA||20

≤ C∆t
[

||ψ̃1||1 + ||ψ̃2||1 + ||Ã||1
]

||A||0,4
≤ C∆t

[

||ψ̃1||21 + ||ψ̃2||21 + ||Ã||21
]

+ ∆t
[

Cε||A||20 + εC( ||divA||20 + ||curlA||20)
]

,
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here the last term enclosed in brackets is obtained from the following inequality in a similar

way as in (4.40) and by using inequality (4.1)

||A||20,4 ≤ C

4ε
||A||20 + ε||A||21

≤ Cε||A||20 + εC
[

||divA||20 + ||curlA||20
]

. (4.43)

This gives

(σ
x2

0

λ2
1

− Cε∆t)||A||20 + ∆t(ǫ− εC))||divA||20 + ∆t(1 − εC)||curlA||20

≤ C∆t
[

||ψ̃1||21 + ||ψ̃2||21 + ||Ã||21
]

.

Therefore by choosing ε small enough such that ǫ − εC > 0, and ∆t small enough such

that σx2
0/λ

2
1 − Cε∆t > 0, we get

||A||20 ≤ C∆t
[

||ψ̃1||21 + ||ψ̃2||21 + ||Ã||21
]

. (4.44)

By applying the inverse inequalities (4.6) and (4.7) on the inequalities (4.41), (4.42) and

(4.44), the resulted inequalities together give

||ψ2||1 + ||ψ2||1 + ||A||1 ≤ Ch−1∆t
1

2

[

||ψ̃1||1 + ||ψ̃2||1 + ||Ã||1
]

,

where the constant C is independent of n, N , h and ∆t. Therefore, by choosing ∆t
1

2/h

sufficient small such that C∆t
1

2/h = α < 1, independent of n and N , we get

||(ψ1, ψ2,A)||B ≤ α||(ψ̃1, ψ̃2, Ã)||B

which is equivalent to

||Gh(ψ̃
1
1h, ψ̃

1
2h, Ã

1
h) − Gh(ψ̃

2
1h, ψ̃

2
2h, Ã

2
h)||B ≤ α||(ψ̃1

1h, ψ̃
1
2h, Ã

1
h) − (ψ̃2

1h, ψ̃
2
2h, Ã

2
h)||B.

This shows that the operator Gh is strictly contractive. Whence Banach’s fixed point

theorem implies that there exists a unique fixed point (ψ1h, ψ2h,Ah) = (ψn1h, ψ
n
2h,A

n
h) as a

solution to the problem (DPǫ) at time step n. Finally, an induction starting from the initial

time step with (ψ0
1h, ψ

0
2h,A

0
h) = (Ihψ10, Ihψ20, IhA0) shows the existence and uniqueness of

the solution (ψn1h, ψ
n
2h,A

n
h) to the problem (DPǫ) for all time step n, 1 ≤ n ≤ N .
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4.3 Stability Estimates of the Problem (DPǫ)

Theorem 4.3.1 Assume Ac, He, ψ10, ψ20 and A0 satisfy the regularity assumptions (4.18),

(4.20), (4.22) and (4.23), respectively, then for ∆t < min(1,Γ)/(|η|(1+ν2)+max(|T1|, |T2|)),
the solution of the problem (DPǫ) satisfies the following estimates:

max
1≤n≤N

[

||ψn1h||20 + ||ψn2h||20 + ||An
h||20

]

≤ C, (4.45)

N
∑

n=1

[

||ψn1h − ψn−1
1h ||20 + ||ψn2h − ψn−1

2h ||20 + ||An
h − An−1

h ||20
]

≤ C, (4.46)

N
∑

n=1

∆t
[

||∇ψn1h||20 + ||∇ψn2h||20
]

≤ C, (4.47)

N
∑

n=1

∆t
[

ǫ||divAn
h||20 + ||curlAn

h||20
]

≤ C, (4.48)

N
∑

n=1

∆t

[

||ψn1h||40,4 + ||ψn2h||40,4 + ||An
h||40,4

]

≤ C, (4.49)

N
∑

n=1

∆t

[

||ψn1h||20,∂Ω + ||ψn2h||20,∂Ω

]

≤ C. (4.50)

where the constant C > 0 is independent of h, ∆t and N but dependent on ǫ.

Proof By choosing the test function ψ̃h = ∆tψn1h ∈ Zh in (4.24) and taking the real part of

the resulted equation, we obtain by using the identity 2(a− b, a) = |a|2 − |b|2 + |a− b|2 that

(after the superscript ǫ is dropped)

1

2

[

||ψn1h||20 − ||ψn−1
1h ||20 + ||ψn1h − ψn−1

1h ||20
]

+ ∆t||ψn1h||40,4

+∆t ||−i ξ1
x0

∇ψn1h −
x0

λ1

(An
h + An

c )ψ
n
1h||20 + γ1

ξ2
1

x2
0

∆t||ψn1h||20,∂Ω

≤ −∆tη

∫

Ω

ψn2hψ
n∗
1hdΩ + ∆tT1||ψn1h||20

≤ ∆t
|η|
2

[

||ψn2h||20 + ||ψn1h||20
]

+ ∆t|T1| ||ψn1h||20. (4.51)
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Likewise, equation (4.25) becomes

Γ

2

[

||ψn2h||20 − ||ψn−1
2h ||20 + ||ψn2h − ψn−1

2h ||20
]

+ ∆t||ψn2h||40,4

+∆t ||−i ξ2
x0

∇ψn2h − ν
x0

λ2

(An
h + An

c )ψ
n
2h||20 + γ2

ξ2
2

x2
0

∆t||ψn2h||20,∂Ω

≤ ∆t
|η|ν2

2

[

||ψn1h||20 + ||ψn2h||20
]

+ ∆t|T2| ||ψn2h||20. (4.52)

Combining the two inequalities (4.51) and (4.52) and choosing ∆t small enough such that

∆t <
1

|η|(1 + ν2) + |T1|
, ∆t <

Γ

|η|(1 + ν2) + |T2|
. (4.53)

Then the discrete Gronwall inequality gives

max
1≤n≤N

[

||ψn1h||20 + ||ψn2h||20
]

+
N

∑

n=1

[

||ψn1h − ψn−1
1h ||20 + ||ψn2h − ψn−1

2h ||20
]

+
N

∑

n=1

∆t
[

||ψn1h||40,4 + ∆t||ψn2h||40,4
]

+
N

∑

n=1

∆t
[

||−i ξ1
x0

∇ψn1h −
x0

λ1

(An
h + An

c )ψ
n
1h||20

+||−i ξ2
x0

∇ψn2h − ν
x0

λ2

(An
h + An

c )ψ
n
2h||20

]

+
N

∑

n=1

∆t
[

||ψn1h||20,∂Ω + ||ψn2h||20,∂Ω

]

≤ A, (4.54)

where the constant A depends only on the norms of the initial conditions, namely ||ψ0
1h||0

and ||ψ0
2h||0; and is independent of ∆t, h, N and ǫ.

Now by choosing the test function Ãh = ∆tAn
h ∈ Λh in (4.26), then we obtain by using

the identity 2(a− b, a) = |a|2 − |b|2 + |a− b|2 that (after the superscript ǫ is dropped)

σ
x2

0

2λ2
1

[

||An
h||20 − ||An−1

h ||20 + ||An
h − An−1

h ||20
]

+ ǫ∆t||div An
h||20 + ∆t||curlAn

h||20

− ∆t

∫

Ω

ℜ
[(

− i
ξ1
x0

∇ψn1h −
x0

λ1

(An
h + An

c )ψ
n
1h

)x0

λ1

ψn∗1h

]

· An
hdΩ

− ∆t

∫

Ω

ℜ
[(

− i
ξ2
x0

∇ψn2h − ν
x0

λ2

(An
h + An

c )ψ
n
2h

) 1

ν

x0

λ2

ψn∗2h

]

· An
h dΩ

= ∆t

∫

Ω

Hn
e · curlAn

hdΩ.
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This gives

σ
x2

0

2λ2
1

[

||An
h||20 − ||An−1

h ||20 + ||An
h − An−1

h ||20
]

+ ǫ∆t||div An
h||20 + ∆t||curlAn

h||20

≤ Cε∆t|| − i
ξ1
x0

∇ψn1h −
x0

λ1

(An
h + An

c )ψ
n
1h||20 + ε∆t||ψn1h||20,4 ||An

h||20,4

+Cε∆t|| − i
ξ2
x0

∇ψn2h − ν
x0

λ2

(An
h + An

c )ψ
n
2h||20 + ε∆t||ψn2h||20,4 ||An

h||20,4
+∆t

[

Cε||Hn
e ||20 + ε||curlAn

h||20
]

. (4.55)

Since by the inequality (4.1), ||An
h||21 ≤ C ′(||div An

h||20 + ||curlAn
h||20), we have

||ψn1h||20,4 ||An
h||20,4 ≤ C||ψn1h||20,4 ||An

h||0 ||An
h||1

≤ C||ψn1h||40,4 ||An
h||20 +

[

||curlAn
h||20 + ||div An

h||20
]

.

So the inequality (4.55) becomes

σ
x2

0

2λ2
1

[

||An
h||20 − ||An−1

h ||20 + ||An
h − An−1

h ||20
]

+ ǫ∆t||div An
h||20 + ∆t||curlAn

h||20

≤ Cε∆t|| − i
ξ1
x0

∇ψn1h −
x0

λ1

(An
h + An

c )ψ
n
1h||20 + εC∆t||ψn1h||40,4 ||An

h||20

+Cε∆t|| − i
ξ2
x0

∇ψn2h − ν
x0

λ2

(An
h + An

c )ψ
n
2h||20 + εC∆t||ψn2h||40,4 ||An

h||20
+2ε∆t

[

||curlAn
h||20 + ||div An

h||20
]

+ ∆t
[

Cε||Hn
e ||20 + ε||curlAn

h||20
]

≤ 2CεA+ 2εCA||An
h||20

+2ε∆t
[

||curlAn
h||20 + ||div An

h||20
]

+ ∆t
[

Cε||Hn
e ||20 + ε||curlAn

h||20
]

, (4.56)

where the constant A is derived from the inequality (4.54).

Now choose ε small enough such that

ε < min

[

ǫ

3
,
σx2

0

2λ2
1

1

2CA

]

,

then by the discrete Gronwall inequality and by the regularity assumption of He, we have

max
1≤n≤N

||An
h||20 +

N
∑

n=1

||An
h − An−1

h ||20

+
N

∑

n=1

∆t
[

ǫ||div An
h||20 + ||curlAn

h||20
]

≤ B, (4.57)
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where the constant B depends on ǫ and ||A0
h||0; but is independent of ∆t, h and N .

Lastly, by the above estimates we have

N
∑

n=1

∆t
[

||An
h||40,4 + ||∇ψn1h||20 + ||∇ψn2h||20

]

≤
N

∑

n=1

∆t

[

||An
h||40,4

+C ′|| − i
ξ1
x0

∇ψn1h −
x0

λ1

(An
h + An

c )ψ
n
1h||20 +

x0

λ1

||(An
h + An

c )ψ
n
1h||20

+C ′|| − i
ξ2
x0

∇ψn2h − ν
x0

λ2

(An
h + An

c )ψ
n
2h||20 + ν

x0

λ2

||(An
h + An

c )ψ
n
2h||20

]

≤ C ′′
N

∑

n=1

2A+

[

1 + ∆t

(

||ψn1h||40,4 + ||ψn2h||40,4
)]

×∆t

[

||An
h||20

(

||div An
h||20 + ||curlAn

h||20
)

+ ||An
c ||40,4

]

≤ C,

here we have used the regularity assumption of Ac, and the constant C depends on ǫ but is

independent of ∆t, h and N . This completes the proof.

4.4 Error Estimates of the Problem (DPǫ)

We follow the methods used in [16] to deal with the cubic nonlinear term and to estimate

the errors, also see [17].

Lemma 4.4.1 Under the regularity assumptions (4.12) and for sufficiently small h, we have

for i = 1, 2 that

max
1≤n≤N

||Ihψni ||0,∞ ≤ Cψi
, (4.58)

max
1≤n≤N

||Ihψni − ψni ||0,∞ ≤ Cψi
, (4.59)

where Cψi
is a constant which depends on the magnitude of ||ψi||k+1.
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Proof For n = 1, · · · , N , k ≥ 1 and any ϕh ∈ Zh,

||Ihψni ||0,∞ ≤ ||Ihψni − ψni ||0,∞ + ||ψni ||0,∞
≤ ||Ihψni − ϕh||0,∞ + ||ϕh − ψni ||0,∞ + ||ψni ||0,∞
≤ Ch−

d
2 ||Ihψni − ϕh||0 + ||ϕh − ψni ||0,∞ + ||ψni ||0,∞

≤ Ch−
d
2

[

||Ihψni − ψni ||0 + ||ψni − ϕh||0
]

+ ||ϕh − ψni ||0,∞ + ||ψni ||0,∞
≤ Chk+1− d

2 ||ψni ||k+1 +
[

Ch−
d
2 ||ψni − ϕh||0 + ||ϕh − ψni ||0,∞

]

+ ||ψni ||0,∞,

where the third inequality is a result of the inverse inequality (4.8) and the last inequality

is a result of the interpolation error property (4.2).

