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ABSTRACT

The goal of this dissertation is to describe a series of developments and applications of

the variational two-electron reduced density matrix (v2RDM-) complete active space self-

consistent field (CASSCF) method to the electron correlation problem in electronic structure

theory. The v2RDM-CASSCF method is a complete active space (CAS) method based on

optimizing the two-electron reduced density matrix (2RDM). Since the 2RDM is a more

compact object than the N -electron wavefunction, it is possible to formulate a CAS approach

that scales polynomially, rather than exponentially, with respect to the size of the active

space. For this reason, computer implementations of v2RDM-driven CASSCF are capable of

treating active spaces much larger than the limit of current implementations of wavefunction-

/configuration interaction (CI-) driven wavefunction CASSCF. The work described in this

dissertation addresses three deficiencies of v2RDM-CASSCF: the lack of an analytic energy

derivative code, the lack of an efficient code with which to compute excited states, and

the lack of a method with which to correct the v2RDM-CASSCF energy for dynamical

correlation. We develop analytic first derivatives of the v2RDM-CASSCF energy, and we

show, in fact, that the expressions for the analytic first derivative of the energy are identical

to those for CI-based CASSCF. For the excited state problem, we improve an approach by

which excited states and excited state properties can be computed from the ground state

2RDM. Lastly, we develop a model for dynamical correlation for v2RDM-CASSCF references.

With this model, energies computed at the v2RDM-CASSCF level of theory can be corrected

to account for the effects of dynamical correlation.

ix



CHAPTER 1

DISSERTATION OUTLINE

Chapters 2, 3, 4 and 6 cover the background necessary for a close reading of this dissertation.

Chapter 2 covers some mathematical background and commonly used notation in electronic

structure theory; Chapter 3 provides some context for and illustrates the electron correla-

tion problem. Chapter 4 briefly describes the variational two-electron reduced density matrix

(v2RDM)-complete active space self-consistent field (CASSCF) approach to electronic struc-

ture theory while Chapter 6 outlines some approaches for excited states. Chapter 9 contains

some final remarks.

In Chapter 5, we show that the first derivative of the energy computed at the v2RDM-

CASSCF level of theory is stationary with respect to all variables in the optimization of

the two-electron reduced density matrix (2RDM), and that orbital response contributions

to the gradient are identical to those in CI-based CASSCF. We apply the v2RDM-CASSCF

method and the formulation of analytic gradients to the geometry optimization of molecules

with both modest and large active spaces. We assess the impact of the N -representability

constraints enforced on the variable 2RDM on final optimized geometries.

We describe, in Chapter 6, an excited state approach based on applying the extended ran-

dom phase approximation (ERPA) within the context of Rowe’s equation of motion (EOM).

When one assumes a reference from CASSCF, the resulting generalized eigenvalue prob-

lem can be written in terms of the elements of 1- and 2RDMs computed at the CASSCF

level of theory. Solving this eigenvalue problem gives information concerning excited states

and excited state properties. We use RDMs obtained from v2RDM-CASSCF calculations

to compute excitation energies and associated oscillator strengths for near K-edge excited

states of compounds containing second row elements. We assess the quality of excited states

by comparison with results from experiment and from time-dependent coupled cluster calcu-

lations. We also assess the effect, and ultimately, importance, of using reference RDMs from
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CASSCF calculations, with which correlation effects are accounted for, rather than RDMs

from restricted Hartree-Fock calculations, with which correlation effects are not accounted

for, or from density functional theory (DFT), with which correlation effects are not explic-

ity accounted for by multiconfigurational approaches. We also assess the effect on excited

state properties of N -representability conditions used to compute the 1- and 2-RDMs at the

v2RDM-CASSCF level of theory.

In Chapter 7, we develop a method by which the v2RDM-CASSCF energy can be im-

proved to account for the effects of dynamical correlation that are not accounted for at the

CASSCF level of theory. The method is based on an adiabatic connection (AC) model by

Pernal and coworkers. Pernal and coworkers have shown that it is possible for formulate a

correction for dynamical correlation effects to an energy computed at the CASSCF level of

theory, if the active space is well-selected to take care of nondynamical correlation effects.

We use this method to compute corrected energies for a set of small molecules using geome-

tries near and far from equilibrium. We also compute relative/reaction energies for several

reactions.
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CHAPTER 2

INTRODUCTION AND MATHEMATICAL
BACKGROUND

2.1 Introduction

The accurate determination of molecular electronic structure and properties is the goal

of quantum chemistry. The motion of the molecule’s constituent particles is governed by

quantum mechanics in the form of partial differential equations involving the wavefunction.

The solution of these equations gets more challenging as the number of particles increases.

Therefore, one of the defining features of quantum chemistry is the development of methods

that allow for approximate solutions to the many-particle problem. Since the vast majority

of molecules are chemical compounds of the light elements, one of the key simplifications

that is made is the non-relativistic approximation which yields the Schrödinger equation. A

further approximation is the Born-Oppenheimer approximation that decouples the nuclear

and electronic degrees of freedom to give the electronic Schródinger equation. The Born-

Oppenheimer approximation is justified by the fact that the changes in electronic structure

that define chemistry occur at much shorter timescales than the change in nuclear coordi-

nates. Even though the electronic Schrödinger equation is much simpler than its molecular

analog, its solution remains a challenge, particularly for larger systems that are often of

interest to the wider chemistry community.

The exact solution of the non-relativistic electronic Schrödinger equation within the or-

bital approximation by full configuration interaction (CI) leads to complexity that scales very

steeply with respect to the number of electrons and orbitals. This explains the popularity

of less computationally expensive single-configuration approaches such as the Hartree-Fock

(HF) method and Kohn-Sham (KS-) density functional theory (DFT). These approaches

provide accurate descriptions of electronic structure in some cases. However, because they

3



are not formulated in a way in which electron-electron motion is fully correlated, these

methods cannot guarantee an accurate description of the electronic structure for general

molecular systems. This is particularly true for molecules for which different electronic con-

figurations are near-degenerate, and for which the wavefunction is best described by multiple

electronic configurations. In this dissertation, we describe a series of developments by which

we compute molecular properties while taking advantage of the computational efficiency

afforded by the variational two-electron reduced density matrix (v2RDM)- complete active

space self-consistent field (CASSCF) method, which can treat systems whose wavefunctions

are multiconfigurational, and which avoids the factorial scaling associated with full CI, or CI-

based CASSCF. We discuss in this dissertation three developments: the first implementation

of analytic gradients for the v2RDM-CASSCF method; an improved method for comput-

ing excited states using RDMs computed at the v2RDM-CASSCF level of theory, since the

v2RDM-CASSCF method by itself cannot be used to compute excited states; and the devel-

opment of a model for dynamical correlation for the v2RDM-CASSCF, which brings energies

computed at the v2RDM-CASSCF level of theory in better quantiative agreement with those

computed from full CI.

In this chapter, we will cover the mathematical background and conceptual ideas that are

needed in order to understand both single-configuration as well as multiconfiguration-based

descriptions of electronic structure. We will round off the chapter with a brief history of the

development of RDM-based methods in quantum chemistry.

2.1.1 Many-electron wavefunctions

The many-electron wavefunction can be represented in a basis of electronic configura-

tions, each of which is antisymmetric with respect to particle exchange. Here we derive a

representation of such electronic configurations in terms of spin orbitals. Although our goal

is to develop a respresentation for the wavefunction of a fully interacting system, we ignore

that for the moment and consider a simpler system having a Hamiltonian, Ĥ0, that involves

4



the coordinates of just one particle

Ĥ0 =
N∑
i=1

ĥ(xi). (2.1)

Each term in the sum in 2.1 involves the kinetic energy operator −1
2
∇2
i , but it can also

include a potential energy U such that

ĥ(xi) = −1

2
∇2
i (xi) + U. (2.2)

If we take the eigenfuctions of ĥ to be a set of spin orbitals {φν}, then we can define, for

each single electron, an eigenvalue problem

ĥ(xi)φν(xi) = ενφν(xi), (2.3)

where ν is a label for a spin orbital. The spin orbitals from 2.3 form an orthonormal∫
dxφ∗ν(x)φν′ (x) = δν,ν′ (2.4)

and complete ∑
ν

φ∗ν(x)φν(x
′
) = δ(x− x′) (2.5)

set, with
∫
dx denoting integration over all spatial (r) and spin (σ) coordinates:∫

dx ≡
∑
σ

∫
d3r, (2.6)

and

δ(x− x′) = δ(r− r
′
)δσ,σ′ . (2.7)

An antisymmetric N -electron configuration which is an eigenstate of the non-interacting

Hamiltonian Ĥ0 can be constructed from these spin orbitals:

Φ(x1, ..., xN) =
1√
(N !)

∑
P∈SN

sgn(P ) · Pφν1(x1)φν2(x2)...φνN (xN), (2.8)

where sgn(P ) denotes the sign of the permutation P . An even (odd) number of two-particle

permutations yields a positive (negative) sign for sgn(P ). The many-electron wavefunction

in 2.8 can be written as a determinant (more commonly referred to as a Slater determinant)

Φ =

∣∣∣∣∣∣∣
φν1(x1) . . . φν1(xN)

...
...

φνN (x1) . . . φνN (xN)

∣∣∣∣∣∣∣ (2.9)

5



2.2 Second quantization

Working with electronic configurations written in the form of 2.9 can be quite incon-

venient. In this section, we introduce the language and notation of second quantization.

Second quantization provides a more succinct way of representing the information in elec-

tronic configurations by expressing both the configurations and operators in terms of a single

set of creation and annihilation operators.

2.2.1 Creation and annihilation operators

In second quantization, creation and annihilation operators create and annihilate elec-

trons in specified spin orbitals. Electronic configurations are constructed as products of

creation operators acting on the vacuum state, which is a unique state containing no elec-

trons.

In second quantization, the occupation number representation is used to represent elec-

tronic configurations. Here an electronic configuration with n1 particles in spin orbital 1, n2

particles in spin orbital 2, n3 particles in spin orbital 3, etcetera can be written as

|n1, n2, n3, n4, . . . 〉. (2.10)

where ni can only take the values 0 or 1. We can now define the creation operator â†ν , with

ν being a label for a spin orbital, such that, if there is already an electron in spin orbital ν,

the action of the creation operator on a determinant |n1, n2, n3, . . . , nν , . . . 〉 returns 0, and if

there is no electron in spin orbital ν, then the result of acting on |n1, n2, n3, . . . , nν , . . . 〉 is

the creation of an electron in spin orbital ν. That is

â†ν |n1, n2, . . . , nν , . . . 〉 = phase factor |n1, n2, . . . , 1ν , . . . 〉 (2.11)

where the phase factor equal to +1 or -1. The value of the phase factor depends on whether

the total number of electrons in spin orbitals with labels less than ν is even or odd. This is

because the action of two different creation operators which nonetheless act on the same or-

bitals should be to create different states (or 0). For example, the action of the operators â†1â
†
2
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and â†2â
†
1 on the vacuum state |0〉 = |01, 02, 03, . . . 〉 should result in different configurations:

â†1â
†
2|0〉 = â†1|01, 12, 03, . . . 〉 = |11, 12, 03, . . . 〉 (2.12)

whereas

â†2â
†
1|0〉 = â†2|11, 02, 03, . . . 〉 = −|11, 12, 03, . . . 〉. (2.13)

In fact, any electronic configuration can be created by acting on the vacuum state with the

appropriate set of creation operators in an appropriate order

|11, 12, 13, . . . 〉 = (â†1)(â†2)(â†3) · · · |0〉. (2.14)

Having defined the creation operator, we can now define its complement, the annihilation

operator, âν , by requiring that its action on a configuration in which spin orbital ν is occupied

result in a configuration in which that spin orbital is unoccupied, that is,

âν |n1, n2, . . . , nν , . . . 〉 = phase factor |n1, n2, . . . , 0ν , . . . 〉, (2.15)

where the phase factor is as defined in 2.11. The result is 0 if there is no electron in state

ν. It also becomes apparent that the vacuum state is such that when it is acted upon by an

annihilation operator, the result is always 0. That is,

âν |0〉 = 0 for all ν. (2.16)

Since â†ν |ΦN〉 is a state with N + 1 electrons, â†ν is a mapping between a Hilbert space with

N electrons and another with N + 1 electrons, we can write

â†ν : HN → HN+1. (2.17)

Similarly, âν is a mapping between a Hilbert space with N electrons and another with N −1

electrons, so we can write

âν : HN → HN−1. (2.18)

From their definitions, â†ν and âν are mutual adjoints

â†ν = (âν)
†; âν = (â†ν)

† (2.19)
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It can also be shown, from the definitions in 2.11 and 2.15, that the two operators obey the

following anti-commutation relations:

{âµ, âν} = 0, (2.20)

{â†µ, â†ν} = 0, and (2.21)

{â†µ, âν} = δµ,ν . (2.22)

where the anti-commutator between two operators, say, A and B, is defined

{A,B} ≡ AB +BA. (2.23)

2.2.2 Second-quantization representation of single-particle and
two-particle operators

Here, we apply the Slater-Condon rules to derive the expressions for one- and two-electron

operators in terms of creation and annihilation operators. If we consider the matrix elements

of an operator Ô between configurations |Φa〉 and |Φb〉, we can show that if Ô is a single-

particle operator, the matrix element between |Φa〉 and |Φb〉 is non-zero if |Φa〉 and |Φb〉

differ in occupation by no more than two orbitals. This means that the second-quantized

version of single particle operators is a sum of terms, each of which only changes, at most,

the occupation of two spin orbitals. So, a one-electron operator such as Ĥ0 can be written

H0 =
N∑
i=1

ĥ(xi)→
∑
pq

〈p|ĥ|q〉â†pâq, (2.24)

where

〈p|ĥ|q〉 =

∫
dxφ∗p(x)ĥ(x)φq(x). (2.25)

Similarly, the matrix element for two particle operators is a sum of terms each of which only

changes, at most, the occupation of four spin-orbitals. Therefore, a two-electron operator

can be written
N∑
i 6=j

v̂(xi, xj)→
∑
pqrs

(pq|v̂|rs)â†pâ†râsâq (2.26)
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where

(pq|v̂|rs) =

∫ ∫
dxdx′φ∗p(x)φq(x

′)v̂φ∗r(x)φs(x
′). (2.27)

We can therefore write down, using second quantization, operators such as the molecular

Hamiltonian

Ĥmol =
∑
pq

hpqâ
†
pâq +

1

2

∑
pqrs

(pq|rs)â†pâ†râsâq + hnuc (2.28)

where

hpq =

∫
dxφ∗p(x)

(
− 1

2
∇2 −

Natom∑
I=1

ZI
rI

)
φq(x), (2.29)

(pq|rs) =

∫ ∫
dxdx′

φ∗p(x)φq(x
′)φ∗r(x)φs(x

′)

r
, and (2.30)

hnuc =
1

2

∑
I 6=J

ZIZJ
RIJ

. (2.31)

Here, I is a label for atoms, ZI denotes the nuclear charge associated with atom I, rI is the

nuclear-electron separation, r the separation between an electron at x and another at x′, and

RIJ is the internuclear separation.

2.3 Density matrices

In this section, we express one- and two-electron density matrices in the notation of second

quantization. This can be done by considering the evaluation of expectation values of opera-

tors with respect to a normalized reference wavefunction |Ψ0〉. The expectation value of the

one-electron operator 〈Ψ0|â†pâq|Ψ0〉 and that of the two-electron operator 〈Ψ0|â†pâ†râsâq|Ψ0〉

define the elements of the one- and two-electron density matrices. These can be written

more compactly using the following notation

1Dp
q = 〈Ψ0|â†pâq|Ψ0〉, (2.32)

and

2Dpr
qs = 〈Ψ0|â†pâ†râsâq|Ψ0〉. (2.33)
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2.3.1 The one-electron density matrix

Here, we investigate the mathematical properties of the one-electron density matrix. The

density matrix defined by 2.32 satisfies

(1Dp
q)
∗ = 1Dq

p (2.34)

The one-electron density matrix is therefore Hermitian. Its elements define a Hermitian

M ×M matrix, with M being the number of spin orbitals. We call this matrix the spin

orbital one-electron density matrix. For real wavefunctions, the one-electron density matrix

is symmetric

1Dp
q = 1Dq

p. (2.35)

The one-electron density matrix is positive semidefinite, that is, its eigenvalues are non-

negative. This is because its elements can be either be zero, or inner products of occupation

number vectors or configurations that can be defined with N − 1 electrons and M orbitals.

Its diagonal elements can be written

1Dp
p = 〈Ψ0|â†pâp|Ψ0〉 = 〈Ψ0|N̂p|Ψ0〉 (2.36)

where we have replaced â†pâp with N̂p. Since the operator â†pâp effectively counts the number

of electrons, it is known as the occupation number operator and is usually denoted N̂ . This

occupation number operator is idempotent, that is, N̂p = N̂pN̂p, we can write down the

diagonal element of the one-electron density matrix by an occupation number ωp:

ωp = 〈Ψ0|N̂pN̂p|Ψ0〉. (2.37)

The wavefunction |Ψ0〉 is generally a linear combination of occupation number vectors

|Ψ0〉 =
∑
k

ck|k〉, (2.38)

with
∑

k |ck|2 = 1 (normalization) so

N̂p|Ψ0〉 =
∑
k

kpck|k〉 (2.39)
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where kp counts contributions from kets where φp is occupied, and is zero otherwise. The

occupation numbers ωp can now be written in the form

ωp =
∑
k

kp|ck|2. (2.40)

The occupation numbers ωp are real numbers between 0 and 1 inclusive

0 ≤ ωp ≤ 1. (2.41)

The occupation number takes the value of 0 if all orbitals φp are unoccupied in all kets or

occupation number vectors. It takes the value 1 if φp is occupied in all kets or occupation

number vectors. It takes values between 0 and 1 if φp is occupied only in some of the

occupation number vectors. The sum of the occupation numbers, which is also the trace of

the density matrix, is equal to the number of electrons

Tr(1D) =
∑
p

ωp =
∑
p

〈Ψ0|N̂p|Ψ0〉 = 〈Ψ0|N̂ |Ψ0〉 = N (2.42)

For a state consisting of a single occupation number vector or electronic configuration, the

one-electron density matrix has a simple diagonal structure

1Dp,k
q = 〈k|â†pâp|k〉 = δpqkp (2.43)

By contrast, for an electronic state containing several occupation number vectors, the den-

sity matrix is not diagonal. But, since 1D is Hermitian, its off diagonal elements may be

eliminated completely by diagonalization with a unitary matrix:

1D = UηU†. (2.44)

The eigenvalues of 1D are real numbers 0 ≤ np ≤ 1, and are known as natural orbital

occupation numbers. The sum of the natural orbital occupation numbers is equal to the

number of electrons. From the eigenvectors U of the density matrix, we obtain a new set of

spin orbitals called the natural spin orbitals of the system.
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2.3.2 The two-electron density matrix

Here we outline the important mathematical properties of the two-electron density ma-

trix. For two-electron density matrices, it is important to note that the elements are not all

independent. Due to anticommutation relations,

2Dpr
qs = −2Dpr

sq = 2Drp
sq = −2Drp

qs (2.45)

Also, according to the Pauli principle,

2Dpp
qs = 2Dpr

qq = 2Dpp
qq = 0 (2.46)

The two-electron density matrix is Hermitian, since

(2Dpr
qs)
∗ = (〈Ψ0|â†pâ†râsâq|Ψ0〉)∗ = 〈Ψ0|â†qâ†sârâp|Ψ0〉 = 2Dqs

pr = 2Dpr
qs (2.47)

Further, the two-electron density matrix is positive semidefinite, since its elements are zero

or equal to the inner products of occupation number vectors that can defined with N − 2

electrons and M spin orbitals. We can use anticommutation relations to show that the

diagonal elements

2Dpq
pq = 〈Ψ0|â†pâ†qâqâp|Ψ0〉 (2.48)

can be written in terms of pair number operators

2Dpq
pq = 〈Ψ0|N̂pN̂q|Ψ0〉, (2.49)

provided p 6= q, so that these diagonal elements 〈Ψ0|N̂pN̂q|Ψ0〉 represent simultaneous occu-

pations of pairs of spin orbitals. Similar to the approach taken for the one-electron density

matrix, we can define

ωpq = 〈Ψ0|N̂pN̂q|Ψ0〉, (2.50)

to represent the part of the wavefunction where spin orbitals φp and φq are simultaneously

occupied. So we have:

N̂pN̂q|Ψ0〉 =
∑
k

kpkqck|k〉. (2.51)
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The occupation of a given spin-orbital pair cannot exceed those of the individual spin orbitals.

That is,

0 ≤ ωpq ≤ min(ωp, ωq) ≤ 1. (2.52)

The trace of the two-electron density matrix is

Tr(2D) =
∑
p>q

〈Ψ0|N̂pN̂q|Ψ0〉 =
1

2

∑
pq

〈Ψ0|N̂pN̂q|Ψ0〉−
1

2

∑
p

〈.Ψ0|N̂p|Ψ0〉 =
1

2
N(N−1) (2.53)

Thus the sum of pair occupations ωpq is equal to the number of electron pairs in the system.

For a wavefunction containing a single occupation number vector, the two-electron density

matrix has a simple diagonal structure with elements

2Dpq,k
rs = 〈k|â†pâ†qâsâr|k〉 = δprδqskpkq. (2.54)

For such a wavefunction, the two-electron density matrix can be constructed from elements

of the one-electron density matrix

2Dpq
rs = 1Dp

r
1Dq

s − 1Dp
s

1Dq
r . (2.55)

For this wavefunction, the expectation value of any one- or two-electron operator may be

obtained from the one-electron density matrix.

2.3.3 Density matrices in spin-orbital and coordinate
representations

We can formally relate expectation values of one- and two-electron operators to first- and

second-order reduced density matrices defined in terms of spatial (and spin) coordinates.

The first-order reduced density matrix is an integral of the N -electron density matrix

over the coordinates of all but one electron. It can be written terms of spatial and spin

coordinates as

γ1(x1,x
′

1) = N

∫
Ψ(x1,x2, . . . ,xN)Ψ∗(x

′

1,x2, . . . ,xN)dx2 . . . dxN . (2.56)
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In the same coordinate representation, we may write the expectation value of any one-electron

operator as

〈Ψ|Ô1|Ψ〉 = 〈Ψ|
N∑
i

Ô1i(xi)|Ψ〉

=
N∑
i

∫
Ψ∗(x1,x2, . . . ,xN)Ô1i(xi)Ψ(x1,x2, . . . ,xN)dx1dx2 . . . dxN . (2.57)

It is fairly straightforward to show that the integral on the right hand side of 2.57 is the

same for each electron so that

〈Ψ|Ô1|Ψ〉 =
∑
pq

〈Ψ|â†pâq|Ψ〉 = N

∫
Ψ∗(x1,x2, . . . ,xN)Ô11Ψ(x1,x2, . . . ,xN)dx1dx2 . . . dxN .

(2.58)

It follows, from comparing left and right hand sides of 2.58, that

〈Ψ|â†pâq|Ψ〉 =

∫
φ∗q(x1)γ1(x1,x

′

1)φp(x
′

1)dx1dx
′

1. (2.59)

The correspondence between the one-electron reduced density defined over spatial (and spin)

coordinates, and the one-electron density matrix defined over spin orbitals is clear.

We now consider the second-order reduced density matrix, defined as the normalized

integral of the N -electron density matrix over the coordinates of all but two electrons:

γ2(x1,x2,x
′

1,x
′

2) =
N(N − 1)

2

∫
Ψ(x1,x2,x3, . . . ,xN)Ψ∗(x

′

1,x
′

2,x3, . . . ,xN)dx3 · · · dxN .

(2.60)

For readability, we will skip the derivation, but it can be shown that

γ2(x1,x2,x
′

1,x
′

2) =
1

2

∑
pqrs

2Dpr
qsφ
∗
p(x

′

1)φq(x1)φ∗r(x
′

2)φs(x2), (2.61)

and

〈Ψ|â†pâ†râsâq|Ψ〉 = 2

∫
φ∗q(x1)φ∗s(x2)γ2(x1,x2,x

′

1,x
′

2)φp(x
′

1)φr(x
′

2)dx1dx2dx
′

1dx
′

2, (2.62)

demonstrating again the clear correspondence between a two-electron reduced density matrix

defined over spatial (and spin) coordinates, and a two-electron density matrix defined over

spin orbitals.
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2.4 A brief history of reduced density matrix-based

methods in quantum chemistry

2.4.1 The 1950s

The advent of reduced density matrix (RDM)-based approaches for quantum chemistry

can be traced back to Coleman’s realization, in the summer of 1951, that the ground state

energy of a many-electron system could be written in terms of the 2-electron reduced density

matrix. However, his attempt to demonstrate the utility of this approach for the Li atom

using a two-electron RDM constrained to obey trace, anti-symmetry (with respect to particle

exchange) and hermiticity conditions yielded a ground state energy that was 10% lower than

the observed (experimental) value. He realized from this experience the need to impose some

more limitations on the allowed 2RDM.

