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ABSTRACT

In this dissertation we study the behavior of several computational models of a maagic
nanopillar. We rst compare the e ect that coarse-graining the computational latticehas
on the magnetization switching for three degrees of discretization. Bimodal gghing-time
distributions are found for all three models, however the underlying mechanism is di erent
for each one. In the lowest-resolution, single-spin model, a bimodal distribution is thestdt
of spin precession which sometimes crosses the threshold de ning a switching everlyea in
the next precession period, depending on thermal uctuations. For the medium-resolution,
stack-of-spins model, the presence of either one or two propagating domain walls during
the switching event determines the total switching time, leading to the observed bimodal
distribution. The most realistic model, which employs a high-resolution computational
lattice, permits multiple switching paths, some of which are characterized by theiisitation
to a metastable free-energy well and consequently longer lifetimes. It is alsaalde that
the medium-resolution model exhibits reentrant behavior for reversal elds thatra applied
close to the easy axis.

The highest-resolution model is studied in detail, due to its complexity, which precludes
a simple description of the mechanism resulting in bimodal switching-time behavior. Phase-
space portraits of components of the total energy indicate that the metadtée free-energy
basin is circumvented for short-lived trials. Su cient statistics are gatheed to allow Markov
matrices describing the average behavior of each mode to be investigated. Bigetors
of these matrices provide estimates of the probability distribution of the largest trasient
for each mode in the energy space, while the projective dynamics technique identi es the
location of the free-energy saddle point. The hypothesis that the visitatiornf the metastable
well underlies the bimodal behavior is further reinforced by comparing the long-lived titg@



to simulations that are constrained to start in the metastable state.

Finally, exploratory results for thermally-assisted magnetization reversaf the highest-
resolution model are provided to test the assumption that it is only necessarg tncrease the
temperature at the endcaps of the pillar, since this the site of nucleation. By introducing
additional thermal energy to the pillar, the coercive eld might be lowered, relaxinghe
required eld of the write head of a hard disk drive. We nd that varying the maximum
temperature of a narrow pulse, centered at the top of the pillar, results in aewy modest
change in the coercivity when the maximum temperature is kept close to, or belothe
Curie temperature. This e ect is largely limited by the added heat di using quickly to the
constant-temperature substrate. Switching elds were signi cantly reduced fgpulse widths
that were large enough to elevate the temperature of the entire pillar. Howayaising such
large pulses stretch the approximations of the model. Another approach is attemptedning
the parameter that controls energy exchange between the temperature badhd the spins.
This also results in only a minimal reduction of the coercive eld. Some suggestions are

given for future computational studies of thermally-assisted magnetization rensal.



CHAPTER 1

INTRODUCTION

Improvements in magnetic hard disk storage technology have seen impressive peegrsince
the introduction of the rst commercial moving head hard disk drive in 1956, the IBM 85

RAMAC. During the following fty years, the areal density of magnetic recording devies has
increased at a rate described by Moore's Law][ due in large part to the miniaturization

of the recordable bit that stores binary information. Indeed, current candidate materia
for magnetic storage devices are poised to surpass an areal density of asraltit/cm?,

an increase of several orders of magnitude in just ten yeard.[ However, in addition to

industry standards that require that the magnetic bits maintain 95% of their magnetizatio

over a period of ten years, and that read/write rates stay below one nasecond ¥],

substantial challenges still remain before hard drives with these attributes care brought

to the consumer.

The minimum size of the recording bit is constrained by the superparamagnetic limit, in
which thermal uctuations signi cantly a ect the long-term stability of the magnetizat ion
orientation [3]. Manufacturing technologies have pushed this limit back, enabling the
use of even smaller bits, but often necessitate a compromise of other attributesjch
as signal to noise ratio (SNR). One approach to overcoming these challenges is to use
a material with a large anisotropy, which may be an inherent crystalline anisotpy or
a shape-induced anisotropy (SIA) that is derived from the geometry of the particlein
this dissertation, several computational models are used to study the switching prpies
of magnetic nanoparticles with a large SIA: nanopillars. Speci cally, the magnetization-
switching behavior is studied in detail across several computational models, and avelo

temperature-assisted magnetization-switching technique is considered.



1.1 Anisotropic E ects

Hard drives employing longitudinal recording (LR) technologies encode each bit of informa-
tion on a small region that is magnetically aligned parallel to the surface of the platr. Along
with signal processing, the necessary SNR of LR is achieved by statistically eaging over a
few hundred, weakly-coupled, magnetic particles for each binary piece of informatidgach
of these particles are single-domain and energetically favor an orientation adpa single axis
characterized by an anisotropic energy densiti{ , and total energyE = K,Vsin®> , where

is the angle between the magnetization and the easy axis, aMlis the volume of the
particle. Increasing the areal density of this technology primarily involves decreag the
particle diameter and height, with a consequent reduction of the volume.

Thermal uctuations will cause the magnetization to switch orientations with a well-
known probability per unit time given by the Arrhenius equation,

r = agexp( Eg=ksT): (1.2)

Here, ay is the attempt frequency andEg = K,V is the energy di erence between the
barrier maximum and the local minimum. Consequently, the ratio oEg to kg T determines
the average switching time of the particle. Because of the strong dependencehaf $witching
rate on the volume of the particle, below a certain size, switching times changerfrextremely
long (> 10 years) to almost immediate € 10 ns). At these small volumes the particle is
superparamagnetic and exhibits large responses to thermal uctuations, making it witable
for long-term data storage at room temperature.

The most obvious solution for extending magnetic recording technology is to increadet
anisotropic energy density by either introducing materials with a high crystalline anispy
or through shape anisotropy. However, an unfortunate side-e ect of incrdag K, is
that larger write elds are needed to surpass the particle's coercive eld and swiicthe
magnetization. For LR media, this problem is compounded by the relative position of the
magnetic medium to the write head. Since the eld must be applied parallel to the surface,
only the weaker fringe eld produced between the write head's poles can be usedgRwlless,
remarkable progress with LR has been seen, which includes the use of antiferronedigally
coupled layers, resulting in reducing the e ective volume of the particle!]. This approach
extends conventional LR techniques to an areal density of 100 gigabit/inch?.



Alternatively, bits can be arranged such that their magnetization lies perpendiculdo the
surface of the hard-drive platter. IBM initially considered this as their primary recading
technology from 1955 to 1961, but eventually abandoned the technology for LKE].[ It
was not until the late 1970s that lwasaki and Nakamura began researchingrpendicular
recording (PR) again in earnest as a means to overcome some of the challengesitimithe
growth in performance of LR ]. A key advantage of PR is that, with the addition of a soft
magnetic underlayer, the magnetic bit could be placed directly at the location of the wat
eld's maximum strength, allowing higherK, materials to be used. Ultimately, hard disk
drive technology is expected to move from multi- to single-particle bits. FocusinghdPR,
this shift allows for the single-particle bit to be larger than the individual particles of the
multi-particle bits, improving SNR. However, this important technological evolution rguires
careful manufacturing procedures that ensure very uniform particles which are geetrically
formed to yield a SIA that exhibits an e ective K.

In this dissertation, we consider a perfect, defect-free nanopillar and consttuseveral
computational models that represent a particle with the dimensions of 10 10 150
nmé. The large SIA of the nanopillar makes it an excellent candidate for future storage
technologies, and understanding the magnetization behavior is essential for desigrd a
implementation considerations.

1.1.1 Stoner-Wohlfarth Model

Bulk ferromagnetic materials in general typically display a nonlinear response to an applie
eld, as depicted in Fig. 1.1 Su ciently large applied elds saturate the magnetization
of a sample toMg, while a consequent reduction of the applied eld results in a remanent
magnetization M, at zero eld. Demagnetizing the sample, which e ectively removeM,,
may be accomplished by either cycling the applied eld with decreasing magnitude, or
elevating the temperature of the sample above its Curie temperatufg.. In general, Mg
is a function of temperature, and decreases to zero asapproachesT.. Also shown in
Fig. 1.1is the coercive eldH., which is the magnitude of the applied eld that brings the
magnetization of the sample though zero.

Weiss provided an explanation of both the temperature dependence Bf; and the
remanent magnetization seen in hysteresis curves as early as 1907. Hgectured that
there existed a non-local molecular eld that acted to keep the magnetic spins aligned

3
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Figure 1.1: lllustration of the behavior of a typical ferromagnetic sample in respse to an
applied eld, H. This limiting hysteresis curve also indicates the position of the saturation
magnetization Mg, the remanent magnetizationM,, and the coercive eldH..

and competed against thermal uctuations within the material, e ectively describing the
temperature dependence. He also argued that the observed hysteresis is altres many
minute domains of roughly the same constant magnetization, but with their own vector
orientation, which may di er from one to another. Consequently, applied elds act to
rotate the direction of individual domains. However, for a single-domain particle to dispja
hysteresis in the absence of non-local interactions, the energy must be a tiorc of the
orientation of the magnetization, which is not the case for Weiss's description.

The behavior of small, single-domain particles was studied thoroughly by Stoner and
Wohlfarth in a seminal paper in 1947 {]. In that paper, they consider an ellipsoid of
revolution, which has the advantageous property of being uniformly magnetized throlugut
its volume due to the demagnetizing eld produced by the e ective magnetic surface charge
of the particle. The energy of such a particle can be characterized simply by desing the



Figure 1.2: A uniformly magnetized, uniaxial Stoner-Wohlfarth particle. The magnetization
m undergoes a rotation that is described by the angle, in the presence of an applied eld
Hz that makes an angle with the easy axis.

rotation of the magnetization vector m.
For the case of a uniaxial anisotropy, the energy of the particle in the presenckanm
applied eld Hz is,
E=Kysin’() Hzcos( + ); (1.2)

where is the magnetic moment of the particle and is the angle between the applied eld
and the easy axis de ned by the uniaxial anisotropy (see FidlL.2). In the absence of an
applied eld (Hz = 0), the energy of the particle has a minimum when the magnetization
is aligned along the uniaxial direction and a maximum at an orientation of = =2,
Additionally, the one-dimensional energy landscape is symmetric about= =2, resulting in
energetically equivalent states for cases of the magnetization orieritat =0 and =
When an external eld is applied to the particle H, 6 0), the symmetry of the energy
landscape disappears; the extreme case is shown in Fig.1.3. This results in elevating
the = 0 orientation of m to metastability, as it is now energetically higher than the
= orientation, which becomes a global minimum. Switching the orientation from =0
to = involves either increasing the applied eld such that the energy of the = 0
orientation becomes unstable as it is elevated above the energy of the barnear = =2
or from thermal activation at nite temperatures, with a switching probability per unit time
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Figure 1.3: The one-dimensional energy landscape for the uniaxial anisotropic Stoner-
Wohlfarth particle is symmetric about = =2 in the absence of an applied eld (a). For
the case of an applied eldH; directed antiparallel to the easy axis, the energy for =0 is
raised, making this orientation metastable.

given by Eq.1.1 As Hz is oriented at angles 6 , the di erence in the periodicity of the
two terms of Eq.1.2leads to a eld-dependent switching behavior for the S-W particle that
is symmetric about =45 .

1.1.2 Nanopillar

The eld-dependent switching behavior seen for the elliptical particle studied by Stonemnd
Wohlfarth changes when the geometry takes the form of a pillar with at surfaceat the
ends. Instead of being uniformly magnetized, the magnetization at the ends of a nanopillar
cants away from the easy axis. Near the middle of the pillar, the magnetization remains
mostly uniform, as with the Stoner-Wohlfarth (SW) particle, but the top and bottom do the
pillar form endcaps, which are characterized by an area of high curl with the magdization
nearly parallel to the top and bottom surfaces. This con guration, seen in the imagon
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the left-hand side of Fig.1.4, helps to lower the free energy through pole avoidance, which
penalizes magnetization vectors that are directed out of the pillar's surface.

Consequently, the endcaps that are formed in the metastable state lower theecave eld
of the pillar compared to the case of uniform magnetization of the SW particle. Switching
is still initiated by the presence of a su ciently large applied eld or through the colledive
thermal uctuations at nite temperature, however, the change in orientation is initated
at the ends. Fluctuations can cause an endcap to surmount the free-energy barribait
separates the metastable state from the global free-energy minimum as is degicin the
middle image of Fig.1.4. Once created, the domain wall that separates the growing endcap
from the metastable region of uniform magnetization along the length of the pillar redses
from the end, allowing the stable region to grow, as seen in the image on the ridgiand side
of Fig. 1.4

Magnetic nanopillars thus have the advantage of reducing the coercive applied elds
directed along the easy axis, compared to the uniformly magnetized SW particle. In addi,
the shape helps to minimize the stray demagnetizing eld when arranged perpendicular
to the surface of the platter. Based on these considerations, the nanopillar is chesas
a candidate for a magnetic recording bit and its switching properties are studied in this
dissertation. The material properties are chosen to represent body-tered-cubic iron,
based on experiments that were conducted at Florida State University's CenterfMaterials
Research and Technology (MARTECH), discussed in the next section.