Now by virtue of the approximation property (4.10), given a constant δ, for sufficiently

small h and k+ 1 > d/2, and by the regularity assumptions (4.12) which gives ψni ∈ L∞(Ω),

we get

||Ihψni ||0,∞ ≤ Chk+1− d
2 ||ψni ||k+1 + δ + ||ψni ||0,∞,

≤ Cψi
.

Lemma 4.4.2 For i = 1, 2, define function gi : C → C by setting g(ψ) = (|ψ|2−Ti)ψ, where

Ti ∈ R is defined in (2.17). Then we have

ℜ{(gi(ψ) − gi(ϕ))(ϕ∗ − ψ∗)} ≤ |ψ − ϕ|2 ∀ψ, ϕ ∈ C, (4.60)

|gi(ψ) − gi(ϕ)| ≤ C|ψ − ϕ| ∀ψ, ϕ ∈ C s.t. |ψ|, |ϕ| ≤ K for K ∈ (0,∞). (4.61)

Proof For the first inequality,

ℜ{((|ψ|2 − Ti)ψ − (|ϕ|2 − Ti)ϕ)(ϕ∗ − φ∗)}

= Ti|ψ|2 + Ti|ϕ|2 − 2Tiℜ(ψϕ∗) + |ψ|2ψϕ∗ + |ϕ|2ϕψ∗ − |ψ|4 − |ϕ|4

≤ Ti|ψ − ϕ|2 + |ψ|3|ϕ| + |ϕ|3|ψ| − |ψ|4 − |ϕ|4

= Ti|ψ − ϕ|2 − (|ϕ| − |ψ|)(|ϕ|3 − |ψ|3)

≤ |Ti||ψ − ϕ|2.

For the second inequality, suppose |ψ|, |ϕ| ≤ K, for some K ∈ (0,∞), then

∣

∣(|ψ|2 − Ti)ψ − (|ϕ|2 − Ti)ϕ
∣

∣ ≤ |K − Ti||ψ − ϕ|. (4.62)
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Lemma 4.4.3 For 1 ≤ s ≤ k, assume ψ ∈ H1(0, T ;Hs+1(Ω)),

∆t||δt(ψn − Ihψ
n)||0 ≤ C∆t

1

2hs+1

[
∫

In

||∂ψ
∂t

||2s+1dt

]
1

2

,

where In = [tn−1, tn].

Proof By the definition of δtψ
n = (ψn − ψn−1)/∆t, we get

||(ψn − Ihψ
n) − (ψn−1 − Ihψ

n−1)||0 =
∣

∣

∣

∣

∫

In

∂(ψ(t) − Ihψ(t))

∂t
dt

∣

∣

∣

∣

0

≤
∫

In

∣

∣

∣

∣

∂(ψ(t) − Ihψ(t))

∂t

∣

∣

∣

∣

0
dt

≤ Chs+1

∫

In

∣

∣

∣

∣

∂ψ(t)

∂t

∣

∣

∣

∣

s+1
dt

≤ C∆t
1

2hs+1

[
∫

In

∣

∣

∣

∣

∂ψ(t)

∂t

∣

∣

∣

∣

2

s+1
dt

]
1

2

,

where the third inequality is obtained from the interpolation error (4.2), and the last

inequality is obtained by using the Schwarz inequality.

Lemma 4.4.4 For ψ ∈ H1(0, T ;L2(Ω)),

||
∫

In

ψ(t) dt− ∆t ψn ||0 ≤ ∆t
3

2

[
∫

In

||∂ψ
∂t

||20 dt
]

1

2

.

Proof

||
∫

In

ψ(t)dt− ∆tψn||0 = ||
∫

In

(ψ(t) − ψn)dt||0

=
∣

∣

∣

∣

∫

In

∫ t

tn

∂ψ(s)

∂s
dsdt

∣

∣

∣

∣

0

≤
∣

∣

∣

∣

∫

In

∫

In

∣

∣

∂ψ(s)

∂s

∣

∣dsdt
∣

∣

∣

∣

0

≤ ∆t
∣

∣

∣

∣

∫

In

∣

∣

∂ψ(s)

∂s

∣

∣ds
∣

∣

∣

∣

0

≤ ∆t

∫

In

∣

∣

∣

∣

∂ψ(s)

∂s

∣

∣

∣

∣

0
ds

≤ ∆t∆t
1

2

[
∫

In

∣

∣

∣

∣

∂ψ(s)

∂s

∣

∣

∣

∣

2

0
ds

]
1

2

,

where the last inequality is obtained by using the Schwarz inequality.
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Theorem 4.4.5 Under the regularity assumptions (4.12)-(4.23), then for small enough

h and ∆t, the solution of the approximation problem (DPǫ) satisfies the following error

estimates:

max
1≤n≤N

[

||ψǫ1(·, tn) − ψn1h||20 + ||ψǫ2(·, tn) − ψn2h||20 + ||Aǫ(·, tn) − An
h||20

]

+
N

∑

n=1

∆t

[

||ψǫ1(·, tn) − ψn1h||21 + ||ψǫ2(·, tn) − ψn2h||21
]

+ ǫ

N
∑

n=1

∆t||Aǫ(·, tn) − An
h||21

+
N

∑

n=1

∆t
[

||ψǫ1(·, tn) − ψn1h||20,∂Ω + ||ψǫ2(·, tn) − ψn2h||20,∂Ω

]

≤ Cǫ
N(h2k + ∆t2),

where k ≥ 1 and Cǫ
N is a constant independent of h and ∆t but dependent of ǫ and N .

Proof For i = 1, 2, let the errors be eni = ψnih − ψni and En = An
h − An, recall that

ψni = ψǫi (·, tn), An = Aǫ(·, tn). Split the errors as eni = θni + ρni and En = Θn + Φn, where

θni = ψnih − Ihψ
n
i , ρ

n
i = Ihψ

n
i − ψni , Θn = An

h − IhA
n and Φn = IhA

n − An. By the finite

element interpolation errors (4.2) and (4.3), we know the errors for ρni and Φn, so we only

need to estimate the errors for θni and Θn.

By choosing the test function ψ̃h = ∆tθn1 ∈ Zh in (4.24) and ψ̃ = ∆tθn1 in the weak

form for ψǫ1 of the problem (WPǫ), and subtracting (4.24) by 1/∆t
∫

In
of the weak form

for ψǫ1 of the problem (WPǫ), where In = [tn−1, tn], then we obtain by using the identity
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2(a− b, a) = |a|2 − |b|2 + |a− b|2 that (after the superscript ǫ is dropped)

(δtθ
n
1 , ∆tθn1 ) + ∆t

(

γ1
ξ2
1

x2
0

θn1 , θ
n
1

)

∂Ω

+ ∆t

(

−i ξ1
x0

∇θn1 − x0

λ1

(An
h + An

c )θ
n
1 , −i

ξ1
x0

∇θn1 − x0

λ1

(An
h + An

c )θ
n
1

)

=
1

2

[

||θn1 ||20 − ||θn−1
1 ||20 + ||θn1 − θn−1

1 ||20
]

+ ∆tγ1
ξ2
1

x2
0

||θn1 ||20,∂Ω

+ ∆t ||−i ξ1
x0

∇θn1 − x0

λ1

(An
h + An

c )θ
n
1 ||20

=
(

δt(ψ
n
1 − Ihψ

n
1 ), ∆tθn1

)

+

[
∫

In

(

−i ξ1
x0

∇ψ1 −
x0

λ1

(A + Ac)ψ1, −i
ξ1
x0

∇θn1 − x0

λ1

(A + Ac)θ
n
1

)

dt

−∆t

(

−i ξ1
x0

∇Ihψn1 − x0

λ1

(An
h + An

c )Ihψ
n
1 , −i

ξ1
x0

∇θn1 − x0

λ1

(An
h + An

c )θ
n
1

) ]

+

[
∫

In

(

iφcψ1, θ
n
1

)

dt− ∆t
(

iφncψ
n
1h, θ

n
1

)

]

+

[
∫

In

(

(|ψ1|2 − T1)ψ1, θ
n
1

)

dt− ∆t
(

(|ψn1h|2 − T1)ψ
n
1h, θ

n
1

)

]

+

[
∫

In

η(ψ2, θ
n
1 )dt− ∆t η(ψn2h, θ

n
1 )

]

+

[
∫

In

(

γ1
ξ2
1

x2
0

ψ1, θ
n
1

)

∂Ω

dt− ∆t

(

γ1
ξ2
1

x2
0

Ihψ
n
1 , θ

n
1

)

∂Ω

]

= (I) + (II) + (III) + (IV ) + (V ) + (V I). (4.63)

Since
(

ξ1
x0

)2||∇θn1 ||20 ≤ ||−i ξ1
x0

∇θn1 − x0

λ1

(An
h + An

c )θ
n
1 ||20 + ||x0

λ1

(An
h + An

c )θ
n
1 ||20, we have

1

2

[

||θn1 ||20 − ||θn−1
1 ||20

]

+ ∆t
( ξ1
x0

)2||θn1 ||21 + ∆t||θn1 ||20,∂Ω

≤ ℜ
{

(I) + (II) + (III) + (IV ) + (V ) + (V I)
}

+ ∆t
( ξ1
x0

)2||θn1 ||20 + ∆t||x0

λ1

(An
h + An

c )θ
n
1 ||20. (4.64)

We now estimate the terms on the R.H.S. of the above inequality. By lemma 4.4.3, we

have

|ℜ(I)| ≤ C∆t
1

2 hk
[
∫

In

||∂ψ1

∂t
||2sdt

]
1

2

||θn1 ||0.

≤ Ch2k

∫

In

||∂ψ1

∂t
||2sdt+ ∆t||θn1 ||20,

where s = 2 if k = 1, and s = k if k ≥ 2.
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Rewrite (II) as

(II) =
∫

In

∫

Ω

[

−i ξ1
x0

∇(ψ1 − ψn1 ) − x0

λ1

(A + Ac)ψ1 −
x0

λ1

(An + An
c )ψ

n
1

]

·
(

i
ξ1
x0

∇θn∗1 − x0

λ1

(A + Ac)θ
n∗
1

)

dΩ dt

+∆t

∫

Ω

[

−i ξ1
x0

∇(ψn1 − Ihψ
n
1 ) − x0

λ1

(An
h + An

c )(ψ
n
1 − Ihψ

n
1 )

]

·
(

i
ξ1
x0

∇θn∗1 − x0

λ1

(An
h + An

c )θ
n∗
1

)

dΩ

+∆t

∫

Ω

[

−i ξ1
x0

∇ψn1 − x0

λ1

(An + An
c )ψ

n
1

]

·
(

(An
h + An

c ) − (IhA
n + An

c )
)

θn∗1 dΩ

+∆t

∫

Ω

[

−i ξ1
x0

∇ψn1 − x0

λ1

(An + An
c )ψ

n
1

]

·
(

(IhA
n + An

c ) − (An + An
c )

)

θn∗1 dΩ

+

∫

In

∫

Ω

[

−i ξ1
x0

∇ψn1 − x0

λ1

(An + An
c )ψ

n
1

]

·
(

(An + An
c ) − (A + Ac)

)

θn∗1 dΩ dt

+∆t

∫

Ω

(

(An
h + An

c ) − (IhA
n + An

c )
)

ψn1 ·
[

i
ξ1
x0

∇θn∗1 − x0

λ1

(An
h + An

c )θ
n∗
1

]

dΩ

+∆t

∫

Ω

(

(IhA
n + An

c ) − (An + An
c )

)

ψn1 ·
[

i
ξ1
x0

∇θn∗1 − x0

λ1

(An
h + An

c )θ
n∗
1

]

dΩ

= (II)1 + (II)2 + (II)3 + (II)4 + (II)5 + (II)6 + (II)7.

Then by using lemma 4.4.4, we have

|ℜ(II)1| ≤
∫

In

||−i ξ1
x0

∇(ψ1 − ψn1 ) − x0

λ1

(A + Ac)ψ1 +
x0

λ1

(An + An
c )ψ

n
1 ||0

× ||i ξ1
x0

∇θn1 − x0

λ1

(A + Ac)θ
n
1 ||0 dt

≤ C∆t
3

2

[
∫

In

||∂∇ψ1

∂t
+
∂

∂t

(

(A + Ac)ψ1

)

||20dt
]

1

2

×
[

||∇θn1 ||0 + max
1≤t≤T

||A + Ac||0,4||θn1 ||0,4
]

≤ Cε∆t
2

∫

In

[

||∂ψ1

∂t
||21 + || ∂

∂t
(A + Ac)||20

]

dt+ ε∆t||θn1 ||21.