A similar approach to Coleman’s was taken by Mayer in 1955 to compute the electron

correlation energy of an electron gas by finding the elements of a two-electron density matrix

that would yield the lowest energy. The two-electron density matrix that Mayer used was

constrained to obey antisymmetry, hermiticity, as well as trace and contraction conditions.

Even though his results showed some promise, in 1957, Tredgold[214] and Mizuno[145] proved

that, for systems of more than two electrons, Mayer’s approach could yield 2RDMs that were

not N -representable, that is, not derivable from an antisymmetric N -particle wavefunction,

and corresponded to ground state energies that were much too low. Both Mizuno and

Tredgold conclude that further investigation into the properties of RDMs was necessary

before they could be used as a basic variable in electronic structure calculations.

2.4.2 The 1960s-1980s

During the 1960s, it had become clear that the N -representability problem would have

to be solved before the 2RDM could be used reliably to determine the ground state energy,

The problem attracted the interest of mathematicians, theoretical physicists and chemists,

and culminated in a series of conferences that sought to understand the properties of RDMs,

and whether RDMs could indeed be variables in solving the many-electron problem. A
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series of six conferences were held at different times between 1967-1985. According to an

account by Rosina, the structure and symmetries of RDMs, as well as the possibility of

variational calculations were of particular interest. During this period, several key works

such as Garrod and Percus’ Reduction of the N-particle variational problem [61], Garrod,

Mihailović and Rosina’s Variational approach to the two-body densitry matrix [60], Cohen and

Frishberg’s Hierarchy of equations for reduced density matrices [37] and Nakatsuji’s Equation

for the direct determination of the density matrix [152] were published. Garrod and Percus’

paper pointed out that N -representability conditions on the two-electron operator implied

positivity of an associated operator of the same rank. These rest of the works pointed out that

the solution of Schrödinger’s equation involving the a given RDM would have a dependence

on higher order RDMs. In particular, solving the contracted Schrödinger equation involving

the 2RDM would require knowledge of the 4RDM.

2.4.3 The 1990s

From the late 1970s to the early 1990s, research output on RDMs and their application

to solving the many-electron problem appears to have waned, until in 1993 and soon after

in 1994, when Colmenero and Valdemoro published two papers that turned out to motivate

several publications, by Mazziotti particularly, in the latter half of the decade. The first

paper demonstrated how approximate higher order RDMs could be obtained in terms of

lower order ones[39], and the second demonstrated how the Schrödinger equation involving

the 2RDM could be solved in a self-consistent field procedure[40]. During the latter part

of the decade, Mazziotti published a number of papers on solving Schrödinger equations

involving the 2- and 3-RDM, formulating and applying new techniques by which the 4- and

5-RDMs could be reconstructed from lower-order RDMs.

2.4.4 The 2000s to present

The 2000s saw significant progress in the advancement of RDM-based methods for many-

electron systems. Perhaps the most significant of these was the generalization of the pos-

itivity conditions to a hierarchy of N -representability conditions[1]. With this form of N -
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representability constraints, one could accurately determine, using variational means, the

lower bound of an energy functional expressed in terms of the 2RDM. The variational deter-

mination of the energy with positivity constraints yields a semidefinite programming (SDP)

problem which can be solved by applying semidefinite programming approaches. In fact,

this period saw the application of semidefinite programming techniques[221], which included

primal-dual interior-point methods[239, 5] and boundary-point methods[176, 123, 138] to the

SDP problem. Implementations of the two-positivity conditions first published by Garrod

and Percus[61], as well as that of various three- or partial three- positivity conditions[51, 139,

151, 24, 249] were reported and the accuracy of energies obtained with RDMs satisfying those

constraints was found to be satisfactory for the various many-electron systems investigated.

From 2010 onwards, we have the first publications of implementations of complete active

space self-consistent field (CASSCF) methods where the full CI calculation in the active

space is replaced with an RDM-driven procedure. We see the first such implementation from

Mazziotti’s group in 2011[167], and in 2016, a large scale implementation of this approach

from the DePrince group[57].
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CHAPTER 3

THE ELECTRON CORRELATION
PROBLEM

The goal of most of quantum chemistry is to develop theoretical models and numerical algo-

rithms with which molecular properties can be accurately determined. In electronic structure

theory, one often works within the non-relativistic and Born-Oppenheimer[21] approxima-

tions, with the goal of solving the electronic Schrödinger equation:

ĤeΨe(r; R) = EeΨe(r; R). (3.1)

The solution of the electronic Schrödinger equation within the orbital approximation has been

a major driver of research efforts in electronic structure theory over the last several decades.

The challenge of accurately treating electron correlation in chemically relevant molecules

has been at the center of these efforts. In order to define correlation effects more concretely,

we need to look at two approaches that can be used to solve the electronic Schrödinger

equation: the full configuration interaction (CI)[209, 73, 55, 198] and the Hartree-Fock (HF)

[70, 54, 203] methods.

3.1 Full configuration interaction

Given a set of spin orbitals with which electronic configurations can be constructed, the

exact solution to the electronic Schrödinger equation may be written as a linear combination

of all possible electronic configurations that can be constructed from that set of spin orbitals.

The full CI wavefunction is often expressed in terms of a reference electronic configuration, as

well as other configurations generated from that same reference by rearranging the electrons.

The full CI wavefunction may be written

|Ψ〉 =
∑
i

ci|Φi〉, (3.2)

18



where ci is an expansion coefficient associated with the configuration |Φi〉. We can write

down an energy functional in terms of the full CI wavefunction:

〈Ψ|Ĥ|Ψ〉 =
∑
ij

c∗i cj〈Φi|Ĥ|Φj〉. (3.3)

This functional can be variationally minimized with the requirement that the wavefunction

stays normalized, that is,

〈Ψ|Ψ〉 =
∑
ij

c∗i cj〈φi|φj〉 = 1 (3.4)

during the minimization. This can be done using Lagrange’s method of multipliers. We start

by defining a Lagrangian L:

L =
∑
ij

c∗i cj〈Φi|Ĥ|Φj〉 − E(
∑
ij

c∗i cj〈φi|φj〉 − 1). (3.5)

Here, E denotes a Lagrangian multiplier. Equation 3.5 can be rewritten more compactly as

L =
∑
ij

c∗i cjHij − E(c∗i cjSij − 1) (3.6)

where

Hij = 〈Φi|Ĥ|Φj〉 (3.7)

and

Sij = 〈φi|φj〉. (3.8)

If we set the first variation in L to 0 we get

δL =
∑
i

δc∗i
[∑

j

Hijcj − ESijcj
]

+ c.c. = 0 (3.9)

where ”c.c.” refers to the complex conjugate of the first term on the right hand side. δL can

only be 0 if [∑
j

Hijcj − ESijcj
]

= 0. (3.10)

This result can be written in matrix notation as

Hc = ESc (3.11)
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If the basis functions {|Φi〉} are orthonormal, then Sij = δij and

Hc = Ec. (3.12)

It is apparent now that the full CI procedure involves the construction and diagonalization

of H in the basis of Slater determinants {|Φi〉}. In general, the number of determinants

will be
(
N
m

)
, where N is the number of spin orbitals and m is the number of electrons.

Solving the full CI eigenvalue problem would involve diagonalizing a matrix of dimension(
N
m

)
times

(
N
m

)
. The Slater-Condon rules can be applied to reduce the computational cost of

computing elements of H, since some of them will be 0. Special algorithms for solving full

CI at a computational cost much less than that of diagonalizing the entire matrix H have

been published [94, 161], but even these approaches can only be applied to modestly-sized

many-electron systems, since the computational is dependent on the number of determinants,

which grows exponentially. As an example, a calculation involving benzene in a correlation

consistent polarized valence double zeta basis (cc-pVDZ) basis set1 with full CI would involve

over 1031 determinants!

Although it is conceptually simple, the full CI model is not commonly used because

of its high computational cost. Calculations on most molecules relevant to chemistry are

intractable, even with modestly-sized one-electron basis sets. However, for small-enough

systems, it is the model against which other electronic structure theory methods are bench-

marked.

3.2 The Hartree-Fock method

Hartree-Fock (HF) is the simplest wavefunction model in quantum chemistry. The HF

wavefunction is a single configuration of spin-orbitals. Here, we briefly derive the equations

of Hartree-Fock theory.

1Five basis functions for each hydrogen, two to describe the 1s orbital, and three functions for polarization
(2s1p); and for 14 for each carbon: three to describe the 1s and 2s orbitals, two each for the three 2p orbitals,
and five to describe polarization(3s2p1d)
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The electronic Hamiltonian can be written in second quantization notation as

Ĥ =
∑
pq

hpqâ
†
pâq +

1

2

∑
pqrs

(pq|rs)â†pâ†râsâq, (3.13)

where one- and two-electron operators are as described in Chapter 2, hpq denotes a one-

electron integral, and (pq|rs) denotes a two-electron integral written in Mulliken notation.

One can use the rules for obtaining matrix elements between one- and two-electron operators

to show that the electronic energy can be written in terms of spin-orbitals, and the one- and

two-electron integrals:

EHF =
N∑
i

(i|ĥ|i) +
1

2

N∑
ij

[(ii|jj)− (ij|ji)]. (3.14)

The energy functional in HF theory is thus a function of spin-orbitals. The functional can

be minimized with the constraint that the spin orbitals remain orthonormal:

〈φi|φj〉 = δij. (3.15)

We can do this by defining a Lagrangian L:

L[{φi}] = EHF [{φi}]−
∑
ij

εij(〈φi|φj〉 − δij), (3.16)

where

〈φi|φj〉 =

∫
φ∗i (x)φj(x)dx, (3.17)

and εij are Lagrange multipliers. By considering the change to the energy functional when

φi changes by a small amount to φi + δφi, and then setting that change to 0, one obtains,

after some algebraic manipulation, the following equation:

h(x1)φi(x1)+
∑
j 6=i

[

∫
dx2φ

∗
j(x2)φj(x2)r−1

12 ]φi(x1)−
∑
j 6=i

[

∫
dx2|φ∗j(x2)φi(x2)r−1

12 ]φj(x1) = εiφi(x1),

(3.18)

with εi replacing εij since εij can be transformed so that only diagonal elements need to be

picked for each orbital i

εi = εijδij. (3.19)
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The second term on the left hand side of 3.18 contains the expression∫
dx2φ

∗
j(x2)φj(x2)r−1

12 , (3.20)

which can be thought of as the Coulomb repulsion experienced by an electron in spin orbital

φi at x1 due to the presence of another electron in φj and this repulsion is weighted with a

probability density φ∗j(x2)φj(x2) that the electron in φj occupies the volume element dx2 at

x2. Thus the sum in the second term can be considered to give the Coulomb interaction of an

electron in spin-orbital φi with the average field of all of the other N−1 electrons. The third

term looks similar to the second one, except that spin orbitals φi and φj are interchanged.

It is thus known as the exchange term. At this point, a Coulomb operator J can be defined:

Jj(x1) =

∫
dx2φ

∗
j(x2)φj(x2)r−1

12 ], (3.21)

and it gives the average potential at x1 due to the charge from the electron in orbital φj.

The exchange operator K, meanwhile, can be defined

Kj(x1)φi(x1) = [

∫
dx2|φ∗j(x2)φi(x2)r−1

12 φi(x2)]φj(x2). (3.22)

The HF equations can now be written more compactly as

[h(x1) +
∑
j 6=i

Jj(x1)−
∑
j 6=i

Kj(x1)]φi(x1) = εiφi(x1). (3.23)

It is important to note that when i = j, [Jj(x1)−Kj(x1)]φi(x1) = 0, so that the HF equations

can be written as eigenvalue problems:

f(x1)φi(x1) = εiφi(x1) (3.24)

where f is defined

f(x1) = h(x1) +
∑
j

Jj(x1)−Kj(x1), (3.25)

and is the well-known Fock operator. The spin orbitals in these HF equations are usually

expressed in terms atomic orbital basis functions

φi =
K∑
µ=1

Cµiχµ, (3.26)
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with µ being an atomic orbital label. As a result, 3.25 can be written

f(x1)
∑
ν

Cνiχν(x1) = εi
∑
ν

Cνiχν(x1), (3.27)

where ν is just another label for atomic orbitals. Left multiplication of 3.27 by χ∗µ and

integration yields the Hartree-Fock-Roothaan equations, the matrix form of which is:∑
ν

FµνCνi = εi
∑
ν

SµνCνi, (3.28)

where

Sµν =

∫
dx1χ

∗
µ(x1)χ∗ν(x1), (3.29)

and

Fµν =

∫
dx1χ

∗
µ(x1)f(x1)χ∗ν(x1). (3.30)

Effectively, the HF approach in an orbital basis reduced to an eigenvalue problem, solved

self-consistently. The rate determining step in HF is usually the computation of two-electron

integrals, which are needed in order to construct the Fock matrix. The formal scaling of the

approach is O(N4), where N is the size of the number of atomic-orbital centered basis

functions used to describe the atomic orbitals.

In order to assess the performance of HF, we generate the potential energy curve of

the 1Σ+
g state in molecular H2 by plotting the total molecular energy computed at various

interatomic/H-H distances, and we compare it to the curve obtained from full CI, as is illus-

trated in Figure 3.1.2 We can see that full CI predicts qualitatively correctly the dissociation

of molecular H2 into atomic fragments, while restricted Hartree-Fock (RHF) fails. A com-

parison of the full CI and the RHF wavefunctions provides an explanation for why RHF

fails. In full CI, the 1Σ+
g is a linear combination of two determinants: |σgσ̄g〉 and |σuσ̄u〉,

with the bar (or lack thereof) representing β (α) spin, whereas the RHF wavefunction con-

sists of the single determinant |σgσ̄g〉. At short bond lengths, the two configurations |σgσ̄g〉

and |σuσ̄u〉 are well separated in terms of energy, so the single configuration |σgσ̄g〉 is not a

bad approximation to the ground state wavefunction. However, at long bond lengths, the

2Note that the results presented in the figure are within the accuracy afforded by the STO-3G basis set,
which assigns one basis function per atomic orbital.
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Figure 3.1: Potential energy curves from full CI and RHF of the 1Σ+
g state of H2

undergoing symmetric dissociation.

configurations |σgσ̄g〉 and |σuσ̄u〉 become degenerate, so the single configuration that defines

the RHF wavefunction is then no longer a good approximation to the full CI wavefunction.

More generally, RHF fails to model bond dissociation processes due to near-degeneracies of

electronic configurations that comprise the wavefunction. The difference between an energy

computed by full CI and another by RHF at dissociation is said to arise due to the failure of

the single configuration to account for correlation effects arising from near-degeneracies in

electronic configurations that comprise the wavefunction. Such correlation effects are termed

non-dynamical, to differentiate them from so-called dynamical correlation effects, whose ori-

gin is quite different and can be rationalized as the insufficient treatment by RHF of short

range, instantaneous electron-electron interactions. To make this notion more apparent, we

note that the minimum energy predicted by restricted Hartree-Fock (RHF) is higher than

that predicted by full CI by nearly 20 mEh, a significant difference for a two-electron sys-
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tem. Furthermore, RHF predicts an equilibrium bond length that is shorter than the one

predicted by full CI. A method such as full CI, which includes the determinant |σuσ̄u〉, which

is made up of orbitals that have nodes at the center of the molecule, amounts to a reduc-

tion in the repulsion between electrons. In general, a multiconfigurational description of the

wavefunction is needed to account for correlation effects. Such a description is particularly

important in accounting for non-dynamical correlation effects. We can see, for instance, that

the difference between the full CI and RHF energies at longer H-H distances is nearly an

order of magnitude higher than it is near the equilibrium.

3.3 Electron correlation energy

The electron correlation energy of a molecule, Ecorr, is defined as the difference between

its exact energy and the HF energy computed in a complete basis:

Ecorr = Eexact − E∞HF , (3.31)

where E∞HF denotes the HF energy computed with an infinitely large or complete basis set.

Usually, the exact energy of a molecule is not known, but an estimate can be computed from

a full CI calculation using a finite basis set. For this reason, it is generally easier to calculate

a basis set correlation energy, which is defined

Ebasis
corr = Ebasis

FCI − Ebasis
HF , (3.32)

where Ebasis
FCI and Ebasis

HF are the full CI and HF energies, respectively, calculated within some

basis set approximation.

The electron correlation energy can be considered to be a measure of the errors of HF

theory. Electron correlation effects contribute an error of roughly 23 kcal/mol per electron

pair[179, 81]. Therefore, the development of theoretical models and computational algo-

rithms to compute accurate correlation energies [179, 81, 16, 191, 235, 178, 243] has been a

major focus in quantum chemistry since the 1950s. Two broad classes of methods can be

defined in the context of electron correlation in molecular systems:
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• methods designed specifically to treat correlation where a single electronic configuration

dominates, such as in the bonding region of the 1Σ+
g state of H2, and

• multiconfigurational methods that attempt to treat electron correlation over the entire

extent of a potential energy curve or surface.

This dissertation will describe work done to develop a complete active space (CAS) approach

which is suited to addressing the electron correlation problem in general, over the entire

extent of a potential energy curve or surface.

3.4 Complete active space self-consistent field

approaches

It is well acknowledged that a good model for molecular electronic structure ought to be

variational, and size consistent, that is, the sum of the energies of separate fragments should

equal the energy computed when they are all considered together but at large separations.

A good model for the electronic wavefunction ought to reproduce the energy correctly over

the entire potential energy surface. Approaches based on multiple configurations have been

applied to the electronic structure problem for both ground and excited states. Since full

CI is not always feasible, one must select beforehand the configurations whose linear com-

bination defines the wavefunction. This is often done by identifying a subset of orbitals (an

active space) important to the electronic structure and including all the determinants or

configuration state functions3. We can write down the energy as an expectation value of the

Hamiltonian operator. This yields

E =
∑
IJ

c∗IcJHIJ , (3.33)

where cI and cJ are expansion coefficients and

HIJ = 〈ΦI |Ĥ|ΦJ〉. (3.34)

Using unitary group generators[196]

Êpq = â†pαâqα + â†pβâqβ, (3.35)

3These are eigenfunctions of the Ŝ2 operator
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where â†pα is an operator whose action is to create an electron in orbital p with α spin, and

âqα is an operator whose action is to annihilate from orbital p an electron with α spin, the

Hamiltonian can be written in terms of the unitary group generators as

Ĥ =
∑
pq

(p|h|q)Êpq +
1

2

∑
pqrs

(pq|rs)(ÊpqÊrs − δqrÊps), (3.36)

so that each matrix element HIJ = 〈ΦI |Ĥ|ΦJ〉 can be written

HIJ =
∑
pq

1Dp,IJ
q hpq +

1

2

∑
pqrs

2Dpr,IJ
qs (pq|rs), (3.37)

where 1Dp,IJ
q and 2Dpr,IJ

qs are coupling coefficients

1Dp,IJ
q = 〈ΦI |Êpq|ΦJ〉, (3.38)

and

2Dpr,IJ
qs = 〈ΦI |ÊpqÊrs − δqrÊps|ΦJ〉. (3.39)

These coupling coefficients have the same properties as the density matrices discussed in

Chapter 2. For instance,

1Dp,IJ
q = (1Dq,IJ

p )∗ (3.40)

and

2Dpr,IJ
qs = 2Drp,IJ

sq = (2Dsq,IJ
rp )∗ = (2Dqs,IJ

pr )∗ (3.41)

Using these properties of the coupling coefficients, we can write down the energy as

E =
∑
IJ

c∗IcJ
[∑

pq

1Dp,IJ
q · hpq +

1

2
· 2Dpr,IJ

qs · (pq|rs)
]
, (3.42)

or, even more compactly,

E =
∑
pq

hpq · 1Dp
q +

1

2
· 2Dpr

qs · (pq|rs), (3.43)

with

1Dp
q =

∑
IJ

c∗IcJ · 1Dp,IJ
q , (3.44)
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and

2Dpr
qs =

∑
IJ

c∗IcJ · 2Dpr,IJ
qs . (3.45)

1Dp
q and 2Dpr

qs define elements of one and two-particle density matrices, respectively. Since

the energy functional in the complete active space complete active space self-consistent field

(CASSCF) method depends on the configuration interaction (CI) coefficients as well as

molecular orbitals, its variational minimization occurs in two steps

• The determination of CI coefficients by diagonalization, similar to the procedure for

full CI.

• Optimization of the initial set of orbitals by a unitary transformation.

Overall, the feasibility of CASSCF depends on the size of the active space since a full CI

expansion in the active space is necessary. The size of the active space that can be treated

with CASSCF has grown larger with improvements in computer algorithms and hardware,

but, due to its steeply scaling computational cost, application has been limited to active

spaces of less than 18 electrons in 18 orbitals. Even though an (18e, 18o) active space is

small when compared to the number of valence electrons and orbitals in common molecules,

the CASSCF approach has been applied to the study of large systems using much smaller

active spaces. As long as the chemically relevant orbitals are all included in the active

space, a CASSCF wavefunction will provide a good qualitative description of the electronic

structure.

Yet active space selection remains a challenge, particularly with CI-driven CASSCF. One

needs not only have the chemical intuition of the many-electron system to be investigated–

they also need to make sure the active space size is small enough to allow for tractable

computations. Attempts to automate active space selection[204, 190, 205, 13] have not done

away with these challenges. To make matters worse, an active space larger than a full valence

active space is seldom needed to properly correlate the motion of electrons, for example, in

cases where most of the valence orbitals are occupied. This is exemplified by [Cu2O2]2+

[127, 101, 241, 14], a compound in which the valence orbitals of the Cu atoms are filled. In

this system, one needs to include the 4s as well as the 4d orbitals in the active space to get a
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good qualitative description of the wavefunction. Another example for which a full valence

active space may not suffice is the CAS treatment of molecular fluorine, F2. For this system,

the molecular orbitals from the 3p atomic orbitals need to be included in the active space.

Given the challenge of active space selection as well as the fact that active spaces larger than

(18e,18o) are simply necessary in some cases has led to the development of active space solvers

based on the density matrix renormalization group (DMRG)[62, 240, 241, 237, 208, 120] and

the variational two-electron reduced density matrix (v2RDM-)[64, 57] approaches.

3.5 Dynamical correlation energy

Since the CASSCF method can be considered to be an incomplete configuration inter-

action, further correction of the CASSCF wavefunction and the energy is usually needed in

order to achieve quantitative agreement with full CI. If the active space is carefully selected,

CASSCF presumably accounts for all non-dynamical correlation effects. Any subsequent

corrections to the CASSCF wavefunction or the CASSCF energy would then seek to address

dynamical correlation effects. To illustrate how important the correction for dynamical cor-

relation is, one can look at the rather extreme case of the potential energy curve of the

1Σ+
g state of Cr2, for which the CASSCF energy needs to be corrected by a large amount

of dynamical correlation energy in order to obtain a bound potential curve[29, 6, 144, 102].

Probably the most popular approach to correct for dynamical correlation energy for CAS

references is multireference perturbation theory[7, 88, 8, 9, 108, 68]. Other less popular

approaches include multireference configuration interaction (MRCI)[25, 26, 69, 230], mul-

tireference coupled-cluster (MRCC)[118, 97, 171, 79, 17, 78, 174, 173, 172, 45, 122, 121,

202, 33, 163, 110, 109, 111, 164, 149]. and multireference pair-density functional theory

(MC-PDFT)[59, 112, 146]. Recently, another approach to account for dynamical correlation

effects for CAS references was published by Pernal and coworkers[166, 170]. This approach

is based on an adiabatic connection (AC) approach between a system of electrons described

at the CASSCF level of theory, and another described by full CI.
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CHAPTER 4

THE VARIATIONAL TWO-ELECTRON
REDUCED DENSITY MATRIX
COMPLETE ACTIVE SPACE

SELF-CONSISTENT FIELD METHOD

The derivation outlined in this chapter follows that from Refs. 57 and 126. In this chapter,

the convention for orbital index labels in complete active space self-consistent field (CASSCF)

methods is followed: the indices i, j, k, and l represent inactive, doubly occupied orbitals;

t, u, v, w, x, and y represent active orbitals; a, b, c, and d correspond to external (empty)

orbitals; and p, q, r, and s represent general orbitals.