1.2 Physical System

Using scanning-tunneling-microscopy-assisted chemical-vapor deposition, von Moland
collaborators have fabricated individual iron nanopillars with diameters down to aboub
nm, providing the opportunity to test theoretical predictions of magnetization switbing
against experimental data §, 10]. Their procedure is accomplished by using a STM tip with
a high bias voltage to decompose a precursor, iron pentacarbonyl (Fe(Jz§) onto the surface
of a submicron Hall magnetometer. Their experimental setup allows for controlver both
width and height of the resulting structures, which nally take the form of a carboneoated
pillar with a polycrystalline body-centered-cubic (bcc) iron core. The addition othe carbon
layer assists in the chemical stability of the particle, as it inhibits oxidation. Figurel.5shows



an array of these nanopillars, each with an approximate dimension of 40200 nnt.

The experimental switching-time results for an approximately 1010 150 nn® nanopillar
gave a much lower switching eld for applied elds directed close to the easy axis tha
predicted by the Stoner-Wohlfarth model {4 15]. This is attributed to non-uniform modes
of the magnetization and endcap formation that cannot be explained by a Stoner-Woditth
type of coherent-rotation model for the magnetization switching, as discuss in Secsl1.1.1
and 1.1.2

Analytically it has been shown that, in the case of an in nite cylinder, there exists a
crossover in the mode of magnetization switching, which depends on the shape of the pilla
and is characterized by a quantity known as the coherence diametef]. Li and collaborators
found this coherence diameter to be 11 nm for bcc iron. Pillars with diameters belowig
should only allow a coherent rotation of the magnetization as the sole reversabde due to
the dominance of the exchange energ¥4]. However, their experimental results continued to
show switching behavior that departs from the SW model of coherent rotationf@anopillars
with diameters smaller than the coherence diameter. A likely reason for this is the nite
length of the experimental pillar. Due to the shape of the pillar, the demagnetizing eld
allows switching to occur through localized nucleation and the formation of the endus
which e ectively lowers the coercive eld. Similar behavior is found in the computational

pillars studied in this dissertation.
1.3 Energy Terms

At the nest level, a magnetic system can be modeled as a collection of spins, eacte a
xed length of magnitude comparable to the Bohr magneton,
g~ .
2mgC’

(1.3)

B

and directly mapped to an atomic description of the material that is being represesdl. Each
spin precesses in a magnetic eld at the Larmor frequency, found from the expegeon values
of its perpendicular components in the context of quantum mechanics. In what folls the
spin is treated as a classical object, since both the quantum mechanical Helseng picture
and the classical description provide nearly the same result at the scale studied here.
For the numerical approach used in this dissertation, the magnetization of the matal
is considered a continuous variable before being mapped to the computational cellghaf

8



simulation. In this continuum limit, the Hamiltonian of the system is described by the
following [16, 17],
H=H.+ Hz+ Hyg: (1.4)

The rst term on the right hand side of the linear Eq. 1.4 represents the exchange energy
between neighboring spins and penalizes nonuniformity of the local magnetization(+).
From a quantum-mechanical treatment of the overlapping wave functions of the spinstbie

ions at the atomic lattice sites, an e ective exchange Hamiltonian can be foundd],
X

He = Ji S §: (1.5)
isj
Jij is the exchange integral involving the spin operator§ and § and is considered to
represent a ferromagnetic coupling that tends to align spins. Since the exchange foce
the result of overlapping wave functionsJ;; typically applies only to neighboring spins and
decreases quickly for further interactions.
Approximating the spin operators by classical vector§;; of magnitudeS, the exchange

energy is found to be a function of the angle between adjacent sping ,
X

Ee= JS® cOSij: (1.6)
hijji
Due to the strength of this force, which keeps;; small, Eq.1.6 can be further approximated
as ) 7

E[m(¥)] = I% m(f) r 2m() d; (1.7)

where the integration is over a volume of the magnetization. Herk,is the exchange length of
the material, absorbing bothJ and S?, and describes the length over which the magnetization
changes appreciably in the real systenif].

The second term on the RHS of Eql.4 describes the interaction of the magnetization

with the applied (Zeeman) eld Hz, with an interaction energy
Z

Ez[m(+)] = m(+) Hzd; (1.8)

energetically favoring the orientation of the magnetization parallel with the applie eld.
Finally the last term of Eq. 1.4 couples all spins to one another in the system through
the long-range magnetostatic (dipolar) interaction, with energy

EdmAl= 5 me) A d: 19



Consequently, the magnetostatic energy must be found through a computationally ligr
non-local calculation ofH4(F9, which involves an additional volume integral and represents
the eld produced by all other dipoles in the volume. The volume integration also carries
factor of 1=2, which is included to handle double-counting interacting pairs.

1.4 Organization of Dissertation

The remainder of this dissertation is organized as follows. Chapter 2 discusses thenpu-
tational model used across all the simulations presented here. Behavior dependan the
resolution of the discrete mesh used fan(+) is presented in Chapter 3, as well the origin of
bimodal switching distributions in the low-resolution models. The highest-resolution model
is explored in great detail and reasons for the bimodal distribution are presentédrough
several analytic approaches in Chapter 4. The method of reducing the coercive éhdpillars
through heating is discussed in Chapter 5. Computational results reveal the complexity
introducing a time-dependent, non-uniform temperature pro le to the pillar. Finally, a brief
summary and conclusions are given in Chapter 6. The shape-induced-anisotropy termdise
in the lowest-resolution model is derived in the Appendix.

10



Figure 1.4: Streamlines trace the magnetization of a nanopillar, colored by tkecomponent
of the magnetization (red positive, blue negative). On the left-hand side, the magistion

is uniform far from the ends of the pillar at 0 K, with endcaps at the top and bottom.
The temperature has been raised to 2D K in the middle and right images, re ected by the
waviness of the streamlines. Finally, on the right-hand side, the endcap has releasadl] a

the pillar is undergoing a magnetization switch. From Refd].
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Figure 1.5: Array of iron nanopillars grown by STM-assisted CVD on a hall crossaeh with
exterior dimensions of approximately 40 200 nn? . The bcc iron core of each nanopillar
is incased by a carbon layer, a bene cial side e ect of the growth technique thanhibits
oxidation. This image is taken from Ref. ]1] with permission from D. D. Awschalom.
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CHAPTER 2

MODELS AND METHODS

Understanding the behavior of the magnetic particles is facilitated by simulations that
resolve the internal magnetization. Magnetization dynamics at this scale are knowas
micromagnetics. In general, micromagnetic descriptions employ both the analyticahd
numerical study of the internal magnetization of magnetic bodies (a thorough inviggation
is provided, for example, in [6]). Numerical results are widely available and are seen, for
example, in the study of domain-wall dynamicsl[], hysteresis and switching behaviorlf],

and temperature-dependent e ects{(].

2.1 Micromagnetics

Evaluating the dynamics of a magnetic system at the atomic level for even nanosizetmdes

is computationally prohibitively expensive, and generally unnecessary for tempeuags well-
below the Curie temperature. The reason for this resides in the existence of #echange
forces between neighboring spins, which serve to keep the magnetization umfoover a
length scale that is much larger than the atomic spacing. Consequently, it is adeqaato
represent a sub-volume within the particle as a single spin that is larger than the atomic
spin, with a maximum size determined by the exchange length of the material. The total
magnetization of the sub-volume is then a simple sum of the atomic spins it represents. To
computationally model the magnetization dynamics, the particle magnetization is mapped
onto a discrete lattice of these sub-volumes. For the model studied in this dissdiba, the

magnetic sub-volume of the particle at experiences a local e ective eld,

Hetr (1) = He(¥) + Hz (¥) + Hy(H); (2.1)

13



which can be found by taking the functional derivative of the energfe with respect to the
magnetization, i.e.,He () = 1 mE[m(¥)].

On the cubic numerical lattice, the exchange eld consequently takes the form,
0 1

2 X
Ar)= = @ em(m)r  min+ QA 22)
jdi= r
where only the six nearest-neighbors of are included in the summation. Equation2.2

comes directly from the discretization of the continuous exchange eld,
He(¥) = 12r 2m(¥): (2.3)

As will be shown in Chapter 5, considering the prefactor in Eg2.2 to be a material
property independent of r introduces problems for temperatures greater than:25 T, and
a di erent form will be employed to yield better agreement with experimenthobservations.
However, for Chapters 3 and 4 this form, suggested by and supported by low-temperature
measurements, is used, as the discrepancy between the two is small for these siipuls

The long-range dipolar interaction,Hy4, couples all computational cells to each other.
Consequently, the dipolar term constitutes the largest computational task duringn inte-
gration step of the simulation, scaling aO(N2) for a brute-force calculation. The cost of
this term is reduced to a linear dependence on the number of celld;, by using the Fast
Multipole Method [21]. The details for application to nanopillars are discussed in Ref2]).
This method results in simulation rates of approximately @41 ns/CPU-hour on a Dual-Core
2220 28 GHz Opteron processor with 2 GB RAM per core for a lattice with 3240 s#eusing
the C++ Psimag library [ 23.

The temperature is included in the simulation through the stochastic eldd ™, whose
components are Gaussian distributed with mean zero and variance determined by the
uctuation-dissipation relation,

2k gT

HHT (R OHT (75 19i = “omov

t t9; (2.4)

where kg is Boltzmann's constant,V is the volume of an individual computational cell, T
is the absolute temperature, ; and are Kronecker deltas over the lattice site§j and
directions ; , respectively, and (t t9 is a Dirac delta function of the time di erence,
t t% This equation implies that the magnitude of the thermal eld scales linearly with the
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square root of the temperature. The integration of this term is handled sepasy from the
other elds due to its stochastic nature. Further information on the details of the intgration
of the stochastic eld is found in Ref. P7].

2.2 Equation of Motion

In order to numerically investigate these nanopillars, a coarse-grained, cubmneputational
lattice is used, which approximates the geometry of the physical nanopillars growry b
von Molrar and collaborators. For the computational model, each cell represts the net

magnetization of the corresponding sub-volume of the physical system. The time evabut

of this spin, m(#), is controlled by the Landau-Lifshitz-Gilbert (LLG) equation [16, 24, 25],
dm(x
S T M) A () M) Fa(R) © (29)

which updates every site on the lattice at each computational time step. At eackite
i, the local e ective eld He (ff) determines the direction of change of the magnetiza-
tion m(x) during the next integration step. The parameters, o = 1:76 10’ Hz/Oe,
ms = 1700 emu=cm?®, and  represent the electronic gyromagnetic ratio, the saturation
magnetization of bulk iron, and a phenomenological damping parameter, respectively.

As mentioned before, the total local eld, Hes (), is a sum of the individual elds,
which include the exchange eldH,, the uniform applied eld Hz, and the dipole eld
Hgq. The rst term in the LLG equation simply represents the natural precession othe
magnetization around Hes (#), described by Larmor precession. Since this single cross
product does not dissipate energy, the magnetization cannot relax towards thdokal
energy minimum, contrary to experimental observations. To correct this thavior, a
phenomenological damping term proportional to was added by Gilbert, details of which
can be found in Ref. 26]. The result is the second term in Eq2.5 which describes the
relaxation of the local magnetization toward the local eld.

The values used in Eg2.5 are consistent with the material properties of bulk iron for the
simulations presented in Chapters 3 and 4, with the damping parameter typically takess

= 0:1. To investigate the absorption time of a heat pulse in the simulations, is varied in
Chapter 5, thus changing the characteristic absorption time. Other consequencestaining

to adjusting this parameter are also discussed in Chapter 5.
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2.3 Visualization

The three-dimensional vectors representing the internal magnetization elds dié¢ simulated
pillars allow for several useful techniques to be used for visualizing the dynamics ofdbe
systems. Along with custom OpenGL applications?[/], the graphics package Tecplot]d]
was used to explore and illustrate the many magnetic con gurations of the nanopillars.h&
most basic visual representation of the eld of the nanopillar system is the simple vect
lattice, which portrays the exact orientation of the discrete eld at eactcomputational site.
This technique was especially useful for understanding the reentrant behavior of thmedium-
resolution model of Sec3.4, as well as verifying the dynamics of the LLG equation for a
single spin. By viewing both the local e ective eld and the magnetization at the end athe
pillar as three-dimensional arrows that are parallel to their respective elds athe lattice
site, the dynamics could be viewed in both real space and time.

Understanding the behavior of the highest-resolution model has also bene ted greatly
from the employment of visualization techniques. Comparing the faster and slow modes
of the model in Chapter4 was aided by subtracting the magnetization con gurations of
these two modes and studying the residual magnetization, in this case, through a speallg
developed OpenGL application. This helped to understand the subtle di erences between
the con gurations of these modes. In addition, snapshots of the magnetization that vee
recorded during the simulations could be used as frames in a movie. These moxédsrned
important insights into the temporal dynamics for the high-resolution system, whicaided
in characterizing the overall behavior.

