
Florida State University Libraries

Electronic Theses, Treatises and Dissertations  The Graduate School

2004

Steady Dynamics in Shearing Flows of
Nematic Liquid Crystalline Polymers
Fangyu Liu

Follow this and additional works at the FSU Digital Library. For more information, please contact lib-ir@fsu.edu

http://fsu.digital.flvc.org/
mailto:lib-ir@fsu.edu


 

 

THE FLORIDA STATE UNIVERSITY 

COLLEGE OF ARTS AND SCIENCES 

 

 

 

STEADY DYNAMICS IN SHEARING FLOWS OF 

NEMATIC LIQUID CRYSTALLINE POLYMERS 

 

 

By 

Fangyu Liu 

 

 

 

 

A Thesis submitted to the 

Department of Mathematics 

in partial fulfillment of the 

requirements for the degree of 

Master of Science 

 

 

 

 

 
Degree Awarded 

Summer Semester, 2004 

 
 



 ii

The members of the Committee approve the thesis of Fangyu Liu defended on July 19, 

2004. 

 

 

 

 

 

Qi Wang 

Professor Directing Thesis 

 

 

 

 

 

Mark Sussman 

Committee Member 

 

 

 

 

 

Kaisheng Song 

Committee Member 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The Office of Graduate Studies has verified and approved the above named committee 

members.  



 iii

ACKNOWLEDGEMENTS 

 

I wish to thank my father for supporting all of my goals. Dr. Qi Wang, not only 

for his research skills, but also his fine personalities. He taught me critical thinking skills 

and showed me how I can apply it to different situations. Dr. Mark Sussman and Dr. 

Kaisheng Song carefully reviewed my thesis and gave me great supports. I am also 

grateful for the support I have received from Mr. Zhenlu Cui who gave me a lot of good 

ideas and suggestions. Lastly, to all of my friends in the Mathematics Department who 

guided me along this journey. 



 iv

TABLE OF CONTENTS 

 

List of Figures …………………………………………………………………………v 

ABSTRACT……………………………………………………………….…………..vi 

 

INTRODUCTION …………………………………………………………………….1 
1.1 The LE Continuum Theory ………………………………………………………...3 

1.2 The Doi Molecular Theory ………………………………………………………...4 

 

MODEL FORMULATION …………………………………………………………6 

 

SIMPLIFIED MODEL AND STABILITY……………………………………..9 

3.1 Simplified Model …………………………………………………………………9 

3.2 Dimensionless Form ……………………………………………………………...11 

3.3 Steady States ……………………………………………………………………...12 

3.3.1 Biaxial Steady States……………………...………………………..…….…...14 

3.3.2 Steady States for Small Debra Number…………...…………….…..………..16 

3.3.3 Steady States for Large Debra Number…………………...………..….....…..18 

3.3.4 Steady States for Different Polymer Concentration Values……….....………20 

 

CONCLUSION ……………………………………………………………………24 

 

REFERENCES ………………………………………………………………………25 

BIOGRAPHICAL SKETCH ……………………………………………………26 
 



 v

List of Figures 

 

Figure. 1 Molecule of Nematic Liquid Crystal …………………………………………..2 

Figure. 2 Molecule of Cholesteric and Smectic Liquid Crystal ………………………….3 

Figure. 3 Geometry of Shear Flow …………………………………………..………….10 

Figure. 4 The Range of Values for the Pair of Order Parameters S and β  …………….13 

Figure. 5 Variations of Steady State Solutions for De = 0.1 ……………………………17 

Figure. 6 Variations of Steady State Solutions for De = 10 …………………………….19 

Figure. 7 Variations of Steady State Solutions for N = 6 ………………………………22 

Figure. 8 Variations of Steady State Solutions for N = 3 ………………………………23 

 

 

 

 

 

 

 

 

 

 

 

 

 



 vi

 

 

ABSTRACT 

 

The biaxiality of the steady state solutions and their stability to in-plane disturbances in 

shearing flows of nematic liquid crystalline polymers are studied by using simplified 

Wang (2002) model. We obtain all the steady states of Wang model exhibit biaxial 

symmetry in which two directors are confined to the shearing plane and analysis their 

stability with respect to in-plane disturbances at isolated Debra numbers and polymer 

concentration values. 