For (II)2, first note that the regularity of Ac (4.18) and the stability result (4.49) give
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||An
h + An

c ||0,4 ≤ C. Then making use of the interpolation error (4.2), we get

|ℜ(II)2| ≤ ∆t
[

||−i ξ1
x0

∇(ψn1 − Ihψ
n
1 )||0 + ||x0

λ1

(An
h + An

c )||0,4 ||(ψn1 − Ihψ
n
1 )||0,4

]

×
[ ξ1
x0

||∇θn1 ||0 + ||x0

λ1

(An
h + An

c )||0,4||θn1 ||0,4
]

≤ C∆t hk ||ψn1 ||k+1 ||θn1 ||1
≤ Cε∆t h

2k||ψn1 ||2k+1 + ε∆t||θn1 ||21,

|ℜ(II)3| ≤ C∆t
[

||∇ψn1 ||0,4 + ||An + An
c ||0,4 ||ψn1 ||0,∞

]

||Θn||0 ||θn1 ||0,4
≤ Cε∆t||Θn||20 + ε∆t||θn1 ||21,

By the interpolation error (4.3),

|ℜ(II)4| ≤ C∆t
[

||∇ψn1 ||0,4 + ||An + An
c ||0,4 ||ψn1 ||0,∞

]

hk+1||An||k+1 ||θn1 ||0,4
≤ Cε∆t h

2(k+1)||An||2k+1 + ε∆t||θn1 ||21,

|ℜ(II)5| ≤ C
[

||∇ψn1 ||0,4 + ||An + An
c ||0,4 ||ψn1 ||0,∞

]

×∆t
3

2

[
∫

In

|| ∂
∂t

(A + Ac)||20 dt
]

1

2

||θn1 ||0,4

≤ Cε∆t
2

∫

In

|| ∂
∂t

(A + Ac)||20 dt+ ε∆t||θn1 ||21,

|ℜ(II)6| ≤ C∆t||Θn||0 ||ψn1 ||0,∞
[

||∇θn1 ||0 + ||(An
h + An

c )||0,4||θn1 ||0,4
]

≤ Cε∆t||Θn||20 + ε∆t||θn1 ||21,

By the interpolation error (4.3),

|ℜ(II)7| ≤ C∆t hk+1||An||k+1 ||ψn1 ||0,∞
[

||∇θn1 ||0 + ||(An
h + An

c )||0,4||θn1 ||0,4
]

≤ Cε∆t h
2(k+1)||An||2k+1 + ε∆t||θn1 ||21.

Rewrite (III) as

(III) =

∫

In

∫

Ω

i(φcψ1 − φncψ
n
1 ) θn∗1 dΩdt+ ∆t

∫

Ω

iφnc (ψ
n
1 − Ihψ

n
1 ) θn∗1 dΩ

+∆t

∫

Ω

iφnc (Ihψ
n
1 − ψn1h) θ

n∗
1 dΩ,
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then we have

|ℜ(III)| ≤ C∆t
3

2

[
∫

In

||∂(φcψ1)

∂t
||20 dt

]
1

2

||θn1 ||0

+C∆t hk||φnc ||0,4 ||ψn1 ||k+1 ||θn1 ||0
+∆tℜ

∫

Ω

iφnc |θn1 |2dΩ

≤ C∆t2
∫

In

[

||φc||20,4 ||
∂ψ1

∂t
||20,4 + ||ψ1||20,4 ||

∂φc
∂t

||20,4
]

dt

+C∆t h2k ||φc||20,4 ||ψn1 ||2k+1 + 2∆t||θn1 ||20.

By using the notation of function g1 in lemma 4.4.2, we rewrite (IV ) as

(IV ) =

∫

In

∫

Ω

(g1(ψ1) − g1(ψ
n
1 )) θn∗1 dΩdt+ ∆t

∫

Ω

(g1(ψ
n
1 ) − g1(Ihψ

n
1 )) θn∗1 dΩ

+∆t

∫

Ω

(g1(Ihψ
n
1 ) − g1(ψ

n
1h)) θ

n∗
1 dΩ,

then by the regularity assumption (4.12), ||ψn1 ||0,∞ ≤ C and by lemma 4.4.1, ||Ihψni ||0,∞ ≤
Cψi

. Thus by lemma 4.4.2, we get

|ℜ(IV )| ≤ C∆t
3

2

[
∫

In

||∂g1(ψ1)

∂t
||20 dt

]
1

2

||θn1 ||0

+Cψ1
∆t||ψn1 − Inψ

n
1 ||0 ||θn1 ||0 + ∆t|T1| ||θn1 ||20

≤ C∆t
3

2

[
∫

In

||∂g1(ψ1)

∂t
||20 dt

]
1

2

||θn1 ||0

+Cψ1
∆t hk+1||ψn1 ||k+1 ||θn1 ||0 + ∆t|T1| ||θn1 ||20

≤ C∆t2
∫

In

||∂g1(ψ1)

∂t
||20 dt

+Cψ1
∆t h2(k+1)||ψn1 ||2k+1 + ∆t(2 + |T1|) ||θn1 ||20.

Rewrite (V ) as

(V ) =

∫

In

∫

Ω

η(ψ2 − ψn2 ) θn∗1 dΩdt+ ∆t

∫

Ω

η(ψn2 − Ihψ
n
2 ) θn∗1 dΩ,

+∆t

∫

Ω

η(Ihψ
n
2 − ψn2h) θ

n∗
1 dΩ,

then we have

|ℜ(V )| ≤ C∆t
3

2

[
∫

In

||∂ψ2

∂t
||20 dt

]
1

2

||θn1 ||0 + C∆t hk+1 ||ψn2 ||k+1 ||θn1 ||0

+∆t ||θn2 ||0 ||θn1 ||0
≤ C∆t2

∫

In

||∂ψ2

∂t
||20 dt+ C∆t h2(k+1)||ψn2 ||2k+1 +

1

4
∆t||θn2 ||20 + ∆t||θn1 ||20.
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Rewrite (V I) as

(V I) = γ1
ξ2
1

x2
0

[
∫

In

∫

∂Ω

(ψ1 − ψn1 ) θn∗1 dSdt− ∆t

∫

∂Ω

(ψn1 − Ihψ
n
1 ) θn∗1 dS

]

,

then using an analogue result of the lemma 4.4.4 and the boundary interpolation error (4.4),

we get

|ℜ(V I)| ≤ Cγ1
ξ2
1

x2
0

[

∆t
3

2

[
∫

In

||∂ψ1

∂t
||20,∂Ω dt

]
1

2

||θn1 ||0,∂Ω

+∆t h(k+1)− 1

2 ||ψn1 ||(k+1)− 1

2
,∂Ω ||θn1 ||0,∂Ω

]

≤ C∆t2
∫

In

||∂ψ1

∂t
||20,∂Ω dt+ C∆t h2(k+ 1

2
) ||ψn1 ||2k+1 + ∆t

γ1

2

ξ2
1

x2
0

||θn1 ||20,∂Ω,

where in the second term of the last inequality, we have used the trace embedding theorem.

Combining all the above estimates, the inequality (4.64) becomes

1

2

[

||θn1 ||20 − ||θn−1
1 ||20

]

+ ∆t
ξ2
1

x2
0

||θn1 ||21 + ∆tγ1
ξ2
1

x2
0

||θn1 ||20,∂Ω

≤ (8 + |T1|)∆t||θn1 ||20 +
1

4
∆t||θn2 ||20 + 7ε∆t||θn1 ||21 + ∆t

γ1

2

ξ2
1

x2
0

||θn1 ||20,∂Ω

+Cε∆t||Θn||20 + ∆t

(

ξ1
x0

)2

||θn1 ||20 + ∆t

(

x0

λ1

)2

||(An
h + An

c )θ
n
1 ||20

+Ch2k

∫

In

||∂ψ1

∂t
||2sdt+ Cε∆t

2

∫

In

[

||∂ψ1

∂t
||21 + || ∂

∂t
(A + Ac)||20

]

dt

+Cε∆t h
2k||ψn1 ||2k+1 + Cε∆t h

2(k+1)||An||2k+1

+Cε∆t
2

∫

In

|| ∂
∂t

(A + Ac)||20 dt+ C∆t h2k ||φc||20,4 ||ψn1 ||2k+1

+C∆t2
∫

In

[

||φc||20,4 ||
∂ψ1

∂t
||20,4 + ||ψ1||20,4 ||

∂φc
∂t

||20,4
]

dt

+C∆t2
∫

In

||∂g1(ψ1)

∂t
||20 dt+ Cψ1

∆t h2(k+1)||ψn1 ||2k+1

+C∆t2
∫

In

||∂ψ2

∂t
||20 dt+ C∆t h2(k+1)||ψn2 ||2k+1

+C∆t2
∫

In

||∂ψ1

∂t
||20,∂Ω dt+ C∆t h2(k+ 1

2
) ||ψn1 ||2k+1, (4.65)

where s = 2 if k = 1 and s = k if k ≥ 2.
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Now since

||(An
h + An

c )θ
n
1 ||20 ≤ ||(An

h + An
c )||20,4 ||θn1 ||20,4

≤ ||(An
h + An

c )||20,4
(

C||θn1 ||0 ||θn1 ||1
)

≤ Cε∆t||θn1 ||20 + ε∆t||θn1 ||21,

the inequality (4.65) becomes

1

2

[

||θn1 ||20 − ||θn−1
1 ||20

]

+ ∆t
ξ2
1

x2
0

||θn1 ||21 + ∆tγ1
ξ2
1

x2
0

||θn1 ||20,∂Ω

≤ Cε∆t||θn1 ||20 +
1

4
∆t||θn2 ||20 + 8ε∆t||θn1 ||21 + ∆t

γ1

2

ξ2
1

x2
0

||θn1 ||20,∂Ω + Cε∆t||Θn||20.

+Ch2k

∫

In

||∂ψ1

∂t
||2sdt+ Cε∆t

2

∫

In

[

||∂ψ1

∂t
||21 + || ∂

∂t
(A + Ac)||20

]

dt

+Cε∆t h
2k||ψn1 ||2k+1 + Cε∆t h

2(k+1)||An||2k+1

+Cε∆t
2

∫

In

|| ∂
∂t

(A + Ac)||20 dt+ C∆t h2k ||φc||20,4 ||ψn1 ||2k+1

+C∆t2
∫

In

[

||φc||20,4 ||
∂ψ1

∂t
||20,4 + ||ψ1||20,4 ||

∂φc
∂t

||20,4
]

dt

+C∆t2
∫

In

||∂g1(ψ1)

∂t
||20 dt+ Cψ1

∆t h2(k+1)||ψn1 ||2k+1

+C∆t2
∫

In

||∂ψ2

∂t
||20 dt+ C∆t h2(k+1)||ψn2 ||2k+1

+C∆t2
∫

In

||∂ψ1

∂t
||20,∂Ω dt+ C∆t h2(k+ 1

2
) ||ψn1 ||2k+1. (4.66)

Similarly, by applying the same technique to the equation (4.25) and to the weak form

for ψǫ2 of the problem (WPǫ), we get
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1

2

[

||θn2 ||20 − ||θn−1
2 ||20

]

+ ∆t
ξ2
2

x2
0

||θn2 ||21 + ∆tγ2
ξ2
2

x2
0

||θn2 ||20,∂Ω

≤ Cε∆t||θn2 ||20 +
1

4
∆t||θn1 ||20 + 8ε∆t||θn2 ||21 + ∆t

γ2

2

ξ2
2

x2
0

||θn2 ||20,∂Ω + Cε∆t||Θn||20.

+Ch2k

∫

In

||∂ψ2

∂t
||2sdt+ Cε∆t

2

∫

In

[

||∂ψ2

∂t
||21 + || ∂

∂t
(A + Ac)||20

]

dt

+Cε∆t h
2k||ψn2 ||2k+1 + Cε∆t h

2(k+1)||An||2k+1

+Cε∆t
2

∫

In

|| ∂
∂t

(A + Ac)||20 dt+ C∆t h2k ||φc||20,4 ||ψn2 ||2k+1

+C∆t2
∫

In

[

||φc||20,4 ||
∂ψ2

∂t
||20,4 + ||ψ2||20,4 ||

∂φc
∂t

||20,4
]

dt

+C∆t2
∫

In

||∂g2(ψ2)

∂t
||20 dt+ Cψ2

∆t h2(k+1)||ψn2 ||2k+1

+C∆t2
∫

In

||∂ψ1

∂t
||20 dt+ C∆t h2(k+1)||ψn1 ||2k+1

+C∆t2
∫

In

||∂ψ2

∂t
||20,∂Ω dt+ C∆t h2(k+ 1

2
) ||ψn2 ||2k+1, (4.67)

where s = 2 if k = 1 and s = k if k ≥ 2.

Now by choosing the test function Ãh = ∆tΘn ∈ Λh in (4.26) and Ã = ∆tΘn in the weak

form for Aǫ of the problem (WPǫ), and subtracting (4.26) by 1/∆t
∫

In
of the weak form for

Aǫ of the problem (WPǫ), we get (after the superscript ǫ is dropped)
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σ
x2

0

λ2
1

(δtΘ
n, ∆tΘn) + ∆t(curlΘn, curlΘn) + ǫ∆t(divΘn, divΘn)

= (δt(A
n − IhA

n), ∆tΘn)

+

[
∫

In

[

(curlA, curlΘn) + ǫ(divA, divΘn)
]

dt

−∆t(curlIhA
n, curlΘn) − ǫ∆t(divIhA

n, divΘn)

]

−
[

∫

In

ℜ
(

(

− i
ξ1
x0

∇ψ1 −
x0

λ1

(A + Ac)ψ1

)

,
x0

λ1

ψ1Θ
n

)

dt

+ ∆tℜ
(

(

− i
ξ1
x0

∇ψn1h −
x0

λ1

(An
h + An

c )ψ
n
1h

)

,
x0

λ1

ψn1hΘ
n

) ]

−
[

∫

In

ℜ
(

(

− i
ξ2
x0

∇ψ2 − ν
x0

λ2

(A + Ac)ψ2

)

,
1

ν

x0

λ2

ψ2Θ
n

)

dt

+ ∆tℜ
(

(

− i
ξ2
x0

∇ψn2h − ν
x0

λ2

(An
h + An

c )ψ
n
2h

)

,
1

ν

x0

λ2

ψn2hΘ
n

) ]

+

[

∆t(Hn
e , curlΘn) −

∫

In

(He, curlΘn)

]

= (V II) + (V III) + (IX) + (X) + (XI). (4.68)

So by using the identity 2(a− b, a) = |a|2 − |b|2 + |a− b|2, we get

σ
x2

0

2λ2
1

[

||Θn||20 − ||Θn−1||20
]

+ ǫ∆t||div Θn||20 + ∆t||curl Θn||20
≤ (V II) + (V III) + (IX) + (X) + (XI). (4.69)

We now estimate the terms (V II)-(XI). Similar to the term (I), we have

|(V II)| ≤ C h2k

∫

In

||∂A
n

∂t
||2sdt+ ∆t||Θn||20,

where s = 2 if k = 1 and s = k if k ≥ 2.

