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ABSTRACT

The weak nuclear form factor is the final missing piece to complete our understanding of the

structure of atomic nuclei and the Coherent Elastic Neutrino Nucleus Scattering (CEνNS)

cross section. The weak form factor is dominated by the neutron distributions of the atomic

nucleus, which are poorly known. The complex scalar and vector potentials within the

nucleus are provided using a Relativistic Mean Field (RMF) approach. These potentials

are used to calculate the point neutron and proton distributions, and in conjunction with

single-nucleon electric Sachs form factors—obtained from data—are used to predict the weak

form factor. It is determined that the radius of the proton distributions agree within 1%

to the experimental values. The agreement of the proton distributions gives confidence that

the predicted neutron distributions are computed correctly. It is also determined that to

constrain the weak form factor, next-generation measurements need to be at ≤ 1% error.

The reduction to the CEνNS cross-section due to the weak form factor at small momentum

transfer is determined to be between ∼ 10−40% for neutron number, N , ranging from 20 to

126. The findings show that the precise measurement of the weak form factor is necessary for

the accurate determination of the CEνNS cross section and our comprehension of the nuclear

structure as a whole, namely understanding the neutron distributions. Most importantly,

the predicted quantities and estimated errors give guidance to experiments measuring the

weak form factor.
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CHAPTER 1

INTRODUCTION

1.1 Brief History

The weak neutral current was discovered in 1973 by the first observation of neutrino and

electron scattering [4]. In the following year, Daniel Freedman proposed a coherent neutrino

interaction with nuclei [5] that began a forty-three year journey to discovery. The discovery

of the weak neutral current meant that now there was a channel for the quarks to couple

with a neutral weak boson, namely the Z, and in its theoretical description implied the

coherent coupling to all nucleons within the atomic nucleus. The coherent coupling is only

valid in the limit that the momentum transfer is much smaller than the inverse of the nuclear

radius, i.e., q � R−1. As aforementioned, the forty-three year journey would culminate in a

discovery in 2017 by COHERENT collaboration at The Spallation Neutron Source at Oak

Ridge National Lab using sodium doped cesium iodine (CsI[Na]) [6]. The coherent neutrino

interaction is now called Coherent Elastic Neutrino Nucleus Scattering (CEνNS).

Due to the weak nature of the interaction, CEνNS cross section is enhanced by the

number of neutrons squared (i.e., ∼ N2) [7] and thus has a comparatively large cross section

at similar energies to other neutrino processes. The enhancement due to the number of

neutrons in the target nucleus and the relative strength of the cross section compared to

other neutrino processes are illustrated in Figure 1.1. The enhancement due to CEνNS

will be shown in Section 2.1. However, Freedman described his 1974 paper as “. . . an act

of hubris . . . ” because of the “. . . grave experimental difficulties. . . ” [5]. The difficulty of

measuring CEνNS in a lab stems from the ability to measure the astronomically small recoil

of the nucleus (i.e., few keV) scattering off low energy neutrinos. The driving force that

allowed the first measurement of CEνNS has been the search for dark matter. For direct

detection of dark matter the kinematics must be reconstructed from a small nuclear recoil.

Consequently, detectors that could measure nuclear recoils at the necessarily small energies
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Figure 1.1: (color online) (Left) Illustrates the ∼ N2 behavior of the CEνNS cross section.
(Right) Illustrates the enhancement of the CEνNS process over other neutrino processes:
neutrino induced neutron (NIN), charged current (CC), inverse beta decay (IBD), etc. Figure
from [1].

were developed. The direct detection of dark matter is exactly analogous to the detection of

CEνNS due to the fact that the outgoing neutrinos cannot be measured and the incoming

neutrino spectra is well known in the Standard Model (SM) framework. It is evident that

in the years to come CEνNS will be measured further with extreme precision due to these

innovations.

1.2 Motivations

In 1930, Wolfgang Pauli wrote a letter describing a new particle resulting in the theory

of β-decay six years later by Enrico Fermi [8]. Evidently, the elusive, minuscule fundamental

particle (i.e., the neutrino) has played and continues to play a vital role in our scientific theo-

ries. The neutrinos involved in CEνNS makes this reaction extremely robust and important

to study for the advancements of our fundamental understanding of the universe. Some of

the most enticing aspects of CEνNS are: the enhancement in the cross section, the fact that

it is flavor blind—all known generations of neutrinos are indistinguishable—and the method

of observation using the recoil of a nucleus. As a result, CEνNS is extremely valuable to test

2



the SM of particle physics as well as non-standard interactions (NSI), properties of nuclei

in nuclear physics with broad applications in astrophysics, and becomes necessary for the

search for dark matter in our universe.

1.2.1 Nuclear Physics

The goal of nuclear physics is to comprehend the properties of nuclear matter and the

diverse nature of its structure. To achieve these fundamental goals nuclear physicists are

leading the charge to find the equation of state (EOS) of nuclear matter and are precisely

tuning the interactions within the nucleus to understand its finite structure.

Much progress has been made to understand the fundamental structure of the proton

distribution within the nucleus through electron scattering experiments, analysis of muon

spectra and other methods [9]. On the contrary, the neutron distributions are poorly known

and are required to fully begin understanding the entirety of the nuclear structure. Efforts

to extract the neutron distributions from proton nucleus scattering data [10, 11, 12, 13] have

been shown to have large model-dependent uncertainties on the order of 10% [14]. Only

within the past couple of decades have powerful methods for analyzing the neutron struc-

ture in a model-independent way, been accomplished. These efforts have been made with

parity violating (PV) electron scattering experiments where the weak sector can be measured

directly [15]. PV electron scattering had recently been used to measure the radius of the

neutron distribution of Lead-208 [3, 16]. The parity violating asymmetry—the asymmetry of

left and right handed electron cross sections—has been shown to be sensitive to the neutron

radius [17]. Although, PV electron scattering experiments have proven to be a powerful tool,

measuring the small asymmetry is difficult and the experimental uncertainties need to be

refined. With that being said, CEνNS is a purely weak mediated interaction and due to the

fact that it has a relatively large cross section for a neutrino process at low energy, it gives

the best opportunity for an entirely model-independent measurement of the neutron density

distribution and weak form factor [14, 18].

In turn, a precise measurement of the radius of the neutron density distribution would

help further constrain the EOS of nuclear matter. The EOS describes the relation between
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pressure, density, and temperature of nuclear matter; it is also necessary to extract many

properties of nuclei. The EOS of cold nuclear matter can be approximated to lowest order

to be the sum of the energy per nucleon of symmetric and asymmetric nuclear matter [19],

E(ρ, α) = E0(ρ, α = 0) + S(ρ)α2, (1.1)

where α = ρn−ρp
ρn+ρp

represents the asymmetry, E0 represents the symmetric energy per nucleon

and S represents the symmetry energy. Thus, understanding the neutron distributions will

better constrain the EOS. The EOS is also the bridge that connects nuclear physics and

astrophysics; particularly to measure properties of neutron stars.

1.2.2 Astrophysics

From the nuclear physics, more in depth knowledge of the neutron density distributions

allows for a more precise measurement of the neutron skin—the difference of the radius of

the neutron and proton distribution. The symmetry energy described in the previous section

can be expanded about the saturation density of nuclear matter, ρ0 ≈ 0.16fm−3,

S(ρ) = S0 +
L

3

(
ρ− ρ0
ρ0

)
+
K

18

(
ρ− ρ0
ρ0

)2

+ · · · , (1.2)

where L and K represent the first and second derivative of the symmetry energy at saturation

density given in Ref [20]. It has been shown that L in particular is highly correlated to the

neutron radius of neutron rich nuclei [17, 20, 21]. A precision measurement of the radius

of the neutron distribution using CEνNS will allow for the accurate calculation of L and

a constraint on the EOS of nuclear matter. Understanding the EOS of nuclear matter will

then lead to precise understanding of neutron star properties and structure [22, 23].

