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ABSTRACT 

 

This work will examine enhancements to the library for scalable, parallel pseudorandom 

number generation (SPRNG).  SPRNG uses parameterization to produce many streams of 

random numbers with emphasis on parallel Monte Carlo methods.  We extend the 

previous work to enable random access to these streams.  This new method for generating 

streams improves both functionality and intuition of interface.  Also considered are a few 

memory optimizations to the SPRNG library.  
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CHAPTER 1 

 

INTRODUCTION 

  

 

 

 This work will examine computational random number generators towards the 

end of improving the Scalable, Parallel, Random Number Generators (SPRNG) Library.  

We work toward establishing a more intuitive and useful interface to extend the purposes 

for which SPRNG is useful.  We also concentrate on reducing memory usage to provide 

high performance users the efficiency needed for ever larger and more parallel Monte 

Carlo applications (applications that consume random numbers).  Monte Carlo algorithms 

provide more economical solutions to many problems than deterministic methods.  Since 

many Monte Carlo applications are naturally parallel, allowing for a greater degree of 

parallelism is of importance to any random number generator that supports such 

applications.  The work herein will extend and optimize SPRNG toward creating a more 

useful and general random number generator.  We will first give a necessary background 

for random number generation and SPRNG. 

 

1.1 Randomness 

 

Randomness is a property of nature that has fascinated man since before 

computers were a twinkle in Turing’s eye.  We have used it as an essential part of our 

sports and games, settled disputes with it at times, and even fought it in our weak 

predictions of the near future.  The apostles even used a random source, casting lots, as 

an interpretation of the hand of God in choosing the apostle to replace Judas.  While 

computers don’t gamble or worry about the weather, randomness appears to be a valuable 

resource in computing in the general, but the sorts of randomness a computer can use 

tend to be more specific.  Computers are in fact deterministic, at least as much as we can 

make them.  We try to make the probability of errors in our computations as small as 

possible, and make great efforts to correct random faults that do arise.  While physical 
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sources of randomness provide an intuitive solution, this field has met with much 

opposition, with even the most sophisticated methods yielding complex patterns that 

betray the randomness they hope to provide.  So until a source of randomness is 

identified, perfect not only in its statistical properties, but also in the efficiency with 

which it produces random numbers, programmers settle for only a partial definition of 

randomness when compared with the intuitive nature of non-determinism.  However, we 

will see that not much is lost if deterministic methods for generating random numbers are 

thoroughly evaluated and tested against the many properties we have found them to 

possess. 

 

 

1.2 Physical Sources of Randomness 

 

 In understanding the properties that a sequence of numbers must possess in order 

to be used in place of a random sequence, it may help to first examine the intuitive nature 

of randomness that arises all around and why such a natural source has not come to 

widespread use.  One of the most popular examples for addressing this issue has always 

been games of chance.  Consider the roulette wheel.  For those not familiar with the game 

of roulette, it consists or a flat wheel with 37 or 38 slots on top.  While the wheel is 

spinning, a metal ball is thrown along the outside of the wheel and eventually settles into 

one of the slots.  This might be one of your first candidates to add to a computer as a 

physical source of randomness.  The ball and wheel could be set in motion by simple 

mechanical design.  Sensors in the slots could then give the computer a random number 

in [0,N) where N is 37 or 38 depending on the wheel.   

 

However, scientists studying chaos theory found a way to beat the roulette game, 

which would be impossible if every spin gives a truly random number.  They were able to 

measure the speed of the ball and wheel while a certain dealer was working the apparatus 

and predict that some numbers had higher probability than others [1].  Also consider the 

time it takes for the ball to settle into a slot.  It takes so long, that casinos allow betting 

during the early part of the spin.  Both these serve to make a roulette wheel an impractical 
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random number generator.  If an operator disturbs the probability distribution of the 

wheel by tending to spin the wheel and throw the ball at a certain speed, certainly a 

mechanized version would have the same problem.  While many sources of randomness 

have errors in their probability distribution functions usually small enough for us to deal 

with, it is the inefficiency of these physical sources that have kept them out of wide 

spread use in computing.   

 

 Another attempt for physical generation has been based on radioactive decay.  

The problem that arises in this technique is the imprecision of measurements involved.  

The sort of detector used becomes less sensitive to decay for a brief period following 

detection, thus allowing small errors to arise [12].  Similar problems with measurement 

arise in some other suggested physical generators.  In fact, most random numbers based 

on the measurement of physical randomness are of poorer quality than the simplest 

pseudorandom number generators. 

 

 Yet another reason that physical processes do not provide a good source for 

randomness in scientific applications is that the numbers are not reproducible.  A key 

element of an objective scientific experiment is that the results can be verified by 

repeating the experiment; this quality is called reproducibility.  The numbers produced by 

a physical source of randomness cannot be guaranteed to be identical to any previous 

recorded observation.  Reproducibility is especially important where computer 

programming is involved. If a bug is identified that depends on the random numbers a 

program uses, it is necessary to observe those conditions again to confirm that the bug is 

removed.  So we turn to generating our sequences of numbers arithmetically, and hope to 

preserve properties of our numbers that will be useful in the computations to be 

performed. 

 

1.3 Pseudorandom Number Generators 

 

 A pseudorandom number generator is a deterministic recurrence that passes tests 

of randomness and performs well in applications requiring randomness. Take as an 
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example the Linear Congruential Generator (LCG).  The LCG uses a recursive method to 

generate a random sequence and is defined by [9]:   

 

NbaXX nn mod)(1 +=+  

 

where nX  represents the nth number of the sequence, a is the multiplier, b is the additive 

constant, and N the modulus. 0X is called the seed, being the initial value for the 

recurrence. The values that do not change in the recursion are called parameters.  This is 

one of the most popular generators today and three of the six generators in SPRNG are 

versions of the LCG. In order for this recursion to produce values that are random, the 

parameters must be chosen properly.  There are many properties of a random number 

generator that combine to make it resemble a random sequence, not the least of which are 

period and distribution. 

 

 Periodicity is an important property of any recursive random number generator.  

Since a random number generator is stored in a finite amount of memory, it must 

eventually come to a state that it has been in before, after which it will begin to repeat the 

same numbers.  The amount of numbers produced in this repetition is the length of the 

period.  That is, the period of a sequence is the smallest p such that: 

 

0n∃ such that npn XXnn =>∀ +,0 . 

Random number users must be careful not to use numbers after the period has expired.  

Thus, it is important to know exactly how many numbers will be produced by a generator 

before it begins to repeat itself.  Running over the period length can be detrimental to 

many random number applications.  Take for instance the LCG.  The properties 

necessary for maximal period depend on the form of the modulus chosen.  SPRNG 

provides both a power-of-two modulus version and a prime modulus version.  With 

symbols preserved from the above equation, the power of two modulus version has a 

period of N when: 
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1.  
kN 2=    

2.  2>k  

3.  4mod3≡a  

 

 The prime modulus version has a period of N-1 whenever the multiplier is a 

primitive root of the integers modulus N.  Since N is prime, this means that the order of 

the multiplier must be N-1.  The order of an element α modulus M is the least β  such 

that: 

Mmod1≡βα [2]. 

Since the period is N-1, one element of integers modulus N must be omitted from the 

sequence.  This element is given by: 

 

NabX mod)1( 1−−=  

 

 Another important property of random number generators is distribution.  The 

most commonly used is the uniform distribution on [0,1).  Thus, in practice, the numbers 

produced by the LCG are divided by the modulus to map them onto this interval.  A very 

good measure of the distribution of the LCG is the spectral test to be described later. 

 

 Even with maximal period and a good distribution, our sequence goes only so far.  

Take for instance choosing a =1 and b =1.  Any N can be chosen to meet the requirement 

for maximal period, because the sequence produced is the integers modulo N in order; 

this is not very random.  Surely sequential numbers are not very random.  To further 

ensure quality of random numbers, they must pass many statistical tests.  It is widely 

known that no one test that suffices for a general random number sequence.  In fact, for a 

given application different tests become more or less important because of the properties 

desired of the numbers for that particular application.  Strong mathematical evidence for 

good performance on these tests based on the properties of a generator serves as a 
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credible source to augment the empirical evidence provided by computing the tests on 

portions of the random number sequences. 

 

The first discussed is the Chi-square test [8]. Consider an apparatus designed to 

yield 1 of n outcomes with jp  being the probability of the j
th

 outcome.  The apparatus is 

also designed to yield an independent result on each of its activations.  The Chi-square 

test described by Knuth[1] gives a way to test the validity of such an apparatus.  This test 

is among the most popularly used today.  The idea is to use our apparatus a large number 

of times and calculate the difference of the observed distribution and the expected 

distribution.  Should the apparatus be used M times, the j
th

 outcome is expected to occur 

jpM *  times.  Let jR  be the observed number of times the j
th

 outcome arises.  We the 

sum the squares of the difference of jR  and jpM * .  We must also normalize to account 

for the differing probability of outcomes and after some manipulation arrive at the 

formula: 

 

=2X ∑
=

−n

j j

jj

pM

pMR

1

2

*

)*(
 

2X , called the Chi-Square statistic, is then compared to a distribution based on the value 

n-1, called the degrees of freedom, giving us an idea of how far the value is from average.  

A value that is too high or low suggests a sequence may not be a good source of 

randomness.   

 

So far we have described here a hypothesis test for a random source with a finite 

number of outcomes.  Extending the idea to a continuous version, we can test a random 

number generator on [0,1) (the real interval greater than or equal to 0 and less than 1) by 

dividing that interval into bins and counting the numbers in each bin. We can also choose 

a more complicated outcome based on several random numbers and apply the Chi-square 

test.  For example, the poker test takes n-tuples of random numbers and determines their 

relative ordering so that one of the n! permutations of the ordering can be identified.  
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Then n! bins are used to tabulate the empirical distribution of the permutations after 

which the Chi-square test can be used to check whether this distribution is uniform. 

 

 While the Chi-Square test is designed for testing the quality of a discrete 

probability distribution, the Kolmogorov-Smirnov (K-S) test [8] is designed to check 

continuous probability distributions.  The idea is that for any value, x, in [0,1) we can 

calculate the expected number of sequence elements that are less than x.  We can then 

calculate the maximum difference between this expected value and the observed value to 

determine how much they differ statistically. This maximum is easy to compute because 

we only need to measure the difference at each point produced by our sequence.  The 

sequence can be sorted into ascending order and each considered in turn.  Much like the 

Chi-square test, the expected distribution for these measurements can be calculated based 

on the number of elements in the sequence to be tested.    

  

 One of the most powerful tests used today is the spectral test [8].  The ideas 

underlying it are more complicated that those of the aforementioned tests, and obtaining 

the results requires more computation.  The idea behind the spectral test is to examine 

overlapping tuples within a sequence.  Say we decided to use a 3-dimensional spectral 

test; we would consider elements 1,2,3 of the sequence then 2,3,4 and so on.  The space 

the random numbers fall along is then divided up into hypercubes and a count is made for 

each section.  The higher the dimensionality of the test, the more sections the space is 

divided into.  Good random number generators should perform well in dimensions 

numbering at least 6 to 10.  For example, these tuples reveal something very interesting 

about the Linear Congruential Generator (LCG).  The tuples produced by the LCG will 

lie in parallel hyperplanes [10].  For instance, 2-tuples would lie on parallel lines in two 

dimensions and 3-tuples would lie along parallel planes in three dimensions.  This test 

can be applied to the output of an LCG to determine the quality of its multiplier.  