4.1 The active space energy

In the CASSCF method, the active space Hamiltonian can be written in the notation of

second quantization as

Ĥ =
∑
tu

htuE
t
u +

1

2

∑
tuvw

(tv|uw)(Et
vE

u
w − δvuEt

w), (4.1)

where Et
u is a unitary group generator[196].

Et
u = â†tα âuα + â†tβ âuβ , (4.2)

â† and â represent creation and annihilation operators, and the Greek indices α and β denote

up and down spin. The symbol (tv|uw) represents a two-electron repulsion integral, and htu

represents the sum of electron kinetic energy integrals (Ttu), electron-nuclear potential energy

integrals (Vtu), and the Coulomb and exchange contributions from electrons in orbitals that

are restricted to be doubly occupied.

htu = Ttu + Vtu +
∑
i

[2(ii|tu)− (iu|ti)]. (4.3)
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The active space electronic energy Eact = 〈Ψ|Ĥ|Ψ〉 can then be written:

Eact =
∑
tu

htu
1Dt

u +
1

2

∑
tuvw

(tv|uw)2Dtu
vw, (4.4)

where

1Dt
u = 〈Ψ|â†t âu|Ψ〉, (4.5)

and

2Dtu
vw = 〈Ψ|â†t â†uâwâv|Ψ〉, (4.6)

define the elements of the active-space 1- and 2-RDM, respectively.

In the v2RDM approach to CASSCF, the active space energy functional is minimized

with respect to variations the elements of the active space 1- and 2-RDM. The variable 1- and

2-RDMs are constrained to satisfy known ensemble N -representability constraints during the

minimization. If N -representability conditions are exactly satisfied, ground-state v2RDM-

and CI-based CASSCF are equivalent. However, when the N -representability conditions are

only approximately satisfied, say, from the application of a subset of the N -representability

conditions, v2RDM-CASSCF provides a lower bound to the ground-state CI-CASSCF en-

ergy.

4.2 N-representability conditions

The active space 2RDM needs to have the same properties as the two-electron density

matrices discussed in Chapters 2 and 3. One of the properties of two-electron density matrices

is hermiticity, so the variable 2RDM in v2RDM-CASSCF needs to be constrained to be

hermitian

2Dtu
vw = 2Dvw

tu . (4.7)

The 2RDM should also obey antisymmetry with respect to the exchange of orbital indices

2Dtu
vw = −2Dut

vw = −2Dtu
wv = 2Dut

wv, (4.8)
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as well as trace constraints that preserve the number of pairs of electrons. For each spin

block of the 2RDM, ∑
tu

2Dtαuα
tαuα = Nα(Nα − 1), (4.9)∑

tu

2D
tβuβ
tβuβ

= Nβ(Nβ − 1), (4.10)∑
tu

2D
tαuβ
tαuβ

= NαNβ, (4.11)

where α and β denote up or down spin, Nα and Nβ represent the number of electrons of α or

β spin, respectively, in the active space. Each spin block of the 2RDM should map correctly

to the 1RDM,

(Nα − 1)1Dtα
uα =

∑
v

2Dtαvα
uαvα , (4.12)

(Nβ − 1)1D
tβ
uβ =

∑
v

2D
tβvβ
uβvβ , (4.13)

Nβ
1Dtα

uα =
∑
v

2D
tαvβ
uαvβ , (4.14)

Nα
1D

tβ
uβ =

∑
v

2D
vαtβ
vαuβ . (4.15)

The 2-RDM is also constrained to ensure a well-defined expectation value of Ŝ2, where S is

the total spin angular momentum operator property of N -representable 2RDMs∑
tu

2D
tαuβ
uαtβ

=
1

2
(Nα +Nβ) +

1

4
(Nα −Nβ)2 − S(S + 1), (4.16)

since a well-defined Ŝ2 is a property of N -representable 2RDMs.[169, 63, 220]

Less trivial constraints on the N -representability of the 2-RDM include positivity con-

straints that ensure that particle probabilities or the eigenvalues of the RDMs remain non-

negative. For the 2RDM, we can write

2D � 0, (4.17)

and for the 1-RDM

1D � 0. (4.18)
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Positivity constraints are also enforced on the one-hole (1Q), the two-hole (2Q), and the

electron-hole (2G) RDMs. The elements of these RDMs are defined

1Qt
u = 〈Ψ|âtâ†u|Ψ〉, (4.19)

2Qtu
vw = 〈Ψ|âtâuâ†wâ†v|Ψ〉, (4.20)

and

2Gtu
vw = 〈Ψ|â†t âuâ†wâv|Ψ〉. (4.21)

Each of these RDMs must also correctly map to one another according to the anticommu-

tation relations. These constraints on the two-body RDMs are the “PQG” constraints of

Garrod and Percus.[61]. One can also consider the nonnegativity of the partial three-body

RDM, T2, [48, 249] defined as

T2 = 3E + 3F, (4.22)

where

3Etuv
wxy = 〈Ψ|â†t â†uâvâ†yâxâw|Ψ〉, (4.23)

and

3F tuv
wxy = 〈Ψ|â†t âuâvâ†yâ†xâw|Ψ〉. (4.24)

The spin structures of the RDMs just described are:

1D =

(
1Dα

α 0

0 1Dβ
β

)
. (4.25)

The 1-hole RDM (1Q) has the same spin structure. The particle-particle RDM has three

spin blocks expressed in the basis of two-particle basis functions (geminals) of αα, ββ, and

αβ spin symmetry:

2D =

2Dαα
αα 0 0

0 2Dββ
ββ 0

0 0 2Dαβ
αβ

 , (4.26)

the hole-hole RDM (2Q) has the same structure, and the particle-hole RDM (2G) is given

by:

2G =


2Gαα

αα
2Gαα

ββ 0 0
2Gββ

αα
2Gββ

ββ 0 0

0 0 2Gαβ
αβ 0

0 0 0 2Gβα
βα

 . (4.27)
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. The partial three-body RDM, as defined in 4.22 has the following spin structure:

T2 =



T2αααααα T2αββααα 0 0 0 0

T2ααααββ T2αββαββ 0 0 0 0

0 0 T2βααβαα T2ββββαα 0 0

0 0 T2βααβββ T2ββββββ 0 0

0 0 0 0 T2ααβααβ 0

0 0 0 0 0 T2ββαββα


. (4.28)

4.3 Semidefinite optimization

We minimize the energy given by Eq. (4.4) with respect to variations in the 1- and 2-

RDM, subject to the constraints outlined above. Such a constrained optimization, involving

both equality and inequality constraints, is a semidefinite programming (SDP) problem. The

primal form of this problem can be written as:

minimize Eprimal = cT · x, (4.29)

such that Ax = b,

and M(x) � 0,

where x is the primal solution vector, Eprimal is the primal energy, (A) is a matrix that maps

the primal solution vector onto the set of constraints in vector (b). The set of constraints

is defined by the N -representability conditions described in section 4.2. The primal solution

vector maps onto various RDMs according to

M(x) =



1D 0 0 0 0 0
0 1Q 0 0 0 0
0 0 2D 0 0 0
0 0 0 2Q 0 0
0 0 0 0 2G 0
0 0 0 0 0 T2

 . (4.30)

The vector, c, contains the one- and two-electron components of the Hamiltonian such that

the primal energy and the energy given by Eq. (4.4) are equivalent. The SDP problem can

also be written in its dual (complementary) form. Denoting the dual solution vectors as y
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and z, the SDP problem can be restated:

maximize Edual = bT · y, (4.31)

such that z = c−ATy,

and M(z) � 0,

with Edual representing the dual energy.

A boundary-point semidefinite optimization algorithm[176, 123, 138] is used to compute

the primal and dual solutions. This happens iteratively, and for each iteration, the following

is done:

1. The equation AATy = A(c − z) + µ(b − Ax) is solved for y by conjugate gradient

methods.

2. The primal and dual solution vectors x and z are updated by separating U = M(µx +

ATy−c) into its positive and negative components (by diagonalization), then updating

x and z by M(x) = U(+)/µ and M(z) = −U(−).

Here, µ is a penalty parameter that controls how strictly the primal or dual constraints are

enforced.[138]. The algorithm is considered converged when the primal error ||Ax − b||,

the dual error ||ATy − c + z||, and the primal/dual energy gap |Eprimal − Edual| fall below

specified thresholds.

The diagonalization step in step 2 is usually the most computationally demanding part

of the SDP algorithm. That step determines the formal scaling of the v2RDM-CASSCF

method. Storage requirements of the computer implementation of the method depend on

the number of active orbitals as well as the number ofN -representability constraints enforced.

Table 4.1 summarizes the computational scaling of the v2RDM-CASSCF in terms of floating

point operations and storage requirements for the two commonly enforced ensemble N -

representability constraints.

4.4 Orbital optimization

There are two contributions to the v2RDM-CASSCF energy: one from the electrons

in the active space, and another from electrons in spin (spatial) orbitals restricted to be
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Table 4.1: Computational complexity of v2RDM-CASSCF

N -representability condition

PQG PQG+T2
a n O(N6

act) O(N9
act)

storage O(N4
act) O(N6

act)

a n: number of floating point operations.
Nact denotes the number of orbitals in the active space.

singly (doubly) occupied. The active space 2RDM is optimized via the SDP procedure.

This optimization changes the elements of the 2RDM, making it necessary to minimize the

total v2RDM-CASSCF energy with respect to all molecular orbitals. The optimization of

RDMs and molecular orbitals can be done in a two-step fashion, with the optimization of

the elements of the RDMs preceding that of the molecular orbitals, or in a quasi one-step

fashion where orbitals are optimized after a specified number of iterations of the boundary-

point algorithm. More details concerning the orbital optimization can be found in Ref. 57,

but it suffices for now to be aware that orbital optimization is carried out by a unitary matrix

that rotates non-redundant pairs of orbitals.
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CHAPTER 5

ANALYTIC GRADIENTS FOR THE
VARIATIONAL TWO-ELECTRON

REDUCED DENSITY MATRIX
COMPLETE ACTIVE SPACE

SELF-CONSISTENT FIELD METHOD

Adapted) with permission from (J. Chem. Theory Comput. 2017, 1394113-4122). Copyright

(2017) American Chemical Society.”

5.1 Introduction

The complete active space self-consistent field (CASSCF) approach[184, 200, 201, 183]

is an enormously important method in quantum chemistry. It enables the description of

electronic states dominated by more than one electronic configuration. In the conventional

formulation of CASSCF, the electronic structure of the active space is described by a full

configuration interaction (CI) wave function. However, the size of the active space that can

be routinely employed within CI-driven CASSCF is limited by the extremely unfavorable

scaling of full CI. In practice, the exponential cost of full CI limits its application to active

spaces comprised of at most 18 electrons in 18 orbitals. As a result, substantial effort has

been dedicated to the development of alternative representations of the electronic structure

of the active space. Some CI-based approaches include the restricted active space self-

consistent field[161, 124], the generalized active space (GAS) self-consistent field[53, 119],

the split GAS[113], the occupation-restricted multiple active spaces self-consistent field[83],

and the full configuration interaction quantum Monte Carlo self-consistent field[212, 114].
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On the other hand, methods that avoid CI altogether can lead to formally polynomially-

scaling descriptions of the electronic structure of the active space. One of the most successful

alternatives to CI-based CASSCF is that in which the active-space wave function is expressed

as a matrix-product state as is done in the density-matrix renormalization group (DMRG)

approach[233, 234, 194, 195, 143, 30, 127, 247, 101, 160, 210, 238, 93]. Less well known are

methods based on the variational optimization of the two-electron reduced-density matrix

(2-RDM)[61, 60, 141, 186, 49, 50, 151, 139, 133, 136, 249, 58, 27, 223, 56, 222]. Both DMRG-

driven[62, 240, 241, 237, 208, 120] and variational 2-RDM (v2RDM)-driven[64, 57] CASSCF

methods are capable of modeling active spaces as large or larger than 50 electrons in 50

orbitals.

We extend the applicability of v2RDM and v2RDM-CASSCF methods to the determina-

tion of analytic energy gradients. The semidefinite programming (SDP) algorithm utilized

to obtain the ground-state 2-RDM provides a Lagrangian that is stationary with respect

to variations in the elements of the 2-RDM. Hence, no additional response equations are

required to determine the response of the 2-RDM to geometric perturbations, and orbital

response contributions to the gradient are the same as those that arise in CI-based CASSCF

methods.

This chapter is organized as follows. In section 5.2 the v2RDM Lagrangian is introduced

and the procedures used to obtain the active-space 2-RDM are described. We then pro-

vide expressions for v2RDM-CASSCF analytic energy gradients, including orbital response

contributions. In Sec. 5.3, we verify the correctness of our gradient implementation numeri-

cally, and we use the method to compute the equilibrium geometries for a set of twenty small

molecules as well as pentacene.

5.2 Theory

In this Section we discuss the key aspects of our implementation of analytic gradients for

v2RDM-CASSCF. We begin with a brief overview of the v2RDM approach that includes the

minimization of the v2RDM energy subject to approximate N -representability conditions
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and the orbital optimization. For a detailed discussion of our implementation of v2RDM-

CASSCF the reader is referred to Ref. 57. We conclude this Section with the details of

our implementation of analytic energy gradients within the framework of v2RDM-CASSCF.

Throughout the paper, we follow the usual conventions for orbital index labels in CASSCF:

the indices i, j, k, and l represent inactive (doubly occupied) orbitals; the indices t, u, v, w,

x, and y span the active (partially occupied) orbitals; the indices a, b, c, and d correspond

to external (empty) orbitals; and the indices p, q, r, and s represent general orbitals.

5.2.1 The active space energy

The relevant expressions for the active-space energy have been presented in 4.1.

5.2.2 Semidefinite optimization and the v2RDM Lagrangian

Our goal is to minimize the energy given by Eq. (4.4) with respect to variations in

the 1- and 2-RDM, subject to N -representability constraints. Since the SDP procedure is a

constrained optimization, the active-space energy is not stationary with respect to variations

in the primal or dual solutions. For the evaluation of analytic energy gradients, we seek

some active-space Lagrangian that is stationary with respect to all variable parameters.

Fortunately, the boundary-point SDP algorithm we employ[176, 123, 138] provides just that;

the procedure maximizes an augmented Lagrangian for the dual problem

Lact = bTy − xT (ATy − c + z)− 1

2µ
||ATy − c + z||2 (5.1)

with respect to the dual solution. Here, we have introduced a penalty parameter, µ, which

controls how strictly the primal and dual constraints are enforced; Ref. 138 provides a

prescription for updating the penalty parameter during the course of the optimization. Dif-

ferentiation of Eq. (5.1) with respect to the elements of y leads to

∂Lact

∂y
= b−Ax +

1

µ
A(ATy − c + z) . (5.2)

By setting the right-hand side of Eq. (5.2) to zero and rearranging terms, we obtain the set

of equations used in the boundary-point SDP procedure to determine y

AATy = A(c− z) + µ(Ax− b) . (5.3)
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Hence, when Eq. (5.3) is satisfied, the Lagrangian is stationary to variations in y. Differen-

tiation of Eq. (5.1) with respect to the elements of x leads to the system of equations

∂Lact

∂x
= ATy − c + z . (5.4)

At convergence, when the dual constraints are satisfied, the right-hand side of Eq. (5.4) is

zero. The vectors z and y are not independent, and we have

∂Lact

∂z
=
∂Lact

∂y

∂y

∂z
, (5.5)

which vanishes when Eq. (5.3) is satisfied. Lastly, the Lagrangian is also stationary with re-

spect to variations in the penalty parameter, provided that the dual constraints are satisfied.

The only contributions to the energy gradient, aside from the orbital response contributions

discussed below, are those from the derivatives of the one- and two-electron integrals that

comprise the vector c.

5.2.3 Orbital optimization

Details concerning orbital optimization techniques are presented in Ref. 57.

5.2.4 Analytic energy gradient expressions

Expressions for analytic energy gradients are most compactly written in terms of the

spin-free 2-RDM (2D) and 1-RDM (1D). Density matrix elements with one or more external

orbital indices or an odd number of doubly-occupied and/or active orbital indices vanish.

Thus, the non-zero elements of the spin-free density matrices may be grouped according to

the number of active and doubly-occupied orbital labels.

The active-active block of 1D contains the elements

1Dt
u = 1Dtα

uα + 1D
tβ
uβ , (5.6)

and the remaining non-zero elements of the full-space 1-RDM are simply

1Di
j = 2δij . (5.7)
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The elements of 2D with only active orbital indices are

2Dtv
uw =

1

2
(2Dtαvα

uαwα + 2D
tαvβ
uαwβ + 2D

tβvα
uβwα + 2D

tβvβ
uβwβ) (5.8)

while the elements involving only doubly-occupied orbitals are given by

2Dik
jl = 2δijδkl − δilδjk . (5.9)

Lastly, the elements with two active labels are

2Dit
ju = 2Dti

uj = 1Dt
uδij, (5.10)

and

2Dit
uj = 2Dti

ju = −1

2
· 1Dt

uδij. (5.11)

The total energy is then given by

E =
∑
pq

(Tpq + Vpq)
1Dp

q +
∑
pqrs

(pq|rs) · 2D̃pr
qs , (5.12)

where the orbital labels span all doubly occupied and active orbitals, and the symmetrized

2-RDM, 2D̃, which has the same eight-fold permutational symmetry as the two-electron

integrals, is defined as

2D̃pr
qs =

1

2
(2Dpr

qs + 2Dqr
ps). (5.13)

We can now define the Lagrangian for the full molecular orbital space as

L = Ecore + Lact, (5.14)

where Ecore = E − Eact. Note that this Lagrangian is stationary with respect to variations

in the active-space 1- and 2-RDM, as these quantities directly map onto the primal solution

vector for the SDP problem described above. Thus, the gradient of the energy with respect

to an arbitrary perturbation χ is

dE

dχ
=
∂L
∂χ

=
∑
pq

(T χpq + V χ
pq)

1Dp
q +

∑
pqrs

(pq|rs)χ 2D̃pr
qs −

∑
pq

XpqS
χ
pq, (5.15)
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where the symbols T χpq, V
χ
pq, S

χ
pq, and (pq|rs)χ represent the skeleton kinetic energy, electron-

nucleus potential energy, overlap, and electron repulsion derivative integrals, respectively.

The last term arises from the orbital response to the perturbation. It can be shown[181]

that, for a CASSCF wave function with an energy that is stationary with respect to rotations

between all non-redundant orbital pairs, the orbital response depends only on the overlap

derivative integrals and the orbital Lagrangian, X, with matrix elements

Xpq =
∑
r

(Tpr + Vpr)
1Dr

q + 2
∑
rst

(pr|st)2D̃qs
rt . (5.16)

Note that, in our implementation, the gradient is not evaluated in the molecular orbital

basis, as implied by Eq. (5.15). Rather, 1D, 2D, and X are back transformed to the atomic

orbital basis and contracted against atomic orbital basis derivative integrals.

5.3 Results and discussion

5.3.1 Numerical validation of gradients

The v2RDM-CASSCF analytic energy gradients were implemented as a plugin to the

Psi4 electronic structure package.[165] We validated the implementation by computing an-

alytic and numerical gradients for the twenty small molecules given in Table 5.1 at the

full-valence v2RDM-CASSCF/cc-pVDZ level of theory. The number of orbitals per ir-

reducible representation that comprise the restricted doubly occupied and active orbital

spaces are provided in Table 5.1. For each molecule, the active spaces are defined for the

case where the principal axis is aligned with the z axis, and we employ the highest Abelian

subgroup of the full molecular point group. For the validation, gradients were computed at

the experimentally-determined geometries tabulated in the Computational Chemistry Com-

parison and Benchmark Database (CCCBDB) [85], and the RDMs in the v2RDM-CASSCF

computations satisfied the PQG N -representability conditions.

Tight convergence thresholds were employed in both numerical and analytic energy gradi-

ent evaluations. The SDP algorithm that determines the active space 2-RDM was considered

converged when the primal (||Ax − b||) and dual (||ATy − c + z||) errors fell below 10−9

42



Table 5.1: Small molecules and corresponding active spaces used in the present
benchmarking studies.

molecule active space restricted doubly occupied active

CH2 (6e, 6o) [ 1, 0, 0, 0 ] [ 3, 0, 1,2 ]
C2H2 (10e, 10o) [ 1, 0, 0, 0, 0, 1, 0, 0 ] [ 3, 0, 1, 1, 0, 3, 1, 1 ]
C2H4 (12e, 12o) [ 1, 0, 0, 0, 0, 1, 0, 0 ] [ 3, 0, 1, 2, 0, 3, 2, 1 ]
CH2O (12e, 10o) [ 2, 0, 0, 0 ] [ 5, 0, 2, 3 ]
CH4 (8e, 8o) [ 1, 0, 0, 0 ] [ 4, 0, 2, 2 ]
CO2 (12e, 12o) [ 2, 0, 0, 0, 0, 1, 0, 0 ] [ 3, 0, 1, 1, 0, 3, 2, 2 ]
CO (10e, 8o) [ 2, 0, 0, 0 ] [ 4, 0, 2, 2 ]
F2 (14e, 8o) [ 1, 0, 0, 0, 0, 1, 0, 0 ] [ 2, 0, 1, 1, 0, 2, 1, 1 ]
H2 (2e, 2o) [ 0, 0, 0, 0, 0, 0, 0, 0 ] [ 1, 0, 0, 0, 0, 1, 0, 0 ]
H2O2 (14e, 10o) [ 1, 1 ] [ 5, 5 ]
H2O (8e, 6o) [ 1, 0, 0, 0 ] [ 3, 0, 1, 2 ]
HCN (10e, 9o) [ 2, 0, 0, 0 ] [ 5, 0, 2, 2 ]
HF (8e, 5o) [ 1, 0, 0, 0 ] [ 3, 0, 1, 1 ]
HNC (10e, 9o) [ 2, 0, 0, 0 ] [ 5, 0, 2, 2 ]
HNO (12e, 9o) [ 2, 0 ] [ 7, 2 ]
HOF (14e, 9o) [ 2, 0 ] [ 7, 2 ]
N2 (10e, 8o) [ 1, 0, 0, 0, 0, 1, 0, 0 ] [ 2, 0, 1, 1, 0, 2, 1, 1 ]
N2H2 (12e, 10o) [ 1, 0, 0, 1 ] [ 4, 1, 1, 4 ]
O3 (18e, 12o) [ 2, 0, 0, 1 ] [ 5, 1, 2, 4 ]
NH3 (8e, 7o) [ 1, 0 ] [ 5, 2 ]

and the primal/dual energy gap (|Eprimal−Edual|) fell below 10−9 Eh. The orbital optimiza-

tion procedure was considered converged when the orbital gradient fell below 10−9 Eh and

the energy change produced by orbital rotations fell below 10−12 Eh. These thresholds are

referred to as “tight” below. Numerical gradients were evaluated using a five-point stencil

with a step size of 0.005 a0. We compared the analytic and numerical gradients of the energy

with respect to perturbations of each atom in each molecule in the x, y, and z directions;

when considering all non-zero gradients, the mean unsigned deviation between the analytic

and numerical gradients is 7.5 ×10−8 Eha−1
0 , and the maximum unsigned deviation is 9.3

×10−7 Eha−1
0 . We further validated the correctness of the analytic gradients for the CO

and N2 molecules using tighter convergence criteria in the v2RDM-CASSCF optimizations:

primal/dual errors of ≤10−12, a primal/dual energy gap of ≤10−12 Eh, an orbital gradient

of ≤10−12 Eh, and energy changes due to orbital rotations of ≤10−14 Eh. With these tighter

convergence criteria, analytic and numerical gradients differ by 5.4 ×10−10 Eha−1
0 and 2.4
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×10−13 Eha−1
0 for N2 and CO, respectively.

