
Florida State University Libraries

Electronic Theses, Treatises and Dissertations The Graduate School

2003

Extensions and Optimizations to the
Scalable, Parallel Random Number
Generators Library
Jason Parker

Follow this and additional works at the FSU Digital Library. For more information, please contact lib-ir@fsu.edu

http://fsu.digital.flvc.org/
mailto:lib-ir@fsu.edu

FLORIDA STATE UNIVERSITY

COLLEGE OF ARTS AND SCIENCES

EXTENSIONS AND OPTIMIZATIONS TO THE SCALABLE, PARALLEL

RANDOM NUMBER GENERATORS LIBRARY

By

Jason Parker

A thesis submitted to the

Department of Computer Science

in partial fulfillment of the

requirements for the degree of

Master of Science

Degree Awarded:

Fall Semester, 2003

ii

The members of the Committee approve the thesis of Jason Parker on November 14,

2003.

Michael Mascagni

Professor Directing Thesis

Ashok Srinivasan

Committee Member

Alec Yasinsac

Committee Member

Robert van Engelen

Committee Member

The Office of Graduate Studies has verified and approved the above named committee

members.

iii

This work is dedicated to my family: my grandmother, Vonnie Wood, my parents, Fred

and Lucy Parker, and my brother, Fred Parker Jr. I am eternally grateful for their love,

wisdom, and support.

iv

ACKNOWLEDGEMENTS

 This document was created under the aegis and tutelage of Dr. Michael Mascagni.

I thank him for all his help with this document and my education in general. I thank him

also for the assistantship he provided me during my graduate study at Florida State

University.

v

TABLE OF CONTENTS

LIST OF FIGURES vi

ABSTRACT vii

1. INTRODUCTION 1

 1.1 Randomness 1

 1.2 Physical Sources of Randomness 2

 1.3 Pseudorandom Numbers 3

2. THE LIBRARY FOR SCALABLE, PARALLEL PSEUDORANDOM NUMBER

GENERATION (SPRNG) 9

 2.1 Parallel Random Numbers 9

 2.2 Parameterization 11

 2.3 The Fibonacci Generators 13

 2.4 Initialization and Spawning 14

3. A NEW METHOD FOR GENERATING STREAMS 21

4. BENEFITS OF THE NEW INSTANTIATION METHOD 24

 4.1 Exhausting all Streams 24

 4.2 Simplicity of Interface 24

 4.3 Memory Reduction

5. TESTING 27

6. MEMORY OPTIMIZATIONS TO SPRNG 29

 6.1 Removing the name as a string 29

 6.2 Removing variables from the Fibonacci Generators 29

7. CONCLUSIONS 32

8. FUTURE WORK 33

APPENDIX A 35

APPENDIX B 42

BIBLIOGRAPHY 72

BIOGRAPHICAL SKETCH 73

vi

LIST OF FIGURES

Figure 2.1 Binary tree spawning before spawn_rng is called on the node denoted by 0 15

Figure 2.2 Binary spawn tree after spawn_rng is called on the node denoted by 0 16

vii

ABSTRACT

This work will examine enhancements to the library for scalable, parallel pseudorandom

number generation (SPRNG). SPRNG uses parameterization to produce many streams of

random numbers with emphasis on parallel Monte Carlo methods. We extend the

previous work to enable random access to these streams. This new method for generating

streams improves both functionality and intuition of interface. Also considered are a few

memory optimizations to the SPRNG library.

1

CHAPTER 1

INTRODUCTION

 This work will examine computational random number generators towards the

end of improving the Scalable, Parallel, Random Number Generators (SPRNG) Library.

We work toward establishing a more intuitive and useful interface to extend the purposes

for which SPRNG is useful. We also concentrate on reducing memory usage to provide

high performance users the efficiency needed for ever larger and more parallel Monte

Carlo applications (applications that consume random numbers). Monte Carlo algorithms

provide more economical solutions to many problems than deterministic methods. Since

many Monte Carlo applications are naturally parallel, allowing for a greater degree of

parallelism is of importance to any random number generator that supports such

applications. The work herein will extend and optimize SPRNG toward creating a more

useful and general random number generator. We will first give a necessary background

for random number generation and SPRNG.

1.1 Randomness

Randomness is a property of nature that has fascinated man since before

computers were a twinkle in Turing’s eye. We have used it as an essential part of our

sports and games, settled disputes with it at times, and even fought it in our weak

predictions of the near future. The apostles even used a random source, casting lots, as

an interpretation of the hand of God in choosing the apostle to replace Judas. While

computers don’t gamble or worry about the weather, randomness appears to be a valuable

resource in computing in the general, but the sorts of randomness a computer can use

tend to be more specific. Computers are in fact deterministic, at least as much as we can

make them. We try to make the probability of errors in our computations as small as

possible, and make great efforts to correct random faults that do arise. While physical

2

sources of randomness provide an intuitive solution, this field has met with much

opposition, with even the most sophisticated methods yielding complex patterns that

betray the randomness they hope to provide. So until a source of randomness is

identified, perfect not only in its statistical properties, but also in the efficiency with

which it produces random numbers, programmers settle for only a partial definition of

randomness when compared with the intuitive nature of non-determinism. However, we

will see that not much is lost if deterministic methods for generating random numbers are

thoroughly evaluated and tested against the many properties we have found them to

possess.

1.2 Physical Sources of Randomness

 In understanding the properties that a sequence of numbers must possess in order

to be used in place of a random sequence, it may help to first examine the intuitive nature

of randomness that arises all around and why such a natural source has not come to

widespread use. One of the most popular examples for addressing this issue has always

been games of chance. Consider the roulette wheel. For those not familiar with the game

of roulette, it consists or a flat wheel with 37 or 38 slots on top. While the wheel is

spinning, a metal ball is thrown along the outside of the wheel and eventually settles into

one of the slots. This might be one of your first candidates to add to a computer as a

physical source of randomness. The ball and wheel could be set in motion by simple

mechanical design. Sensors in the slots could then give the computer a random number

in [0,N) where N is 37 or 38 depending on the wheel.

However, scientists studying chaos theory found a way to beat the roulette game,

which would be impossible if every spin gives a truly random number. They were able to

measure the speed of the ball and wheel while a certain dealer was working the apparatus

and predict that some numbers had higher probability than others [1]. Also consider the

time it takes for the ball to settle into a slot. It takes so long, that casinos allow betting

during the early part of the spin. Both these serve to make a roulette wheel an impractical

3

random number generator. If an operator disturbs the probability distribution of the

wheel by tending to spin the wheel and throw the ball at a certain speed, certainly a

mechanized version would have the same problem. While many sources of randomness

have errors in their probability distribution functions usually small enough for us to deal

with, it is the inefficiency of these physical sources that have kept them out of wide

spread use in computing.

 Another attempt for physical generation has been based on radioactive decay.

The problem that arises in this technique is the imprecision of measurements involved.

The sort of detector used becomes less sensitive to decay for a brief period following

detection, thus allowing small errors to arise [12]. Similar problems with measurement

arise in some other suggested physical generators. In fact, most random numbers based

on the measurement of physical randomness are of poorer quality than the simplest

pseudorandom number generators.

 Yet another reason that physical processes do not provide a good source for

randomness in scientific applications is that the numbers are not reproducible. A key

element of an objective scientific experiment is that the results can be verified by

repeating the experiment; this quality is called reproducibility. The numbers produced by

a physical source of randomness cannot be guaranteed to be identical to any previous

recorded observation. Reproducibility is especially important where computer

programming is involved. If a bug is identified that depends on the random numbers a

program uses, it is necessary to observe those conditions again to confirm that the bug is

removed. So we turn to generating our sequences of numbers arithmetically, and hope to

preserve properties of our numbers that will be useful in the computations to be

performed.

1.3 Pseudorandom Number Generators

 A pseudorandom number generator is a deterministic recurrence that passes tests

of randomness and performs well in applications requiring randomness. Take as an

4

example the Linear Congruential Generator (LCG). The LCG uses a recursive method to

generate a random sequence and is defined by [9]:

NbaXX nn mod)(1 +=+

where nX represents the nth number of the sequence, a is the multiplier, b is the additive

constant, and N the modulus. 0X is called the seed, being the initial value for the

recurrence. The values that do not change in the recursion are called parameters. This is

one of the most popular generators today and three of the six generators in SPRNG are

versions of the LCG. In order for this recursion to produce values that are random, the

parameters must be chosen properly. There are many properties of a random number

generator that combine to make it resemble a random sequence, not the least of which are

period and distribution.

 Periodicity is an important property of any recursive random number generator.

Since a random number generator is stored in a finite amount of memory, it must

eventually come to a state that it has been in before, after which it will begin to repeat the

same numbers. The amount of numbers produced in this repetition is the length of the

period. That is, the period of a sequence is the smallest p such that:

0n∃ such that npn XXnn =>∀ +,0 .

Random number users must be careful not to use numbers after the period has expired.

Thus, it is important to know exactly how many numbers will be produced by a generator

before it begins to repeat itself. Running over the period length can be detrimental to

many random number applications. Take for instance the LCG. The properties

necessary for maximal period depend on the form of the modulus chosen. SPRNG

provides both a power-of-two modulus version and a prime modulus version. With

symbols preserved from the above equation, the power of two modulus version has a

period of N when:

5

1.
kN 2=

2. 2>k

3. 4mod3≡a

 The prime modulus version has a period of N-1 whenever the multiplier is a

primitive root of the integers modulus N. Since N is prime, this means that the order of

the multiplier must be N-1. The order of an element α modulus M is the least β such

that:

Mmod1≡βα [2].

Since the period is N-1, one element of integers modulus N must be omitted from the

sequence. This element is given by:

NabX mod)1(1−−=

 Another important property of random number generators is distribution. The

most commonly used is the uniform distribution on [0,1). Thus, in practice, the numbers

produced by the LCG are divided by the modulus to map them onto this interval. A very

good measure of the distribution of the LCG is the spectral test to be described later.

 Even with maximal period and a good distribution, our sequence goes only so far.

Take for instance choosing a =1 and b =1. Any N can be chosen to meet the requirement

for maximal period, because the sequence produced is the integers modulo N in order;

this is not very random. Surely sequential numbers are not very random. To further

ensure quality of random numbers, they must pass many statistical tests. It is widely

known that no one test that suffices for a general random number sequence. In fact, for a

given application different tests become more or less important because of the properties

desired of the numbers for that particular application. Strong mathematical evidence for

good performance on these tests based on the properties of a generator serves as a

6

credible source to augment the empirical evidence provided by computing the tests on

portions of the random number sequences.

