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ABSTRACT The prairie vole (Microtus ochrogaster) is an important model for the
study of social monogamy and dual parental care of offspring. Characterization of
specific host species-microbe strain interactions is critical for understanding the ef-
fects of the microbiota on mood and behavior. The five metagenome-assembled ge-
nome sequences reported here represent an important step in defining the prairie
vole microbiome.

nusually among rodents, prairie voles form strong mating-induced pair bonds and

thus serve as an important model for the study of the neurobiological basis of
bonding and associated behaviors (1). Although advances have been made in under-
standing the neurochemical interactions involved in pair bonding (1), the study of the
molecular basis of neuroanatomical responses requires the continued use of a model
system. The importance of gut microbes for modulating multiple neurochemical inter-
actions along the “microbiota-gut-brain axis” has been established for humans and
mice (2, 3). However, there is considerable variation between mammalian hosts in
microbe diversity and metabolism that does not necessarily correlate with host phy-
logeny, even within a clade such as rodents (4, 5). To date, there have been few studies
on the prairie vole microbiome (6, 7). Thus, to facilitate studies of the microbial
endocrinology (8) of prairie voles, we have determined the full shotgun metagenome
of stool samples from 6 voles and produced an unbinned metagenomic coassembly
and 5 metagenome-assembled genomes (MAGs).

Stools were collected from 4 female and 2 male voles (age 3 to 9 months) by
temporary isolation of each animal in a bedding-free, sanitized cage. Voles were
sexually naive and housed in male/male or female/female cage pairs. All experi-
mental procedures were approved by the Florida State University (FSU) Institutional
Animal Care and Use Committee and were in accordance with the U.S. National
Institutes of Health Guide for the Care and Use of Laboratory Animals (NIH publi-
cation number 80-23).

DNA was prepared from stool samples frozen at —80°C using the MoBio/QlAamp
PowerFecal DNA kit, according to the manufacturer’s instructions (Qiagen USA).
Genomic DNA was sheared using a Covaris E220 focused ultrasonicator. Libraries
were prepared using the NEBNext Ultra Il DNA library prep kit for lllumina (New
England BioLabs, USA), following the manufacturer’s protocol. Whole-genome shot-
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gun sequencing of libraries (average fragment size, 765 bp) was performed on an
Illumina HiSeq 2500 instrument in the FSU College of Medicine Translational
Science Laboratory using paired-end 250-base sequence reads. The total numbers
of reads were 66,059,128 (vole 1), 53,198,216 (vole 2), 44,221,130 (vole 3),
54,740,608 (vole 4), 41,707,738 (vole 5), and 48,354,762 (vole 6). Additional sequenc-
ing performed on the HiSeq instrument with paired-end 200-base sequence reads
generated 125,776,266 (vole 4) and 173,617,670 (vole 6) reads. Read quality control
was performed using standard pnnl-atlas v.1.0.35 (9) filtering. The coassembly of all
8 sequence runs and the binning was managed using SqueezeMeta v.1.1.2 (10).
Coassembly was performed on reads merged before assembly using Megabhit v.1.1.2
(11) (see Table 1 for coassembly details). Data were binned as contigs after
coassembly. Binning was performed with MaxBin v.2.2.6 (12) (producing 235 bins)
and with metabat2 v.2.12.1 (13) (producing 38 bins). Bins were subsequently
processed using DAS Tool v.1.1.1 (14), producing 77 bins. Five bins with high
percent completion and low percent contamination were chosen for immediate
refinement into MAGs using Anvi'o v.5.5.0 (15), according to an online tutorial
(http://merenlab.org/data/refining-espinoza-mags/) (16). Quality was assessed with
CheckM v.1.0.18 (17). Default parameters were used for all software, unless otherwise
specified.
Anvi'o estimated all but one of the MAGs at >90% completeness (see Table 1).
Recovery of rRNA genes was poor, which is not unusual for MAGs due to the difficulty
of assembling these sequences (18). However, tRNAscan-SE (19) detected 34 to 44 tRNA
genes in all of the MAGs, with predicted anticodons for 16 to 20 amino acids. These
data will be extremely useful in studies of metabolic functions in the vole microbiome
and for comparison with other rodent models.
Data availability. The MAG sequences and associated experiment and run data
have been deposited in GenBank under BioProject accession number PRINA449069

and the GenBank and SRA accession numbers given in Table 1.
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