For general systems, it is difficult to converge v2RDM-CASSCF as tightly as was done

in this validation study; in practice, we employ considerably more loose thresholds. Here,

we determine the error incurred when using more typical convergence criteria: primal/dual

errors of ≤10−5, a primal/dual energy gap of ≤10−4 Eh, an orbital gradient of ≤10−5 Eh,

and energy changes due to orbital rotations of ≤10−9 Eh (denoted “loose” below). For

the same set of molecules, analytic gradients with these loose thresholds deviate on aver-

age from analytic gradients evaluated with the tight thresholds used above by 3.0 × 10−6

Eha−1
0 ; the maximum observed deviation is 1.9× 10−5 Eha−1

0 . These errors are much smaller

than the default convergence criterion for the gradient in a conventional geometry opti-

mization in Psi4 (a maximum force of 3.0 ×10−4 Eha−1
0 ). In the geometry optimizations

below, we employ the “GAU TIGHT” convergence criteria: a maximum force of 1.5 ×10−5

Eha−1
0 and a root-mean-square force of 1.0 ×10−5 Eha−1

0 . When using loose tolerances in

v2RDM-CASSCF, the maximum error in the gradient we observe is comparable to these

thresholds, but, on average, the errors incurred are much smaller. We experienced no dif-

ficulties tightly converging geometry optimizations with the analytic gradients from loosely

converged v2RDM-CASSCF.

We also explore the effects that changes to the orbital optimization procedure have on

the total energy and analytic energy gradient. The present v2RDM-CASSCF procedure can

be classified as a two-step optimization. In a true two-step v2RDM-CASSCF optimization,

the active-space 2-RDM is fully optimized, and the orbitals are then varied to minimize

the energy. This procedure is repeated until the orbitals and active-space 2-RDM are self-

consistent. In practice, our algorithm does not fully converge the active-space 2-RDM before

varying the orbitals. Instead, we perform the orbital optimization every few hundred v2RDM

iterations. Prior work[57] indicates that this strategy can significantly reduce the total wall

time for two-step v2RDM-CASSCF. We find here that the energy and gradients are, in some

cases, sensitive to the frequency with which the orbital optimization is performed. Table

5.2 provides the total energy and analytic energy gradient for one of the molecules given in

Table 5.1, HNC. The full-valence v2RDM-CASSCF energy and gradient were evaluated at
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Table 5.2: Energies (Eh) energy gradients (Eha−1
0 ) for HNC computed at the full-

valence v2RDM-CASSCF/cc-pVDZ level of theory for different orbital update fre-
quencies. A frequency of ∞ refers to a true two-step optimization.

frequency E ∂E
∂zH

∂E
∂zN

∂E
∂zC

250 –93.026290 –0.030340 –0.019795 0.050135
500 –93.026290 –0.030340 –0.019795 0.050135
1000 –93.026290 –0.030340 –0.019795 0.050135
5000 –93.026278 –0.030466 –0.019726 0.050192
∞ –93.026278 –0.030466 –0.019726 0.050191

the experimentally-obtained equilibrium geometry for HNC tabulated in the CCCBDB using

the cc-pVDZ basis set and five different orbital update frequencies, and the active-space 2-

RDM satisfied the PQG N -representability conditions. Somewhat surprisingly, the energy

and gradient vary in the fifth decimal place, despite the fact that the v2RDM-CASSCF

optimization was performed using the tight thresholds given above.

After extensive numerical testing, we conclude that the sensitivity of the final energy to

the orbital optimization procedure is due to the presence of closely-spaced minima in the

v2RDM-CASSCF energy landscape, and we note that both of the solutions satisfy the two-

body N -representability conditions to the same degree. We also note that we only locate

multiple minima when initializing the v2RDM-CASSCF computation with certain guess-

types. For example, if the computation is seeded with Hartree-Fock 1- and 2-RDMs, we find

only one solution; if the computation is seeded with randomly-generated RDMs, we can find

multiple solutions. This behavior is essentially the same when employing point-group sym-

metry or not, as well as when employing density-fitting approximation to the two-electron

repulsion integrals. We have also explored the role of three-particle conditions in this issue.

When employing the PQG+T2 N -representability conditions and different orbital update

frequencies, the final energies in each case agree to within the specified convergence criteria.

However, it is difficult to draw definitive conclusions regarding the presence of multiple min-

ima when enforcing the T2 condition because we cannot converge the optimization procedure

as tightly in this case.
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Before we apply our analytic energy gradient implementation to the equilibrium geome-

tries of full set of twenty molecules given in Table 5.1, we demonstrate that these slight

differences in energies and gradients when enforcing the PQG conditions lead to quite simi-

lar equilibrium geometries for HNC. Table 5.3 provides the equilibrium H–N (rHN) and N–C

(rNC) bond lengths using both tight and loose v2RDM-CASSCF convergence thresholds, the

“GAU TIGHT” geometry optimization convergence thresholds, and the five different orbital

update frequencies considered above. For this case, the optimized equilibrium bond lengths

obtained using different orbital update frequencies agree to 0.0001 Å. As will be shown be-

low, variations in the bond lengths stemming from this issue are more than an order of

magnitude smaller than the errors associated with the approximate N -representability of

the v2RDM-CASSCF active space 2-RDM.

Table 5.3: Equilibrium bond lengths (Å) computed at the full-valence v2RDM-
CASSCF/cc-pVDZ level of theory for different orbital update frequencies. A fre-
quency of ∞ refers to a true two-step optimization.

rHN rNC

frequency tight loose tight loose
250 1.018985 1.018978 1.197653 1.197652
500 1.018985 1.018979 1.197653 1.197650
1000 1.018985 1.019062 1.197653 1.197671
5000 1.019000 1.019062 1.197656 1.197675
∞ 1.019059 1.018978 1.197669 1.197652

5.3.2 v2RDM-CASSCF equilibrium geometries

Here, we assess the accuracy of v2RDM-CASSCF relative to CI-CASSCF for the equi-

librium geometries of the twenty small molecules introduced above. The v2RDM-CASSCF

optimizations were carried out in Psi4 using the “GAU TIGHT” geometry convergence thresh-

olds and the loose thresholds defined above within v2RDM-CASSCF. CI-CASSCF geometry

optimizations were carried out in the GAMESS electronic structure package,[193] using

the same geometry convergence criteria. Figure 5.3.2 compares CI- and v2RDM-CASSCF
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bond lengths. When enforcing the PQG N -representability conditions, the v2RDM- and
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Figure 5.1: The difference in equilibrium bond lengths (∆re, pm)a obtained from
full-valence v2RDM- and CI-CASSCF using the (a) cc-pVDZ, (b) cc-pVTZ, and
(c) cc-pVQZ basis sets.

a ∆re = rv2RDM
e − rCI

e .

CI-CASSCF bond lengths are in reasonable agreement, differing on average by 0.0059 Å,

0.0056 Å, and 0.0067 Å in the cc-pVDZ, cc-pVTZ, and cc-pVQZ basis sets, respectively.

The maximum deviations are 0.021 Å, 0.019 Å, and 0.027 Å in the same basis sets. The

v2RDM-CASSCF-optimized bond lengths are almost universally longer than those from CI-

CASSCF. This result is not too surprising; with incomplete N -representability conditions,

electrons in the active space are over correlated, and, for these simple molecules, that over-

correlation manifests itself in a lengthening of molecular bonds. Figure 5.3.2 also compares

CI-CASSCF bond lengths to those from v2RDM-CASSCF computations that enforce the

T2 condition in addition to the PQG conditions. The T2 condition leads to a dramatic

improvement in the quality of the v2RDM-CASSCF bond lengths. The maximum deviation

between v2RDM- and CI-CASSCF-optimized bond lengths falls to 0.0054 Å, 0.0047 Å, and

0.0046 Å in the cc-pVDZ, cc-pVTZ, and cc-pVQZ basis sets, respectively, while the mean

unsigned deviation is reduced to only 0.0006 Å in all three basis sets.

The performance of v2RDM-CASSCF relative to CI-CASSCF for bond angles is similar.

When enforcing the PQG conditions, v2RDM-CASSCF angles differ from those from CI-
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CASSCF on average by approximately 0.5 degrees in each basis set, and the maximum

deviation ranges from 1.1–1.5 degrees throughout the three basis sets. Angles from v2RDM-

CASSCF with the PQG+T2 conditions are essentially equivalent to those from CI-CASSCF.

The average deviation is less than 0.1 degrees, and the maximum deviation across the three

basis sets is only 0.1 degrees.

Table 5.4 shows the deviation in CI- and v2RDM-CASSCF equilibrium bond lengths

(rCASSCF
e ) from experimentally determined values (re). CASSCF computations were per-

formed in the cc-pVQZ basis (cc-pVDZ and cc-pVTZ data can be found in Appendix A).

With the exception of molecular hydrogen, all re values were taken from Ref. 72 and the ref-

erences therein. For H2, the equilibrium bond length was taken from Ref. 74. Mean unsigned

errors (MUE) for v2RDM-CASSCF bond lengths are 0.017 Å and 0.011 Å when imposing

the PQG or PQG+T2 N -representability conditions, while CI-CASSCF bond lengths dis-

play an MUE of 0.010 Å. In this basis set, the maximum error observed for both CI- and

v2RDM-CASSCF was 0.048 Å. In general, CI-CASSCF tends to overestimate bond lengths;

this observation is consistent with previous multiconfigurational self-consistent field com-

putations on the same set of molecules.[197] Here, we find that the over-correlation of the

active-space electrons in v2RDM-CASSCF with two-body conditions amplifies this tendency.

Fortunately, the additional error associated with the incompleteness of the PQG conditions

appears to be slightly smaller than that of the CASSCF approach itself. The accuracy of

v2RDM-CASSCF with the T2 conditions is essentially equivalent to that of CI-CASSCF.

Equilibrium structure of pentacene. We now consider the equilibrium geometry

of a larger system for which CI-CASSCF is intractable: pentacene with an active space

comprised of 11 π bonding orbitals and 11 π∗ antibonding orbitals [a (22e,22o) active space].

This system is easily within the reach of the v2RDM-CASSCF approach when employing the

PQG N -representability conditions, but it is somewhat too large to treat with our current

implementation of the T2 conditions. The practical limit for our implementation of the T2

conditions is more similar to that for CI; the largest systems for which we have imposed

partial three-particle conditions involved a (16e,16o) active space.[57] Figure 5.3.2 compares

the symmetry-unique carbon-carbon bond lengths obtained at the v2RDM-CASSCF/cc-

48



Table 5.4: Errors in equilibrium bond lengths (∆re, pm)a optimized using CI- and
v2RDM-CASSCF in the cc-pVQZ basis set. Computed bond lengths are compared
to experimentally-obtained bond lengths (re, Å).

∆re
Molecule Bond PQG PQG+T2 CI re
C2H2 C-H 1.9 1.2 1.2 1.062
C2H2 C-C 1.9 1.3 1.2 1.203
C2H4 C-H 2.3 1.5 1.5 1.081
C2H4 C-C 1.6 1.3 1.3 1.334
CH2 C-H 2.1 1.7 1.7 1.107
CH2O C-O 0.8 0.1 0.1 1.203
CH2O C-H 2.5 1.6 1.6 1.099
CH4 C-H 2.3 1.5 1.5 1.086
CO2 C-O 1.1 0.5 0.4 1.160
CO C-O 0.9 0.5 0.5 1.128
F2 F-F 4.8 4.8 4.8 1.412
H2 H-H 1.3 1.3 1.3 0.741
H2O2 O-H 0.1 0.0 0.0 0.967
H2O2 O-O 3.7 2.2 2.1 1.456
H2O O-H 0.7 0.6 0.5 0.957
HCN C-H 1.8 –0.8 –0.8 1.065
HCN C-N 1.8 0.6 0.6 1.153
HF H-F –0.2 –0.2 –0.2 0.917
HNC C-N 1.5 0.7 0.6 1.169
HNC N-H 1.6 0.9 0.8 0.994
HNO N-H 1.5 1.4 1.3 1.063
HNO N-O 0.5 –0.2 –0.3 1.212
HOF O-H 0.7 0.5 0.5 0.966
HOF F-O 3.1 2.6 2.6 1.435
N2 N-N 1.1 0.7 0.6 1.098
N2H2 N-N 0.5 0.6 0.5 1.252
N2H2 N-H 2.2 1.4 1.4 1.028
O3 O-O 2.8 1.4 0.9 1.272
NH3 N-H 1.4 1.0 1.0 1.012

MSEb 1.7 1.1 1.0 -
MUEc 1.7 1.1 1.1 -
Maxd 4.8 4.8 4.8 -

a ∆re = rCASSCF
e − re. b mean signed error. c mean unsigned error. d maximum unsigned error.
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pVDZ level of theory to those derived from a crystal structure.[192] The experimentally

Figure 5.2: Symmetry-unique carbon-carbon bond lengths (Å) obtained at the
v2RDM-CASSCF/cc-pVDZ level of theory (red) and derived from experiment[192]
(blue). The RDMs in the v2RDM-CASSCF optimization satisfied the PQG N -
representability conditions.

obtained bond lengths that correspond to what would be symmetry-equivalent bonds in

the gas-phase molecule were averaged for comparison with the computed values. We find

that v2RDM-CASSCF with the PQG conditions yields bond lengths for pentacene that are

comparable in quality to those obtained for the smaller systems considered above. The

mean and maximum deviation in the v2RDM-CASSCF-optimized bond lengths relative to

those derived from the crystal structure are 0.015 Å and 0.027 Å, respectively, and, unlike

in the case of the smaller molecules considered above, the bond lengths here are no longer

systematically overestimated.

Lastly, the computational cost of v2RDM-CASSCF relative to that of CI-CASSCF merits

some discussion. The number of floating point operations in v2RDM-CASSCF increases

polynomially with the size of the active space. Enforcing the PQG or T2 conditions requires

computational effort that scales with the sixth or ninth power of the size of the active space,

respectively. Despite these nice scaling properties, the cost of v2RDM-CASSCF for small

systems is considerable, as compared to that of CI-CASSCF. For example, consider a full-

valence CASSCF computation on CH2 [a (6e,6o) active space] within the cc-pVDZ basis

set. For this system, a CI-CASSCF optimization in GAMESS requires only a few seconds,

but v2RDM-CASSCF requires about three minutes when enforcing the PQG conditions and

almost an hour when enforcing the PQG+T2 conditions, when the code is executed on six

cores of an Intel Core i7-5930k CPU. The usefulness of v2RDM-CASSCF becomes apparent
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once active space sizes approach the practical limits of CI-based CASSCF. For example, the

computational cost of a v2RDM-CASSCF computation that enforces the PQG conditions for

a molecule like pentacene is quite modest, while the corresponding CI-CASSCF computation

is impossible. Using the (22e,22o) active space described above, one full step of the v2RDM-

CASSCF geometry optimization required less than three hours when using six cores of an

Intel Core i7-5930k processor; this time includes that required for the initial SCF procedure,

as well as for the generation of the two-electron and derivative two-electron integrals.

5.4 Conclusions

We have presented and benchmarked an implementation of analytic first-order energy

gradients for variational two-electron reduced-density-matrix- (v2RDM)-driven CASSCF

methods. The Lagrangian formulation of the semidefinite problem corresponding to the

active-space v2RDM optimization simplifies analytic energy gradient evaluation, and no ad-

ditional response equations need to be solved once the active-space 1- and 2-RDM have been

determined. The gradient expression, including the orbital response contribution, is identical

to that for CI-based CASSCF methods.

We have verified numerically the correctness of the analytic gradients and applied them to

the computation of equilibrium geometries for a set of twenty small molecules. When using

two-particle N -representability conditions, v2RDM-CASSCF-optimized bond lengths and

angles are in reasonable agreement with those from CI-CASSCF. Bond lengths are system-

atically overestimated, relative to those from CI-CASSCF, due to the over-correlation of the

active-space electrons when the active-space 2RDM is only approximately N -representable.

Relative to CI-CASSCF, enforcing partial three-particle constraints significantly improves

the quality of v2RDM-CASSCF-optimized bond lengths and angles for these systems.

Lastly, we note that the v2RDM-CASSCF approach described herein is similar to state-

specific CASSCF, but with a more narrow domain of applicability. Without additional con-

straints that differentiate ground- and excited-state 2-RDMs, which are unknown, v2RDM-

CASSCF can only model the lowest-energy state of a given spin symmetry. Hence, neither
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energy optimizations nor analytic energy gradients are currently available for state-specific

excited-state or state-averaged (SA) v2RDM-CASSCF, as described herein.
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CHAPTER 6

EXCITED STATE APPROACHES FOR
THE VARIATIONAL TWO-ELECTRON

REDUCED DENSITY MATRIX
COMPLETE ACTIVE SPACE

SELF-CONSISTENT FIELD METHOD

6.1 Introduction

A range of advances in semidefinite programming algorithms have made it possible to

evaluate the ground state two-electron reduced density matrix (2RDM) directly, without

requiring knowledge of the N -electron wavefunction. However, as explained in Chapter 4, the

optimization of the 2RDM depends on the variational minimization of an energy functional.

This means that the energy obtained corresponds to the lowest energy state of a specified

spin symmetry. In order to obtain higher-lying states of that same spin symmetry, further

constraints in a form that allows optimization of the excited state 2RDM by variational means

are needed. Such constraints are at present unknown, and here we describe non-variational

approaches for calculating excited states.

A general excited state can be expressed as a configuration interaction of determinants

that describe the ground state. To compute the energy of excited states, one constructs

and diagonalizes the Hamiltonian in the space of m-particle excitations and deexcitations

from the ground state wavefunction. It can be shown that this requires knowledge of the

ground state (2m+ 2)-RDM. For a case where only single excitations and deexcitations are

considered in describing the excited state wavefunction, knowledge of the ground state four-

electron reduced density matrix (4RDM) is required. The 4RDM is typically not known at

the end of a ground state calculation, since the energy is minimized with respect to elements

of the 2-, and sometimes the 3RDM.
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The 3- and the 4RDM of the ground state can be obtained, for instance, from a ground

state calculation using an iterative solution of the contracted Schrödinger equation where the

3- and the 4RDMs are constrained via cumulant theory.[38, 39, 153, 245, 130, 128, 244, 131,

35, 132]. It is more convenient, however, to evaluate the elements of the Hamiltonian matrix

from only a knowledge of the ground state 2RDM. We will note in this context two methods,

both of which eliminate dependence on the ground state 4RDM. In the first, the cumulant

method, the 3RDM is constructed from the 2RDM via its cumulant expansion[129, 131, 132]

whereas in the Hermitian- or antiHermitian-operator methods, dependence on the 3RDM

is eliminated by constraining basis functions to be in a Hermitian subspace of the space of

single excitations and deexcitations from the ground state.

At the end of this chapter, we consider another approach from which excited states

can be obtained from a knowledge and manipulation of only the ground state 2RDM. This

is an approach based on Rowe’s equation of motion (EOM)[187] as well as the extended

random phase approximation (ERPA) [32, 219, 46, 166, 125], which amounts to an excited

state ansatz modeled from single excitations and deexcitations out of a correlated ground

state wavefunction. In this approach, the assumption that the ground state is an exact

eigenfunction of the Hamiltonian is made, and the double commutator form of Rowe’s EOM

makes it possible to have a calculation that depends on only the ground state 2RDM.

We also consider, in this chapter, explicitly time-dependent approaches, where a time-

dependent 2RDM is used to model an N -electron system driven by a time-dependent po-

tential. The solution of the EOM of the 2RDM can provide excited state information.

However, because the EOM of a time-dependent p-RDM depends on the p + 1-RDM, ac-

cording to the Born-Bogoliubov-Green-Kirkwood-Yvon hierarchy[98], the determination of

higher-order RDMs is necessary for such approaches.

6.2 The Hermitian and anti-Hermitian operator

methods

In this section, we largely follow the derivation and notation in Ref. 134. We restrict

our description of this method to the space of single excitations and deexcitations out of the
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ground state. That is

|Ψn〉 =
∑
ij

cnij â
†
i âj|Ψg〉, (6.1)

where i, j, k, and l are orbital labels, cnij is an expansion coefficient, |Ψg〉 the ground state

wavefunction and â†i âj|Ψg〉 the basis of single excitations and deexcitations. The overlap

matrix between these basis functions can be written

2Gij
kl = 〈Ψg|(â†i âj)†â

†
kâl|Ψg〉. (6.2)

Similarly, the Hamiltonian can be written

H ij
kl = 〈Ψg|(â†i âj)†Ĥâ

†
kâl|Ψg〉. (6.3)

It is clear than the Hamiltonian, itself a two-electron operator, is a functional of the ground

state 4RDM. If the Hamiltonian could be constructed in the basis of the single excitations and

deexcitations, one could obtain excited state energies En, n > 0 by solving the generalized

eigenvalue problem

H ij
klc

n
kl = En

2Gij
klc

n
kl. (6.4)

To remove the functional dependence of the Hamiltonian on the ground state 4RDM, it is

important to note that matrix elements of the Hamiltonian can be written as

H ij
kl = 〈Ψg|â†i âj)†[Ĥ, â

†
kâl]|Ψg〉+ 〈Ψg|â†i âj)†â

†
kâl|Ψg〉. (6.5)

If |Ψg〉 is an eigenfunction of the Hamiltonian, the second term on the right hand side of 6.5

can be simplified by applying the following relation from the formulation of the contracted

Schrödinger equation:

〈Ψg|â†i âj)†â
†
kâlĤ|Ψg〉 = Eg〈Ψg|â†i âj)†â

†
kâl|Ψg〉 (6.6)

so that

H ij
kl = 〈Ψg|â†i âj)†[Ĥ, â

†
kâl]|Ψg〉+ Eg〈Ψg|â†i âj)†â

†
kâl|Ψg〉. (6.7)

Since the commutator reduces the overall particle rank of the operators in it, the Hamiltonian

can now be expressed with knowledge of only the ground state 3RDM.
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Further, if the basis of excitations is restricted to be in a Hermitian or anti-Hermitian

subspace:

±Γij = â†i âj + â†j âi, (6.8)

then the Hamiltonian could be written as

SH ij
kl = ±1

4
〈Ψg|[±Γij, [Ĥ,

±Γkl]]|Ψg〉±
1

4
〈Ψg|[±Γkl, [Ĥ,

±Γij]]|Ψg〉±Eg〈Ψg|±Γij
±Γkl|Ψg〉. (6.9)

The double commutators reduce overall particle rank by 2, so the Hamiltonian can be writ-

ten in terms of the ground state 2RDM. This constitutes the Hermitian operator method

(HOM)[22, 141, 185, 134, 52, 65, 218], which may be implemented with either Hermitian or

anti-Hermitian basis functions[137, 147, 135]

6.3 Explicitly time-dependent reduced density matrix

methods

The equation of motion for the full N -electron density matrix is given by the von-

Neumann-Liouville equations as:

i
∂

∂t
ND = [Ĥ,ND], (6.10)

where ND is the N -electron density matrix. For reduced density matrices, the equation

of motion is a coupled set of equations known as the quantum Bogoliubov-Born-Green-

Kirkwood-Yvon (BBGKY) hierarchy[103]. These give the equation of motion for a 2RDM

as

i
∂

∂t
2D = [Ĥ, 2D] + C2[3D], (6.11)

where the operator C2[3D] describes the interaction of electron pairs with the other N − 2

electrons, and the equation of motion for the 1RDM as

i
∂

∂t
1D = [Ĥ, 1D] + C1[2D], (6.12)

where the operator C1[2D] describes the interaction of an electron with the other N −

1 electrons. It is clear from this formulation that the propagation of a 2RDM requires

knowledge of the 3RDM, and that that of the 1RDM requires the 2RDM.
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Explicitly time-dependent schemes for reduced density matrices have been published[84,

103, 104]. In Ref. 84, the molecular response to an external time-dependent field is modeled

by a time-dependent 1RDM whose time-dependent response contains information about

excited state properties. The 2RDM to be used in the EOM is obtained by searching the

space of all N -representable 2RDMs which contract to the time-dependent 1RDM:

(N − 1)1Di
j =

∑
P

2DiP
jP . (6.13)

This approach was successful in computing the potential energy curves for the excited states

of small molecules in good agreement with full CI. However, excited states of the same

symmetry as the ground state are not well described. The excited state energies computed

are practically equivalent to those computed from real-time time-dependent Hartree-Fock

(RTTDHF). Also, this approach fails to describe Rabi oscillations, which are considered a

good measure of a time-dependent method’s ability to model long-term electron dynamics.