 



CHAPTER 1

INTRODUCTION

Liquid crystals are materials exhibiting intermediate properties between crys-

talline solids and amorphous liquids. There are three main classes of liquid crys-

tals: nematics (see Figure. 1), cholesterics and smectics (see Figure. 2). Nematics

possess orientational but no positional order, i.e. on average they line up locally

but their positions are still random. Both cholesterics and smectics show some

position order. Here we only consider the nematic liquid crystals.

Although they were discovered more than one hundred years ago, the scien-

tific principles that govern their transport and optical properties were established

only recently (De Gennes, 1993). Since 1960s, the knowledge of liquid crystals

has become very profitable: liquid crystals are now used in almost all lap-top

computers, HD TVs and in many other applications such as high performance

fibers,light valves and temperature sensors, etc. The microscopic structure order

present in the liquid crystalline system is responsible for these properties. The dis-

tinguishing features of the mechanical behavior of liquid crystalline materials are

their anisotropic, non-linear, viscoelastic behavior, quite distinct from Newtonian

viscous fluids whose flow behavior is accurately described by the Navier-Stokes

equation. These differences arise because liquid crystals display various degrees

of orientational order and exhibit both long and short range elasticity effects.

Much of the fascination of flow phenomena in liquid crystals stems from the

intimate coupling between fluid motion and the orientation of the anisotropic axis

of these transversely isotropic liquids.

The earliest constitutive models were phenomenological. In the last several

decades, the close relation between the internal microstructure and rheological

properties has been recognized, and the more recent constitutive equations are

based on micromechanical descriptions of macromolecular systems. This ap-

proach is referred to as kinetic theory, which is to develop descriptive equation

at both macroscopic and mesoscale levels. Most of the hydrodynamic theories
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Figure 1: Molecules of Nematic Liquid Crystals.
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CholestericsSmectics

Figure 2: Molecules of Cholesteric and Smectic Liquid Crystals.

formulated for liquid crystals are based on two classical theories: the Leslie-

Ericken(LE)(1979) theory and the Doi theory(1986). The LE theory is a nonho-

mogeneous continuum theory that applies to low-molecular-weight nematics. It

accounts for the effects of director distortion, but does not account for the molec-

ular elasticity displayed by polymeric nematics nonlinear rheology. The original

Doi theory (Doi, 1981) is a homogeneous molecular theory that is capable of

predicting the isotropic-nematic(I-N) phase transition. The nonhomogeneous Doi

theories were developed by several researchers (Marrucci and Greco, 1991; Wang,

2002). In the theory of Wang (Wang, 2002), molecular geometry is accounted for

by its aspect ratio, which allows additional degree of freedom in the modeling of

the liquid crystal polymer.

1.1 The LE Continuum Theory

The earliest constitutive equations were developed by Ericksen (1960 & 1961)

and Leslie (1966 & 1968). The LE theory extends Frank’s continuum theory of

3



elasticity (Frank, 1958) developed for liquid crystals at rest to model flow behavior

and directly incorporates Frank’s distortional free energy. It is a vector theory that

uses the average of the molecular orientation, called the director (n,n ·n = 1), to

describe the intrinsic microstructure of liquid crystal materials. It was remarkably

successful in describing the optical behavior of low molecular-weight LCs (Leslie,

1979; Rey and Denn, 1988) under imposed external field and linear viscoelastic

regime, especially at low deformation rates. However, the theory still suffered

from some drawbacks: The assumption of linear dependence of the viscous stress

on shear rate in the development of the LE theory restricts it to low deformation

rates, thus the model can not describe nonlinear rheological properties, such as

shear-thinning of the viscosity and normal stresses which are observed in liquid

crystalline polymers (LCPs) (Wissbrun, 1981). Moreover, one can not describe a

biaxial LC (i.e., a LC with two characteristic directions of orientation) in terms of

a single unit vector. These drawbacks made it impossible to predict some aspects

of the complex behavior of liquid crystalline polymers(LCPs) such as phase tran-

sition and defect generation/annihalation. Although many improvements on the

LE theory are reported when using the second order tensor theories (de Gennes,

1993), the proliferation of unknown phenomenological parameters limits the use

of this type of formulation. The extensive work done using the LE theory to inter-

pret experimental data has led to some effort in determining the different constants

from molecular theories (Marrucci, 1982; Kuzuu and Doi, 1983 & 1984).