Another technique, streamline tracing, approximates the discrete vector eld of the
computational lattice with a set of continuous lines that are directed parallel tohe vector
eld. This allowed for the recovery of the original continuous description and, congeently, a
more intuitive picture of the magnetization, as seen in Figdl.4, 3.4, and 4.1 This technique
is enhanced by carefully choosing the starting point of each line such that the linegrfo
plane-like regions, which create a better guide to the eye for discerning the intefrnactor
con guration. For the high-resolution model, the streamlines that trace the magnetizain
clearly reveal the structure of the endcap as well as capture the thermal resse of the
spins, which is not easily seen in a simpler, discrete vector representation. Imh@tion
gained through the visualization of these systems has resulted in a deeper underdiag of
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the behaviors and processes that occur, compared to the computational analydsna.
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CHAPTER 3

RESOLUTION-DEPENDENT
MAGNETIZATION-SWITCHING BEHAVIORS OF
A COMPUTATIONAL NANOPILLAR 1

3.1 Introduction

In this chapter, we study the switching statistics of models of elongated, defeceé iron
nanopillars, using several di erent resolutions of the computational lattice to modelhe
same physical pillar. The high aspect ratio of these systems introduces a SIA th&sists in
raising the coercivity of the particle and reducing unwanted thermally-activatedvgitching
during the long-term storage of the bit information. Here, we are particularly intergted in
bimodal distributions of the switching time arising in various regimes of the applied eldy],
which could potentially compromise the reliability of the switching process. To obtain a
more comprehensive understanding, in this chapter we compare bimodal distributions of the
switching time for the three resolution models of the same system. Our results showttkize
lattice resolution is very signi cant in that it determines the manner in which uctuations
in the model a ect the numerically observed behaviors.

The rest of this chapter is organized as follows. In Se8.2 we brie y discuss our com-
putational models and describe the numerical procedure that is used in all the simulations.
The nanopillar is modeled at three di erent resolutions of the computational lattice: high,
medium, and low. Results from the simulations are presented in Se&3, 3.4, and 3.5

respectively. Finally, we present our conclusion in Se8.6.

1This chapter is based on Ref. 9]
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3.2 Model and Numerical Details

Our numerical models are motivated by real iron nanopillars fabricated by von Maém and
collaborators using scanning-tunneling-microscopy-assisted chemical-vapor dafan [9,

]. The highest-resolution model for their experimental nanopillar has a lattice disdrea-
tion on the order of the physical exchange length [3(]. Although this discretization provides
the most realistic behavior, the simulation time prevents a statistical descriptio of the
switching-time distribution for more than a few values of the applied eld. Even with less
sampling than the lower-resolution models, over 6 10’ CPU-hours would be needed with
a modern CPU in order to adequately investigate magnetization-switching as a fummn of
the applied eld.

For the medium-resolution model the lattice is discretized to the width of the pillar,
spanning several, for each computational cell. This model, along with the lowest-resolution,
which models the pillar as a single spin, allows for a more thorough investigation of sehiing
statistics over a larger region of the applied- eld space. We consequently ussults from
the highest-resolution model to explore internal magnetization dynamics and compatitee
resulting switching statistics to those of the lower-resolution models.

The LLG equation, discussed in Se@.2, is used to evaluate the dynamics for all three
models found in this chapter. All three models also use the same eld-reversal protbco
for the simulation time 0:125 ns< t < 0 ns. The simulation begins with the pillar
in an applied eld of magnitude 3260 Oe and angle 75with respect to the long axis of
the pillar (Fig.3.1(a)). Once equilibriated, most of the spins are relaxed in the direction
of the initial applied eld (Fig. 3.1(b)). The value of the applied eld is then changed
sinusoidally over a time period oft = 0:125 ns and is nally anti-parallel to the initial
eld, i.e., Hz(t) = Hzgocos(t=0:125 ns) witht 2 [ 0:125 ns0]. Fort > 0, Hz(t) = Hzg
and remains constant with a negative-component (Fig3.1(c)). This eld-reversal protocol
prevents the Zeeman energy from excessively exciting the system.

After the completion of the eld-reversal protocol att = 0, measurement of the
switching time begins and only depends upon the value of thecomponent of the total
magnetization M, = (1=(Nsmg)) ; m, (), with Ns the total number of computational
spins. Consequently, the switching time is de ned as the rst-passage time (FPT) tdl, O,

starting from M, > 0.
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Figure 3.1: Schematic of pillar magnetization (small black arrows) and the uniform applied
eld (large red arrows) at di erent times during a trial. In these images, thez-axis (up-down)
has been compressed to about one-third of the original height. (a) Initially, at=  0:25 ns,
the magnetization is aligned with the long axis of the pillar and the applied eld has a value of
3260 Oe, oriented at 75with respect to the long axis. (b) Some time later, at = 0:125 ns,
the magnetization is relaxed and the applied eld begins its sinusoidal reversal assdabed
in Sec.4.2 (c) The eld reversal is complete att = 0 ns. (d) The nal equilibrium of the
simulation after magnetization switching has occurred.

Figure 3.2 displays the computational cell geometry for the three models discussed in
this chapter: (a) the high-resolution 6 6 90 cells, (b) the medium-resolution 1 1 15
cells, and (c) the single-spin model. An example of the nal direction dfiz is also shown
beside each lattice as a bold arrow. For the high-resolution model, the switchintatsstics
are collected for only one value offz due to the computational time required to gather a
statistically signi cant amount of data. The switching statistics of the low and medium-
resolution models, however, are studied as functions of the and z-components of the
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Figure 3.2: Lattice resolution geometries for the (a) high-resolution model, (b) medium-
resolution model, and (c) single-spin model. Each computational cell is centeredasphere
in the gure. The nal orientation for the applied eld of the high-resolution model is
included as a bold red arrow in the gures. Other orientations of the applied eld aralso
used in this study for the medium and low-resolution models, with thg-component of the
applied eld always zero.

Zeeman eld,Hzy and Hz,.

Switching near the coercive eld involves spins at the ends of the pillar for both the
high and medium-resolution models. For the high-resolution model, this is a result of the
initial formation of endcaps, regions of large curl at the ends of the pillar that lowerhe
free energy through pole avoidance. Since end spins of the medium-resolution model have
only one nearest neighbor, they can have larger changes in orientation for igeg energy
cost compared to the internally located spins. The center of the pillar betweeréd two
ends remains essentially uniformly magnetized while in the metastable state for both of
these models, except for small thermal uctuations and propagating low-amplitude spin
waves. Eventually, the collective, random thermal uctuations carry one or b ends out
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of the metastable free-energy well and allow magnetization switching to occurhd@ lowest-
resolution, single macrospin model, however, only has to exit from a simple two-dimensibna
metastable free-energy well and switches via a precession that dissipates gynénrough the
damping term in the LLG equation.

The subsequent propagation of the domain wall in the highest-resolution model occurs
though a vortex wall mode, since the width of the pillar accommodates this switching
structure. The stack-of-spins model, however, only allows for the propagatiohatransverse
wall mode due to the resolution of the model in the transverse directiorif]. Due to this
behavior, the medium-resolution model exhibits an angle-dependent switching respotiss
is similar to pillars with widths that are smaller than the exchange length. In addition, a
\reentrant”-like behavior is exhibited for the medium-resolution model for applied ¢ds that
are closely aligned with the easy axis. This is attributed to the precession of tlsengle end
spin and is not expected to be found for an in nite chain of spins.

3.3 High Resolution

First, we describe results for this nanopillar system with a three-dimensional, highs@ution,
6 6 90 cells computational model that possesses a lattice discretizationy;, which
is smaller than the exchange length ofe = 2:6 nm for the real system §(]. Since the
magnetization of the real system does not change appreciably across < | ¢, this resolution
provides the most realistic internal magnetization dynamics of all of our computatioha
models. A further decrease of r; should not provide signi cantly increased accuracy, as
very short-wavelength uctuations would dissipate quickly due to the size of [31].

When this model is subjected to a near-coercive applied eltH7 = 3260 Oe at 75 with
respect to the long axis of the pillar, a distribution of FPTs with at least two charateristic
times is obtained pBC]. Although technically not \bimodal" in the strictest sense, the
PDF displays two exponential-like regimes with two di erent characteristic tima. This
distribution, shown in Fig. 3.3 as a cumulative distribution for 100 trials, is divided into two
groups based solely on the observed distribution: a fast mode (switching times2:5 ns)
and a slow mode (switching times> 2:5 ns). Both modes are tted well by the delayed
exponential,f (t) = (t to)(1=)exp( (t to)=), where is the Heaviside step function.
The o set, described byty = min[min f t;g; Hi ¢], is attributed to the nite time required
for the system to climb out of the free-energy metastable welb]]. With this t, we nd
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Figure 3.3: Cumulative switching-time distribution at 202 K for the highly resolved model
for the applied eld Hz = 3260 Oe at 75 with respect to the long axis of the pillar. The
bimodal behavior seen in this distribution is the result of a magnetization-switching proces

which the endcap may or may not con gure itself into a long-lived metastable con guration.

= 0:5 ns for the fast mode and = 21:7 ns for the slow mode. A detailed analysis of the
results of the high-resolution model is presented in Chapter 4. Here we provide only $keo
details needed to compare and contrast with the medium and low-resolution models.

We found that the bimodal switching-time distribution is the result of multiple switching
paths through a high-dimensional free-energy landscape, each path with a single cteas-
tic switching time that the system chooses with almost equal probability for the applied le
used in this study. Measurements of the total energf during the simulations were nearly
constant during the switching process, indicating that changes in the free enerflgy= E TS
mostly come from changes in the entrop$. Fluctuations of the coarse-grained spins allow
trajectories to enter a region of the free-energy space in uenced by a &aninimum that
requires a large decrease i8 to exit, resulting in the slow mode. If the uctuations do

23



not cause the pillar to fall into this metastable free-energy well, a fast mode is @vged for
which the trajectories follow a free-energy path with almost constarf, corresponding to an
entropy change that is relatively small. The di erence in the magnetization con gurions
of the endcaps between the two modes is subtle. FiguBe4 depicts a typical endcap
con guration while the pillar is in the metastable state, which is visually indistinguishable
from endcap con gurations that are not long-lived. The volumes of the endcaps are ngahe
same for both the fast and slow modes and agree with the experimental t of thetivation
volume yieldingv, 270 nn? [33). Further characterization of the endcap con guration did
not reveal di erences that would indicate if switching occurred via a fast or a slomode.

Although not studied in this paper, the role of defects in the computational lattice or
shape distortions might play an important role in the switching behavior. Experimeiat
systems with multi-modal switching distributions could result from localized defects ithe
material, which would further complicate the endcap con gurations34]. We leave this for
future research.

Since switching is equally likely to initiate at either endcap, fast modes occur if either one
or both endcaps do not pass through the long-lived con guration. However, it is necasg
for both endcaps to explore the longer-lived metastable con guration in order touglify as
a slow mode. For the high-resolution pillar, we also nd that the fast-mode statist& are
not dependent on the number of endcaps that switch (one vs two). However, thigtdil is
central to the explanation of the bimodal distribution seen in the medium-resolution model

discussed in Sec.4.
3.4 Medium Resolution

The medium-resolution model is a one-dimensional stack of spins, with a lattice resolutidn o
1 1 15cells. This model does not allow for variation of the magnetization in the transkse-
to-easy-axis direction, but permits non-uniform magnetization along the spin chain. Due
to the considerably smaller computational time required by this and the lowest-resolah
models, it is feasible to sample the switching statistics for a much larger region in thpplied-
eld space, Hz;.

Figure 3.5 reveals the minimum switching eld Hg, as a function of , the angle of the
applied eld with respect to the easy axis of the pillar, forT = 30:3 K (T chosen to match
the experimental conditions). This gure is generated from data that have 100rials per
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Figure 3.4. Streamlines trace the magnetization of the endcap for a trial of the higltes
resolution model while in the metastable state. The color of the streamlines indicatdse
z-component of the local magnetization ( red #,, blue m; ) and exhibits some waviness
due to the thermal uctuations.

applied- eld value, with Hg, de ned as the eld that causes 50% of the trials to switch for
a waiting time of 3:34 ns. Qualitatively similar results are also found foHs, using di erent
waiting times. The experimental results are also shown in Fi@.5 for comparison, and show
good agreement with the medium-resolution model. In particular, both the 11 15 model
and the experimental results show a deviation from a Stoner-Wohlfarth unifornetation
type of behavior for < 60 [17].