Rewrite (V III) as

(V III) =

∫

In

[

(curl(A − An), curlΘn) + ǫ(div(A − An), divΘn)
]

dt

+ ∆t(curl(An − IhA
n), curlΘn) + ǫ∆t(div(An − IhA

n), divΘn),
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so we have

|(V III)| ≤ C∆t
3

2

[
∫

In

||∂curlA

∂t
||20 + ǫ||∂divA

∂t
||20 dt

]
1

2

||Θn||1

+∆t||(An − IhA
n)||1 ||Θn||1

≤ C∆t
3

2

[
∫

In

||∂A
∂t

||21 dt
]

1

2

||Θn||1 + C∆t hk||An||k+1 ||Θn||1

≤ Cε′

[

∆t2
∫

In

||∂A
∂t

||21 dt+ C∆t h2k||An||2k+1

]

+ ε′∆t ||Θn||21

Rewrite (IX) as

(IX) =
∫

In

ℜ
∫

Ω

[(

− i
ξ1
x0

∇ψn1 − x0

λ1

(An + An
c )ψ

n
1

)x0

λ1

ψn∗1

−
(

− i
ξ1
x0

∇ψ1 −
x0

λ1

(A + Ac)ψ1

)x0

λ1

ψ∗
1

]

· ΘndΩ dt

+ ∆tℜ
∫

Ω

(

− i
ξ1
x0

∇(ψn1h − Ihψ
n
1 ) − x0

λ1

(An
h + An

c )(ψ
n
1h − Ihψ

n
1 )

) x0

λ1

ψn∗1h · Θn dΩ

+∆tℜ
∫

Ω

(

− i
ξ1
x0

∇(Ihψ
n
1 − ψn1 ) − x0

λ1

(An
h + An

c )(Ihψ
n
1 − ψn1 )

) x0

λ1

ψn∗1h · Θn dΩ

+∆tℜ
∫

Ω

(

− i
ξ1
x0

∇ψn1 − x0

λ1

(An + An
c )ψ

n
1

)x0

λ1

(ψn∗1h − Ihψ
n∗
1 ) · ΘndΩ

+∆tℜ
∫

Ω

(

− i
ξ1
x0

∇ψn1 − x0

λ1

(An + An
c )ψ

n
1

)x0

λ1

(Ihψ
n∗
1 − ψn∗1 ) · ΘndΩ

+∆tℜ
∫

Ω

x0

λ1

(

(An + An
c ) − (IhA

n + An
c )

)

ψn1
x0

λ1

ψn∗1h · ΘndΩ

+∆tℜ
∫

Ω

x0

λ1

(

(IhA
n + An

c ) − (An
h + An

c )
)

ψn1
x0

λ1

ψn∗1h · ΘndΩ

= (IX)1 + (IX)2 + (IX)3 + (IX)4 + (IX)5 + (IX)6 + (IX)7.

then we have

|(IX)1| ≤ C∆t
3

2

[
∫

In

|| ∂
∂t

[(

∇ψ1 + (A + Ac)ψ1

)

ψ∗
1

]

||20dt
]

1

2

||Θn||0

≤ C∆t
3

2

[
∫

In

[

||ψ1||20,∞||∂∇ψ1

∂t
||20 + ||∇ψ1||20,4||

∂ψ1

∂t
||20,4

+||ψ1||20,∞||∂(A + Ac)

∂t
||20 + ||A + Ac||20,4||ψ1||20,∞||∂ψ1

∂t
||20,4

]

dt

]
1

2

||Θn||0

≤ C∆t2
∫

In

[

||∂ψ1

∂t
||21 + || ∂

∂t
(A + Ac)||20

]

dt+ ∆t||Θn||20.
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By the stability result that ||ψn1h||0,4 ≤ C and ||An
h + An

c ||0,4 ≤ C, we get

|(IX)2| ≤ C∆t
[

||∇(ψn1h − Ihψ
n
1 )||0 + ||An

h + An
c ||0,4 ||ψn1h − Ihψ

n
1 ||0,4

]

||ψn1h||0,4 ||Θn||0,4
≤ ε∆t||θn1 ||21 + Cε∆t||Θn||20,4
≤ ε∆t||θn1 ||21 + Cε∆t(||Θn||0 ||Θn||1)

≤ ε∆t||θn1 ||21 + Cε,ε′∆t||Θn||20 + ε′∆t||Θn||21,

|(IX)3| ≤ ∆t
[

||∇(Ihψ
n
1 − ψn1 )||0 + ||An

h + An
c ||0,4 ||Ihψn1 − ψn1 ||0,4

]

||ψn1h||0,4 ||Θn||0,4
≤ Cε′∆t h

2k||ψn1 ||2k+1 + ε′∆t||Θn||21,

|(IX)4| ≤ C∆t
[

||∇ψn1 ||0,4 + ||An + An
c ||0,4 ||ψn1 ||0,∞

]

||θn1 ||0,4 ||Θn||0
≤ Cε∆t||Θn||20 + ε∆t||θn1 ||21,

|(IX)5| ≤ C∆t
[

||∇ψn1 ||0,4 + ||An + An
c ||0,4 ||ψn1 ||0,∞

]

||Ihψn1 − ψn1 ||0,4 ||Θn||0
≤ C∆t h2k||ψn1 ||2k+1 + ∆t||Θn||20,

|(IX)6 ≤ C∆t hk||An||k+1 ||ψn1 ||0,∞ ||ψn1h||0,4 ||Θn||0
≤ C∆t h2k||An||2k+1 + ∆t||Θn||20,

|(IX)7| ≤ C∆t||Θn||0,4 ||ψn1 ||0,∞ ||ψn1h||0,4 ||Θn||0
≤ Cε′∆t||Θn||20 + ε′∆t||Θn||21.

Therefore, we have

|(IX)| ≤ 2ε∆t ||θn1 ||21 + Cε,ε′∆t ||Θn||20 + 3ε′∆t||Θn||21
+C∆t2

∫

In

[

||∂ψ1

∂t
||21 + || ∂

∂t
(A + Ac)||20

]

dt

+Cε′∆t h
2k||ψn1 ||2k+1 + C∆t h2k||An||2k+1.

Similarly, we have for the term (X),

|(X)| ≤ 2ε∆t ||θn2 ||21 + Cε,ε′∆t ||Θn||20 + 3ε′∆t||Θn||21
+C∆t2

∫

In

[

||∂ψ2

∂t
||21 + || ∂

∂t
(A + Ac)||20

]

dt

+Cε′∆t h
2k||ψn2 ||2k+1 + C∆t h2k||An||2k+1.
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For the last term (XI), we have

|(XI)| ≤ Cε′∆t
2

∫

In

||∂He

∂t
||20 dt+ ε′∆t||Θn||21.

Combining all the estimates for Θn and by using the inequality (4.1), D||Θn||21 ≤
||curl Θn||20 + ||div Θn||20, the inequality (4.69) becomes

σ
x2

0

2λ2
1

[

||Θn||20 − ||Θn−1||20
]

+ ǫD∆t||Θn||21
≤ Cε,ε′∆t||Θn||20 + 8ε′∆t ||Θn||21 + 2ε∆t||θn1 ||21 + 2ε∆t||θn2 ||21

+Ch2k

∫

In

||∂A
n

∂t
||2sdt+ Cε′

[

∆t2
∫

In

||∂A
∂t

||21 dt+ C∆t h2k||An||2k+1

]

+C∆t2
∫

In

[

||∂ψ1

∂t
||21 + ||∂ψ2

∂t
||21 + || ∂

∂t
(A + Ac)||20

]

dt

+Cε′∆t h
2k||ψn1 ||2k+1 + Cε′∆t h

2k||ψn2 ||2k+1 + C∆t h2k||An||2k+1

+Cε′∆t
2

∫

In

||∂He

∂t
||20dt, (4.70)

where s = 2 if k = 1 and s = k if k ≥ 2.

Finally, by combining the inequalities (4.66), (4.67) and (4.70), we get

1

2

[

||θn1 ||20 − ||θn−1
1 ||20

]

+ ∆t
ξ2
1

x2
0

||θn1 ||21 + ∆t
γ1

2

ξ2
1

x2
0

||θn1 ||20,∂Ω

+
1

2

[

||θn2 ||20 − ||θn−1
2 ||20

]

+ ∆t
ξ2
2

x2
0

||θn2 ||21 + ∆t
γ2

2

ξ2
2

x2
0

||θn2 ||20,∂Ω

+σ
x2

0

2λ2
1

[

||Θn||20 − ||Θn−1||20
]

+ ǫD∆t||Θn||21
≤ Cε∆t||θn1 ||20 + 10ε∆t||θn1 ||21

+Cε∆t||θn2 ||20 + 10ε∆t||θn2 ||21
+Cε,ε′∆t||Θn||20 + 8ε′∆t ||Θn||21 + (h2k + ∆t2)Ψǫ, (4.71)
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where

Ψǫ = C

∫

In

||∂ψ1

∂t
||2sdt+ Cε

∫

In

[

||∂ψ1

∂t
||21 + || ∂

∂t
(A + Ac)||20

]

dt

+Cε∆t||ψn1 ||2k+1 + Cε∆t h
2||An||2k+1

+Cε

∫

In

|| ∂
∂t

(A + Ac)||20 dt+ C∆t ||φc||20,4 ||ψn1 ||2k+1

+C

∫

In

[

||φc||20,4 ||
∂ψ1

∂t
||20,4 + ||ψ1||20,4 ||

∂φc
∂t

||20,4
]

dt

+C

∫

In

||∂g1(ψ1)

∂t
||20 dt+ Cψ1

∆t h2||ψn1 ||2k+1

+C

∫

In

||∂ψ2

∂t
||20 dt+ C∆t h2||ψn2 ||2k+1

+C

∫

In

||∂ψ1

∂t
||20,∂Ω dt+ C∆t h ||ψn1 ||2k+1

+C

∫

In

||∂ψ2

∂t
||2sdt+ Cε

∫

In

[

||∂ψ2

∂t
||2k + || ∂

∂t
(A + Ac)||20

]

dt

+Cε∆t||ψn2 ||2k+1 + Cε∆t h
2||An||2k+1

+Cε

∫

In

|| ∂
∂t

(A + Ac)||20 dt+ C∆t||φc||20,4 ||ψn2 ||2k+1

+C

∫

In

[

||φc||20,4 ||
∂ψ2

∂t
||20,4 + ||ψ2||20,4 ||

∂φc
∂t

||20,4
]

dt

+C

∫

In

||∂g2(ψ2)

∂t
||20 dt+ Cψ2

∆t h2||ψn2 ||2k+1

+C

∫

In

||∂ψ1

∂t
||20 dt+ C∆t h2||ψn1 ||2k+1

+C

∫

In

||∂ψ2

∂t
||20,∂Ω dt+ C∆t h ||ψn2 ||2k+1

+C

∫

In

||∂A
n

∂t
||2sdt+ Cε′

[
∫

In

||∂A
∂t

||21 dt+ C∆t||An||2k+1

]

+C

∫

In

[

||∂ψ1

∂t
||21 + ||∂ψ2

∂t
||21 + || ∂

∂t
(A + Ac)||20

]

dt

+Cε′∆t ||ψn1 ||2k+1 + Cε′∆t ||ψn2 ||2k+1 + C∆t ||An||2k+1

+Cε′

∫

In

||∂He

∂t
||20dt, (4.72)

where s = 2 if k = 1 and s = k if k ≥ 2.

All the terms in Ψǫ can be bounded by constants. For example, for i = 1, 2, by the

111



Sobolev embedding theorem,
∫

In

[

||φc||20,4 ||
∂ψi
∂t

||20,4 ≤ ||φc||2L∞(0,T ;L4(Ω)) ||
∂ψi
∂t

||2L2(0,T ;H1(Ω)),

∫

In

||∂gi(ψi)
∂t

||20dt =

∫

In

|| ∂
∂t

(|ψi|2 − Ti)ψi||20dt

≤ (C + ||ψi||4L∞(0,T ;L∞(Ω))) ||
∂ψi
∂t

||2L2(0,T ;L2(Ω),

and by the trace theorem,
∫

In

||∂ψi
∂t

||20,∂Ω dt ≤ C||∂ψi
∂t

||2L2(0,T ;H1(Ω)).

By the regularity assumptions in (4.12)-(4.21), we get Ψǫ ≤ Cǫ, where the constant Cǫ

is independent of ∆t, h, and N but is dependent on ǫ due to the fact that we have used the

stability estimates which depend on ǫ to get the generic constants appeared in the inequality

(4.72), and Cε′ depends on ǫ, see below for the choice of ε′.