In Refs. 103 and 104, the time-dependent 2RDM is propagated. N -representability of

the time-dependent 2RDM is enforced by projecting the time dependent 2RDM onto the

subspace of N -representable 2RDMs.

2D(t+ ∆t) = P̂2D(t+ ∆t)P̂. (6.14)

Here, the projector P̂ projects 2D onto the space of 2RDMs that satisfy specified N -

representability constraints. The 3RDM is reconstructed from the Valdemoro functional,[39,

153, 131, 35] but in such a way that it ensures spin and energy conservation. With this

approach, both single and pair-electron observables were in good agreement with respective

values from multiconfigurational time-dependent Hartree-Fock theory for the four electron

system (LiH) studied. The study envisions the application of this method to larger systems.

6.4 The extended random phase approximation

The last approach we will discuss involves the application of Rowe’s equation of motion.

The derivation outlined here has been adapted from Refs. 125 which draws from Ref. 187.
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Similar derivations can also be found in Refs. 32 and 219. The ERPA is derived as a specific

case of Rowe’s equation of motion[187].

We start by defining excitation and deexcitation operators Ô†n and Ôn such that an

excited state |Ψn〉 results from the action of Ô†n on a ground state |Ψ0〉

|Ψn〉 = Ô†n|Ψ0〉 for any n > 0, (6.15)

and 0 results from the action of Ôn on the ground state

Ôn|Ψ0〉 = 0. (6.16)

This suggests

Ô†n = |Ψn〉〈Ψ0| (6.17)

as a possible form for the excitation operator. Since |Ψ0〉 and |Ψn〉 are eigenstates of the

Hamiltonian, which we will denote Ĥ, with E0 and En being their respective eigenvalues

Ĥ|Ψ0〉 = E0|Ψ0〉

Ĥ|Ψn〉 = En|Ψn〉
(6.18)

we can write
[Ĥ, Ô†n]|Ψ0〉 = ωnÔ

†
n|Ψ0〉,

[Ĥ, Ôn]|Ψ0〉 = −ωnÔn|Ψ0〉 ≡ 0,
(6.19)

where ωn is defined

ωn = En − E0. (6.20)

Using equations Eq. (6.19), one can show that

〈Ψ0|[δÔn, [Ĥ, Ô
†
n]]Ψ0〉 = ωn〈Ψ0|[δ̂Ôn, Ô

†
n]|Ψ0〉,

〈Ψ0|[δÔ†n, [Ĥ, Ôn]]Ψ0〉 = −ωn〈Ψ0|[δ̂Ô†n, Ôn]|Ψ0〉,
(6.21)

where δOn and δO†n are variations in the operators On and O†n, respectively.

The ERPA introduces the approximation that the excitation operator includes only single

excitations and deexcitations of the ground state wavefunction,

Ô†n =
∑
ij,i6=j

cnij â
†
j âi (6.22)
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so that excited states can be expressed as

|Ψn〉 =
∑
ij,i6=j

cnij â
†
j âi|Ψ0〉, (6.23)

where â†j and âi are creation and annihilation operators, respectively, and cnij is an expansion

coefficient for |Ψn〉.

Using the first of the two equations defined in Eq. (6.21), one can write∑
ij,i6=j

cnij〈Ψ0|[â†kâl, [Ĥ, â
†
j âi]]|Ψ0〉 =

ωn
∑
ij,i6=j

cnij〈Ψ0|[â†kâl, â
†
j âi]|Ψ0〉.

(6.24)

The double commutator in Eq. (6.24) results in a particle operator of rank two, such

that the left hand side defines a sum over elements of the ground state 2RDM, while the

single commutator on the right hand side results in particle operator of rank one, and the

right hand side of Eq. (6.24) defines a sum over elements of a ground state 1RDM.

From Eq. (6.21), one can deduce that the left and right hand sides of Eq. (6.24) have

the following symmetry properties

〈Ψ0|[â†kâl, [Ĥ, â
†
j âi]]|Ψ0〉 = 〈Ψ0|[â†j âi, [Ĥ, â

†
kâl]]|Ψ0〉,

〈Ψ0|[â†kâl, â
†
j âi]|Ψ0〉 = 〈Ψ0|[â†j âi, â

†
kâl]|Ψ0〉

(6.25)

and

〈Ψ0|[â†kâl, [Ĥ, â
†
j âi]]|Ψ0〉 = 〈Ψ0|[â†l âk, [Ĥ, â

†
i âj]]|Ψ0〉,

〈Ψ0|[â†kâl, â
†
j âi]|Ψ0〉 = −〈Ψ0|[â†l âk, â

†
i âj]|Ψ0〉

(6.26)

and that excitation energies occur in pairs (ωn,−ωn).

Using Eq.(6.16), the matrix element of any operator Ŵ between the ground and the

excited state |Ψn〉 can be written

〈Ψn|Ŵ |Ψ0〉 = 〈Ψ0|[Ôn, Ŵ ]|Ψ0〉. (6.27)
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CHAPTER 7

MODELING CORE-LEVEL EXCITATIONS
WITH VARIATIONALLY-OPTIMIZED
REDUCED DENSITY MATRICES AND

THE EXTENDED RANDOM PHASE
APPROXIMATION

7.1 Introduction

The development of powerful x-ray sources and sophisticated measurement technology

over the years has enhanced the utility of near-edge x-ray absorption fine structure (NEX-

AFS) [207] as a tool for probing local chemical information. Near-edge features contain

a wealth of information about electronic structure, providing insight into oxidation state,

coordination number, and covalency, [115, 142] while time-resolved NEXAFS can even be

used to follow reaction intermediates with elemental specificity. [159] The interpretation of

experimental data from NEXAFS is often aided through the use of quantum-chemical com-

putations. Many electronic structure methods have been applied to this problem, including

time-dependent density functional theory (TDDFT) [115, 142, 248, 213, 4, 116, 105], lin-

ear response[95, 150, 41, 42, 89] and equation-of-motion[158, 168, 43, 155] coupled-cluster

theory, second-order algebraic diagrammatic construction [ADC(2)] [175, 228, 229, 157],

and active-space-based multiconfigurational approaches [242, 182, 86, 231, 100, 232, 20, 99].

While TDDFT is often the method of choice, owing to its relatively low computational

cost, quantitative agreement with experimental data can require a sophisticated treatment

of both static and dynamical correlation effects, as well as relativistic effects. [31] Unfor-

tunately, standard approaches for capturing static correlation, such as the complete active

space self-consistent field (CASSCF) method, [184, 200, 201, 183] are associated with steep

computational costs that limit their application to small systems.
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The limitations of configuration-interaction (CI)-based CASSCF stem from the exponen-

tial complexity of the active-space wave function. In contrast, the number of unknowns in

the active-space two-electron reduced-density matrix (2-RDM) grows only quartically with

the size of the active space. For this reason, variational 2-RDM (v2RDM)-driven CASSCF

[64, 57] algorithms can be applied to much larger active spaces than can be considered

with CI-based CASSCF. For example, most CI-based algorithms are limited to active spaces

comprised of at most 18 electrons in 18 orbitals, although active spaces as large as 22 elec-

trons in 22 orbitals have recently been realized using massively parallel algorithms. [224]

On the other hand, an active space as large as 50 electrons in 50 orbitals can routinely be

considered with a v2RDM-driven algorithm. Unfortunately, despite its nice scaling proper-

ties, v2RDM-CASSCF is not directly applicable to the NEXAFS problem, as v2RDM-based

methods can only describe ground electronic states of a given spin symmetry. In light of

this issue, several strategies have been proposed to extract excited-state information from

ground-state reduced-density matrices (RDMs), including the Hermitian operator method

[23, 185, 218, 65, 134] explicitly time-dependent RDM methods, [84, 103] and the extended

random phase approximation (ERPA). [32, 219, 46] The present work focuses on the appli-

cation of ERPA to the NEXAFS problem.

The ERPA is a specific application of Rowe’s equation of motion [187, 188] to the case

in which excited-state wave functions are assumed to be well described by single excitations

out of the ground state. The ERPA leads to a nonsymmetric generalized eigenvalue problem

that can be formulated in terms of the ground-state one-electron reduced-density matrix (1-

RDM) and the 2-RDM, making it an ideal candidate for computing excitation energies from

variationally obtained RDMs. While Rowe’s equation of motion is itself formally exact, the

accuracy of excitation energies computed from its application within the ERPA will depend

on (i) how well ground state 1- and 2-RDMs resemble those of the exact ground state and

(ii) how well the actual excited-state wave functions are represented by single excitations

out of the ground state.

We explore the utility of the ERPA for describing core-level excitations out of ground

states described at the v2RDM-CASSCF level of theory. In Section 7.2, we present the
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working equations for the ERPA and discuss the computational cost associated with solving

the ERPA equations when using a CASSCF reference. We also derive a set of killer conditions

that must be considered for a reliable description of core-level excitations. These conditions

can be satisfied by removing all excitations that do not involve a core orbital (i.e. within

the core-valence separation [CVS] approximation [28, 15, 215, 206, 43]). Section 7.3 then

provides the details of our computations. In Section 7.4, we assess the quality of the core-

level spectra obtained from the ERPA and examine the effects of electron correlation, N -

representability, core-valence separation, and the choice of orbital basis (i.e. canonical versus

energy-optimized orbitals) on the excitation energies.

7.2 Theory

Following Refs. 32 and 219, the ERPA is easily derived as a specific case of Rowe’s

equation of motion [187]. First, consider the ground electronic state, |Ψ0〉, and an excited

state, |Ψn〉 (n > 0), both of which are eigenfunctions of the Hamiltonian

Ĥ|Ψ0〉 = E0|Ψ0〉, (7.1)

Ĥ|Ψn〉 = En|Ψn〉, (7.2)

with eigenvalues E0 and En, respectively. We introduce an excitation operator, Ô†n, that

defines the excited state as

|Ψn〉 = Ô†n|Ψ0〉, (7.3)

and a deexcitation operator, Ôn, the action of which on the ground state yields zero

Ôn|Ψ0〉 = 0. (7.4)

Equation 7.4 is the well-known “killer condition.’ We reexpress Eq. 7.2 as

[Ĥ, Ô†n]|Ψ0〉 = ωnÔ
†
n|Ψ0〉, (7.5)

where ωn = En − E0, and subsequently left-multiply Eq. 7.5 by 〈Ψ0|Â to obtain

〈Ψ0|Â[Ĥ, Ô†n]|Ψ0〉 = ωn〈Ψ0|ÂÔ†n|Ψ0〉. (7.6)
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Here, 〈Ψ0|Â represents an arbitrary state within the manifold of states defined by 〈Ψ0|Ôn.

If the killer condition is satisfied, Eq. 7.6 can be reexpressed in the more convenient form

〈Ψ0|[Â, [Ĥ, Ô†n]]|Ψ0〉 = ωn〈Ψ0|[Â, Ô†n]|Ψ0〉, (7.7)

which is Rowe’s formally exact equation of motion.

Within the ERPA, the excitation operator is restricted to include only single excitations

out of the ground state. We choose the singlet spin-adapted excitation operator

Ô†n =
1√
2

∑
pq,p 6=q

cnpq(â
†
qâp + â†q̄âp̄), (7.8)

where â†q and âp represent fermionic creation and annihilation operators, respectively, the

indices p and q are spatial orbital labels (specifically, the natural orbitals of the ground

state), and an overbar (or lack thereof) represents an electron of β (or α) spin. Note that

the summation includes excitations between all orbitals; this structure contrasts with that

of the more familiar random phase approximation (RPA), which involves only particle/hole

and hole/particle transitions. Further, the excitation operator excludes terms where p = q,

which is a consequence of the killer condition. [32] Specifically, it is the consequence of the

following constraint implied by, but weaker, than Eq. 7.4

〈Ψ0|Ôn|Ψ0〉 = 0. (7.9)

In the natural orbital basis, Eq. 7.9 can be satisfied by restricting the labels in Eq. 7.8 so

that p 6= q. [32]

To obtain the working equations of the ERPA, the arbitrary excitation operator, Â, is

chosen to be

Â =
1√
2

(â†râs + â†r̄âs̄). (7.10)

Using Eqs. 7.7, 7.8, and 7.10, we arrive at the nonsymmetric generalized eigenvalue equation∑
pq,p 6=q

cnpq〈Ψ0|[â†râs + â†r̄âs̄, [Ĥ, â
†
qâp + â†q̄âp̄]]|Ψ0〉 = 2ωn(nr − ns)cnrs. (7.11)

The double commutator on the left-hand side (LHS) of Eq. 7.11 is a two-particle operator,

the expectation value of which is expressible as a sum over the elements of the ground state
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2-RDM, and the right-hand side depends on only the natural orbital occupation numbers

(nr = 〈Ψ0|â†râ†r|Ψ0〉 = 〈Ψ0|â†r̄â†r̄|Ψ0〉). In this form, the construction of the LHS of Eq. 7.11

should scale as the sixth power of the size of the one-electron basis set, and the solution of

the generalized eigenvalue equation for all states shares the same scaling.

The excitation operator given by Eq. 7.8 is the most general operator for the ERPA prob-

lem. In practice, the actual form of the operator depends upon the choice of the ground-state

wave function. For example, in the case that the ground-state is a restricted Hartree-Fock

wave function, the ERPA reduces to the usual RPA, with Ô†n comprised of only particle/hole

and hole/particle transitions. The present work is concerned with the case that the ground-

state wave function is obtained from CASSCF, so we partition our orbitals into restricted

(doubly occupied), active (partially occupied), and external (empty) orbitals, and we note

that excitations among restricted or external orbitals cannot contribute to any excited-state

wave function. An appropriate excitation operator for CASSCF-specific ERPA is then

Ô†n =
1√
2

( ∑
ia

[cnia(â
†
aâi + â†āâī) + cnai(â

†
i âa + â†

ī
âā)]

+
∑
it

[cnit(â
†
t âi + â†t̄ âī) + cnti(â

†
i ât + â†

ī
ât̄)]

+
∑
at

[cnat(â
†
t âa + â†t̄ âā) + cnta(â

†
aât + â†āât̄)]

+
∑
tu,t6=u

cntu(â
†
uât + â†ūât̄)

)
, (7.12)

where the orbital labels i and a correspond to restricted and external orbitals, respectively,

and the labels t and u correspond to orbitals belonging to the active space. The application

of ERPA with this excitation operator can be thought of as an uncontracted multireference

configuration interaction method limited to single-electron transitions, with the exception

that the ERPA also includes deexcitations. With this operator, the evaluation of the LHS of

Eq. 7.11 and the solution of the generalized eigenvalue problem still scale as the sixth power

with system size, but the prefactor is significantly reduced, relative to the general case. The

dimension of the matrix representation of the LHS of Eq. 7.11 is 2krka + 2krke + 2kake +

ka(ka − 1), where kr, ka, and ke represent the number of restricted, active, and external
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orbitals, respectively; the solution of the generalized eigenvalue problem scales as the cube

of this number.

As will be discussed in Section 7.4, the last term in Eq. 7.12, which involves active/active-

type excitations, can lead to severe violations in the killer condition (Eq. 7.4) that degrade

the quality of the ERPA excitation energies. We therefore consider an additional class of

killer conditions beyond Eq. 7.9 that can be derived by the projection of Eq. 7.4 onto an

arbitrary state 〈Ψ0|â†râs:

〈Ψ0|â†râsÔn|Ψ0〉 = 0. (7.13)

These constraints, combined with Eq. 7.9, are stronger than Eq. 7.9 alone, but they are still

weaker than the killer condition itself. In the case that the ground-state wave function has

the form of a CASSCF wave function, we consider nine separate constraints defined by the

space to which the operators â†r and âs belong, four of which are not trivially satisfied. The

constraints

∀t, u : 〈Ψ0|â†t âuÔn|Ψ0〉 = 0, (7.14)

imply

∀t, u : (1− δtu)ntcnut +
∑
v 6=w

(2Dtv
uw + 2Dtv̄

uw̄)cnvw = 0, (7.15)

where 2Dtv
uw and 2Dtv̄

uw̄ represent elements of the active-space 2-RDM, defined as

2Dtv
uw = 〈Ψ0|â†t â†vâwâu|Ψ0〉, (7.16)

2Dtv̄
uw̄ = 〈Ψ0|â†t â

†
v̄âw̄âu|Ψ0〉. (7.17)

Additionally, the constraints

∀i, a : 〈Ψ0|â†i âaÔn|Ψ0〉 = 0, (7.18)

∀i, t : 〈Ψ0|â†i âtÔn|Ψ0〉 = 0, (7.19)

and

∀t, a : 〈Ψ0|â†t âaÔn|Ψ0〉 = 0, (7.20)
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lead to

∀a, i : cnai = 0, (7.21)

∀t, i : (1− nt)cnti = 0, (7.22)

and

∀a, t : ntc
n
at = 0. (7.23)

Equation 7.21 is identical to the condition that would be obtained from the same consider-

ations in the case that the reference wave function was a Hartree-Fock wave function (i.e.

within the RPA). The only way to satisfy this condition is to set all restricted/external

deexcitation weights to zero; if these terms are eliminated from the excited-state operator

expansion for RPA, that method reduces to the Tamm-Dancoff approximation (TDA) or CI

with single excitations (CIS). Equations 7.22 and 7.23 are generalizations of this condition

for CASSCF reference functions that can only be satisfied by eliminating the relevant de-

excitations from the operator expansion. These conditions both reduce to Eq. 7.21 in the

limit of zero electron correlation within the active space (when nt → 0 or nt → 1) and can

thus be classified as TDA-like restrictions on deexcitations.

We ignore the TDA-like restrictions of Eqs. 7.21–7.23 and focus on Eq. 7.15. As will

be shown in Section 7.4, we observe large violations of Eq. 7.15 for some K-edge features in

small molecules. An ERPA procedure that explicitly enforces these conditions could improve

the description of these states, but we find that reasonable results can be obtained simply by

invoking the CVS approximation, removing from the ERPA expansion all transitions that

do not involve a core orbital. Assuming that all valence electrons reside within the active

space, the CVS-ERPA excitation operator can be defined as

Ô†n =
1√
2

( ∑
ia

[cnia(â
†
aâi + â†āâī) + cnai(â

†
i âa + â†

ī
âā)]

+
∑
it

[cnit(â
†
t âi + â†t̄ âī) + cnti(â

†
i ât + â†

ī
ât̄)]

)
. (7.24)

In addition to automatically satisfying the conditions given by Eq. 7.15 (and Eq. 7.23),

the CVS approximation prevents accidental degeneracies between core-excited states and

valence excitations that lie far above the ionization threshold.
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Before moving on, we should highlight two important properties of Eq. 7.11. First,

the excitation energies obtained from this equation are size intensive. We have verified this

property numerically for the system of non-interacting LiH molecules described in Ref. 96.

For these tests, the ground-state was treated at the full-valence v2RDM-driven CASSCF

level of theory, and the excitation operator employed within the ERPA was that given in

Eq. 7.12. Second, for a stable ground-state reference function, Eq. 7.11 can be recast as a

symmetric eigenvalue problem with real, positive eigenvalues. In the case that the orbitals

are optimized for the reference state, the stability condition is satisfied. However, should one

employ a different orbital basis, the stability condition could be violated. In principle, the

lack of symmetry in the LHS could then lead to complex eigenvalues, as well as to matrix

defects relevant to the description of conical intersections. [91, 92]

7.3 Computational details

Table 7.1: Active spaces employed using the C2v ( [A1, A2, B1, B2] ) and D2h ( [Ag,
B1g, B2g, B3g, Au, B1u, B2u, B3u] ) point groups.

active orbitals
molecule point group restricted orbitals f.v.a f.v.+3sb f.v.+3s3pc

CO C2v [ 2, 0, 0, 0 ] [ 4, 0, 2, 2 ] [ 6, 0, 2, 2 ] [ 8, 0, 4, 4 ]
H2CO C2v [ 2, 0, 0, 0 ] [ 5, 0, 2, 3 ] [ 7, 0, 2, 3 ] [ 9, 0, 4, 5 ]
HCN C2v [ 2, 0, 0, 0 ] [ 5, 0, 2, 2 ] [ 7, 0, 2, 2 ] [ 9, 0, 4, 4 ]
N2O C2v [ 3, 0, 0, 0 ] [ 6, 0, 3, 3 ] [ 9, 0, 3, 3 ] [10, 0, 7, 7 ]
CH4 C2v [ 1, 0, 0, 0 ] [ 4, 0, 2, 2 ] [ 5, 0, 2, 2 ] [ 6, 0, 3, 3 ]
C2H2 D2h [ 1, 0, 0, 0, 0, 1, 0, 0 ] [ 3, 0, 1, 1, 0, 3, 1, 1 ] [ 4, 0, 1, 1, 0, 4, 1, 1 ] [ 5, 0, 2, 2, 0, 5, 2, 2 ]
N2 D2h [ 1, 0, 0, 0, 0, 1, 0, 0 ] [ 2, 0, 1, 1, 0, 2, 1, 1 ] [ 3, 0, 1, 1, 0, 3, 1, 1 ] [ 4, 0, 2, 2, 0, 4, 2, 2 ]

a the full valence space
b f.v. plus orbitals of the symmetry of the 3s orbital on each heavy atom
c f.v. plus orbitals of the symmetry of the 3s and 3p orbitals on each heavy atom

In Sec. 7.4, we compare ERPA excitation energies to those obtained from the usual

RPA, TDDFT (with the B3LYP functional), and time-dependent equation of motion (EOM)

second-order approximate coupled cluster theory (TD-EOM-CC2). [154] RPA and TDDFT

excitation energies were computed using the GAMESS electronic structure package, [193] and

TD-EOM-CC2 computations were performed using a plugin to the Psi4 package. [165] TD-

EOM-CC2 computations employed Cholesky-decomposed electron repulsion integral (ERI)
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tensors with a tight decomposition threshold of 10−12 Eh. The molecular geometries employed

within all computations were optimized for the ground state using density functional theory

(with the B3LYP functional [18]) and the cc-pVQZ basis set.[87] All other ground and excited

state computations were performed using the cc-pVTZ, cc-pCVTZ,[236] aug-cc-pVTZ,[90]

and cc-pVQZ basis sets.

The ground-state 1- and 2-RDMs entering the ERPA equations were obtained from

v2RDM-driven CASSCF computations, as implemented in a plugin [57] to Psi4. Table

8.1 provides the active spaces employed within these computations. Optimized RDMs sat-

isfy either two-particle (PQG) N -representability conditions [61] or two-particle and partial

three-particle (T2) conditions. [249, 48] All v2RDM-CASSCF computations employed the

density fitting approximation to the ERI tensor. Computations within the cc-pVTZ, aug-

cc-pVTZ, and cc-pVQZ basis sets used the corresponding jk-type fitting basis,[226] while

computations within the cc-pCVTZ basis used the def2-QZVpp-jkfit fitting basis. [227] The

DF approximation reduces the scaling of the orbital optimization step in v2RDM-CASSCF

from O(k5) to O(k4), where k represents the dimension of the one-electron basis. All ERPA

computations also employed the DF approximation, which reduces the formal scaling of the

construction of some terms that contribute to the matrix representation of the double com-

mutator on the LHS of Eq. 7.11 from O(k6) to O(k5). Even within the DF approximation,

though, the overall scaling of the construction of this matrix and of the solution to the ERPA

eigenvalue problem is unchanged from that described in Sec. 7.2.

7.4 Results and discussion

7.4.1 Principal K-edge features

Experimentally obtained K-edge features corresponding to 1s → π∗-type excitations are

provided in Table 7.2 for a set of small molecules containing π bonds (CO, H2CO, HCN, C2H2,

N2, and N2O). Also provided are errors in excitation energies obtained from TD-EOM-CC2,

TDDFT, RPA, ERPA, and CVS-ERPA; ERPA computations employed RDMs generated

from full-valence v2RDM-CASSCF. All computed results reported here were obtained using
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Table 7.2: Core-level (1s→ π∗) excitation energies (eV) obtained from experiment
and errors in computed excitation energies determined in the cc-pCVTZ basis set.

