
Florida State University Libraries

Electronic Theses, Treatises and Dissertations The Graduate School

2006

Time Parallelization Studies in Bio-
Molecular Dynamics Simulations
Lei Ji

Follow this and additional works at the FSU Digital Library. For more information, please contact lib-ir@fsu.edu

http://fsu.digital.flvc.org/
mailto:lib-ir@fsu.edu

THE FLORIDA STATE UNIVERSITY

COLLEGE OF ARTS AND SCIENCES

TIME PARALLELIZATION STUDIES IN BIO-MOLECULAR DYNAMICS

SIMULATIONS

By

LEI JI

A thesis submitted to the

Department of Computer Science

in partial fulfillment of the

requirements for the degree of

Master of Science

Degree Awarded:

Summer Semester, 2006

The members of the Committee approve the thesis of Lei Ji defended on May 26, 2006.

Ashok Srinivasan
Professor Directing thesis

Hugh Nymeyer
Committee Member

Namas Chandra
Committee Member

The Office of Graduate Studies has verified and approved the above named committee members.

ii

This thesis is dedicated, to all those amazing people in my life who helped me and wanted
me to succeed.

iii

ACKNOWLEDGEMENTS

I would like to acknowledge my gratitude to Prof. Ashok Srinivasan, Prof. Hugh

Nymeyer, Prof. Namas Chandra, Jeffrey McDonald, and Yanan Yu. Without them, this

is impossible.

— Lei

iv

TABLE OF CONTENTS

List of Figures . vii

Abstract . viii

1. INTRODUCTION . 1
1.1 Importance of Molecular Dynamics . 1
1.2 Limitation on Time Scale . 2
1.3 Limitation of Conventional Parallelization 2
1.4 Approach . 4
1.5 Summary . 4

2. BACKGROUND . 6
2.1 Molecular Dynamics in Biology . 6
2.2 Force Spectroscopy/AFM . 7

3. DATA DRIVEN TIME PARALLELIZATION 12
3.1 Prior Work on Carbon Nanotube . 12
3.2 Multiple Time Scales . 16
3.3 Challenges in Soft-Matter Applications 17
3.4 Specific Approach in the Biological Problems 18

4. RELATED WORK . 22
4.1 Time Parallelization . 22
4.2 Spatial Parallelization . 25
4.3 Other Parallelization Methods . 25

5. RESULT . 30
5.1 Rupture Force . 30
5.2 Validation . 32
5.3 Speedup . 32

6. CONCLUSION . 37
6.1 Limitations of Current Work . 37
6.2 Future work . 38

A. Gromacs Options . 39

v

A.1 MDP FILE . 39

B. Gromacs Pulling options . 43
B.1 PPA File . 43

REFERENCES . 45

BIOGRAPHICAL SKETCH . 51

vi

LIST OF FIGURES

1.1 Scaling Result on an IBM Blue Gene/L . 3

2.1 Atomic Force Microscopy . 8

2.2 Adding Solvent to simulation . 8

2.3 Force extension profile . 9

2.4 Initial state before the AFM pulling starts 11

2.5 State before a strand breaks apart . 11

2.6 State after a strand breaks apart . 11

3.1 Schematic of time parallelization . 13

3.2 Stress versus strain . 16

3.3 Speedup curve on hard-matter simulation . 17

3.4 Schematic of a simulation, showing multiple time scales 18

3.5 RMSD criterion . 20

3.6 Speedup curve on hard-matter simulation . 20

4.1 Picard iterations . 23

4.2 Markov State Model . 28

5.1 Pulling speed and force dependence . 31

5.2 Predicted Force . 33

5.3 RMSD Error . 34

5.4 Speedup for only spatial parallelization . 35

5.5 Speedup for time parallelization . 36

vii

ABSTRACT

Molecular Dynamics (MD) is an important simulation technique with widespread use in

computational chemistry, biology, and materials. An important limitation of MD is that the

time step size is limited to around a femto (10−15) second. Consequently, a large number

of iterations are required to simulate to realistic time spans. This is a major bottleneck in

MD, and has been identified as an important challenge in computational biology and nano-

materials. While parallelization has been effective in dealing with the computational effort

that arises in simulating large physical systems (that is, having a large number of atoms),

conventional parallelization is not effective in simulating small or moderate sized physical

systems to long time spans. We recently introduced a new approach to parallelization,

where data from prior simulations are used to parallelize a new computation along the

time domain. We demonstrated its effectiveness in a nano-materials application, where this

approach scaled to a larger number of processors than conventional parallelization. In this

thesis, we parallelize a computational biology application - the AFM pulling of a protein -

using this approach. The significance of this work arises in demonstrating the effectiveness of

this technique in a soft-matter application, which is more challenging than the hard-matter

applications considered earlier.

viii

CHAPTER 1

INTRODUCTION

1.1 Importance of Molecular Dynamics

Biology has presented us with an array of nanoscale machines capable of converting energy

between various optical, chemical, and mechanical forms. For example, Rhodopsin is a

protein that serves as the primary light sensor of the eye. It uses light energy to pump

protons across a membrane, which ultimately triggers a signal to the brain. At present, we

have only a rudimentary knowledge of how these biological machines – constructed from

RNA and protein – function. This difficulty in understanding stems from the fact that these

biological machines are soft materials driven by weak non-bonded interactions and thermal

energy. Experiments have demonstrated [1, 2, 3, 4, 5, 6] that RNA and proteins exist in

a huge number of conformational states. (A conformational state here is defined by the

positions of all the atoms. If there are N atoms in the system, then a conformational state

is a point in ℜ3N . If we look at a protein at different times, then it will be in different

conformational states, occupying different points in ℜ3N . We refer to ℜ3N as phase space,

in this context.) Experimental methods, such as x-ray crystallography, nuclear magnetic

resonance, and cryo-electron microscopy, have managed to show us the average conformation

of a number of proteins and RNA, but have had limited success describing conformational

heterogeneity and dynamics, which are important for function. Experimental methods have

also been largely unsuccessful at characterizing proteins that occupy a large number of highly

diverse conformational states under normal conditions, despite the fact that a third of our

proteins are these so-called intrinsically disordered proteins [7, 8].

Computation provides an excellent method to identify the individual conformational

states of biological systems and their transitions between different conformational states.

Both can be predicted using Molecular Dynamics (MD). In MD, forces on atoms, due to

1

interactions with other atoms, are computed using certain empirical force fields. Once force

can be computed, Newton’s laws of motion are used, almost always with an explicit time

integration scheme, to determine the trajectory of the system. The force fields, in turn,

are pre-determined by approximating the results of quantum mechanical calculations and

experiments on small protein fragments. Quantum mechanical calculations can be used to

directly determine forces for use in MD, rather than to determine an empirical force field,

but current quantum mechanical methods are too slow to be feasible. The objectives of MD

simulations are two-fold: (i) to determine a statistically representative set of conformational

states, and (ii) to reproduce the dynamical transitions between these states. Monte Carlo

methods can, in principle, be used to determine such ensembles of states. However, they

have shown poor efficiency for large, dense systems compared with molecular dynamics.

1.2 Limitation on Time Scale

A limitation of molecular dynamics is the short timescale that can be accessed via simula-

tion. Large-scale protein conformational changes, such as folding and allosteric transitions,

normally don’t occur in under a millisecond. Molecular dynamics on proteins, limited by

high frequency motions to time steps of about a femto second (10−15s), can currently access

only about a microsecond of real time. In fact, this limitation of MD has been identified as

one of important challenges in computational biology [9].

To illustrate this problem, consider a 10, 000-atom simulation with time step size 1

femto second, carried out to a millisecond of simulation time. Each iteration will require

approximately 50 ms of wall-clock time with a fast code, such as GROMACS. The 1012

iterations will then require 5 × 1010s, which is around 1, 600 years of sequential computing

time. Using massive parallelism, on say 32, 000 processors, we can solve the same problem

in eighteen days, if we obtain high efficiency .

1.3 Limitation of Conventional Parallelization

Emerging computing platforms promise to provide the enormous raw computing power

required for the above applications. For example, petaflop computers are expected to be

available by the end of the decade, systems with more than ten thousand processors are

expected to be fairly commonplace in the near future, and an IBM Blue Gene already has

2

Figure 1.1: Scaling results on an IBM Blue Gene/L. The solid and dashed lines show results
for NAMD, based on data from [16]. The solid line is for a 327, 000 atom ATPase PME
simulation, and the dashed line for the 92, 000 atom ApoA1 PME simulation. The dash-
dotted line shows results for IBMs Blue Matter code on a 43, 000 atom Rhodopsin system,
based on data from [17].

over a hundred thousand processors. Distributed computing environments, such as grids,

also promise abundant computing power. The difficulty is in obtaining high efficiencies with

current parallelization strategies.

Conventional spatial decomposition methods (including atom and force decompositions)

yield high efficiencies only when the time per iteration per processor is of the order of tens

of milliseconds, as shown in fig. 1.1 (the drop in efficiency is even more dramatic on a linear

scale). Typical protein simulations have on the order of 30, 000 particles with explicit solvent

(that is, when the water molecules are explicitly represented). Furthermore, significant

development has gone into implicit solvent methods [10, 11, 12, 13, 14, 15], which replace

the explicit water molecules with an effective force field, thereby reducing the number of

particles in most proteins to a few thousand atoms. Consequently, spatial decomposition is

of limited use for these problems, when using a fast code on a fast processor.