The first discussed is the Chi-square test [8]. Consider an apparatus designed to

yield 1 of n outcomes with jp being the probability of the j
th

 outcome. The apparatus is

also designed to yield an independent result on each of its activations. The Chi-square

test described by Knuth[1] gives a way to test the validity of such an apparatus. This test

is among the most popularly used today. The idea is to use our apparatus a large number

of times and calculate the difference of the observed distribution and the expected

distribution. Should the apparatus be used M times, the j
th

 outcome is expected to occur

jpM * times. Let jR be the observed number of times the j
th

 outcome arises. We the

sum the squares of the difference of jR and jpM * . We must also normalize to account

for the differing probability of outcomes and after some manipulation arrive at the

formula:

=2X ∑
=

−n

j j

jj

pM

pMR

1

2

*

)*(

2X , called the Chi-Square statistic, is then compared to a distribution based on the value

n-1, called the degrees of freedom, giving us an idea of how far the value is from average.

A value that is too high or low suggests a sequence may not be a good source of

randomness.

So far we have described here a hypothesis test for a random source with a finite

number of outcomes. Extending the idea to a continuous version, we can test a random

number generator on [0,1) (the real interval greater than or equal to 0 and less than 1) by

dividing that interval into bins and counting the numbers in each bin. We can also choose

a more complicated outcome based on several random numbers and apply the Chi-square

test. For example, the poker test takes n-tuples of random numbers and determines their

relative ordering so that one of the n! permutations of the ordering can be identified.

7

Then n! bins are used to tabulate the empirical distribution of the permutations after

which the Chi-square test can be used to check whether this distribution is uniform.

 While the Chi-Square test is designed for testing the quality of a discrete

probability distribution, the Kolmogorov-Smirnov (K-S) test [8] is designed to check

continuous probability distributions. The idea is that for any value, x, in [0,1) we can

calculate the expected number of sequence elements that are less than x. We can then

calculate the maximum difference between this expected value and the observed value to

determine how much they differ statistically. This maximum is easy to compute because

we only need to measure the difference at each point produced by our sequence. The

sequence can be sorted into ascending order and each considered in turn. Much like the

Chi-square test, the expected distribution for these measurements can be calculated based

on the number of elements in the sequence to be tested.

 One of the most powerful tests used today is the spectral test [8]. The ideas

underlying it are more complicated that those of the aforementioned tests, and obtaining

the results requires more computation. The idea behind the spectral test is to examine

overlapping tuples within a sequence. Say we decided to use a 3-dimensional spectral

test; we would consider elements 1,2,3 of the sequence then 2,3,4 and so on. The space

the random numbers fall along is then divided up into hypercubes and a count is made for

each section. The higher the dimensionality of the test, the more sections the space is

divided into. Good random number generators should perform well in dimensions

numbering at least 6 to 10. For example, these tuples reveal something very interesting

about the Linear Congruential Generator (LCG). The tuples produced by the LCG will

lie in parallel hyperplanes [10]. For instance, 2-tuples would lie on parallel lines in two

dimensions and 3-tuples would lie along parallel planes in three dimensions. This test

can be applied to the output of an LCG to determine the quality of its multiplier.

Moreover, applying the spectral test to an LCG allows number theoretic shortcuts for

calculation to reduce computational intensity.

8

While the structure of the tuples of an LCG looks suspect, many multipliers can

be used to pass this test in several dimensions. This is a good example of how many

statistical tests are necessary to ensure proper quality of generators, with differing

applications better served with differing generators. The programmer of an application

should be well informed about the statistical properties of particular random number

generators when deciding which one would best suit the application. The notion of

uniform distribution given by the spectral test is a powerful one however. Many Monte

Carlo applications, such as multidimensional integration, converge much faster with

uniformly distributed numbers, even when other properties are neglected. This has given

rise to quasirandom numbers, which prioritize uniform distribution above all other

properties for those applications in which they yield faster convergence [13].

 The architect of a random number library must provide various methods to meet

the needs of a large audience of random number consumers. While SPRNG has

generators that meet the requirements for many different statistical tests and

measurements, many opportunities for broadening the application of the library are

available. An important consideration is the lack of knowledge most users have about the

specifics of random number generation. Good information hiding practices require that

our library should be available for use with as little knowledge of the underlying

architecture as possible. These ideas and many more have been taken into to

consideration to design SPRNG, and we hope to improve on them here.

9

CHAPTER 2

THE SCALABLE, PARALLEL, PSEUDORANDOM NUMBER GENERATORS

(SPRNG) LIBRARY

 The SPRNG library is written in the C programming language, with interfaces

added to support the FORTRAN programming language. It has been designed to provide

support for a wide range of random number needs, from a simple interface for those users

who just need a little randomness, to generators yielding billions of independent random

number streams. The remaining portion of the document will be applicable to the

standard SPRNG interface and is geared toward high performance, parallel applications.

2.1 Parallel Random Numbers

 The tests above apply to testing the output of a single, serial random number

generator. It has been repeatedly observed that Monte Carlo applications (those

applications that use random numbers) are often naturally parallel. Many of these

applications make many runs of the same algorithm with different random numbers until

the error is acceptably small. It immediately follows that being able to distribute the runs

among computing nodes provides a near linear speed up in the factor representing the

parallelism occurring. That is, having N available computational nodes allows for a

speed up of nearly N times. In most Monte Carlo applications, little or no interprocessor

communication is needed as the runs are independent by design. Many parallel

applications require results computed in parallel to be available to other processes. This

creates overhead similar to any networked effort. Some processes will also require

information from other processes to perform, creating a de facto serial aspect to the

application. Since many Monte Carlo applications do not need this sort of

communication, they are good candidates for high performance, massively parallel

calculations.

10

To accommodate parallel applications, more than one sequence of random

numbers must be used. In this context we will refer to these sequences as streams. The

reader should understand that these streams are usually from the same mathematical

family, not only sharing a common method of generation, but many of the parameter

choices as well. It simply will not do to have only one serial generator. Not only would

this be horribly inefficient, adding an unnecessary shared resource to the mix, making it

reproducible would be difficult, because the numbers would not necessarily be consumed

in a particular order because of real time variations.

 The reader will probably intuit that we could not use the same random number

stream for each parallel task, so we turn to the ability to produce many different streams

of random numbers. In fact, the statistical independence of runs in Monte Carlo

applications is very much affected by the statistical quality of the streams used. We

describe two methods for creating a large number of streams, namely splitting and

parameterization.

The first of these, splitting, takes a single random number stream as the source for

all the numbers used in all parallel processes. Splitting has many variations. For

example, blocking is a method whereby one long stream of random numbers is cut into

contiguous pieces. Suppose we wish to split a sequence of length N into M pieces

(assume M|N), then the first stream will be:

110 ,...,, −
M

NXXX .

The second stream will be:

1
2

1
,...,,

−+
M

N

M

N

M

N XXX .

and so on. This method provides ease of generation after the stream is split, with the

main difficulty in determining which initial condition to give each of the pieces so that

they will be equally long. The user must take care to not let one stream run over into the

next stream’s numbers. Also, blocking is prone to correlations among the streams

11

produced [3, 4]. In fact, any generator based on blocking will have strong correlations

among the streams. Blocking is not used in the SPRNG library because of this generic

defect.

 Leapfrogging is another splitting method that can create many streams out of an

original by decimating the sequence of numbers. That is, if we want to create N streams

from one stream by leapfrogging, each sequence receives the numbers of a different

congruence class modulo N. If jX is the j
th

 element of the original sequence, then the

first stream will be:

,...,, 20 NN XXX

The second stream will be:

,...,, 1211 ++ NN XXX

and so on. This can be thought of as “dealing” random numbers as one deals cards for

play. There has been interest to adding such a method to SPRNG to provide more

streams than are currently available for some generators and this method has been tested

on the SPRNG LCG generator with very good results. However, parameterization is the

primary way SPRNG provides streams of random numbers for parallel applications in an

efficient, reproducible way. Parameterization underlies the work done here.

2.2 Parameterization

 SPRNG has six different random number generators. Each generator provides a

different mathematical method for generating random numbers. Reusing a previous

example, the linear congruential generator (LCG) uses the recurrence:

NbaXX nn mod)(1 +=+

Each of the generators in SPRNG is capable of generating several streams by varying the

parameters in the generator, a and b in the LCG example. These streams all must satisfy

12

a condition of independence, that is, there is no appreciable correlation between any two

streams. Much of the work on SPRNG has been done on the way users can instantiate

those different streams.

 Parameterization is a complex issue and one of the most important aspects of the

SPRNG library. It is parameterization that provides the scalable parallelism for which

SPRNG is named [11]. The difficulty in parameterization lies in the additional

requirement that the individual streams must be independent, that is they may have no

appreciable correlation. This is in addition to the already required properties of serial

random number generators that each stream must satisfy. Furthermore, the

parameterization must be easy to compute to provide efficient instantiation of streams.

An appropriate form for the parameterization of LCG must be based on consideration of

the form of the modulus. Parameterizations are discussed in [11] based on both prime

and power-of-two moduli. Both of these are available in SPRNG through different

versions of the LCG generators included.

 For example, in the power-of-two version, the parameter varied is the additive

constant (b in the above equation). Of course, not every set of constants will do; sets

must contain elements that are relatively prime to all the others. In the SPRNG

implementation, the i
th

 stream uses the i
th

 prime as its constant. The Fibonacci generators

in SPRNG, both the modified lagged-Fibonacci Generator and multiplicative lagged-

Fibonacci generator, use seeding for parameterization. In turn, the seed given by the user

is combined with the parameterized seeding to yield different streams for different seeds.

 For the sake of implementation, SPRNG generators impose a numbering scheme

on the parameterized streams. The identification of a stream in this scheme is called the

stream number. This numbering scheme may seem implicit since it takes an appropriate

form for each generator, but nonetheless all of the current SPRNG generators yield to a

numbering system for the different streams.

13

2.3 The Fibonacci Generators

Two very important generators in SPRNG are the modified lagged-Fibonacci

generator (LFG) and the multiplicative lagged-Fibonacci generator (MLFG). These

generators provide far more possible streams than the other SPRNG generators. This

makes the Fibonacci sequences a favorite for high-performance, massively parallel

applications. Many SPRNG users need more streams than are available in the other

SPRNG generators. However, both of these generators use a large array to store past

values, since they combine two of these numbers to calculate the next value. Instead of

the number of streams available, memory becomes the prohibitive factor to the level of

parallelism many SPRNG users are trying to attain. The modified lagged-Fibonacci

generator was developed to overcome certain weaknesses in the additive lagged-

Fibonacci generator [11]:

m

knjnn XXX 2mod−− += , where k > j.

The modified version uses the exlusive-or (XOR) of two different, but related, additive

lagged Fibonacci sequences [14]. The multiplicative lagged Fibonacci generator is as it

its name might suggest [11]:

m

knjnn XXX 2mod* −−= , where k > j.

Notice that the Fibonacci generators require k numbers as initial values; k is called the

lag.

 The users of these generators will benefit the most from the work explained here.

