Some of the material in is restricted to members of the community. By logging in, you may be able to gain additional access to certain collections or items. If you have questions about access or logging in, please use the form on the Contact Page.
Yildirim, Y. (2007). Numerical Study of Spin-Fermion Models for Diluted Magnetic Semiconductors and High Tc
Cuprates. Retrieved from http://purl.flvc.org/fsu/fd/FSU_migr_etd-0668
In this dissertation, Spin-Fermion (SF) models for diluted magnetic semiconductors and high temperature superconducting cuprates are constructed and studied with unbiased numerical techniques. A microscopic model to describe magnetically doped III-V semiconductors is proposed. This model includes the appropriate lattice geometry, as well as, magnetic, spin-orbit, and Coulomb interactions and contains no free parameters. Its study using state-of-the-art numerical techniques provides results in excellent agreement with experimental data for Mn doped GaAs. For the first time, Curie-Weiss behavior of the magnetization is obtained numerically and the values of the Curie temperature are reproduced in a wide range of Mn doping and compensations. We observed that for x (> or = to )3%, the holes are doped into the valence band and uniformly distributed in the material. This could support the "valence band" scenario regarding this material. Phononic degrees of freedom, which are often neglected in studies of high T or = to )3%, the holes are doped into the valence band and uniformly distributed in the material. This could support the "valence band" scenario regarding this material. Phononic degrees of freedom, which are often neglected in studies of high Tc cuprates, are considered in a numerical study of a spin-fermion model. Both diagonal and off-diagonal electron-phonon interactions are considered. While diagonal terms tend to stabilize ordered structures such as stripes, the off-diagonal terms introduce disorder making this structures more dynamical. Our results indicate that phonons play a role in the stabilization of stripe-like states.
Spin-Fermion Models, Realistic Lattice Model, High Temperature Cuprates, Multi Band Model, Diluted Magnetic Semiconductors (DMS), Electron-phonon Interactions
Date of Defense
Date of Defense: May 30, 2007.
Submitted Note
A Dissertation submitted to the Department of Physics in partial fulfillment of the requirements for the degree of Doctor of Philosophy.
Bibliography Note
Includes bibliographical references.
Publisher
Florida State University
Identifier
FSU_migr_etd-0668
Yildirim, Y. (2007). Numerical Study of Spin-Fermion Models for Diluted Magnetic Semiconductors and High Tc
Cuprates. Retrieved from http://purl.flvc.org/fsu/fd/FSU_migr_etd-0668