Some of the material in is restricted to members of the community. By logging in, you may be able to gain additional access to certain collections or items. If you have questions about access or logging in, please use the form on the Contact Page.
We present the results of our numerical studies on the transport properties of strongly correlated nanostructures, particularly quantum dots and single molecules. The main focus is on correlation, interference and phononic effects. Interesting interferences are observed in multilevel quantum dots, and under the appropriate conditions, a novel ferromagnetic phase is observed in coupled double-level quantum dots at quarter filling. Our simulations of experiments involving nonlocal spin control provide more insight of the experimentally observed results. In the case of single molecules, our study of phonon effects reveals that the center-of-mass motion opens a new channel for transport. This channel can interfere destructively with the purely electronic channel leading to a conductance dip. Finally, we propose a new technique to study nanotransport based on the adaptive time-dependent density-matrix renormalization group. The technique is tested for different cases and is very promising particularly in the nonequilibrium case where most other techniques cannot be applied.