Now choose ε small enough such that ξ2
1/x

2
0−10ε > 0 and ξ2

2/x
2
0−10ε > 0; also choose ε′

small enough such that D−8ǫε′ > 0. Next choose ∆t small enough such that 1/2−Cε∆t > 0

and σx2
0/2λ

2
1 − Cε,ε′∆t > 0. Then inequality (4.71) becomes

[

c1||θn1 ||20 − ||θn−1
1 ||20

]

+ ∆tc2||θn1 ||21 + ∆tc3||θn1 ||20,∂Ω

+
[

c4||θn2 ||20 − ||θn−1
2 ||20

]

+ ∆tc5||θn2 ||21 + ∆tc6||θn2 ||20,∂Ω

+
[

c7||Θn||20 − ||Θn−1||20
]

+ ǫc8∆t||Θn||21
≤ (h2k + ∆t2)Ψǫ, (4.73)

where the constant ci, i = 1, · · · , 8 are positive and independent of ǫ, ∆t, h and N .

Then by applying the discrete Gronwall inequality to the inequality (4.73), we obtain

max
1≤n≤N

[

||θn1 ||20 + ||θn2 ||20 + ||Θn||20
]

+
N

∑

n=1

∆t
[

||θn1 ||21 + ||θn2 ||21 + +ǫ||Θn||21
]

+
N

∑

n=1

∆t
[

||θn1 ||20,∂Ω + ||θn2 ||20,∂Ω

]

≤ Cǫ
N(h2k + ∆t2),

where the constant Cǫ
N is independent of ∆t and h but is dependent of ǫ and N . Note that

in the above estimate, we have used the fact that ||θ0
i ||0 = 0 and ||Θ0||0 = 0, this is because

we assumed in the discrete problem (DPǫ) that ψ0
ih = Ihψi0 = Ihψ

0
i and A0

h = IhA0 = IhA
0.
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Now since by the finite element interpolation errors (4.2) to (4.4), we have for i = 1, 2

and m = 0, 1,

||ρni ||2m ≤ Ch2(k+1−m)||ψni ||2k+1,

||Φn||2m ≤ Ch2(k+1−m)||An||2k+1,

||ρni ||20, ∂Ω ≤ Ch2(k+1− 1

2
)||ψni ||2k+1− 1

2
, ∂Ω

≤ Ch2(k+ 1

2
)||ψni ||2k+1,

where the last inequality is obtained from the trace embedding theorem. Finally, an

application of the triangle inequality completes the proof.
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CHAPTER 5

Computational Results

In this chapter we present some computational results and investigate the properties and

dynamics of the 2B-TDGL model in response to an applied magnetic field and/or an applied

current under various Ginzburg-Landau (GL) parameter settings. In particular, we will focus

our study on the following two-dimensional simulation topics:

1. Steady-state vortex lattices under the effect of a steady applied magnetic field.

This includes cases involving samples consisting of Type-I/Type-II and Type-II/Type-II

condensates, with two distinct critical temperatures.

2. Vortex dynamics under the effect of either a stationary or non-stationary applied

current with or without an application of a steady applied magnetic field. A superconductor-

normal metal (S-N) interface type boundary condition is used in simulations with current

involved.

Our computational model is based on the 2B-TDGL equations gauged with the “current

gauge” on a two-dimensional rectangular sample. Again, as in the analysis and finite element

approximation, we assume that the gradient coupling effect is negligible, i.e., we set η1 = 0.

The external magnetic field is assumed to be applied in a direction perpendicular to the

two-dimensional surface of the sample. In the simulation cases with an applied current, the

applied current is injected in the y-direction at the two sides of the sample parallel to the

x-axis. We ignore the existence of the physical current leads which should otherwise be in

contact with the superconductor to feed the current. However, we include the S-N interface

type boundary condition in our computational code. Our computational code is implemented
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by finite element methods. We use quadratic elements on a regular, uniform triangulations for

approximation in space and the backward Euler discretization for approximation in time. To

solve the system of nonlinear equations resulting from the discretization, we utilize Newton’s

linearization method on the fully discretized equations to obtain a system of linear equations

which can then be solved by standard linear solvers.

5.1 Steady-State Vortices under Stationary Magnetic
Field

Our main references in this section are some detailed studies done by E. Babaev in [34] and

[35] (also see [36] and [39]) and by L.F. Chibotara et al. in [40]. Following the work in [34],

two vortices generated by two distinct order parameters concentered to form one vortex core

are together called a composite vortex and two vortex sublattices which consist of composite

vortices are together called a composite lattice. Define a phase change quantity around a

vortex core as

∆θ :=

∮

c

∇θdl, (5.1)

where c is a closed curve winding around the vortex core, and θ is the phase of the order

parameter ψ. If the phase change ∆θ around a vortex core is 2π, then the vortex carries one

flux quantum. When an external magnetic field is applied to a two-band superconductor

sample at low temperature, the system is in a state such that ∆(θ1 − θ2) = 0 and

∆(θ1 + θ2) = 4π, and both the sublattices generated by the two distinct order parameters

form a composite lattice which is energetically favorable. The phase changes ∆θ1 and ∆θ2 of

both order parameters winding around a composite vortex are equal to 2π, i.e., the composite

vortex carries one magnetic flux quantum. This phenomenon holds in both cases of the zero

and nonzero coupling parameter η, where in the former case, the only coupling between the

two order parameters is through the vector potential A. One interesting result stated in [34]

is that this phenomenon also holds when one band is of Type-I condensate and the other

is of Type-II condensate, even when the external magnetic field has exceeded the critical

field of the Type-I condensate. However, Babaev’s studies are based on the assumption that

the sample is of infinite dimension. For a finite dimension sample in which non-negligible

boundary effects must be taken into account, the existence of thermodynamically stable
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noncomposite vortices in small samples with size of the order of the coherent length ξ is

studied by L.F. Chibotara et al. in [40].

We will present the results of many simulations and show that the composite and

noncomposite lattice phenomena mentioned above appear only with special combinations of

values of the coupling parameter η and the applied field He; different phenomena appear in

other combinations of the values of η andHe. In the dimensional two-band TDGL free energy

functional (2.3), the dimensional interband coupling energy term Fint :=
∫

Ω
ǫ(ψ1ψ

∗
2+ψ

∗
1ψ2)dΩ

can be rewritten as Fint =
∫

Ω
ǫ|ψ1|2 |ψ2|2 cos(θ1 − θ2)dΩ. Observe that in the case of ǫ 6= 0,

in order to perform an evolutional simulation with a stable initial state, we need to set

the initial condition of ψ1 and ψ2 such that the interband energy term Fint is minimized.

Therefore, if ǫ > 0 (or η > 0 for nondimensionalized equations), we set the phase difference

θ1 − θ2 = π, and if ǫ < 0 (or η < 0), we set θ1 − θ2 = 0. In our simulations, we set

ψr1 = 0.8|T1|, ψi1 = 0.6|T1| and ψr2 = −0.8 sign(η)|T2|, ψi2 = −0.6 sign(η)|T2|, where ψrj and

ψij are the real and the imaginary parts of the order parameter ψj, respectively. The values

of the real and imaginary parts of the order parameters are chosen to make the simulations

start with a near superconducting state. As we have just mentioned, when ǫ = 0 (or η = 0),

the only coupling between the two bands is through the same magnetic field induced by the

vector potential A.

We use the two upper critical fields of the two individual bands together as reference

values to set the values of the applied field in our numerical simulations. We first derive

an equation for the dimensionless upper critical field Hj
c2, where j = 1, 2, for band one,

band two. From the conventional one-band GL theory we know that the dimensional

thermodynamic critical field Hj
c at temperature T close to and below Tc (see section 1.2.4,

also see, e.g., [62]), is given as

Hj
c (T ) =

Φ0

2
√

2πλj(T )ξj(T )
, (5.2)

where Φ0 = 2π~c/|e∗|. By using the approximation αj(T ) = αj(0)[T /Tc − 1] and

βj(T ) = βj(0) which gives λj(T ) = λj(0)/[1 − T /Tcj]1/2 and ξj(T ) = ξj(0)/[1 − T /Tcj]1/2

(see (2.16)), we get

Hj
c (T ) = Hj

c (0)

[

1 − T
Tcj

]

, (5.3)
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where

Hj
c (0) =

Φ0

2
√

2πλj(0)ξj(0)
. (5.4)

Again from the one-band GL theory the dimensional critical field Hj
c2 is given by

Hj
c2(T ) =

Φ0

2πξ2
j (T )

=
√

2κjH
j
c (T ) =

√
2κjH

j
c (0)

[

1 − T
Tcj

]

. (5.5)

By using the nondimensionalization equation for the magnetic field defined in (2.16),

namely, He =
√

2H1
c (0)H ′

e, where H ′
e is the magnitude of the nondimensionalized field, we

obtain the dimensionless field (with ′ dropped)

H1
c2(T ) = κ1

[

1 − T
Tc1

]

= κ1T1, (5.6)

H2
c2(T ) = κ2

H2
c (0)

H1
c (0)

[

1 − T
Tc2

]

=
λ2(0)ξ2(0)

λ1(0)ξ1(0)
κ2T2 = νκ2T2. (5.7)

Remark All of the above results are based on a nondimensionalization of the 2B-TDGL

equations by using αj(0) and βj(0), j = 1, 2, as the base parameters. When doing so,

all the dimensionless paramters appear in the nondimensionalized 2B-TDGL equations are

referred at T = 0.0; we obtain the temperature dependent terms (|ψj|2 − Tj)ψj in the

nondimensionalized 2B-TDGL equations; and the upper critical fields are expressed as in

(5.6) and (5.7). In view of this nondimensionalization, (|ψj|2 − 1.0)ψj will mean that the

operating temperature is equal to T = 0.0. On the other hand, if we use αj(T ) and βj(T )

as the base parameters to nondimensionalize the 2B-TDGL equations, all the parameters

appear in the nondimensionalized 2B-TDGL equations are now referred at T equals to the

operating temperature. The temperature dependent terms in the nondimensionalized 2B-

TDGL equations now become (|ψj|2 − 1.0)ψj and the upper critical fields (5.6) and (5.7)

become

H1
c2(T ) = κ1, (5.8)

H2
c2(T ) = κ2

H2
c (T )

H1
c (T )

= νκ2, (5.9)

where now ν = (λ2(T )ξ2(T ))/(λ1(T )ξ1(T )). Note that we don’t have to distinguish κj(0)

from κj(T ), since they are the same by our approximation β(0) = β(T ). So when we set

Tj = 1.0, we could mean T = 0.0 or T equals to whatever the operating temperature is,

depending on what nondimensionalization we intend to use.
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Now we are going to investigate in details our simulation results of the 2B-TDGL model.

From an observation on a large amount of simulation results that we obtained, we are able

to speculate that there exists a vortex phase diagram, as shown in Figure 1 below, which

governs how the vortex phase of each band behaves under various combinations of the values

of the coupling parameter η and the applied field He with a fixed operating temperature T .

After a discussion of the meaning of this phase diagram, we will present some representative

numerical examples to illustrate how the vortex phases change in the regions on a η − He

plane.

Figure 5.1: Vortex Phase Diagram (Coupling Parameter η vs. Applied Field He) for the
2B-TDGL model under fixed temperature T and GL parameters.

In Figure 5.1, the Region A, B, C and D are regions on the η-He plane. Region A

is a region in which the values of η and He together give no vortex nucleation inside the

two-band superconductor. Region B is a region in which the values of η and He together

cause the superconductor to produce composite vortices which can be comprised of a set

of strong vortices corresponding to one band (called the strong band) and a set of strong

or weak vortices corresponding to the other band (called the weak band in case of weak

vortices). Region C is a zone in which η andHe together cause the superconductor to produce

noncomposite vortices which can be comprised of a set of strong vortices corresponding to
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the strong band and a set of strong or weak vortices corresponding to the other band. The

two noncomposite sublattices, each corresponding to one particular band, may have the same

topological structure despite the fact that the vortices are spatially not concentric, or they

may have two totally different topological structures in which the two set of vortices from

both bands are distributed evenly in some sense over the spatial domain of the sample. When

two noncomposite sublattices with different topological structure are formed in steady state,

we discovered that the vortices of the weak band (with weak vortices) always go through a

series of evolutional transitions- as time elapsing, they first form composite vortices but then

shrink or merge to form blocks of large normal region (called giant vortices) and finally they

split to form a noncomposite sublattice which has a totally different topological structure

from that of the stronger band at steady state. Lastly, Region D is a zone in which the values

of η and He together cause at least one band to reside in the normal state over the whole

spatial domain or form some large blocks of normal region (giant vortices) in the domain.

We want to stress that our numerical data show that Region C only happens with relatively

small or null coupling effects, i.e., noncomposite vortices only happen when η is relatively

small or equal to zero. The parabolic curves that define the boundaries of the regions are

used to convey the conceptual idea of the existence of the regions, their actual shapes are

not known without additional numerical results.