Comprehension of the CEνNS cross section and possible deviations from the SM predic-

tions would also play a pivotal role in the explosion mechanism of core-collapse supernova

through neutrino-driven convection [24]. CEνNS will also play an important role in the

detection of supernova neutrinos with future generations of detectors [25].
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Figure 1.2: The so called ‘neutrino floor’ (thick, orange line) signifying the limits for dark
matter detection. The excluded regions from experiments are represented by the shaded
areas and sensitivity of past and future experiments for dark matter searches of WIMPs are
represented by the assorted dashed lines. Figure from [2]

1.2.3 Particle Physics

The SM in particle physics has become one of the most robust and successful theories

today; however, it is still not enough to fully explain many physical phenomenon. Under-

standing the CEνNS cross section will be an opportunity to further test the SM and to gain

enormous insight into the properties of neutrinos and becomes necessary for the search for

dark matter.

If the CEνNS cross sections are precisely comprehended and measured there will be

opportunity to test the standard model with an independent measurement of the weak

mixing angle, θW . For the first time a sensitivity study of the weak mixing angle using

CEνNS has been done [26]. The SM is so well constrained at this time any deviations from

predictions can be an opportunity for new physics.

Important neutrino properties such as the existence of sterile neutrinos, neutrino mag-

netic moment, and non-standard interactions (NSI) can also be probed with CEνNS. In-

vestigations into sterile neutrinos has been motivated by recent evidence of an unexpected
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excess of the neutrino event rate at MiniBoone [27] and other facilities. A full review of

the neutrino properties aforementioned and their relevance to CEνNS has been published

concluding that next generation precise measurements of CEνNS will be able to identify and

further constrain the SM and NSI model parameters [26].

The CEνNS reactions will also become an important tool for measuring dark matter

because it becomes an irreducible background for dark matter detection. The backgrounds

for direct detection of Weakly Interacting Massive Particles (WIMPs) becomes increasingly

important as sensitivity increases [28]. Figure 1.2 shows the WIMPs discovery limits. If

sensitivities for the search of dark matter go below the thick, orange dashed line the CEνNS

and WIMP cross sections will be indistinguishable.
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CHAPTER 2

FORMALISM

2.1 Coherent Elastic Neutrino Nucleus Scattering

Cross Section

In this section, the CEνNS cross section for spinless nuclei will be derived. The cross

section is derived in a model-independent formalism using current conservation and Lorentz

invariance.

2.1.1 Important Relations

The two-body (i.e., A+B → C+D), Lorentz invariant differential cross section from [29]

is first introduced:
dσ

dt
=

1

64π

1

(p1 · p2)2 −m2
1m

2
2

〈|M|2〉, (2.1)

where 〈|M|2〉 represents the squared amplitude averaged over initial spins and summed over

final spins [30], p1 (m1) and p2 (m2) are the 4-momenta (mass) of the incoming particles, and

t = Q2 is the invariant Mandelstam variable representing the momentum transfer squared.

In Section 2.1.2 the amplitude will be derived using Feynman rules. Following Figure 2.1

the matrix elements and thus the polarized amplitude may be constructed. The vertex factor

for the weak neutral interaction is

−igz
2

γµ(cfV − cfAγ5)
neutrino−−−−−→ −igz

4
γµ(1− γ5), (2.2)

where gz is the coupling to the Z-boson and can be written in terms of the conventional weak

couplings, g and g′, and weak mixing angle, θw,

gz =
g

cos θw
=

g′

sin θw
, (2.3)

where g and g′ represent the strength of the coupling to the weak isovector bosons, W,

and the isosinglet, B, in Glashow’s weak theory [30]. The vector and axial coupling to any
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N(p2)

ν(p3) N(p4)

Z

q

ν(p1)

Figure 2.1: The Feynman diagram for CEνNS with pi and q as the four-momenta and
invariant momentum transfer respectively.

fermion, ‘f ’, can be written in terms of its weak isospin, tf3 , and mixing angle:

cfV = tf3 − 2Qf sin2 θw, cfA = tf3 . (2.4)

For any flavor of neutrino it follows that cA = cV = 1
2
. The spin-1 propagator for the Z-boson

in the limit when the propagator mass is much larger than the momentum transfer is written

as
−i[gµν − qµqν/M2

z ]

q2 −M2
z

M2
z � Q2

−−−−−−→ igµν
M2

z

, (2.5)

where Q2 = −q2 and Mz is the mass of the Z-boson. The mass of the Z-boson can be written

in terms of the W-boson mass and mixing angle:

Mz =
Mw

cos θw
. (2.6)

2.1.2 Writing the Amplitude

Now the polarized amplitude is constructed using the above definitions:

−iM =

[
ū(3)

igz
4
γµ(1− γ5)u(1)

](−igµν
M2

z

)[
igz
4
〈p4|Ĵνw|p2〉

]
,

M = −
(

g2z
16M2

z

)
[ū(3)γµ(1− γ5)u(1)][〈p4|Ĵwµ |p2〉], (2.7)
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where Ĵwν is the neutral current operator, and the spinors are labeled with their respective

particle momentum for simplicity, (e.g. (1) represents ν(p1)), using Figure 2.1.

Using (2.7) the unpolarized amplitude squared is written as,

〈|M|2〉 =

(
g2z

16M2
z

)2

LµνHµν

=
G2
F

8
LµνHµν , (2.8)

where the Fermi coupling constant is introduced:

GF =
1

4
√

2

(
g

Mw

)2

=
1

4
√

2

(
gz
Mz

)2

, (2.9)

where (2.3) and (2.6) have been used to relate the couplings and masses to the conventional

quantities, namely, Mw and g. In (2.8) the leptonic tensor and the hadronic tensor are

defined as

Lµν = |ū(3)γµ(1− γ5)u(1)|2, (2.10)

Hµν = |〈p4|Ĵwµ |p2〉|2 (2.11)

Due to the fact that neutrinos and anti-neutrinos carry only left-handed or right-handed

helicity respectively, one does not have to average over initial spins in (2.8).

Derivation of Nucleus Transition Amplitude. Next the general form of the tran-

sition amplitude—〈p4|Ĵwµ |p2〉—for the outgoing nucleus is constructed using current conser-

vation and Lorentz invariance. The example from [29] on the pion form factor is followed

closely for the following procedure. The current must be a 4-vector, therefore, for the nucleus

vertex in Figure 2.1 the only 4-vectors available are p2, p4, and q, namely, the incoming

and outgoing 4-momentum and the momentum transfer. To conserve momentum the con-

straint, p4 = q+p2, is observed and it follows that two independent combinations of available

4-vectors can be constructed as follows,

(p4 + p2)µ , (p4 − p2)µ = qµ. (2.12)

It is identified that the only independent scalar at the vertex can be chosen to be q2 because

it can be written in terms of the scalar product of p4 and p2. It follows that the 4-vector

9



combinations can be multiplied by a scalar function without losing its form [29]. In order to

model the finite structure of the nucleus the form factor in (2.13) is introduced as the scalar

function; it must be a function of the independent variable. The most general form for the

weak transition current may now be written, namely,

〈p4|Ĵwµ |p2〉 = F (Q2) (p4 + p2)µ +G(Q2)qµ, (2.13)

where F (Q2) and G(Q2) are the form factor as discussed. Once current conservation is

imposed in momentum space (i.e., qµj
µ
w = 0), as required, the second term in (2.13) must

vanish, i.e., G(Q2) = 0. With these results the most general form for the neutral current can

be written as

〈p4|Ĵwµ |p2〉 = QwFw(Q2) (p4 + p2)µ , (2.14)

with −q2 = Q2. The form factor has been normalized to Fw(Q2 = 0) = 1 using Qw. The

weak charge is defined as,

Qw = −N + Z(1− 4 sin2 θw), (2.15)

where N is the neutron number, Z is the proton number, and θw is the weak mixing angle

with, sin2 θw = 0.231. It follows that because sin2 θw ≈ 1
4
, the second term of the weak

charge, Qw, in (2.15) will be very small, and the ∼ N2 enhancement discussed in Chapter 1

will become evident in Subsection 2.1.4.