Moreover, applying the spectral test to an LCG allows number theoretic shortcuts for 

calculation to reduce computational intensity.   
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While the structure of the tuples of an LCG looks suspect, many multipliers can 

be used to pass this test in several dimensions.  This is a good example of how many 

statistical tests are necessary to ensure proper quality of generators, with differing 

applications better served with differing generators.  The programmer of an application 

should be well informed about the statistical properties of particular random number 

generators when deciding which one would best suit the application.  The notion of 

uniform distribution given by the spectral test is a powerful one however.  Many Monte 

Carlo applications, such as multidimensional integration, converge much faster with 

uniformly distributed numbers, even when other properties are neglected.  This has given 

rise to quasirandom numbers, which prioritize uniform distribution above all other 

properties for those applications in which they yield faster convergence [13]. 

 

 The architect of a random number library must provide various methods to meet 

the needs of a large audience of random number consumers.  While SPRNG has 

generators that meet the requirements for many different statistical tests and 

measurements, many opportunities for broadening the application of the library are 

available.  An important consideration is the lack of knowledge most users have about the 

specifics of random number generation.  Good information hiding practices require that 

our library should be available for use with as little knowledge of the underlying 

architecture as possible.  These ideas and many more have been taken into to 

consideration to design SPRNG, and we hope to improve on them here. 
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CHAPTER 2 

 

THE SCALABLE, PARALLEL, PSEUDORANDOM NUMBER GENERATORS 

(SPRNG) LIBRARY 

 

 

 

 The SPRNG library is written in the C programming language, with interfaces 

added to support the FORTRAN programming language.  It has been designed to provide 

support for a wide range of random number needs, from a simple interface for those users 

who just need a little randomness, to generators yielding billions of independent random 

number streams.  The remaining portion of the document will be applicable to the 

standard SPRNG interface and is geared toward high performance, parallel applications. 

 

2.1 Parallel Random Numbers 

 

 The tests above apply to testing the output of a single, serial random number 

generator.  It has been repeatedly observed that Monte Carlo applications (those 

applications that use random numbers) are often naturally parallel.  Many of these 

applications make many runs of the same algorithm with different random numbers until 

the error is acceptably small.  It immediately follows that being able to distribute the runs 

among computing nodes provides a near linear speed up in the factor representing the 

parallelism occurring.  That is, having N available computational nodes allows for a 

speed up of nearly N times.  In most Monte Carlo applications, little or no interprocessor 

communication is needed as the runs are independent by design.  Many parallel 

applications require results computed in parallel to be available to other processes.  This 

creates overhead similar to any networked effort.  Some processes will also require 

information from other processes to perform, creating a de facto serial aspect to the 

application.  Since many Monte Carlo applications do not need this sort of 

communication, they are good candidates for high performance, massively parallel 

calculations.   
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To accommodate parallel applications, more than one sequence of random 

numbers must be used.  In this context we will refer to these sequences as streams.  The 

reader should understand that these streams are usually from the same mathematical 

family, not only sharing a common method of generation, but many of the parameter 

choices as well.  It simply will not do to have only one serial generator.  Not only would 

this be horribly inefficient, adding an unnecessary shared resource to the mix, making it 

reproducible would be difficult, because the numbers would not necessarily be consumed 

in a particular order because of real time variations.   

 

 The reader will probably intuit that we could not use the same random number 

stream for each parallel task, so we turn to the ability to produce many different streams 

of random numbers.  In fact, the statistical independence of runs in Monte Carlo 

applications is very much affected by the statistical quality of the streams used.  We 

describe two methods for creating a large number of streams, namely splitting and 

parameterization.   

 

The first of these, splitting, takes a single random number stream as the source for 

all the numbers used in all parallel processes.  Splitting has many variations.  For 

example, blocking is a method whereby one long stream of random numbers is cut into 

contiguous pieces.  Suppose we wish to split a sequence of length N into M pieces 

(assume M|N), then the first stream will be: 

110 ,...,, −
M

NXXX . 

The second stream will be: 

1
2

1
,...,,

−+
M

N

M

N

M

N XXX . 

and so on.  This method provides ease of generation after the stream is split, with the 

main difficulty in determining which initial condition to give each of the pieces so that 

they will be equally long.  The user must take care to not let one stream run over into the 

next stream’s numbers.  Also, blocking is prone to correlations among the streams 
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produced [3, 4].  In fact, any generator based on blocking will have strong correlations 

among the streams.  Blocking is not used in the SPRNG library because of this generic 

defect. 

 

  Leapfrogging is another splitting method that can create many streams out of an 

original by decimating the sequence of numbers.   That is, if we want to create N streams 

from one stream by leapfrogging, each sequence receives the numbers of a different 

congruence class modulo N.  If jX  is the j
th

 element of the original sequence, then the 

first stream will be: 

,...,, 20 NN XXX  

The second stream will be: 

,...,, 1211 ++ NN XXX  

and so on. This can be thought of as “dealing” random numbers as one deals cards for 

play.  There has been interest to adding such a method to SPRNG to provide more 

streams than are currently available for some generators and this method has been tested 

on the SPRNG LCG generator with very good results.  However, parameterization is the 

primary way SPRNG provides streams of random numbers for parallel applications in an 

efficient, reproducible way.  Parameterization underlies the work done here. 

 

2.2 Parameterization 

 

 SPRNG has six different random number generators.  Each generator provides a 

different mathematical method for generating random numbers. Reusing a previous 

example, the linear congruential generator (LCG) uses the recurrence: 

 

NbaXX nn mod)(1 +=+    

 

Each of the generators in SPRNG is capable of generating several streams by varying the 

parameters in the generator, a and b in the LCG example.  These streams all must satisfy 
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a condition of independence, that is, there is no appreciable correlation between any two 

streams.  Much of the work on SPRNG has been done on the way users can instantiate 

those different streams.   

 

 Parameterization is a complex issue and one of the most important aspects of the 

SPRNG library.  It is parameterization that provides the scalable parallelism for which 

SPRNG is named [11].  The difficulty in parameterization lies in the additional 

requirement that the individual streams must be independent, that is they may have no 

appreciable correlation.  This is in addition to the already required properties of serial 

random number generators that each stream must satisfy.  Furthermore, the 

parameterization must be easy to compute to provide efficient instantiation of streams.  

An appropriate form for the parameterization of LCG must be based on consideration of 

the form of the modulus.  Parameterizations are discussed in [11] based on both prime 

and power-of-two moduli.  Both of these are available in SPRNG through different 

versions of the LCG generators included.   

 

 For example, in the power-of-two version, the parameter varied is the additive 

constant (b in the above equation).  Of course, not every set of constants will do; sets 

must contain elements that are relatively prime to all the others.  In the SPRNG 

implementation, the i
th

 stream uses the i
th

 prime as its constant.  The Fibonacci generators 

in SPRNG, both the modified lagged-Fibonacci Generator and multiplicative lagged-

Fibonacci generator, use seeding for parameterization.  In turn, the seed given by the user 

is combined with the parameterized seeding to yield different streams for different seeds. 

 

 For the sake of implementation, SPRNG generators impose a numbering scheme 

on the parameterized streams.  The identification of a stream in this scheme is called the 

stream number.  This numbering scheme may seem implicit since it takes an appropriate 

form for each generator, but nonetheless all of the current SPRNG generators yield to a 

numbering system for the different streams. 
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2.3 The Fibonacci Generators 

 

Two very important generators in SPRNG are the modified lagged-Fibonacci 

generator (LFG) and the multiplicative lagged-Fibonacci generator (MLFG).  These 

generators provide far more possible streams than the other SPRNG generators.  This 

makes the Fibonacci sequences a favorite for high-performance, massively parallel 

applications.  Many SPRNG users need more streams than are available in the other 

SPRNG generators.  However, both of these generators use a large array to store past 

values, since they combine two of these numbers to calculate the next value.  Instead of 

the number of streams available, memory becomes the prohibitive factor to the level of 

parallelism many SPRNG users are trying to attain.  The modified lagged-Fibonacci 

generator was developed to overcome certain weaknesses in the additive lagged-

Fibonacci generator [11]: 

 

m

knjnn XXX 2mod−− += , where k > j. 

 

The modified version uses the exlusive-or (XOR) of two different, but related, additive 

lagged Fibonacci sequences [14].  The multiplicative lagged Fibonacci generator is as it 

its name might suggest [11]: 

 

m

knjnn XXX 2mod* −−=  , where k > j. 

 

Notice that the Fibonacci generators require k numbers as initial values;  k is called the 

lag.   

 

 The users of these generators will benefit the most from the work explained here.  

Because of the large number of initial values needed, these generators offer the 

opportunity for a large number of different seeds.  The downside is that each stream will 

have to carry a large array of numbers already generated, consuming more memory than 
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other generators.  These generators are particularly suited for parallel applications 

because of the large number of streams available.  However, the large state space 

(memory consumed by a stream’s underlying data) is often prohibitive for using all of the 

streams available.  Those with very large lags are suitable for applications requiring few 

streams of long period.  Those with smaller lags are suitable for generating many streams 

of random numbers, provided the lag is not so small as to limit the period length or the 

quality of the streams below what a user needs. 

 

2.4 Initialization and Spawning 

 

 SPRNG uses a two-function method for user generation of random number 

streams.  The two functions called are init_rng and spawn_rng.  The user first calls 

init_rng once per stream created and usually at least once per processor in a parallel 

computation.  These calls are usually done in a single step at the beginning of the 

computation to create a random generator in each processor. Each call takes as input the 

number of times the init_rng function is to be called (total_gen) and the stream number 

(gennum).  Error checking tests that gennum is in [0,total_gen).  Subsequent to these 

calls, a user calls the spawn_rng function to produce new streams.  The spawn_rng 

function takes as input a number of streams to be produced (nstreams) and an already 

existing stream in the form of the appropriate struct.  A struct is a programming construct 

in the C language that allows many data items of different types to be stored and handled 

as a single unit.  This particular struct is prepared with spawning information used to 

produce the correct streams in a reproducible manner.   

  

 The reproducibility requirement is the guiding principle behind most of the 

architecture in the spawning process.  The idea is that each stream instantiated will have 

reference to a set of unused streams.  We will call this set of unused streams the spawn 

pool.  Whenever new streams are spawned from a particular stream (that is to say the 

spawn_rng function is called with the struct of that stream), that stream’s spawn pool is 

implicitly divided up among itself and the newly created generators.  To implement such 

a scheme, a tree is used with nodes representing available streams.  Every stream has a 
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pointer to one of its descendants.  This pointer points to the root of a subtree of unused 

streams.  The spawn_rng function updates all the spawning information in both the struct 

used to call the function and the new ones created.   The different generators use different 

methods for realizing the tree paradigm, and we will flesh out the details below. 