ERPA CVS-ERPA
molecule transition exp. CC2 TDDFT RPA PQG PQG+T2 PQG PQG+T2
CO C 1s→ π∗ 287.4a 2.2 -11.3 7.0 5.6 5.6 5.2 5.0

O 1s→ π∗ 533.6b 2.0 -13.8 16.5 8.3 8.8 6.9 6.9
H2CO C 1s→ π∗ 285.6c 3.1 -10.4 8.8 7.2 7.2 7.0 7.2

O 1s→ π∗ 530.8c 2.0 -14.1 15.1 7.7 8.1 6.6 6.7
C2H2 C 1s→ π∗ 285.8d 2.7 -10.5 10.2 6.9 6.9 6.8 6.9
HCN C 1s→ π∗ 286.4e 2.7 -10.6 9.6 6.7 6.6 6.5 6.6

N 1s→ π∗ 399.7e 2.4 -12.1 12.3 7.4 7.5 7.0 7.0
N2 N 1s→ π∗ 401.0f 2.3 -12.5 11.2 6.8 6.9 6.4 6.4
N2O Nt 1s→ π∗ 401.1g 2.5 -12.2 12.4 7.1 7.4 6.6 6.9

Nc 1s→ π∗ 404.7g 2.8 -12.4 11.4 6.6 6.9 6.6 6.9
O 1s→ π∗ 534.8g 1.4 -14.3 18.5 9.3 9.9 8.2 8.8
mean unsigned error 2.0 12.2 12.1 7.2 7.4 6.7 6.9

maximum unsigned error 2.7 14.3 18.5 9.3 9.9 8.2 8.8
a−g Experimental results are taken from Refs. [162], [177], [180], [216], [76], [82] and [217], respectively.

the cc-pCVTZ basis. We first consider the results obtained with the excitation operator of

Eq. 7.12 and discuss the role of the CVS approximation below.

We find that RPA and TDDFT consistently overestimate and underestimate, respectively,

the position of the K-edge features considered; the mean unsigned error in the excitation

energies computed using these approaches are 12.1 eV for RPA and 12.2 eV for TDDFT.

The maximum unsigned error obtained with RPA (18.5 eV) is slightly larger than that

of TDDFT (14.3 eV). The ERPA improves upon the RPA for all molecules. The mean

unsigned errors are reduced to 7.2 eV and 7.4 eV when enforcing the PQG or PQG+T2

N -representability conditions, respectively, while the maximum errors are reduced to only

9.3 eV (PQG) and 9.9 eV (PQG+T2). Interestingly, the ERPA excitation energies appear

to be insensitive to the degree to which the ground-state RDMs are N -representable, as

evidenced by the similar performance of the approach when enforcing two- or three-particle

N -representability conditions in the underlying v2RDM-CASSCF computations. Aside from

the modest improvement in the magnitudes of the excitation energies, the ERPA also appears

to provide a more balanced description of multiple K-edges within a given molecule than

is obtained with RPA or TDDFT. For example, in H2CO, the errors in the carbon and

oxygen 1s → π∗ excitation energies predicted by RPA are 8.8 eV and 15.1 eV, respectively,
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while those predicted by ERPA with PQG constraints are 7.2 eV and 7.7 eV. The basis set

dependence of the 1s → π∗ excitation energies is quite small, and the conclusions drawn

from the data in Table 7.2 are unchanged when considering the cc-pVTZ, cc-pVQZ, and

aug-cc-pVTZ basis sets. The errors in the 1s → π∗ excitation energies computed in these

basis sets can be found in Appendix B.

We note that TD-EOM-CC2 consistently outperforms all other methods considered here;

the mean unsigned error in the TD-EOM-CC2 energies is only 2.0 eV in the cc-pCVTZ

basis set. Even greater accuracy could be obtained from a higher level of coupled cluster

(CC) theory [e.g. CC with single and double excitations (CCSD)]. EOM and linear-response

CCSD typically yield K-edge features for second-row atoms that are accurate to roughly 1–2

eV, [155, 41] and the inclusion of triple excitations can reduce errors to less than 1 eV [41].

The performance of the ERPA appears promising, but some problematic cases reveal

a shortcoming of the method that is related to the CASSCF-specific excitation operator

defined in Eq. 7.12; these cases can be identified by violations in the killer condition.

For example, consider N2O described by the cc-pCVTZ basis set. ERPA computations

with RDMs that satisfy PQG conditions predict two features whose wave functions contain

significant 1s → π∗ contributions at similar energies (544.1 eV and 542.1 eV), which is

problematic for two reasons. First, the spectrum is only expected to have one such feature.

Second, the dominant term in both expansions corresponds to a σ→ π-type excitation;

this transition is one between orbitals that are active in the full-valence CASSCF reference

function, with similar occupation numbers (nσ = 0.988 and nπ = 0.985). It is entirely

possible that this transition contributes to the true wave function, but it is unlikely that it

would be the dominant term in the expansion. The large expansion coefficients [Eq. 7.8]

associated with this transition indicate a breakdown in the ERPA; the expansion coefficients

are approximately 16 and 7 for the states at 542.1 eV and 544.1 eV, respectively.

The breakdown of the ERPA in this case may stem from the near-degeneracy of the

occupations of the orbitals in question. Regardless of its precise cause, the breakdown is

easily identifiable by large violations in the killer condition. We can quantify the degree to

which the killer condition is violated with the root mean squared (RMS) error in Eq. 7.15
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for all possible operators, â†t âu. For the two problematic states at the oxygen K-edge in N2O,

the RMS errors in Eq. 7.15 are 1.9×10−1 (at 542.0 eV) and 8.6×10−3 (at 544.1 eV). These

errors are substantially larger than those observed in other molecules; the RMS errors in

Eq. 7.15 at the oxygen K-edge in CO and H2CO are 6.5×10−6 and 1.1×10−4, respectively.

Unlike the wave functions for K-edge states in N2O, those in CO and H2CO are dominated

by core excitations, as expected. We therefore conclude that the difficulty in assigning the

edge in N2O reflects violations in the killer condition and a breakdown in the ERPA, perhaps

caused by the near-degeneracy of the occupations of the active orbitals.

Table 7.2 includes errors in excitation energies computed using CVS-ERPA, which should

reduce killer-condition violations by excluding all active/active-type excitations. The CVS

approximation yields improved excitation energies for all molecules, reducing the error from

ERPA by as much as 1.8 eV in the case of the oxygen K-edge in CO (with RDMs that

satisfy the PQG+T2 conditions). The mean and maximum errors for CVS-ERPA with

RDMs that satisfy two-particle N -representability conditions are reduced to only 6.7 eV

and 8.2 eV, respectively, while those for CVS-ERPA with RDMs that satisfy partial three-

particle conditions are reduced to 6.9 eV and 8.8 eV. We again find that the CVS-ERPA

provides a more consistent description of multiple features within a given molecule than that

afforded by other methods. Consider, for example, the 1s→ π∗ transitions of the central and

terminal nitrogen atoms in N2O (denoted Nt and Nc in Table 7.2, respectively). Using the

CVS-ERPA and RDMs that satisfy the PQG conditions, the error in both of the excitation

energies is 6.6 eV, meaning that CVS-ERPA exactly predicts the separation between the

features. No other method considered here predicts a separation between these features that

agrees with experiment to this degree. Lastly, and perhaps most importantly, by disregarding

all non-core excitations, the K-edge can be more clearly identified in all molecules, including

in the problematic case of the oxygen K-edge of N2O discussed above. The consideration

of the killer condition is thus extremely important in the framework of the ERPA, and all

remaining ERPA-derived results discussed use the CVS-ERPA excitation operator given by

Eq. 7.24.
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Table 7.3: Core-level (1s→ 3s and 1s→ 3p) excitation energies (eV) obtained from
experiment and errors in computed excitation energies determined in the cc-pCVTZ
basis set.

CVS-ERPA
molecule transition exp. TDDFT RPA PQG PQG+T2
CO C 1s → 3s 292.4a -6.1 14.9 12.7 12.9

O 1s → 3s 538.9b -12.8 25.5 17.2 17.5
H2CO C 1s → 3s 290.2c -10.9 12.2 10.2 10.3

O 1s → 3s 535.4c -12.1 21.2 15.0 15.3
C2H2 C 1s → 3s 287.7d -10.4 12.6 10.4 10.0
HCN C 1s → 3s 289.1e -11.4 11.3 9.3 8.8

N 1s → 3s 401.8e -11.6 19.1 13.9 15.2
N2 N 1s → 3s 406.2f -4.5 24.4 20.1 20.2
N2O Nt 1s → 3s 404.0g -10.8 17.8 12.7 13.2

Nc 1s → 3s 407.5g -11.4 16.9 12.0 11.1
O 1s → 3s 536.7g -13.1 24.7 10.1 10.2

CH4 C 1s → 3s 287.1d -10.9 13.0 10.8 9.8
C 1s→ 3p 288.0d -10.2 11.9 8.5 8.6
mean unsigned error 10.5 17.4 12.5 12.6

maximum unsigned error 13.1 25.5 20.1 20.2
a−g Experimental results are taken from Refs. [162], [177], [180], [216], [76], [82] and [217], respectively.

7.4.2 Rydberg features

We now consider Rydberg-type K-edge features in the small molecules considered above,

as well as in CH4. Table 7.3 provides experimentally-obtained excitation energies and errors

in computed excitation energies for 1s → 3s features in all molecules and the 1s → 3p

feature in methane. Again, all ERPA computations employed RDMs generated from full-

valence v2RDM-CASSCF. As measured by the mean and maximum unsigned errors, TDDFT

performs slightly better for this set of excitations than it does for the 1s → π∗ transitions;

the mean and maximum unsigned errors for TDDFT are 10.4 and 13.1 eV, respectively. On

the other hand, RPA and CVS-ERPA perform considerably worse. The mean and maximum

unsigned errors for RPA are 17.4 eV and 25.5 eV, respectively. The CVS-ERPA improves over

RPA by almost 5 eV for the mean unsigned error [12.5 eV (PQG) and 12.6 eV (PQG+T2)],

and CVS-ERPA reduces the maximum error observed to 20.1 (20.2) eV when the procedure

employs RDMs that satisfy the PQG (PQG+T2) conditions.

It is unclear exactly why the performance of the CVS-ERPA is so different for Rydberg-

type features than for 1s → π∗ transitions. What is clear, however, is that this difference
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Table 7.4: Mean unsigned errors (eV) and maximum errors (eV) in computed
gaps between the 1s → π∗ and Rydberg features at the K-edge, as compared
to experimentally obtained values. Mean and maximum errors in the excitation
energies for 1s→ π∗ transitions are provided in parentheses.

CVS-ERPAa

basis set TDDFT RPA f.v.b f.v.+3sc f.v.+3s3pd

mean cc-pVTZ 1.8 ( 12.1 ) 5.5 ( 12.1 ) 6.4 ( 6.7 ) 6.7 ( 7.3 ) 6.1 ( 8.9 )
cc-pCVTZ 2.0 ( 12.2 ) 6.2 ( 12.1 ) 6.3 ( 6.7 ) 6.7 ( 7.3 ) 6.0 ( 8.9 )

aug-cc-pVTZ 1.4 ( 12.5 ) 4.2 ( 12.1 ) 5.9 ( 6.8 ) 5.7 ( 7.5 ) 4.9 ( 8.9 )
cc-pVQZ 0.9 ( 12.3 ) 5.5 ( 12.1 ) 6.4 ( 6.7 ) 6.4 ( 7.3 ) 5.7 ( 9.0 )

maximum cc-pVTZ 9.6 ( 14.3 ) 10.1 ( 18.5 ) 14.1 ( 8.2 ) 11.6 ( 8.3 ) 11.2 ( 12.4 )
cc-pCVTZ 8.0 ( 14.3 ) 13.1 ( 18.5 ) 13.7 ( 8.2 ) 11.5 ( 8.4 ) 10.7 ( 12.4 )

aug-cc-pVTZ 3.4 ( 15.3 ) 6.1 ( 18.5 ) 10.9 ( 8.3 ) 9.7 ( 9.3 ) 8.4 ( 12.3 )
cc-pVQZ 2.7 ( 14.4 ) 7.9 ( 18.4 ) 12.4 ( 8.2 ) 10.8 ( 8.4 ) 9.9 ( 12.4 )

a CVS-ERPA computations employed RDMs that satisfied the PQG N -representability conditions
b a full valence active space

c f.v. plus orbitals of the symmetry of the 3s orbital on each heavy atom
d f.v. plus orbitals of the symmetry of the 3s and 3p orbitals on each heavy atom

directly impacts the utility of ERPA for evaluating the relative positions of these features

at the K-edge. Indeed, while CVS-ERPA yields slightly better absolute excitation energies

than those provided by RPA, the overall spectral shape predicted by CVS-ERPA and RPA

are similar. As a measure of the shape of the absorption curve, we present in Table 7.4 the

errors in computed gaps between the 1s → π∗ and Rydberg features tabulated above, as

compared to those from experiment. According to this metric, neither RPA nor CVS-ERPA

perform particularly well, with slightly worse results obtained from CVS-ERPA. Mean errors

for both methods are on the order of 5–6 eV, depending on the choice of the basis set. On the

other hand, TDDFT provides much more reasonable results; the B3LYP functional yields

the gaps between these features with an accuracy of roughly 1–2 eV, on average.

One factor that potentially contributes to the poor performance of CVS-ERPA observed

here is that the full-valence active space does not include the 3s and 3p orbitals. Table 7.4

also provides errors in the spacing between the 1s→ π∗ and Rydberg features obtained from

CVS-ERPA with two slightly larger active spaces consisting of the full valence space plus

orbitals of the symmetry of the 3s or 3s and 3p orbitals on each heavy atom (see Table 8.1

for details). The errors in the excitation energies for 1s → π∗ transitions are also provided

in parentheses. We find that the CVS-ERPA predictions for the relative positions of the K-
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edge features improve slightly with the larger active spaces, and the accuracy of CVS-ERPA

approaches that of the usual RPA with the largest active space. However, the quality of the

description of the 1s→ π∗ transitions decreases with increasing size of the active space size.

7.4.3 The role of orbital basis

The data discussed to this point demonstrate that the CVS-ERPA and RPA approaches

offer comparable descriptions of K-edge features in small molecules. CVS-ERPA provides

a modest improvement in absolute excitation energies for both 1s → π∗ and Rydberg-

type excitations, but the methods predict similar relative positions of the excitations. Two

features of the CVS-ERPA framework distinguish it from RPA, which lead to the small

differences in the numerical performance of the approaches. Both distinctions are rooted in

the underlying v2RDM-CASSCF-based description of the ground state. First, the RDMs

that enter CVS-ERPA contain nondynamical correlation information lacking in RPA based

on a Hartree-Fock reference. Second, the orbitals employed within CVS-ERPA are optimized

for the correlated ground state. We can differentiate between the effects of correlation and

orbital optimization within the CVS-ERPA by employing RDMs generated from ground-

state active-space v2RDM computations that do not involve any orbital optimization [i.e.

v2RDM-driven complete active space (CAS) CI]. Figure 7.4.3 illustrates the mean unsigned

errors for RPA and CVS-ERPA in several basis sets, and CVS-ERPA computations either

employed v2RDM-CASSCF or v2RDM-CASCI references [labeled CVS-ERPA(CASSCF)

and CVS-ERPA(CASCI), respectively]. In all basis sets, orbital optimization leads to a

significant improvement in the quality of the CVS-ERPA excitation energies. Interestingly,

in the case of the aug-cc-pVTZ basis set, it appears that an ERPA that accounts for static

correlation alone offers essentially no advantage over the usual RPA.

The fact that the performance of CVS-ERPA is coupled to the choice of orbital basis is

not surprising; it is well known that orbital relaxation effects are considerable for core-excited

states. In principle, the performance of CVS-ERPA could be improved by choosing a more

appropriate set of orbitals than the those obtained from Hartree-Fock or v2RDM-CASSCF.
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Figure 7.1: Mean unsigned errors (eV) in computed excitation energies for K-edge
features in small molecules described by the (a) cc-pVTZ, (b) cc-pCVTZ, (c) aug-
cc-pVTZ, and (d) cc-pVQZ basis sets.
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From the perspective of CASSCF, the most obvious strategy would be to employ a state-

averaged (SA) [106, 31, 77] v2RDM-CASSCF procedure that optimizes the orbitals for the

ground and target excited states simultaneously. Excited-state RDMs required for such a

procedure are accessible within the equation of motion framework. Alternatively, one could

pre-relax the orbitals as is done within the static exchange (STEX) approximation [3, 2, 47]

or employ CIS natural orbitals as approximation to SA-CASSCF. [199] While each of these

strategies may yield improved orbitals for the description of core excitations, within the con-

text of the ERPA, they all share the same potential shortcoming. As mentioned above, the

ERPA problem is nonsymmetric, but it can be recast as a symmetric problem, provided that

the reference is stable. Unfortunately, a guarantee of stability requires that the orbitals be

optimized for the ground state, and the use of STEX or (approximate) SA-CASSCF orbitals

could lead to instabilities in the ERPA equations.

7.4.4 Oscillator strengths
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Figure 7.2: Computed oscillator strengths for (a) 1s → π∗ and (b) 1s → 3s exci-
tations in small molecules described by the cc-pCVTZ basis set. In panel (b), the
oscillator strength for CH4 corresponds to the 1s→ 3p transition.
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Lastly, we consider the quality of CVS-ERPA-derived oscillator strengths. Within Rowe’s

equation of motion formalism and the ERPA, the transition dipole moment that defines the

oscillator strength is given by

〈Ψn|µ̂ξ|Ψ0〉 = 〈Ψ0|[Ôn, µ̂ξ]|Ψ0〉, (7.25)

where µ̂ξ is the ξ-component of the dipole operator (ξ ∈ x, y, z). Figure 7.4.4 illustrates

the oscillator strengths computed at the TDDFT, RPA, and CVS-ERPA levels of theory

within the cc-pCVTZ basis set; CVS-ERPA computations employed RDMs from full-valence

v2RDM-CASSCF that satisfied either PQG or PQG+T2 N -representability conditions. For

1s → π∗ excitations [Fig. 7.4.4 (a)] CVS-ERPA oscillator strengths resemble those from

TDDFT more than those from RPA. In particular, when using RDMs that satisfy PQG

N -representability conditions, CVS-ERPA oscillator strengths tend to agree with those from

TDDFT to a greater degree than when using RDMs that satisfy PQG and T2 conditions. On

the other hand, oscillator strengths for Rydberg-type excitations [Fig. 7.4.4 (b)] computed

using CVS-ERPA appear to resemble those from RPA more than those from TDDFT.

7.5 Conclusions

We have developed a procedure for computing core-level excitation energies using a com-

bination of the variational optimization of the ground-state 2-RDM and the extended random

phase approximation. Because we lack N -representability conditions that differentiate be-

tween ground- and excited-state RDMs, the direct optimization of an excited-state 2-RDM

is still an open problem. As a result, several non-variational approaches have been proposed

that can extract excited-state information from variationally obtained ground-state RDMs.

The ERPA is one such method.

We have benchmarked the quality of ERPA- and CVS-ERPA-derived 1s→ π∗, 1s→ 3s,

and 1s→ 3p excitations in a set of small molecules for the case that the ground-state 2-RDMs

are obtained from a v2RDM-driven CASSCF procedure. In general, we find that CVS-ERPA

offers a modest improvement over its uncorrelated limit, the RPA, when considering absolute
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excitation energies. In particular, the description of 1s→ π∗-type transitions that the CVS-

ERPA offers is somewhat better than that provided by both RPA and TDDFT (with the

B3LYP functional). However, the CVS-ERPA appears to be a less promising approach for

the description of Rydberg-type excitations. In this case, CVS-ERPA absolute excitation

energies are still slightly better than those from RPA, but mean and maximum unsigned

errors from CVS-ERPA are larger than those from TDDFT. Further, CVS-ERPA is slightly

less accurate than RPA for predicting the relative positions of the principal and Rydberg

features. Similar conclusions can be drawn from the inspection of oscillator strengths. For

1s → π∗-type excitations, CVS-ERPA-derived oscillator strengths are in better agreement

with those from TDDFT than with those from RPA (presumably, the TDDFT oscillator

strengths are the more reliable ones). However, the CVS-ERPA does not consistently offer

any improvement over RPA for oscillator strengths corresponding to 1s → 3s and 1s → 3p

excitations.

Interestingly, we have shown that the (CVS-)ERPA appears to be insensitive to the degree

to which the ground-state 2-RDMs are N -representable. In terms of both excitation energies

and oscillator strengths, results from the (CVS-)ERPA are quite similar when utilizing RDMs

that satisfy either the two-particle (PQG) constraints or two-particle plus partial three-

particle (PQG+T2) constraints. This result suggests that the imposition of computationally

demanding higher-order N -representability conditions on RDMs that enter the (CVS-)ERPA

may not be as crucial as it is for the ground-state problem itself.

We derived new conditions implied by the killer condition that should be fulfilled by

ERPA-derived excited-state wave functions. One subset of these conditions can be satisfied

by removing active/active-type excitations from the ERPA excitation operator. We showed

that the CVS-ERPA excitation operator (which removes all active/active-type excitations)

consistently yields excitation energies that are superior to those obtained with the original

CASSCF-specific ERPA excitation operator. The truncated operator also simplifies the

assignment of K-edge features in some molecules.

Lastly, we demonstrated that the EOM-CC2 framework provides a description of 1s→ π∗

excitations that is clearly superior to that from TDDFT, RPA, or CVS-ERPA, and we note
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that even more accurate results could be obtained by considering higher levels of CC theory.

Along these lines, the success of the CC hierarchy suggests a clear route to improving CVS-

ERPA. The inclusion of double excitations within the ERPA will undoubtedly improve the

description of the core-excited states. Without any additional approximations, an ERPA

procedure that includes doubles could be devised with knowledge of the ground-state four-

electron reduced-density matrix. Further, the present formulation of the ERPA could be

improved by accounting for orbital relaxation effects, either through the STEX approxima-

tion or a combined SA-CASSCF/ERPA procedure.
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CHAPTER 8

A DYNAMICAL CORRELATION MODEL
FOR THE VARIATIONAL

TWO-ELECTRON REDUCED DENSITY
MATRIX COMPLETE ACTIVE SPACE
SELF-CONSISTENT FIELD METHOD

8.1 Introduction

An accurate description of molecular electronic structure ought to include a mixing of all

possible electronic states of the molecule. This is effectively done within a finite orbital basis

by representing the wavefunction as a configuration interaction (CI) of all the determinants

that can be defined within that basis. However, this representation of the wavefunction

presents immense computational hurdles for all but the smallest many-electron systems. For

larger systems, one typically expresses the wavefunction as a linear combination of select

configurations. This is the basis of the multiconfigurational self-consistent field (MCSCF)

approach [71, 44, 36, 107, 189, 225, 80, 75, 19, 12, 11, 34, 117, 246]. While this approach

overcomes the expense of a full CI, one needs to know beforehand the important configu-

rations to include in the description of the wavefunction. Probably the most widely used

formulation of MCSCF is the complete active space (CAS) approach. Here, a subspace of

chemically important orbitals is defined, and the wavefunction represented as a linear com-

bination involving all determinants that can be made from all possible excitations within

that subspace. Since only a subset of the determinants that define the full CI wavefunction

comprise the wavefunction, energies computed using CAS approaches are upper bounds to

the full CI energy. If the space of chemically important orbitals is large enough, one accounts

sufficiently for nondynamical correlation effects, and the deviation of the energy from full CI

80



can be attributed to the inadequacy of the CAS wavefunction in accounting for dynamical

correlation.

In order to account for the remaining correlation in a CAS framework, the wavefunc-

tion is often corrected to the desired order by perturbation theory. This defined the com-

plete active space perturbation theory (CASPT) approaches. Typically, the wavefunction

is corrected to first order, and the energy to second order, as in the complete active space

second-order perturbation theory (CASPT2)[7, 88] and second order n-electron perturbation

theory (NEVPT2)[8, 9], and driven similarity renormalization group second-order perturba-

tion theory (DSRG-PT2). [108, 68]. Other approaches include multireference configuration

interaction (MRCI) [25, 26, 69, 230] and multireference coupled-cluster (MRCC)[118, 97,

171, 79, 17, 78, 174, 173, 172, 45, 122, 121, 202, 33, 163, 110, 109, 111, 164, 149]. These

methods can generally be applied quite successfully to a range of many-electron systems,

but their ability to tackle larger systems can be limited. For instance, in the CASPT2 and

NEVPT2 methods, one needs to evaluate the active space three- and four-electron reduced

density matrix (3- and 4-RDM), which can be quite costly when the active space being con-

sidered is large. In DSRG-PT2, one needs to compute the three-body density cumulant of

the reference. In the MRCI method, scaling with respect to excitation level is steep, and

truncation at lower excitation levels is often necessary. The same can be said for MRCC

methods. Additionally, a final and generally acceptable MRCC theory is still lacking.[97].