Suppose we perform a series of simulations on a sample of fixed size at fixed temperature

by varying the values of η and He along the vertical dashed-line shown in Figure 5.1, i.e., by

keeping the applied field He fixed while changing the value of η. Starting with the values in

Region D, we will obtain a vortex phase in which one band, say band one, with its domain in

whole or in part resides in the normal state or with giant vortices, while band two is either

in the same phase as band one or in a phase with or without vortices. When we increase the

value of η to Region C, we will obtain a result with noncomposite vortices. When we increase

the value of η to Region B, we will obtain a result with composite vortices. However, when

we further increase the value of η, we will obtain a vortex phase with no vortices in both

bands in the bulk, i.e., a strong enough coupling suppresses vortex nucleation. However, this

last result is not too exciting, as we will see later that a sample with the same characteristic,

i.e., with the same GL parameters and the same η, but of larger size will behave in a vortex

phase in a region other than Region A under the same applied field He. We will obtain the

same results if now we vary the values of η and He along the horizontal dashed-line as shown
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in Figure 5.1, i.e., by changing the value of He while keeping the value of η fixed. We want

to stress that there is no clean cutoff boundaries between the regions- there are results that

seem to fit into two adjacent regions. Also, the area of a region, particular that of Region

B, Region C or Region D, can be diminished or even disappear with some combinations of

η and He for some superconductors.

Figure 5.2: Example-set 1, Vortex Phase Diagram with H2
c2 << He < H1

c2.

Example-Set 1 (Figure 5.2)

Our first set of numerical examples use the following parameters:

λ1(0) = 0.6, λ2(0) = 0.2, ξ1(0) = 0.05, ξ2(0) = 0.1, γ1 = γ2 = 0.0, T1 = 0.7, T2 = 0.2

, and size of sample = 20 ξ1(0) × 20 ξ1(0), mesh = 1.95 points per ξ1(0). This gives

ν = 0.67, κ1 = 12.0, κ2 = 2.0, H1
c2 = 8.4, H2

c2 = 0.27,

where the upper critical fields are calculated according to equations (5.6)-(5.7). Note that

we are using a Type-II/Type-II superconductor here and we do not use S-N interface type

boundary conditions in the simulations of this example set, i.e., we set γ1 = γ2 = 0.0 (see

120



(2.88)-(2.89) as boundary conditions and (4.24)-(4.25) in weak form). The applied field we

are going to use varies in values that are much greater that the upper critical field of the

second band, i.e., H2
c2 but always smaller that H1

c2, see Figure 5.2 above.

The purpose of the arrangement of this set of examples, namely with H2
c2 << He < H1

c2,

is to demonstrate how the vortices of a strong band in a sample with strong coupling can

induce a formation of vortices, either composite or noncomposite, in a weak band which

supposedly to be in the normal state in a one band setting due to H2
c2 << He. Each circled

number in Figure 5.2 represents the example named with that number.

Example 1.1. (see Figure 5.3 and Figure 5.4) With η = 0.0 and He = 0.5. No vortex

nucleation in the bulk, so the vortex phase is in Region A.

Example 1.2. We have not found any example in the Region B with η = 0. This would

mean that this region is very narrow, or even may not exist at all on the η = 0 line.

Example 1.3. We have not found any example in the Region C with η = 0. This would

mean that this region is very narrow, or even may not exist at all on the η = 0 line.

Example 1.4. (see Figure 5.5 and Figure 5.6) With η = 0.0 and He = 1.6. The vortex

phase is in Region D.

Example 1.5. (see Figure 5.7 and Figure 5.8) With η = 0.000005 and He = 1.6. These two

set of vortices are not concentric and band 2 has very weak vortices with |ψ2| ≤ 0.00003,

i.e., the vortex phase is weakly noncomposite in Region C. Notice that η is very small, this

shows that the Region D would be a very thin phase region.

Example 1.6. (see Figure 5.9 and Figure 5.10) With η = 0.1 and He = 1.6. These two set

of vortices are not concentric, i.e., the vortex phase is noncomposite in Region C.

Example 1.7. (see Figure 5.11 and Figure 5.12) With η = 0.8 and He = 1.6. These two

set of vortices are concentric, i.e., the vortex phase is composite in Region B.
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Example 1.8. (see Figure 5.13 and Figure 5.14) With η = 1.0 and He = 1.6. The vortex

phase is in Region A.

Example 1.9. We have not found any example in the Region B with η = 0.1. This would

mean that this region is very narrow, or even may not exist at all on the η = 0.1 line.

Example 1.10. (see Figure 5.15 and Figure 5.16) With η = 0.1 and He = 0.6. The vortex

phase is in Region A.

All the vortex phases depicted in the above examples occur only in two-band super-

conductors. It would be interesting to see what vortex phase would be generated by a

corresponding one-band superconductor with the same material characteristic (i.e., with the

same λ, ξ and Tc) as that of one particular band of a two-band superconductor, under the

same operating temperature and applied field. The following two numerical examples use

the same material parameters of one of the band as in Example 1.1 to Example 1.10 but

now they are simulated with a one-band TDGL code.

Example 1.11. (see Figure 5.17) This example use the following parameters

λ(0) = 0.6, ξ(0) = 0.05, T = 0.7

This gives κ = 12.0, Hc2 = 8.4. Size of sample = 20 ξ(0) × 20 ξ(0), mesh = 1.95 points

per ξ(0). Applied field He = 0.6. This one band parameter setting is exactly the same as the

parameter setting for the band one in the two-band superconductors we used in Example

1.1 to Example 1.10.

Example 1.12. (see Figure 5.18) This example use the following parameters

λ(0) = 0.2, ξ(0) = 0.1, T = 0.2

This gives κ = 2.0, Hc2 = 0.27. Size of sample and applied field are the same as that in

Example 1.11. This one band parameter setting is exactly the same as the parameter setting

for the band two in the two-band superconductors we used in Example 1.1 to Example 1.10.
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Figure 5.3: Example 1.1: ψ1, η = 0.0,
He = 0.5
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Figure 5.4: Example 1.1: ψ2, η = 0.0,
He = 0.5
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Figure 5.5: Example 1.4: ψ1, η = 0.0,
He = 1.6
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Figure 5.6: Example 1.4: ψ2, η = 0.0,
He = 1.6
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Figure 5.7: Example 1.5: ψ1, η = 0.1,
He = 1.6
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Figure 5.8: Example 1.5: ψ2, η = 0.1,
He = 1.6
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Figure 5.9: Example 1.6: ψ1, η = 0.1,
He = 1.6

X

Y

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

psi2

0.3

0.275

0.25

0.225

0.2

0.175

0.15

0.125

0.1

0.075

0.05

0.025

0

Figure 5.10: Example 1.6: ψ2, η =
0.1, He = 1.6
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Figure 5.11: Example 1.7: ψ1, η =
0.8, He = 1.6
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Figure 5.12: Example 1.7: ψ2, η =
0.8, He = 1.6
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Figure 5.13: Example 1.8: ψ1, η =
1.0, He = 1.6
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Figure 5.14: Example 1.8: ψ2, η =
1.0, He = 1.6
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Figure 5.15: Example 1.10: ψ1, η =
0.1, He = 0.6
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Figure 5.16: Example 1.10: ψ2, η =
0.1, He = 0.6
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Figure 5.17: Example 1.11: ψ, λ =
0.6, ξ = 0.05, T = 0.7, He = 1.6.
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Figure 5.18: Example 1.12: ψ, λ =
0.2, ξ = 0.1, T = 0.2, He = 1.6.

Note that due to Hc2 << He, the one-band superconductor is in the normal state.

In the above Example-set 1, we observe that with no coupling, i.e., η = 0, the coupling

through the vector potential A alone does not seem to cause the strong band one which has

already generated vortices to induce vortices, either composite or noncomposite, in the weak

band two. In other words, there is no Region B and Region C on the η = 0 line (the x-axis) in

our Example-set 1. We want to ask if this is generally true. In Example-set 3 below, we will

show that there are vortex phases occurring in Region B and Region C on the η = 0 line under

different parameter settings. On the other hand, we also observe that with strong enough
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coupling η, the vortices of the strong band one can induce the band two which supposedly to

be in the normal state in a one band setting due to H2
c2 << He as shown in Example 1.12,

to produce vortices, either composite as shown in Example 1.7 or noncomposite as shown

in Example 1.5 and Example 1.6. We suspect whether this same situation will happen in

an analogous case where the band two is a type-I band with H2
c << He. The following

Example-set 2 will show that indeed this is true.

Figure 5.19: Example-set 2, Vortex Phase Diagram with H2
c << He < H1

c2. Note that the η
axis is in negative values.

Example-Set 2 (Figure 5.19)

Our second set of numerical examples use the following parameters:

λ1(0) = 0.3, λ2(0) = 0.06, ξ1(0) = 0.05, ξ2(0) = 0.1, γ1 = γ2 = 0.0, T1 = 0.7, T2 = 0.2,

and size of sample = 20 ξ1(0) × 20 ξ1(0), mesh = 1.95 points per ξ1(0). This gives

ν = 0.4, κ1 = 6.0, κ2 = 0.6, H1
c2 = 4.2, H2

c2 = 0.048.

Note that we are working on a Type-II/Type-I superconductor here and we do not use S-N

interface type boundary conditions in the simulations of this example set. Here H2
c2 = 0.048
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is used as a reference for H2
c which is greater that H2

c2 in a Type-I superconductor setting.

The applied field we are going to use varies in values that are much greater that the upper

critical field of the Type-I band two, i.e., H2
c2, but always smaller that H1

c2, see Figure 5.19

above.

Example 2.1. (see Figure 5.21 and Figure 5.22) With η = 0.0 and He = 0.5. The vortex

phase is in Region A.

Example 2.2. We have not found any example in the Region B with η = 0. This would

mean that this region is very narrow, or even may not exist at all on the η = 0.0 line.

Example 2.3. We have not found any example in the Region C with η = 0. This would

mean that this region is very narrow, or even may not exist at all on the η = 0.0 line.

Example 2.4. (see Figure 5.23 and Figure 5.24) With η = 0.0 and He = 1.6. The vortex

phase is in Region D.

Example 2.5. (see Figure 5.25 and Figure 5.26) With η = −0.00001 and He = 1.6. The

vortex phase is in Region D.

Example 2.6. We have not found any example in the Region C with He = 1.6. This would

mean that this region is very narrow, or even may not exist at all on the He = 1.6 line.

Note that in Example 2.5, with He = 1.6, η = −0.00001 is in Region D; and in Example 2.7

below, η = −0.0005 is in Region B.

Example 2.7. (see Figure 5.27 and Figure 5.28) With η = −0.0005 and He = 1.6. Note

that band 2 has very weak vortices, with |ψ2| ≤ 0.0002. The two set of vortices are weakly

composite in Region B.

Example 2.8. (see Figure 5.29 and Figure 5.30) With η = −0.8 and He = 1.6. The two set

of vortices are composite in Region B.
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Example 2.9. (see Figure 5.31 and Figure 5.32) With η = −1.2 and He = 1.6. The vortex

phase is in Region A.

Example 2.10. (see Figure 5.33 and Figure 5.34) With η = −0.8 and He = 1.35. The

vortex phase is in Region A.

Figure 5.20: Example-set 3, Vortex Phase Diagram with H2
c2 ≈ He < H1

c2.

Example-Set 3 (Figure 5.20)

Our third set of numerical examples use the following parameters:

λ1(T ) = 0.6, λ2(T ) = 0.2, ξ1(T ) = 0.05, ξ2(T ) = 0.1, γ1 = γ2 = 0.0, T1 = 1.0, T2 = 1.0,

and size of sample = 20 ξ1(T ) × 20 ξ1(T ), mesh = 1.95 points per ξ1(T ). This gives

ν = 0.67, κ1 = 12.0, κ2 = 2.0, H1
c2 = 12.0, H2

c2 = 1.33.

Note that we are working on a Type-II/Type-II sample here and as before, we do not

use S-N interface boundary conditions in this example set. As we mentioned before, we can

interpret Tj = 1.0 in either way- with T = 0.0 or with nondimensionalization using αj(T )
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Figure 5.21: Example 2.1: ψ1, η =
0.0, He = 0.5
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Figure 5.22: Example 2.1: ψ2, η =
0.0, He = 0.5
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Figure 5.23: Example 2.4: ψ1, η =
0.0, He = 1.6
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Figure 5.24: Example 2.4: ψ2, η =
0.0, He = 1.6
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Figure 5.25: Example 2.5: ψ1, η =
−0.00001, He = 1.6
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Figure 5.26: Example 2.5: ψ2, η =
−0.00001, He = 1.6
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Figure 5.27: Example 2.7: ψ1, η =
−0.0005, He = 1.6

X

Y

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

psi2

0.00017

0.000153

0.000136

0.000119

0.000102

8.5E­05

6.8E­05

5.1E­05

3.4E­05

1.7E­05

0

Figure 5.28: Example 2.7: ψ2, η =
−0.0005, He = 1.6
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Figure 5.29: Example 2.8: ψ1, η =
−0.8, He = 1.6
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Figure 5.30: Example 2.8: ψ2, η =
−0.8, He = 1.6
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Figure 5.31: Example 2.9: ψ1, η =
−1.2, He = 1.6
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Figure 5.32: Example 2.9: ψ2, η =
−1.2, He = 1.6
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Figure 5.33: Example 2.10: ψ1, η =
−0.8, He = 1.35
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Figure 5.34: Example 2.10: ψ2, η =
−0.8, He = 1.35

and βj(T ) as base parameters, in this case T is equals to whatever the operating temperature

is. In the latter case, the second critical fields are calculated according to equations (5.8)-

(5.9). The applied field we are going to use varies in values around H2
c2 but always smaller

that H1
c2, see Figure 5.20 above.

Example 3.1. (see Figure 5.35 and Figure 5.36) With η = 0.0 and He = 1.0. The vortex

phase is in Region A.