 

 We first examine the main dichotomy among spawning methods for different 

generators.  The Fibonacci generators force a binary tree structure upon all possible 

streams with each struct containing a spawn pointer to an unused stream.  A call to 

spawn_rng will return streams at the top of this subtree, after which the original spawn 

pointer and new pointers reference the unused children of those nodes representing the 

created streams.  The next two diagrams show the before and after states of spawn 

pointers in the binary tree method.  The lines represent the tree structure and the arrows 

represent the spawn pointers. Here, we show a spawn_rng call that returns only one 

stream.  The node labeled 0 represents the stream the function is called upon, and the 

node labeled 1 represents the stream instantiated by the call.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.1 Binary tree spawning before spawn_rng is called on the node denoted by 0. 

 

1 
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Figure 2.2 The binary spawn tree after spawn_rng is called on the node denoted by 0. 

 

 

 The generators with fewer streams available use a dynamic tree, where a node has 

as many children as the number of streams requested by the call to spawn_rng on that 

node.  However, readers might find it more intuitive to think of this progression in a more 

linear fashion.  Suppose we represent the j
th

 available stream with Yj.  A spawn pointer in 

this scheme is stored in terms of an offset, k, so that the spawn pool can be represented 

by: 

1|{ ≥+ nY nkj  and }Mnkj ≤+ , 

where M is number of streams available in the generator.  Whenever the spawn_rng 

function is called, requesting a number of streams, r, the new generators can be 

represented by: 

rkjkjkj YYY +++ ,...,, 2  

Subsequent to the call, the new streams instantiated, along with the stream which was 

provided as input, have an offset of rk.  As you can see, this method has a tree structure in 

its method of dividing spawn pools, though the structure of the tree is less obvious than 

that of the binary tree method. 

 

1 

3 2 

0 
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 The different spawning methods were created for the differing requirements of the 

various generators.  The dynamic tree method seems more justified under the following 

logic when we consider the problem of “falling off the tree”.  Falling off the tree is the 

condition of having made a spawn call requesting more streams than in the spawn pool of 

the stream given as input.  Not knowing a priori about which streams will be used in later 

spawning calls, the optimal condition following a spawn call is that all streams created by 

the call will have nearly equal spawn pools.  This is a slight oversimplification; one might 

also posit that a stream that has been used in a spawn call will be more likely to spawn 

again in the future.  The binary tree method accounts for this in the case of multiple 

streams being generated, and gives half of the remaining spawn pool to the stream used 

as input to a spawn call.  This can cause problems if certain numbers of streams are 

instantiated at a time, but the main difference seems to lie in the division of spawn pools 

among the newly generated streams.   

 

 The dynamic tree method lets the spawn pools vary by at most one, where the 

binary tree allows some spawn pools to be twice as large as others.  On the other hand, 

the binary tree method requires less memory.  For the dynamic version, both the current 

stream number and the offset must be stored (stream numbers can be quite large in some 

of the generators).  So for some generators, the dynamic method could require twice as 

much data as the binary version.  Thus, the MLFG and LFG generators, which have the 

most streams and require the most memory, use the binary tree to reduce required 

memory.  One should consider the particular generator for deciding which method is best.  

However, the current spawn functions in SPRNG have not been changed.  The init_rng 

and spawn_rng functions have been left as is, and we have created a new method for 

instantiating streams that allows random access to all possible streams.  We left the old 

init_rng and spawn_rng functions because of the usefulness they exhibit for a certain 

class of applications.  The new method will be more general in nature. 

 

 Simulations cover a wide range of applications and produce much of the demand 

for random numbers.  One of the most popular uses of the SPRNG library is particle 

simulation.  In fact, we will see that the current SPRNG library has particle simulation at 
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its heart in the design of initialization and spawning.  Most particle simulations do well to 

have one random number stream per particle.  The current method of spawning allows a 

user to create more streams from an already existing stream.  Take for example the 

problem of neutron transport in nuclear reactions.  The neutrons travel through some 

medium, and it has been observed that their motion is more appropriately described by 

probability distributions than a deterministic path.  Random numbers are used to simulate 

such stochastic motion.  The neutrons also cause events in the reaction.  Sometimes they 

are absorbed, but sometimes they collide with other atoms causing fission.  This fission 

creates more free neutrons that require a random number stream to determine their 

activity.  This exemplifies the design of the init_rng and spawn_rng functions.  They are 

designed to provide reproducibility in an environment where processes are branching 

according to the random numbers that have already been consumed.  The init_rng 

function is used to provide enough streams to start the simulation, but the spawn_rng 

function is used afterwards whenever splitting requires new streams to be instantiated. 

 

 This is an ingenious design which prevents the user from having to know which 

streams have been consumed in order to instantiate new ones, but this method may feel 

restrictive in other situations.  While reproducibility is an important concept, we believe 

many users would benefit from more control over the random number instantiation 

process, even if a little more calculation is required to maintain reproducibility. It 

becomes unnatural to use the initialization and spawning methods where particles are not 

created by splitting. Even when splitting is required, we feel many users would prefer to 

create their own methods of collision free numbering schemes to maintain reproducibility 

while saving some memory.  We will now cover a few of the shortcomings of the current 

instantiation method. 

 

 As discussed earlier, many users have a problem with “falling off the tree”.  In 

such a case, the user has not actually exhausted all the streams available; the user has 

simply tried to spawn from a node too close to the bottom of the tree to be able to 

correctly assign spawn pointers that would point to unused streams.  In such a case, the 

current version of SPRNG simply changes the seed and points these to nodes elsewhere 
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in the tree that may or may not be independent from those already been used.  An error is 

given to the user warning that the streams in his application might no longer be 

independent of one another (in actuality, he might just be using the same streams again). 

For the most part, users have no idea how to use the spawn function to better effect, 

because they do not know of the underlying tree structure.  For example, it is usually 

more efficient to spawn a large number of streams at a single time.  The spawn function 

takes care that the new streams initialized are spread evenly at the top of the subtree.  

Deducing this requires knowledge of the tree structure.  The user does not have the 

knowledge required either to make spawn calls in a way to progress through the tree 

evenly, or to understand why it would be better to make calls requesting larger numbers 

of streams instead of smaller ones.  We have received much feedback  from baffled users 

concerning falling off the tree.  Some users have even been trying to always spawn from 

the same stream, which causes pointers to run down the side of the tree and fall off 

having initialized only a logarithmic portion of the streams that could have been used. 

 

 Another problem caused by poorly informed users is the unnecessary use of 

interprocessor communication.  The SPRNG documentation says to call the init_rng 

function once on each processor, in order that subsequent spawn_rng calls can be made 

on individual processors without having to communicate stream information between 

processors.  The tree methods are elegantly designed to avoid having to send this 

information between processors, but users do not seem to be aware of this.  Some 

SPRNG users seem to think they should initialize all their streams on only one processor 

and then send the information to other processors.  This again is probably due to a lack of 

knowledge of the underlying SPRNG architecture.  When we see problems that arise 

because of poor use of the library, we have to conclude that the SPRNG interface is much 

less than intuitive for users in many situations.  We cannot ask users to learn all about 

spawning trees so that they will use them better. The interface must be modified so that 

better information hiding can be accomplished. 

 

 A more tangible problem with this implementation, over which the user has no 

control, is the memory required in each stream.  The LCGs do not require much memory, 
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so a couple of words do not seem to matter that much. But users who need more streams 

than the LCGs can provide (or think they do because they do not understand spawning) 

need to use the Fibonacci generators for their massive parallelism.  As discussed earlier, 

the Fibonacci generators require a large array of values for initialization with as many 

elements as the size of the lag.  Moreover, the information required to implement the 

spawning structure in the Fibonacci generators is another array only one element smaller 

than the size of the lag.  As the lag grows large, some users are unable to instantiate as 

many streams as they need because of the memory required to do so.  For such users, to 

reduce the memory requirements is to allow more streams to be instantiated.  We will 

discuss this issue more quantitatively after we have seen how to remove the requirement 

for this array by shifting to a new instantiation method.     



21 

CHAPTER 3 

 

A NEW METHOD FOR CREATING STREAMS 

 

 

 

 The new init_by_number function gives random access to streams in a SPRNG 

generator.  It allows the user to have access to all the independent streams in a generator, 

with independence guaranteed simply by using different stream numbers each time.  In 

the old paradigm, stream numbers are hidden from the user, making it virtually 

impossible to use every available stream.  For instance, many particle simulations use one 

stream per particle.  So long as the particles are already numbered, creating the associated 

streams with init_by_number becomes extremely easy.  A user need only pick a generator 

with as many streams as the largest number of any particle in the simulation.  This would 

work similarly with applications that allow numbering of components that require a 

random number generator.  So long as an upper bound can be established that is smaller 

than the number of streams for some generator, the user need not fear falling off the 

spawn tree, as is the case when using spawn_rng.   

 

In fact, the previous method of spawning is so opaque as to prevent most casual 

users from determining if their spawn calls will fall off the tree in any but the most 

obvious cases.  When the user receives an error message saying that he has fallen off the 

tree, under the old method he would have little information about how to solve the 

problem.  We have even received feedback from users who have managed to discover the 

worst case (spawning from one generator or always from the last spawned) thinking they 

have found a bug in the package because they rapidly encounter this error message. 

 

To some degree, the init_rng function provided random access to streams if used 

exclusively without the spawn_rng function.  Instead of using the init_rng function to 

initialize streams at the beginning of a program, it could be used throughout.  This 

functionality is not described in the users manual, because it is not the intended use of the 
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init_rng function.  This function also has a natural limit on the number of streams 

available through its use, because the stream number is passed as a single word.  Many 

users need more streams than can be represented by one word.  To complicate the 

problem, the init_rng function takes a signed integer as the stream number (required for 

the Fortran interface), but the actual parameter is required to be nonnegative, thus halving 

the number of streams available to the init_rng function. The new init_by_number 

function allows one to initialize any stream available.   

 

 In order to make the stream number parameter multi-precise and available to the 

user for manipulation, a standard for multi-precise arithmetic and representation has to be 

implemented within.  The previous version of SPRNG had circumstances where multi-

precise data was stored in arrays of integers, specifically for the Fibonacci generators.  

However, this internal representation was very nonstandard and was an impediment to 

user manipulation.  For example, the library has internal functions for common 

operations to these arrays such as doubling and addition, but they by no means form a 

complete basis for multi-precise arithmetic, since only a few operations are necessary.  

For this reason, we have elected to use the Gnu multi-precise library (GMP) [12] for 

multi-precise parameters.  While the formal arguments of the init_by_number function 

are pointers to native arrays, a conversion function is provided for GMP integers to the 

native types.  In this way, the library is made to compile without the presence of GMP, 

but users who wish to use the init_by_number function instead of the old spawning 

routines are strongly advised to make use of GMP.  The GMP library provides functions 

enabling these conversions. 