Because of the large number of initial values needed, these generators offer the

opportunity for a large number of different seeds. The downside is that each stream will

have to carry a large array of numbers already generated, consuming more memory than

14

other generators. These generators are particularly suited for parallel applications

because of the large number of streams available. However, the large state space

(memory consumed by a stream’s underlying data) is often prohibitive for using all of the

streams available. Those with very large lags are suitable for applications requiring few

streams of long period. Those with smaller lags are suitable for generating many streams

of random numbers, provided the lag is not so small as to limit the period length or the

quality of the streams below what a user needs.

2.4 Initialization and Spawning

 SPRNG uses a two-function method for user generation of random number

streams. The two functions called are init_rng and spawn_rng. The user first calls

init_rng once per stream created and usually at least once per processor in a parallel

computation. These calls are usually done in a single step at the beginning of the

computation to create a random generator in each processor. Each call takes as input the

number of times the init_rng function is to be called (total_gen) and the stream number

(gennum). Error checking tests that gennum is in [0,total_gen). Subsequent to these

calls, a user calls the spawn_rng function to produce new streams. The spawn_rng

function takes as input a number of streams to be produced (nstreams) and an already

existing stream in the form of the appropriate struct. A struct is a programming construct

in the C language that allows many data items of different types to be stored and handled

as a single unit. This particular struct is prepared with spawning information used to

produce the correct streams in a reproducible manner.

 The reproducibility requirement is the guiding principle behind most of the

architecture in the spawning process. The idea is that each stream instantiated will have

reference to a set of unused streams. We will call this set of unused streams the spawn

pool. Whenever new streams are spawned from a particular stream (that is to say the

spawn_rng function is called with the struct of that stream), that stream’s spawn pool is

implicitly divided up among itself and the newly created generators. To implement such

a scheme, a tree is used with nodes representing available streams. Every stream has a

15

pointer to one of its descendants. This pointer points to the root of a subtree of unused

streams. The spawn_rng function updates all the spawning information in both the struct

used to call the function and the new ones created. The different generators use different

methods for realizing the tree paradigm, and we will flesh out the details below.

 We first examine the main dichotomy among spawning methods for different

generators. The Fibonacci generators force a binary tree structure upon all possible

streams with each struct containing a spawn pointer to an unused stream. A call to

spawn_rng will return streams at the top of this subtree, after which the original spawn

pointer and new pointers reference the unused children of those nodes representing the

created streams. The next two diagrams show the before and after states of spawn

pointers in the binary tree method. The lines represent the tree structure and the arrows

represent the spawn pointers. Here, we show a spawn_rng call that returns only one

stream. The node labeled 0 represents the stream the function is called upon, and the

node labeled 1 represents the stream instantiated by the call.

Figure 2.1 Binary tree spawning before spawn_rng is called on the node denoted by 0.

1

3 2

0

16

Figure 2.2 The binary spawn tree after spawn_rng is called on the node denoted by 0.

 The generators with fewer streams available use a dynamic tree, where a node has

as many children as the number of streams requested by the call to spawn_rng on that

node. However, readers might find it more intuitive to think of this progression in a more

linear fashion. Suppose we represent the j
th

 available stream with Yj. A spawn pointer in

this scheme is stored in terms of an offset, k, so that the spawn pool can be represented

by:

1|{ ≥+ nY nkj and }Mnkj ≤+ ,

where M is number of streams available in the generator. Whenever the spawn_rng

function is called, requesting a number of streams, r, the new generators can be

represented by:

rkjkjkj YYY +++ ,...,, 2

Subsequent to the call, the new streams instantiated, along with the stream which was

provided as input, have an offset of rk. As you can see, this method has a tree structure in

its method of dividing spawn pools, though the structure of the tree is less obvious than

that of the binary tree method.

1

3 2

0

17

 The different spawning methods were created for the differing requirements of the

various generators. The dynamic tree method seems more justified under the following

logic when we consider the problem of “falling off the tree”. Falling off the tree is the

condition of having made a spawn call requesting more streams than in the spawn pool of

the stream given as input. Not knowing a priori about which streams will be used in later

spawning calls, the optimal condition following a spawn call is that all streams created by

the call will have nearly equal spawn pools. This is a slight oversimplification; one might

also posit that a stream that has been used in a spawn call will be more likely to spawn

again in the future. The binary tree method accounts for this in the case of multiple

streams being generated, and gives half of the remaining spawn pool to the stream used

as input to a spawn call. This can cause problems if certain numbers of streams are

instantiated at a time, but the main difference seems to lie in the division of spawn pools

among the newly generated streams.

 The dynamic tree method lets the spawn pools vary by at most one, where the

binary tree allows some spawn pools to be twice as large as others. On the other hand,

the binary tree method requires less memory. For the dynamic version, both the current

stream number and the offset must be stored (stream numbers can be quite large in some

of the generators). So for some generators, the dynamic method could require twice as

much data as the binary version. Thus, the MLFG and LFG generators, which have the

most streams and require the most memory, use the binary tree to reduce required

memory. One should consider the particular generator for deciding which method is best.

However, the current spawn functions in SPRNG have not been changed. The init_rng

and spawn_rng functions have been left as is, and we have created a new method for

instantiating streams that allows random access to all possible streams. We left the old

init_rng and spawn_rng functions because of the usefulness they exhibit for a certain

class of applications. The new method will be more general in nature.

 Simulations cover a wide range of applications and produce much of the demand

for random numbers. One of the most popular uses of the SPRNG library is particle

simulation. In fact, we will see that the current SPRNG library has particle simulation at

18

its heart in the design of initialization and spawning. Most particle simulations do well to

have one random number stream per particle. The current method of spawning allows a

user to create more streams from an already existing stream. Take for example the

problem of neutron transport in nuclear reactions. The neutrons travel through some

medium, and it has been observed that their motion is more appropriately described by

probability distributions than a deterministic path. Random numbers are used to simulate

such stochastic motion. The neutrons also cause events in the reaction. Sometimes they

are absorbed, but sometimes they collide with other atoms causing fission. This fission

creates more free neutrons that require a random number stream to determine their

activity. This exemplifies the design of the init_rng and spawn_rng functions. They are

designed to provide reproducibility in an environment where processes are branching

according to the random numbers that have already been consumed. The init_rng

function is used to provide enough streams to start the simulation, but the spawn_rng

function is used afterwards whenever splitting requires new streams to be instantiated.

 This is an ingenious design which prevents the user from having to know which

streams have been consumed in order to instantiate new ones, but this method may feel

restrictive in other situations. While reproducibility is an important concept, we believe

many users would benefit from more control over the random number instantiation

process, even if a little more calculation is required to maintain reproducibility. It

becomes unnatural to use the initialization and spawning methods where particles are not

created by splitting. Even when splitting is required, we feel many users would prefer to

create their own methods of collision free numbering schemes to maintain reproducibility

while saving some memory. We will now cover a few of the shortcomings of the current

instantiation method.

 As discussed earlier, many users have a problem with “falling off the tree”. In

such a case, the user has not actually exhausted all the streams available; the user has

simply tried to spawn from a node too close to the bottom of the tree to be able to

correctly assign spawn pointers that would point to unused streams. In such a case, the

current version of SPRNG simply changes the seed and points these to nodes elsewhere

19

in the tree that may or may not be independent from those already been used. An error is

given to the user warning that the streams in his application might no longer be

independent of one another (in actuality, he might just be using the same streams again).

For the most part, users have no idea how to use the spawn function to better effect,

because they do not know of the underlying tree structure. For example, it is usually

more efficient to spawn a large number of streams at a single time. The spawn function

takes care that the new streams initialized are spread evenly at the top of the subtree.

Deducing this requires knowledge of the tree structure. The user does not have the

knowledge required either to make spawn calls in a way to progress through the tree

evenly, or to understand why it would be better to make calls requesting larger numbers

of streams instead of smaller ones. We have received much feedback from baffled users

concerning falling off the tree. Some users have even been trying to always spawn from

the same stream, which causes pointers to run down the side of the tree and fall off

having initialized only a logarithmic portion of the streams that could have been used.

 Another problem caused by poorly informed users is the unnecessary use of

interprocessor communication. The SPRNG documentation says to call the init_rng

function once on each processor, in order that subsequent spawn_rng calls can be made

on individual processors without having to communicate stream information between

processors. The tree methods are elegantly designed to avoid having to send this

information between processors, but users do not seem to be aware of this. Some

SPRNG users seem to think they should initialize all their streams on only one processor

and then send the information to other processors. This again is probably due to a lack of

knowledge of the underlying SPRNG architecture. When we see problems that arise

because of poor use of the library, we have to conclude that the SPRNG interface is much

less than intuitive for users in many situations. We cannot ask users to learn all about

spawning trees so that they will use them better. The interface must be modified so that

better information hiding can be accomplished.

 A more tangible problem with this implementation, over which the user has no

control, is the memory required in each stream. The LCGs do not require much memory,

20

so a couple of words do not seem to matter that much. But users who need more streams

than the LCGs can provide (or think they do because they do not understand spawning)

need to use the Fibonacci generators for their massive parallelism. As discussed earlier,

the Fibonacci generators require a large array of values for initialization with as many

elements as the size of the lag. Moreover, the information required to implement the

spawning structure in the Fibonacci generators is another array only one element smaller

than the size of the lag. As the lag grows large, some users are unable to instantiate as

many streams as they need because of the memory required to do so. For such users, to

reduce the memory requirements is to allow more streams to be instantiated. We will

discuss this issue more quantitatively after we have seen how to remove the requirement

for this array by shifting to a new instantiation method.

21

CHAPTER 3

A NEW METHOD FOR CREATING STREAMS

 The new init_by_number function gives random access to streams in a SPRNG

generator. It allows the user to have access to all the independent streams in a generator,

with independence guaranteed simply by using different stream numbers each time. In

the old paradigm, stream numbers are hidden from the user, making it virtually

impossible to use every available stream. For instance, many particle simulations use one

stream per particle. So long as the particles are already numbered, creating the associated

streams with init_by_number becomes extremely easy. A user need only pick a generator

with as many streams as the largest number of any particle in the simulation. This would

work similarly with applications that allow numbering of components that require a

random number generator. So long as an upper bound can be established that is smaller

than the number of streams for some generator, the user need not fear falling off the

spawn tree, as is the case when using spawn_rng.

In fact, the previous method of spawning is so opaque as to prevent most casual

users from determining if their spawn calls will fall off the tree in any but the most

obvious cases. When the user receives an error message saying that he has fallen off the

tree, under the old method he would have little information about how to solve the

problem. We have even received feedback from users who have managed to discover the

worst case (spawning from one generator or always from the last spawned) thinking they

have found a bug in the package because they rapidly encounter this error message.

To some degree, the init_rng function provided random access to streams if used

exclusively without the spawn_rng function. Instead of using the init_rng function to

initialize streams at the beginning of a program, it could be used throughout. This

functionality is not described in the users manual, because it is not the intended use of the

22

init_rng function. This function also has a natural limit on the number of streams

available through its use, because the stream number is passed as a single word. Many

users need more streams than can be represented by one word. To complicate the

problem, the init_rng function takes a signed integer as the stream number (required for

the Fortran interface), but the actual parameter is required to be nonnegative, thus halving

the number of streams available to the init_rng function. The new init_by_number

function allows one to initialize any stream available.