2.1.3 Evaluating the Amplitude

Casimir’s Trick from [30] is now introduced to evaluate the matrix elements:

∑

all spins

[ū(a)Γ1u(b)][ū(a)Γ1u(b)]∗ = Tr[Γ1(/pb +mb)Γ̄2(/pa +ma)], (2.16)

where for this calculation it follows that

Γ1 = γµ(1− γ5), Γ̄2 = γ0[γν(1− γ5)]†γ0 = γν(1− γ5). (2.17)

Now using (2.16)—ignoring the neutrino mass—and (2.17), the leptonic tensor can be

reduced into a single trace of the form

Lµν = Tr[γµ(1− γ5)/p1γ
ν(1− γ5)/p3]. (2.18)

10



Evaluating the trace, (2.18), yields

Lµν = Tr[γµ(1− γ5)γσp(1)σ γν(1− γ5)γλp(3)λ ]

= 2p(1)σ p
(3)
λ {Tr[γµγσγνγλ] + Tr[γ5γµγσγνγλ]}

= 2p(1)σ p
(3)
λ {4(gµσgνλ − gµνgσλ + gµλgσν) + 4iεµσνλ}

= 8
(
pµ1p

ν
3 − (p1 · p3)gµν + pν1p

µ
3 + ip(1)σ p

(3)
λ εµσνλ

)
. (2.19)

In turn, the hadronic tensor can be rewritten using (2.14),

Hµν = Q2
wF

2
w[(p4 + p2)µ(p4 + p2)ν ]

= Q2
wF

2
w[4p(2)µ p(2)ν + 2p(2)µ qν + 2qµp

(2)
ν + qµqν ], (2.20)

where the substitution p4 = q + p2 was made in order to further simplify the calculation by

imposing conservation of leptopnic current,

qµL
µν = Lµνqν = 0. (2.21)

To adhere to the conservation of the leptonic current any term in (2.20) that contains qµ will

be zero when contracted with the leptonic tensor. Therefore, the hadronic effective tensor

can be rewritten without loss of generality as:

Heff
µν = 4Q2

wF
2
w(Q2)p(2)µ p(2)ν . (2.22)

Now contracting the leptonic tensor (2.19) with the momentum terms of the effective hadronic

tensor in (2.22) yields:

Lµνp(2)µ p(2)ν = 8(2pµ1p
ν
3 − (p1 · p3)gµν)p(2)µ p(2)ν

= 16(p1 · p2)(p3 · p2)− 8(p1 · p3)p22
= 16

[
(p1 · p2)(p3 · p2) +

q2p22
4

]
, (2.23)

where the Levi-Civita term in (2.19) is omitted because it is anti-symmetric and will cancel

after contraction and the dot product in the second term has been replaced for simplicity,

i.e., q2 = (p3 − p1)2 = −2p3 · p1.
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Evaluation in the Lab Frame. Now let’s evaluate each term in (2.23) in the lab

frame with the nucleus initially at rest. That is,

p1 · p2 = E1M, (2.24)

p3 · p2 = (p1 + p2 − p4)p2 = p1 · p2 + p22 − p4 · p2
= E1M +M2 − E4M = M(E1 +M − E4)

= M(E1 − T ), (2.25)

q2 = (p4 − p2)2

= 2M2 − 2(p4 · p2) = 2M2 − 2ME4

= −2MT, (2.26)

where M is the mass of the nucleus, E1 is the incoming neutrino energy, and T = E4 −M
is the kinetic energy of the recoiling nucleus. To clarify momentum conservation has been

used in (2.25) to replace p3 and pay particular attention to (2.26).

Evaluation of (2.23) in the lab frame using (2.24), (2.26), (2.25) yields,

Lµνp(2)µ p(2)ν = 8M2 [2E(E − T )−MT ] , (2.27)

where the incoming neutrino energy has been rewritten as E for simplicity. In turn, this

result can be used with (2.22) to evaluate the unpolarized amplitude:

〈|M|2〉 = 4G2
FM

2 [2E(E − T )−MT ]Q2
wF

2
w(Q2). (2.28)

2.1.4 Evaluating the Cross-Section

Plugging in (2.28) into (2.1) gives the invariant cross section for CEνNS:

dσν
dt

(E, T ) =
1

16π

G2
F

E2
[2E(E − T )−MT ]Q2

wF
2
w(Q2). (2.29)

Finally, the cross-section is written in terms of the recoil energy, T , by making the substitu-

tion t = 2MT for the differential in (2.29) to get our final result:

dσν
dT

(E, T ) =
G2
F

8π
M

[
2

(
1− T

E

)
− MT

E2

]
Q2
wF

2
w(Q2). (2.30)
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From (2.30) it can be seen that the weak form factor is needed to make predictions on the

cross section. The calculation of the form factor is model-dependent and will be discussed

in the following section. The total cross section is

σν(E) =
G2
F

8π
MQ2

w

∫ Tmax

0

[
2

(
1− T

E

)
− MT

E2

]
F 2
w(2MT )dT, (2.31)

with the maximum recoil energy written as,

Tmax =
2E2

2E +M
, (2.32)

and where the lower bound of the integral in (2.31) realistically would be the minimum recoil

energy that can be detected by the experiment.

2.2 The Form Factor

The form factor encodes the spatial properties and thus the internal structure of the

target off which the probe scatters. In the following discussion, the nuclear form factor

and the single nucleon form factor will be discussed. The nuclear form factor describing

the nucleon distributions will be calculated taking the nucleons as point particles. This is

followed by the construction of the charge and weak form factor in which the single-nucleon

form factors are folded with the point-nuclear form factors.