 

The prototype for the new initialization function is: 

 

int init_by_number ( int rng_type, unsigned *start, int nspawned, int ***newgens,  

int seed, int parameter, int checkid = 0); 

 

The variables nspawned, newgens, and checkid carry the same meaning as in the 

spawn_rng function.  The variable nspawned is the number of stream to be created.  The 
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variable newgens is a pointer which returns the newly created generators.  It should point 

to an array of int**, which has been allocated with an int** per stream to be created 

(nspawned).  The checkid argument should be 0 for most runs, which is the default.  The 

variables rng_type, start, seed, and parameter have all been used to replace information 

that was formerly pulled out of the stream struct that was passed to the spawn_rng 

function.  The rng_type argument is the type of generator to be used.  The variable seed is 

the value by which the user can get different random numbers for different runs of a 

program.  The seed serves as the initial condition to each stream.  The variable parameter 

chooses the parameterization scheme and  should be adjusted according to memory and 

stream needs.  The start argument takes a pointer to an array of the appropriate size and 

type for the particular rng_type and parameter chosen.  This format can be achieved with 

the new gmp2sn function: 

 

int* gmp2sn(int rng_type, int param, mpz_t stream_number ); 

 

This function takes a single GMP number, stream_number, as a parameter and returns a 

pointer allocated with the appropriate size and type of memory which is filled with the 

number given.   

 

 Note, detailed function descriptions of the new SPRNG implementation can be 

found in the appendix. 
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CHAPTER 4 

 

BENEFITS OF THE NEW INSTANTIATION METHOD 

 

 

 

 We find that by allowing a user to access streams by stream number, benefits may 

be achieved over the old spawning method.  Allowing a user random access to streams 

allows all possible streams to be exhausted, so long as the user is willing to do the 

bookkeeping.  A user may also spawn on a particular processor without packing and 

unpacking the struct for the stream, as many of our uses have chosen to do with the old 

library.  For those that choose to use init_by_number instead of spawning, the memory 

required to describe a stream can be reduced.  While the changes made certainly increase 

functionality and efficiency, an equally important aspect is the simplicity of the interface 

the new functions provide.  Although this function might require extra bookkeeping for 

some applications, some users might find this function definition easier to understand 

than that of the old method.  All the user needs to know is that the same actual parameters 

to the function will yield the same sequence of numbers on any platform.  

 

 

4.1 Exhausting all Streams 

 

The previously mentioned problem of falling off the tree is very easy to avoid 

with the new init_by_number function. Under the old method, it is not hard for the user to 

fall off the tree without even exhausting the majority of streams.  In the worst cases 

(either spawning from one stream repeatedly or spawning stream one at a time always 

from the most recently spawned), the spawn procedure fails after having only used lg n 

streams, where n streams are available. 
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4.2 Simplicity of Interface 

 

 Much of the misuse of the init_rng and spawn_rng functions will be assuaged by 

the simplicity of the interface of the new spawning method.  Feedback indicates that 

many of our users are unaware of the proper usage of these two functions.  In fact, most 

SPRNG users never call spawn_rng. Users might be confused about the dual function 

method of stream instantiation with difficulty recognizing which should be used for 

particular circumstances.  While the documentation explains that the init_rng function 

can be called on different processors, feedback from users expresses their discomfort in 

doing so.  The pack and unpack functions are used to store the data from a stream into a 

character array and rebuild the stream from that array after it has been sent as a message 

between processors.  This means that sending a stream between processors requires both 

the overhead of the pack and unpack functions and a communication cost.  Since sending 

streams between processors is expensive, our more advanced users would like to avoid 

doing so.  It now suffices for the user to know that the same function parameters will 

yield the same sequence on any platform that SPRNG has been successfully ported to. 

For each seed, generator, and parameterization choice, the user gains random access to 

each stream available and can access them in sequential order, or any other order he sees 

fit.   

 

4.3 Memory Reduction 

 

 The memory required for the old spawning approach is staggering for some 

generators.  While those with few streams are implemented easily, those generators with 

many streams have to store a large stream number as a pointer to the next node to be 

visited.  For some high performance users, memory becomes the prohibitive factor to the 

number of streams that can be instantiated.  For example, the largest storage requirement 

in MLFG is an array of size L (in 64-bit unsigned integers), which can grow very large 

with choice of parameter.  The size of this array depends on the lag chosen, as discussed 

earlier.  An array to store spawn information is used, which is only one element shorter 

than the seed array.  Say L = 17, which is the smallest L in the public distribution of 
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SPRNG, then the spawn information array for MLFG requires (17-1)*8 + 4 = 132 bytes.  

If one were to then initialize a large number (some use billions) of streams, this would 

create an enormous memory savings.  The largest MLFG and LFG lags currently 

available are L = 1279.  The default lags are different for MLFG and LFG.  MLFG uses 

the smallest, 17, and LFG uses the largest, 1279.  With the large lag, the spawn array 

requires over 8 kilobytes (kB) for an MLFG stream and 4 kB for an LFG stream.  As the 

lag grows large the size of the eliminated array approaches half the size of the MLFG 

footprint and a third the size of the LFG footprint.  For a user that is running out memory, 

this will allow twice as many MLFG streams to be initialized.  When the lag is large, it 

does not take many stream initializations to receive a large benefit from not storing 

certain spawn information.    

 

 The user is afforded an opportunity for indirect memory savings as well.  Since 

the new initialization method allows for exhaustion of all possible streams, the user can 

choose a generator/parameter with fewer possible streams to meet his needs.  Generators 

with fewer possible streams consume less memory.  This trade off between memory and 

number of streams available has frustrated users trying to accomplish very large, parallel 

applications. Making this tradeoff easier to deal with will affect parallel applications at 

the highest order of performance.  Reduced memory consumption is one of the most 

compelling aspects of random access to streams.  
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CHAPTER 5 

 

TESTING 

 

 

 

 Random number generators must be passed through a veritable gauntlet of 

statistical and physically inspired tests.  These include testing streams for poor 

randomness within themselves and also for correlation among the many streams 

produced by a given generator and parameterization.  However, these tests have already 

been run on the generators within SPRNG, and with the exception of well known faults in 

specific generators, SPRNG performs very well on these tests [14].  Thus, the aim of 

testing the init_by_number function is to insure that the same streams are instantiated as 

with the init_rng and spawn_rng functions.  A random access numbering scheme has 

already been achieved that allows for the aforementioned functions, the random access 

was simply not fully available to the user.  The general idea of the test procedure is 

simply to instantiate streams the old and new ways, and use them to check the first few 

numbers for consistency.  Two approaches are the following.   

 

 The first is to call the init_rng and spawn_rng functions in a particular way and to 

calculate the respective stream numbers of each; then the stream numbers can be used as 

input for the init_by_number function and tested against each other.  This procedure 

essentially insures stream number consistency between the old and new methods.  This 

method is troublesome however; to test the streams to the extent that one would like for 

evidence that all components are working correctly requires fairly complicated 

calculations.  One would hope to at least use the multi-precise aspects of the internal 

arrays to make sure that all the bits are in their proper place.  Also, the testing procedure 

should be easier to manipulate than this.   

  

 Thus, an internal testing function was created, get_stream_number.  While this 

function is not intended for users, it might be of help to users in the future for certain 
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aspects of stream instantiation.  This function is required since the stream number is not 

stored explicitly in some of the generators.  Like the init_by_number function, it had to 

be crafted to each particular generator, and is probably responsible for just as many 

problems during debugging as the code being tested.  In the generators that use the binary 

tree spawning method, the stream number must be recovered through the properties of the 

binary tree.  The only time a spawn pointer points to the right child of a node is 

immediately after its instantiation.  Afterwards, the pointer will move to the left child 

after being used as a parameter for the spawn function.  One keeps moving up the tree 

until a right hand child is discovered.  The underlying operation is to right shift the entire 

multi-precise array until a 1 is shifted off  the least significant bit of the least significant 

element of the array.  This, of course, must be platform independent, and tools are 

provided in SPRNG to make it so.  With the aid of get_stream_number, any sequence of 

init_rng and spawn_rng function calls can be tested against the init_by_number versions 

of the proper stream.  Testing the GMP conversion functions is rather straight forward, 

just making sure the right numbers are computed.   

 

 As for efficiency, there is no significant difference in resources required to 

instantiate streams between the old and new methods.  The init_by_number function uses 

the same internal scheme as the old spawn functions.  The only difference is that the 

stream number is handed through a function parameter instead of being pulled from a 

stream defining struct passed as a parameter.  There are some minor speed savings given 

that spawn pointers are not being calculated.  The get_stream_number function is not a 

user function, so it need not be tested for efficiency.  
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CHAPTER 6 

 

MEMORY OPTIMIZATIONS TO SPRNG 

 

 

 

Another goal in the development of SPRNG version 3.0 (SPRNG 3) is to reduce 

memory usage.  Memory usage is an important issue for many SPRNG users.  While the 

new stream instantiation method provides significant savings in the larger generators, 

efforts have been made to reduce memory usage for all users, not just those who choose 

to adopt the init_by_number function.  Many opportunities for memory savings are 

available in SPRNG version 2.0 (SPRNG 2), and we have chosen to effect memory usage 

reduction through mostly minor changes. 

 

6.1 The Name as a String 

 

 In SPRNG 2, a character pointer was assigned a string literal during initialization.  

The string was removed with the intention of saving the memory required to store the 

string.  However, upon reevaluation it was realized that string literals are allocated 

statically, so after initialization the pointer was unstable.  The pointer is still removed, but 

the only memory saved is that of the pointer itself.  This change is more correctly viewed 

as removal of a wild pointer.   

 

6.2 Generator Specific Optimizations 

 

 While memory optimization is always a concern in SPRNG, this section describes 

an effort to create a particularly small footprint for the multiplicative lagged-Fibonacci 

generator (MLFG).  We use footprint to describe the memory consumed by each random 

number stream.  Our goal was to create a generator with 50 bytes or less of memory.  We 

miss this mark, but we do improve greatly over the smallest footprint that was available 

in the SPRNG 2 MLFG generator, which required over 300 bytes per stream.  Because of 
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the similarity between LFG and MLFG, these optimizations are applicable to LFG as 

well.  Also required was the ability to spawn, so the work described in this paper that 

saves memory by removing the spawn ability could not be used. 

 

The first optimization needed was to use a parameterization of the MLFG that 

lends itself to a small footprint.  The MLFG generator uses a recursion based on two prior 

values determined by parameters j and k.  We will let k be the larger; then the footprint 

will necessarily include k old values.  The lowest value of k in any parameterization of 

MLFG in SPRNG 2 was 17.  Values stored are 8 bytes in length.  So with this 

parameterization, the bare requirements put the footprint over 100 bytes.  We chose to 

include a new parameterization in which k is three.  This provided the most significant 

memory reduction of any changes made.  This parameterization of MLFG will be 

available in SPRNG 3, but the other parameterizations will be improved as well because 

of general changes to the implementation.  Many of the changes in fact only reduce the 

footprint by a constant amount, rather than an amount dependent on k, so they do not 

provide savings on the scale that removing the spawning information was able to. 

 

The struct used in MLFG is: 

 

struct rngen 

{ 

  int rng_type;  particular random generator to be used 

  char *gentype;  name of the generator used 

  int stream_number;  least significant bytes of the stream number  

  int nstreams; 

  int init_seed;  seed given by user before being XORed with the global seed 

  int parameter;  determines the parameterization scheme 

  int narrays;  variable used for packing and unpacking 

  int *array_sizes;  variable used for packing and unpacking 

  int **arrays;  variable used for packing and unpacking 

  uint64 *lags;  internal array for producing random numbers 
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  uint64 *si; spawn pointer 

  int hptr;          /* integer pointer into fill */ 

  int lval, kval, seed;  variables to store properties of parameterization scheme and seed 

}; 

 

 A few of the int type variables in this struct can be removed without impact on the 

functionality of the generator.  However, as mentioned before, with the most common 

uses of the library considered, cutting out these values does not have much effect relative 

to the sizes of the streams generated.  The lval and kval data can both be read by 

accessing into the array of suitable parameters, which lies in global memory, with the 

variable parameter.  This requires an extra memory access per function call if it is to be 

stored in a local variable for the scope of the function.  The variable narrays can be 

replaced by the constant literal 2.   