 In order to make the stream number parameter multi-precise and available to the

user for manipulation, a standard for multi-precise arithmetic and representation has to be

implemented within. The previous version of SPRNG had circumstances where multi-

precise data was stored in arrays of integers, specifically for the Fibonacci generators.

However, this internal representation was very nonstandard and was an impediment to

user manipulation. For example, the library has internal functions for common

operations to these arrays such as doubling and addition, but they by no means form a

complete basis for multi-precise arithmetic, since only a few operations are necessary.

For this reason, we have elected to use the Gnu multi-precise library (GMP) [12] for

multi-precise parameters. While the formal arguments of the init_by_number function

are pointers to native arrays, a conversion function is provided for GMP integers to the

native types. In this way, the library is made to compile without the presence of GMP,

but users who wish to use the init_by_number function instead of the old spawning

routines are strongly advised to make use of GMP. The GMP library provides functions

enabling these conversions.

The prototype for the new initialization function is:

int init_by_number (int rng_type, unsigned *start, int nspawned, int ***newgens,

int seed, int parameter, int checkid = 0);

The variables nspawned, newgens, and checkid carry the same meaning as in the

spawn_rng function. The variable nspawned is the number of stream to be created. The

23

variable newgens is a pointer which returns the newly created generators. It should point

to an array of int**, which has been allocated with an int** per stream to be created

(nspawned). The checkid argument should be 0 for most runs, which is the default. The

variables rng_type, start, seed, and parameter have all been used to replace information

that was formerly pulled out of the stream struct that was passed to the spawn_rng

function. The rng_type argument is the type of generator to be used. The variable seed is

the value by which the user can get different random numbers for different runs of a

program. The seed serves as the initial condition to each stream. The variable parameter

chooses the parameterization scheme and should be adjusted according to memory and

stream needs. The start argument takes a pointer to an array of the appropriate size and

type for the particular rng_type and parameter chosen. This format can be achieved with

the new gmp2sn function:

int* gmp2sn(int rng_type, int param, mpz_t stream_number);

This function takes a single GMP number, stream_number, as a parameter and returns a

pointer allocated with the appropriate size and type of memory which is filled with the

number given.

 Note, detailed function descriptions of the new SPRNG implementation can be

found in the appendix.

24

CHAPTER 4

BENEFITS OF THE NEW INSTANTIATION METHOD

 We find that by allowing a user to access streams by stream number, benefits may

be achieved over the old spawning method. Allowing a user random access to streams

allows all possible streams to be exhausted, so long as the user is willing to do the

bookkeeping. A user may also spawn on a particular processor without packing and

unpacking the struct for the stream, as many of our uses have chosen to do with the old

library. For those that choose to use init_by_number instead of spawning, the memory

required to describe a stream can be reduced. While the changes made certainly increase

functionality and efficiency, an equally important aspect is the simplicity of the interface

the new functions provide. Although this function might require extra bookkeeping for

some applications, some users might find this function definition easier to understand

than that of the old method. All the user needs to know is that the same actual parameters

to the function will yield the same sequence of numbers on any platform.

4.1 Exhausting all Streams

The previously mentioned problem of falling off the tree is very easy to avoid

with the new init_by_number function. Under the old method, it is not hard for the user to

fall off the tree without even exhausting the majority of streams. In the worst cases

(either spawning from one stream repeatedly or spawning stream one at a time always

from the most recently spawned), the spawn procedure fails after having only used lg n

streams, where n streams are available.

25

4.2 Simplicity of Interface

 Much of the misuse of the init_rng and spawn_rng functions will be assuaged by

the simplicity of the interface of the new spawning method. Feedback indicates that

many of our users are unaware of the proper usage of these two functions. In fact, most

SPRNG users never call spawn_rng. Users might be confused about the dual function

method of stream instantiation with difficulty recognizing which should be used for

particular circumstances. While the documentation explains that the init_rng function

can be called on different processors, feedback from users expresses their discomfort in

doing so. The pack and unpack functions are used to store the data from a stream into a

character array and rebuild the stream from that array after it has been sent as a message

between processors. This means that sending a stream between processors requires both

the overhead of the pack and unpack functions and a communication cost. Since sending

streams between processors is expensive, our more advanced users would like to avoid

doing so. It now suffices for the user to know that the same function parameters will

yield the same sequence on any platform that SPRNG has been successfully ported to.

For each seed, generator, and parameterization choice, the user gains random access to

each stream available and can access them in sequential order, or any other order he sees

fit.

4.3 Memory Reduction

 The memory required for the old spawning approach is staggering for some

generators. While those with few streams are implemented easily, those generators with

many streams have to store a large stream number as a pointer to the next node to be

visited. For some high performance users, memory becomes the prohibitive factor to the

number of streams that can be instantiated. For example, the largest storage requirement

in MLFG is an array of size L (in 64-bit unsigned integers), which can grow very large

with choice of parameter. The size of this array depends on the lag chosen, as discussed

earlier. An array to store spawn information is used, which is only one element shorter

than the seed array. Say L = 17, which is the smallest L in the public distribution of

26

SPRNG, then the spawn information array for MLFG requires (17-1)*8 + 4 = 132 bytes.

If one were to then initialize a large number (some use billions) of streams, this would

create an enormous memory savings. The largest MLFG and LFG lags currently

available are L = 1279. The default lags are different for MLFG and LFG. MLFG uses

the smallest, 17, and LFG uses the largest, 1279. With the large lag, the spawn array

requires over 8 kilobytes (kB) for an MLFG stream and 4 kB for an LFG stream. As the

lag grows large the size of the eliminated array approaches half the size of the MLFG

footprint and a third the size of the LFG footprint. For a user that is running out memory,

this will allow twice as many MLFG streams to be initialized. When the lag is large, it

does not take many stream initializations to receive a large benefit from not storing

certain spawn information.

 The user is afforded an opportunity for indirect memory savings as well. Since

the new initialization method allows for exhaustion of all possible streams, the user can

choose a generator/parameter with fewer possible streams to meet his needs. Generators

with fewer possible streams consume less memory. This trade off between memory and

number of streams available has frustrated users trying to accomplish very large, parallel

applications. Making this tradeoff easier to deal with will affect parallel applications at

the highest order of performance. Reduced memory consumption is one of the most

compelling aspects of random access to streams.

27

CHAPTER 5

TESTING

 Random number generators must be passed through a veritable gauntlet of

statistical and physically inspired tests. These include testing streams for poor

randomness within themselves and also for correlation among the many streams

produced by a given generator and parameterization. However, these tests have already

been run on the generators within SPRNG, and with the exception of well known faults in

specific generators, SPRNG performs very well on these tests [14]. Thus, the aim of

testing the init_by_number function is to insure that the same streams are instantiated as

with the init_rng and spawn_rng functions. A random access numbering scheme has

already been achieved that allows for the aforementioned functions, the random access

was simply not fully available to the user. The general idea of the test procedure is

simply to instantiate streams the old and new ways, and use them to check the first few

numbers for consistency. Two approaches are the following.

 The first is to call the init_rng and spawn_rng functions in a particular way and to

calculate the respective stream numbers of each; then the stream numbers can be used as

input for the init_by_number function and tested against each other. This procedure

essentially insures stream number consistency between the old and new methods. This

method is troublesome however; to test the streams to the extent that one would like for

evidence that all components are working correctly requires fairly complicated

calculations. One would hope to at least use the multi-precise aspects of the internal

arrays to make sure that all the bits are in their proper place. Also, the testing procedure

should be easier to manipulate than this.

 Thus, an internal testing function was created, get_stream_number. While this

function is not intended for users, it might be of help to users in the future for certain

28

aspects of stream instantiation. This function is required since the stream number is not

stored explicitly in some of the generators. Like the init_by_number function, it had to

be crafted to each particular generator, and is probably responsible for just as many

problems during debugging as the code being tested. In the generators that use the binary

tree spawning method, the stream number must be recovered through the properties of the

binary tree. The only time a spawn pointer points to the right child of a node is

immediately after its instantiation. Afterwards, the pointer will move to the left child

after being used as a parameter for the spawn function. One keeps moving up the tree

until a right hand child is discovered. The underlying operation is to right shift the entire

multi-precise array until a 1 is shifted off the least significant bit of the least significant

element of the array. This, of course, must be platform independent, and tools are

provided in SPRNG to make it so. With the aid of get_stream_number, any sequence of

init_rng and spawn_rng function calls can be tested against the init_by_number versions

of the proper stream. Testing the GMP conversion functions is rather straight forward,

just making sure the right numbers are computed.

 As for efficiency, there is no significant difference in resources required to

instantiate streams between the old and new methods. The init_by_number function uses

the same internal scheme as the old spawn functions. The only difference is that the

stream number is handed through a function parameter instead of being pulled from a

stream defining struct passed as a parameter. There are some minor speed savings given

that spawn pointers are not being calculated. The get_stream_number function is not a

user function, so it need not be tested for efficiency.

29

CHAPTER 6

MEMORY OPTIMIZATIONS TO SPRNG

Another goal in the development of SPRNG version 3.0 (SPRNG 3) is to reduce

memory usage. Memory usage is an important issue for many SPRNG users. While the

new stream instantiation method provides significant savings in the larger generators,

efforts have been made to reduce memory usage for all users, not just those who choose

to adopt the init_by_number function. Many opportunities for memory savings are

available in SPRNG version 2.0 (SPRNG 2), and we have chosen to effect memory usage

reduction through mostly minor changes.

6.1 The Name as a String

 In SPRNG 2, a character pointer was assigned a string literal during initialization.

The string was removed with the intention of saving the memory required to store the

string. However, upon reevaluation it was realized that string literals are allocated

statically, so after initialization the pointer was unstable. The pointer is still removed, but

the only memory saved is that of the pointer itself. This change is more correctly viewed

as removal of a wild pointer.

6.2 Generator Specific Optimizations

 While memory optimization is always a concern in SPRNG, this section describes

an effort to create a particularly small footprint for the multiplicative lagged-Fibonacci

generator (MLFG). We use footprint to describe the memory consumed by each random

number stream. Our goal was to create a generator with 50 bytes or less of memory. We

miss this mark, but we do improve greatly over the smallest footprint that was available

in the SPRNG 2 MLFG generator, which required over 300 bytes per stream. Because of

30

the similarity between LFG and MLFG, these optimizations are applicable to LFG as

well. Also required was the ability to spawn, so the work described in this paper that

saves memory by removing the spawn ability could not be used.