An important cause of parallel inefficiency is that the communication cost dominates over

that for useful computations, as the number of processors increases.

3

1.4 Approach

Our approach is based on the observation that simulations typically occur in a context rich

in data from other related simulations. We use such data to parallelize a simulation in

the time domain. This leads to a more latency tolerant algorithm than with conventional

parallelization. In prior work, we parallelized an important nano-materials application to

over two orders of magnitude larger numbers of processors than feasible with conventional

parallelization. The soft-matter computations typically encountered in computational

biology are more challenging than the hard-matter simulations mentioned above. In fact,

it was believed that this approach would not be feasible in such computations. However,

in this thesis, we demonstrate the feasibility of this approach to an important soft matter

application in computational biology.

We next summarize our approach to time parallelization of MD simulations. We have

each processor simulate a different time interval. The difficulty is that, in an initial value

problem, the processors will not know the initial state for their time interval until the

previous processor has determined its final state. We deal with this as follows. We use MD

simulations to determine a relationship between prior results and the current simulation.

We then use the results of prior simulations, and their relationship to the current one, to

predict the initial state for each time interval. Thus we use all the available knowledge

about the physical system’s behavior, including the current computation, to predict the

starting state for each processor, and then perform accurate simulations in parallel. The MD

computations can then be used, again, to verify if the predictions were correct, and to learn

the relationship better from differences observed. This process continues. Each of these steps

(prediction and verification) is performed in parallel. Some communication is inevitable;

however, this overhead is small in practice, as shown later. With a suitable criterion for

determining acceptable errors, the solution will always be accurate to the prescribed level;

better predictions will enable better speedups. The load is also well balanced. This method

can be combined with spatial decomposition to increase the scalability over existing methods.

1.5 Summary

The major problem in biological MD is the difficulty in performing long time-scale simu-

lations. This thesis proposes to solve it using a data-driven time parallelization approach.

4

We demonstrated its effectiveness in a practical soft matter application. From our results,

it appears we can scale the computations efficiently to at least ten processors. Since time-

parallelization can be combined with spatial parallelization, we expect to get an additional

one order of magnitude improvement in speed over purely spatial parallelization.

The outline of the rest of this thesis is as follows. In Chapter 2, we present background

information on an important soft matter application in biology that will be used to demon-

strate effectiveness of our time parallelization method. In Chapter 3, we summarize our

prior work on a hard-matter application involving Carbon Nanotubes, and describe specific

challenges in soft-matter applications. Next, we describe related works on parallelization,

ODE-theory based solutions, and other’s parallelization methods in Chapter 4. We show

our result in terms of speedup and errors in Chapter 5. Finally, chapter 6 presents the

conclusion, limitations of the current work, and directions for future research.

5

CHAPTER 2

BACKGROUND

2.1 Molecular Dynamics in Biology

Molecular Dynamics (MD) is a computational simulation method that determine the position

ri and velocity vi of every atom i = 1, ..., N , that is contained in a computational cell

subjected to external boundary conditions (force, pressure, temperature or velocities). A

differential equation of motion that solves for these 6N (3 positions and 3 momentum

components) variables is given by ~Fi = mi
∂ ~vi

∂t
, ~vi = ∂~ri

∂t
, where ~Fi is the force on an atom

i having mass mi. In a numerical scheme, ∂t is approximated by ∆t. The problem is

solved by iteratively computing the states at successive points in time, using a forward time

numerical difference approximation. We shall refer to each iteration as a time step. A large

computational effort can be involved when the state of the system is large, or when the

number of time steps is large. In order to reduce the computation time, parallelization is

often used, especially with large physical systems. Even when the state space is not large,

the computational effort can be large if we need to compute for a large number of time

steps. For example, hemoglobin has two energetic states: relaxed state and tense state. The

transition from relaxed state to tense state takes more than tens of microseconds. It will

take ten billion iterations to simulate this, using MD with a time step size of a femto second.

The difficulty in simulating to long time spans, using MD, has been identified as one of the

important challenges in nanoscale simulations and computational materials science [9, 18].

Conventional parallelization is not effective in such problems, because the granularity

becomes fine, limiting scalability. Furthermore, a single MD trajectory does not give useful

information in soft-matter computations. Rather, we compute a number of trajectories,

and perform some statistical averaging of quantities of interest. This will be explained in

section 3.3.

6

MD requires good algorithms to integrate Newton’s equation of motion. Newton’s

equations of motion are laws, which provide relationships between the forces acting on a

body and the motion of the body. The Important criteria of a good algorithm are energy

conservation, time reversible, and symplectic, that is, incompressible phase space flow. These

properties are believed necessary in soft-matter simulations. There are two kinds of energy

conservation, short time and long time. A good algorithm has no overall energy drifts for long

time spans. Time reversible means future and past phase space coordinates play a symmetric

role. If one were to reverse the momenta of all particles at a given instant, the system would

track back its trajectory in phase space. These methods are believed to exhibit the shadowing

property, which means that they follow the exact trajectory of an approximation to the

force field used. Since the force fields used are themselves approximations, time reversible

symplectic integrators are considered accurate. Modifications are made to the equations of

motion to control temperature and pressure during the simulation. For example in constant-

NVT ensemble simulations, the total number of particles, volume, and temperature are kept

constant [19].

2.2 Force Spectroscopy/AFM

2.2.1 Titin

The biological system we consider is Titin. Titin is a giant multi-domain muscle protein

forming a major component of vertebrate muscle. The properties of Titin are studied by

characterization of its individual domains. Each Titin domain is identical - it is composed

of many identical fibronectin type domains connected into a single unbranched polymer,

which undergo very small change in the presence of neighboring domains. Therefore, its

properties, such as muscle elasticity, can be determined by studying the properties of each

individual domain using protein-unfolding experiments. Traditional unfolding experiments

use chemical denaturants to cause unfolding of a protein structure [20].

2.2.2 Force Spectroscopy/Atomic Force Microscopy

In Atomic Force Spectroscopy, mechanical force is applied to two ends of a molecule. This

applied force produces changes (such as unfolding) that are described by a force-extension

profile – how much force is applied versus the relative separation of the points at which

7

Figure 2.1: AFM pulling of TI 127 mutant from two opposite directions.

Figure 2.2: Adding water molecules as a solvent before simulation starts. More than 9, 525
tip4p water molecules are added here. 8 Na+ and 3 Cl− ions are also added to maintain
charge neutrality.

force is applied. Atomic Force Microscopy(AFM) is becoming an important biophysical

technique, where force plays the role of chemical denaturant [21, 22, 23]. Force Spectroscopy

has been shown to be relatively easily adapted to the study protein unfolding events in

atomic resolution. In MD simulation, a protein native structure TI 127 (a Titin mutant

with A-strand deleted [24]) is mechanically pulled apart from two attachment headpieces at

constant pulling rate, as shown in fig. 2.1. The number of particles, volume, and temperature

8

Figure 2.3: A sample of Force extension profile generated by GROMACS AFM pulling of
TI 127 at pulling rate of 10 m/s.

are kept constant. Tip4p water molecules 1 are added as solvent, as shown in fig. 2.2. We

also add excess ions to approximate the experimental salt concentration. Simulations have

to be performed at constant high temperature (400 K) to induce the proteins to unfold on a

computationally accessible timescale. We use Nośe Hoover Thermostat method to maintain

constant temperature. This approach is based on the use of an extended Lagrangian that

contains additional term of artificial coordinates and velocities adding to the equation of

motion [25, 26, 27, 28]. Movement of the pulled ends causes an extension of the protein and

the force exerted can be measured by multiplying the spring constant K by the extension

of the spring: ∆l, F (t) = K ∆l t. The resulting forces are computed during each time

step to generate a force extension profile, as shown in fig. 2.3. The force extension profile

has a series of saw-tooth peaks corresponding to unfolding of protein domains, as shown in

figures 2.4 2.5 2.6.

Unlike traditional bulk measurements of protein solutions, AFM is a single molecule tech-

nique able to directly probe the individual, heterogeneous response of single molecules [20].

The effect of force on the energy landscape can be studies in atomic level. AFM technique also

allows us to study particular regions of the protein structure which was not assessable from

conventional chemical denaturant method. Variation of AFM attachment points also allows

one to measure multiple pair-wise separations in a single structure – essentially constituting

1tip4p is a GROMACS water molecule model which has 2 hydrogen atoms and 2 oxygen atoms.

9

N2 different structural probes.

Despite the unique sensitivity and control of AFM, models are necessary to interpret what

structural changes are producing the measured force extension profile. Furthermore, AFM

measurements are limited in their pulling speed, and the use of a finite pulling speed directly

affects the mechanism of folding [29, 30, 20, 22, 31]. Early biological AFM measurements

observed relatively simple force extension profile. Recent tests of other proteins show that

multiple intermediates and soft deformations are possible, making the pulling rate especially

important for determining the mechanism. Unfortunately, traditional MD simulations

are limited to rates of pulling that are several orders of magnitude faster than possible

experimentally due to the lack of computational power. Current simulations are limited to

reproducing pulling rates in the range of 1-10 m/s, compared with typical experimental rates

of 10−7–10−8 m/s.