1.2 The Doi Molecular Theory

Doi (1981) made the first attemp at developing a molecular theory for liquid

crystalline polymers. Doi theory overcomes a number of drawbacks present in the

LE theory; primarily it accounts for the isotropic-nematic phase transition. It is

also able to predict some nonlinear rheological properties exhibited by LCPs.

Doi’s model is based on Onsager’s expression for the free energy of a solu-

tion containing rod-like polymeric molecules (Onsager, 1949). Using Onsager’s
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expression for the free energy, Doi obtained a self-consistent mean field potential

that accounted for the excluded volume interactions of a single test rod with the

surrounding rigid rods. He simplified this expression for the potential to a form

that is similar to the polymer-polymer interaction potential (Maier and Saupe,1958

& 1959) which is later referred to as Maier-Saupe potential. Next, starting from

the kinetic theory of Kirkwood and Auer(1951), Doi developed an expression

for the orientational distribution function for the concentrated rigid rod solution,

which included the Maier-Saupe potential.

Doi’s model takes into account the effects of flow, Brownian motion, and in-

termolecular forces on the molecular orientation distribution. It employs the ori-

entation distribution function which describes the probability density of molecular

orientation, to capture the microscopic behavior. Subsequent to its establishment,

the Doi theory was successfully applied for LCPs flows, and it could describe

rudimentary phase-transition behavior. The probability density function can be

expanded in terms of its moments, and the basis corresponding to the second mo-

ments is exactly the second order tensor mentioned above, and thus the Doi theory

includes all the above description. As compared to the LE theory, it was applica-

ble in a broader flow regime where the degree of orientation of the LC system can

vary.

The original Doi theory is for spatially homogeneous flows of rodlike liquid

crystal polymers. Doi, Shimada and Okano (1988) extended it to model flows

of nonhomogeneous LCPs by introducing a long-range intermolecular potential.

Marrucci and Greco(1991) further improved the extended Doi theory by incorpo-

rating the molecular anisotropy and the range of interaction into the theory. Wang

(2002) extended the theories to model flows of spheroidal LCP molecules , in

which the intermolecular potential developed ensures the second law of thermo-

dynamics and showed the kinetic theory limits to the LE theory in the limit of

weak flow as well as weak distortional elasticity.
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CHAPTER 2

MODEL FORMULATION

We use the theory developed by Wang (2002) and assume all LCP molecules

are of the same spheroidal configuration. Let f(x,m, t) be the probability distri-

bution function for the molecule in the configuration (x,m) at time t. In order

to establish the kinetic equation, we need the intermolecular potential Vi which

includes the following two parts:

1. Maier-Saupe potential: −3NkT
2

M : mm;

2. Isotropic as well as anisotropic long range molecular interaction part:

(
L2

24
∆ +

L2

48
mm : ∇∇)M : mm +

L2

48
mm∇∇ :: M4;

where mm is the tensor product of m with m, M is the second moment of m

with respect to the PDF f , M = 〈mm〉, “:” and “::” denote the contraction oper-

ation between the tensors over two and four pairs of indices, k is the Boltzmann

constant, T is the absolute temperature, N is the dimensionless polymer number

density.

The orientational properties of liquid crystals can be characterized by a second

order, symmetric and traceless orientation tensor

Q = 〈mm〉 − I/3, (1)

where 〈(·)〉 =

∫

|m|=1

(·)f(m, t,x)dm, (2)

The probability density function f(m, t,x) corresponds to the probability that an

arbitrary rodlike liquid crystal polymer molecule is in direction m at location x

and time t.

Following the development of the Smoluchowski equation for polymer solu-

tion(Doi and Edwards, 1986), we obtain kinetic(Smoluchowski) equation:

Df

Dt
= R · [Dr(m, a)(Rf + 1

kT
fRVi)] −R · [ṁf ], (3)
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where Dr(m, a) is the rotary diffusivity, inversely proportional to the relaxation

time due to molecular rotation, R = m × ∂
∂m

is the rotational gradient operator,

and D
Dt

(•) denotes the material derivative ∂
∂t

(·) + v · ∇(·), a is a shape parameter:

a = 1 : rod; a = 0 : sphere; a = −1 : disk.

Like in most kinetic theories, the macroscopic, or average, internal orientation

properties of nematic liquid crystals are defined in terms of the moments of m

with respect to the probability density function f (Doi, 1986).