Recently, a different approach for computing the remaining dynamical correlation for

state specific CAS wavefunctions was presented by Pernal and coworkers. [166] By employ-

ing an adiabatic connection (AC) between two Hamiltonians describing a non-interacting

limit/system defined by the CASSCF wavefunction, and the fully interacting limit defined

by full CI. They show that the approximate remaining dynamical correlation energy can be

computed as an integral of a function of the elements of 1RDMs of the reference, and tran-

sition density matrices. We obtain approximate transition density matrices using excited

state information obtained by applying Rowe’s equation of motion (EOM) and the extended

random phase approximation (ERPA)[32, 46]. As we will show, this is convenient in the

case where the variational two-electron reduced density matrix (v2RDM-) CASSCF method
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[57, 56] is used to compute references. First of all, reference 1- and 2RDMs are readily

available for calculations of excited states needed to compute transition density matrices

and more significantly, the remaining dynamical correlation energy can be computed for

references involving active-spaces larger than those that can be tackled with configuration

interaction (CI-) driven CASSCF.

This chapter is organized as follows. In section II, we briefly summarize the theory of

the AC for CAS wavefunctions, and we show how the ERPA makes it possible to compute

the remaining dynamical correlation using 1- and 2-RDMs from a reference calculated at

the CASSCF level of theory. In sections III and IV, we present, respectively, computational

details and numerical examples that illustrate the performance of this corrected v2RDM-

CASSCF (hereafter, the v2RDM-CASSCF+AC) approach. In section V, we present some

conclusions.

8.2 Theory

Here, we summarize the derivation outlined in Ref. 166. The remaining correlation

energy not accounted for by a CASSCF wavefunction can be written

Ecorr = Eexact − 〈Ψ|Ĥ|Ψ〉. (8.1)

where Ψ denotes the CASSCF wavefunction and Ĥ the full interaction Hamiltonian. The

many-electron system as described by the CASSCF wavefunction can now be considered to

represent a non-interacting limit. This system is connected to the fully-interacting limit by

an adiabatic connection Hamiltonian, Hα, defined

∀ 0 ≤ α ≤ 1, Ĥα = Ĥ(0) + α(Ĥ − Ĥ(0)) (8.2)

Here, Ĥ(0) is a Hamiltonian whose expectation value defines the CASSCF energy, Ĥ is the

full-interaction Hamiltonian, and α is a parameter such that when it is varied from 0 to

1, one smoothly switches between the uncorrelated limit defined by CASSCF, and the full

interaction limit. From the exact relationship between the ground state two-electron reduced
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density matrix, defined here in terms of natural spin orbitals p, q, r and s

2Dpq
rs = 〈Ψ0|â†pâ†qârâs|Ψ0〉, (8.3)

the one-electron reduced density matrix

1Dp
r = 〈Ψ0|â†pâr|Ψ0〉, (8.4)

and transition density matrices[140]

γ0ν
pr = 〈Ψ0|â†pâr|Ψν〉, (8.5)

γν0
qs = 〈Ψν |â†qâs|Ψ0〉, (8.6)

an expression for the approximate value of Ecorr can be derived

EAC
corr =

∫ 1

0

Wαdα, (8.7)

where Wα involves transition density matrices γα,0ν and γα,ν0 evaluated along the path of

the adiabatic connection

Wα =
1

2

∑
pqrs

′(∑
ν

γα,0νpr γα,ν0
qs + (1Dp

p − 1)(1Dq
q)δrqδps

)
(pr|qs) (8.8)

with the prime symbol indicating that all contributions involving cases where all four labels

p, q, r, and s denote either active or inactive electrons, are excluded. In deriving the results

in Equation 8.7, it has been assumed that the one-electron density matrix stays constant

along the path of the adiabatic connection

∀ 0 ≤ α ≤ 1, 1Dp,α
q = 1Dp,α=0

q . (8.9)

We compute approximate transition density matrices along the path of the adiabatic con-

nection by applying the spin-adapted form of the extended random phase approximation

(ERPA)

|Ψ̂ν〉 =
1√
2

∑
pq

cνpq(â
†
pâq + â†p̄âq̄)|Ψ0〉 (8.10)
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and Rowe’s equation of motion (EOM) approach to obtain the following generalized eigen-

value problem ∑
pq,p 6=q

cνpq 〈Ψ0|[â†râs + â†r̄âs̄, [Ĥ
α, â†pâq + â†p̄âq̄]]|Ψ0〉 =

ων
∑
pq,p 6=q

cνpq〈Ψ0|[â†râs + â†r̄âs̄, â
†
pâq + â†p̄âq̄]|Ψ0〉.

(8.11)

In equations 8.10 and 8.11, the overbar denotes a β spin orbital, and the lack thereof, an

α spin orbital. The left hand side of equation 8.11 is a function of elements of the 2RDM

computed at the v2RDM-CASSCF level of theory, and the right hand side that of elements

of the 1RDM. The cost of solving this equation scales as the cube of the number of elements

on the left hand side. Transition density matrix elements can subsequently be computed as

a function of elements of the 1RDM and the set of excitation and deexcitation coefficients

{cνpq}

γα,0νij =
∑
pq

cνpq〈Ψ0|[â†pâq, â
†
j âi]|Ψ0〉 (8.12)

Lastly, a cheaper approximation for the remaining correlation energy can be derived for

multireference wavefunctions such as CASSCF, for which coupling between active, inactive,

and virtual orbitals can be assumed to be weak. In such a case, an approximate value of EAC
corr

can be computed as a function of W (1), the first order term in the perturbative expansion of

Wα.

EAC
corr ≈ EAC0

corr =
W (1)

2
(8.13)

We refer readers to Ref. 166 for more details on this derivation.

8.3 Computational details

We obtain reduced density matrices at the single root CASSCF level of theory using

the v2RDM-CASSCF method. For these v2RDM-CASSCF calculations, full valence active

spaces are used. Table 8.1 summarizes the molecules and active spaces used in the first

part of this study. We also use full valence active spaces in computing single point energies

pertinent to a set of 29 reactions for which CCSD(T) data is available. The reaction set
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used is similar to the one used in the optimization of parameters for spin-component-scaled

(SCS) MP2[66] and SCS-CCSD methods[211]. The geometries used for these calculations

were obtained from the supporting information of Ref. 211.

For the molecules summarized in table 8.1, Dunning’s cc-pVXZ basis sets (X = D, T, Q)

[87] were used, whereas only the cc-pVQZ basis set was used for the calculation of reaction

energies. was used. The evaluation of two-electron integrals is accelerated by making use

of the density-fitting (DF) approximation. For calculations where the primary basis set is

cc-pVXZ (X = D, T, Q), the cc-pVQZ-JKFIT[226] auxiliary basis set is used.

Table 8.1: Full-valence active spaces when using the C2v ( [A1, A2, B1, B2] ) and
D2h ( [Ag, B1g, B2g, B3g, Au, B1u, B2u, B3u] ) point groups.

molecule point group active space restricted orbitals active orbitals
H2O C2v ( 8e, 6o) [ 1, 0, 0, 0 ] [ 3, 0, 1, 2 ]
N2 D2h (10e, 8o) [ 1, 0, 0, 0, 0, 1, 0, 0 ] [ 2, 0, 1, 1, 0, 2, 1, 1 ]
CO2 D2h (16e, 12o) [ 2, 0, 0, 0, 0, 1, 0, 0 ] [ 3, 0, 1, 1, 0, 3, 2, 2 ]
H2 D2h (2e, 2o) [ 0, 0, 0, 0, 0, 0, 0, 0 ] [ 1, 0, 0, 0, 0, 1, 0, 0 ]
H4 D2h (4e, 4o) [ 0, 0, 0, 0, 0, 0, 0, 0 ] [ 2, 0, 0, 0, 0, 2, 0, 0 ]
H6 D2h (6e, 6o) [ 0, 0, 0, 0, 0, 0, 0, 0 ] [ 3, 0, 0, 0, 0, 3, 0, 0 ]
H8 D2h (8e, 8o) [ 0, 0, 0, 0, 0, 0, 0, 0 ] [ 4, 0, 0, 0, 0, 4, 0, 0 ]

In computing 1- and 2-RDMs using the v2RDM-CASSCF method, active-space 1- and

2-RDMs are constrained to be ensemble N -representable by requiring that they satisfy en-

semble N -representability conditions. The N -representability constraints include those that

ensure the RDMs have the correct spin, trace, as well as the correct relationship to lower

order RDMs. Less trivial are the p-body conditions which ensure that joint probabilities

associated with any sum total of p particles (electrons, holes) in the active space are non-

negative, and a hierarchy of such conditions can be defined, depending on the number of

electrons and orbitals in the active space. In practice, we enforce the two-body (PQG)[61]

conditions, which are often good enough for a qualitative description of the electronic struc-

ture, or partial three-body (T2)[48] conditions, which are often necessary for quantitative

(sub kcal/mol) agreement with configuration interaction- (CI-) driven CASSCF. We consider

the ground state RDM calculations converged when the primal-dual error and the primal-
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dual energy gap [57] fall below 1.0 × 10−5 (in certain cases 1.0 × 10−4) and 1.0 × 10−4 Eh,

respectively.

The integral in equation (8.7) is evaluated by numerical integration using the trapezium

rule with 10 intervals. Except for the rare cases in which instabilities occur in equation

(8.11), Wα is very nearly linear with respective to α, and numerical integration with only a

few intervals yields a good approximation.

The code used to compute energies at the v2RDM-CASSCF+AC level of theory is im-

plemented as a plugin to the Psi4[165] electronic structure package. In addition, Psi4 was

used to compute the full-CI energies used as yardstick data in this study. The Orca [156]

electronic structure package was used to compute ground state energies at the NEVPT2 level

of theory. For calculations at the CASPT2 level of theory, the OpenMolcas[10] package was

used, with the IPEA shift parameter set to 0.25 Eh.

8.4 Results and discussion

8.4.1 Potential energy curves

We start by considering potential energy curves for the singlet ground state of H2O upon

symmetric dissociation, as shown in Fig. 8.4.1. Visually, there is good agreement between

v2RDM- and CI-based CASSCF. Numerically, the maximum unsigned errors of v2RDM-

CASSCF with respect to CI-CASSCF are 7 mEh and 0.7 mEh when using the PQG and

PQG+T2 constraints, respectively. Both these maximum errors occur at a bond length

of about 1.8 Å, in the intermediate region between the weak and strong static correlation

regimes. We also compare the NEVPT2 approach to v2RDM-CASSCF+AC, and we find

that the v2RDM-CASSCF+AC method recovers more correlation energy, in absolute terms,

than does NEVPT2. Now, when we compare v2RDM-CASSCF+AC where the RDMs used

are from a v2RDM-CASSCF calculation where the PQG N -representability conditions are

used, and another where the RDMs used are from a v2RDM-CASSCF calculation with the

PQG+T2 condition, we find that comparable amounts of correlation energy are recovered,

with v2RDM-CASSCF+AC (PQG) recovering slightly more of the correlation energy in
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absolute terms. The maximum unsigned difference in the correlation energies recovered

between these two curves is only 0.6 mEh.
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Figure 8.1: Correlation energy (a), total energy (b) and error relative to full CI (c)
for the singlet ground state of H2O computed with the cc-pVDZ basis set.

We also investigate the triple bond cleavage/dissociation of N2. Here we see, from Fig.

8.4.1, good qualitative agreement in energies between CI- and v2RDM-CASSCF, and good

quantitative agreement between CI- and v2RDM-CASSCF (PQG+T2). When we compare

the v2RDM-CASSCF+AC approach to NEVPT2, we find once more that the AC approach

recovers more dynamical correlation energy in comparison, and is closer to the yardstick

potential energy curve from MRCISDTQ [67]. We note that between the two potential energy

curves from v2RDM-CASSCF+AC, comparable amounts of electron correlation energy are

recovered, whether the reference RDM used is from a v2RDM-CASSCF computation with

PQG or PQG+T2 constraints. In the range of N-N distances presented here (1.0 ≤ RNN ≤

5.3 Å), the two curves differ by at most 0.8 mEh.
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Figure 8.2: Correlation energy (a), total energy (b) and error relative to MRCIS-
DTQ (c) for the singlet ground state of N2 computed with the cc-pVDZ basis set.

87



We also look at the potential energy curves of the ground state of linear hydrogen chains,

prototypical systems for strong correlation. Fig. 8.4.1 shows the potential energy curves

of the singlet ground states of H2, H4 and H6 calculated at various levels of theory. For

H2, there is perfect agreement at all bond lengths between CI-based and v2RDM-based

CASSCF. This is because the two-body (PQG) constraints used in the v2RDM-CASSCF

calculation guarantee ensemble N -representability of the ground state RDM. In such a case,

the two approaches to CASSCF are equivalent. Since there are no inactive electrons in

this case, the remaining dynamical correlation energy is computed from an integrand whose

calculation involves summing over active and virtual orbital labels. We find that the v2RDM-

CASSCF+AC-based approach recovers a larger amount of correlation energy, particularly

at shorter bond lengths, when compared with NEVPT2. For this reason, the v2RDM-

CASSCF+AC approach produces potential energy curves closer to full-CI. For H4 and H6,

we see similar qualitative results. However, for these cases, total energies computed from

RDMs using v2RDM-CASSCF with the PQG conditions can fall below their full-CI values

at bond lengths between those that define weak and strong static correlation. This is reme-

died by using references computed from v2RDM-CASSCF calculations with the PQG+T2

conditions.

In order to assess the performance of the v2RDM-CASSCF+AC approach over entire

potential energy curves, we compute nonparallelity errors relative to full CI (for H2O and

Hn, n=2,4,6) and MRCISDTQ (for N2). These are summarized in Table 8.2. For H2, nonpar-

allelity errors are 6.4 and 3.5 mEh, respectively, for NEVPT2 and v2RDM-CASSCF (PQG).

For H4, they are 12.2, 10.4, and 8.8 mEh with respect to NEVPT2, v2RDM-CASSCF+AC

(PQG), and v2RDM-CASSCF+AC (PQG+T2), and for H6, 14.0, 13.6, and 10.0 mEh. For

H2O, nonparallelity errors are 8.6, 9.4, and 7.7 mEh with respect to NEVPT2, v2RDM-

CASSCF+AC (PQG) and v2RDM-CASSCF+AC (PQG+T2). For N2, they are 4.8, 14.4,

and 4.8 mEh.

Lastly, for these test systems, we compute estimates of bond strengths based on the

depths of the potential energy curves. We find that the v2RDM-CASSCF+AC approach

deviates from full CI by 2.1 kcal/mol in its estimate of the H−H bond strength in H2,
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Figure 8.3: Correlation energy (a), (d), and (g), total energy (b), (e), and (h), and
error relative to full CI (c), (f), and (i) for the singlet ground state of Hn, n = 2, 4, 6
computed with the cc-pVDZ basis set.

Table 8.2: Nonparallelity errors (mEh) computed within the cc-pVDZ basis set
approximation.

v2RDM-CASSCF+AC

molecule NEVPT2 PQG PQG+T2
H2 6.4 3.5 †
H4 12.2 10.4 8.8
H6 18.9 15.9 12.5

H2O 8.6 9.4 7.7
N2 4.8 14.4 4.8

† PQG provides exact ensemble N -representability
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Table 8.3: Estimated bond strengths (kcal/mol).

v2RDM-CASSCF+AC

molecule ref.a NEVPT2 PQG PQG+T2
H2 103.0 99.5 100.9 †

H2O 104.0 104.2 102.9 102.1
N2 201.4 204.3 205.1 199.3

a ref. from full CI (H2 and H2O), and MRCISDTQ (N2).
† PQG provides exact ensemble N -representability

whereas NEVPT2 deviates by 3.5 kcal/mol. For H2O, the v2RDM-CASSCF+AC approach

deviates from full CI by 1.1 and 1.9 kcal/mol, respectively, in its estimation of the O−H bond

strength, when references from v2RDM-CASSCF-PQG or v2RDM-CASSCF (PQG+T2) are

used. The NEVPT2 approach, on the other hand, deviates from the full CI estimate by only

0.2 kcal/mol. For N2, we estimate the strength of the N−N triple bond to be 3.7 kcal/mol

above and 2.1 kcal/mol below that predicted with MRCISDTQ, whereas NEVPT2 predicts

a value that is 2.9 kcal/mol higher. Table 8.3 summarizes these results.

8.4.2 Relative energies

We apply the AC-v2RDM-CASSCF approach to compute relative energies from a stoi-

chiometric difference in molecular single point energies. We use a test set of molecules for

which high-quality CCSD(T)/cc-pVQZ data are available. The electronic structure of this

entire set of molecules is dominated by dynamical correlation, and provides a rather extreme

test by which we can assess the performance of the v2RDM-CASSCF+AC approach. We

also assess the performance of the CASPT2 approach, which would probably be the method

most readily available to correct for dynamical correlation effects when using complete ac-

tive space approaches. We summarize computed relative energies in (Table 8.4). These have

been computed from single point energies found in Table C.1 in Appendix C.

In order to assess how the N -representability conditions used in the ground state calcula-

tion affect the overall relative energies, we compare the mean and maximum unsigned errors

for the v2RDM-CASSCF calculation, using each of the PQG and PQG+T2 constraints. We

realize mean unsigned errors of 13.5 and 12.9 kcal/mol, relative to CCSD(T), showing that,
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at the v2RDM-CASSCF level of theory, computed relative energies are roughly equivalent

between calculations with the PQG and PQG+T2 N -representability conditions. These er-

rors, as we expect, are much larger than those for the methods that account for dynamical

correlation effects post-CASSCF.

When we compare relative energies computed with the v2RDM-CASSCF+AC approach,

we note mean and maximum unsigned errors of 7.1 and 19.4 kcal/mol, respectively, when the

underlying v2RDM-CASSCF calculation involves the PQG N -representability conditions.

The mean and maximum unsigned errors are only 2.2 and 6.5 kcal/mol, when the PQG+T2

conditions are used instead. Thus the overall reaction energies are sensitive to the N -

representability conditions used in the underlying v2RDM-CASSCF calculation. A similar

result is obtained when looking at reaction energies computed at the v2RDM-CASSCF+AC0

level of theory, for which mean unsigned errors are 8.0 and 3.5 kcal/mol, when using RDMs

from v2RDM-CASSCF with the PQG and PQG+T2 constraints, respectively.

Lastly, we compare the v2RDM-CASSCF+AC approach to CASPT2, and we see that

when using RDMs from v2RDM-CASSCF with the PQG conditions, errors are much larger

than those for CASPT2, which gives mean and maximum unsigned errors of 2.4 and 7.6

kcal/mol, respectively. Only when we use RDMs from v2RDM-CASSCF calculations with

the PQG+T2 do we get comparable errors. With the v2RDM-CASSCF+AC (PQG+T2)

approach , errors in the reaction energies are slightly smaller than those from CASPT2,

whereas with the v2RDM-CASSCF+AC0 (PQG+T2), errors are slightly larger.

8.5 Conclusions

We have presented a model for dynamical correlation energy for the v2RDM-CASSCF

method. The model is based on the adiabatic connection between the Hamiltonian describing

a system at the v2RDM-CASSCF level of theory, and another described by full CI.

We computed potential energy curves for a range of molecules. The potential energy

curves we obtain using this method are qualitatively accurate, and predicted equilibrium

bond lengths for the singlet ground states are consistent with those from full CI calculations.
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Table 8.4: Relative energies (kcal/mol) from CCSD(T), v2RDM-CASSCF+AC(0),
and CASPT2 (labeled PT2)

PQG PQG+T2

reaction CCSD(T) ref. AC AC0 ref. AC AC0 PT2
aF2 + H2 → 2HF -134.1 17.7 1.8 -4.4 † † † -2.7
F2O + H2 → F2 + H2O -68.4 6.1 0.2 2.4 4.0 -1.6 0.6 1.9
O3 + 3H2 → 3H2O -223.4 45.7 14.3 -22.8 33.8 1.9 2.2 4.7
H2O2 + H2 → 2H2O -86.3 8.3 2.3 4.8 6.3 0.3 2.7 0.3
CO + H2 → CH2O -4.6 4.7 -12.0 -13.7 15.7 -1.0 -2.1 -2.2
CO + 3H2 → CH4 + H2O -63.6 33.3 -5.0 -7.0 37.9 0.8 -0.7 -2.8
N2 + 3H2 → 2NH3 -38.0 36.7 0.4 2.5 37.5 4.0 9.5 0.9
1CH2 + H2 → CH4 -128.8 5.0 -6.7 -6.2 9.3 -1.7 -0.5 -2.7
N2O + H2 → N2 + H2O -80.7 12.5 11.6 13.3 1.9 0.7 2.3 3.8
C2H2 + H2 → C2H4 -49.4 2.2 -11.8 -10.8 12.4 0.6 3.0 1.3
CH2=C=O + 2H2 → CH2O + CH4 -43.1 11.1 6.0 9.6 4.2 -0.3 3.8 1.9
CO + H2O → CO2 + H2 -6.7 -7.5 -8.6 -0.5 -0.4 -2.4 -5.9 -5.8
C2H2 + HF → C2H3F -27.3 -3.8 -12.8 -9.5 7.6 0.5 – 3.4
HCN + H2O → CO + NH3 -12.6 -5.2 4.7 10.5 -10.4 -5.7 -7.9 3.7
HCN + NH3 → N2 + CH4 -38.2 -8.6 -0.7 0.9 -10.0 -1.6 -0.8 -0.1
O3 + CH4 → 2H2O + CO -159.7 12.5 19.4 21.5 -4.1 1.2 2.9 7.6
N2 + F2 → N2F2 17.3 11.9 -10.0 -15.9 25.3 3.6 -1.8 –
BH3 + 2F2 → BF + 3HF -248.1 0.3 11.6 14.8 -3.9 6.5 9.6 4.6
2BH3 → B2H6 -43.3 -7.8 -17.2 -17.2 8.7 -1.5 -1.1 -2.0
CH2=C → C2H2 -44.8 3.3 6.7 6.2 -4.5 -2.5 -3.5 -3.4
HCN → CNH(TS)b 47.7 -2.7 -5.3 -5.4 4.5 1.2 1.0 0.6
HF + H+ → H2F+ -122.9 -22.0 -4.5 4.4 -21.1 -3.6 5.5 2.2
H2O + H+ → H3O+ -173.0 -26.5 -5.5 0.1 -24.5 -2.0 5.3 0.0
NH3 + H+ → H4N+ -212.9 -27.9 -9.3 -8.4 -22.8 -4.1 -4.0 -2.6
OH− + H+ → H2O -412.5 -23.5 -6.7 4.3 -22.4 -5.7 5.3 2.6
NH2

− + H+ → NH3 -426.1 -25.3 -7.1 -1.2 -23.1 -3.6 4.1 -0.3
2NH3 → (NH3)2 -3.4 -3.9 -3.1 -6.5 1.6 -0.5 – -0.2
2H2O → (H2O)2 -5.4 -17.8 -1.5 -3.2 1.3 0.8 1.9 -1.7
2HF → (HF)2 -4.9 -3.1 0.2 3.1 1.6 0.5 -0.3 0.7

MUE 13.5 7.1 8.0 12.9 2.2 3.5 2.4
MaxUE 45.7 19.4 22.8 37.9 6.5 9.6 7.6

a PQG conditions guarantee exact ensemble N -representability.
b Transition state geometry.

† PQG provides exact N -representability of the 2RDM.
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One of our interests in this study was an assessment of the effects on the correlation energy

recovered and on the total energy calculated of the N -representability conditions used in the

underlying v2RDM-CASSCF calculation. For the test systems we present (H2O and N2),

we find that approximately the same amount of correlation energy is recovered when either

PQG or PQG+T2 N -representability conditions are used. The total energies computed from

v2RDM-CASSCF+AC (PQG) are predictably lower than those from v2RDM-CASSCF+AC

(PQG+T2).

We also computed relative energies for a set of 29 reactions. We compare results from

the v2RDM-CASSCF+AC and CASPT2 approaches with yardstick values from CCSD(T).

We find that, for these reactions, the v2RDM-CASSCF+AC approach slightly outperforms

CASPT2, as long as the more stringent PQG+T2 N -representability conditions are used in

the underlying v2RDM-CASSCF calculation.
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CHAPTER 9

CONCLUDING REMARKS

The goal of quantum chemistry is to develop models that allow us to accurately predict

molecular structure and properties, and to explain them using more fundamental principles.