A method to extend the time-scale of simulations of AFM is needed. The preservation of

the natural kinetics is important for connecting to experiments, so potential energy surface

transformation methods are inapplicable here. Conventional parallelization is effective but

limited by granularity as discussed previously. Time parallelization is one method to

efficiently extend the time-scale by utilizing massively parallel machines. It may still need to

be combined with other techniques, such as Markov State Modeling, to reach realistic time

scales.

10

Figure 2.4: Initial state before the AFM pulling starts.

Figure 2.5: State before a strand breaks apart.

Figure 2.6: State after a strand breaks apart.

11

CHAPTER 3

DATA DRIVEN TIME PARALLELIZATION

3.1 Prior Work on Carbon Nanotube

In this section, we describe our prior work on carbon nanotube (CNT) based on the idea

of parallelizing time using a data driven approach [32, 33, 34]. This work is a hard-matter

computation in contrast to the soft-matter computation of the current work. Data-driven

parallelization is feasible, because, usually, high pulling-speed results are available. We

can use this high pulling-speed data to obtain slow (more realistic) pulling speed results.

Figure 3.1 illustrates our approach. Let us call a few iterations, say 1, 000 time steps of an

ODE solver, as a time interval. We divide the total number of time steps needed into a

number of time intervals. Ideally, the number of intervals should be much greater than the

number of processors. Let ti−1 denote the beginning of the i th interval. Each processor

i ∈ {1 · · ·P}, somehow (to be described later) predicts the states at times ti−1 and ti in

parallel (except for the known state at t0), using data from prior simulations. It then

performs accurate MD computations, starting from the predicted state at time ti−1 up to

time ti, to verify if the prediction for ti is close to the computed result. Both prediction and

verification are done in parallel. If the predicted result is close to the computed one, then

the initial state for processor i + 1 was accurate, and so the computed result for processor

i + 1 too is accurate, provided the predicted state for time ti−1 was accurate. Note that

processor 1 always starts from a state known to be accurate, and so the algorithm always

progresses at least one time interval, since the accurate computations on processor 1 lead to

accurate results on that processor. In fig. 3.1, the predicted state for t3 was inaccurate, and

we say that processor 3 erred. Computations for subsequent points in time too have to be

discarded, since they might have started from incorrect start states. The next phase starts

from time t3, with the initial state being the correctly computed state at time t3, and we

12

compute states for times t4, t5, t6, and t7 in parallel. The errors observed in the previous

verification step can be used to improve the predictor by better determining the relationship

between the current simulation and prior ones.

Figure 3.1: Schematic of time parallelization.

Note the following: (i) Processor 1’s result is correct, since it always starts from a state

know to be accurate. So the computation always progresses. All the processors must use

the same predictor. Otherwise verification of prediction at time ti on processor i does not

imply that the prediction for initial state at time ti on processor i + 1 was correct. (ii)

A global communication operation (AllReduce call in Algorithm 1) is used to detect the

smallest ranked processor to err. (iii) The last correctly computed state (using MD, in

the verification step), is sent to the first processor. (iv) If the time interval consists of a

large number of time steps, then the communication and prediction overheads are relatively

negligible, leading to a very latency tolerant algorithm.

Prediction We will describe a particular predictor used in our CNT application. The

most important feature of our strategy is our ability to predict the state, which serves as the

starting point for each processor, from its relationship with a base simulation. The predictor

should be both accurate much of the time, and much faster than the verifier. Prediction

over a long period of time is difficult. Instead, if Ŝi is the most recently computed state

that is accurate, then we will predict the changes between Ŝi and the state at the times

13

Algorithm 1: Time Parallelize (Initial State S0, Number of processors P , Number of time
intervals m)

1: i← 0
2: Ŝ0 ← S0

3: while i < m do

4: for each processor j ∈ [1, min(P, m− i− 1)] do

5: Ti+j−1 ← Predict(Ŝi, i, i + j − 1)

6: Ti+j ← Predict(Ŝi, i, i + j)

7: Ŝi+j ← Compute(StartState = Ti+j−1, StartT ime = i + j − 1, EndT ime = i + j)

8: UpdatePredictionParameters(CurrentParameters, Ŝi+j, Ti+j)

9: if DifferenceTooLarge(Ŝi+j, Ti+j) then

10: Nextj ← j
11: else

12: Nextj ← P
13: end if

14: end for

15: k ← AllReduce(Next, min)
16: if j = k then

17: Broadcast(Ŝi+j, P redictionParameters)
18: end if

19: for each processorj ∈ [1, P] do

20: i← i + k
21: end for

22: end while

required, as shown in the call to Predict in algorithm 1. We accomplish this by predicting

the change in each coordinate of the positions of the atoms independently. We normalize

all the coordinates so that they are in [0, 1], by letting the origin be 0 and then dividing by

the length of the CNT along that coordinate direction. Similarly, we normalize the relative

times in the base and in the current simulations by multiplying by the velocity with which

one end of the tube is pulled, and dividing by the original length of the tube. For example,

if the current simulation is pulled at one tenth the velocity as the base, then time t in the

current simulation is related to time t/10 in the base. Let xt represent a coordinate at time

t. Then by two terms of taylor’s series, xt+∆t = xt + ẋt+∆t∆t, where ẋt+∆t is the actual slope

∂x/∂t at some point in [t, t + ∆t].

We do not know ẋt+∆t, and we will try to predict this value. Let ẋt+∆t ≈
∑

i ai,t+∆tφi(xi),

14

we can perform a least square fit to determine the coefficient ai,t. We can determine coefficient

of base, bi,t. If the base simulation and the current simulation are almost identical, then

we can say ai,t ≈ bi,t. If they are different, we wish to correct by adding the difference

between two simulations Rt+∆t = ai,t+∆t − bi,t+∆t, which is unknown. We can assume

ai,t+∆t ≈ bi,t+∆t + ai,t− bi,t. random fluctuations in MD simulation lead to poor results if we

depend on only evaluation at one poin in time So we set Rt+∆t = (1− β)Rt + β(ai,t − bi, t),

where β is the weight assigned to the latest value. Updating Rt each time step represents a

simple form of learning. Since ai,0 and bi,0 are unknown, we assume a linear increase with

time, in the values of the coordinates of atoms, in the direction in which CNT is pulled, with

the constant of proportionality being a function of its normalized coordinates.

Verification The verification step consists of an accurate MD simulation, starting from a

possibly inaccurate initial state. The computed state is then compared with the predicted

state for the same point in time. We need to determine if the two state are sufficiently close.

The detail steps are described in [33].

Validation Tensile test is an important simulation or experiment to determine the

mechanical properties of a physical system. In a tensile test, the physical system is pulled

at a constant velocity. The response of the material is characterized by stress for a given

strain. Stress is the ratio of force to directed area, while strain is the ratio of deformation

to the original dimensions of the material. The stress-strain relationship is an important

material property, indicating the coarse-scale effect of the atomic motions. Figure 3.2 shows

that the stress-strain relationship from the Carbon Nanotube (CNT) time parallel code is

almost identical to the exact sequential results. Such a curve, for example, can be used by

an FEM code to determine the effect of the polymer matrix on the CNT, and vice-versa.

Another important property would be the strain at which the CNT starts to break.

Speedup Results: The speedup is almost linear, as shown earlier in fig. 3.3, with

efficiencies typically well over 95%. Until the point that the CNT starts failing, the

predictions are sufficiently accurate, and loss in speedup occurs only due to prediction and

communications overheads, which are small relative to the computations required for a time

interval. Note that the speedup is relative to an inherently sequentially algorithm; we are,

15

Figure 3.2: Plot of stress versus strain at 0.1m/s. The squares show the time parallel results
on 400 processors. The solid line with circles (which are mostly obscured by the squares, since
the time-parallel results almost coincide with the exact ones) represents the exact sequential
MD results. The dash-dotted line with triangles represents the results of direct prediction.

therefore, comparing against an optimized code that does not have any of the overheads of

our approach. The sequential code required around a week of computing time. We give

some timing data below to show that the parallelization overheads are small. On the Xeon

cluster at NCSA, the prediction related computations take less than 10−4s, the AllReduce

≈ 10−4 − 10−3s for 50-1000 processors, Broadcast ≈ 10−4s for 50-1000 processors, and the

Send/Recv about 10−4s. Load imbalance is not an issue, since each processor performs,

essentially, the same amount of computation. All the overheads are insignificant, relative to

the computation time (≈ 13s) for simulating a single time interval.

3.2 Multiple Time Scales

The coarse scale results are what are important in many applications, such as in the CNT

tensile test, where the stress-strain response is what is important. Figure 3.4 shows schematic

of a simulation on multiple time scales. In our scheme, through the use of information from

related simulations, we are able to get the coarse scale response without performing a costly

sequential simulation. This helps with the accuracy of prediction, and with parallelizing the

prediction phase.

16

Figure 3.3: Speedup curve on a nano-materials simulation. The dashed line shows ideal
speedup. The squares and circles give the speedups with two different predictors, on a
commodity Xeon cluster with Myrinet interconnect at NCSA. Conventional parallelization
scales to only 2− 3 processors.