An increase in the switching eld is also observed both experimentally and numerically
near = 0. For the numerical results, the triple-valued shape is a consequence of the
\reentrant” behavior seen in Figs. 3.6 and 3.8 and discussed below. The increase in
switching eld near = 0 is expected for the spin chain, since the nucleating end spin
cannot form the curling con guration found in the high-resolution model and must switch
via a damped precession similar to the Stoner-Wohlfarth particle. Also, the switching lé
of the experimental pillar may possibly be lowered because of defects in the sampiég]
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Figure 3.5: Minimum switching eld Hg, at 30:3 K as a function of the angle of the applied
eld. Thel 1 15 medium-resolution, stack-of-spins model (red crosses) deviates from
the macrospin model (black circles) at < 60 in agreement with experimental observations
(orange triangles) 7. A magni cation of the behavior of the numerical results for the
medium-resolution model near = 0 is shown as an inset, exhibiting an increase in the
switching eld. The \reentrant region”, shown in Figs. 3.6 and 3.8 below, is re ected in the
triple-valued shape of this curve. For the 1 1 1 macrospin model, a Stoner-Wohlfarth
type of behavior is displayed. Analytical results for a Stoner-Wohlfarth spin arelso shown
as a black curve. For the numerical dataHs,, is de ned as the eld that causes 50% of the
trials to switch for a waiting time of 3:34 ns. Error bars for all results are on the order of
the symbol size.

Analytical results for a Stoner-Wohlfarth spin are also presented in the gure andhatch the
-dependence ofl, for the lowest-resolution model discussed in S&:5[7]. The dependence
of the minimum switching eld on the orientation of the applied eld is also revealed by the
location of the coercive edge in the applied- eld space of Fi§.6.
We begin searching for bimodal distributions for this system by plotting the variabl€
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Figure 3.6: Applied- eld space at 2@ K for the medium-resolution 1 1 15 model with a
waiting time of 3:34 ns. Larger values of the variable@ > 1) may indicate the existence of
more than one characteristic time in the switching-time distribution. Bimodal distributions
are seen just above the coercive edge in this gure as a ridge that almost exterdsoss the
entire length of the Hz,-axis. The empty white area below this ridge denotes the region
where switching times are larger than the waiting time.

in Fig. 3.6, de ned as

. ; 3.1
mearftig minft;g (3.1)

where = P (A=(N 1)) P ((ti hti)2is the standard deviation of the observed switching
times t; over a sample ofN = 100 trials, mearft;g is the mean value, and mift;g is the
minimum value of the sample. Values o€ that are greater than unity may indicate the
existence of a switching-time distribution with more than one characteristic time.

Bimodal switching-time distributions are seen as a ridge that almost extends across the

27



Figure 3.7: Cumulative switching-time distribution for the medium-resolution pillar at
202 K for the applied eld Hzx, = 340 Oe andHz, = 3:2 kOe. N = 10000 trials were
used to generate this gure, with 9043 returning a switching time below the waiting timefo
6:68 ns. Thez-component of the global magnetization for two trials is also shown as an inset.
A faster trial (solid black line) shows a slope that is twice as large as that ohé¢ slower trial
(red dashed line), resulting from both endcaps releasing at approximately the same time

entire Hz, -axis and is located just above the coercive edge of F&6. As the ridge is crossed,
the ratio of faster to slower switching times changes from a larger percage of slower times
just below the ridge, to a larger percentage of faster times just abovke ridge. The larger
values ofC observed at the coercive edge preceding the bimodal ridge, most easily seen near

= 45 , are the result of incomplete switching statistics withN < 5. An increase in the
maximum waiting time of the simulation should improve the accuracy o€ in this region.
It should also be noted that larger values o€ seen in the interior of the plot (e.g., near
Hzx = 2:4 kOe andHz, = 4:5 kOe) are caused by applied elds that are large enough to
cause switching whert < 0, during the initial eld reversal.

The cumulative switching-time distribution for the eld Hz, = 340 Oe andHz, =

3:2 kOe, located close to the center of the bimodal ridge, is presented in Fi§.7. An
interesting feature of this distribution, compared to the highly resolved model, is the @e
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separation of faster and slower switching times. Since nucleation of the domain wall
equally likely to occur at either end of the pillar, two possible scenarios may happédaring
switching for this model. For the slow mode, nucleation of the domain wall only happens at
one end of the pillar. As the wall proceeds along the pillar, the dipolar eld is lowered for the
spin situated at the opposite end of the pillar, preventing that spin from nucleating anber
domain wall. Growth toward the stable state of the pillar happens in this case at a tethat

is given by the movement of a single domain wall. On the other hand, the fast mode is the
result of nucleation of domain walls at both ends of the pillar at nearly the same time, vt
a corresponding change iM, that occurs approximately twice as fast for the faster mode.
This is revealed in the inset of Fig3.7 as the slope of the global magnetizatioM, vs time

t. Since either both end spins have to nucleate at nearly the same time, before the d#po
eld from the switching region increases the nucleation barrier for the oppositend, or one
at a time, a clear separation of observed switching times is seen in F&7. This indicates
that the ends of the pillar are coupled since switching from either end a ects the opposit
end. If this were not the case, one should expect a greater number of switckeesccur near

t =2:5nsin Fig.3.7.

Another interesting feature of the medium-resolution system is the region ofdentrant”
behavior, revealed in Fig3.6as the concave region of the coercive edge near thg, = 0 kOe
axis. Figure 3.8(a) provides a magni ed view of this feature usingC de ned in Eq. (3.1).
As can be seen in Fig3.8(b), which plots the mean switching time vsHz, for Hzx = 68 Oe
and 102 Oe, the mean switching time is a nonmonotonic function bifz, and increases with
increasing applied eld forHz, = 3:5 kOe toHz, = 3:7 kOe. This behavior is not con ned to
the region close to theH z,-axis. The switching times of the spin chain remain nonmonotonic
for Hz, 3.7 kOe in the region ofHz, < 2:5 kOe.

Since switching in the pillar simulations initiates at the ends, we investigate the dynamics
of the end spins and discuss the dierences to characterize the \reentrant” bavior.
Figure 3.9 depicts the trajectories of the end spin for several values bif;,. For Fig. 3.9a)
(T =202 K, Hzx =68 Oe, 0 t 2:67 ns), the trajectory for Hz, = 3:40 kOe is
remarkably di erent than the others, which is the result of the end spin precessinga@und a
relatively stationary local eld during this time frame. For stronger applied elds, thelocal
eld at t =0 ns is reduced, which allows the end spin to relax towards the global free-energy
minimum. This happens forHz, = 3:47 kOe, with the end spin essentially rotating in the
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Figure 3.8: (a) Closer view of the \reentrant” region for the medium-resolutiol 1 15
model. The white region has switching times greater than the waiting time. (b) Mean
switching times forHz, = 68 Oe (triangles, upper curve) andHz, = 102 Oe (circles, lower
curve) with the error bars indicating one standard deviation. Data used for (b) @& the result
of 1000 trials per point, with a maximum waiting time of 3342 ns.

longitudinal direction toward m, = 0 during the early part of the switching process, resulting
in a shorter mean switching time. However, a maximum mean switching time is observed
near Hz, = 3:67 kOe that exhibits an end-spin (and local eld) rotation opposite the spin
precession aHz, < 3:40 kOe in the transverse plane in addition to a slower rotation in the
longitudinal direction. At even larger applied elds the switching time is reduced, which
is the result of a very small or negative 4-direction) local eld at early times and a faster
domain-wall propagation during switching. Additionally, due to the e ect of the noise on
the trajectories, the 202 K trials take longer to move around them,-m, plane, compared
to the T = 0 K trials seen in Fig. 3.9b), with Hz, =170 Oe for the times 0 t 1:34 ns.

3.5 Low Resolution

Finally, the lowest-resolution model of the physical system is a single spin, 11 1.
Anisotropy in the previous two models is provided through the dipolar eld, which is absent
in the single-spin model. However, we can approximate the e ects of these elds using a
crystalline anisotropy eld. The magnitude of the components of the corresponding unieak
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Figure 3.9: Paths of the end spin projected onto then,-my plane for several values of
Hz,. The gure on the left (a) depicts the paths forHz, = 68 Oe at T = 20:2 K for times

0 t 267ns. The black path forHz, = 3:40 kOe precesses around a relatively stationary
local eld during this time. For larger applied elds, the paths rotate opposite to thog
subjected toHz, < 3:40 kOe. Reduced switching times are observed arouHd, < 3:47 kOe
that result from the end spin mostly rotating towardsm, = 0, instead of around the easy
axis. Also shown on the right (b) are similar trials forT =0 K, with Hz, =170 Oe for the
times 0 t 1:34 ns. We note that the behavior of the end spin is relatively deterministic,
even atT = 20:2 K, however the average switching time is increased compared to the= 0 K
trials due to longer path lengths from the stochastic uctuations.

anisotropy eld are found by calculating the shape-induced anisotropy derived fromu pillar
of the same dimensions that is uniformly magnetized parallel to its easy axiso[ 37]. In
practice, this involves rst nding the induced magnetic surface charge at the ends of the
pillar due to the initial magnetization. These surface charges in turn create a magnescalar
potential that is used in the calculation of the magnetostatic self-energy.

Once an expression for the magnetostatic self-energy of the nanopillar is found, the
magnetometric demagnetizing factor in thez-direction, D,, is de ned as the factor that
makes the magnetostatic self energy per unit volume equal tol2,ms?. For a cuboid with
equal width and length such as our model, this can be reduced to Eq. (5) of Reif]|
which is the form used in this paper. More details of this calculation are provided in the
Appendix. This unitless factor has the property thatD, + Dy + D, = 1, where D, and Dy
are the magnetometric demagnetizing factors in the directions transverse to teasy axis.
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Following Aharoni's convention 6], we nd Dy = Dy = 0:4846 andD, = 0:0308 for the
shape-induced anisotropy for our model's dimensions. This result, however, overastes
the coercive eld of the pillar since the endcap formation of the higher-resolution rdels
lowers the free-energy barrier for switching and is not accounted for in thelcalation of the
SIA term. Consequently, higher switching elds are observed for this model when compd
to the higher-resolution models.

For this macrospin approximation, we observe bimodal behavior in the interior of the
applied- eld plot, shown in Fig. 3.10using C de ned in Eq. (3.1). This region is now found
as an internal ridge beginning at abouH;, = 7:1 kOe and extending up and to the right in
the gure. The location of this ridge is notably di erent than the one seen in the medium-
resolution model, which relies on metastability that leads to bimodal behavior. Howave
switching near the ridge in the macrospin model involves an applied eld whose magnitude
makes the magnetization dynamics essentially deterministic. Since the coarse-grainifithe
pillar is extreme in this case, the single-spin uctuations resulting from the temperaturare
very small. As it turns out, the bimodal ridge reveals a switching process that is sensitive
to these tiny uctuations, based on our de nition of a switching event.

A plot of the cumulative switching-time distribution is shown in Fig. 3.11 for a point
in the bimodal region and reveals a clear separation of faster and slower sivds with a
relatively broad gap in time between the two switching regions, where no switchescur
at all. As with the medium-resolution model, the behavior oMM, with time exposes the
mechanism responsible for the bimodal distribution. The precession of the single spin close
to M, =0, the rst crossing of which constitutes our de nition of a switching event, leadgo
the observed distribution in the macrospin approximation. The inset in Fig3.11showsM,
as a function of time for a faster switch (solid black line) and a slower switchdd dashed
line). Faster switching is caused by the rst precession becoming thermally \knoo#iebelow
M, = 0, resulting in a shorter switching time. Switches that do not cros$1, = 0 during the
rst attempt subsequently reach this value on the next precession, which leads to anlger
switching time. As with the medium-resolution pillar, the ratio of faster to slower switbes
changes as the bimodal ridge is traversed. The bimodality for the single-spin model is thus
simply a re ection of the inadequacy of the customary de nition of the switching time as a

rst-passage time in this case.
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Figure 3.10: Applied- eld space at 2@ K for the lowest-resolution 1 1 1 representation.
Using the same contour variable as before and a waiting time a3 ns, bimodal distributions
are observed as an interior ridge that results from the precession behavadrthe single spin
near M, = 0. The large white area in this gure indicates a region where switching times
are greater than the waiting time.

3.6 Conclusions

We have studied the switching statistics of a simulated magnetic nanopillar for three dirent
resolutions of the computational lattice, looking for switching-time distributions that ae
bimodal. The bimodal distributions result from processes that depend on the resolution of
the computational lattice and the inherent uctuations for each resolution studied here
Limited by the computational time, we only investigate the distribution for a single value
of the applied eld in the highest-resolution model near the coercive eld. The mechanism
responsible for the observed bimodal switching-time distribution in this realistic model is
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Figure 3.11: Cumulative switching-time distribution for N = 10000 trials of the lowest-
resolution pillar at 20:2 K for the applied eld Hz, = 1:19 kOe andHz, = 7:6 Oe. The
inset depicts thez-component of the magnetization as a function of time and reveals a faster
trial (solid black line) that crossesM, = 0 on the rst attempt due to a thermal uctuation,
while a slower trial (red dashed line) requires an additional attempt to crodgl, = 0.

revealed as a consequence of uctuations that determine a switching trajectomhich may
or may not carry the system through a long-lived metastable con guration.