The first optimization needed was to use a parameterization of the MLFG that

lends itself to a small footprint. The MLFG generator uses a recursion based on two prior

values determined by parameters j and k. We will let k be the larger; then the footprint

will necessarily include k old values. The lowest value of k in any parameterization of

MLFG in SPRNG 2 was 17. Values stored are 8 bytes in length. So with this

parameterization, the bare requirements put the footprint over 100 bytes. We chose to

include a new parameterization in which k is three. This provided the most significant

memory reduction of any changes made. This parameterization of MLFG will be

available in SPRNG 3, but the other parameterizations will be improved as well because

of general changes to the implementation. Many of the changes in fact only reduce the

footprint by a constant amount, rather than an amount dependent on k, so they do not

provide savings on the scale that removing the spawning information was able to.

The struct used in MLFG is:

struct rngen

{

 int rng_type; particular random generator to be used

 char *gentype; name of the generator used

 int stream_number; least significant bytes of the stream number

 int nstreams;

 int init_seed; seed given by user before being XORed with the global seed

 int parameter; determines the parameterization scheme

 int narrays; variable used for packing and unpacking

 int *array_sizes; variable used for packing and unpacking

 int **arrays; variable used for packing and unpacking

 uint64 *lags; internal array for producing random numbers

31

 uint64 *si; spawn pointer

 int hptr; /* integer pointer into fill */

 int lval, kval, seed; variables to store properties of parameterization scheme and seed

};

 A few of the int type variables in this struct can be removed without impact on the

functionality of the generator. However, as mentioned before, with the most common

uses of the library considered, cutting out these values does not have much effect relative

to the sizes of the streams generated. The lval and kval data can both be read by

accessing into the array of suitable parameters, which lies in global memory, with the

variable parameter. This requires an extra memory access per function call if it is to be

stored in a local variable for the scope of the function. The variable narrays can be

replaced by the constant literal 2.

The pointers require a little more explanation. As already mentioned, gentype is

an unstable pointer that can be removed with only positive impact on the library. The si

field is a pointer to the array of 64 bit unsigned integers that determines the next stream

to be spawned if the spawn function is called on this stream. lags is a pointer to an array

of similar size and type that serves to store the internal workings of the stream defined by

the particular instantiation of the struct. These are the essentials of the stream and cannot

be reduced or removed. However, array_sizes and arrays are not necessary to the struct.

They can be replaced by local variables in the pack and unpack functions, which are the

only functions to make use of these data. arrays is allocated memory of the size of 2 int*

which in turn alias the lags and si pointers. array_sizes is allocated memory of 2 int

types, which store the size of the arrays. Since the pack and unpack functions are used so

seldom (many times no more than once per stream instantiated), it makes much more

sense to use local pointers to accomplish these purposes.

32

CHAPTER 7

CONCLUSIONS

We have developed a new stream instantiation method for the SPRNG library,

embodied in the init_by_number function. While the old method provided some of this

functionality already, many users will benefit from such a unified approach at exhaustive

random access. Some users have not been using the old instantiation to full effect,

mostly because of misunderstandings of the SPRNG documentation. In fact, most users

never call spawn_rng. We complete the necessary work to make it a legitimate part of a

well established and widely used mathematical library. This new method provides a

more general level of access to the streams for those advanced users who feel rather

handicapped by the old spawning method. While the old spawning method provides

excellent access to random number streams in applications like random walks with

splitting, we hope that this new instantiation will make SPRNG the library of choice for a

broader range of random number needs. We have also performed memory optimization

on the underlying data structure for streams to provide the smallest footprint possible.

With the added benefit of memory requirement reduction and communication

requirement removal, the new SPRNG offers a very good choice to a broad range of

Monte Carlo applications. Random access is the most powerful and general stream

instantiation method that could be provided to users. Even the requirement for

reproducibility is shifted to the user, allowing for special circumstances while preserving

reproducibility as an easy property for the user to achieve. These changes should indeed

broaden the base of SPRNG users and provide loyal users new tools for their

applications. SPRNG is one of the most well researched and designed mathematical

libraries available today and broadening its functionality is bound to be of use to many

scientists.

33

CHAPTER 8

FUTURE WORK

Certainly, the improvements of user functionality and memory usage studied in

this document could be extended. Also, some users prefer the SPRNG 1 library simply

because of its architecture, where each generator could be compiled separately. Some

users probably found this easier to manage, and most know which generator they need

before use. The unified library compilation provides the ability to change generators

within code by modifying only a function parameter. This is useful to those who wish to

test different generators, providing a very easy change to those who find they have run

out of streams or exhausted the period of some of their streams.

An obvious way to improve functionality is always to add new generators. Code

for some new generators is currently available for future versions of SPRNG, but some

minor flaws with them may still need to be mended. Because of the new instantiation

method, new generators with a high number of streams like the MLFG and LFG can be

added with full effect, and this is a very good way to improve the library. Also, it might

be valuable to add a cryptographic random number generator to SPRNG. This is a

generator designed to make it very difficult to predict the random numbers, even having

seen many of the already generated numbers. One final addition might be to provide a

SRPNG-like tool for parallel quasirandom number generation. While the SPRNG library

has not been endowed with such functionalities yet, doing so would clearly widen the

applications for which SPRNG would be an appropriate choice.

Another optimization that would be valuable to the library involves the generation

of prime numbers. Some of the generators require each stream to use a different prime

number as a parameter, in which case the i
th

 stream is provided with the i
th

 prime. The

method for doing so in SPRNG is very likely sub optimal, causing a large slowdown in

34

the time required to initialize a stream. The algorithm finds primes sequentially

beginning with a prime stored in a file. These primes are sequential for the first several

hundred, but for larger primes, the file stores only every 1000
th

 prime. A simple solution

is to store more primes in the file. Because of modern advances in data storage and

communication, increasing the file size might be justified for the linear payoff in

initialization speed it would provide.

35

APPENDIX A

SPRNG 3 USER’S GUIDE

SPRNG 3 is backwards compatible with SPRNG 2. This document describes new

functionality in the SPRNG 3 library and is meant to supplement the existing user guide.

A.1 Installation

 Dr. Yaohang Li added GNU autoconfig/automake scripts [6],[5] for ease of

installation. To install the library, one should download the library and unzip/untar it to a

directory of his choosing. At the top level is the SPRNG directory. In this directory, the

user should call config, which creates a makefile according to the platform. The user can

then use the make command to compile the library. This will create libsprng.a in the

sprng/lib/ directory. This file should be linked to the user’s program to compile.

A.2 Stream Instantiation.

 A new method of instantiating random number streams has been added. The old

spawning method, which uses the init_rng and spawn_rng functions, is still provided, and

the user should not use the new instantiation method in the same program as in which

these functions are used. The new function init_by_number, does not provide spawning

information to the streams, so a call of spawn_rng using a stream created init_by_number

will cause an error.

 The init_by_number function is intended for advanced users who need millions or

billions of streams. Not only does it allow exhaustion of all possible streams for a

particular generator, parameter, and seed, it does not allocate the memory previously used

to store spawning information for a significant reduction of memory usage per stream.

36

The init_by_number function is similar in its arguments to the spawn_rng function. It

requires the user to keep track of the seed, parameter, and generator to take them as

arguments. We recommend that a user use the same values of seed, parameter, and

generator for each call. The user must also specify the stream number to be instantiated

and the number of streams to be created, beginning at the specified stream number and

produced sequentially thereafter. Thus, a user may create streams in blocks of any size

that can be passed as an integer (while the stream number parameter provides for multi-

precision, the number of streams parameter does not). The user then only needs to add

the block size requested to arrive at the stream number to be passed to the next call of

init_by_number. The user need not be concerned that the streams are being called

sequentially; the seed will serve to create different numbers for different runs of a

program. Many of the libraries simply permute the streams based on the seed. The

generator and parameter are usually changed to affect the qualitative nature of the

numbers (the generator) or the period and availability of the streams (parameters). These

choices will be outlined more fully, including a couple of new parameters that have been

added for improved versatility. The user may choose the generator and parameter based

on the application, but once one is found that works, the user need only change the seed

per run to produce different results.

 Under SPRNG 2, the user was to call the init_rng function at the beginning of a

program once per stream to be initially created. Each call took the number of times this

function would be called in total as a parameter to provide the created stream with

spawning information. Subsequently, any new streams to be instantiated required a call

to the spawn function, which in turn required an existing stream. This method, while

useful in many applications, has some drawbacks that will be corrected with a new

instantiation method. Since the older spawn methods are still available, users must

decide which method to use. THE METHODS SHOULD NOT BE MIXED. That is, the

user must choose to use the init_rng and spawn_rng functions or the init_by_number

function. Under no circumstances should the spawn_rng function be called with a stream

that has been created by the init_by_number function. This follows from the

init_by_number function’s not storing spawning information in order to provide

37

significant memory savings. The responsibility for independence of streams now rests

with the user. However, the only requirement for streams to be independent, so long as

the same generator, seed, and parameter are used for each call, is that each stream

receives a different number for initialization. The user should keep in mind that if the

init_by_number function is called to produce more than one stream, each stream receives

numbers beginning sequentially at the stream number given as a parameter. This is the

most important aspect of the new functions for users to understand and the reason it is

recommended only for advanced users who need many streams. The user should also

have GMP installed on the machine and enough basic arithmetic skill with GMP to

produce the numbers required. Using the init_by_number function without GMP is very

difficult, requiring the user to provide arrays of a certain size with the correct number

embedded.

 Some of the benefits to using the method of stream instantiation are reduced

memory usage, no required communication cost for parallel applications, and the

possibility of complete exhaustion of streams available. Users who just need a few

streams should probably not use this method. LFG and MLFG are the generators

benefiting the most from memory savings. Since these generators provide more streams

than the others, removing the spawning information can provide very large memory

savings (up to several kilobytes). Under the old method, many users with parallel

applications were using interproccesor communication to distribute streams among

processors. Since spawning requires an already existing stream, some processors had to

produce streams to send to other processors. This not only makes for unbalanced work

load, but the communication cost can be very high depending on the generator.

Users of the old spawning methods should be more careful to balance the calls to

init_rng to prevent this, but users will find that the random access provides a more

intuitive method of stream instantiation. While the init_rng function was to be called at

the beginning of a program, with an argument specifying the number of times it is called,

init_by_number can be used throughout the program and the only requirement is that the

stream numbers be smaller than the largest stream number available. Finally, users who

38

find they run out of streams quickly using the spawning routine (this typically generates

an error message and returns a stream not guaranteed independent from the others)

should use this method since it allows exhaustion of all possible streams. When the user

receives an error message under the old spawning method, he has probably used less than

half the streams available. In the worst case, the error message can be received having

instantiated only lg N of N possible independent streams, where lg N is the logarithm to

the base 2 of N.

 The first item of business for those that wish to use the new instantiation method

is to create a collision free numbering scheme to ensure properly independent streams.