3.3 Challenges in Soft-Matter Applications

We summarize the challenges in soft-matter applications as follows. The challenges in soft-

matter applications are related to their complexity, and the underlying physics and chemistry

of these processes are not yet completely understood. For example, folding and unfolding

in proteins are dynamic processes with formation and loss the large number of weak non-

covalent bonds. These bonds will fail under any level of pulling force if held for sufficient

time. Bond strength is the force that produces the most frequent failure in repeated tests

of breakage. Therefore, MD simulation is not to predict precisely what will happen in the

experiment. However we are interested in statistical average behavior of a system with

limited knowledge of initial state. Unlike hard-matter simulations which display mostly

similar behaviors, soft-matters simulations usually exhibit diffusive heterogeneous behaviors.

For all MD simulations, trajectory of the system depends on its initial conditions. Two

different simulations with slightly different initial conditions will diverge exponentially as

time progresses. Moreover, small integration errors can cause the simulated trajectory to

diverge exponentially from the true one. This is also called Lyapunov instability [19]. During

soft-matter simulations, local minimal energy is more difficult to predict. This is due to small

17

Figure 3.4: Schematic of a simulation, showing multiple time scales. The states vibrate
around the lines, showing a coarse scale response. The simulation marked by circles initially
has a coarse-scale response similar to the simulation marked with diamonds. However, later,
it changes to become similar to the simulations marked with triangles. This change is often
caused by the vibrations. Thus the fine time-scale cannot be ignored in the actual simulation
(in solving the ODE), even if we are interested only in observing the coarse scale response.
Our prediction mechanism may err during the transition, but will then identify the new coarse
scale behavior later.

MD integrations time steps, limited by its high frequency motions. On the other hand, local

minimal energy in hard-matter simulations tend to present harmonic behavior in contrast to

those in soft-matter simulations.

3.4 Specific Approach in the Biological Problems

In this section, we present our implementation of the data-driven time-parallelization

approach, for a class of biological MD simulations - AFM pulling of proteins (Algorithm

2). This algorithm is similar to that in the CNT application. The primarily difference is in

prediction. The prediction process does not compute the differences in states. Instead, the

prior data consists of a collection of results from prior simulations. At any point in time,

we dynamically determine a prior simulation to which the current simulation’s behavior is

current similar. We use the actual states of that prior simulation to predict the states of the

current simulation in the future. Furthermore, there are no prediction parameters that need

to be broadcast to all processors.

18

During verification phase, we have to choose some criteria to determine what an

acceptable error for each time interval is. We have results of faster pulling runs, which have

different seeds to the random number generator used in the thermostat, and also different

initial states (initial velocities of the atoms). The root mean square deviation (RMSD) for

a collection of N values {x1, x2, x3, . . . , xN} is:

xrms =

√

√

√

√

1

N

N
∑

i=1

x2
i =

√

x2
1 + x2

2 + x2
3 + . . . x2

N

N
, (3.1)

where xi are the differences in values of corresponding components of two vectors. The

RMSD indicates how much the two structures differ. We will describe the procedures of

selecting criteria as follows. First, we remove solvent water molecules from those results.

Next, translation and rotation is added to the coordinates by GROMACS dofit function in

order to remove rigid body motion of the system. Then, we calculate RMSD and maximum

distance from a pair of systems. Figure 3.5 and fig. 3.6 show the root mean square deviation

(RMSD) versus time and maximum distance versus time from two faster pulling runs which

differ only in the random number seed used. Only 10 pico seconds of data are used in fig. 3.5

and fig. 3.6 because each time interval is 10 pico seconds in time parallelized simulation.

From those figures, we set RMSD threshold to 2Å, and maximum distance to 10Å. Finally,

we add RMSD and maximum error as thresholds in our time parallelized code. In algorithm

2, function DifferenceTooLarge checks the predicted state to see if its RMSD value and

maximum error is larger than these thresholds. If it is the true, we say this processor has

failed, and computations for subsequent points in time too have to be discarded, since they

may have started from incorrect initial states.

19

Figure 3.5: RMSD versus time. Two runs have the same pulling rate but different seeds to
the random number generator used in the thermostat.

Figure 3.6: Maximum distance versus time. Two runs have the same pulling rate but different
seeds to the random number generator used in the thermostat.

20

Algorithm 2: Time Parallelize (Initial State S0, Number of processors P , Number of time
intervals m)

1: t← 0
2: Ŝ0 ← S0

3: while t < m do

4: for each processor i ∈ [1, min(P, m− i− 1)] do

5: St+i−1 ← Predict(t + i− 1)
6: St+i ← Predict(t + i)
7: Accurate mdrun(StartState = St+i−1, StartT ime = t + i− 1, EndT ime = t + i)
8: Ŝt+i ← read state completed by mdrun for t + i
9: if RMSD or Max difference too large(Ŝt+i, St+i) then

10: Nextj ← i
11: else

12: Nextj ← P
13: end if

14: end for

15: k ← AllReduce(Next, min)
16: for each processorj ∈ [1, P] do

17: t← t + k
18: end for

19: end while

21

CHAPTER 4

RELATED WORK

4.1 Time Parallelization

In the 1980s and 90s, time parallelization using waveform relaxation [35, 36], and its various

variants [37, 38], generically called “dynamic iterations”, were well studied. To give a simple

illustration of this method, consider the ODE ẋ = f(x, t), x(t0) = x0. An initial guess,

x(0)(t), for the solution is taken for all t ≥ t0, subject to x(0)(t0) = x0. Then an iteration of the

form ẋ(k+1) = f̂(x(k+1), x(k), t) is used, with x(k+1)(t0) = x0 and subject to f̂(u, u, t) = f(u, t)

for any u, t. Conditions on f̂ for convergence have been derived, and are fairly simple.

In the simplest case, if f̂(x(k+1), x(k), t) = f(x(k), t), then we get the Picard iterations,

which is illustrated in fig. 4.1. It is easy to parallelize this by having each processor integrate

a different time interval, and then performing a parallel prefix operation. Parallel prefix

is fairly fast in practice, and takes O(logP) time on P processors under, for instance, the

task-channel model of computation. Unfortunately, the convergence rate of Picard iterations

is slow.

Popular versions of waveform relaxation split the system into subsystems, and use

analogues of Jacobi, Gauss-Seidel, or SOR (successive over relaxation) iterations. These can

be explained in terms of how f̂ is constructed, and details can be found in, for example, [36].

The Jacobi version of waveform relaxation is easy to parallelize in the time domain. Note

that if we define f̂(x(k+1), x(k), t) = f(x(k+1), t), then we get convergence in one iteration,

but the problem is as difficult to solve as the original one.

While the asymptotic convergence rate form waveform relaxation is good, the convergence

rate observed in practice is not good. One of the reasons for the slow convergence is that

the effect of the initial condition takes long to propagate to the later values of time. So

the basic sequential algorithm is often much slower than a conventional ODE solver, using

22

an equivalent integration scheme, and efficient parallelization cannot usually overcome this

deficiency.

Figure 4.1: Picard iterations to solve y′ = y, y(0) = 1. The initial guess is along the x-axis.
The dotted, dash-dotted, and dashed lines show the results of the first, second, and third
iterations respectively, while the solid (top most) line shows the exact result, which visually
coincides with the results of the fourth iteration, marked by a gray dashed line.

Note that in our approach, in the worst case, the prediction fails at each step. The

computation then reduces to a sequential one using a conventional ODE solver. An additional

computational overheard of parallelization is incurred, but this is small. Furthermore, use

of prior data attempts to propagate the effect of the initial condition faster in the following

manner. The prior results have already accounted for the effects of their initial states. If

the current simulation appears to be related to a combination of that of previous ones,

then previous ones have, in some sense, performed the necessary computations, and we can

“read” the effects of the current simulation’s initial conditions from them. When prediction is

invalid, the verification step detects the errors, and we lose speedup. This typically happens

during transitions, such as bond breakage. Once a transition has been completed, we will

again be able to detect some other combination of prior simulations to which the current

simulation is now related. Note that our prediction strategy may enable us to combine our

technique with waveform relation; if the predicted state is close to the true state, then the

good asymptotic convergence rate of waveform relaxation may apply.

23

Parareal approach Other time parallelization approaches, related to shooting methods

and also to ours, have attracted some attention in recent times. An example is the parareal

approach [39, 40].

The parareal approach uses an iterative procedure, with each iteration consisting of

a predict-verify-correct sequence. Predictor approximates solution from initial state. All

starting states can be obtained by recursion. This is done in sequential. The verify

step verifies if the predicted state are accurate in parallel. If the predictions are not

correct, then a correction step is applied. The error is computed and this concludes an

iteration of the predict-verify-correct sequence. The next iteration predicts the state by

applying the inaccurate predictor, but then correcting by the error that was encountered the

previous iteration. The verification and correction phase are applied as before, to complete

this iteration. If the solutions have not converged, then the computation repeats until

convergence.

This method requires a sequential computation for the prediction process, which even-

tually limits speedup and decreases efficiency. In fact, simulated results in [39, 40] showed

limited speedup (8 – 130) and efficiency (25% – 1%), even ignoring communication cost

(since they were simulations of parallel runs, rather than real ones), on some model problems.