2.2.1 Single-Nucleon Form Factor

The single nucleon form factor can be constructed from the charge (electromagnetic)

and weak (neutral) currents and will be discussed briefly in this section. The most general

and covariant form of the vector part of the single-nucleon charge and weak current can be

written from [31] as:

ĴµEM = F1(Q
2)γµ + iF2(Q

2)σµν
qν

2Mn

, (2.33)

ĴµNC = F̃1(Q
2)γµ + iF̃2(Q

2)σµν
qν

2Mn

, (2.34)

where F1 (F̃1) and F2 (F̃2) are the Dirac and Pauli charge (weak) form factors respectively,

and Mn is the nucleon mass. It is more useful to introduce the electric and magnetic Sachs
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form factors for scattering; written as linear combinations of the Dirac and Pauli form factors,

i.e.,

GE(Q2) = F1(Q
2)− τF2(Q

2), (2.35)

GM(Q2) = F1(Q
2) + F2(Q

2), (2.36)

where τ = Q2

4M2
n
. The Dirac and Pauli form factors are now introduced in terms of the Sachs’

form factors,

F1(Q
2) = GE(Q2) +

(
τ

1 + τ

)
(GM(Q2)−GE(Q2)), (2.37)

F2(Q
2) =

GM(Q2)−GE(Q2)

1 + τ
. (2.38)

Plugging (2.37) and (2.38) into the charge current (2.33) yields the charge current in terms

of the Sachs’ form factors:

ĴµEM = GE(Q2)γµ +

(
GM(Q2)−GE(Q2)

1 + τ

)[
τγµ + iσµν

qν
2Mn

]
≈ GE(Q2)γµ. (2.39)

The analogous weak current is obtained by replacing the single-nucleon form factor, GE(Q2)→
G̃E(Q2). For the ground state of spinless nuclei at small momentum transfer the term in

brackets in (2.39) is very small and ignored. Only the electric Sachs nucleon form factor

will be used to elucidate the structure of the nucleons for the remainder of the report. Note

also that the single-nucleon form factors are assumed to remain the same due to the impulse

approximation.

Charge Form Factor. The electric Sachs single-nucleon form factor is obtained from

fitting world electron scattering data and reviewed in great detail in Ref [32]. The fits are

done using a bounded polynomial z-expansion of the form:

G(Q2) =
kmax∑

k=0

akz
k with, z =

√
tc +Q2 −√tc − t0√
tc +Q2 +

√
tc − t0

, (2.40)

where G represents Gp
E and Gn

E, tc = 4m2
π (mπ is the pion mass) and t0 = −0.7 GeV 2

is chosen as a compromise between the limited Q2 range for neutron form factors and the

broad range for proton cross section data. The global fit parameters can be found in the
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Table 2.1: The experimental values used to construct the single-nucleon form factors. The
magnetic moment is in Bohr magneton units, the point-nucleon mean square radii has units
(fm2) and the weak vector charge of the proton and neutron have radiative corrections.

µp µn r2p r2n gpv gnv

2.793 −1.913 0.772 (fm2) −0.116 (fm2) 0.0712 −0.9877

supplementary material of the reference above. In the supplementary material one will find

the proton and neutron data are fit using 12 and 10 global fit parameters respectively. The

proton electric form factor is fit to cross section and polarization data. The neutron form

factor is fit to the extraction of the individual form factors from experiment. The values

used for the mean square radii and the magnetic moments are given in Table 2.1. Note that

due to the mean-squared values of the proton and neutron, the neutron form factor is very

small compared to the proton form factor.

Electroweak Form Factor. Next, using the underlying quark vector currents from [31],

ĴµEM =
3∑

f=1

Qf q̄fγ
µqf =

2

3
ūγµu− 1

3
d̄γµd− 1

3
s̄γµs, (2.41)

ĴµNC =
3∑

f=1

gfV q̄fγ
µqf = guV ūγ

µ + gdV d̄γ
µd+ gsV s̄γ

µs, (2.42)

the single-nucleon charge form factors can be related to the single-nucleon weak form factors.

The weak vector charge in (2.42) is related to the weak isospin and mixing angle of the

fermion, ‘f ’:

gfV = 2tf3 − 4Qf sin2 θw. (2.43)

The protons and neutrons can be related using the quark vector currents because of isospin

symmetry, namely, that the up/down distribution of quarks in the proton is the same as the

down/up distribution in the neutron. For simplicity, the strange quark contribution will be

omitted because the strange form factor is very small and can be ignored for ground state

spinless nuclei in the calculations. With that being said the matrix elements for the neutrons
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Figure 2.2: (A) The single-nucleon electric Sachs form factor for the charge distribution.
The inset is meant to show the structure of the neutron charge distribution. (B) The single-
nucleon electric Sachs form factor for the weak charge distribution. The inset is meant to
show the structure of the proton weak distribution.

and protons are constructed using (2.41) for the charged current,

JµEM,p = 〈p|ĴµEM |p〉 =
2

3
V µ
u −

1

3
V µ
d ,

JµEM,n = 〈n|ĴµEM |n〉 =
2

3
V µ
d −

1

3
V µ
u ,

(2.44)

and (2.42) for the neutral current,

JµNC,p = 〈p|ĴµNC |p〉 = guV V
µ
u − gdV V µ

d ,

JµNC,n = 〈n|ĴµNC |n〉 = guV V
µ
d − gdV V µ

u ,
(2.45)

where V µ
{u,d} represents the matrix element of the vector current for the respective quark.

Using (2.44) the quark current matrix elements are written in terms of the charge currents.

Those are then plugged back into (2.45) to get the neutral currents in terms of the charge

currents, i.e.,
JµNC,p = gpV J

µ
EM,p + gnV J

µ
EM,n,

JµNC,n = gnV J
µ
EM,p + gpV J

µ
EM,n,

(2.46)

where the values of gpV and gnV are given in Table 2.1 and are defined as,

gpV = 2guV + gdV , gnV = guV + 2gdV . (2.47)
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Finally, (2.46) is rewritten in terms of the single-nucleon electric Sachs form factors us-

ing (2.39),

G̃p
E(Q2) = gpVG

p
E(Q2) + gnVG

n
E(Q2),

G̃n
E(Q2) = gnVG

p
E(Q2) + gpVG

n
E(Q2).

(2.48)

Note that due to the strength of the weak vector proton charge, gpV , and the neutron

electric form factor, Gn
E, discussed in the previous section the weak proton Sachs form factor,

G̃p
E(Q2), is much smaller than the weak neutron Sachs form factor, G̃n

E(Q2). The charge and

weak single-nucleon electric Sachs form factors are represented in Figure 2.2 on page 16.

2.2.2 Nuclear Form Factors

The nuclear form factor for point-like nucleons are defined as the Fourier Transform (FT)

of the given nucleon density. For example, the point-neutron form factor is written as:

Fn(Q2) =
1

N

∫
d3r e−iQ·rρn(r), (2.49)

where N is the number of neutrons (used as a normalization F (Q2 = 0) = 1) and Q is a

three vector pointing in the direction of momentum transfer with length Q =
√

q2. Taking

N → Z, where Z is the number of protons, and replacing ρn → ρp in (2.49) will give the

point-proton form factor. The point-nucleon form factor, (2.49), can be simplified assuming

a spherically symmetric object by integrating over the angular dependencies, namely,

Fn(Q2) =
1

N

∫
r2dr

[
4π sinQr

Qr

]
ρn(r). (2.50)

The nucleon density is defined in terms of the occupied single particle states,

ρn,p(r) =
occ∑

κ

(
2jκ + 1

4πr2

)
[g2κ,{n,p}(r) + f 2

κ,{n,p}(r)], (2.51)

where g(r) and f(r) are the upper and lower component of the Dirac spinor and κ is the

generalized angular momentum quantum number; these will be discussed further in the next

section.

The charge and weak form factors of the nucleus are constructed by folding the single-

nucleon form factors with the neutron and proton point-nuclear form factors,

Fch(Q
2) = Fn(Q2)Gn

E(Q2) + Fp(Q
2)Gp

E(Q2) ≈ Fp(Q
2)Gp

E(Q2),

Fw(Q2) = Fn(Q2)G̃n
E(Q2) + Fp(Q

2)G̃p
E(Q2) ≈ Fn(Q2)G̃n

E(Q2),
(2.52)
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to introduce the finite structure of the nucleons. In (2.52) GE (G̃E) is the charge (weak)

single-nucleon form factor. Note that the charge form factor is dominated by the proton

distributions because the neutron distribution is extremely suppressed by the neutron electric

form factor, Gn
E. As opposed to the weak form factor that is dominated by the neutron

distributions because the proton distribution is extremely suppressed by the proton weak

form factor, G̃p
E. The single nucleon electric Sachs form factors are graphically represented

in Figure 2.2. It can be seen that studying the weak scattering process is needed to better

fulfill our understanding of the neutron distributions. For the purposes of this report the

exact formulation of (2.52) is used.