Streams can be initialized on any processor and the user might wish to designate a

particular set of numbers, such as congruence classes modulus the number of processors,

for each processor to use to prevent collision. Many applications will already be

naturally numbered, such as a particle simulation. If one wishes to give a stream to each

particle for example, so long as the particles are numbered uniquely, this number can be

used for calls to the init_by_number function. One should also have an idea of the

maximum number of streams to be used. If this number is such that it could be passed as

a parameter to the init_rng function (the upper bound can be stored in an int type) the

user may wish to simply use the init_rng function without the spawn function. Although

not documented, the user can simply use the upper bound as the total number of calls to

the init_rng function and can use these calls, once again using a unique number for each

call, on different processors in a homogeneous cluster. However, the spawning

information will still be stored by the streams, so memory might well be an issue that

would convince a user to use init_by_number even if billions of streams are not needed.

This makeshift method of random access to streams still makes interprocessor

communication unnecessary and provides a significant advantage to those hindered by

the hard cap on scalability dictated by the function parameters.

The prototype for the new function is:

int init_by_number (int rng_type, unsigned *start, int nspawned, int ***newgens,

39

int seed, int parameter, int checkid = 0);

This can be compared to the old spawn_rng function:

int spawn_rng(int *igenptr, int nspawned, int ***newgens, int checkid);

nspawned, newgens, and checkid carry the same meaning as in the spawn_rng function.

nspawned is the number of stream to be created. newgens is a pointer by which to return

the newly created generators. It should point to an array of int**, which has been

allocated with an int** per stream to be created (nspawned). checkid should be 0 for

final runs which it carries by default. checkid is nonzero when used for debugging

purposes and its use is described in the SPRNG 2 user’s manual.

rng_type, start, seed, and parameter have all been used to replace information

that was formerly pulled out of the stream struct, igenptr, that was passed to the

spawn_rng function. rng_type is the type of generator to be used. Current valid values

are 0-5 with the following meanings:

0. LFG

1. LCG

2. LCG64

3. CMRG

4. MLFG

5. PMLCG (conditionally compiled according to the users installed libraries)

Macros are provided as in previous versions: SPRNG_LFG, SPRNG_LCG, and so on.

seed is the value by which the user can achieve different numbers for different runs of a

program. The seed serves as the initial condition to each stream. For some generators,

this serves only to permute the order of the streams. parameter changes the values for

the parameterization scheme. parameter should be adjusted according to memory and

stream needs. These offer a trade off in memory used and number of streams available

for instantiation. They affect periodicity as well. It is strongly recommended that the user

40

use the same value of rng_type, seed, and parameter for each call in the program. seed

should be changed between runs once the rng_type and parameter have been selected

such that enough streams are available. If the user uses different seeds in the same run,

he is in danger of using the same stream more than once, since the seed is used as a

bitmask to permute the streams in some generators. The start argument takes a pointer to

an array of the appropriate size and type for the particular rng_type and parameter

chosen. This format can be achieved with the gmp2sn function:

int* gmp2sn(int rng_type, int param, mpz_t stream_number);

This function takes a single GMP number, stream_number as a parameter and returns a

pointer allocated with the appropriate size and type of memory which is filled with the

number given. The programmer should be careful to free the memory returned by this

function, so it is important to assign it to a pointer before passing it as an argument. The

final product should look something like:

int* stream_number = gmp2sn(rng,param,stream); where stream is a GMP integer

init_by_number(rng_type, stream_number, …);

free(stream_number);

Users of PMLCG should also call mpz_clear before freeing the returned pointer, since the

returned value is a GMP integer. The user should also take care to handle the freeing of

the GMP numbers upon outliving their use for generating streams.

A.3 Adding generators

 The SPRNG library is designed to be expandable not only by those who maintain

the code for centralized distribution, but also for users who want to implement their own

generator with the SPRNG architecture. The format in doing so has changed slightly in

that the programmer must add the init_by_number function to the general format of a

generator. This should not be that hard to do, as a prerequisite for a SPRNG generator is

41

the ability to produce streams in this fashion. We recommend that the init_by_number be

used as a sort of backend to the init_rng and spawn_rng functions. Most of the

generators already had a similar function that served these functions with the internals of

the stream. As before, the init_rng and spawn_rng functions should be responsible for

processing the spawning information so that they will function as desired. A GMP

conversion function should also be provided if the programmer requires this capability.

42

APPENDIX B

SPRNG 3 CODE ADDITIONS

B.1 LCG functions

/***

 init_by_number allows users to retrieve by stream numbers.

 recommended for advanced users only. Added by Jason Parker

 as part of sprng 3.0

***/

#ifdef __STDC__

int init_by_number(int rng_type, unsigned *start, int nspawned, int ***newgens, int

seed, int mult, int checkid)

#else

int init_by_number(rng_type, start,nspawned, newgens, seed, mult, checkid)

int rng_type, nspawned, ***newgens, seed, mult, checkid;

unsigned* start;

#endif

{

 struct rngen **genptr;

 int i, j,tmult;

 tmult = mult;

 if (nspawned <= 0) /* check if nspawned is valid */

 {

 nspawned = 1;

43

 errprint("WARNING","spawn_by_number","nspawned <= 0. Default value of 1 used

for nspawned");

 }

 if (mult < 0 || mult >= NPARAMS)

 {

 errprint("WARNING","spawn_by_number","multiplier not valid. Using Default

param");

 tmult = 0;

 }

 genptr = (struct rngen **) mymalloc(nspawned*sizeof(struct rngen *));

 if(genptr == NULL)

 {

 *newgens = NULL;

 return 0;

 }

 for(i=0; i<nspawned; i++)

 {

 genptr[i] = (struct rngen *) mymalloc(sizeof(struct rngen));

 if(genptr[i] == NULL)

 {

 nspawned = i;

 break;

 }

 genptr[i]->init_seed = seed;

 genptr[i]->prime_position = *start + i;

 if(genptr[i]->prime_position > MAXPRIMEOFFSET)

 {

 fprintf(stderr,"WARNING - spawn_rng: gennum: %d > maximum number of

independent streams: %d\n\tIndependence of streams cannot be guranteed.\n",

44

 genptr[i]->prime_position, MAX_STREAMS);

 genptr[i]->prime_position %= MAXPRIMEOFFSET;

 }

 genptr[i]->prime_next = genptr[i]->prime_position + nspawned;

 getprime_32(1, &(genptr[i]->prime), genptr[i]->prime_position);

 genptr[i]->parameter = tmult;

 genptr[i]->rng_type = rng_type;

 genptr[i]->gentype = GENTYPE;

#ifdef LONG64

 genptr[i]->seed = INIT_SEED; /* initialize generator */

 genptr[i]->seed ^= ((unsigned LONG64) seed)<<16;

 genptr[i]->multiplier = mults[tmult];

 if (genptr[i]->prime == 0)

 genptr[i]->seed |= 1;

#else

 genptr[i]->seed[1] = 16651885^((seed<<16)&(0xff0000));/* initialize generator */

 genptr[i]->seed[0] = 2868876^((seed>>8)&(0xffffff));

 genptr[i]->multiplier = mults[tmult];

 if (genptr[i]->prime == 0)

 genptr[i]->seed[1] |= 1;

#endif

 if(genptr[i]->prime_position > MAXPRIMEOFFSET)

 advance_seed(genptr[i]); /* advance lcg 10^6 steps from initial seed */

 for(j=0; j<LCGRUNUP*(genptr[i]->prime_position); j++)

45

 get_rn_dbl((int *) genptr[i]);

 }

 NGENS += nspawned;

 *newgens = (int **) genptr;

 if(checkid != 0)

 for(i=0; i<nspawned; i++)

 if(addID((int *) genptr[i]) == NULL)

 return i;

 return nspawned;

}

/**

 gmp2sn is used to convert a gmp number to the correct format for

 the init_by_number function. Added by Jason Parker as a part of

 SPRNG 3.0.

***/

#ifdef USE_PMLCG

#ifdef __STDC__

int* gmp2sn(int rng_type, int param, mpz_t a)

#else

int* gmp2sn(rng_type, param, a)

int rng_type, param;

mpz_t a;

#endif

{

 int* b;

 b = (int *)malloc(sizeof(int));

46

 *b = mpz_get_si(a);

 if(mpz_cmp_si(a,*b)!=0)

 fprintf(stderr,

 "GMP Integer too large to be converted for the lcg generator\n");

 return b;

}

#endif

B.2 LCG64 functions

/***

 init_by_number allows users random access to streams. See

 documentation for more details. Added by Jason Parker

 as part of SPRNG 3.0.

**/

#ifdef __STDC__

int init_by_number(int rng_type, unsigned *start, int nspawned, int ***newgens, int

seed, int mult, int checkid)

#else

int init_by_number(rng_type, start, nspawned, newgens, seed, mult, checkid)

int rng_type, nspawned, ***newgens, seed, mult, checkid;

unsigned* start;

#endif

{

 struct rngen **genptr;

 int i, j;

47

 if (nspawned <= 0) /* is nspawned valid ? */

 {

 nspawned = 1;

 fprintf(stderr,"WARNING - spawn_rng: nspawned <= 0. Default value of 1 used for

nspawned\n");

 }

 genptr = (struct rngen **) mymalloc(nspawned*sizeof(struct rngen *));

 if(genptr == NULL) /* allocate memory for pointers to structures */

 {

 *newgens = NULL;

 return 0;

 }

 for(i=0; i<nspawned; i++) /* create nspawned new streams */

 {

 int gennum;

 gennum = *start + i;

 if(gennum > MAX_STREAMS) /* change seed to avoid repeating sequence */

 seed = seed^gennum;

 else

 seed = seed;

 /* Initialize a stream. This stream has incorrect spawning information.

 But we will correct it below. */

 genptr[i] = (struct rngen *)

 init_rng(rng_type,gennum, gennum+1, seed, mult);

48

 if(genptr[i] == NULL) /* Was generator initiallized? */

 {

 nspawned = i;

 break;

 }

 genptr[i]->spawn_offset = (nspawned+1);

 }

 *newgens = (int **) genptr;

 if(checkid != 0)

 for(i=0; i<nspawned; i++)

 if(addID((int *) genptr[i]) == NULL)

 return i;

 return nspawned;

}

/***

 gmp2sn is a user function that allows conversion of a GMP number

 to the appropriate format for the init_by_number function.

 Added by Jason Parker as part of SPRNG 3.0

**/

#ifdef USE_PMLCG

49

#ifdef __STDC__

int* gmp2sn(int rng_type, int param, mpz_t a)

#else

int* gmp2sn(rng_type, param, a)

int rng_type, param;

mpz_t a;

#endif

{

 int * b;

 b = (int *)malloc(sizeof(int));

 *b = mpz_get_ui(a);

 if(mpz_cmp_si(a,*b)!=0)

 fprintf(stderr, "GMP integer too big for lcg64 generator\n.");

 return b;

}

#endif

B.3 CMRG functions

/**

 init_by_number allows users random access to streams. See

 documentation for additional details. Added by Jason Parker

 as part of SPRNG 3.0

**/

#ifdef __STDC__

int init_by_number(int rng_type, unsigned *start, int nspawned, int ***newgens,int seed,

int param, int checkid)

#else

int init_by_number(rng_type,start,nspawned, newgens, seed, param, checkid)

int rng_type,nspawned, ***newgens, seed, param,checkid;

50

unsigned* start;

#endif

{

 struct rngen **genptr;

 int i, j;

 if (nspawned <= 0) /* is nspawned valid ? */

 {

 nspawned = 1;

 fprintf(stderr,"WARNING - spawn_rng: nspawned <= 0. Default value of 1 used for

nspawned\n");

 }

 genptr = (struct rngen **) mymalloc(nspawned*sizeof(struct rngen *));

 if(genptr == NULL) /* allocate memory for pointers to structures */

 {

 *newgens = NULL;

 return 0;

 }

 for(i=0; i<nspawned; i++) /* create nspawned new streams */

 {

 /* Initialize a stream. This stream has incorrect spawning information.