Communication costs increases linearly with the number of processors (due to the sequential

computation of the predictor). The ratio of the time taken by the verifier to the time taken by

the predictor is usually small. Even if convergence takes place in one iteration, the speedup

is bound by this ratio. The number of iterations for convergence clearly affects the efficiency

significantly. Note that as the iterations proceed, even though states for many of the points in

time would have already been computed correctly, the processors responsible for those points

are still involved in the computation. More importantly, the use of a coarser time grid is often

not feasible. For example, in MD computations, taking time steps as large as 2 femto seconds

can cause the solution to blow up. On the other hand, if the time step in the sequential phase

is small, then this limits the parallel speedup. In our scheme, through the use of information

from related simulations, we are able to get the coarse scale response without performing a

sequential simulation with large time steps. This helps with the accuracy of prediction, and

with parallelizing the prediction phase. Of course, the prediction and verification algorithms

that we use are also very different from those used in the above approach.

24

4.2 Spatial Parallelization

Spatial parallelization1 of MD is well studied [41, 42], including ours [43], which scale at

granularities greater than a few hundreds of atoms per processor. Recent results on the

IBM Blue Gene [17, 16] appear to scale to granularities of the order of one to ten atoms

per processor. While these results are certainly impressive, a closer look only reinforces

the limitations due to fine granularity, for the following reasons. When the computational

cost is high, the communication cost is relatively low, leading to good speedups. While

the exact sequential time is not reported in [17], from the results on smaller numbers of

processors, it appears that the sequential time per time step per atom is slower than that

of a fast code (GROMACS) on a fast processor (Xeon) by a factor of around 5. When the

underlying (sequential) code is faster, the speedup results will not be as good, because the

communication cost will be relatively high. Furthermore, while the above results show

decreasing time with increasing number of processors, the improvement is marginal at

low granularities. For example, increasing the number of nodes from around 8, 000 (at a

granularity of 5.3 atoms per processor) to around 16, 000 (at a granularity of 2.6 atoms per

processor), increases the speed by only around 10%. Basically, codes typically do not scale

well at granularities finer than the order of tens of milliseconds per iteration in a parallel

run, as shown in fig. 1.1.

The GROMACS code on Xeon appears to run around 10 times faster sequentially than

NAMD on the Blue Gene. The parallel efficiency of GROMACS is lower than for NAMD.

However, even if it were made to scale efficiently at granularities of 10 ms per time step,

there is limited scope for efficient parallelization of systems with a few thousand atoms,

if we consider that simulation of a 1, 000 atom system on Xeon takes around 5 ms using

GROMACS. Thus, fast codes on a fast processors currently do not appear capable of scaling

efficiently to granularities finer than a hundred atoms per processor.

4.3 Other Parallelization Methods

PES Smoothing A number of popular techniques for dealing with long time scales are

based on modifications of the force field. These generally involve smoothing or flattening the

1We use this term for both atom-based decomposition (which assigns different atoms to different
processors), and to force-decomposition (which assigns different force computations to different processors).

25

potential energy surface (the potential energy surface or PES is the potential energy written

as a function of the phase space ℜ3N). Smoothing of the PES increases the probability of

accessing high energy transition states that are rate limiting bottlenecks for conformational

change.

A number of possibilities for PES smoothing exist. In the earliest methods [44, 45],

smoothing transformations were combined with search algorithms in attempts to locate the

global minimum of the PES. These methods do not generate correct statistical ensembles of

conformations or dynamics.

More recent PES smoothing methods combine MC moves with additional control pa-

rameters that allow for the dynamic adjustment of the amount of smoothing. These

methods [46, 47, 48, 49, 50, 51] are normally referred to as multi-ensemble methods because

they generate many ensembles simultaneously, one for each value of the control parameters.

Although these methods are guaranteed to produce a statistically correct ensemble of

conformations, they do not preserve the kinetic behavior. These newer methods have been

successfully applied to small proteins (fewer than 30 amino acid residues) designed to exhibit

exceptionally fast dynamical transitions (under 10 microseconds) but have so far been limited

by poor scaling with the size of the protein. Few PES smoothing methods exist that preserve

the transition mechanisms and from which transition rates can be quantitatively computed.

In the Hyper Molecular Dynamics method [52, 53, 54], PES smoothing occurs by filling in

low energy wells. For systems with well-defined high-energy barriers, this method does not

disrupt the relative probability of transitions out the current potential energy well [55].

Kinetic Monte Carlo In Kinetic Monte Carlo, local transition rates are pre-computed

to determine the rate that different transitions would occur. Its advantages and limitations

are well described in [56, 55].

Parallel Replica Method Molecular Dynamics simulation on small system (e.g., < 103

atoms) is inefficient because high communication cost. Parallel Replica method [57] exploits

the properties of infrequent-event system as a way to develop an efficient parallel approach

to MD simulations. A typical feature of infrequent-event system is the separation of two

durations of time scales: a brief transition period and long waiting time between these

periods. We can save time by not doing MD integration of the long waiting period, and

26

Transition-state theory (TST) can be used to compute the crossing events directly.

Parallel Replica method procedures are the followings: (1) The configurations are

copied to M number of processors. (2) The minimization process to determine reference

configuration. (3) On each processor a classic integrations is perform on uncorrelated replicas.

(4) Each replica trajectory is monitored for transition event. When one processor i detects

an event it notify all other processors and stop them. The total time is added by tsum(the

sum of time done by all M replicas since step (3)). (6) One processor, replica i is integrated

forward for pre-chosen time during which new transitions may occur. (7) Replica i becomes

the new configuration of the system. (8) Restart step (1).

The Parallel Replica Method is a rudimentary type of time-parallelization that can be

used on systems with certain properties: correlation times should be short compared with the

times for transitions to occur, and transition events should be well defined, brief events. The

rate for transitions increases linearly with the number of simulated systems when correlation

times within each basin are short compared with transition events. Applications of this

method to soft systems such as proteins have been limited because of the difficulty in

identifying transitions and the lack of large time-scale separation between relaxation in a

well and inter-well transitions.

Markov State Modeling The use of grid computing, hundreds of thousands of computing

nodes connected by internet, to study protein folding was pioneered by Pande’s group. From

2000− 2005, his project Folding@Home [58] has already carried out a number of important

and extremely difficult calculations. Since October 1, 2000, over 1, 000, 000 CPUs throughout

the world have donated time to the project. This has resulted hundreds to thousands times

more computing power than what we typically find in a computing laboratory and enable

studies at details we had not thought possible.

Pande has the following steps. First, Pande selects some starting points from previous

data that is easily obtainable. Next, Pande starts tens of thousands of independent

MD trajectories from those starting points. Then, Pande groups similar trajectories into

discrete states by some arbitrary metric. Assuming the transitions between these states are

Markovian, Pande estimates the transition between states by counting the number of times

we see each transition. From this Markovian state model, as shown in fig. 4.2, it is possible

to efficiently predict probability that a protein will fold. By constructing Markovian state

27

Figure 4.2: A Markov chain describes at successive times the states of a system. At these
times the system may have changed from the state it was in the moment before to another or
stayed in the same state. The changes of state are called transitions. A Markov chain is a
sequence of random variables X1, X2, X3, ... with Markov property, namely that, given the
present state, the future and past states are independent. Markov chains are often described
by a directed graph, where the edges are labeled by the probabilities of going from one state
to the other states.

model from those collected data, Pande is able to interpolate dynamics further than direct

simulations [59, 60, 61].

However, it is shown if the conformations are grouped incorrectly, the state space is no

longer Markovian, and any analysis that assumes a Markovian process may produce incorrect

results. Even if the states are defined such that transitions between them are Markovian,

the results could still be in error [62, 63].

Multiple Time-step Integration More conventional methods to increase the computa-

tion rate, such as multiple time-step integration methods, are frequently used. Different

time-step sizes for different components of the computations are used in [64] to deal with

small time-step sizes in atomistic simulations, and many multi-rate techniques [65] have

been developed and analyzed. These give improvements of a factor of three or four. But it

is difficult to achieve much more of an improvement using this approach, due to resonance,

which limits how large the largest time-step can be [66]. There is much other research being

28

conducted on numerical methods for handling the time-scale problem [67] based on ODE

theory. For example, equation-free schemes [68] attempt to determine coarse time-scale

behavior from fine-time scale (MD) simulations, and use this in a solver that can use coarse-

scale response. Coarse-scale states are “lifted” to the higher-dimensional fine-scale state, then

fine-scale simulations are performed and a coarse-scale response obtained (“restricted”). A

large step is then taken on the coarser-scale, to progress more rapidly in time. This process

continues. Apart from parallelization, one important difference between our idea and the

above one is that we use prior data to determine coarse-scale behavior. The above technique

uses the fine-scale response of the current simulation itself, which limits how far in the future

it can predict. However, in the absence of much prior data, the above scheme could be used

for a non-data driven time-parallelization.

29

CHAPTER 5

RESULT

The aim of our experiments is to evaluate the potential of data-driven time parallelization in

soft-matter MD simulations. Our computing platform is a cluster belonging to our research

group, which consists of 32 nodes, with each node containing two AMD Opteron 2.0 GHz

64-bit processors, 2 GB ECC DDR SDRAM memory, 64 KB L1 cache, 1024 KB L2 cache,

running Red Hat Linux, Kernel 2.6.9. The nodes are connected through Gigabit Ethernet.