Conversely, the density distribution is the Inverse Fourier Transform (IFT) of the form

factor. For example, the weak density for a spherical nucleus is

ρw(r) =
1

2π2

∫
dQ

[
sinQr

Qr

]
Q2Fw(Q2). (2.53)

The density distributions are more intuitive than the form factors because they describe the

structure in coordinate space. For example, the weak density will reveal the weak charge

structure with in the nucleus. The charge density, ρch(r) follows by replacing the form factor

in (2.53) by Fw(Q2)→ Fch(Q
2).

Form Factor Expansion. As discussed briefly in Subsection 1.2.1, it has been stated

that CEνNS provides a model-independent method for extracting the weak radius and neu-

tron radius. It can be done by Taylor expanding the form factor (2.50) about small values

of Q2. The weak form factor is then expanded about small momentum transfer because it

is directly measured in the experiments, namely,

Fw(Q2) =
4π

Qw

∫ ∞

0

r2dr

[(
1− Q2

6
r2 +

Q4

120
r4 − · · ·

)]
ρw(r)

= 1− Q2

6
〈R2

w〉+
Q4

120
〈R4

w〉 − · · · , (2.54)

where the expansion is written in terms of the even moments of the density distribution

〈R2n
n 〉 =

4π

Qw

∫ ∞

0

r2n+2ρw(r)dr for n = 0, 1, 2, . . . , (2.55)
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and the normalization, in this case the weak charge, is

Qw = 4π

∫ ∞

0

r2ρw(r)dr. (2.56)

The form factor has been normalized to F (Q2 = 0) = 1 by convention. The even moments

can be extracted by fitting the experimental form factor data to the form factor expan-

sion (2.54). At small Q2 values the form factor is dominated by the mean-square radius

of the density distribution. The model dependence of the cross section derived in Subsec-

tion 2.1.4 is entirely in the form factor, for which it can be categorized by the mean-squared

radius. Note that this expansion formalism remains the same for the charge form factor and

the point-nuclear form factors with appropriate normalization using (2.56).

2.3 Mean Field Approximation

A class of relativistic mean field approximations are used to model the behavior of the

neutrons and protons within the nucleus. The mean field approach allows one to model the

complex many-body problem using the individual nucleon bound states. In the following

discussion, the relativistic mean field approach is shown in order to calculate the point-

nucleon densities, and in turn the nuclear form factors.

2.3.1 Effective Lagrangian

In order to model the complex interactions of the nucleus in its ground state an ef-

fective Lagrangian, that has been extensively researched and refined in the literature, is

introduced [33, 34, 35]

Leff = ψ̄
[
γµ
(
i∂µ − gvVµ −

gρ
2
τ · bµ −

e

2
(1 + τ3)Aµ

)
− (M − gsφ)

]
ψ

+
1

2

(
∂µφ∂µφ−m2

sφ
2 − 1

2
V µνVµν +m2

vV
µVµ −

1

2
bµν · bµν +m2

ρb
µ · bµ −

1

2
F µνFµν

)

− κ

3!
(gsφ)3 +

λ

4!
(gvVµ)4 − ζ

4!
g4v(VµV

µ)2 − [Λs(gsφ)2 + Λv(g
2
vVµV

µ)](g2ρbµ · bµ),

(2.57)

where ψ represents the isodoublet nucleon field, Aµ is the photon field, φ is the isoscalar scalar

field for the σ-meson, V µ is the isoscalar vector field for the ω-meson, and bµ is the isovector
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vector field for the ρ-meson. The isoscalar mesons can not differentiate the nucleons with

in the nucleus; conversely, the isovector mesons are able to differentiate the nucleons. The

first, second and third lines in (2.57) represent the Yukawa couplings between the nucleons

and mesons, the field equations for the massive mesons and photons, and non-linear self and

mixed meson interactions respectively. The third line of the effective Lagrangian is used

to model the complex many-body interactions with a few parameters that are fit to the

bulk properties of nuclei. The parameters κ and λ control the non-linear scalar interactions,

ζ controls the quartic vector self-interaction, and Λv controls the mixed isoscalar-isovector

interaction; for our calculation Λs = 0. Solving the Euler-Lagrange equations of motions

leads to the Klein-Gordon equation for the meson sources and the Dirac equation for the

particles. The potentials are then provided from a self-consistent calculation described in

Ref [33] and references therein. These models form a class that predict very well the known

properties of nuclear matter and only differ in the choice of parameters.

For this report it was useful to rewrite the fields described in (2.57) into its single-nucleon

scalar and vector potentials for the spherically symmetric system

Sp(r) = Sn(r) = −gsφ(r), Vp(r) = gvV (r) +
gρb(r)

2
+ A(r),

Vn(r) = gvV (r)− gρb(r)

2
,

(2.58)

where φ(r), V (r), b(r) and A(r) are the fields in the ground state mean-field limit [33]. These

single-nucleon potentials will be used in the following section to calculate the single-nucleon

occupied energy levels and wave functions.

2.3.2 Dirac Equation

First, the Dirac equation for the single nucleon vector and scalar potentials of the protons

and neutrons are evaluated individually by solving the eigenvalues for the Hamiltonian:

(α · p + β[m+ S(r)]) Ψ(x) =
[
E − V{n,p}(r)

]
Ψ(x) (2.59)

wherem is the nucleon mass, Ψ(x) is the 4-component Dirac spinor, and E is the Dirac energy

subject to E < m for bound-state solutions. The scalar and vector potentials transform like
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a Lorentz scalar and time-component of a four-vector respectively, and α and β are matrices

defined as,

α =

(
0 σ
σ 0

)
, β =

(
I 0
0 −I

)
, (2.60)

where σ represents the Pauli matrix and I represents the identity matrix. The radial single-

particle solutions to (2.59) can be written in the form:

Ψnκm(x) =

[
ψa
ψb

]
=

1

r

[
gnκ(r)Yκm(x̂)
ifnκ(r)Y−κm(x̂)

]
, (2.61)

where n and m are the principal and magnetic quantum numbers respectively, x̂ is the

coordinate operator, and

Yκm(x̂) =

〈
x̂

∣∣∣∣l
1

2
jm

〉
, κ = ±

(
j +

1

2

)
, l =

{
κ if κ < 0

−1− κ if κ > 0
, (2.62)

are the spin-angular functions, generalized angular momentum, κ, and the cases for the

orbital angular momentum, l, respectively. Note that the 4-component Dirac spinor, Ψ,

does not conserve orbital angular momentum, whereas, the upper and lower component

wave functions (ψ) do. Furthermore, the subtle description determines spin orbit partners

where the single particle wave function has the same l-value but different κ-values described

by (2.62). In (2.61) the phase convention, multiplying the lower component by imaginary i,

assures that g(r) and f(r) are real bound-state wave functions and the spin-angular functions

are used because Ψ(x̂) has definite parity [36]. The normalization condition is as follows,
∫ ∞

0

dr [g2nκ(r) + f 2
nκ(r)] = 1. (2.63)

Now (2.59) can be rewritten using (2.61), i.e.,
(
m+ S(r) σ · p
σ · p −m− S(r)