For the medium and lower-resolution models, the much smaller computational time
enables a full exploration of the applied- eld space. We nd very di erent mechanisms
leading to bimodal distributions for the switching times in these two lower-resolution models

The medium-resolution model displays a bimodal distribution near the coercive edge
of the applied- eld space that depends on the timing of the release of the two endcaps.
Fluctuations in this model serve to help the end spins of the pillar overcome a free-energ
barrier separating metastable and stable orientations of the magnetization. If thectuations
result in a switch with only one endcap releasing, a longer average switching timecors.
However, when both endcaps release approximately simultaneously, the agerawitching
time is measurably shorter. Both of these situations are present near the caeecedge in
the medium-resolution pillar and are responsible for the observed bimodal distribution. In

34



addition, this model also has the best agreement with the experimental data of theal
system. This may indicate that the real system's metallic iron core has a smaller widthan
originally reported.

The medium-resolution model also exhibits reentrant behavior for applied elds that are
moderately aligned with the easy axis. Starting near the coercive edge, the meantshing
times increase for larger applied elds. This is due to the trajectory of the end spin dag
the early times of the switching event. The fastest mean switching times occur due ltoth
the end spin and its local eld rotating in the longitudinal direction toward the global free-
energy minimum immediately after the eld reversal. Slightly higher values of the applied
eld reduce the magnitude of the end spin's local eld and result in a spin rotation in the
transverse plane in addition to a slower rotation in the longitudinal direction.

Finally, for the lowest-resolution representation of the physical nanopillar as single
e ective spin, a bimodal distribution is seen as a ridge that stretches across the énior of
the applied- eld space, away from the coercive edge. The bimodal distribution in this model
is a result of a precession that can pass through the magnetization value de ning a sshing
event earlier or later, depending on the small thermal uctuations. Trials that do notpass
this magnetization value early will consequently cross it during the next precessiorsulting
in the observed bimodal distribution.

For the three models studied in this paper, only the highest-resolution model adequately
captures uctuations that result in multiple switching paths in the free energy that may
occur in real pillars of width larger than the exchange length. Consequently, oursdts
show that conclusions about physical processes in simulated systems must take account
the degree to which the model resolution can re ect the length scales of the pioaly

relevant uctuations.
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CHAPTER 4

TWO MODES OF MAGNETIZATION SWITCHING
IN A HIGH-RESOLUTION MODEL OF AN IRON
NANOPILLAR IN AN OBLIQUELY ORIENTED

FIELD 1

4.1 Introduction

In this chapter, a high-resolution model of the magnetization switching of an iron nanopilia
is studied in detail. When subjected to a magnetic eld of magnitude near the coercive limit,
obliquely aligned with respect to the pillar's axis, a bimodal distribution of switching times
is observed (). This is a feature which may have important rami cations for the application
of such nanopillars in real-world devices, which typically rely on a single, consistatecay
mode. Other, lower-resolution models of the same physical system, which are présd
in Chapter 3, also exhibit bimodal switching-time distributions, however the mechanism
leading to this behavior is dierent in each model and depends on the resolution of the
computational lattice [29]. For the lowest-resolution model, a single macrospin, bimodal
switching times are the result of the spin precessing close to the magnetization valitt
constitutes our de nition of a switching event, which sometimes causes switching t@aur
early due to thermal uctuations. Bimodal switching times seen in a medium-resolution
model, a spin chain, depend on whether one end of the pillar switches or both ends switch at
the same time. Trials that involve both ends switching have a change in total magnetizan
that occurs roughly twice as fast as those with only one end switching. Conseqthgrower
switching times are observed for switching that happens at both ends concurrently.
Simulations in this chapter are performed only for the high-resolution model with a

1This chapter is based on Ref. §g]. Preliminary results were presented in Ref. §(]
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spatial discretization on the order of the exchange length, which enables magnetinat
con gurations that are nonuniform in all three directions of the pillar. The complex
magnetization dynamics of this highest-resolution model preclude a simple description of
the mechanism leading to bimodal switching times. This is additionally complicated by
the large computational resources needed to generate an adequate stattmcture of the
behavior across a large parameter range. Instead, the high-resolution modelxglered here

at a speci c applied eld while generating a large amount of statistics in order to mbe the
switching mechanism in greater detail. The validity of this approach lies in the fact that
for each of the lower-resolution models, the mechanism leading to bimodal switching times
is the same across a large range of the applied- eld space.

For a bimodal switching-time distribution, the traditional picture often used to describe
the decay of a metastable state, i.e., a single free-energy barrier which must dressed,
appears to be insucient. Furthermore, even a more complicated free-energyréace
simulated without random noise, i.e. at zero temperature, would not be able to showe
two modes of switching demonstrated for these nanomagnets. Therefore, we apalyhe
bimodal switching behavior of simulated nanopillars with a high-resolution model at nite
temperature using information from temporal phase portraits, and we also applypsorbing
Markov-chain techniques $¥{ 4] to transition matrices obtained from the simulations.

The rest of this chapter is organized as follows. We rst review the computational
model and implementation of the LLG equation in Sedt.2 Section4.3is divided into three
parts, which collectively discuss results obtained from the simulations. SectidtB.1explores
the phase portraits of the energy during switching, while Sed.3.2and Sec.4.3.3 provide
information about the free energy of the system based on analysis of tramsit matrices and
projective dynamics, respectively. Conclusions are presented in Séel

4.2 Model and Numerical Method

In order to numerically investigate these nanopillars, a coarse-grained, cubmneputational
lattice is used, as discussed in Sez.1, in which each cell represents the net magnetization of
the corresponding volume in the physical system. To ensure that the magnetizationndgy

is uniform at length scales below the cell volume, the lattice spacing is chosen smalleart
the exchange length of 5 nm, obtained from the material properties of bulk iron, and
discussed in Se@.2. This criterion yields a regular lattice with the dimensions 6 6 90
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Figure 4.1: Snapshot of a pillar endcap while in the metastable state. Lines in this
snapshot trace out the interpolated, continuous magnetization and are colooded by m,
(red positive(up), blue negative(down)). The waviness of the lines indicates the prese of
thermally excited spin waves.

(Ns = 3240 spins, x = 1:6667 nm), which has a single classical Heisenberg spin at the
center of each site with the e ective micromagnetic Hamiltonian given by Eql.4 The
temperature is set to 2@ K and is included in the simulation through the stochastic eld
HT, whose components are Gaussian distributed with mean zero and variance deterrdine
by the uctuation-dissipation relation, Eq. 2.4.

To keep the Zeeman energy from excessively exciting the system, we adoptdame eld-
reversal protocol used in ChapteB. At t = 0:125 ns, the computational pillar is uniformly
magnetized along the easy axis in the positive-direction and is subjected to an applied
eld that is initially anti-parallel to its nal direction, which is its direction for t 0 ns.
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Speci cally, the value of the applied eld is changed sinusoidally during the eld-reversal
period to its nal value, i.e., Hz(t) = Hzocos(t=0:125 ns) witht 2 [ 0:125 ns0]. For
t > 0, Hz(t) = Hzo and remains constant with a negativez-component. Shown in Figi.1
is the typical high-curl magnetization con guration of the endcap, which occurs aftethe
immediately after the completion of the eld reversal, but before switching occurs.

4.3 Numerical Results

Under the conditions described in Sectiod.2, N = 100 magnetization-switching simulations
were performed. The switching times is de ned as the rst-passage time to thez-component
of the total magnetization M, = (1 :(Nsms))P ;m;(r5) 0O, with time measured from the
completion of the eld reversal. From these 100 trials, the cumulative distribution fothe
switching times, shown in Fig.4.2(a), indicates at least two characteristic time scales and
the existence of more than a single switching path. About 60% of the simulations (59 runs)
switched almost immediately {s < 2:1 ns), while the remaining 40% (41 runs) exhibited
switching timests > 2:5 ns and up to an order of magnitude larger. Since direct comparison
of the magnetization of individual runs did not reveal any obvious di erences in the swibing
mechanism, the trials are divided into two groups based only on the location of the spar
corner of the cumulative switching probability in Fig.4.2(a). Located near the probability
0:6, this corner provides a clear distinction between two characteristic group$ switching
times in the distribution. These two groups are labeled as \fast" decaytd{ < 2:5 ns) and
\slow" decay (ts 2:5 ns). Below we show that the slow-mode statistics are the result of a
process which must traverse a free-energy landscape characterized byetastable well that
the system must escape to reach the lowest available free-energy stathis is accomplished
by the collective e ect of many random thermal uctuations that eventually cau® the system
to surmount the free-energy saddle point that separates the metastable welbrin the global
free-energy minimum. The fast-mode statistics, however, reveal a switching pah the free
energy that completely avoids the metastable well, as will be shown in Seds3.2and 4.3.3
Based on the shape of the cumulative distribution for each mode (Fig.2), an exponential
form is assigned to t the switching-time probability density function (pdf). To nd
the lifetime, , of each mode, the mean switching timeftsi = (1=N) tg, and the

P
standard deviation, ¢ = P (I=(N 1)) (ts htsi)?, are determined from the empirical
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data. The delayed exponential,f (t) = (t to)(1=)exp( (t tp)=), where is the
Heaviside step function and, = min[min f t g; Hi s, IS used as the pdf. We found good
agreement between the tted expression and the numerical data with a cosgonding one-
sided Kolmogorov rejection probability {5] of 0:12 and Q07 for the slow and fast modes,
respectively. Once the delay timet, was determined, our estimate for the lifetime was
found as = hs tg. The slow-mode lifetime from this estimate is = 21:7 ns, with a
correspondingty = 2:6 ns. The results for the slow-mode switches are shown in F§2(b)
and Table 4.1, with  for the slow mode close to other estimates that will be discussed below.
In comparison, the lifetime for the fast mode is = 0:5 ns, with to = 0:6 ns.

In addition to the above switches, 40 separate simulations were also completedien
conditions identical to the previous ones except for the details of the initial magnetizah
and eld reversal. The initial magnetization of these runs was determined by quenchiroge
slow-mode con guration to 0 K while in the metastable well, without changing the eld. The
new simulation began by rethermalizing, again setting the temperature to ZDK. From this
time on (t = 0), the simulations were carried out identically to the previous 100 trials. We
call this the Quenched-relaxed procedure (QR). The reasons for adopting it are expkd in
Section4.3.1 Along with the slow mode, the cumulative distribution of lifetimes for these
QR runs is shown in Fig.4.2(b), with = 17:7 ns, ¢ = 17:0 ns, andty, = 1:4 ns used for
the delayed exponential and a corresponding one-sided Kolmogorov rejectiookmbility of
0:18.

4.3.1 Phase Portraits

Phase plots of the energy also provide information about the behavior of the simuldte
nanopillar system. Such plots are shown in Figd.3, with the energies due to dipolar and
Zeeman contributions on separate axes. The collection of all runs belonging tearticular
mode are shown in the background of each plot, with a single run overlaid on top. For
the fast (a) and slow (b) modes, the simulations begin near the top of the plots, wigethe
density of points is low. During the initial relaxation of these simulations, both modesvolve
down and to the right (i.e., decrease in Zeeman ener@; (also a decrease iM, 2 [ 1;1],
the z-component of the total magnetization) and increase in dipolar energy). The oious

di erence between plots (a) and (b) is the path that each takes near the metastle well
(E; 1240 erg/cn¥, M,  0:72) and saddle point E; 1450 erg/cn¥, M,  0:66),
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Figure 4.2: Cumulative switching-time distribution for all 100 full runs, with only the fast
mode shown as an inset (a) and a comparison of quenched-relaxed and slow runs (bis |
clear from (a) that at least two characteristic time scales are present the switching statistics
for this system. From the measured lifetimes of the trials, the maximume-likelihoodsemate
for the lifetime, ,is =0:5 ns for the fast mode (59 trials), =21:7 ns for the slow mode
(41 trials), and = 17:7 ns for the QR trials (40 trials). See Tablet.1 for a summary of the
lifetime measurement results. The tted expression® (t) = (t to)(1 exp( (t tg)=)),
where is the Heaviside step function, are also shown for the separated sets of data.
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Table 4.1: Lifetimes were obtained by the following methodstii is the empirical mean
obtained from the switching times of the actual simulations, and s is the corresponding
standard deviation. For the slow and QR modes, characterized by the pdf(t) =

(t to)(1=)exp( (t to)=), tois found from min[minf ts g; Mt s, and = Hd to.

ev IS obtained from the eigenvalues of the transition matrix (Sectiod.3.2. gr is found
from the residence times of the projective dynamics (PD) analysis (Sectidn3.3.

Fast Mode (ns) Slow Mode (ns) QR (ns)

sl 11 24.3 19.1
to 0.6 2.6 1.4
s 0.4 20.7 17.0

0.5 21.7 17.7

EV 0.2 22.8 17.9

RT 1.3 24.8 19.7

determined by projective dynamics in Sectiod.3.3 The slow-mode trajectories proceed to
the metastable well which can be seen in plot (b) as the large dark region in thenter of the
plot. For the slow mode, the simulation spends most of its time here. However, thestanode
events ignore this attractor almost completely, mostly slowing down only near theaddle
point. This is not unreasonable, since the free energy near the saddle point necelyshas a
small gradient, and the driving force is therefore weak. Both modes continuke switching
process toward the global free-energy minimum located below the displayed pont of the
phase portraits. These results suggest that the di erence between the famtd slow modes
is the visitation of the metastable well by the slow mode. This is further supported bthe
QR simulations.