The MPI implementation LAM was used with gcc compilers for our C code. The simulation

setups are briefly described as follows. GROMACS takes a PDB (protein data bank) file of

TI 127 structure. A total of 9, 525 tip4p water molecules are added to 5X5X5 box under

NVT condition at temperature 400 K. The springs are attached the first and last carbon

atom under force constant of 400kJ/(mol × nm2). The algorithm applied is discussed in

section 3.4. The complete GROMACS settings are shown in appendix A and appendix B.

We can see speedup is almost ideal up to 12 processors. The loss in speed was only due to

the overheads of communication, and reading or writing the base simulation data to disk.

5.1 Rupture Force

Dudko et al. [69] analyzed the relationship between force and AFM pulling rate. There are

three competing theories. The simplest one, the phenomenological theory [70] assumes the

rupture forces scales to the exponential of applied force according to Bell’s formula [71].

k(F) = k0e
fx‡

(5.1)

For constant pulling speed where F (t) = KV t the rupture force is predicted to grow

proportionally to the logarithm of the pulling speed [72], 〈F 〉 ∼ ln V . Hummer and Szabo [73]

proposed idea of applying Kramers theory of diffusive barrier to predict 〈F 〉 ∼ (ln V)1/2.

30

Dudko et al. [69] theory predicts

〈F 〉 ∼ (ln V)2/3 . (5.2)

Rupture forces under different pulling rates yields two important constant properties of the

protein: ku (unfolding rate constant) and xu (distance from folded state to transition state).

ku and xu provide a simplified interpretation of a particular protein’s energy landscape and

allows one to compare mechanical strength of different proteins.

We can validate the correctness of the time parallel runs by verifying that the output

rupture forces have the expected range of values, and that they occur at correct points in

time. Figure 5.1 shows the rupture forces from our time parallelized code are approximately

the log of the their pulling rate.

Figure 5.1: Squares are rupture forces obtained from experiments [20]. Triangles are rupture
forces obtained from our time parallelized code. Asterisks are rupture forces from spatially
parallelized GROMACS code. All circles are the means. The dashed line shows the linear
least square best fit line, based on data from three time-parallel and ten spatially-parallel runs.

31

5.2 Validation

We next show results that validate the correctness of our approach in the problem considered.

At first, we completed ten fast pulling runs at pulling rate of 10 m/s. Then, we used those fast

pulling results to predict a slow pulling run at 1 m/s. Figure 5.2 compares the force extension

profiles obtained from GROMACS spatially parallelized code and our time parallelized code.

Both our curves shows a transition (inferred from the peak) at similar points in time. The

solid line on Fig 5.3 shows the RMSD between GROMACS spatially parallelized run and our

time parallelized run. The dashed line on fig. 5.3 shows the RMSD between two GROMACS

runs of same AFM pulling rate but different seeds to the random number generator used in

the thermostat. Those two lines are similar, and so the differences between a time-parallel

run and the exact trajectory are similar to the difference obtained using a different random

number sequence. Furthermore, fig. 5.1 shows that the statistics obtained are also similar to

that with conventional code.

5.3 Speedup

Figure 5.4 shows the speedup results from the GROMACS spatially parallelized code. The

maximum flop rate is computed to be 13.684 GFlops on 16 processors. The efficiency

diminishes dramatically as the number of processors increases. In fact, spatially parallelized

code on 24 processors performed worse than on 16 processors.

Next, Figure 5.5 shows the speedup results of our data-driven time parallelized code. The

results show our time parallelized code can scale well at least on 10 processors. The prediction

is always sufficiently accurate, but minor errors during 10 processors cause a drop in efficiency

to around 96%. With 16 processors, there are a set of prediction errors in the middle of

simulation before and after peaks on force extension profile. Figure 5.4 shows that spatial

parallelization cannot scale beyond a small number of processors, and time parallelization is

useful in extending the scalability by combining it with spatial parallelization. The benefit

from time parallelization is substantial.

32

Figure 5.2: The solid lines are the forces of the three spatial parallelized runs, and the dashed
lines are the forces of the time parallelized runs.

33

Figure 5.3: The solid line shows the RMSD between GROMACS spatially parallelized run
and our time parallelized run. The dashed line shows the RMSD between two GROMACS
runs of same AFM pulling rate but different seeds to the random number generator used in
the thermostat.

34

Figure 5.4: Speedup curve. The line shows the speedup for spatially parallelized code. The
flop rate is 13.684 GFlops on 16 processors, and 11.686 GFlops on 24 processors.

35

Figure 5.5: Speedup curve. The dashed line shows the ideal speedup, and dots show the
speedup for time parallelization.

36

CHAPTER 6

CONCLUSION

We have showed the effectiveness of data-driven time parallelization in a practical biological

soft-matter application – AFM pulling in protein folding. Since time parallelization works on

the order of 10 processors, if we combine it with spatial parallelization, then we can extend

the scalability of parallelization by an order of magnitude. Better prediction strategies might

yield even better scalability. The MD applications considered in detail will, in themselves,

have a major impact, by enabling better understanding of protein folding. Furthermore, the

general methods developed can be used for a larger class of problems, since we address the

common problem of scalability.

6.1 Limitations of Current Work

The work had the following limitations. (1) Somewhat ad-hoc criteria were used for the error

thresholds. We explained in section 3.4 some conditions the prediction scheme should satisfy,

in order to ensure that the errors are acceptable. Some other criteria such as calculating

the number of H-bonds breaking apart might be more effective. (2) The most important

limitation is that the scheme is not time-reversible and symplectic, which are believed

necessary in soft-matter simulations. While comparisons with exact simulations showed

that the results were acceptable, and this was sufficient to demonstrate the potential of our

approach to soft-matter applications, if we are to use this technique in production runs,

where exact results will not be available to compare against, then we need to ensure that the

prediction mechanism does not violate time-reversibility and the symplectic property. (3)

We would like to reduce the number of solvent water molecules in simulations. Section 1.3

mentioned implicit solvent method as good example to further improve overall performance.

37

6.2 Future work

Some of the future works as follows. Biological systems are known to have high dynamical

Lyapunov exponents. So, initially close trajectories diverge rapidly, making determination of

exact trajectories over long time impossible. Determining trajectories that are “correct” in a

statistical sense is more important than long-term accuracy of a single trajectory. Statistical

correctness can be produced by using so-called geometric integrators, which have the same

global properties as the real dynamics, such as time-reversibility, energy conservation, and

the symplectic property, that is, incompressible phase space flow. These methods are believed

to exhibit the shadowing property, which means that they follow the exact trajectory

of an approximation to the force field used. Since the force fields used are themselves

approximations, time reversible symplectic integrators are considered accurate. We need to

develop prediction schemes that do not violate the time reversibility and symplectic property

of the integrator.

We also want to combine time parallelization with spatial parallelization – instead of one

processor computing for one time interval, a group of processors, that distribute the atoms

across the group, can be used to simulate each time interval. This will yield a code that

improves on the best available conventional code. Lastly, we want to develop better criteria

for verifying the accuracy of predictions.

38

APPENDIX A

Gromacs Options

*.mdp: allows the user to set up specific parameters for all the MD calculations that Gromacs

performs.

A.1 MDP FILE

; VARIOUS PREPROCESSING OPTIONS

title = Short Dynamics

cpp = /lib/cpp

include =

define =

; RUN CONTROL PARAMETERS

integrator = md

; Start time and timestep in ps

tinit = 0

dt = 0.001

nsteps = 12000000

annealing temp =

; GENERATE VELOCITIES FOR STARTUP RUN

gen-vel = yes

gen-temp = 300

gen-seed = 708582

; OPTIONS FOR BONDS

constraints = hbonds

; Type of constraint algorithm

39

constraint-algorithm = Lincs

; Do not constrain the start configuration

unconstrained-start = no

; Use successive overrelaxation to reduce the number of shake iterations

Shake-SOR = no

; Relative tolerance of shake

shake-tol = 1e-04

; Highest order in the expansion of the constraint coupling matrix

lincs-order = 2

; Number of iterations in the final step of LINCS. 1 is fine for

; normal simulations, but use 2 to conserve energy in NVE runs.

; For energy minimization with constraints it should be 4 to 8.

lincs-iter = 1

; Lincs will write a warning to the stderr if in one step a bond

; rotates over more degrees than

lincs-warnangle = 30

; Convert harmonic bonds to morse potentials

morse = no

; ENERGY GROUP EXCLUSIONS

; Pairs of energy groups for which all non-bonded interactions are excluded

energygrp excl =

; NMR refinement stuff

; Distance restraints type: No, Simple or Ensemble

disre = No

; Force weighting of pairs in one distance restraint: Conservative or Equal

disre-weighting = Conservative

; Use sqrt of the time averaged times the instantaneous violation

disre-mixed = no

disre-fc = 1000

disre-tau = 0

; Output frequency for pair distances to energy file

nstdisreout = 100

40

; Orientation restraints: No or Yes

orire = no

; Orientation restraints force constant and tau for time averaging

orire-fc = 0

orire-tau = 0

orire-fitgrp =

; Output frequency for trace(SD) to energy file

nstorireout = 100

; Dihedral angle restraints: No, Simple or Ensemble

dihre = No

dihre-fc = 1000

dihre-tau = 0

; Output frequency for dihedral values to energy file

nstdihreout = 100

; Free energy control stuff

free-energy = no

init-lambda = 0

delta-lambda = 0

sc-alpha = 0

sc-sigma = 0.3

; Non-equilibrium MD stuff

acc-grps =

accelerate =

freezegrps =

freezedim =

cos-acceleration = 0

; Electric fields

; Format is number of terms (int) and for all terms an amplitude (real)

; and a phase angle (real)

E-x =

E-xt =

E-y =

41

E-yt =

E-z =

E-zt =

; User defined thingies

user1-grps =

user2-grps =

userint1 = 0

userint2 = 0

userint3 = 0

userint4 = 0

userreal1 = 0

userreal2 = 0

userreal3 = 0

userreal4 = 0

42

APPENDIX B

Gromacs Pulling options

*.ppa file: allows user to setup specific parameters for AFM pulling options.