Taking the second moment of m with respect to the PDF f , we obtain the

orientation tensor equation


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








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
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




























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









d
dt
M− Ω · M + M · Ω − a[D · M + M · D] = −2aD : M4−

6D0
r [M− I

3
− 1

6kT
(〈m×RVim〉 + 〈mm ×RVi〉)] =

−2aD : M4 − 6D0
r [M − I

3
− N

2
((I + L2

24
∆)M · M + M · (I + L2

24
∆)M)+

N(I + L2

24
∆)M : M4 −

NL2

96
((∇∇M)

...M4 + ((∇∇M)
...M4)

T +

M4
...∇∇M + (M4

...∇∇M)T + M∇∇
...M4+

(M∇∇
...M4)

T − 4M6 :: ∇∇M) − 2M4∇∇ :: M4].

(4)

where D0
r is an averaged rotary diffusivity resulted from the averaging process(Doi

and Edwards, 1986) which is assumed a shape dependent constant in this study.

Vi is the intermolecular potential. And we have Ω = 1
2
(∇v − ∇vT ) , D =

1
2
(∇v + ∇vT ).
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The total extra stress

τ = 2ηsD + 3akT [M− I

3
− N

2
((I + L2

24
∆)M · M + M · (I + L2

24
∆)M

−2(I + L2

24
∆)M : M4)] −

kTNL2

16
(∆M · M− M · ∆M)

−NkTL2

32
[∇M : ∇M − (∇∇M) : M]+

akTNL2

32
[4M6 :: ∇∇M + 2M4∇∇ :: M4 −∇∇M

...M4 − (∇∇M
...M4)

T−

M4
...∇∇M− (M4

...∇∇M)T − (M∇∇
...M4)

T −M∇∇
...M4] −

kTNL2

32
[∇∇M

...M4−

(∇∇M
...M4)

T − M4
...∇∇M + (M4

...∇∇M)T − M∇∇
...M4 + (M∇∇

...M4)
T ]

+3kT [ζ1(a)(DM + MD) + ζ2(a)D : M4].

(5)

Balance of linear momentum

ρdv
dt

= ∇ · (−pI + τ) (6)

where ρ is the fluid density, p is the scalar presure. Continuity equation

∇ · v = 0 (7)

The kinetic equation, orientation tensor equation, constitutive equation for the

extra stress, balance of linear mommentum and the continuity equation constitute

the hydrodynamical model for nematic liquid crystalline polymers (NLCPs). The

results from Wang(2002) show many new features which are not shown by the LE

theory.
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CHAPTER 3

SIMPLIFIED MODEL AND STABILITY

We consider the shear flow between two parallel plates located at y = 0 and h,

in Cartesian coordinates (x, y, z). Figure. 3 depicts the cross section of the shear

flow on the (x,y) plane. In this chapter, we will study the dynamics in shearing

flows of nematic LCP.

3.1 Simplified Model

For simplicity, we set L = 0, then the governing equation becomes:

Orientation tensor equation,

d

dt
M − Ω · M + M · Ω − a[D · M + M · D]

= −2aD : MM − 6D0
r [Q −

N

2
((I +

L2

24
∆)M ·M

+M · (I +
L2

24
∆)M) + N(I +

L2

24
∆)M : M4 (8)

Balance of linear momentum,

ρ
dv

dt
= ∇ · (−pI + τ) (9)

Constitutive equation for the extra stress,

τ = 2ηsD + 3ackT [M − I

3
− N

2
((I + L2

24
∆)M ·M + M · (I + L2

24
∆)M

−2(I + L2

24
∆)M : M4)] −

ckTNL2

16
(∆M · M− M · ∆M)

− cNkTL2

32
[∇M : ∇M − (∇∇M) : M].

(10)

Corresponding to the incompressibility, v satisfies the divergence-free equation,

∇ · v = 0 (11)

9



0
v = v

0
Q = Q

0
Q = Q

fixed

y

x

Figure 3: Geometry of the shear flow. The gap width is h. The LCP is sheared by

moving the upper plate with a constant speed v0 and the lower one is fixed. At the

bounding surfaces, the orientation tensor is equal to its equilibrium value.