 But we will correct it below. */

 genptr[i] = (struct rngen *)

 init_rng(rng_type,*start+i, *start+i+1, seed, param);

51

 if(genptr[i] == NULL) /* Was generator initiallized? */

 {

 nspawned = i;

 break;

 }

 genptr[i]->spawn_offset = (nspawned+1);

 }

 /*tempptr->spawn_offset *= (nspawned+1);*/

 *newgens = (int **) genptr;

 if(checkid != 0)

 for(i=0; i<nspawned; i++)

 if(addID((int *) genptr[i]) == NULL)

 return i;

 return nspawned;

}

/***

 gmp2sn is called by the user to convert a gmp number to the correct

 format for the init_by_number funciton. Added by Jason Parker as a

 part of SPRNG 3.0

***/

#ifdef USE_PMLCG

#ifdef __STDC__

int* gmp2sn(int rng_type, int param, mpz_t a)

52

#else

int* gmp2sn(rng_type, param, a)

int rng_type, param;

mpz_t a;

#endif

{

 int * b;

 b = (int *)malloc(sizeof(int));

 *b = mpz_get_ui(a);

 if(mpz_cmp_si(a,*b)!=0)

 fprintf(stderr,"GMP integer too large for cmrg generator");

 return b;

}

#endif

B.4 LFG functions

/***

 init_by_number allows users random access to streams. See

 documentation for details. Added by Jason Parker as part of

 SPRNG 3.0

***/

#ifdef __STDC__

int init_by_number(int rng_type, unsigned *start, int nspawned, int ***newgens, int

seed, int param, int checkid)

#else

int init_by_number(rng_type, start,nspawned,newgens,seed,param, checkid)

int rng_type, nspawned, ***newgens, seed, param, checkid;

unsigned* start;

#endif

53

{

 int **q=NULL, i;

 unsigned *p;

 if (nspawned <= 0) /* check if nspawned is valid */

 {

 nspawned = 1;

 errprint("WARNING","spawn_rng","Nspawned <= 0. Default value of 1 used for

nspawned");

 }

 p = start;

 q = initialize_by_number(rng_type,nspawned,param,seed^GS0,p,seed);

 if (q == NULL)

 {

 *newgens = NULL;

 return 0;

 }

 NGENS += nspawned;

 *newgens = (int **) q;

 if(checkid != 0)

 for(i=0; i<nspawned; i++)

 if(addID((*newgens)[i]) == NULL)

 return i;

54

 return nspawned;

}

/***

 initialize_by_number is called by the init_by_number funtion. It

 is not a user function. Added by Jason Parker as part of SPRNG 3.0

***/

#ifdef __STDC__

static int **initialize_by_number(int rng_type, int ngen, int param, unsigned seed,

unsigned *nstart, unsigned initseed)

#else

static int **initialize_by_number(rng_type, ngen,param, seed,nstart, initseed)

int rng_type, ngen, param;

unsigned *nstart, seed, initseed;

#endif

{

 int i,j,k,l, length,run,temp;

 struct rngen **q;

 unsigned *nindex1,*nindex2;

 length = valid[param].L;

/* allocate memory for node number and fill of each generator */

 temp = nstart[0];

 q = (struct rngen **) mymalloc(ngen*sizeof(struct rngen *));

 if (q == NULL)

 return NULL;

 for (i=0;i<ngen;i++)

 {

 q[i] = (struct rngen *) mymalloc(sizeof(struct rngen));

55

 if (q[i] == NULL)

 return NULL;

 q[i]->rng_type = rng_type;

 q[i]->hptr = length - 1;

 q[i]->si = NULL;

 q[i]->r0 = (unsigned *) mymalloc(length*sizeof(unsigned));

 q[i]->r1 = (unsigned *) mymalloc(length*sizeof(unsigned));

/* q[i]->lval = length;

 q[i]->kval = valid[param].K;*/

 q[i]->param = param;

 q[i]->seed = seed;

 q[i]->init_seed = initseed;

 if (q[i]->r1 == NULL || q[i]->r0 == NULL)

 return NULL;

 }

/* specify register fills and node number arrays */

/* do fills in tree fashion so that all fills branch from index */

/* contained in nstart array */

 q[0]->stream_number = nstart[0];

 nindex1 = (unsigned*)malloc((length-1)*sizeof(unsigned));

 nindex2 = (unsigned*)malloc((length-1)*sizeof(unsigned));

 for(i = 0; i < length-1; i++){

 nindex1[i]=nstart[i];

 }

 run = 0;

 for(i=1; i < length-1; i++)

 if(nindex1[i]!=0){

 run = 1;

 break;

56

 }

 si_double(nindex2,nindex1,length);

 get_fill(nindex2,q[0]->r0,param,seed);

 nindex2[0]++;

 get_fill(nindex2,q[0]->r1,param,seed);

 for(i = 1; i < ngen; i++){

 si_add_one(nindex1,length-1);

 for (j=0;j<length-1;j++)

 nindex2[j] = nindex1[j];

 q[i]->stream_number = nindex1[0];

 si_double(nindex2,nindex1, length);

 get_fill(nindex2,q[i]->r0,param,seed);

 nindex2[0]++;

 get_fill(nindex2,q[i]->r1,param,seed);

 }

 i = 0;

 if(run==0)

 for (i=0;i<ngen;i++,temp++)

 {

 /*

 k = 0;

 for (j=1;j<lval-1;j++)

 if (q[i]->si[j])

 k = 1;

 if (!k)

 break;

 */

 for (j=0;j<length*4;j++)

 get_rn_int((int *)(q[i]));

57

 if(temp==INT_MASK){

 i++;

 break;

 }

 }

 while (i<ngen)

 {

 for (j=0;j<RUNUP*length;j++)

 get_rn_int((int *)(q[i]));

 i++;

 }

 return((int **)q);

}

/***

 gmp2sn is used to convert gmp numbers to the correct format for

 the init_by_number function. Added by Jason Parker as part of

 SPRNG 3.0.

***/

#ifdef USE_PMLCG

#ifdef __STDC__

int* gmp2sn(int rng_type, int param, mpz_t a)

#else

int* gmp2sn(rng_type, param, a)

int rng_type, param;

mpz_t a;

#endif

{

 int length, i;

58

 unsigned *ret;

 mpz_t b,c;

 mpz_init_set(b,a);

 mpz_init(c);

 length = valid[param].L -1;

 ret = (unsigned *)malloc(length*sizeof(unsigned));

 for(i = 0; i < length; i++)

 ret[i]=0;

 for(i = 0; i < length; i++){

 if(mpz_cmp_ui(b,0)==0)

 break;

 mpz_tdiv_r_2exp(c,b,MAX_BIT_INT+1);

 ret[i] = INT_MASK & mpz_get_ui(c);

 mpz_tdiv_q_2exp(b,b,MAX_BIT_INT+1);

 }

 mpz_clear(c);

 mpz_clear(b);

 return (int *)ret;

}

#endif

B.5 MLFG functions

/**

 init_by_number allows users random access to streams. See

 documentation for details. Added by Jason Parker as part of

 SPRNG 3.0.

**/

#ifdef __STDC__

59

int init_by_number(int rng_type, unsigned *start, int nspawned, int ***newgens, int

seed, int mult, int checkid)

#else

int init_by_number(rng_type, start, nspawned, newgens, seed, mult, checkid)

int rng_type, nspawned, ***newgens, seed, mult, checkid;

unsigned* start;

#endif

{

 struct rngen **genptr;

 int i;

 uint64 *p;

 if (nspawned <= 0) /* is nspawned valid ? */

 {

 nspawned = 1;

 fprintf(stderr,"WARNING - spawn_rng: nspawned <= 0. Default value of 1 used for

nspawned\n");

 }

 p = (uint64*)start;

 seed &=0x7FFFFFFF;

 genptr = initialize_by_number(rng_type, nspawned,mult,seed^GS0,p,seed);

 if(genptr == NULL) /* allocate memory for pointers to structures */

 {

 *newgens = NULL;

 return 0;

 }

 si_double(p,p,valid[mult].L);

/*

60

 for(i=0; i<nspawned; i++)

 {

 genptr[i]->array_sizes = (int *) mymalloc(genptr[i]->narrays*sizeof(int));

 genptr[i]->arrays = (int **) mymalloc(genptr[i]->narrays*sizeof(int *));

 if(genptr[i]->array_sizes == NULL || genptr[i]->arrays == NULL)

 return 0;

 genptr[i]->arrays[0] = (int *) genptr[i]->lags;

 genptr[i]->arrays[1] = (int *) genptr[i]->si;

 genptr[i]->array_sizes[0] = genptr[i]->lval*sizeof(uint64)/sizeof(int);

 genptr[i]->array_sizes[1] = (genptr[i]->lval-1)*sizeof(uint64)/sizeof(int);

 }

*/

 NGENS += nspawned;

 *newgens = (int **) genptr;

 if(checkid != 0)

 for(i=0; i<nspawned; i++)

 if(addID((int *) genptr[i]) == NULL)

 return i;

 return nspawned;

}

/***

 intialize_by_number is called by init_by_number. It is not a

 user function. Added by Jason Parker as part of SPRNG 3.0

***/

61

static struct rngen **initialize_by_number(int rng_type, int ngen, int param, unsigned int

seed, uint64 *nstart, unsigned int initseed)

{

 int i,j,k,l,m,*order, length,run;

 struct rngen **q;

 uint64 *nindex, temp1, temp2, mask,mask2,t,r;

 set(nstart[0],t);

 length = valid[param].L;

 q = (struct rngen **) mymalloc(ngen*sizeof(struct rngen *));

 if (q == NULL)

 return NULL;

 for (i=0;i<ngen;i++)

 {

 q[i] = (struct rngen *) mymalloc(sizeof(struct rngen));

 if (q[i] == NULL)

 return NULL;

 q[i]->rng_type = rng_type;

 q[i]->hptr = 0; /* This is reset to lval-1 before first iteration */

 q[i]->si = /*(uint64 *) mymalloc((length-1)*sizeof(uint64))*/ NULL;

 q[i]->lags = (uint64 *) mymalloc(length*sizeof(uint64));

 q[i]->parameter = param;

 q[i]->seed = seed;

 q[i]->init_seed = initseed;

 if (q[i]->lags == NULL/* || q[i]->si == NULL*/)

 return NULL;