B.1 PPA File

; GENERAL

verbose = yes

skip steps = 1000

; Runtype: afm, constraint, umbrella

runtype = afm

; Number of pull groups

ngroups = 2

; Groups to be pulled

group 1 = a 1

group 2 = a 1257

; The group for the reaction force

reference group =

; Weights for all atoms in each group (default all 1)

weights 1 =

weights 2 =

reference weights =

; Ref. type: com, com t0, dynamic, dynamic t0

reftype = com

; Use running average for reflag steps for com calculation

reflag = 1

43

; Select components for the pull vector. default: Y Y Y

pull dim = Y Y Y

; AFM OPTIONS

; Pull rates in nm/ps

afm rate1 = 0.0005

afm rate2 = -0.0005

; Force constants in kJ/(mol ∗ nm2)

afm k1 = 400.0

afm k2 = 400.0

; Directions

afm dir1 = 1.0 0.0 0.0

afm dir2 = 1.0 0.0 0.0

; Initial spring positions

afm init1 = 7.361 3.020 2.036

afm init2 = 9.651 1.551 2.529

44

REFERENCES

[1] R. H. Austin, K. W. Beeson, L. Eisenstein, H. Frauenfelder, and I. C. Gunsalus.
Dynamics of ligand binding to myoglobin. Biochemistry, 14:5355–5373, 1975. 1.1

[2] H. Frauenfelder, G. A. Petsko, and D. Tsernoglou. Temperature-dependent X-ray
diffraction as a probe of protein structural dynamics. Nature, 280:558–563, 1979. 1.1

[3] H. Frauenfelder, S. G. Sligar, and P. G. Wolynes. The energy landscapes and motions
of proteins. Science, 254(5038):1598–1603, 1991. 1.1

[4] F. Parak. Physical aspects of protein dynamics. Reports Prog. Phys., 66:103–129, 2003.
1.1

[5] L. Kullman, P. A. Gurnev, M. Winterhalter, and S. M. Bezrukov. Functional subcon-
formations in protein folding: Evidence from single-channel experiments. Phys. Rev.
Lett., 96(3):038101, 2006. 1.1

[6] J. Brujic, R. I. Hermans, K. A. Walther, and J. M. Fernandez. Single-molecule force
spectroscopy reveals signatures of glassy dynamics in the energy landscape of Ubiquitin.
Nature Phys., 2(4):282–286, 2006. 1.1

[7] Peter E. Wright and H. Jane Dyson. Intrinsically unstructured proteins: Re-assessing
the protein structure-function paradigm. J. Mol. Biol., 293:321–331, 1999. 1.1

[8] Peter Tompa. The interplay between structure and function in intrinsically unstructured
proteins. FEBS Lett., 579:3346–3354, 2005. 1.1

[9] Computational science: Ensuring America’s competitiveness, May 2005. Re-
port of the President’s Information Technology Advisory Committee (available
at: http://www.nitrd.gov/pitac/reports/20050609 computational/computational.pdf).
1.2, 2.1

[10] W. C. Still, A. Tempczyk, R. C. Hawley, and T. Hendrickson. Semianalytical treatment
of solvation for molecular mechanics and dynamics. J. Am. Chem. Soc., 112:6127–6129,
1990. 1.3

[11] M. Schaefer and C. Froemmel. A precise analytical method for calculating the
electrostatic energy of macromolecules in aqueous-solution. J. Mol. Biol., 216:1045–
1066, 1990. 1.3

45

[12] G. D. Hawkins, C. J. Cramer, and D. G. Truhlar. Parameterized models of aqueous
free energies of solvation based on pairwise descreening ofsolute atomic charges from a
dielectric medium. J. Phys. Chem., 100:19824–19839, 1996. 1.3

[13] A. Onufriev, D. Bashford, and D. A. Case. Modification of the generalized born model
suitable for macromolecules. J. Phys. Chem. B, 104:3712–3720, 2000. 1.3

[14] M. S. Lee, M. Feig, F. R. Salsbury Jr., and C. L. Brooks III. New analytic approximation
to the standard molecular volume definition and its application to generalized born
calculations. J. Comp. Chem., 24:1348–1356, 2003. 1.3

[15] E. Gallicchio and R. M. Levy. AGBNP: An analytic implicit solvent model suitable
for molecular dynamics simulations and high-resolution modeling. J. Comp. Chem.,
25:479–499, 2004. 1.3

[16] S. Kumar, C. Huang, G. Almasi, and L. V. Kale. Achieving strong scaling with NAMD
on Blue Gene/L. In Proceedings of IPDPS. IEEE, 2006. 1.1, 4.2

[17] B. G. Fitch et. al. Blue matter: Strong scaling of molecular dynamics on Blue Gene/L.
Technical Report RC23688, IBM Research, 2005. 1.1, 4.2

[18] SCaLeS, the DOE office of science workshop on the science case for large-scale simulation
(www.pnl.gov/scales), 2003. 2.1

[19] Daan Frenkel and Berend Smit. Understanding Molecular Simulation. Academic Press,
2002. 2.1, 3.3

[20] R. B. Best and J. Clarke. What can atomic force microscopy tell us about protein
folding? Chem. Commun., pages 183–192, 2002. 2.2.1, 2.2.2, 5.1

[21] Robert B. Best, David J. Brockwell, Jose L. Toca-Herrera, Anthony W. Blake, D. Alas-
tair Smith, Sheena E. Radford, and Jane Clarke. Force mode atomic force microscopy
as a tool for protein folding studies. Analytica Chimica Acta, 479:87–105, 2002. 2.2.2

[22] R. Rounsevell, J. R. Forman, and J. Clarke. Atomic force microscopy: Mechanical
unfolding of proteins. Methods, 34:100–111, 2004. 2.2.2

[23] Jane Clarke and Gideon Schreiber. Folding and binding - new technologies and new
perspectives. Current Opinion in Structural Biology 2003, 13:71–74, 2003. 2.2.2

[24] Susan B. Fowler, Robert B. Best, Jose L. Toca-Herrera, Trevor J. Rutherford, Annette
Steward, Emanuele Paci, Martin Karplus, and Jane Clarke. Mechanical unfolding of
a Titin IG domain: Structure of unfolding intermediate revealed by combining AFM,
molecular dynamics simulations, NMR and protein engineering. J. Mol. Biol., 322:841–
849, 2002. 2.2.2

[25] S. Nosé. A unified formulation of the constant temperature molecular dynamics
methods. J. Chem. Phys., 81(1):511–519, 1984. 2.2.2

46

[26] William G. Hoover. Canonical dynmaics: Equilibrium phse-space distributions.
Phys. Rev. A, 31(3):1695–1697, 1984. 2.2.2

[27] S. Nosé. Contant temperature molecular dynamics methods. Prog. Theor. Phys. Supp.,
103:1–46, 1991. 2.2.2

[28] Hans C. Andersen. Molecular dynamics simulations at constant pressure and/or
temperature. J. Chem. Phys., 72(4):2384–2393, 1980. 2.2.2

[29] N. D. Socci, J. N. Onuchic, and P. G. Wolynes. Stretching Lattice models of protein
folding. Proc. Nat’l Acad. Sci. USA, 96(5):2031–2035, 1999. 2.2.2

[30] D. J. Lacks. Energy landscape distortions and the mechanical unfolding of proteins.
Biophys. J., 88:3494–3501, 2005. 2.2.2

[31] P. M. Williams, S. B. Fowler, R. B. Best, J. L. Toca-Herrera, K. A. Scott, A. Steward,
and J. Clarke. Hidden complexicty in the machanical properties of Titin. Nature,
422(6930):446–449, 2003. 2.2.2

[32] A. Srinivasan and N. Chandra. Latency tolerance through parallelization of time in
scientific applications. Parallel Computing, 31:777–796, 2005. 3.1

[33] A. Srinivasan, Y. Yu, and N. Chandra. Scalable parallelization of molecular dynamics
simulations in nano mechanics, through time parallelization. Technical Report TR-
050426, Department of Computer Science, Florida State University, 2005. 3.1, 3.1

[34] A. Srinivasan, Y. Yu, and N. Chandra. Application of reduced order modeling to
time parallelization. In Proceedings of HiPC 2005, Lecture Notes in Computer Science,
volume 3769, pages 106–117. Springer-Verlag, 2005. 3.1

[35] E. Lelarasmee, A.E. Ruehli, and A.L. Sangiovanni-Vincentelli. The waveform relaxation
method for time-domain analysis of large scale integrated circuits. IEEE Transactions
on Computer-aided Design of Integrated Circuits and Systems, 1:131–145, 1982. 4.1