 

The pointers require a little more explanation.  As already mentioned, gentype is 

an unstable pointer that can be removed with only positive impact on the library.  The si 

field is a pointer to the array of 64 bit unsigned integers that determines the next stream 

to be spawned if the spawn function is called on this stream.  lags is a pointer to an array 

of similar size and type that serves to store the internal workings of the stream defined by 

the particular instantiation of the struct.  These are the essentials of the stream and cannot 

be reduced or removed.  However, array_sizes and arrays are not necessary to the struct.  

They can be replaced by local variables in the pack and unpack functions, which are the 

only functions to make use of these data.  arrays is allocated memory of the size of 2 int* 

which in turn alias the lags and si pointers.  array_sizes is allocated memory of 2 int 

types, which store the size of the arrays.  Since the pack and unpack functions are used so 

seldom (many times no more than once per stream instantiated), it makes much more 

sense to use local pointers to accomplish these purposes.  
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CHAPTER 7 

 

CONCLUSIONS 

 

 

 

We have developed a new stream instantiation method for the SPRNG library, 

embodied in the init_by_number function.  While the old method provided some of this 

functionality already, many users will benefit from such a unified approach at exhaustive 

random access.  Some users have not been using the old instantiation to full effect, 

mostly because of misunderstandings of the SPRNG documentation.  In fact, most users 

never call spawn_rng.  We complete the necessary work to make it a legitimate part of a 

well established and widely used mathematical library.  This new method provides a 

more general level of access to the streams for those advanced users who feel rather 

handicapped by the old spawning method.  While the old spawning method provides 

excellent access to random number streams in applications like random walks with 

splitting, we hope that this new instantiation will make SPRNG the library of choice for a 

broader range of random number needs.  We have also performed memory optimization 

on the underlying data structure for streams to provide the smallest footprint possible.   

 

With the added benefit of memory requirement reduction and communication 

requirement removal, the new SPRNG offers a very good choice to a broad range of 

Monte Carlo applications.  Random access is the most powerful and general stream 

instantiation method that could be provided to users.  Even the requirement for 

reproducibility is shifted to the user, allowing for special circumstances while preserving 

reproducibility as an easy property for the user to achieve.  These changes should indeed 

broaden the base of SPRNG users and provide loyal users new tools for their 

applications.  SPRNG is one of the most well researched and designed mathematical 

libraries available today and broadening its functionality is bound to be of use to many 

scientists.  
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CHAPTER 8 

 

FUTURE WORK 

 

 

 

Certainly, the improvements of user functionality and memory usage studied in 

this document could be extended.  Also, some users prefer the SPRNG 1 library simply 

because of its architecture, where each generator could be compiled separately.  Some 

users probably found this easier to manage, and most know which generator they need 

before use.  The unified library compilation provides the ability to change generators 

within code by modifying only a function parameter.  This is useful to those who wish to 

test different generators, providing a very easy change to those who find they have run 

out of streams or exhausted the period of some of their streams.   

 

An obvious way to improve functionality is always to add new generators.  Code 

for some new generators is currently available for future versions of SPRNG, but some 

minor flaws with them may still need to be mended.  Because of the new instantiation 

method, new generators with a high number of streams like the MLFG and LFG can be 

added with full effect, and this is a very good way to improve the library.  Also, it might 

be valuable to add a cryptographic random number generator to SPRNG.  This is a 

generator designed to make it very difficult to predict the random numbers, even having 

seen many of the already generated numbers.  One final addition might be to provide a 

SRPNG-like tool for parallel quasirandom number generation.  While the SPRNG library 

has not been endowed with such functionalities yet, doing so would clearly widen the 

applications for which SPRNG would be an appropriate choice. 

 

Another optimization that would be valuable to the library involves the generation 

of prime numbers.  Some of the generators require each stream to use a different prime 

number as a parameter, in which case the i
th

 stream is provided with the i
th

 prime.  The 

method for doing so in SPRNG is very likely sub optimal, causing a large slowdown in 
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the time required to initialize a stream.  The algorithm finds primes sequentially 

beginning with a prime stored in a file.  These primes are sequential for the first several 

hundred, but for larger primes, the file stores only every 1000
th

 prime.  A simple solution 

is to store more primes in the file.  Because of modern advances in data storage and 

communication, increasing the file size might be justified for the linear payoff in 

initialization speed it would provide.  
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APPENDIX A 

 

SPRNG 3 USER’S GUIDE 

 

 

 

SPRNG 3 is backwards compatible with SPRNG 2.  This document describes new 

functionality in the SPRNG 3 library and is meant to supplement the existing user guide. 

 

A.1  Installation 

 

 Dr. Yaohang Li added GNU autoconfig/automake scripts [6],[5] for ease of 

installation.  To install the library, one should download the library and unzip/untar it to a 

directory of his choosing.  At the top level is the SPRNG directory.  In this directory, the 

user should call config, which creates a makefile according to the platform.  The user can 

then use the make command to compile the library.  This will create libsprng.a in the 

sprng/lib/ directory.  This file should be linked to the user’s program to compile. 

 

A.2  Stream Instantiation. 

 

 A new method of instantiating random number streams has been added.  The old 

spawning method, which uses the init_rng and spawn_rng functions, is still provided, and 

the user should not use the new instantiation method in the same program as in which 

these functions are used.  The new function init_by_number, does not provide spawning 

information to the streams, so a call of spawn_rng using a stream created init_by_number 

will cause an error. 

 

 The init_by_number function is intended for advanced users who need millions or 

billions of streams.  Not only does it allow exhaustion of all possible streams for a 

particular generator, parameter, and seed, it does not allocate the memory previously used 

to store spawning information for a significant reduction of memory usage per stream.  
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The init_by_number function is similar in its arguments to the spawn_rng function.  It 

requires the user to keep track of the seed, parameter, and generator to take them as 

arguments.  We recommend that a user use the same values of seed, parameter, and 

generator for each call.  The user must also specify the stream number to be instantiated 

and the number of streams to be created, beginning at the specified stream number and 

produced sequentially thereafter.  Thus, a user may create streams in blocks of any size 

that can be passed as an integer (while the stream number parameter provides for multi-

precision, the number of streams parameter does not).  The user then only needs to add 

the block size requested to arrive at the stream number to be passed to the next call of 

init_by_number.  The user need not be concerned that the streams are being called 

sequentially; the seed will serve to create different numbers for different runs of a 

program.  Many of the libraries simply permute the streams based on the seed.  The 

generator and parameter are usually changed to affect the qualitative nature of the 

numbers (the generator) or the period and availability of the streams (parameters).  These 

choices will be outlined more fully, including a couple of new parameters that have been 

added for improved versatility.  The user may choose the generator and parameter based 

on the application, but once one is found that works, the user need only change the seed 

per run to produce different results. 

 

 Under SPRNG 2, the user was to call the init_rng function at the beginning of a 

program once per stream to be initially created.  Each call took the number of times this 

function would be called in total as a parameter to provide the created stream with 

spawning information.  Subsequently, any new streams to be instantiated required a call 

to the spawn function, which in turn required an existing stream.  This method, while 

useful in many applications, has some drawbacks that will be corrected with a new 

instantiation method.  Since the older spawn methods are still available, users must 

decide which method to use.  THE METHODS SHOULD NOT BE MIXED.  That is, the 

user must choose to use the init_rng and spawn_rng functions or the init_by_number 

function.  Under no circumstances should the spawn_rng function be called with a stream 

that has been created by the init_by_number function.  This follows from the 

init_by_number function’s not storing spawning information in order to provide 
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significant memory savings.  The responsibility for independence of streams now rests 

with the user.  However, the only requirement for streams to be independent, so long as 

the same generator, seed, and parameter are used for each call, is that each stream 

receives a different number for initialization.  The user should keep in mind that if the 

init_by_number function is called to produce more than one stream, each stream receives 

numbers beginning sequentially at the stream number given as a parameter.  This is the 

most important aspect of the new functions for users to understand and the reason it is 

recommended only for advanced users who need many streams.  The user should also 

have GMP installed on the machine and enough basic arithmetic skill with GMP to 

produce the numbers required.  Using the init_by_number function without GMP is very 

difficult, requiring the user to provide arrays of a certain size with the correct number 

embedded.   

 

 Some of the benefits to using the method of stream instantiation are reduced 

memory usage, no required communication cost for parallel applications, and the 

possibility of complete exhaustion of streams available.  Users who just need a few 

streams should probably not use this method.  LFG and MLFG are the generators 

benefiting the most from memory savings.  Since these generators provide more streams 

than the others, removing the spawning information can provide very large memory 

savings (up to several kilobytes).  Under the old method, many users with parallel 

applications were using interproccesor communication to distribute streams among 

processors. Since spawning requires an already existing stream, some processors had to 

produce streams to send to other processors.  This not only makes for unbalanced work 

load, but the communication cost can be very high depending on the generator.   

 

Users of the old spawning methods should be more careful to balance the calls to 

init_rng to prevent this, but users will find that the random access provides a more 

intuitive method of stream instantiation.  While the init_rng function was to be called at 

the beginning of a program, with an argument specifying the number of times it is called, 

init_by_number can be used throughout the program and the only requirement is that the 

stream numbers be smaller than the largest stream number available.  Finally, users who 
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find they run out of streams quickly using the spawning routine (this typically generates 

an error message and returns a stream not guaranteed independent from the others) 

should use this method since it allows exhaustion of all possible streams.  When the user 

receives an error message under the old spawning method, he has probably used less than 

half the streams available.  In the worst case, the error message can be received having 

instantiated only lg N of N possible independent streams, where lg N is the logarithm to 

the base 2 of N. 

 

 The first item of business for those that wish to use the new instantiation method 

is to create a collision free numbering scheme to ensure properly independent streams.  

Streams can be initialized on any processor and the user might wish to designate a 

particular set of numbers, such as congruence classes modulus the number of processors, 

for each processor to use to prevent collision.  Many applications will already be 

naturally numbered, such as a particle simulation.  If one wishes to give a stream to each 

particle for example, so long as the particles are numbered uniquely, this number can be 

used for calls to the init_by_number function.  One should also have an idea of the 

maximum number of streams to be used.  If this number is such that it could be passed as 

a parameter to the init_rng function (the upper bound can be stored in an int type) the 

user may wish to simply use the init_rng function without the spawn function.  Although 

not documented, the user can simply use the upper bound as the total number of calls to 

the init_rng function and can use these calls, once again using a unique number for each 

call, on different processors in a homogeneous cluster.  However, the spawning 

information will still be stored by the streams, so memory might well be an issue that 

would convince a user to use init_by_number even if billions of streams are not needed.  