 }

62

/* specify register fills and node number arrays */

/* do fills in tree fashion so that all fills branch from index */

/* contained in nstart array */

 q[0]->stream_number = lowword(nstart[0]);

 get_fill(nstart,q[0]->lags,param,seed);

/* si_double(q[0]->si,nstart,length);*/

 nindex = (uint64*)malloc((length-1)*sizeof(uint64));

 for(i =0; i < length-1; i++)

 set(nstart[i],nindex[i]);

 run = 0;

 for(i = 1; i < length-1; i++)

 if(notzero(nindex[i])){

 run = 1;

 break;

 }

 set(ONE,mask);

 for(m=0; m<length; m++)

 {

 and(SEED_MASK,mask,temp1);

 if(notzero(temp1))

 findseed(1,q[0]->lags[m], &q[0]->lags[m]);

 else

 findseed(0,q[0]->lags[m], &q[0]->lags[m]);

 lshift(mask,1,mask);

 }

 /*

 add(q[0]->si[0],ONE,q[0]->si[0]);

 i = 1;

 order[0] = 0;*/

63

 lshift(ONE,MAX_BIT_INT+1,mask2);

 if (ngen>1)

 for (i=1;i<ngen;i++)

 {

 for(j = 0; j < length-1; j++){

 add(nindex[j],ONE,nindex[j]);

 and(nindex[j],mask2,temp2);

 if(notzero(temp2)){

 xor(nindex[j],mask2,nindex[j]);

 if(j==length-2){

 fprintf(stderr,"ERROR: Invalid stream number used for\

 initialization, Independence of streams not gauranteed.");

 }

 }

 else{

 break;

 }

 }

 q[i]->stream_number = lowword(nindex[0]);

 get_fill(nindex,q[i]->lags,param,seed);

 set(ONE,mask);

 for(m=0; m<length; m++)

 {

 and(SEED_MASK,mask,temp1);

 if(notzero(temp1))

 findseed(1,q[i]->lags[m], &q[i]->lags[m]);

 else

 findseed(0,q[i]->lags[m], &q[i]->lags[m]);

 lshift(mask,1,mask);

 }

64

 if (ngen == i+1)

 break;

 }

 free(nindex);

 i=0;

 if(run==0)

 for (i=0;i<ngen;i++)

 {

 for (j=0;j<length*4;j++)

 advance_state(q[i]);

 xor(t,INT_MASK,r);

 if(!notzero(r)){

 i++;

 break;

 }

 add(t,ONE,t);

 }

 while (i<ngen)

 {

 for (j=0;j<RUNUP*length;j++)

 advance_state(q[i]);

 i++;

 }

 return (int**)q;

}

/**

 gmp2sn converts a GMP number to the correct format for the

 init_by_number function. Added by Jason Parker as part of

65

 SPRNG 3.0

**/

#ifdef USE_PMLCG

#ifdef __STDC__

int* gmp2sn(int rng_type, int param, mpz_t a)

#else

int* gmp2sn(rng_type, param, a)

int rng_type, param;

mpz_t a;

#endif

{

 int length, i;

 mpz_t b,c,d;

 uint64* ret;

 uint64 t;

 mpz_init_set(b,a);

 mpz_init(c);

 mpz_init(d);

 length = valid[param].L - 1;

 ret = (uint64*)malloc(length*sizeof(uint64));

 for(i = 0; i < length; i++)

 ret[i] = 0;

 for(i = 0; i < length; i++){

 if(mpz_cmp_ui(b,0)==0)

 break;

 mpz_tdiv_r_2exp(c,b,MAX_BIT_INT+1);

 mpz_tdiv_r_2exp(d,c,32);

 mpz_tdiv_q_2exp(c,c,32);

 ret[i] = mpz_get_ui(c);

 lshift(ret[i],32,ret[i]);

66

 t = mpz_get_ui(d);

 or(ret[i],t,ret[i]);

 mpz_tdiv_q_2exp(b,b,MAX_BIT_INT+1);

 }

 mpz_clear(b);

 mpz_clear(c);

 mpz_clear(d);

 return ret;

}

#endif

B.6 PMLCG functions

/**

 init_by_number gives users random access to streams. See

 documentation for details.

 Added by Jason Parker as part of SPRNG 3.0

**/

#ifdef __STDC__

int init_by_number(int rng_type, unsigned* start, int nspawned, int ***newgens, int seed,

int mult, int checkid)

#else

int init_by_number(rng_type, start, nspawned, newgens, seed, mult, checkid)

int rng_type, nspawned, ***newgens, seed, mult, checkid;

unsigned* start;

#endif

{

 struct rngen **genptr;

 int i;

67

 if (nspawned <= 0) /* is nspawned valid ? */

 {

 nspawned = 1;

 fprintf(stderr,"WARNING - spawn_rng: nspawned <= 0. Default value of 1 used for

nspawned\n");

 }

 genptr = (struct rngen **)

 initialize_by_number(nspawned,(MP_INT*) start,seed,mult);

 if(genptr == NULL) /* allocate memory for pointers to structures */

 {

 *newgens = NULL;

 return 0;

 }

 else

 {

 *newgens = (int **) genptr;

 for(i=0; i<nspawned; i++)

 {

 genptr[i]->rng_type = rng_type;

 genptr[i]->gentype = GENTYPE;

 genptr[i]->stream_number = *start + i;

 genptr[i]->nstreams = 0;

 genptr[i]->init_seed = seed;

 genptr[i]->parameter = mult;

 genptr[i]->narrays = 0; /* number of arrays needed by your generator */

 NGENS++;

 }

68

 }

 if(checkid != 0)

 for(i=0; i<nspawned; i++)

 if(addID((int *) genptr[i]) == NULL)

 return i;

 return nspawned;

}

/***

 initialize_by_number is called by the init_by_number function.

 It is not a user function.

 Added by Jason Parker as part of SPRNG 3.0

***/

int **initialize_by_number(int ngen, MP_INT *old_si, int seed, int param)

{

 /*

 called by: init_by_number

 calls : init()

 GMP routines

 params : int ngen = number of generators to initialize

 MP_INT old_si = value of k to use for first generator produced

 seed = encoding of starting state of generator

 param = power that determines Merssene prime

 returns : pointer to pointers to RNGs (rngen structures)

 Initializes 'ngen' new generators

 (allocates memory and gives initial values to the elements of 'rngen')

69

 */

 int i,k,l,*order;

 struct rngen **q;

 static unsigned long a[2], r[2];

 int a_size;

 mpz_t temp;

 mpz_init(temp);

 order = (int *) mymalloc(ngen*sizeof(int));

 /* allocate memory for 'ngen' generators */

 q = (struct rngen **) malloc(ngen * sizeof(struct rngen *));

 if (q==NULL || order==NULL)

 return ((int **)NULL);

 for (i=0; i<ngen; i++)

 {

 q[i] = (struct rngen *) malloc(sizeof(struct rngen));

 if(q[i] == NULL)

 return NULL;

 mpz_init(&(q[i]->k));

 }

 /* set up 1st generator */

 mpz_set(&(q[0]->k),old_si);

#ifdef LONG64

 a_size = init(a, r, &(q[0]->k),seed,param);

 q[0]->mult = (unsigned LONG64)a[1]<<32|a[0];

 q[0]->x = (unsigned LONG64)r[1]<<32|r[0];

#else

 q[0]->a_size = init(q[0]->a, q[0]->r, &(q[0]->k),seed,param);

#endif

70

 mpz_set(temp, old_si);

 /* set up remaining generators */

 i = 1;

 order[0] = 0;

 if (ngen>1) while (1)

 {

 mpz_add_ui(temp,temp,1);

 mpz_set(&(q[i]->k), temp);

#ifdef LONG64

 a_size = init(a,r,&(q[i]->k),seed,param);

 q[i]->mult = (unsigned LONG64)a[1]<<32|a[0];

 q[i]->x = (unsigned LONG64)r[1]<<32|r[0];

#else

 q[i]->a_size = init(q[i]->a,q[i]->r,&(q[i]->k),seed,param);

#endif

 if (ngen == ++i)

 break;

 }

 mpz_clear(temp);

 free(order);

 return((int **)q);

}

/***

 gmp2sn converst a gmp number to the correct format for the

 init_by_number function. Added by Jason Parker as part of

 SPRNG 3.0

***/

int* gmp2sn(int rng_type, int param, mpz_t a){

71

 MP_INT *b;

 b = (MP_INT*)malloc(sizeof(MP_INT));

 mpz_init(b);

 mpz_set(b,a);

 return (int*)b;

}

72

BIBLIOGRAPHY

1. T. Bass. The Newtonian Casino. Penguin, London: 1990.

2. D. Burton. Elementary Number Theory. McGraw-Hill, New York: 1997.

3. A. De Matteis and S. Pagnutti, “Parallelization of random number generators and

long-range correlations.” Parallel Computing, 15: 155-164, 1990.

4. A. De Matteis and S. Pagnutti, “Long-range correlations in linear and non-linear

random number generators.” Parallel Computing, 14: 207-210, 1990.

5. Free Software Foundation. GNU Autoconf, http://www.gnu.org/software/autoconf/

6. Free Software Foundation. GNU Automake.

http://www.gnu.org/software/automake/automake.html

7. Free Software Foundation. GNU MP, http://www.gnu.org/software/gmp/gmp.html

8. D. Knuth. The Art of Computer Programming vol. 2 Seminumerical Algorithms. 3
rd

ed. Addison-Wesley, Reading: 1998.

9. D. Lehmer. “Mathematical Method in Large-scale Computing Units.” 2
nd

 Symposium

on Large-Scale Digital Calculating Machinery, 141-146, Harvard U. P., Cambridge:

1951.

10. G. Marsaglia. “Random Numbers Fall Mainly in the Planes.” Proceedings of the

National Academy of Sciences of the United States of America, 62: 25-28, 1968.

11. M. Mascagni and A. Srinivasan. “SPRNG: A Scalable Library for Pseudorandom

Number Generation.” ACM Transactions on Mathematical Software, 26:436-461, 2000.

12. M. Mascagni. Personal Communication.

13. H. Niederreiter. Random Number Generation and Quasi-Monte Carlo Methods.

SIAM, Philadelphia: 1992.

14. A. Srinivasan, M. Mascagni, and D. Ceperley. “Testing Parallel Random Number

Generators”. Parallel Computing, 29:69-94, 2003.

73

BIOGRAPHICAL SKETCH

 Jason Parker was born in Memphis, TN in 1979. He remained there and received

a high school diploma from Memphis Harding Academy in 1997. He earned a Bachelor

of Science in Mathematics and Computer Science from Florida State University in 2001.

	The Florida State University
	DigiNole Commons
	11-14-2003

	Extensions and Optimizations to the Scalable, Parallel Random Number Generators Library
	Jason Allen Parker
	Recommended Citation