Example 3.2. (see Figure 5.37 and Figure 5.38) With η = 0.0 and He = 1.6. The two set

of vortices are composite in Region B.

Example 3.3. (see Figure 5.39 and Figure 5.40) With η = 0.0 and He = 3.0. These two

vortex sublattices have completely different topologies, so the vortex phase is noncomposite

in Region C.

Example 3.4. (see Figure 5.41 and Figure 5.42) With η = 0.0 and He = 5.0. The vortex

phase is in Region D.

Example 3.5. (see Figure 5.43 and Figure 5.44) With η = 0.05 and He = 1.0. The vortex

phase is in Region A.
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Example 3.6. (see Figure 5.45 and Figure 5.46) With η = 0.05 and He = 1.6. The two set

of vortices are composite in Region B.

Example 3.7. (see Figure 5.47 and Figure 5.48) With η = 0.05 and He = 2.5. These two

set of vortices are not concentric, i.e., the vortex phase is noncomposite in Region C.

Example 3.8. (see Figure 5.49 and Figure 5.50) With η = 0.05 and He = 4.0. The vortex

phase is in Region D.

Example 3.9. (see Figure 5.51 and Figure 5.52) With η = 0.08 and He = 1.6. The vortex

phase is in Region A.

We observe that in Example 3.9 (also in Example 1.8 and Example 2.9) that a strong

coupling η inhibits the generation of vortices in both bands in a 20 ξ1(T )× 20 ξ1(T ) sample.

However, if we increase the size of the sample, keeping every other parameters fixed, the

new sample will response in a vortex phase other than the no-vortices phase Region A. The

following example demonstrates this phenomenon.

Example 4. (see Figure 5.53 and Figure 5.54) All parameters are the same as those in

Example 3.9, except now the sample’s size is increased to 30 ξ1(T ) × 30 ξ1(T ). In contrast

to example 3.9, now a larger sample produces composite vortices in Region B.

Let us make a remark to this section. We found a rough phase diagram that relates the

combinations of the values of η and He to the vortex phases of a two-band superconductor

modeled by the 2B-TDGL equations. However, we have not tried to add another dimension to

the phase diagram to include the effect of the operating temperature T and size of the sample.

According to Chibotara et al.’s paper [40], the vortex phase diagram depends on the sample’s

size R, the operating temperature T and the applied field strength H. All of our comparable

numerical results are in consistent with the results mentioned in Babaev’s paper [34] and

[35] about composite vortices in Type-I/Type-II and Type-II/Type-II superconductors (in

the Region B); and also in Chibotara et al.’s paper [40] about phase changes versus applied
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Figure 5.35: Example 3.1: ψ1, η =
0.0, He = 1.0
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Figure 5.36: Example 3.1: ψ2, η =
0.0, He = 1.0

X

Y

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

psi1

0.95

0.855

0.76

0.665

0.57

0.475

0.38

0.285

0.19

0.095

0

Figure 5.37: Example 3.2: ψ1, η =
0.0, He = 1.6
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Figure 5.38: Example 3.2: ψ2, η =
0.0, He = 1.6
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Figure 5.39: Example 3.3: ψ1, η =
0.0, He = 3.0
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Figure 5.40: Example 3.3: ψ2, η =
0.0, He = 3.0

133



X

Y

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

psi1

0.9

0.81

0.72

0.63

0.54

0.45

0.36

0.27

0.18

0.09

0

Figure 5.41: Example 3.4: ψ1, η =
0.0, He = 5.0
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Figure 5.42: Example 3.4: ψ2, η =
0.0, He = 5.0
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Figure 5.43: Example 3.5: ψ1, η =
0.05, He = 1.0
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Figure 5.44: Example 3.5: ψ2, η =
0.05, He = 1.0
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Figure 5.45: Example 3.6: ψ1, η =
0.05, He = 1.6
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Figure 5.46: Example 3.6: ψ2, η =
0.05, He = 1.6
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Figure 5.47: Example 3.7: ψ1, η =
0.05, He = 2.5
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Figure 5.48: Example 3.7: ψ2, η =
0.05, He = 2.5
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Figure 5.49: Example 3.8: ψ1, η =
0.05, He = 4.0
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Figure 5.50: Example 3.8: ψ2, η =
0.05, He = 4.0
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Figure 5.51: Example 3.9: ψ1, η =
0.08, He = 1.6; size =20 ξ1(T ) ×
20 ξ1(T ).
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Figure 5.52: Example 3.9: ψ2, η =
0.08, He = 1.6; size =20 ξ1(T ) ×
20 ξ1(T ).
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Figure 5.53: Example 4: ψ1, η =
0.08, He = 1.6; size =30 ξ1(T ) ×
30 ξ1(T ).
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Figure 5.54: Example 4: ψ2, η =
0.08, He = 1.6; size =30 ξ1(T ) ×
30 ξ1(T ).

field (at fixed T and size). We have seen that the Region C which exhibits noncomposite

lattices only exists for zero or small η. According to Babaev’s paper in [34], in the presence

of an external magnetic field noncomposite vortices is energetically prohibited in an infinite

dimensional sample. However, in [40], noncomposite vortices are observed in small sample

of finite dimension. Our numerical results show that besides composite and noncomposite

vortices, at least in small samples with sizes in an order of ten of the smallest coherent

length of the two individual bands, there are also phases belong to Region A and Region D.

Region A is in particularly more interesting when we are considering a sample of the size

last mentioned in the presence of an applied magnetic field or current- we can explore the

possibilities of modifying material properties of a two-band superconductor to enhance its

interband coupling strong enough to inhibit the generation of vortices while hoping other

critical material properties such as the critical temperature is not weakened too much if not

strengthened.
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5.2 Vortex Dynamics under Non-Stationary Applied
Current and Stationary Magnetic Field

In this section, we are going to investigate the influence of an applied current on the vortex

dynamics. The currents we added to the finite element simulations are always constant in

space but varying in time as a sin function. In some cases in addition to the current, we

also added an external magnetic field to the model to induce vortices. Denote the applied

current appearing on the boundary of the sample as ja|∂Ω. Suppose we set

ja|∂Ω =

{

(0, ja sin(ωt)) on ∂Ωa,
(0, 0) on ∂Ω/∂Ωa,

(5.10)

where (·, ·) denotes a vector on an X-Y plane and ω is the harmonic frequency of the current.

The boundary ∂Ωa ⊂ ∂Ω is the subset of the sample’s boundary on which we injected the

current into the sample and we set it to be the two opposite sides of the sample parallel

to the x-axis. The direction of the current is in the y-axis direction. Therefore, we have

ja · n = ja sin(ωt) on ∂Ωa and ja · n = 0 on ∂Ω/∂Ωa.

Recall that we denoted the normal current inside of the superconductor corresponding

to the applied current ja|∂Ω as jc. For any time t ≥ 0, the current jc(x, t) inside the

superconductor sample in the normal state as a good conductor can be found by solving

(2.39)-(2.40). It is easy to see that for any fixed t ≥ 0, jc(x, t) = (0, ja sin(ωt)) is a solution

to this problem with boundary condition (5.10). So we have jc(x, t) = (0, ja sin(ωt)) in

Ω. Since for any fixed t ≥ 0, jc(x, t) = constant in Ω, so we have curl jc(t) = 0 in Ω

and thus jc(t) = ∇φ(t) for some φ ∈ H1(Ω). Therefore from (2.48), also (2.50)-(2.51)

and the comments after it, we see that we can find a unique φc such that for any t ≥ 0,

jc(t) = − σ
κ1

∇φc(t). Solving this we get φc = −κ1

σ
ja sin(ωt)y. On the other hand, we have

jc(t) = curlHc(t), solving this we get Hc = −ja sin(ωt)x, here x and y are the 2-dimensional

domain spatial coordinate variable. When replacing ∇φc by Hc, we can roughly view the

applied current jc as a Type-B current (not exactly is, since we have a term involving φc in

the 2B-TDGL equations for ψ1,2). Taking into account the external magnetic field He, we

can roughly view the system as being presented in an external field with magnitude equals

to He − ja sin(ωt)x.
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Example 5. (see Figure 5.55 and Figure 5.56 to Figure 5.61 and Figure 5.62)) This numerical

example uses the following parameters:

λ1(T ) = 0.6, λ2(T ) = 0.2, ξ1(T ) = 0.05, ξ2(T ) = 0.1, γ1 = γ2 = 0.1,

η = 1.5, ja = 6.0, He = 0.0, T1 = 1.0, T2 = 1.0,

and size of sample = 20 ξ1(T ) × 20 ξ1(T ), mesh = 1.95 points per ξ1(T ). It shows that a

strong enough direct current (dc) will induce vortices and antivortices which annihilate at

the center of the sample. Note that the moving vortices and antivortices are not composite.

The nucleation and annihilation processes shown in Figure 5.55 and 5.56 to 5.61 and 5.62

are repeated indefinitely as long as the dc is applied to the sample.

Example 6. (see Figure 5.63 and Figure 5.64) This numerical example uses the same

parameters as in Example 5, except that now we increase the coupling to η = 2.0. It shows

that a strong enough coupling will inhibit the generation of vortices and antivortices which

would otherwise annihilate at the center of the sample. Note that the magnitudes of the

order parameters are large, e.g., it is well over 1.6 for ψ1. This is a result of the theorem

3.2.16 which says that for j = 1, 2, |ψj| ≤
√

4 max{|η|, |η|ν2} + max{|T1|, |T2|}.

Observe that in Example 5, without the help of an external magnetic field, we need to

use a very large current and a large coupling η to induce vortices and antivortices in the bulk

superconductor (numerical results showed that no vortices could be generated with a smaller

η or ja), this is due in part to the gradient of the induced field Hc = jax which has null value

at the center vertical line of the sample. To investigate the influence of a current, stationary

or nonstationary, with parameters that can be projected to the vortex phase diagram 5.2,

we add an applied magnetic field to the sample, with values of He in the range that was

used the in Example-set 1. By doing so, vortices are first provoked by a reasonably small

applied field with a small η, and then a much smaller applied current can be used to affect

the dynamics of the vortices.

Example 7. (see Figure 5.65 and Figure 5.66 to Figure 5.73 and Figure 5.74)) This numerical
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Figure 5.55: Example 5: ψ1, η = 1.5,
He = 0.0, ja = 6.0, γ1 = γ2 = 0.1,
t = 10.
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Figure 5.56: Example 5: ψ2, η = 1.5,
He = 0.0, ja = 6.0, γ1 = γ2 = 0.1,
t = 10.
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Figure 5.57: Example 5: ψ1, η = 1.5,
He = 0.0, ja = 6.0, γ1 = γ2 = 0.1,
t = 18.
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Figure 5.58: Example 5: ψ2, η = 1.5,
He = 0.0, ja = 6.0, γ1 = γ2 = 0.1,
t = 18.
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Figure 5.59: Example 5: ψ1, η = 1.5,
He = 0.0, ja = 6.0, γ1 = γ2 = 0.1,
t = 21.
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Figure 5.60: Example 5: ψ2, η = 1.5,
He = 0.0, ja = 6.0, γ1 = γ2 = 0.1,
t = 21.
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Figure 5.61: Example 5: ψ1, η = 1.5,
He = 0.0, ja = 6.0, γ1 = γ2 = 0.1,
t = 22.
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Figure 5.62: Example 5: ψ2, η = 1.5,
He = 0.0, ja = 6.0, γ1 = γ2 = 0.1,
t = 22.
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Figure 5.63: Example 6: ψ1, η = 2.0,
He = 0.0, ja = 6.0, γ1 = γ2 = 0.1,
t > 8.
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Figure 5.64: Example 6: ψ2, η = 2.0,
He = 0.0, ja = 6.0, γ1 = γ2 = 0.1,
t > 8.

example uses the following parameters:

λ1(0) = 0.6, λ2(0) = 0.2, ξ1(0) = 0.05, ξ2(0) = 0.1, γ1 = γ2 = 0.1,

η = 0.01, He = 1.6, T1 = 0.7, T2 = 0.2,

and size of sample = 20 ξ1(0) × 20 ξ1(0), mesh = 1.95 points per ξ1(T ). Now we delay the

application of an applied alternative current (ac) until steady state noncomposite vortices

are generated in the bulk at t = 60. After the vortex phase has reached a steady state in
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Region C, see Figure 5.65 and Figure 5.66, the following ac is then added to the sample.

ja =

{

0.0 for t < 60,
2.0 sin(ωt) with ω = 0.025 for t ≥ 60.

(5.11)

From Figure 5.65 and Figure 5.66 to Figure 5.73 and Figure 5.74 we can see that the

two sets of vortices, each corresponding to a separated distinct band, behave differently in

dynamics and in topological patterns. When the ac flows in the y-axis direction, the vortices

are forced by a non-symmetric magnetic field of magnitude equals to He − ja sin(ωt)x to

shift to the right side of the sample. Eventually one vortex from each band escapes from

the right and two vortices from each band enter at the left, see Figure 5.67 and Figure 5.68.

When the ac changes its direction, the vortices are now forced by another non-symmetric

magnetic field of magnitude equals to He + ja sin(ωt)x to shift to the left side of the sample.