.
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3.2 Dimensionless Form

To get nondimensional form of the above model, we use the length scale h

and the LCP relaxation time scale t0 = tn. And we denote the position vector

by x, the velocity vector by v, the extra stress tensor by τ , and the pressure by p,

respectively. The dimensionless flow and stress variables are:

ṽ =
t0
h

v, x̃ =
1

h
x

t̃ =
t

t0
, τ̃ =

h2

f0
τ, p̃ =

h2

f0
p, (12)

where f0 = ρh4/t20 is an inertial force and ρ is the LCP density.Let c be the

LCP number density, k the Boltzmann constant, T absolute temperature, N a di-

mensionless concentration, η the solvent viscosity, and ζi, i = 1, 2, 3 three friction

coefficients related to LCP-solvent interaction.The following seven dimensionless

parameters arise:

Re =
ρh2

t0η
, α =

3ckT t20
h2ρ

, Er =
8h2

ND0
rt0L2

,

µi =
3ckTζit0

h2ρ
, i = 1, 2, 3 (13)

α measures the strength of elastic energy relative to kinetic energy; Re is the

solvent Reynolds number; Er is the Ericksen number which measures the strength

of the short-range nematic potential relative to that of the isotropic distortional

elastic energy; µi, i = 1, 2, 3 are three nematic Reynolds numbers. Then we have

the nondimensional equation as follows:

d

dt
M − Ω · M + M · Ω − a[D · M + M · D] =

−2aD : M4 −
6

De
[Q − N(M · M −M : M4)]

+
1

Er
[∆M · M + M · ∆M − 2∆M : M4] (14)
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τ = (2/R⌉ + µ3(a))D + aα[M −
I

3
−

N

2
((I +

1

3NEr
∆)M · M

+M · (I +
1

3NEr
∆)M − 2(I +

1

3NEr
∆)M : M4)]

−
α

6Er
(∆M · M− M · ∆M) −

α

12Er
[∇M : ∇M− (∇∇M) : M] (15)

3.3 Steady States

Let σi be the eigenvalues and ni the corresponding orthonormal eigenvectors

of the orientation tensor Q, where i=1,2,3. Then Q has a spectral representation,

Q =

3
∑

i=1

σinini, (16)

from which we can define the specific nematic symmetries and their representa-

tions. It follows from (1)

tr(Q) =
3

∑

i=1

σi = 0,−
1

3
≤ σi ≤

2

3
, i = 1, 2, 3. (17)

Then it follows that

σi = 〈(m · ni)
2〉 −

1

3
, i = 1, 2, 3. (18)

This reveals that each eigenvalue of Q is a measure for the degree of orienta-

tion with the corresponding eigenvector direction. If we knew the eigenvaulues

and the corresponding eigenvectors, we would be able to explore fully the macro-

scopic orientational information provided by the orientation tensor. Therefore, we

should look for the degrees of orientation that can readily and accurately yield the

eigenvalues and the eigenvectors of Q. If all eigenvalues of Q are distinct, the

nematic liquid crystal is called biaxial, in which the triad of orthonormal eigen-

vectors of Q, ni, i=1,2,3, are equally important and therefore all called directors.
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Defining

s = 〈(n3 · m)2〉 − 〈(n1 ·m)2〉, β = 〈(n2 · m)2〉 − 〈(n1 ·m)2〉, (19)

we transform (16) into a biaxial representation

Q = s(n3n3 −
I

3
) + β(n2n2 −

I

3
). (20)

The degree of orientation variable with respect to each drector can be represented

as a function of s and β:

d1 = 〈(n1 · m)2〉 =
1 − s − β

3
,

d2 = 〈(n2 ·m)2〉 =
2β − s + 1

3
,

d3 = 〈(n3 · m)2〉 =
2s − β + 1

3
. (21)

We thus adopt (s, β) as the orientation variables and define (s, β) as the order

parameters. In simple shear flows, we are interested in the steady states where the

directors n2 and n3 are confined to the shearing plane(i.e., the plane orthogonal to

the shearing plate or surface).

3.3.1 Biaxial Steady States

We consider the simple shear flows of liquid crystal polymers in Cartesian

coordinates (x, y, z), the velocity field is v = (vy, 0, 0) where v is a constant

shear rate. The dimensionless form of the space variables,

ṽ = (Deỹ, 0, 0), (22)

where De = t0v
h

is the Debra number or the dimensionless shear rate and ỹ is

the dimensionless spatial variable. We will seek the steady states of the orientation

tensor Q. Let the orientation tensor Q as

s(ezez − I/3) + β(nn− I/3) (23)

14



where s, β are two order parameters

n = (cos φ, sinφ, 0)

n⊥ = (− sin φ, cosφ, 0) (24)

are directors in the shearing plane (x, y), where 0 ≤ φ < π.