)[
ψa
ψb

]
=

(
E − V (r) 0

0 E − V (r)

)[
ψa
ψb

]
, (2.64)

and separated into two first order equations:

[E − V (r)−m− S(r)]ψa − σ · p ψb = 0,

[E − V (r) +m+ S(r)]ψb − σ · p ψa = 0.
(2.65)

Using the Pauli matrix relations,

(σ · x)(σ · p) = x · p + iσ · (x× p), (σ · x)2 = |x|2 = r2, (2.66)
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the dot product can be rewritten as:

σ · p =
1

r2
(σ · x)(σ · x)(σ · p)

=
1

r2
(σ · x) [x · p + iσ · (x× p)]

= (σ · r̂)

[
r̂ · p + i

σ · L
r

]
. (2.67)

Next, the relations for the operators acting on the two-component wave function are:

(r̂ · p)ψa,b = −i∂ψa,b
∂r

, (2.68)

(σ · L)ψa,b = (J2 − S2 − L2)ψa,b

=

(
j(j + 1)− l(l + 1)− 3

4

)
ψa,b

= (κ− 1)ψa,b, (2.69)

and the final operator (σ · r̂) acting on the spin-angular function will choose the other

available l-value (negative κ-value) and acts like

(σ · r̂)Yκm = −Y−κm. (2.70)

Applying (2.68), (2.69) and (2.70) on (2.65) results in two ordinary differential equations

used to find the bound-state wave functions, i.e.,

[
d

dr
+
κ

r

]
gnκ(r)−

[
E − V{n,p}(r) +m+ S{n,p}(r)

]
fnκ(r) = 0,

[
d

dr
− κ

r

]
fnκ(r) +

[
E − V{n,p}(r)−m− S{n,p}(r)

]
gnκ(r) = 0.

(2.71)

The wave functions of the coupled ordinary differential equations (2.71) are solved for the

protons and neutrons numerically using a forth-order Runge-Kutta method with boundary

conditions.
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CHAPTER 3

RESULTS

3.1 Mean Field Results

Several calibrated relativistic mean field models are used to predict the point-nuclear form

factors for various nuclei of interest. The noble gases, Argon-40 and Xenon-132 are studied

because of their continued interest and applicability for dark matter detectors [37]. Iodine-

127 and Cesium-133 are studied because of their use in the recent experimental achievement

to measure CEνNS. The formalism provided in this report is particularly geared towards

spinless, symmetric nuclei, namely, even number of protons and neutrons. Pairing effects

due to the unpaired nucleons and deformation of the nucleus are not accounted for. This

is important to mention because Iodine-127 and Cesium-133 have an uneven number of

protons. The contributions from the unpaired proton in Iodine-127 and Cesium-133 need to

be further studied. Showing the similarities of the density distributions of Xenon to that of

Cesium and Iodine in this report gives us some quantitative evidence that the effects due to

the unpaired proton are minimal.

Taking the IFT of the nuclear form factor yields the density distribution for point-

nucleons as discussed in Subsection 2.2.2. From the density distributions the root-mean-

square radii are calculated using (2.55), i.e., R =
√
〈r2〉. The predicted values for the

root-mean-square radii are shown in Table 3.1 on page 32. The models used in this report

have been chosen by analyzing the neutron skin, Rn−Rp, of Lead-208. Moreover, the models

that gave a wide range of values for the neutron skin were chosen to reflect a wide range of

predicted values for the radius of the neutron distribution.

Using the nuclear mean-field potentials (2.58) for the ground state nucleus and solving

the coupled first order Dirac equations, (2.71), produced the result for the Dirac spinors,

namely, the lower and upper component bound-state wave functions. In addition, the lower

and upper wave functions are used the calculate the proton and neutron density distributions
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Figure 3.1: Point-nuclear density distributions are calculated using the models listed. Each
row shares the y-axes and corresponds to a given nucleus as labeled. The first and second
columns share the x-axes and represent the proton and neutron distributions respectively.
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using (2.51). Figure 3.1 shows the results of calculating the neutron and proton densities for

the four nuclei of interest in this study.

The model predictions for the radius of the proton distributions agree within ∼ 1% with

the experimental values; this reflects the fact that our models for the proton distributions

are well constrained by experiment. In contrast, one can see that the neutron distributions

have much greater deviations depending on the model because it is much less constrained.

In other words the isoscalar sector of the interaction is well understood through various

hadronic probes as discussed in 1.2.1. On the contrary, the isovector sector of the weak

interaction is not well understood; CEνNS will allow the isovector sector parameters to be

much better constrained.

The density distributions that tend to have a lower value at the origin, commonly called

a ‘hole’, is due to the model choice of occupied energy levels. The behavior of the wave

function at the origin goes like ∼ rl+1 , therefore, is dominated by the l = 0 bound-state

energy solutions. This is due to the linear behavior at the origin of the wave functions for

l = 0 states, compared to a slower increase at the origin for higher orbital angular momentum.

The subtlety of the ‘hole’ comes from the fact that the energy levels are almost degenerate

with differences in energies on the order of an MeV to keV for the shell closure. For example,

FsuGold model predicts a ‘hole’ for the proton density distribution because the D5/2 orbital

has a lower energy than the S1/2 and thus closes the shell.

The mean-field density predictions are used to calculate the point-nucleon form factors

by taking the FT using (2.50). These results will be used to compute the experimentally

accessible charge and weak form factors in the next Section.

3.2 Experimentally Accessible Results

The experimentally accessible quantities pertinent to this study come in the form of the

charge and weak nuclear form factor and the CEνNS cross section discussed in Section 2.1.
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3.2.1 Form Factor

As discussed in the previous section the Fourier transform of the nuclear densities of the

point-nucleons of Figure 3.1 can be used to obtain the nuclear form factors. Using (2.52),

the nuclear form factors are folded with the single-nucleon electric Sachs form factors of Fig-

ure 2.2; Figure 3.2 shows the results of this procedure. The absolute value of the form factor,

|F (q)|, is taken in order to show the oscillatory behavior on a log plot. This procedure allows

for the diffraction minimum of the form factor to be seen. These ‘dips’ are characteristic

minimum values of the form factor at specific momentum transfer due to the oscillations at

larger q-values. Note that the minimum q-values increase in frequency and shift to slightly

smaller values for larger and more neutron rich nuclei; the first minimum value, q0, is shown

in Figure 3.2 for the heavier elements. At small momentum transfer the form factor is al-

most model independent. Comparing the weak and charge form factors, it can be seen that

momentum transfers where the minima in the form factor occur are slightly smaller. The

minima of the form factors occur at slightly smaller momentum transfer for heavier nuclei

because the exponential decay of the form factor is dominated by the mean-squared radius

of the density distribution.

Figure 3.3 shows that our results using various relativistic mean field models agree fairly

well with the parity violating electron scattering experiment done by the PREX collabora-

tion [3]. From the data the form factor was extracted at a value of q̄ = 0.475 fm−1 with

a weak radius of Rw = 5.836(182) where the model and experimental errors are added in

quadrature. This figure also illuminates the extreme difficulty and sensitivity needed in the

experiments to constrain the models. In order to differentiate the theoretical models the

error bars need to be reduced to ∼ 0.1% error.

Figure 3.4 shows the charge and weak density obtained from taking the FT of the re-

spective form factor after folding with the single nucleon form factors.