This makeshift method of random access to streams still makes interprocessor 

communication unnecessary and provides a significant advantage to those hindered by 

the hard cap on scalability dictated by the function parameters. 

 

The prototype for the new function is: 

 

int init_by_number ( int rng_type, unsigned *start, int nspawned, int ***newgens,  
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int seed, int parameter, int checkid = 0); 

 

This can be compared to the old spawn_rng function: 

 

int spawn_rng(int *igenptr, int nspawned, int ***newgens, int checkid); 

 

nspawned, newgens, and checkid carry the same meaning as in the spawn_rng function.  

nspawned is the number of stream to be created.  newgens is a pointer by which to return 

the newly created generators.  It should point to an array of int**, which has been 

allocated with an int** per stream to be created (nspawned).  checkid should be 0 for 

final runs which it carries by default.  checkid is nonzero when used for debugging 

purposes and its use is described in the SPRNG 2 user’s manual. 

 

rng_type, start, seed, and parameter have all been used to replace information 

that was formerly pulled out of the stream struct, igenptr, that was passed to the 

spawn_rng function.  rng_type is the type of generator to be used. Current valid values 

are 0-5 with the following meanings: 

0.  LFG 

1.  LCG 

2.  LCG64 

3.  CMRG 

4.  MLFG 

5. PMLCG (conditionally compiled according to the users installed libraries) 

 

Macros are provided as in previous versions:  SPRNG_LFG, SPRNG_LCG, and so on. 

seed is the value by which the user can achieve different numbers for different runs of a 

program.  The seed serves as the initial condition to each stream.  For some generators, 

this serves only to permute the order of the streams.  parameter changes the values for 

the parameterization scheme.  parameter should be adjusted according to memory and 

stream needs.  These offer a trade off in memory used and number of streams available 

for instantiation. They affect periodicity as well.  It is strongly recommended that the user 
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use the same value of rng_type, seed, and parameter for each call in the program.  seed 

should be changed between runs once the rng_type and parameter have been selected 

such that enough streams are available.  If the user uses different seeds in the same run, 

he is in danger of using the same stream more than once, since the seed is used as a 

bitmask to permute the streams in some generators.  The start argument takes a pointer to 

an array of the appropriate size and type for the particular rng_type and parameter 

chosen.  This format can be achieved with the gmp2sn function: 

 

int* gmp2sn(int rng_type, int param, mpz_t stream_number ); 

 

This function takes a single GMP number, stream_number as a parameter and returns a 

pointer allocated with the appropriate size and type of memory which is filled with the 

number given.  The programmer should be careful to free the memory returned by this 

function, so it is important to assign it to a pointer before passing it as an argument.  The 

final product should look something like: 

 

int* stream_number = gmp2sn(rng,param,stream); where stream is a GMP integer 

init_by_number(rng_type, stream_number, …); 

free(stream_number); 

 

Users of PMLCG should also call mpz_clear before freeing the returned pointer, since the 

returned value is a GMP integer.  The user should also take care to handle the freeing of 

the GMP numbers upon outliving their use for generating streams.  

 

A.3 Adding generators 

 

 The SPRNG library is designed to be expandable not only by those who maintain 

the code for centralized distribution, but also for users who want to implement their own 

generator with the SPRNG architecture.  The format in doing so has changed slightly in 

that the programmer must add the init_by_number function to the general format of a 

generator.  This should not be that hard to do, as a prerequisite for a SPRNG generator is 
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the ability to produce streams in this fashion.  We recommend that the init_by_number be 

used as a sort of backend to the init_rng and spawn_rng functions.  Most of the 

generators already had a similar function that served these functions with the internals of 

the stream.  As before, the init_rng and spawn_rng functions should be responsible for 

processing the spawning information so that they will function as desired.  A GMP 

conversion function should also be provided if the programmer requires this capability. 
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APPENDIX B 

 

SPRNG 3 CODE ADDITIONS 

 

 

 

B.1 LCG functions 

 

/*********************************************************************** 

     init_by_number  allows users to retrieve by stream numbers.  

     recommended for advanced users only.  Added by Jason Parker 

     as part of sprng 3.0   

***********************************************************************/ 

 

#ifdef __STDC__ 

int init_by_number(int rng_type, unsigned *start,  int nspawned, int ***newgens, int 

seed, int mult, int checkid) 

#else 

int init_by_number(rng_type, start,nspawned, newgens, seed, mult, checkid) 

int rng_type, nspawned, ***newgens, seed, mult, checkid; 

unsigned* start; 

#endif 

{ 

  struct rngen **genptr; 

  int i, j,tmult; 

  tmult = mult; 

  if (nspawned <= 0) /* check if nspawned is valid */ 

  { 

    nspawned = 1; 
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    errprint("WARNING","spawn_by_number","nspawned <= 0. Default value of 1 used 

for nspawned"); 

  } 

  if (mult < 0 || mult >= NPARAMS)  

  { 

    errprint("WARNING","spawn_by_number","multiplier not valid. Using Default 

param"); 

    tmult = 0; 

  } 

 

  genptr = (struct rngen **) mymalloc(nspawned*sizeof(struct rngen *)); 

  if(genptr == NULL) 

  { 

    *newgens = NULL; 

    return 0; 

  } 

  for(i=0; i<nspawned; i++) 

  { 

    genptr[i] = (struct rngen *) mymalloc(sizeof(struct rngen)); 

    if(genptr[i] == NULL) 

    { 

      nspawned = i; 

      break; 

    } 

     

    genptr[i]->init_seed = seed; 

    genptr[i]->prime_position = *start + i; 

    if(genptr[i]->prime_position > MAXPRIMEOFFSET) 

    { 

      fprintf(stderr,"WARNING - spawn_rng: gennum: %d > maximum number of 

independent streams: %d\n\tIndependence of streams cannot be guranteed.\n", 
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       genptr[i]->prime_position, MAX_STREAMS);  

      genptr[i]->prime_position %= MAXPRIMEOFFSET; 

    } 

     

    genptr[i]->prime_next = genptr[i]->prime_position + nspawned; 

    getprime_32(1, &(genptr[i]->prime), genptr[i]->prime_position); 

 

    genptr[i]->parameter = tmult; 

     

    

    genptr[i]->rng_type = rng_type; 

    genptr[i]->gentype = GENTYPE; 

     

#ifdef LONG64 

  genptr[i]->seed = INIT_SEED; /* initialize generator */ 

  genptr[i]->seed ^= ((unsigned LONG64) seed)<<16;  

  genptr[i]->multiplier = mults[tmult]; 

  if (genptr[i]->prime == 0)  

    genptr[i]->seed |= 1; 

#else 

  genptr[i]->seed[1] = 16651885^((seed<<16)&(0xff0000));/* initialize generator */ 

  genptr[i]->seed[0] = 2868876^((seed>>8)&(0xffffff)); 

  genptr[i]->multiplier = mults[tmult]; 

  if (genptr[i]->prime == 0)  

    genptr[i]->seed[1] |= 1; 

#endif 

 

    if(genptr[i]->prime_position > MAXPRIMEOFFSET) 

      advance_seed(genptr[i]); /* advance lcg 10^6 steps from initial seed */ 

 

    for(j=0; j<LCGRUNUP*(genptr[i]->prime_position); j++) 
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      get_rn_dbl( (int *) genptr[i]); 

  } 

 

  NGENS += nspawned; 

     

  *newgens = (int **) genptr; 

  if(checkid != 0) 

    for(i=0; i<nspawned; i++) 

      if(addID(( int *) genptr[i]) == NULL) 

 return i; 

   

  return nspawned; 

} 

 

/******************************************************************** 

  gmp2sn is used to convert a gmp number to the correct format for  

  the init_by_number function.  Added by Jason Parker as a part of  

  SPRNG 3.0. 

*********************************************************************/ 

 

#ifdef USE_PMLCG 

#ifdef __STDC__ 

int* gmp2sn(int rng_type, int param, mpz_t a) 

#else 

int* gmp2sn(rng_type, param, a) 

int rng_type, param; 

mpz_t a; 

#endif 

{ 

  int* b; 

  b = (int *)malloc(sizeof(int)); 
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  *b = mpz_get_si(a); 

  if(mpz_cmp_si(a,*b)!=0) 

     fprintf(stderr, 

     "GMP Integer too large to be converted for the lcg generator\n"); 

  return b; 

} 

#endif 

 

 

 

B.2 LCG64 functions 

 

/*************************************************************** 

  init_by_number allows users random access to streams.  See  

  documentation for more details.  Added by Jason Parker 

  as part of SPRNG 3.0. 

****************************************************************/ 

 

 

#ifdef __STDC__ 

int init_by_number(int rng_type, unsigned *start,  int nspawned, int ***newgens, int 

seed, int mult, int checkid) 

#else 

int init_by_number(rng_type, start, nspawned, newgens, seed, mult, checkid) 

int rng_type, nspawned, ***newgens, seed, mult, checkid; 

unsigned* start; 

#endif 

{ 

  struct rngen **genptr; 

  int i, j; 
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  if (nspawned <= 0) /* is nspawned valid ? */ 

  { 

    nspawned = 1; 

    fprintf(stderr,"WARNING - spawn_rng: nspawned <= 0. Default value of 1 used for 

nspawned\n"); 

  } 

   

  genptr = (struct rngen **) mymalloc(nspawned*sizeof(struct rngen *)); 

  if(genptr == NULL)    /* allocate memory for pointers to structures */ 

  { 

    *newgens = NULL; 

    return 0; 

  } 

   

  for(i=0; i<nspawned; i++) /* create nspawned new streams */ 

  { 

    int gennum; 

     

    gennum = *start + i; 

   

    if(gennum > MAX_STREAMS)   /* change seed to avoid repeating sequence */ 

      seed = seed^gennum;  

    else 

      seed = seed; 

    /* Initialize a stream. This stream has incorrect spawning information. 

       But we will correct it below. */ 

 

    genptr[i] = (struct rngen *)  

      init_rng(rng_type,gennum, gennum+1, seed, mult); 
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    if(genptr[i] == NULL) /* Was generator initiallized? */ 

    { 

      nspawned = i; 

      break; 

    } 

    genptr[i]->spawn_offset = (nspawned+1); 

  } 

   

   

   

 

  *newgens = (int **) genptr; 

   

   

  if(checkid != 0) 

    for(i=0; i<nspawned; i++) 

      if(addID(( int *) genptr[i]) == NULL) 

 return i; 

   

  return nspawned; 

   

} 

 

/***************************************************************** 

  gmp2sn is a user function that allows conversion of a GMP number 

  to the appropriate format for the init_by_number function. 