To investigate the properties of the metastable free-energy well, severandomly chosen
trials from the 100 simulations were quenched and rethermalized to force metasie
behavior. Quenches initiated at values dE; higher than the saddle point (1450 erg/cn¥)
equilibriated to a commonT = 0 K metastable con guration located more negative than
Eqg 5200 erg/cn? along the dipolar axis of Fig.4.3(c) (not visible), and represents the
common initial con guration for all QR trials. This T =0 K con guration was consistently
reached by all chosen trials belonging to both the slow and fast modes and freamious values
of Ez > 1450 erg/cn? during the switching process. The resulting initial con guration
quickly proceeds to theT = 20:2 K metastable well when thermalized. Other quenches,
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Figure 4.3: Phase plots in the space of dipolar and Zeeman energies for 59 runsruhgy

to the fast mode (a), 41 runs belonging to the slow mode (b), and 40 runs belonging to
the quenched-relaxed trials (c). The lighter background (red) is the collection @l runs
belonging to a particular mode, while the darker path (black) represents a single run. Also
shown on theE; axis is the location of the metastable well (horizontal dotted line) and
saddle point (horizontal dashed line), determined in See..3.2and 4.3.3 Arrows indicate
the average direction of motion of the phase portrait.

which were initiated at values ofE; below the saddle point, settled into con gurations near
the T = 20:2 K nal absorbing state and were not used in the QR trials.

Since the QR simulations necessarily start in the metastable well, they do not have the
same behavior as the fast and slow modes during the rethermalization. They also omit the
con gurations Ez > 1100 erg/cn? which occur at early times for the slow and fast modes.
However, ignoring this initial relaxation, they produce phase plots that closely resemble
those for the slow mode. The similarity of the phase plots suggests the QR simulaticarsd
the slow mode may also share other features, which are explored in the next subeas.

Also interesting is the large change witlT in the phase-space location of the metastable
state in the QR simulations upon rethermalization. It indicates that the entropyS, which
enters the free energ¥§f asF = E TS, has alarge in uence on the free energy of the system.
This observation is further seen in Fig4.4, which plots the total energyE of the system as
a function of time. Ignoring the fast relaxation following the eld reversalE is nearly the
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Figure 4.4: Total energyE as a function of time for a single run belonging to the slow
mode and a single run belonging to the fast mode. Nea&r= 0, the total energy quickly
decreases as the system initially relaxes. After this, the average value of tis¢al energy
remains constant, except for small uctuations, until the saddle point is crossed.

same for both fast and slow modes, remaining constant (except for small uctuatis) until
the saddle point is crossed. Since the total energy is nearly the same for both moa@esropy
must largely account for the di erences in behavior that de ne the slow or fastalaxation.

4.3.2 Transition Matrix

Although the phase space in these simulations is very largeNg dimensions), it appears
from the phase plots in Fig.4.3 that the evolution of the system along the Zeeman-energy
coordinate, Ez, can approximately describe the process of magnetization switching. To
investigate the possibility of a one-dimensional description of the switching proceshis
coordinate was discretized into 400 equal-sized bins for the transition-matrix dgais of this
section. Individual bins are labeled by the index = 1;:::;; k. We found the results of this
section to be approximately independent of the axis discretization, and we therefause 400
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bins since it provides numerically stable results for all of the Markov-chain techniquestbis
section. Each measurement dE; during the simulation corresponds to a particular bini,
and this discretized state can be represented by a unit vecttfj consisting of 1 in theith
position with all other elements equal to 0.

The matrix, M, of transition probabilities between states is also constructed by sampling
the series ofE; values during the simulation. Individual elements of the transition matrix,
M; , are obtained by enumerating the single transitions from bip to bin i corresponding to
atime step, t 3:3 10 *ns, equal to the measurement interval during the simulations,

and normalizing such that . Mj = 1. Thus, the probability of going from Hj to H'j in one

j
time step is given by the matrix elementM; with the result that,

hut+ )] = hu(t)iM; (4.1)

wherehu(t)j = P hu(t)jtintj = P - pi()H] is the row vector representing the probability that
EZisin bini at time t. Therefore,M provides the average change in the state of the system
after one time step £9. These transition probabilities are estimated by combining statistics
from all individual runs belonging to a particular mode (fast, slow, or QR).

Since on average the time evolution of the simulation decreades, the system begins in
state th and ends when the absorbing statHj is reached andv, 0 (the z-component of
the total magnetization is 0). From this condition, the matrix elementMi; = 1 signi es
this absorbing state. The transition matrix representing this absorbing Markov chaithus

has the form [(],

I 0
M+s) (rv9) = Rrs rr Trs SS : (4.2)

Here, | is an identity matrix which, in general, represents absorbing states (herer = 1).
R is the recurrent matrix, which describes the probability of moving into the absorbing sta
from any other state, 0 is a null matrix, and T is the transient matrix, which describes the
evolution of the system before absorption.

By this construction, M is a non-symmetric, regular, non-negative square matrix with
row sums equal to one and with di erent left and right eigenspaces. The Perrdfiobenius
theorem [1(] provides a general property for this type of matrix, namely that there exists
a unique eigenvalue oM equal to unity, which is larger than the magnitudes of all other
eigenvalues oM . For our matrix, the left eigenvector associated with the largest eigealue
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Figure 4.5: Probability distributions obtained from the eigenvectors corresponding tthe
second largest eigenvalue for the fast and slow modes and the QR simulations. his tgure,

the Zeeman axis has been discretized into 400 bins. We found the probability densities
to be approximately independent of the discretization. These distributions are constriac
from all the data belonging to each mode, as discussed in Sect#®B8.2 The slow and QR
distributions have a well-de ned peak at the location of the metastable free-energyell, with

the QR distribution almost hidden behind the slow-mode result. The fast mode, however, is
quite wide with an approximately uniform probability density below the free-energy saddle
point in the Zeeman energy (see Sed.3.3, and close to zero above. The cuto M, = 0,
corresponds toE; 2200 erg/cn?.

of M ish ,j = Hj = (1;0;0;:::0). This represents the probability distribution characterizing
the absorbing state.

The other eigenvalues oM correspond to decaying deviations from the equilibrium
distribution since h ;jM = h ;j and

h jM= h j (4.3)
with 0 < j j < 1. Hereh ;j = Hij denotes the dominant left eigenvector oM, and h |
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is any other left eigenvector oM with eigenvalue . As a consequence of the above, the

weights of all left eigenvectors oM excepth ,j will decay to zero under repeated applications

of M sinceh jM" = "h |. Equations 4.1) and (4.3) together are used to nd the lifetime
of the th eigenstate, with the result that,

h ®i= h @ e® Yh () (4.4)

Since h ,j corresponds to the second longest-lived state of the system, = 1=(1 2)
approximates the average lifetime of the metastable state of the system in unit$ the
measurement time resolution, t.

A probability distribution representing the metastable state can be built from a proprly
normalized linear combination oh ;j andh ,j, hmetgj = h ;j + bh ,j, with , well separated
from 3. Here, the scaling constanb constrains the resulting vector to have zero weight in the
absorbing state and ensures that the probability is normalizedP(i tmetajti = 1). As can be
seen in Fig.4.5, the slow and QR metastable state probability distributions found using this
method have a similar shape and exhibit peaks revealing the location of the metastabikeetf
energy well. The location of these peaks agree with the phase portrait resutif Sec4.3.1
for the longer-lived trials and clearly pinpoint the free-energy minimum along the Zeema
axis. The fast mode, however, does not have a dominant peak in the probability distribution
that might be expected based on the phase portraits. Rather, the probability dsity is
close to zero near the metastable free-energy well and spread out along theaimder of
the axis. This may indicate the sub-dominant eigenvalue is not well separated from thest
of the eigenvalue spectrum and that the probability densities associated with thesborter
transients are also important. Nevertheless, these results reinforce thenclusion that the

fast-mode switches simply do not fall into the metastable well.

4.3.3 Projective Dynamics

The transition matrix of the previous section accounts for all transitions thatmay occur from

a given bin, potentially with all elements of the submatricelR and T non-zero. However,

if the bin sizes are chosen su ciently large, the matrix becomes tridiagonal. To gafy
this condition, 200 equal-sized bins are used and the one-dimensional description of the
magnetization switching becomes a one-step Markov process]| Using this single, coarse-
grained variable, the projective dynamics (PD) methodd9, 41{44] can be used to measure
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the growth probabilities Pg and shrinkage probabilitiesPs of the stable phase along this
coordinate. Once obtained, several properties of the projected free enefg(Ez) can be
measured viaPg and Ps. A key advantage of the PD technique is that it provides information
about the location of the saddle point in the free energy. This is generally a di cult fature
to extract, as the statistics in this region are usually sparse.

The PD method is implemented as follows. First, thé&; axis is broken into a number of
bins, as described for the transition-matrix approach in Sed.3.2 The bin size is determined
such that each time step is only capable of moving the system between adjacent bins
corresponding to discretizing theE; axis into 200 bins for the PD analysis. Histograms
of Pc(Ez), Ps(Ez), and the probability to stay in the same bin,Py(Ez), keep a record of
the changes along the axis and are updated at each measurement. Once completed, the
histogram is normalized so thatPg(Ez) + Ps(Ez) + Py(EZz) = 1.

For the present nanopillar simulations, we attempted to use as the slow (binned) variable
the Cartesian components of the total magnetization, as well as other coiutions to the
total energy. However, the Zeeman energy provided the clearest crossiafjghe probabilities
for the projective-dynamics technique. This is reasonable since it provides the closest
correspondence to the path observed in Fig.3.

Points alongE; wherePg = Ps de ne local extrema of the free energy. This is true since
Ps > PsimpliesdF=dE; > 0 andPs > P ¢ implies dF=dE; < 0. For our system, which has
a single metastable free-energy well, these extrema represent the locatibthe metastable
well, the saddle point, and the true equilibrium in the free energy. The latter is not obsezd
in our simulations due to the cut-o at M, 0.

Figures 4.6 (a) and (b) show PD plots for the fast and slow modes, respectively. Each
plot contains the data of all the runs belonging to each mode (points), which have théen
smoothed using a ve-point running average (solid curves). The location of the metable
free-energy well for the slow-mode switches (rst crossing from the right iRig. 4.6 (b),
Ez 1240 ergem?®, M, 0:72) coincides with the peaks present in the probability
distribution for the longer-lived trials, Fig. 4.5, of Sec.4.3.2 Further left, the second crossing
in Fig. 4.6 (b) indicates the saddle point in the free energy, which is located &, 1450
erg=cm®, M,  0:66. The locations of both the metastable well ( rst crossing from the right)
and the saddle point (second crossing from the right) are obvious for the slow d& This
is expected since the results of Seé.3.2indicate true metastable behavior.
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Figure 4.6: Projective Dynamics results for the two modes, fast (a) and slow)( The slow
mode exhibits clear crossings of the growth and shrinkage probabilities, indicating extna
in the free energy, corresponding to the metastable well (right) and the saddl@ipt (left).

Conversely, the probabilities for the fast mode only nearly overlap in this same regioThe
solid curves are ve-point running averages.

From our data, the lowest growth probability, Pg, for the fast mode occurs around
E, = 1450 ergcm®, M,  0:66 which is identi ed as the location of the saddle point in
the free energy from the slow-mode statistics. Here, fast switches prodelerough a region
of the free-energy landscape with a small, but negative slope. Along with the resutitkthe
probability distributions, this indicates the absence of a metastable state in the fast mode.
These results agree with the probability distributions (Fig.4.5) obtained from the transition
matrices of the previous section, as well as provide information about the locat of the
saddle point in the free energy.

The PD results of the quenched-relaxed system can be compared to the slow modes
As seen in Fig.4.7, the QR system and the slow-mode probabilities near the metastable
minimum cross at nearly identical values oEz. The PD technique reveals that the slow

49



Figure 4.7: Projective Dynamics results for the two modes, slow and quenched-reldx
(QR). It is easy to see that these simulations share the same statistical bef@ in this
region, including nearly identical crossing values (which are locations of the extrematoe
free energy). As with Fig.4.6, the solid lines represent ve-point running averages.

mode and QR trials not only share similar locations of the free-energy metastablellybut
also pass through saddle points that look nearly identical in this projected space.

Together, the PD results and the probability distributions imply that, once in the
metastable well (the slow and QR decays), the system must be thermally actieat to
overcome the free-energy saddle point. On the other hand, these results indicatattif
the metastable well is avoided (the fast mode), the system only has to traveraeelatively
at free-energy landscape to switch.