[36] C. W. Gear. Waveform methods for space and time parallelism. Journal of Computa-
tional and Applied Mathematics, 38:137–147, 1991. 4.1

[37] B. Leimkuhler. Timestep acceleration of waveform relaxation. SIAM Journal on
Numerical Analysis, 35:31–50, 1998. 4.1

[38] R. Jeltsch and B. Pohl. Waveform relaxation with overlapping splittings. SIAM Journal
on Scientific Computing, 16:40–49, 1995. 4.1

[39] L. Baffico, S. Bernard, Y. Maday, G. Turinici, and G. Zerah. Parallel-in-time molecular-
dynamics simulations. Physical Review E (Statistical, Nonlinear, and Soft Matter
Physics), 66:57701–57704, 2002. 4.1

[40] Y. Maday and G. Turinici. Parallel in time algorithms for quantum control: Parareal
time discretization scheme. International Journal of Quantum Chemistry, 93:223–238,
2003. 4.1

47

[41] J. C. Phillips, G. Zheng, S. Kumar, and L. V. Kale. NAMD: Biomolecular simulations
on thousands of processors. In Proceedings of SC2002. IEEE, 2002. 4.2

[42] D. Srivastava and S. T. Bernard. Molecular dynamics simulation of large-scale Carbon
nanotubes on a shared-memory architecture. In Proceedings of the IEEE/ACM SC1997
Conference. IEEE Computer Society, 1997. 4.2

[43] J. Kolhe, U. Chandra, S. Namilae, A. Srinivasan, and N. Chandra. Parallel simulation
of Carbon nanotube based composites. In L. Bougé and V. K. Prasanna, editors,
Proceedings of the 11 th International Conference on High Performance Computing
(HiPC), Lecture Notes in Computer Science – 3296, pages 211–221. Springer-Verlag,
2004. 4.2

[44] G. M. Crippen and H. A. Scheraga. Minimization of polypeptide energy, VIII.
Application of the deflation technique to a dipeptide. Proc. Nat’l Acad. Sci. USA,
64:42–49, 1969. 4.3

[45] L. Piela, J. Kostrowicki, and H. A. Scheraga. The multiple-minima problem in the
conformational analysis of molecules. Deformation of the potential energy hypersurface
by the diffusion equation method. J. Phys. Chem., 93:3339–3346, 1989. 4.3

[46] R. Swendsen and J. Wang. Phys. Rev. Lett., 57:2607–2609, 1986. 4.3

[47] E. Marinari and G. Parisi. Europhys. Lett., 19:451–458, 1992. 4.3

[48] C. Geyer and E. Thompson. J. Am. Stat. Assoc., 90:909–920, 1995. 4.3

[49] K. Hukushima and K. Nemoto. J. Phys. Soc. Japan, 65:1604–1608, 1996. 4.3

[50] B. A. Berg and T. Neuhaus. The multicanonical ensemble: A new approach to simulate
first-order phase transitions. Phys. Rev. Lett., 68:9–12, 1992. 4.3

[51] U. H. E. Hansmann. Parallel tempering algorithm for conformational studies of
biological molecules. Chem. Phys. Lett., 281:140–150, 1997. 4.3

[52] M. R. Sorensen and A. F. Voter. Temperature-accelerated dynamics dynamics for the
simulation of infrequent events. J. Chem. Phys., 112:9599, 2000. 4.3

[53] A. F. Voter. A method for accelerating the molecular dynamics simulation of infrequent
events. J. Chem. Phys., 106:4665–4676, 1997. 4.3

[54] A. F. Voter, F. Montalenti, and T. C. Germann. Extending the time scale in atomistic
simulation of materials. Annual Review of Materials Research, 22:321–346, 2002. 4.3

[55] F. Starrost and E. A. Carter. Modeling the full monty: Baring the nature of surfaces
across time and space. Surface Science, 500:323–346, 2002. 4.3, 4.3

[56] Theory and modeling in nanoscience, May 2002. Report of the May 10-11, 2002
Workshop conducted by the basic energy sciences and advanced scientific computing
advisory committees to the Office of Science, Department of Energy. 4.3

48

[57] A. F. Voter. Parallel replica method for dynamics of infrequent events. Phys. Rev. B,
57(22):R13985–R13988, 1998. 4.3

[58] Vijay S. Pande. Folding@home. http://folding.stanford.edu/, 2000. 4.3

[59] G. Jayachandran, V. Vishal, and V. S. Pande. Using massively parallel simulation
and Markovian models to study protein folding: Examining the dynamics of the villin
headpiece. J. Chem. Phys., 124:164902, 2006. 4.3

[60] S. P. Elmer, S. Park, and V. S. Pande. Foldamer dynamics expressed via Markov state
models. i. explicit solvent molecular-dynamics simulations in Acetonitirle, Chloroform,
Methanol, and Water. J. Chem. Phys., 123(11):114902, 2005. 4.3

[61] S. P. Elmer, S. Park, and V. S. Pande. Foldamer dynamics expressed via Markov state
models. ii. State Space Decomposition. J. Chem. Phys., 123(11):114903, 2005. 4.3

[62] W. C. Swope, J. D. Pitera, and F. Suits. Describing protein folding kinetics by molecular
dynamics simulations. 1. theory. J. Phys. Chem. B, 108:6571–6581, 2004. 4.3

[63] W. C. Swope, J. D. Pitera, F. Suits, M. Pitman, M. Eleftheriou, B. G. Fitch, R. S.
Germain, A. Rayshubski, T. J. C. Ward, Y. Zhestkov, and R. Zhou. Describing protein
folding kinetics by molecular dynamics simulations. 2. example applications to Alanine
Dipeptide and a β-Hairpin Peptide. J. Phys. Chem. B, 108:6582–6594, 2004. 4.3

[64] A. Nakano, P. Vashishta, and R. K. Kalia. Parallel multiple-time-step molecular
dynamics with three-body interaction. Comput. Phys. Commun., 77:303–312, 1993.
4.3

[65] C. W. Gear and D. R. Wells. Multirate linear multistep methods. BIT, 24:484–502,
1984. 4.3

[66] T.C. Bishop, R.D. Skeel, and K. Schulten. Difficulties with with multiple time
stepping and fast multipole algorithm in molecular dynamics. Journal of Computational
Chemistry, 18:1785–1791, 1997. 4.3

[67] L. Chen, P. G. Debenedetti, C. W. Gear, and I. G. Kevrekidis. From molecular dynamics
to coarse self-similar solutions: a simple example using equation-free computations.
Journal of Non-Newtonian Fluid Mechanics, 120:215–223, 2004. 4.3

[68] I. G. Kevrekidis, C. W. Gear, and G. Hummer. Equation-free: The computer-assisted
analysis of complex multiscale systems. AIChE Journal, 507:1346–1355, 2004. 4.3

[69] Olga K. Dudko, Gerhard Hummer, and Attila Szabo. Intrinsic rates and activation free
energies from single-molecule pulling experiments. Physical Review Letters, 96:108101,
2006. 5.1, 5.1

[70] Evan Evans, D. Berk, and A. Leung. Detachment of Agglutinin-bonded red blood cells.
i. forces to rupture molecular-point attachments. Biophys, 59:838, 1991. 5.1

49

http://folding.stanford.edu/

[71] George I. Bell. Models for the specific adhesion of cells to cells. Science, 200:618–627,
1978. 5.1

[72] Evan Evans and Ken Ritchie. Dynamic strength of molecular adhesion bonds. Biophys,
72:1541–1555, 1997. 5.1

[73] Gerhard Hummer and Attila Szabo. Kinetics from nonequilibrium single-molecule
pulling experiments. Biophys, 85:5, 2003. 5.1

50

BIOGRAPHICAL SKETCH

Lei Ji

Lei “Leonardo” Ji was born in Nanjing, China. Lei is a naturalized US citizen. In the

spring 2003 he completed his Bachelors degree in Computer Science at Louisiana Tech

University. Under the advisement of Professor Srinivasan and Professor Nymeyer, he

obtained his Master degree in summer of 2006 from Department of Computer Science

at Florida State University. Lei’s research interests include parallel computing, scientific

visualization, computer graphics, numerical algorithms, and computational biology. Lei

lives in Tallahassee, Florida.

51

	The Florida State University
	DigiNole Commons
	5-26-2006

	Time Parallelization Studies in Bio-Molecular Dynamics Simulations
	Lei Ji
	Recommended Citation

	List of Figures
	Abstract
	INTRODUCTION
	Importance of Molecular Dynamics
	Limitation on Time Scale
	Limitation of Conventional Parallelization
	Approach
	Summary

	BACKGROUND
	Molecular Dynamics in Biology
	Force Spectroscopy/AFM
	Titin
	Force Spectroscopy/Atomic Force Microscopy

	DATA DRIVEN TIME PARALLELIZATION
	Prior Work on Carbon Nanotube
	Multiple Time Scales
	Challenges in Soft-Matter Applications
	Specific Approach in the Biological Problems

	RELATED WORK
	Time Parallelization
	Spatial Parallelization
	Other Parallelization Methods

	RESULT
	Rupture Force
	Validation
	Speedup

	CONCLUSION
	Limitations of Current Work
	Future work

	Gromacs Options
	MDP FILE

	Gromacs Pulling options
	PPA File

	REFERENCES
	BIOGRAPHICAL SKETCH