  Added by Jason Parker as part of SPRNG 3.0 

******************************************************************/ 

 

 

#ifdef USE_PMLCG 
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#ifdef __STDC__ 

int* gmp2sn(int rng_type, int param, mpz_t a) 

#else 

int* gmp2sn(rng_type, param, a) 

int rng_type, param; 

mpz_t a; 

#endif 

{ 

  int * b; 

  b = (int *)malloc(sizeof(int)); 

  *b = mpz_get_ui(a); 

  if(mpz_cmp_si(a,*b)!=0) 

    fprintf(stderr, "GMP integer too big for lcg64 generator\n."); 

  return b; 

} 

#endif 

 

B.3 CMRG functions 

 

/****************************************************************** 

  init_by_number allows users random access to streams.  See 

  documentation for additional details.  Added by Jason Parker 

  as part of SPRNG 3.0  

******************************************************************/ 

 

#ifdef __STDC__ 

int init_by_number(int rng_type, unsigned *start, int nspawned, int ***newgens,int seed, 

int param, int checkid) 

#else 

int init_by_number(rng_type,start,nspawned, newgens, seed, param, checkid) 

int rng_type,nspawned, ***newgens, seed, param,checkid; 
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unsigned* start; 

#endif 

{ 

  struct rngen **genptr; 

  int i, j; 

   

  if (nspawned <= 0) /* is nspawned valid ? */ 

  { 

    nspawned = 1; 

    fprintf(stderr,"WARNING - spawn_rng: nspawned <= 0. Default value of 1 used for 

nspawned\n"); 

  } 

   

  genptr = (struct rngen **) mymalloc(nspawned*sizeof(struct rngen *)); 

  if(genptr == NULL)    /* allocate memory for pointers to structures */ 

  { 

    *newgens = NULL; 

    return 0; 

  } 

   

  for(i=0; i<nspawned; i++) /* create nspawned new streams */ 

  { 

     

     

    /* Initialize a stream. This stream has incorrect spawning information. 

       But we will correct it below. */ 

 

    genptr[i] = (struct rngen *)  

      init_rng(rng_type,*start+i, *start+i+1, seed, param); 
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    if(genptr[i] == NULL) /* Was generator initiallized? */ 

    { 

      nspawned = i; 

      break; 

    } 

    genptr[i]->spawn_offset = (nspawned+1); 

  } 

   

  /*tempptr->spawn_offset *= (nspawned+1);*/ 

   

 

  *newgens = (int **) genptr; 

   

   

  if(checkid != 0) 

    for(i=0; i<nspawned; i++) 

      if(addID(( int *) genptr[i]) == NULL) 

 return i; 

   

  return nspawned; 

} 

 

/*********************************************************************** 

  gmp2sn is called by the user to convert a gmp number to the correct  

  format for the init_by_number funciton.  Added by Jason Parker as a 

  part of SPRNG 3.0 

***********************************************************************/ 

 

#ifdef USE_PMLCG 

#ifdef __STDC__ 

int* gmp2sn(int rng_type, int param, mpz_t a) 
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#else 

int* gmp2sn(rng_type, param, a) 

int rng_type, param; 

mpz_t a; 

#endif 

{ 

  int * b; 

  b = (int *)malloc(sizeof(int)); 

  *b = mpz_get_ui(a); 

  if(mpz_cmp_si(a,*b)!=0) 

    fprintf(stderr,"GMP integer too large for cmrg generator"); 

  return b; 

} 

#endif 

 

B.4 LFG functions 

 

/******************************************************************* 

  init_by_number allows users random access to streams.  See  

  documentation for details.  Added by Jason Parker as part of 

  SPRNG 3.0 

*******************************************************************/ 

 

#ifdef __STDC__ 

int init_by_number(int rng_type, unsigned *start,  int nspawned, int ***newgens, int 

seed, int param, int checkid) 

#else 

int init_by_number(rng_type, start,nspawned,newgens,seed,param, checkid) 

int rng_type, nspawned, ***newgens, seed, param, checkid; 

unsigned* start; 

#endif 
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{ 

  int **q=NULL, i; 

  unsigned *p; 

   

   

  if (nspawned <= 0) /* check if nspawned is valid */ 

  { 

    nspawned = 1; 

    errprint("WARNING","spawn_rng","Nspawned <= 0. Default value of 1 used for 

nspawned"); 

  } 

   

  

   

  p = start; 

  q = initialize_by_number(rng_type,nspawned,param,seed^GS0,p,seed); 

  if (q == NULL)  

    { 

      *newgens = NULL; 

      return 0; 

    } 

 

  NGENS += nspawned; 

       

  *newgens = (int **) q; 

 

  if(checkid != 0) 

    for(i=0; i<nspawned; i++) 

      if(addID((*newgens)[i]) == NULL) 

 return i; 
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  return nspawned; 

} 

 

/********************************************************************* 

  initialize_by_number is called by the init_by_number funtion.  It 

  is not a user function.  Added by Jason Parker as part of SPRNG 3.0 

*********************************************************************/ 

 

#ifdef __STDC__ 

static int **initialize_by_number(int rng_type, int ngen, int param, unsigned seed, 

unsigned *nstart, unsigned initseed) 

#else 

static int **initialize_by_number(rng_type, ngen,param, seed,nstart, initseed) 

int rng_type,  ngen, param; 

unsigned *nstart, seed, initseed; 

#endif 

{ 

  int i,j,k,l, length,run,temp; 

  struct rngen **q; 

  unsigned *nindex1,*nindex2; 

 

  length = valid[param].L; 

   

/*      allocate memory for node number and fill of each generator       */ 

  temp = nstart[0]; 

  q = (struct rngen **) mymalloc(ngen*sizeof(struct rngen *)); 

  if (q == NULL)  

    return NULL; 

  for (i=0;i<ngen;i++)  

  { 

    q[i] = (struct rngen *) mymalloc(sizeof(struct rngen)); 
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    if (q[i] == NULL)  

      return NULL; 

 

    q[i]->rng_type = rng_type; 

    q[i]->hptr = length - 1; 

    q[i]->si = NULL; 

    q[i]->r0 = (unsigned *) mymalloc(length*sizeof(unsigned)); 

    q[i]->r1 = (unsigned *) mymalloc(length*sizeof(unsigned)); 

/*    q[i]->lval = length; 

    q[i]->kval = valid[param].K;*/ 

    q[i]->param = param; 

    q[i]->seed = seed; 

    q[i]->init_seed = initseed; 

     

    if (q[i]->r1 == NULL || q[i]->r0 == NULL)  

      return NULL; 

  } 

/*      specify register fills and node number arrays                    */ 

/*      do fills in tree fashion so that all fills branch from index     */ 

/*           contained in nstart array                                   */ 

  q[0]->stream_number = nstart[0]; 

  nindex1 = (unsigned*)malloc((length-1)*sizeof(unsigned)); 

  nindex2 = (unsigned*)malloc((length-1)*sizeof(unsigned)); 

  for(i = 0; i < length-1; i++){ 

     nindex1[i]=nstart[i]; 

  } 

  run = 0; 

  for(i=1; i < length-1; i++) 

    if(nindex1[i]!=0){ 

      run = 1; 

      break; 
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    } 

    

  si_double(nindex2,nindex1,length); 

  get_fill(nindex2,q[0]->r0,param,seed); 

  nindex2[0]++; 

  get_fill(nindex2,q[0]->r1,param,seed); 

  for(i = 1; i < ngen; i++){ 

     si_add_one(nindex1,length-1); 

     for (j=0;j<length-1;j++)  

         nindex2[j] = nindex1[j]; 

     q[i]->stream_number = nindex1[0]; 

     si_double(nindex2,nindex1, length); 

         

     get_fill(nindex2,q[i]->r0,param,seed); 

     nindex2[0]++; 

     get_fill(nindex2,q[i]->r1,param,seed); 

  } 

  i = 0; 

  if(run==0) 

  for (i=0;i<ngen;i++,temp++)  

  { 

    /* 

    k = 0; 

    for (j=1;j<lval-1;j++) 

      if (q[i]->si[j])  

 k = 1; 

    if (!k)  

      break; 

    */ 

    for (j=0;j<length*4;j++) 

      get_rn_int((int *)(q[i])); 
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    if(temp==INT_MASK){ 

      i++; 

      break; 

    } 

  } 

  while (i<ngen) 

  { 

    for (j=0;j<RUNUP*length;j++) 

      get_rn_int((int *)(q[i])); 

    i++; 

  }    

 

  return((int **)q); 

} 

 

/******************************************************************* 

  gmp2sn is used to convert gmp numbers to the correct format for  

  the init_by_number function.  Added by Jason Parker as part of 

  SPRNG 3.0. 

*******************************************************************/ 

 

#ifdef USE_PMLCG 

#ifdef __STDC__ 

int* gmp2sn(int rng_type, int param, mpz_t a) 

#else 

int* gmp2sn(rng_type, param, a) 

int rng_type, param; 

mpz_t a; 

#endif 

{ 

  int length, i; 
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  unsigned *ret; 

  mpz_t b,c; 

  mpz_init_set(b,a); 

  mpz_init(c); 

  length = valid[param].L -1; 

  ret = (unsigned *)malloc(length*sizeof(unsigned)); 

  for(i = 0; i < length; i++) 

    ret[i]=0; 

  for(i = 0; i < length; i++){ 

    if(mpz_cmp_ui(b,0)==0) 

      break; 

    mpz_tdiv_r_2exp(c,b,MAX_BIT_INT+1); 

    ret[i] = INT_MASK & mpz_get_ui(c); 

    mpz_tdiv_q_2exp(b,b,MAX_BIT_INT+1); 

  } 

  mpz_clear(c); 

  mpz_clear(b); 

  return (int *)ret; 

} 

#endif 

 

B.5 MLFG functions 

 

/******************************************************************  

  init_by_number allows users random access to streams.  See 

  documentation for details.  Added by Jason Parker as part of 

  SPRNG 3.0. 

******************************************************************/ 

 

#ifdef __STDC__ 
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int init_by_number(int rng_type, unsigned *start,  int nspawned, int ***newgens, int 

seed, int mult, int checkid) 

#else 

int init_by_number(rng_type, start, nspawned, newgens, seed, mult, checkid) 

int rng_type, nspawned, ***newgens, seed, mult, checkid; 

unsigned* start; 

#endif 

{ 

  struct rngen **genptr; 

  int i; 

  uint64 *p; 

   

  if (nspawned <= 0) /* is nspawned valid ? */ 

  { 

    nspawned = 1; 

    fprintf(stderr,"WARNING - spawn_rng: nspawned <= 0. Default value of 1 used for 

nspawned\n"); 

  } 

   

  p = (uint64*)start; 

  seed &=0x7FFFFFFF; 

   

  genptr = initialize_by_number(rng_type, nspawned,mult,seed^GS0,p,seed); 

  if(genptr == NULL)    /* allocate memory for pointers to structures */ 

  { 

    *newgens = NULL; 

    return 0; 

  } 

   

  si_double(p,p,valid[mult].L); 

/* 
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  for(i=0; i<nspawned; i++) 

  { 

    genptr[i]->array_sizes = (int *) mymalloc(genptr[i]->narrays*sizeof(int)); 

    genptr[i]->arrays = (int **) mymalloc(genptr[i]->narrays*sizeof(int *)); 

    if(genptr[i]->array_sizes == NULL || genptr[i]->arrays == NULL) 

      return 0; 

    genptr[i]->arrays[0] = (int *) genptr[i]->lags; 

    genptr[i]->arrays[1] = (int *) genptr[i]->si; 

    genptr[i]->array_sizes[0] = genptr[i]->lval*sizeof(uint64)/sizeof(int); 

    genptr[i]->array_sizes[1] = (genptr[i]->lval-1)*sizeof(uint64)/sizeof(int); 

  } 

*/   

  NGENS += nspawned; 

       