For biaxial nematic liquid crystals, there are three distinct directors. The de-

grees of orientation with respect to the directors are, in general, distinct. We

define the unit eigenvector corresponding to the largest eigenvalue (or degree of

orientation) as the major director (or major optical axis).

We can get the equations for the order parameters (s, β) and the angle param-

eter φ for our model, then the orientation tensor becomes:

s,t = −U(s) +
2Nβs

3
(s − β − 1)

+
aDe

3
sin(2 φ)(1 − β − s − 3βs) = f(s, β, φ) (25)

β,t = −U(β) +
2Nβs

3
(β − s − 1)

+
aDe

3
sin(2 φ)(2− 2s + β − 3β2) = g(s, β, φ) (26)

φ,t =
De

6β
(a cos(2 φ)(2 + β − 2s) − 3β) = h(s, β, φ) (27)

where (·),t denotes the time derivative and

U(s) = s(1 −
N

3
(1 − s)(2s + 1)) (28)

In steady states, the angle parameter equation in (7-9) yields

cos(2 φ) =
3β

a(2 + β − 2s)
(29)

Using the biaxial representation of Q along with the constraints in (1), the

orientation tensor equation transforms into three equations for order and angle

15



prameters. Here we choose a = 0.9, then we can get the equillibra by using

Maple to solve the three equations (25)-(27). After we obtain a steady state in

terms of order and angle parameters, the Jacobian of the above system will be:

A =









∂f(s,β,φ)
∂s

∂f(s,β,φ)
∂β

∂f(s,β,φ)
∂φ

∂g(s,β,φ)
∂s

∂g(s,β,φ)
∂β

∂g(s,β,φ)
∂φ

∂h(s,β,φ)
∂s

∂h(s,β,φ)
∂β

∂h(s,β,φ)
∂φ









, (30)

Then we put equillibra into the Jacobian matrix A to caculate the eigenvalues.

Let ei, i= 1,2,3 be the eigenvalues. Then the steady state is said to be stable if

Re(emax) < 0, where emax = max1≤i≤3ei,neutrally stable if Re(emax) = 0, and

unstable if Re(emax) > 0.

3.3.2 Steady States for Small Debra Number

We now study the orientation patterns and their stability of the biaxial steady

state solutions in phase spaces (N, s),(N, β), (N, φ), and (s, β) at given Debra

numbers. If De = 0, the equilibria are uniaxial which has been studied a lot (Doi

and Edwards, 1986) and is thus ignored here.

Firstly, we consider shear flows with nonzero small Debra numbers, say De =

0.1. From Figure.5 , we can find there exist seven steady state solution families.

Among all these seven steady state solution families, only one family exists for

all N. This family is referred to as the flow-aligning family. All the other six

families come into existence in pairs at three distinct critical values of N. In these

six steady state families, five are unstable to in-plane disturbances. The remaining

family with two positive order parameters is stable to in-plane disturbances. The

major director in this family is parallel to the direction neutral to the flow(i.e.,the

ez direction) since the two positive order parameters in the family yield a relatively

high degree of orientation with that direction. It is referred to as the log-rolling

family.

Figure.5 (a)-(d) depict the phase diagrams of the steady state families in the

(N, s),(N, β),(s, β) and (N, φ) for De = 0.1, respectively.
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Figure 5: Variations of steady state solutions of Wang model as functions of poly-

mer concentration N for N ∈ [0, 10]. The Debra number is De = 0.1. The legend

in (d) applies to (a)-(c) as well. (a) The order parameter s vs N . (b) The order

parameter β vs N . (c) The angle parameter φ vs N . (d) The order parameter s vs

β for N ∈ [0, 10].

.
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The flow-aligning family exists for all De and N . And it is the unique steady

state solution family in 0 < N < 8
3
. The order parameter β maintains monoton-

ically increasing for all N . The value of order parameter s is much smaller than

that of the order parameter β, but it won’t be zero. We observe a rapid growth for

the order parameter β when N is slightly larger than the critical value. For the

angle parameter φ, it experiences a rapid decline to zero when N is slightly larger

than the critical value. It can be shown all the eigenvalues of the flow-aligning

family are negative which shows that the flow-aligning family is stable for all De

and N .