Comparison of the point-nuclear density distributions with the charge and weak density

distribution shows almost identical results. This confirms, as it should be, that the charge

distribution is almost entirely sensitive to the distribution of protons and the weak distri-

bution are conversely sensitive to the neutrons in the nucleus. This is a result of the charge
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Figure 3.2: Nuclear charge and weak form factors from folding the single-nucleon form factors
with the point-nuclear form factors. The columns and rows follow the same procedure as
Figure 3.1.
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Figure 3.3: The weak form factor of 208Pb for various models and the experimentally ex-
tracted weak form factor from parity violating electron scattering experiment, PREX [3].
The inset zooms in on the experimental point to compare our results.

of the protons and the weak charge of the neutrons. The charge of the protons couples very

strongly to the electromagnetic interaction, where the neutrons are neutral. Conversely, the

neutrons couple very strongly to the weak interaction and the protons have almost no weak

charge.

To gain a better understanding of the form factor we can introduce an analytic form of

the form factor using the symmetrized Fermi function described in full detail in Ref [38].

The form factor for the spherically symmetric nuclei using the symmetrized Fermi density

is given as:

Fsf (q) =
3πa

qc[c2 + π2a2]

[
1

sinhπqa

] [
πa

tanhπqa
sin qc− c cos qc

]
, (3.1)

where a and c are the so called surface diffuseness and half-density radius respectively; better

known from the Fermi density ρ(r) = ρ0
1+e(r−c)/a . Taking (3.1) at large momentum transfer

yields:

Fsf =⇒ − 6πa√
c2 + π2a2

cos(qc+ β)

qc
e−πqa, where β = tan−1

πa

c
, (3.2)
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as Figure 3.1.
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where asymptotically sinhx→ ex

2
, tanhx→ 1 and the trigonometric identity, − cos(α+β) =

sinα sin β−cosα cos β, have been used. One can see clearly from the asymptotic form of (3.1)

that the exponential decay of the form factor is due to the surface diffuseness, a, and the

oscillations are controlled by the half-density radius, c.

Qualitative analysis of the density distributions show how the half-density and surface

diffuseness affect the form factors. Comparing the density distributions for Argon-40 and the

heavier nuclei one can see that the half-density parameter is smaller. For smaller nuclei the

form factor has fewer oscillations and they begin at higher descent indicative of a smaller half-

density. The surface diffuseness indicates how steep the decent of the density distributions

are and translates to the rate of exponential decay in the form factor. From this quantitative

analysis it is shown that the heavier nuclei have larger surface diffuseness and half-density

distances leading to larger exponential decay and oscillations at smaller q-values.

The weak skin form factor can be constructed by subtracting the charge form factor from

the weak form factor distributions, (3.2). Taking the form factor expansion, (2.54), to the

first moment gives us an approximate form for the weak skin, namely,

Fch(Q
2)− Fw(Q2) ≈ (1− Q2

6
R2
ch)− (1− Q2

6
R2
w)

=
Q2

6
(R2

w −R2
ch)

=
Q2

6
(Rw +Rch)(Rw −Rch). (3.3)

In (3.3) the weak skin form factor, Fch − Fw, is directly proportional to the weak skin,

Rw − Rch. This is of great importance for experimental analysis because the weak and

charge form factor are what is measured directly. With this formalism the weak skin may

be extracted in a model-independent way. The weak skin form factor is shown for the four

studied nuclei in Figure 3.5. From Figure 3.5, it can be seen that the curvature near the

origin and the peaks of the form factor are controlled by the weak skin. Furthermore, the

slope of the weak form factor is larger for the more neutron rich matter and the models with

larger weak skin have greater peaks, as they should.

From the density distributions one can extract the root-mean-square radius as discussed

earlier. Experimentally the root-mean-square radius is extracted from the first even moment
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Figure 3.5: The nuclear weak skin form factor, Fch−Fw, is shown for all the models used in
this report.

of the form factor expansion as discussed in Subsection 2.2.2. Specifically, the charge radius

of many nuclei have been extensively researched and are very well known. It is shown that our

models agree very well with the experimental charge radii of the nuclei of study by comparing

the calculated and experimental values in Table 3.1. Note that for a particular nucleus the

proton and charge radii are fairly consistent. In contrast, the neutron distributions are poorly

known and the neutron and weak radii vary largely from model to model. One can see the

experimental results of the charge root-mean-square radii and some initial experimental

values for the neutron and weak radii to compare with our results. The experimental rows

of Table 3.1 show charge radius results from a combination of muonic spectra and electron

scattering data [9], recent results for Calcium-40 and Calcium-48 of the neutron skin [13]

using proton scattering with hadronic model dependent errors, and weak neutron radius of
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Lead-208 from parity violating electron scattering [3].

Table 3.1: Theoretically calculated root-mean-squared radii from the seven relativistic mean
field models, showing the neutron and proton radii, neutron skins, charge and weak radii,
and weak skins extracted from the predicted density distributions.

Nucleus Model Rp Rn Rn −Rp Rch Rw Rw −Rch

40Ca FsuGold 3.337 3.286 -0.0512 3.426 3.372 -0.0538

FsuGarnet 3.345 3.292 -0.0522 3.433 3.378 -0.0548

Rmf022 3.351 3.299 -0.0517 3.439 3.385 -0.0543

Rmf028 3.350 3.300 -0.0495 3.438 3.386 -0.0520

Rmf032 3.357 3.309 -0.0479 3.445 3.395 -0.0503

TamuFsuA 3.358 3.307 -0.0501 3.446 3.393 -0.0527

TamuFsuC 3.374 3.329 -0.0455 3.462 3.414 -0.0478

Experiment [9, 13] 3.385 3.375 0.010+0.048
−0.049 3.4776(19)

40Ar FsuGold 3.253 3.363 0.1106 3.343 3.459 0.1166

FsuGarnet 3.269 3.350 0.0807 3.358 3.444 0.0857

Rmf022 3.270 3.367 0.0970 3.359 3.462 0.1026

Rmf028 3.266 3.382 0.1156 3.355 3.477 0.1217

Rmf032 3.266 3.393 0.1269 3.355 3.489 0.1334

TamuFsuA 3.277 3.383 0.1058 3.366 3.478 0.1116

TamuFsuC 3.282 3.414 0.1318 3.371 3.510 0.1385

Experiment [9] 3.4274(29)
48Ca FsuGold 3.365 3.562 0.1972 3.451 3.657 0.2063

FsuGarnet 3.365 3.563 0.1971 3.451 3.658 0.2062

Rmf022 3.356 3.553 0.1966 3.442 3.648 0.2056

Rmf028 3.352 3.584 0.2315 3.438 3.680 0.2415

Rmf032 3.345 3.589 0.2438 3.432 3.686 0.2541

TamuFsuA 3.366 3.581 0.2144 3.452 3.676 0.2240

TamuFsuC 3.366 3.616 0.2501 3.452 3.713 0.2606

Experiment [9, 13] 3.387 3.555 0.168+0.052
−0.055 3.4771(22)

127I FsuGold 4.665 4.830 0.1646 4.727 4.901 0.1739

FsuGarnet 4.655 4.785 0.1305 4.717 4.856 0.1384

Rmf022 4.650 4.821 0.1717 4.712 4.893 0.1811

Rmf028 4.640 4.862 0.2221 4.703 4.936 0.2335

Rmf032 4.637 4.872 0.2345 4.700 4.946 0.2464

TamuFsuA 4.660 4.855 0.1952 4.722 4.928 0.2056

TamuFsuC 4.655 4.913 0.2575 4.718 4.988 0.2703

Experiment [9] 4.7500(81)
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Table 3.1 - continued

