Some of the material in is restricted to members of the community. By logging in, you may be able to gain additional access to certain collections or items. If you have questions about access or logging in, please use the form on the Contact Page.
The stochastic modeling of financial assets is essential to the valuation of financial products and investment decisions. These models are governed by certain parameters that are estimated through a process known as calibration. Current procedures typically perform a grid-search optimization of a given objective function over a specified parameter space. These methods can be computationally intensive and require restrictions on the parameter space to achieve timely convergence. In this thesis, we propose an alternative Kalman Smoother Expectation Maximization procedure (KSEM) that can jointly estimate all the parameters and produces better model t that compared to alternative estimation procedures. Further, we consider the additional complexity of the modeling of jumps or spikes that may occur in a time series. For this calibration we develop a Particle Smoother Expectation Maximization procedure (PSEM) for the optimization of nonlinear systems. This is an entirely new estimation approach, and we provide several examples of it's application.
A Dissertation submitted to the Department of Statistics in partial fulfillment of the requirements for the degree of Doctor of Philosophy.
Bibliography Note
Includes bibliographical references.
Advisory Committee
Anuj Srivastava, Professor Co-Directing Dissertation; James Doran, Professor Co-Directing Dissertation; Patrick Mason, Outside Committee Member; Xufeng Niu, Committee Member; Fred Huffer, Committee Member; Wei Wu, Committee Member.
Publisher
Florida State University
Identifier
FSU_migr_etd-2707
Use and Reproduction
This Item is protected by copyright and/or related rights. You are free to use this Item in any way that is permitted by the copyright and related rights legislation that applies to your use. For other uses you need to obtain permission from the rights-holder(s). The copyright in theses and dissertations completed at Florida State University is held by the students who author them.