  *newgens = (int **) genptr; 

 

  if(checkid != 0) 

    for(i=0; i<nspawned; i++) 

      if(addID(( int *) genptr[i]) == NULL) 

 return i; 

   

  return nspawned; 

   

} 

 

/***************************************************************** 

  intialize_by_number is called by init_by_number.  It is not a 

  user function.  Added by Jason Parker as part of SPRNG 3.0 

*****************************************************************/ 
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static struct rngen **initialize_by_number(int rng_type, int ngen, int param, unsigned int 

seed, uint64 *nstart, unsigned int initseed) 

{ 

  int i,j,k,l,m,*order, length,run; 

  struct rngen **q; 

  uint64 *nindex, temp1, temp2, mask,mask2,t,r; 

  set(nstart[0],t); 

  length = valid[param].L; 

   

  q = (struct rngen **) mymalloc(ngen*sizeof(struct rngen *)); 

  if (q == NULL)  

    return NULL; 

 

  for (i=0;i<ngen;i++)  

  { 

    q[i] = (struct rngen *) mymalloc(sizeof(struct rngen)); 

    if (q[i] == NULL)  

      return NULL; 

 

    q[i]->rng_type = rng_type; 

    q[i]->hptr = 0;   /* This is reset to lval-1 before first iteration */ 

    q[i]->si = /*(uint64 *) mymalloc((length-1)*sizeof(uint64))*/ NULL; 

    q[i]->lags = (uint64 *) mymalloc(length*sizeof(uint64)); 

   q[i]->parameter = param; 

    q[i]->seed = seed; 

    q[i]->init_seed = initseed; 

  

    if (q[i]->lags == NULL/* || q[i]->si == NULL*/)  

      return NULL; 

  } 
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/*      specify register fills and node number arrays                    */ 

/*      do fills in tree fashion so that all fills branch from index     */ 

/*           contained in nstart array                                   */ 

 

  q[0]->stream_number = lowword(nstart[0]); 

  get_fill(nstart,q[0]->lags,param,seed); 

/*  si_double(q[0]->si,nstart,length);*/ 

  nindex = (uint64*)malloc((length-1)*sizeof(uint64)); 

  for(i =0; i < length-1; i++) 

    set(nstart[i],nindex[i]); 

  run = 0; 

  for(i = 1; i < length-1; i++) 

    if(notzero(nindex[i])){ 

      run = 1; 

      break; 

    } 

  set(ONE,mask); 

  for(m=0; m<length; m++) 

  { 

    and(SEED_MASK,mask,temp1); 

    if(notzero(temp1)) 

      findseed(1,q[0]->lags[m], &q[0]->lags[m]); 

    else 

      findseed(0,q[0]->lags[m], &q[0]->lags[m]); 

    lshift(mask,1,mask); 

  } 

  /* 

  add(q[0]->si[0],ONE,q[0]->si[0]); 

 

  i = 1; 

  order[0] = 0;*/ 
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  lshift(ONE,MAX_BIT_INT+1,mask2); 

  if (ngen>1)  

      for (i=1;i<ngen;i++)  

      { 

 for(j = 0; j < length-1; j++){ 

           add(nindex[j],ONE,nindex[j]); 

           and(nindex[j],mask2,temp2); 

           if(notzero(temp2)){ 

              xor(nindex[j],mask2,nindex[j]); 

              if(j==length-2){ 

                fprintf(stderr,"ERROR: Invalid stream number used for\ 

  initialization, Independence of streams not gauranteed.");  

              } 

           } 

           else{ 

             break; 

           } 

        } 

 q[i]->stream_number = lowword(nindex[0]); 

 get_fill(nindex,q[i]->lags,param,seed); 

 set(ONE,mask); 

 for(m=0; m<length; m++) 

 { 

   and(SEED_MASK,mask,temp1); 

   if(notzero(temp1)) 

     findseed(1,q[i]->lags[m], &q[i]->lags[m]); 

   else 

     findseed(0,q[i]->lags[m], &q[i]->lags[m]); 

   lshift(mask,1,mask); 

 } 
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     if (ngen == i+1)  

   break; 

      } 

    free(nindex); 

  i=0; 

  if(run==0) 

  for (i=0;i<ngen;i++)  

  { 

    for (j=0;j<length*4;j++) 

      advance_state(q[i]); 

    xor(t,INT_MASK,r); 

    if(!notzero(r)){ 

      i++; 

      break; 

    } 

    add(t,ONE,t); 

  } 

 

  while (i<ngen) 

  { 

    for (j=0;j<RUNUP*length;j++) 

      advance_state(q[i]); 

    i++; 

  }    

  return (int**)q; 

} 

 

 

/**************************************************************** 

  gmp2sn converts a GMP number to the correct format for the 

  init_by_number function.  Added by Jason Parker as part of 
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  SPRNG 3.0 

****************************************************************/ 

 

#ifdef USE_PMLCG 

#ifdef __STDC__ 

int* gmp2sn(int rng_type, int param, mpz_t a) 

#else 

int* gmp2sn(rng_type, param, a) 

int rng_type, param; 

mpz_t a; 

#endif 

{ 

   int length, i; 

   mpz_t b,c,d; 

   uint64* ret; 

   uint64 t; 

   mpz_init_set(b,a); 

   mpz_init(c); 

   mpz_init(d);  

   length = valid[param].L - 1; 

   ret = (uint64*)malloc(length*sizeof(uint64)); 

   for(i = 0; i < length; i++) 

     ret[i] = 0; 

   for(i = 0; i < length; i++){ 

     if(mpz_cmp_ui(b,0)==0) 

       break; 

     mpz_tdiv_r_2exp(c,b,MAX_BIT_INT+1); 

     mpz_tdiv_r_2exp(d,c,32); 

     mpz_tdiv_q_2exp(c,c,32); 

     ret[i] = mpz_get_ui(c); 

     lshift(ret[i],32,ret[i]); 
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     t = mpz_get_ui(d); 

     or(ret[i],t,ret[i]); 

     mpz_tdiv_q_2exp(b,b,MAX_BIT_INT+1); 

  } 

  mpz_clear(b); 

  mpz_clear(c); 

  mpz_clear(d); 

  return ret; 

} 

#endif 

 

B.6  PMLCG functions 

 

/****************************************************************** 

  init_by_number gives users random access to streams.  See 

  documentation for details. 

  Added by Jason Parker as part of SPRNG 3.0 

******************************************************************/ 

 

 

#ifdef __STDC__ 

int init_by_number(int rng_type, unsigned* start, int nspawned, int ***newgens, int seed, 

int mult, int checkid)  

#else 

int init_by_number(rng_type, start, nspawned, newgens, seed, mult, checkid) 

int rng_type, nspawned, ***newgens, seed, mult, checkid; 

unsigned* start; 

#endif 

{ 

 struct rngen **genptr; 

  int i; 
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  if (nspawned <= 0) /* is nspawned valid ? */ 

  { 

    nspawned = 1; 

    fprintf(stderr,"WARNING - spawn_rng: nspawned <= 0. Default value of 1 used for 

nspawned\n"); 

  } 

   

  genptr = (struct rngen **)  

    initialize_by_number(nspawned,(MP_INT*) start,seed,mult); 

  if(genptr == NULL)    /* allocate memory for pointers to structures */ 

  { 

    *newgens = NULL; 

    return 0; 

  } 

  else 

  { 

    *newgens = (int **) genptr; 

    for(i=0; i<nspawned; i++) 

    { 

      genptr[i]->rng_type = rng_type; 

      genptr[i]->gentype = GENTYPE; 

      genptr[i]->stream_number = *start + i; 

      genptr[i]->nstreams = 0; 

      genptr[i]->init_seed = seed;  

      genptr[i]->parameter = mult; 

   

      genptr[i]->narrays = 0;  /* number of arrays needed by your generator */ 

 

      NGENS++; 

    } 
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  } 

  if(checkid != 0) 

    for(i=0; i<nspawned; i++) 

      if(addID(( int *) genptr[i]) == NULL) 

 return i; 

   

  return nspawned; 

   

} 

 

/*********************************************************************** 

  initialize_by_number is called by the init_by_number function. 

  It is not a user function. 

  Added by Jason Parker as part of SPRNG 3.0 

***********************************************************************/ 

 

int **initialize_by_number(int ngen, MP_INT *old_si, int seed, int param) 

{ 

  /* 

     called by: init_by_number 

     calls    : init() 

     GMP routines 

      

     params   : int ngen = number of generators to initialize 

     MP_INT old_si = value of k to use for first generator produced 

     seed = encoding of starting state of generator 

     param = power that determines Merssene prime 

     returns  : pointer to pointers to RNGs (rngen structures) 

      

     Initializes 'ngen' new generators 

     ( allocates memory and gives initial values to the elements of 'rngen' ) 
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     */ 

  int i,k,l,*order; 

  struct rngen **q;  

  static unsigned long a[2], r[2]; 

  int a_size; 

  mpz_t temp; 

  mpz_init(temp); 

  order = (int *) mymalloc(ngen*sizeof(int)); 

  /* allocate memory for 'ngen' generators */ 

  q = (struct rngen **) malloc(ngen * sizeof(struct rngen *)); 

  if (q==NULL || order==NULL)  

    return ((int **)NULL);  

  for (i=0; i<ngen; i++) 

  { 

    q[i] = (struct rngen *) malloc(sizeof(struct rngen)); 

    if(q[i] == NULL) 

      return NULL; 

     

    mpz_init(&(q[i]->k)); 

  } 

 

  /* set up 1st generator */         

  mpz_set(&(q[0]->k),old_si); 

#ifdef LONG64 

  a_size = init(a, r, &(q[0]->k),seed,param); 

  q[0]->mult = (unsigned LONG64)a[1]<<32|a[0]; 

  q[0]->x = (unsigned LONG64)r[1]<<32|r[0]; 

#else 

  q[0]->a_size = init(q[0]->a, q[0]->r, &(q[0]->k),seed,param); 

#endif 
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  mpz_set(temp, old_si); 

  /* set up remaining generators */ 

  i = 1; 

  order[0] = 0; 

  if (ngen>1) while (1)  

  { 

      mpz_add_ui(temp,temp,1); 

      mpz_set(&(q[i]->k), temp); 

#ifdef LONG64 

      a_size = init(a,r,&(q[i]->k),seed,param); 

      q[i]->mult = (unsigned LONG64)a[1]<<32|a[0]; 

      q[i]->x = (unsigned LONG64)r[1]<<32|r[0]; 

#else 

      q[i]->a_size = init(q[i]->a,q[i]->r,&(q[i]->k),seed,param); 

#endif 

      if (ngen == ++i)  

 break; 

  } 

  mpz_clear(temp);    

  free(order); 

  return( (int **)q ); 

 

} 

 

/***************************************************************** 

  gmp2sn converst a gmp number to the correct format for the  

  init_by_number function.  Added by Jason Parker as part of 

  SPRNG 3.0 

*****************************************************************/ 

 

int* gmp2sn(int rng_type, int param, mpz_t a){ 



71 

   MP_INT *b; 

   b = (MP_INT*)malloc(sizeof(MP_INT)); 

   mpz_init(b); 

   mpz_set(b,a); 

   return (int*)b; 

} 
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