Lifetimes can be calculated easily from the results of the PD techniqu&s] and compared
to those obtained from other techniques used in this paper. The residence time facke bin,
h(i), is de ned as the average time spent in staté. In addition, Pg(i)h(i) is the average
number of times the system moves from stateto i 1 (the absorbing state is state 1). If
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the system is to reach the absorbing state exactly once, then
Ps(i)h(i) Ps(i 1)h(i 1)=1 (4.5)

must be true. Since the absorbing state has zero shrinkage probabilifyg(1) = O, the
residence time of the previous state can be found bf2) = 1=Ps(2). This leaves an iterative
solution for the remaining states,
1+Ps(i 1)h(i 1)
Ps(i) .
gonsequently, the average lifetime of the process is the sum of the residence simgr =
h(i).

A summary of the lifetimes obtained by all the techniques used in this paper is provided

h(i) = (4.6)

in Table 4.1. We expect some bias in the lifetime data due to the arti cial cut made when
sorting fast and slow modes. Trials with lifetimes< 2:5 ns are considered fast modes,
although there is some probability that they may belong to the slow mode, albeit with a
short individual lifetime.

Di erences between gy and the other measurements of the fast-mode lifetimes may be
due either to statistical error, which is not included in the transition matrix associted with

ev, Or to the analysis of a single eigenmode not being su cient for the fast mode. The
latter may be particularly important since the eigenvalue spectrum for the faghode is very
closely spaced below the largest eigenvalue. We expect the slow and QRififes obtained
from the eigenvalues of the transition matrix to be more robust against this errpdue to
the larger amount of statistics gathered from longer runs.

Measurements of the QR lifetime vyield slightly shorter values than for the slow-ade
measurements from the full simulation. This is expected since the QR trials begin soto
the bottom of the free-energy metastable well upon rethermalization and catently do
not include relaxation into this area.

In addition, the lifetime measurements obtained from the residence time for all modes
show slightly larger values. Since this is a sum of the average time spent in alltegfor
each mode, this method includes the initialy, which is subtracted fromhi to give . After
considering the biases associated with each measurement technique, the lifetimeseagery
well with one another and reinforce the choice of using the Zeeman axis as the progec
variable.
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4.4 Conclusions

We have studied the magnetization-switching properties of a simulated iron nanopillar
motivated by experimental researchq, 33. Under the realistic physical conditions described
here, we found the presence of more than one characteristic switching time, whickrev
labeled as \fast" and \slow" modes. Through phase portraits and numericaksults provided
by transition matrices and the projective dynamics method, di erences betweemése two
modes were identi ed. Our results indicate that the fast mode is associated with swiiting
dynamics that do not carry the system through a deep metastable well. This idea is supieal
by data from separate simulations in which the system was quenched to 0 K while ne¢he
metastable well and then rethermalized. These quenched-relaxed simulations also iatc
that the entropy provides a large contribution to the free energy of the systn. Using
transition matrices obtained from the average behavior of each mode, we atsnstructed
projective dynamics plots and metastable probability distributions which further provide
evidence that the fast mode does not encounter a metastable free-energy well amndlves
across a relatively at free-energy landscape. In addition, lifetimes were olwad by
measurement, by tting to the cumulative distribution, by sub-dominant eigenvalues, and
by residence times from projective dynamics as reported in Tabfel Lifetime values also
help to ensure that an appropriate axis was chosen to project the dynamics of thgstem
onto for the analysis of Sec4.3.2and Sec.4.3.3

The high-resolution results of this chapter predict multiple switching mechanisms that
rely on non-uniform transverse magnetization that may exist in physical nanopillarsnd are
not seen in the lower-resolution models explored in Chapter 3. These results mayveri ed
experimentally and may have important rami cations for technological applicationshat rely
on a single, consistent switching mode, such as memory devices.
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CHAPTER 5

HEAT-ASSISTED MAGNETIZATION REVERSAL

5.1 Introduction

In this chapter, a recent technique for assisting magnetization switching in high-aoevity
materials is investigated {6]. As discussed in Chapterl, one of the largest obstacles to
increasing areal density in magnetic recording is the reduction of the long-term stabyliof
the bit. For bits comprised of many patrticles, as used in current hard drives, theercivity
of each particle must be increased to insure that the stability factor K, V=k T remains
large as the volume is decreased ( 60) [2, 47]. Alternatively, a single-particle bit which
replaces the multi-particle bit can possess a larger per-particle volume, yieldingsaitable

and better SNR. Approaching terabitin? areal density, however, may require a further
increase in the anisotropy of the single-particle bit to achieve the highest possiblecking
fraction. Such a high anisotropy presents an additional challenge to the design cidesations.

As an example, the coercive eld of a particle with a very large anisotropy canebome

greater than the maximum write eld of the recording head. This happens as the areal
density is increased and ,V is kept high compared to the thermal energy, which is necessary
for long-term stability. Eventually, the coercivity of the particle surpassestie limits of the
write head's eld strength, limited to about 17 kOe {1 7]. This is currently alleviated through
the use of a magnetically soft underlayer (SUL), seen in perpendicular recording mediangs
a multi-particle bit. This con guration allows the bit to be placed in the highest eld of the
write head, instead of the fringe eld used in longitudinal recording, as shown in Fig.1
This orientation increases the eld strength by a factor of about 2. Hower, extremely
high-coercivity materials, such as FePtKl. 50 kOe), necessitate eld strengths that are
beyond what is achievable by modern write heads, and single-particle bits are exjgelcto
have even higher coercivities’].
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Figure 5.1: Write elds produced by magnetic heads as seen in (a) longitudinal recording
and (b) perpendicular recording. The magnetic bit can only be positioned in the fringe eld
of the recording head for longitudinal recording. In perpendicular recording, the magmet
bit is placed in the position of the maximum eld, between the pole of the recording head
and its mirror image.

Heat-assisted magnetization reversal (HAMR) is proposed as a technique tssit in
magnetization switching of these materials4[f] by exploiting the temperature dependence
of the coercivity. This is accomplished by increasing the temperature of the redang bit
to a value that is close to, or above[T, via an energy input from a heat source. Due to
the temperature-dependence of the coercivity, the magnitude of the applied switching eld
is lowered at the elevated temperature, relaxing the requirements for the #a head.

An important consideration for the implementation of the HAMR technique is to keep
the input heat as low as possible, limiting heat dissipation and propagation to neighboring
bits. The results of the higher-resolution simulations of the previous chapters provide
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key detail that may be useful for this issue. For both the medium- and highest-rdation
models, magnetization switching is observed to initiate at the ends of the pillar. In the
medium-resolution model, the dynamics of the single end spin is responsible for the eld-
dependent switching behavior for close-to-coercive elds. The highest-resatut model also
initiates switching at the ends but occurs through the formation of a complicated endpa
structure. Since magnetization switching initiates in these regions, we focus only orating
the endcaps of a high-resolution, metastable pillar. This feature, along with the physica
requirements that the heat pulse must be applied at the top of the pillar, is used to comstt
an initial temperature pro le along the length of the nanopillar. The increased tempetare
at the endcap should consequently initiate switching of the nanopillar in a eld that is
smaller compared to the coercive eld when the pillar is not subjected to a heat pulsen |
this chapter, we present exploratory results for a simulated nanopillar using the HAMR
technique based on these considerations.

5.2 Model

The LLG equation used in the previous simulations assumes a constant saturation gra
netization for the computational cell, independent of the temperature. Howevegs the
temperature increases, thermal uctuations compete against the exchange fesc e ectively
lowering Ms. The result is a saturation magnetization that goes to zero at the Curie
temperature, above which the material becomes paramagnetic. As a result, itilsportant
to use a lattice discretization that is ne enough to allow these uctuations. The same
nanopillar geometry that is presented in the previous chapters is modeled using the high-
resolution, 6 6 90 lattice, although the material properties are modi ed to enhance the
behavior of this approach.

Another issue that must be dealt with is the discretization of the exchange eld. The far
of the exchange eld used in Chapter8 and 4 results in magnetization-temperature curves
that depend on the resolution of the computational lattice, as seen in the top paof Fig. 5.2
These results are obtained from simulations of a classical ferromagnetic Helmng model
with N = 102 sites, and only include an exchange interaction between nearest-neighbor spins.
The integration time step t is determined by decreasing it until the overall behavior of the
system no longer changes. At is then chosen that is smaller than this value. Values ¢# |,
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Figure 5.2: Remanent magnetization as a function of temperature and lattice distimation

for the classical Heisenberg ferromagnet witfi, = 1043 K. In the top part of the gure,
the exchange prefactor It= r)? gives rise tojM (T)j-pro les that depend on the lattice
spacing r. Changing the exchange prefactor to ks T.=M2V relaxes the r-dependence
and allows for the estimation of the magnitude of the prefactor without resortingp a direct
evaluation of J. For the coarsest discretization seen here, the size of the e ective spins
precludes the existence of additional spin degrees-of-freedom, which would oy at
higher temperatures.

which re ect the temperature-dependent saturation magnetizatioM(T), are an average of
the system's global-magnetization magnitude after the initial transient to equilibrium has
occurred. The length of this transient depends on both the temperature and distization,
and it was found separately for each simulation.

As can be seen in the top part of Fig5.2, the resolution of the computational lattice
changes the temperature dependence of the global magnetizatigvij. For the previous
simulations that use a xed temperature, this dependence does not a ect the mechanisms
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leading to the observed bimodal switching-time behaviors. There, the exchange lengtlwvas
used as a parameter of the exchange eld, as seen in Hg7. This parameter is normally
estimated by measurement of the domain-wall width in the real material and is assuméexl
be independent of the details of the computational model. Instead, the exchange eld may
be formulated in terms of the exchange constai@ that exhibits a dependence on the lattice
spacing,C J= r, whereJ is the exchange integral. In this formulationJ is found from
the inverse critical temperature . J=kg T, of the ferromagnetic Heisenberg modet §, 49,
using Monte Carlo simulations. Peczak et al4f] were able to determine . by extrapolating
the results of the variation of the fourth-order cumulant of the magnetizatiorwith respect

to for dierent system sizes. Their results give an estimate of. = 0:6929(1).

After discretization, the alternative formulation of the exchange eld then taks the form,
0 1
ckB Tc

X
M2V @ 6m(r) + m(r + HA ; (5.1)

jai= r

He(f) =

where V is the volume of the computational cell (sub-volume) and. is the critical

temperature of the physical material in Kelvin, determined in advance through @erimental

measurement. The important di erence between EqR.2 and Eq. 5.1 is the factor of 1= r?

found in the former. As can be seen in the bottom part of Fig5.2, the new expression
for the exchange eld results injMj vs. T curves that are almost independent of r. We

therefore use this form to evaluate the magnetization-switching properties thfe nanopillars

in this Chapter, since the simulation will involve temperatures close td.. The results of
the simulations discussed in the previous chapters are not expected to change signitba

using the exchange prefactor of this chapter, since the temperature of the otheéudies is

comparatively low, whereM (T) is nearly independent of temperature.

5.2.1 Heat Equation

The HAMR technique relies on precise control of the heat input into the pillar. This in
itself presents an engineering challenge due to the small temporal and spatial ssdat are
involved. As an example, it is suggested in one scenario that around 5 mW needs to be
applied during a time pulse shorter than 0.1 ns across an area of 50 7fa]. Several
methods have been proposed to accomplish this task, including planar solid immersion
mirror-focused light, optical near- eld irradiation, contact with a hot metal tip, and resistive
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heating [1, Z]. We will ignore these challenges and assume a convenient pro le for the heat

input, consequently only focusing on the dynamics of the pillar after a heat pulse is applied.
In this picture, heat is introduced to the nanopillar from the top and is allowed to

propagate along its length after the initial pulse is applied. The time- and space-dependes

of the temperature are determined from a solution of the one-dimensional heat etjaa,

TZY _ yr 21(2:0): (5.2)

whereT (z;t) is the temperature at a distancez from the top of the pillar at time t, andk =
20340 nm/ns is approximately the thermal di usivity of iron near room temperature [50].
We assume that heat can only escape at the bottom of the pillar, constraining the daé
derivative of the solution of Eqg.5.2 at the top to be equal to zero for all times. This is
physically reasonable since the nanopillars are expected to be attached to a stdist that
acts as a heat sink.

The solution of Eq. 5.2 used here is a Gaussian, centered at the top of the nanopillar.

The temperature pro le in time then becomes

o to z? .
T(z;t)= To+ Tpmexp m 4

ot O (5.3)
with z = 0 the location of the top of the pillar. Here, Ty is the ambient temperature which
determines the initial temperature, T, is a measure of the heat pulse &t = 0 ns, and the
maximum temperature isTo + T,. Since this solution does not allow for heat to escape
through the top of the nanopillar, the parameterto = 2=2k, with  the standard deviation

of the Gaussian, describes the time that has elapsed during the heat-input phase, which is
not modeled. As a result, the pulse width and, are varied to change the total heat input
for the simulations. This initial condition is justi ed by keeping the initial pulse width small

compared to the length of the pillar, so that it only extends into the endcap region.