Both order parameters s and β in the log-rolling family are positive. The pos-

itive order parameter s maintains monotonically increasing as N increases. The

positive parameter β is much smaller than the order parameter s. β approaches

zero, but it won’t be zero. For the angle parameter φ, the scope of its change is

small, which is between 0.75 and 0.78. This family is stable to in-plane distur-

bances.

Comparing these two families, we can find for the flow-aligning family the

variation of order parameter β is much bigger than that of order parameter s, and

for the log-rolling family, the situation is reversed. And the variation of angle

parameter φ in the flow-aligning family is much bigger than that in the log-rolling

family.

3.3.3 Steady States for Large Debra Number

Now we consider shear flows with nonzero large Debra numbers, say De =

10. There are three families of steady states for De = 10 which include the flow-

aligning and log-rolling families. The third family is unstable and is ignored in

the following discussion.

Figure.6 (a)-(d) depict the phase diagrams of the steady state families in the

(N, s),(N, β),(s, β) and (N, φ) for De = 10, respectively.
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Figure 6: Variations of steady state solutions of Wang model as functions of poly-

mer concentration N for N ∈ [0, 20]. The Debra number is De = 10. The legend

in (d) applies to (a)-(c) as well. (a) The order parameter s vs N . (b) The order

parameter β vs N . (c) The angle parameter φ vs N . (d) The order parameter s vs

β for N ∈ [0, 20].
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The flow-aligning family is the unique steady state solution family in 0 <

N < 8. Both the order parameters s and β are positive. The order parameter s

decreases as N increasing. And the order parameter β increases as N increases.

The angle parameter φ decreases and approaches zero with relatively high speed.

For the log-rolling family, the order parameter s and angle parameter φ in-

crease as N increases. And the order parameter β decreases as N increases. Also

these two families experience the similar circumstances. The variation of angle

parameter φ in the flow-aligning family is much bigger than that in the log-rolling

family, etc.

3.3.4 Steady States for Different Polymer Concentration Values

Now we come to study the orientation patterns and their stability of the biaxial

steady state solutions in phase spaces (De, s), (De, β), (De, φ), and (s, β) at given

polymer concentration N .

First, we consider shear flows with N = 6. There exist five steady state fami-

lies. Among all these five steady state solution families, only flow-aligning family

exists for all De, and this family is stable to in-plane disturbances. The variations

of the order parameters s,β and the angle parameter φ are small. That is the reason

why there is only one point exists in Figure. 7(d) for the flow-aligning family.

The other stable steady state solution family is the log-rolling family. It exists

for De ∈ (0, 3.2), and there is a local maximum for the order parameter s around

De = 0.7 . The order parameter β increases as De increases. And the angle

parameter φ decreases at the same time.

Secondly, we consider shear flows with N = 3. There exists only one steady

state family, which is the flow-aligning family. It exists for all De from 0 to 10.

For De from 0 to 2, we observe a rapid growth in positive order parameter s.

And it becomes stable around 0.21 for the rest of De. The order parameter β

experiences the similar situation with s. We also can observe a rapid decay for the

20



angle parameter φ. In Figure. 8 (d), the order parameters s and β maintain a rapid

growth simultaneously with respect to De from 0 to 2.
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Figure 7: Variations of steady state solutions of Wang model as functions of poly-

mer concentration De for De ∈ (0, 10]. The polymer concentration N is N = 6.

(a) The order parameter s vs De. (b) The order parameter β vs De. (c) The angle

parameter φ vs De. (d) The order parameter s vs β for De ∈ (0, 10].
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Figure 8: Variations of steady state solutions of Wang model as functions of poly-

mer concentration De for De ∈ (0, 10]. The polymer concentration N is N = 3.

(a) The order parameter s vs De. (b) The order parameter β vs De. (c) The angle

parameter φ vs De. (d) The order parameter s vs β for De ∈ (0, 10].
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CHAPTER 4

CONCLUSION

We have discussed in detail the orientation tensor Q and its symmetry using

a biaxial representation. We have used biaxial liquid crystal’s two order param-

eters and one angle parameter to give a complete description of the orientation.

Our results show that our model admits multiple steady state solution families, all

of which exhibit biaxial symmetry in simple shear flows. And we have investi-

gated the stability of the steady state solutions subject to the in-plane disturbances.

Flow-aligning family and log-rolling family are stable to in-plane disturbances.

The flow-aligning family is the unique stable steady state family for all Debra

numbers and polymer concentration values, for example, it is the only steady state

solution family for N = 3.
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