Eventually two vortices from band one escape from the left and two vortices from band two

first merge and then split again and only one escape from the left, see Figure 5.71 and Figure

5.72. Then one vortex from each band enters at the right, see Figure 5.73 and Figure 5.74.

The vortex phases corresponding to the second band are actually in a mixture of Region

C which consists of noncomposite vortices, and Region D which consists of a large block of

normal region or giant vortex, see for example, Figure 5.72 and Figure 5.74. Also note that

the vortices corresponding to the second band are all weak vortices. The same dynamics

start over repeatedly from Figure 5.65 and Figure 5.66 to Figure 5.73 and Figure 5.74 as

long as the same magnetic field and current are applied to the sample.

Example 8. (see Figure 5.75 and Figure 5.76 to Figure 5.83 and Figure 5.84)) This numerical

example uses the same material parameters and same applied field and current as in Example

7, but now we increase the coupling parameter to η = 0.8. In the absence of an applied

current, this setting is exactly the same as that in Example 1.7 which showed that when

in steady state, the sample generates composite vortices in Region B in the presence of an

applied field of magnitude He = 1.6, see Figure 5.11 and Figure 5.12. Observe that the two

vortex sublattices shown in Figure 5.11 and Figure 5.12 look the same as those shown in

Figure 5.75 and Figure 5.76 which are the steady vortex lattices of the sample in this example,

despite now a S-N interface (with γ1 = γ2 = 0.1) exists on the boundary of this sample. The

same ac as in Example 7 is applied to the sample after it has reached the steady vortex phase

Region B at t = 60. This simulation shows that a strong enough coupling “binds” the two
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set of vortices together, even when they move accordingly to the vortex dynamics induced

by a strong current. The same dynamics start over repeatedly from Figure 5.75 and Figure

5.76 to Figure 5.81 and Figure 5.82 as long as the same magnetic field and current are

applied to the sample. However, other simulations not shown in this work showed that a

combination of stronger applied field and current may create more complex dynamics which

includes transverse movements of vortices as we have seen here, as well as twists of vortex

lattices which would make the topology of the vortex lattice highly non-symmetry. As we

mentioned before, a S-N interface with γ1 = γ2 = 0.1 on the boundary of the sample does

not make any obvious changes to the generation of steady state vortex sublattices. The next

example shows that a S-N interface effect with larger γ1, γ2 does affect the generation of the

vortices of both bands.

Example 9. (see Figure 5.85 and Figure 5.86 to Figure 5.93 and Figure 5.94) This numerical

example uses the same material parameters and same applied field and current as in Example

8, but now we increase the S-N interface parameters to γ1 = γ2 = 1.0. In the case

γ1 = γ2 = 0.1, the sample in Example 8 produces four steady vortices at t = 60 in the

presence of an applied field, see Figure 5.75 and Figure 5.76 to Figure 5.77 and Figure 5.78.

However, when the interface parameters are increased to γ1 = γ2 = 1.0, the sample in this

example produces only two steady vortices at t = 60, see Figure 5.85 and Figure 5.86 to

Figure 5.87 and Figure 5.88. As a result, the samples produce different vortex dynamics.

However, for t > 166, the vortex dynamics of the sample in this example repeat in a sequence

which resembles the dynamics shown in Figure 5.77 and Figure 5.78 to Figure 5.83 and Figure

5.84 of Example 8.
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Figure 5.65: Example 7: ψ1, η =
0.01, He = 1.6, ja = 0, γ1 = γ2 = 0.1,
t = 60. Steady state- noncomposite.

X

Y

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

psi2

0.06

0.057

0.054

0.051

0.048

0.045

0.042

0.039

0.036

0.033

0.03

0.027

0.024

0.021

0.018

0.015

0.012

0.009

0.006

0.003

0

Figure 5.66: Example 7: ψ2, η =
0.01, He = 1.6, ja = 0, γ1 = γ2 = 0.1,
t = 60. Steady state- noncomposite.
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Figure 5.67: Example 7: ψ1, η =
0.01, He = 1.6, ja = 2.0 sin(0.025t),
γ1 = γ2 = 0.1, t = 87. One Vortex
exits from the right. Two enter at
the left.

X

Y

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

psi2

0.01

0.009

0.008

0.007

0.006

0.005

0.004

0.003

0.002

0.001

0

Figure 5.68: Example 7: ψ2, η =
0.01, He = 1.6, ja = 2.0 sin(0.025t),
γ1 = γ2 = 0.1, t = 87. One Vortex
exits from the right. Two enter at
the left.
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Figure 5.69: Example 7: ψ1, η =
0.01, He = 1.6, ja = 2.0 sin(0.025t),
γ1 = γ2 = 0.1, t = 118.
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Figure 5.70: Example 7: ψ2, η =
0.01, He = 1.6, ja = 2.0 sin(0.025t),
γ1 = γ2 = 0.1, t = 118.
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Figure 5.71: Example 7: ψ1, η =
0.01, He = 1.6, ja = 2.0 sin(0.025t),
γ1 = γ2 = 0.1, t = 135. Two vortices
exit from the left.
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Figure 5.72: Example 7: ψ2, η =
0.01, He = 1.6, ja = 2.0 sin(0.025t),
γ1 = γ2 = 0.1, t = 135. Two vortices
merging into one.
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Figure 5.73: Example 7: ψ1, η =
0.01, He = 1.6, ja = 2.0 sin(0.025t),
γ1 = γ2 = 0.1, t = 143. One vortex
enter at the right.
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Figure 5.74: Example 7: ψ2, η =
0.01, He = 1.6, ja = 2.0 sin(0.025t),
γ1 = γ2 = 0.1, t = 143. One vortex
exits from the left, one enters at the
right.
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Figure 5.75: Example 8: ψ1, η = 0.8,
He = 1.6, ja = 0, γ1 = γ2 = 0.1,
t = 28.
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Figure 5.76: Example 8: ψ2, η = 0.8,
He = 1.6, ja = 0, γ1 = γ2 = 0.1,
t = 28.
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Figure 5.77: Example 8: ψ1, η = 0.8,
He = 1.6, ja = 0, γ1 = γ2 = 0.1,
t = 60. Steady state- composite.
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Figure 5.78: Example 8: ψ2, η = 0.8,
He = 1.6, ja = 0, γ1 = γ2 = 0.1,
t = 60. Steady state- composite
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Figure 5.79: Example 8: ψ1, η = 0.8,
He = 1.6, ja = 2.0 sin(0.025t), γ1 =
γ2 = 0.1, t = 89. One Vortex exits
from the right.
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Figure 5.80: Example 8: ψ2, η = 0.8,
He = 1.6, ja = 2.0 sin(0.025t), γ1 =
γ2 = 0.1, t = 89. One Vortex exits
from the right.145
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Figure 5.81: Example 8: ψ1, η = 0.8,
He = 1.6, ja = 2.0 sin(0.025t), γ1 =
γ2 = 0.1, t = 110.
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Figure 5.82: Example 8: ψ2, η = 0.8,
He = 1.6, ja = 2.0 sin(0.025t), γ1 =
γ2 = 0.1, t = 110.
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Figure 5.83: Example 8: ψ1, η =
0.8, He = 1.6, ja = 2.0 sin(0.025t),
γ1 = γ2 = 0.1, t = 137. One vortices
enters at the right.
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Figure 5.84: Example 8: ψ2, η =
0.8, He = 1.6, ja = 2.0 sin(0.025t),
γ1 = γ2 = 0.1, t = 137. One vortices
enters at the right.
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Figure 5.85: Example 9: ψ1, η = 0.8,
He = 1.6, ja = 0, γ1 = γ2 = 1.0,
t = 25.
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Figure 5.86: Example 9: ψ2, η = 0.8,
He = 1.6, ja = 0, γ1 = γ2 = 1.0,
t = 25.
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Figure 5.87: Example 9: ψ1, η = 0.8,
He = 1.6, ja = 0, γ1 = γ2 = 1.0,
t = 60. Steady state- composite.
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Figure 5.88: Example 9: ψ2, η = 0.8,
He = 1.6, ja = 0, γ1 = γ2 = 1.0,
t = 60. Steady state- composite
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Figure 5.89: Example 9: ψ1, η = 0.8,
He = 1.6, ja = 2.0 sin(0.025t), γ1 =
γ2 = 1.0, t = 78. One Vortex enters
at the left.
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Figure 5.90: Example 9: ψ2, η = 0.8,
He = 1.6, ja = 2.0 sin(0.025t), γ1 =
γ2 = 1.0, t = 78. One Vortex enters
at the left.147
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Figure 5.91: Example 9: ψ1, η = 0.8,
He = 1.6, ja = 2.0 sin(0.025t), γ1 =
γ2 = 1.0, t = 138. One Vortex enters
at the right.
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Figure 5.92: Example 9: ψ2, η = 0.8,
He = 1.6, ja = 2.0 sin(0.025t), γ1 =
γ2 = 1.0, t = 138. One Vortex enters
at the right.
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Figure 5.93: Example 9: ψ1, η = 0.8,
He = 1.6, ja = 2.0 sin(0.025t), γ1 =
γ2 = 1.0, t = 166.
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Figure 5.94: Example 9: ψ2, η = 0.8,
He = 1.6, ja = 2.0 sin(0.025t), γ1 =
γ2 = 1.0, t = 166.
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CHAPTER 6

Conclusions and Future Research

6.1 Conclusions

In this work we studied some analytical and approximation issues of a coupled isother-

mal, isotropic two-band time-dependent Ginzburg-Landau (2B-TDGL) equations in a two-

dimensional bounded domain Ω with inclusions of time-dependent applied magnetic field and

time-dependent applied current. We introduced a “current gauge” to take time-dependent

applied current into account. Based on variational formulations of the 2B-TDGL equations

gauged by this “current gauge” and modified to include a regularization term, we developed

some theorems concerning the global existence, uniqueness and continuous initial data

dependency of the solutions. We also proved that the solution satisfies a maximum principle.

In the course of developing our results, we derived the necessary regularities for the data,

namely, the time-dependent applied field in the domain Ω, the time-dependent current on

the boundary ∂Ω, and the initial condition at t = 0.

In the finite element analysis, a backward Euler finite element approximations of the

2B-TDGL equations under the “current gauge” were studied. The existence and uniqueness

of the approximated solutions were proved. Stability and error estimates of the numerical

scheme were developed. However, we have not sought higher regularities of the solutions and

specified the smoothness of the domain which are needed to meet the regularities required

by the finite-element analysis. Neither have we found the error estimate with respect to the

regularization coefficient ǫ.

Through simulation results, we discovered that in a sample with size in the order of ten of

the coherent length, there exists four vortex phases which change according to the strengths

of the interband coupling and applied magnetic field. For example, in the presence of a fixed

magnetic field, by merely changing the coupling strength of a sample, the sample would
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response in different vortex phases- a weak coupling would produce non-concentric vortices;

a strong enough coupling would induce concentric vortices, however, a too strong coupling

would inhibit the nucleation of vortices. The vortex dynamics induced by an applied current

in the 2B-TDGL model with an inclusion of a superconductor-normal metal interface were

also investigated. Numerical results showed that under an applied current, the motions

of each set of vortices corresponding to each individual band may not be synchronized or

concentric to the other set when the coupling strength is not strong enough. For the vortex

phase phenomenon, we need to find experimental results to judge whether the mentioned

numerical phenomenon produced by an isotropic 2B-TDGL model is physical. For the

phenomenon under an applied current, it would be interesting to investigate the differences in

pinning strength required to pin a pair of non-concentric vortices versus a pair of concentric

vortices; or to see how the pinning strength affected by the coupling strength.

6.2 Future Research

To complete the current two-dimensional analytical work and for similar future work, we need

to prove higher regularities of the solutions in order to meet the regularities required by the

finite element analysis. Also we need to estimate the approximation error with respect to

the regularization coefficient ǫ. In this present work, we have simplified the 2B-TDGL model

by ignoring the gradient coupling term, as most physicists and scientists used only the non-

gradient coupling term in their researches that involve a variant of the 2B-TDGL model. For

a more complete work in analysis, we need to consider the inclusion of the gradient coupling

term in the same analytical framework of our current work, and in computation, we need

to investigate the influence of this additional term in various simulation cases. The study

of the dynamical properties of the solutions of the 2B-TDGL model such as its long-time

asymptotic behavior and the existence of global attractor is another interesting topic to

explore.

The intermetallic compound superconductor MgB2 is known to be anisotropic in physical

parameters. From a practical point of view, it is necessary to study an anisotropic variant

of the 2B-TDGL model, both analytically and numerically. A more realistic 2B-TDGL

model could be a valuable numerical experiment tool for physicists and scientists to explore,

understand and even modify the characteristics of multi-band superconductors under various
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settings of material parameters, operating temperature and external excitations. The

development of analytical results and computational codes for a three-dimensional 2B-TDGL

model which must now include the coupling of Maxwell equations at the exterior of the

superconductor domain, is another important step to bring more practical analytical results

and computational tools of the 2B-TDGL model to the real world. Computation of a two-

dimensional finite element code for a sample of the size in the order of ten of the coherent

length is already a challenging job, for three-dimensional finite element computations, speed-

up of the code by using parallelizations such as domain decomposition methods is an

indispensable job. Inhomogeneities and material defects of a superconductor sample play

a crucial role in the study of vortex pinning and dynamics. It has been a common and

easy practice to add spatial inhomogeneities such as normal inclusions to a TDGL model

to act as vortex pinning sites. An equally important but more challenging issue in the

study of vortex pinning and dynamics is to include random noise into the model. In real

world where noises such as thermal fluctuation or random drift in applied field can not be

ignored, a deterministic 2B-TDGL model may not be able to produce physically meaningful

computational results. All of the above considerations are subjects of our future research.
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