5.3 Results

Exploratory simulations were constructed to probe the dependence of the switch time
on several parameters of the model, with a hypothesis that the switching prosesould be
fairly sensitive to the heat input in the endcap region. In the following simulations, datara
collected for a maximum waiting time of about one nanosecond. We continue to usetsame
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eld-reversal protocol used in the previous chapters, which is described in dédtin Sec.3.2
In all trials, the applied eld is aligned anti-parallel to the long axis of the nanopillar for
t 0 ns and the ambient temperature isT = 300 K for all times. At t = 0 ns, the heat
pro le is applied to the pillar and allowed to undergo dissipation as described by E§.3. As
before, the switching time of each trial is de ned as the rst-passage time througi, = 0.

Figure 5.3shows the results of a group of simulations performed with various pulse heights
for the condition to = 0:001 ns. In this and the following gures, only trials that switched
during this time are shown, with the minimum switching eld for each set of conditions
indicated by the left-most data point. The uncertainty in the switching time is higher on
the left-most side of each gure and is the result of an exponential switching mat due to
the presence of a signi cant free-energy barrier. As the eld is increased, theeé-energy
metastable well is elevated and eventually disappears, as in the Stoner-Wohlfagnergy
description. Eventually, the switching time plateaus at a nite time, dominated by the
propagation time of the domain wall along the pillar. It is this deterministic region that is
of signi cance from an application standpoint, since predictability of the switching timesra
needed.

Although only one run is is included per data point, it can be seen that all three pulses
begin to switch deterministically at about 2900 Oe. For the pulse width used in Figh.3
there is little di erence between trials that are not subjected to a heat pulse anthose that
are. This may be due to the fact that the initial pulse has already decayed talT, before
0:01 ns have elapsed, which may not permit the spins su cient time to absorb the thermal
energy necessary to overcome the free-energy barrier during the elapsed timéth this in
mind, the e ect of the input heat is investigated next by changing the value ofy, as seen in
Fig. 5.4.

In the case of di erent values ofty, the switching response of the pillar is much more
dramatic. For the to = 0:001 andty = 0:01 ns simulations, the magnetization switching
behavior is roughly similar, with thety = 0:01 ns simulations switching at a slightly weaker
eld for the single trial performed here. It is not clear from the single-trial déa if there is
much di erence in the location of the onset of the deterministic region for these twalues
of to. For the to = 0:1 ns simulations, however, the increase in input heat lowers the coercive
eld signi cantly, even with T, = 500 K, less than used for the other trials in Fig.5.4

In addition, it appears that switching may be deterministic for much lower elds than the
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Figure 5.3: Field-dependent switching results for the HAMR technique. For the conditions,
to = 0:001 ns andT, = 0; 700 and 800 K the switching behavior is not signi cantly di erent
between each choice of,.

to = 0:001 ns andty = 0:01 ns trials. This is expected, since a pulse width this large initially
extends far past the endcap region and increases the temperature of the pillartimes that
are much longer than thet, 0:01 ns pulse.

Using such a large pulse width introduces problems, however, as the simulation does not
account for the Q1 ns that would have passed if the heat input time were considered. With
the initial condition of a pulse pro le, the spins of the lattice are not given the opportunityto
absorb heat during this period, which might signi cantly a ect the magnetization behavor
of the system. With this in mind, the pulse width is reduced to a more reasonahlig= 0:005,
as shown in Fig.5.5, con ning the initial heat pulse to the endcap region. In addition, the
damping parameter is increased to enhance the heat absorption, as discussed in the next

section.

60



Figure 5.4. Field-dependent switching results for the HAMR technique for the conditions,
T, =500 and 700 K andty = 0:003, 0:01; and 0.1 ns. Here, only the largest puls& = 0:1 ns
succeeds in signi cantly lowering the switching- eld requirements.

5.3.1 Damping Parameter

Exploratory simulations of the e ect of the heat pulse reveal that the lattice spinsvere
not responsive to the temperature rise, except for initial pulses that extended & into the
pillar. The reason behind this is that the spins are not capable of absorbing an adequate
amount of thermal energy before the input heat di uses into the substrate. The amount
of heat that can be absorbed is controlled by the damping parameter, as it describes the
transfer of energy between the thermal energy of the lattice and the therinanergy of the
spins. For low values of , the lattice spins slowly relax towards their local eld direction
and are weakly coupled to the heat bath. Indeed, if = 0 there is no dissipation of energy,
precluding any relaxation, and there is no coupling to the heat bath. As is increased, the
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Figure 5.5: Temperature pro le for the HAMR technique at several times after the initia
heat pulse fortg = 0:005 ns. The width of the Gaussian is determined by setting the standard
deviation to the length of the endcap.

dynamic damping that occurs through the LLG equation also increases, strengthening the
coupling of the spins to the heat bath.

The e ect of the damping parameter on the heat absorption of the lattice can be see
Fig. 5.6, where several simulations are conducted for di erent values ofin zero applied eld.
For = 0:1, used in the previous simulations, the characteristic time of absorption, which
is easily found by an exponential t, is much longer than the pulse width and subsequent
pulse decay seen in Fig5.5. This indicates that this pulse is much faster than the time
that is necessary to absorb the heat. Larger values of show a much faster response to
the temperature rise. To this end, a value of = 0:5 is chosen for further exploration of
the HAMR technique. While this value is too high for bulk iron, it has been chosen to give
insights into the implementation of this technique.

Figure 5.7 shows the results of the HAMR simulations fot, = 0:005 and = 0:5. For the
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Figure 5.6: Several simulations of the nanopillar with di erent values of the damping
parameter . The initial bath temperature is set to To = 300 K, with the a pulse of
T, =500 K and pulse width to = 0:001 ns (see EQ5.3).

range of applied eld values shown here, the pulsed trials show a very similar tempeareg
response compared to the non-pulsed trials. The probabilistic region of both seifstrials
extends over most of the gure, with the more deterministic response found near 00e.
Although the higher is expected to increase the transfer of the pulse energy to the spins
on the lattice, it does not appear to have a signi cant e ect. This may be a consegnce of

a thermal pulse which is modeled too simplistically. For a more realistic approach it might
be necessary to include the time during the heat pulse application to the top of the pillar,
as well as correctly account for the exchange of thermal energy betwdée spins and the

(temporally- and spatially-dependent) heat bath.
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Figure 5.7: Field-dependent switching results for the HAMR technique for the conditions,
T, =0;500 K, t, =0:005 ns, and =0:5.

5.4 Conclusions

Increasing the areal density in magnetic recording has always involved developing new
techniques that overcome the limitations faced by the design of the previous genéwoat of
hard-drive devices. With the more recent devices, these limitations arise from enatering
obstacles brought forth by physics at the fundamental level, such as superparagnetism.
The subsequent increase in particle coercivity used to combat superparamagmnatistro-
duces the need for unattainably large switching elds. The HAMR technique has been
suggested as a means to cope with switching these extremely-high-coercivitytiples by
lowering the coercivity during the writing phase via heating.

An exploratory study of this technique, which simpli es the varying temperature of the
nanopillar as a one-dimensional pulse, reveals that energy transfer from the thermatize
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lattice to the uctuations of the spins plays an important role in the switching behavior
Since the simulations model the heat propagation only after the pulse has been applied to
the pillar, absorption of the thermal energy is omitted for the input phase. Consequently
the thermal energy of the spins only begin to increase after the pulse starts its dgc A
more realistic simulation should involve the inclusion of this initial time. Additionally, the
heat pulse is modeled as an in nitely large heat bath with a spatially-dependent temperatir
pro le described by the solution to the heat equation. It may be important to include the
exchange of energy between the heat pulse and spins.

Future studies of the HAMR technique might bene t from including these e ects. E orts
to study the switching space through lower-resolution models, as performed in Chap®8,
could also give important insight into the parameters that are necessary talieve useful
results, without the need for the computationally expensive, high-resolution studies this
chapter.
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CHAPTER 6

CONCLUSION

In this dissertation we have studied the behavior of several computational mddeof a
magnetic nanopillar. In Chapter3 we found that the discretization of the computational
lattice plays an important role in the dynamics of the model. Concentrating on regions
of the applied- eld space that yielded bimodal switching-time distributions, the underlying
mechanisms that resulted in this behavior were explained for a low-, medium-, and high-
resolution model representing the same system. We found that, in the case loé single-spin
model, bimodal distributions were the result of a spin precession that sometimes crossad
de nition of a switching event early, due to thermal uctuations. For the medium-resolution
spin-chain model, the number of propagating domain walls during the switching event was
responsible for the bimodal switching-time distribution. Additionally, it was found that
the bimodal switching distribution of the highest-resolution model is the result of separate
switching paths in the magnetization con guration space. We found that the degree of
uctuations that was allowed at each level of discretization controls the eld-dpendent
magnetization switching behavior for each model. We also observed that the medium-
resolution model exhibits reentrant behavior when the applied eld is closely aligneditiv
the pillar axis, resulting in reduced coercive elds in this region. This is found to be a gerar
feature of the spin chain model, as it is a consequence of the dynamics of a single spin éatat
at the end of the pillar.

Next, we investigated the high-resolution model exhaustively in Chaptet. Characteriz-
ing the bimodal switching behavior through phase plots of the total energy, Markawmatrix
analysis, and the projective dynamics method, we found that the bimodal switching time
distribution is the result of a sometimes visited metastable free-energy well. In tlwase of

trials that exhibited longer switching times, the pillar would relax deeply into a metastable
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con guration, requiring the cooperative assistance of the thermal uctuations t@xit. On the
other hand, short-lived switches bypassed the metastable well completely, passihgotigh a
free-energy landscape that was essentially at near the location of the wefltbe longer-lived
trials.

Finally, we performed an exploratory study of magnetization switching that is assexd
through an input heat pulse in Chapter5. In this chapter, the high-resolution model was
employed to model the e ects of a non-uniform, temporally-varying temperature prie on
the switching behavior. We found that several assumptions used in this model may be
inadequate to provide accurate results. Namely, it may be important to simulate the indl
temperature rise during the application of the heat pulse as well as provide a more acdara
coupling of the thermal energy of the pulse to the thermal energy of the lattice spinsn |
addition, further studies of this system may bene t from the use of simplied models to
provide initial estimates of the input parameters that yield useful switching behavior,sathe
highest-resolution model is computationally prohibitive for such an exploration.

Computational models, in general, are only approximations to the real system and
therefore must be treated accordingly. However, by examining general tig@s of the
nanopillar models in this dissertation, we have been able to identify behaviors and predict
properties of the real system that are as yet unavailable through direct maaement. The
results obtained here are complementary to the experiments and help to more thoghly
understand the nanoscale system, as well as guide future development. We believe thase
computational studies will bene t further research and development of nanoscopic magjce
particles, which will continue to become increasingly essential for technolodicmowth.
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APPENDIX A

SHAPE-INDUCED ANISOTROPY

We can approximate the shape-induced anisotropy for the macrospin model by evding the
magnetostatic self-energy of a pillar with the same dimensions as the full model (1 15).
To simplify the calculation, the magnetization of the pillar is assumed to be uniform and
parallel with the longest axis. The general expression of the magnetic scalatential [17],
Z I
o N (r A M (£
( ngO_'_ ( %dAO

m(H) = L JF ] CjF 9] (A1)

will consequently drop the rst integral on the right-hand side since™ M (¥) = 0. The
remaining surface integral, involving the e ective surface charges M () =

Mms
at the ends of the pillar, is used to calculate the mutual self-energy of the two endcés
with dimensionsa b, separated by a distance, and the self-energy of each individual face
by letting ¢ = 0. Together, these three terms are all that is needed to approximate the
self-energy of our model.

For the mutual energy Ewa Of the two faces at the ends of the pillar, the magnetic

scalar potential should be integrated across both surfaces such that
YA bZ a Z bZ a

1
E = dx,d dx,d :
mutual . o Y11 . . e Y2 2f(xa Xx1)2+(y2 Yy1)?+ gt

Solution of this integral is straightforward, although tedious, and can be expssed as a single

(A.2)
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function [37],

p
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wherep= b=g q= c=g and ( x) =sinh (x) =Infx+(1+ x?)'2g. The mutual energy of
the two end faces of the pillar is then given by

Emua =28° 1 2F (1;0); (A.4)
while the self-energ\E s Of each face is
Eeet = @ 1.°F(1;0): (A.5)
Hence, the total demagnetizing energfp of the cuboid is

ED 2 Eself + Emutual

2a®mg?[F (1;0) F(1;9)]: (A.6)

The nal step to this approximation involves the de nition of the magnetometric demagne-
tizing factor in the z-direction D,, which in our case has the de nition £6]

Eo

DZ = Tmsz: (A?)

The remaining factors in thex and y-direction, Dy and D, are evaluated by noting that
Dy+ Dy+ D,=1and Dy = D,.
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