Nucleus Model Rp Rn Rn −Rp Rch Rw Rw −Rch

132Xe FsuGold 4.713 4.885 0.1714 4.775 4.956 0.1809

FsuGarnet 4.692 4.829 0.1368 4.754 4.899 0.1449

Rmf022 4.690 4.879 0.1884 4.752 4.951 0.1985

Rmf028 4.683 4.925 0.2420 4.745 4.999 0.2541

Rmf032 4.679 4.935 0.2557 4.741 5.009 0.2682

TamuFsuA 4.703 4.916 0.2136 4.764 4.989 0.2247

TamuFsuC 4.6991 4.976 0.2776 4.760 5.051 0.2910

Experiment [9] 4.7859(52)
133Cs FsuGold 4.733 4.891 0.1580 4.795 4.962 0.1670

FsuGarnet 4.713 4.838 0.1251 4.774 4.907 0.1329

Rmf022 4.712 4.877 0.1646 4.774 4.948 0.1738

Rmf028 4.705 4.930 0.2243 4.767 5.003 0.2358

Rmf032 4.695 4.927 0.2322 4.757 5.001 0.2440

TamuFsuA 4.727 4.915 0.1877 4.789 4.986 0.1979

TamuFsuC 4.723 4.968 0.2444 4.785 5.042 0.2567

Experiment [9] 4.8041(46)
208Pb FsuGold 5.465 5.669 0.2043 5.518 5.733 0.2150

FsuGarnet 5.437 5.597 0.1593 5.491 5.659 0.1684

Rmf022 5.434 5.648 0.2138 5.487 5.712 0.2250

Rmf028 5.431 5.713 0.2816 5.485 5.780 0.2952

Rmf032 5.427 5.743 0.3162 5.480 5.811 0.3311

TamuFsuA 5.449 5.696 0.2470 5.502 5.762 0.2593

TamuFsuC 5.447 5.774 0.3267 5.500 5.842 0.3420

Experiment [9, 16] 5.449 5.751 0.302(177) 5.5012(13) 5.826 0.323(183)

3.2.2 Cross Section

The CEνNS cross section can be computed once the weak nuclear form factor is known

using (2.31) as discussed in Subsection 2.1.4. Figure 3.6 shows both the differential and

total cross section for various nuclei using the FsuGold model. The differential cross section

is taken at the energy of a monochromatic neutrino from pion decay at rest. This two-

body decay of the form, π+ → µ+ + νµ, produces the monochromatic neutrino energy at

29.9 MeV [1]. Incidentally, the value of the monochromatic neutrino energy from the pion
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Figure 3.6: (Left) The differential cross-section as a function of nuclear recoil energy using
the FsuGold Model at incoming neutrino energy of 29.9 MeV. (Right) The total cross-
section as a function of incoming neutrino energy. The dashed gray line representing the
monochromatic neutrino energy for a pion decay at rest.

decay at rest quoted in [1] was a typo; the correct value for the neutrino energy is 29.792 MeV.

The maximum nuclear recoil is determined by the mass of the target nuclei and incoming

neutrino energy. It is evident that the target material has competing components, namely

the number of neutrons and the recoil energy. As discussed in Chapter 1 the enhancement

to the differential cross section for larger neutron rich nuclei is offset by the threshold that

the nuclear recoil energy can be detected.

The kinematics imposes the maximum recoil energy for the monochromatic neutrino

using (2.32) and thus restricts the momentum transfer to |q|max = 2MTmax ∼ 0.3 fm−1.

The recoil energy decreases proportional to the mass of the nucleus leaving |q|max relatively

constant for these nuclei. The first even moment of the form factor expansion (2.54) leads

to between 15− 35% correction at maximum momentum transfer. The form factor decays

more rapidly for larger nuclei as seen in Figure 3.2. This entails that at the low momentum

transfer for CEνNS the larger nuclei have larger corrections due to the form factor. This is
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Table 3.2: CEνNS list of cross sections using FSUGold model with and without the form
factor corrections as well as the % difference of the two.

(10−39 cm2) 40Ca 40Ar 48Ca 127I 132Xe 133Cs 208Pb

σν (F (0) = 1) 1.284 1.601 2.638 18.439 20.566 20.523 54.030

σν (F (q)) 1.147 1.421 2.310 14.587 16.182 16.139 39.387

% Diff 11.9 12.6 14.1 26.4 27.0 27.1 37.1

also due to the larger weak skin from the neutron rich nuclei; as discussed earlier the larger

skin results in a greater form factor decay and, in turn, larger correction from the form

factor. The right portion of Figure 3.6 shows the increasing total cross section as a function

of incoming neutrino energy. The dashed gray line again represents the monochromatic

neutrino from stopped pion decay. The total cross sections for the monochromatic neutrino

energy are represented in Table 3.2. The total cross sections are obtained for the Eν = 29.9

MeV by integrating the differential cross sections (left) at the gray dashed line (right) of

Figure 3.6. It is shown that the form factor gives a correction on the total cross section from

∼ 10− 40% depending on how neutron rich the target is.

In summary, the results attained from the class of relativistic mean field models has been

shown and described in detail. The behavior of the point-nuclear density distributions have

been calculated and used to predict the charge and weak form factors. Important prop-

erties of the charge and weak form factors have also been discussed in the context of the

Symmetrized Fermi Function and radius of the density distribution. The accuracy for ex-

perimental errors has been shown in order to constrain the theoretical models. Furthermore,

the formalism for model-independent measurements of the radius of the density distributions

and the weak skin radius have been formulated and the calculated radii have been repre-

sented in tabular form. Finally, the results for the CEνNS cross section and the importance

of a precise measurement of the weak form factor have been discussed.
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CHAPTER 4

CONCLUSION

The wide range of applicability of CEνNS in many disciplines in physics is of immense mo-

tivation to continue to further our knowledge of the subject. Of particular importance and

the main motivation for this study, is the immense role that nuclear structure physics has

played in furthering our understanding of the CEνNS cross-section. The weak form factor,

being the last piece of physics for predictive capabilities of CEνNS, was calculated based on

relativistic mean-field potentials. Using the given model-dependent, complex mean-field po-

tentials for the interactions of the individual nucleons, the point-nuclear density distributions

were constructed. It was shown that the structure of the point-nuclear density distributions

near the origin was largely controlled by the energy scheme that the model predicted, namely

the l = 0 occupied energy levels. Furthermore, due to the energy differences of the order

of ≤ 1 MeV, the spectra for the same nuclei could differ between models. The structural

differences of the density distribution between models were qualitatively described in terms

of the surface diffuseness and half-density radius to describe the form factor—precise at

large values of momentum transfer. It was shown that the half-density radius controls the

form factor oscillations and the surface diffuseness was responsible for the exponential decay.

Moreover, the exponential fall-off of the form factor could also be described by the size of the

mean-squared radius to first order, where the larger radius of the density distribution would

reflect larger exponential decay in the form factor expansion. The radius of the density dis-

tributions were also calculated for the various nuclei studied to show the model dependence

and validate the predicted neutron distributions by comparing our results with the known

proton radii. The neutron-rich nuclei with a larger radius gave much larger corrections to the

CEνNS cross-section. Due to the extremely large corrections up to ∼ 40% for Lead-208, the

precise measurement of the weak form factors is necessary. Using the predicted weak form

factors, the differential and total cross-sections were calculated. The relationship between
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the enhancement to the cross-section due to the number of neutrons and the threshold for the

nuclear recoil, a unique experimental limitation, was shown. Finally, the model-independent

analysis that was formulated for the extraction of the radius of the density distributions and

weak radius, as well as the precision needed to constrain the models could guide experiments

that probe the weak interaction through CEνNS in the future.
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