Since electrons move at much smaller time scales when compared to nuclei, as far as chem-

istry is concerned, the molecular structure problem can be recast as an electronic structure

problem. In this dissertation, we have described progress made over the last few years de-

veloping approaches for electronic structure based on the variational two-electron reduced

density matrix (v2RDM) complete active space self-consistent (CASSCF) field method.

The v2RDM-CASSCF method is able to treat a much larger number of orbitals at the

CASSCF level than is possible with configuration interaction (CI)- driven CASSCF codes,

and it is, in this respect, better posed to address the electron correlation problem in cases

where a large number of orbitals may need to be treated at the CASSCF level of theory. We

highlight the following

• analytic first-order derivatives of the energy for v2RDM-CASSCF.

• further development of an equation of motion approach for computing excited states.

• the development of a model for dynamical correction for v2RDM-CASSCF.

9.1 Analytic gradients for v2RDM-CASSCF

The development of analytic energy gradients for an electronic structure method involves

evaluating the derivatives in terms of quantities that can be computed at the molecular

geometry of interest. In this dissertation, we have presented work on the development and

implementation of analytic first-order derivatives of the energy for the v2RDM-CASSCF

method. The implementation of these derivatives as computer code makes it possible to

evaluate gradients accurately. The expression for the first derivative of the energy depends
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on the derivatives of the one- and two-electron, as well as the overlap integrals. The rest

of the quantities needed to evaluate the gradient are quantities already on hand once the

energy has been evaluated at the geometry of interest. Therefore we evaluate gradients

more accurately, but also more efficiently, since having an analytic gradient code means

one can choose to avoid using finite difference methods, which require that the gradient be

computed at every vibrational normal mode. These gradients have been implemented as a

freely available plugin to the Psi4[165] electronic structure package.

The work on analytic gradients has been further developed within the DePrince group to

take advantage of the computational efficiency afforded by density-fitted (DF)- two-electron

integrals.[148] In addition, an implementation of the v2RDM-CASSCF method that makes

use of both the central processing unit (CPU) and the graphics processing unit (GPU) has

been developed. This has resulted in about a threefold speedup in the calculation of single

point energies. This has been a boon for calculations such as geometry optimizations, for

which multiple evaluations of single point energies at the v2RDM-CASSCF level of theory

are necessary. With the analytic gradient code that makes uses of DF, and the hybrid

CPU/GPU implementation of v2RDM-CASSCF, geometry optimizations for systems for

which the active space includes several tens of orbitals are routine. The development of

higher-order derivatives such as the Hessian is still outstanding. At the moment, second-

order derivatives can be computed from a finite difference of the first derivatives.

9.2 Modeling near K-edge excited states using the

extended random phase approximation

As explained in chapter 4, the v2RDM-CASSCF method with approximateN -representability

constraints on the active space 2RDM yields the lower bound to the CI-CASSCF energy for

a given spin symmetry. This has motivated the work that has been done to develop an

excited state approach for the method. Since the ground state 2RDM is typically available

post-v2RDM-CASSCF, we favored an approach for excited states based Rowe’s equation of

motion (EOM) and the extended random phase approximation (ERPA). This formulation for

computing excited states involves setting up an eigenvalue problem that can be expressed in
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terms of elements of the ground state 2RDM. The fact that we use the ERPA partly steered

us towards using this method to model excited states associated with NEXAFS, since these

excited states are presumably dominated by single excitations. We employ a core-valence

separation (CVS) framework to compute excited states, to make sure that the ”killer” condi-

tion in the EOM is not violated. We find, using RDMs from full valence v2RDM-CASSCF,

that excitation energies associated with the prominent 1s→π∗ and 1s→3s/p excited states

are (only) modestly improved (≈ 7 eV, on average, from experimental (reference) values)

relative to those where the RDM and orbitals are computed at the Hartree-Fock (HF) level of

theory (≈ 12 eV, on average, from experiment). At the same time, time-dependent coupled

cluster methods, which involves some doubles excitations, yield much smaller errors relative

to experiment (≈ 2 eV, on average).

Evidently, one of the ways of improving the quality of excited states within the EOM

framework is to include a higher degree of excitations in our ansatz for the excited state

wavefunction. Including double excitations, for instance, yields an EOM in terms of ele-

ments of the ground state 4-RDM, which can be computed in our current implementation of

v2RDM-CASSCF. Short of developing this more complicated EOM, one may try to account

for orbital relaxation effects through an approach such as the static exchange (STEX) approx-

imation. Explicitly time-dependent methods where molecular response is modeled through

the changes in its dipole moment can also be used to predict excitation energies, but these

can only be applied to cases where the ground to excited state transition is dipole-allowed.

In addition, reconstruction of the 3RDM, which closes the EOM of a time-dependent 2RDM,

is not trivial.

9.3 A correction for electron correlation energy for

v2RDM-CASSCF references

In CASSCF, one typically defines an active space that contains only a small number of

orbitals, relative to the total number that defines the molecular system, in order to account

for non-dynamical correlation effects. Relative to full CI, CI-CASSCF involves a smaller

number of electronic configurations, and so the energy calculated at that level of theory is
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always higher than the corresponding full CI energy. The CI-CASSCF wavefunction often

needs to be corrected for dynamical correlation that is not accounted for explicitly out-

side the active space orbitals. This is often done by multireference perturbation theory

(MRPT) approaches. We have developed a model for dynamical correlation based on Per-

nal’s adiabatic connection (AC) formula for CASSCF references. We account for dynamical

correlation effects by computing a correction to the v2RDM-CASSCF energy. Computing

this correction involves knowledge of the 2RDM computed from v2RDM-CASSCF, as well

as transition density matrices involving the v2RDM-CASSCF reference and the entire spec-

trum of excited states. In our case, excited states are computed at the ERPA level of theory,

and the computational cost of our approach is dominated by the cost of constructing the

matrices that define the generalized eigenvalue problem. A clear advantage of this approach

over MRPT is that the treatment of both non-dynamical and dynamical correlation energy

is more balanced with respect to the size of the active space. With this approach, we can

more reliably account for electron correlation effects in systems involving a large number of

orbitals in the active space.

9.4 General outlook

Certainly, there has been a lot of progress over the last few decades in developing RDM-

based methods for applications in quantum chemistry. The development of constraints for

ensemble and pure state N -representability, as well as advances in semidefinite programming

(SDP) technqiues made it possible to determine the 2RDM by variational minimization

of the energy functional. For this reason, the ground state problem is mostly resolved.

In the DePrince Group, work continues to develop post-CASSCF methods for dynamical

correlation. The utility of multiconfigurational pair-density functional theory (MC-PDFT)

as well as the v2RDM-CASSCF+AC has already been explored. Work is ongoing within

the group to develop angular momentum constraints on complex-valued RDMs in order to

properly describe states with a non-zero z projection of the orbital angular momentum.

The excited state problem, by contrast, may yet warrant more attention. A means by

which excited states and excited state properties can be variationally determined is still
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lacking. Of the approaches for excited states that have been discussed in this section, the

time-independent EOM approaches hold the most promise. The description of excited states

can be systematically improved by increasing the degree of excitations and deexcitations

included in the ansatz for the excited state wavefunction. Even though the resulting eigen-

value equations become more complex, and require higher-order RDMs, the challenge really

lies in obtaining good approximations to these higher order RDMs.
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APPENDIX A

ANALYTIC GRADIENTS

A.1 Errors in equilibrium bond lengths

Table A.1 provides computed equilibrium molecular geometries for a set of twenty small

molecules at the full-valence complete active space self-consistent field (CASSCF) level of

theory. Both conventional configuration-interaction (CI)-based and variational two-electron

reduced-density-matrix (v2RDM)-based CASSCF computations were performed. CASSCF

computations employed the cc-pVXZ basis set (X = D, T, Q). The reduced-density matri-

ces in the v2RDM-CASSCF computations satisfied either two-particle[61] (PQG) or two-

particle and partial three-particle[48, 249] (PQG+T2) N -representability conditions. The

CASSCF equilibrium bond lengths were compared to those determined experimentally. All

experimentally-obtained equilibrium bond lengths, with the exception of that for molecular

hydrogen, were taken from Ref. 72 and the references therein. For H2, the equilibrium bond

length was taken from Ref. 74.

A.2 Redundant orbital rotations

The v2RDM-CASSCF energy is invariant to rotations among active, inactive, or exter-

nal orbitals. Here, we provide numerical evidence for the invariance of the v2RDM-CASSCF

energy and energy gradient to active-active orbital rotations. Table A.2 provides full-valence

v2RDM-CASSCF energies and magnitudes of the energy gradient for the same twenty small

molecules considered in the Table A.1 at experimental geometries obtained from the Compu-

tational Chemistry Comparison and Benchmark Database[85]. The semidefinite optimization

of the active-space two-electron reduced-density matrix was considered converged when the

primal (||Ax − b||) and dual (||ATy − c + z||) errors fell below 10−9 and the primal/dual

energy gap (|Eprimal − Edual|) fell below 10−9 Eh. The orbital optimization procedure was
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Table A.2: Full-valence v2RDM-CASSCF energies (Eh) and magnitudes of the
energy gradients (Eha−1

0 ) for twenty small molecules at experimental geome-
tries obtained from the Computational Chemistry Comparison and Benchmark
Database[85]. The v2RDM-CASSCF orbital optimizations either did or did not
include active-active orbital rotations.

energy |gradient|
active-active rotations? active-active rotations?

Molecule yes no yes no
C2H2 -77.0005879659 -77.0005879659 0.0707616781 0.0707616787
C2H4 -78.2278654946 -78.2278654946 0.0373411038 0.0373411041
CH2 -114.0364964079 -114.0364964081 0.0932386472 0.0932386484
CH2O -38.9237035145 -38.9237035145 0.0327917165 0.0327917160
CH4 -40.2940001093 -40.2940001091 0.0414512353 0.0414512344
CO2 -187.8506879157 -187.8506879152 0.0467292144 0.0467292151
CO -112.8889003176 -112.8889003186 0.0594535374 0.0594535374
F2 -198.7657406549 -198.7657406555 0.0575191239 0.0575191239
H2 -1.1469295720 -1.1469295720 0.0287647997 0.0287647997
H2O2 -150.8987800334 -150.8987800342 0.0494914313 0.0494914323
H2O -76.0814873694 76.0814873708 0.0294042832 0.0294042822
HCN -93.0530070519 -93.0530070522 0.0758791629 0.0758791628
HF -100.0439426124 -100.0439426120 0.0080527299 0.0080527297
HNC -93.0262784072 -93.0262784073 0.0619382277 0.0619382293
HNO -129.9506463130 -129.9506463131 0.0276487230 0.0276487271
HOF -174.8374077773 -174.8374077778 0.0403951421 0.0403951416
N2 -109.1126670185 -109.1126670181 0.0955042450 0.0955042478
N2H2 -110.1751499059 -110.1751499063 0.0461777019 0.0461777021
O3 -224.5353702162 -224.5353702162 0.0468856709 0.0468856706
NH3 -56.2751424265 -56.2751424260 0.0408123411 0.0408123423

considered converged when the orbital gradient fell below 10−9 Eh and the energy change

produced by orbital rotations fell below 10−12 Eh. The v2RDM-CASSCF computations were

performed within the cc-pVDZ basis set while enforcing the PQG N -representability con-

ditions. Results are presented for computations that either include or ignore active-active

orbital rotations. The largest deviation between energies computed with and without such

rotations is only 1.4 × 10−9 Eh, which is comparable to the energy convergence criterion

employed in this study. The largest deviation between magnitudes of energy gradients com-

puted with and without active-active orbital rotations is only 4.1 × 10−9 Eha−1
0 .
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APPENDIX B

MODELING CORE-LEVEL EXCITED
STATES

B.1 Basis set dependence of computed K-edge

features

Principal K-edge features were computed for small molecules using time-dependent equation-

of-motion second order approximate coupled cluster (TD-EOM-CC2), time-dependent den-

sity functional theory (TDDFT, using the B3LYP functional), the random phase approxi-

mation (RPA), and the extended random phase approximation (ERPA). The ground-state

one- and two-electron reduced density matrices that enter the ERPA equations were ob-

tained from full-valence variational two-electron reduced-density-matrix-driven complete ac-

tive space self-consistent field computatiosn. We consider 1s → π∗ excitations in molecules

containing π bonds (CO, H2CO, HCN, C2H2, N2, and N2O). Tables B.1, B.2, B.3, and B.4

provide errors in the excitation energies computed at each level of theory, as compared to

experimentally obtained values, when the computations are performed within the cc-pVTZ,

cc-pCVTZ, aug-cc-pVTZ, and cc-pVQZ basis sets, respectively.
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Table B.1: Core-level excitation energies (eV) from experiment and deviations of
the same as computed by linear response TDDFT (B3LYP), TDHF, and the ERPA
using the cc-pVTZ basis set and a full valence active-space.

ERPA
molecule transition exp. CC2 TDDFT RPA PQG PQG+T2
CO C 1s→ π∗ 287.4a 1.8 -11.2 7.0 5.2 5.0

O 1s→ π∗ 533.6b 1.7 -13.7 16.5 6.9 6.9
H2CO C 1s→ π∗ 285.6c 2.7 -10.3 8.8 7.0 7.2

O 1s→ π∗ 530.8c 1.6 -14.1 15.2 6.6 6.6
C2H2 C 1s→ π∗ 285.8d 2.2 -10.5 10.3 6.8 6.9
HCN C 1s→ π∗ 286.4e 2.2 -10.6 9.6 6.5 6.6

N 1s→ π∗ 399.7e 2.0 -12.0 12.3 7.0 7.0
N2 N 1s→ π∗ 401.0f 1.9 -12.4 11.3 6.4 6.4
N2O Nt 1s→ π∗ 401.1g 2.1 -12.2 12.4 6.6 6.9

Nc 1s→ π∗ 404.7g 2.4 -12.3 11.4 6.6 6.9
O 1s→ π∗ 534.8g 0.9 -14.3 18.5 8.2 8.8

MUE 2.0 12.1 12.1 6.7 6.8
MaxUE 2.7 14.3 18.5 8.2 8.8

Experimental results a−g come from references 162, 177, 180, 216, 76, 82 and 217, respectively.

Table B.2: Core-level excitation energies (eV) from experiment and deviations of
the same as computed by linear response TDDFT (B3LYP), TDHF, and the ERPA
using the cc-pCVTZ basis set and a full valence active-space.

ERPA
molecule transition exp. CC2 TDDFT RPA PQG PQG+T2
CO C 1s→ π∗ 287.4a 2.3 -11.3 7.0 5.2 5.0

O 1s→ π∗ 533.6b 1.7 -13.8 16.5 6.9 6.9
H2CO C 1s→ π∗ 285.6c 2.7 -10.4 8.8 7.0 7.2

O 1s→ π∗ 530.8c 1.6 -14.1 15.1 6.6 6.7
C2H2 C 1s→ π∗ 285.8d 2.2 -10.5 10.2 6.8 6.9
HCN C 1s→ π∗ 286.4e 2.2 -10.6 9.6 6.5 6.6

N 1s→ π∗ 399.7e 2.0 -12.1 12.3 7.0 7.0
N2 N 1s→ π∗ 401.0f 1.9 -12.5 11.2 6.4 6.4
N2O Nt 1s→ π∗ 401.1g 2.1 -12.2 12.4 6.6 6.9

Nc 1s→ π∗ 404.7g 2.4 -12.4 11.4 6.6 6.9
O 1s→ π∗ 534.8g 0.9 -14.3 18.5 8.2 8.8

MUE 2.0 12.2 12.1 6.7 6.9
MaxUE 2.7 14.3 18.5 8.2 8.8

Experimental results a−g come from references 162, 177, 180, 216, 76, 82 and 217, respectively.
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Table B.3: Core-level excitation energies (eV) from experiment and deviations of
the same as computed by linear response TDDFT (B3LYP), TDHF, and the ERPA
using the aug-cc-pVTZ basis set and a full valence active-space.

ERPA
molecule transition exp. CC2 TDDFT RPA PQG PQG+T2
CO C 1s→ π∗ 287.4a 1.7 -11.2 7.0 5.2 5.0

O 1s→ π∗ 533.6b 1.7 -13.7 16.5 6.9 6.9
H2CO C 1s→ π∗ 285.6c 2.7 -10.4 8.8 7.2 7.2

O 1s→ π∗ 530.8c 1.7 -14.0 15.2 7.3 6.7
C2H2 C 1s→ π∗ 285.8d 2.2 -10.6 10.2 6.8 6.9
HCN C 1s→ π∗ 286.4e 2.2 -10.7 9.6 6.6 6.6

N 1s→ π∗ 399.7e 2.0 -15.3 12.3 6.6 7.1
N2 N 1s→ π∗ 401.0f 1.9 -12.4 11.3 6.4 6.4
N2O Nt 1s→ π∗ 401.1g 2.1 -12.2 12.4 6.7 7.0

Nc 1s→ π∗ 404.7g 2.4 -12.4 11.4 6.6 6.9
O 1s→ π∗ 534.8g 1.0 -14.3 18.5 8.3 8.8

MUE 2.0 12.5 12.1 6.8 6.9
MaxUE 2.7 15.3 18.5 8.3 8.8

Experimental results a−g come from references 162, 177, 180, 216, 76, 82 and 217, respectively.

Table B.4: Core-level excitation energies (eV) from experiment and deviations of
the same as computed by linear response TDDFT (B3LYP), TDHF, and the ERPA
using the cc-pVQZ basis set and a full valence active-space.

ERPA
molecule transition exp. CC2 TDDFT RPA PQG PQG+T2
CO C 1s→ π∗ 287.4a 1.7 -11.3 7.0 5.2 5.0

O 1s→ π∗ 533.6b 1.7 -13.9 16.5 6.9 6.9
H2CO C 1s→ π∗ 285.6c 2.7 -10.4 8.7 7.0 7.2

O 1s→ π∗ 530.8c 1.6 -14.2 15.1 6.6 6.7
C2H2 C 1s→ π∗ 285.8d 2.2 -10.6 10.2 6.8 6.9
HCN C 1s→ π∗ 286.4e 2.2 -10.7 9.6 6.5 6.6

N 1s→ π∗ 399.7e 2.0 -12.2 12.3 6.5 7.0
N2 N 1s→ π∗ 401.0f 1.9 -12.5 11.2 6.4 6.4
N2O Nt 1s→ π∗ 401.1g 2.1 -12.3 12.4 6.6 6.9

Nc 1s→ π∗ 404.7g 2.4 -12.5 11.3 6.6 6.9
O 1s→ π∗ 534.8g 0.9 -14.4 18.4 8.2 8.8

MUE 1.9 12.3 12.1 6.7 6.8
MaxUE 2.7 14.4 18.4 8.2 8.8

Experimental results a−g come from references 162, 177, 180, 216, 76, 82 and 217, respectively.
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APPENDIX C

A DYNAMICAL CORRELATION MODEL

Table C.1: Single point energies (Ha) from CCSD(T), v2RDM-CASSCF+AC, and
v2RDM-CASSCF+AC0

PQG PQG+T2

molecule CCSD(T) ref. AC AC0 ref. AC AC0

B2H6 -53.1591 -53.0048 -53.2428 -53.2323 -52.9603 -53.1939 -53.1809
BF -124.5386 -124.2738 -124.5620 -124.5518 -124.2713 -124.5583 -124.5471
BH3 -26.5451 -26.4617 -26.5732 -26.5679 -26.4526 -26.5612 -26.5551
C2H2 -77.2091 -77.0296 -77.2705 -77.2675 -77.0031 -77.2450 -77.2415
C2H3F -177.6257 -177.1712 -177.7116 -177.7232 -177.1264 -177.6650 -177.6760
C2H4 -78.4616 -78.2568 -78.5398 -78.5352 -78.2140 -78.4946 -78.4872
CH2=C=O -152.4036 -152.0387 -152.5024 -152.5050 -151.9892 -152.4504 -152.4498
CH2=C -77.1377 -76.9634 -77.2097 -77.2059 -76.9244 -77.1697 -77.1645
CH2O -114.3689 -114.0806 -114.4237 -114.4253 -114.0554 -114.3978 -114.3973
1CH2 -39.0719 -38.9639 -39.0938 -39.0897 -38.9574 -39.0856 -39.0809
CH4 -40.4509 -40.3130 -40.4814 -40.4766 -40.2997 -40.4654 -40.4588
CNH(TS)b -93.2250 -93.0123 -93.2868 -93.2862 -92.9814 -93.2577 -93.2566
CO2 -188.3845 -187.9196 -188.4484 -188.4598 -187.8992 -188.4272 -188.4374
F2 -199.3588 -198.8467 -199.3719 -199.4019 † † †
F2O -274.4358 -273.7157 -274.4605 -274.5007 -273.7107 -274.4560 -274.4962
H2F+ -100.5690 -100.3231 -100.5803 -100.5861 -100.3216 -100.5788 -100.5844
H2O2 -151.4082 -150.9641 -151.4324 -151.4500 -150.9577 -151.4261 -151.4433
(H2O)2 -152.7281 -152.2774 -152.7490 -152.7656 -152.2436 -152.7422 -152.7540
H2O -76.3598 -76.1202 -76.3690 -76.3759 -76.1186 -76.3675 -76.3742
H3O+ -76.6354 -76.4381 -76.6534 -76.6514 -76.4333 -76.6464 -76.6415
HCN -93.3011 -93.0840 -93.3544 -93.3537 -93.0646 -93.3357 -93.3342
HCOOH -189.5616 -189.0627 -189.6346 -189.6467 -189.0341 -189.5988 –
(HF)2 -200.7540 -200.1969 -200.7621 -200.7944 -200.1893 -200.7615 -200.7999
N2F2 -308.7354 -307.9494 -308.8059 -308.8448 -307.9190 -308.8134 -308.8134
N2O -184.4615 -184.0087 -184.5326 -184.5418 -183.9812 -184.5052 -184.5135
N2 -109.4042 -109.1492 -109.4456 -109.4452 -109.1403 -109.4371 -109.4362
NH2

− -55.8140 -55.5843 -55.8200 -55.8276 -55.5827 -55.8186 -55.8260
(NH3)2 -112.9916 -112.6191 -113.0321 -113.0326 -112.5999 -113.0137 –
NH3 -56.4930 -56.3037 -56.5105 -56.5086 -56.2985 -56.5033 -56.4985
H4N+ -56.8323 -56.6875 -56.8645 -56.8614 -56.6742 -56.8491 -56.8443
O3 -225.2020 -224.6216 -225.2584 -225.2793 -224.5975 -225.2341 -225.2546
OH− -75.7024 -75.4254 -75.7009 -75.7253 † † †
CO -113.1878 -112.9288 -113.2255 -113.2243 -112.9212 -113.2171 -113.2149

a PQG conditions guarantee exact ensemble N -representability.
b Transition state geometry.

†: PQG provides exact N -representability.
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APPENDIX D

SLATER-CONDON RULES

In quantum chemistry, one usually encounters operators that are a sum of one and two-

electron operators. For this reason, we consider here the evaluation of matrix elements

〈ΦK |Oi|ΦL〉, i ∈ 1, 2 where Oi is a sum of i-electron operators, and ΦK and ΦL are N -

electron Slater determinants. We distinguish three cases for each type of operator.

D.1 Matrix elements between determinants for

one-electron operators

• Case 1, when the two determinants are identical, that is |ΦK〉 = |ΦL〉 = | · · ·nm · · · 〉

〈ΦK |O1|ΦK〉 =
N∑
m

(m|h|m) (D.1)

where (m|h|m) is a one-center integral defined as in 2.25

• Case 2, when the two determinants differ by one spin orbital, that is, |ΦK〉 = | · · ·mn · · · 〉
and |ΦL〉 = | · · · pn · · · 〉

〈ΦK |O1|ΦL〉 = (m|h|p) (D.2)

• Case 3, when the two determinants differ by two or more orbitals, that is |ΦK〉 =

| · · ·mn · · · 〉 and |ΦL〉 = | · · · pq · · · 〉

〈ΦK |O1|ΦL〉 = 0 (D.3)

D.2 Matrix elements between determinants for

two-electron operators

• Case 1, when the two determinants are identical, that is |ΦK〉 = |ΦL〉 = | · · ·nm · · · 〉

〈ΦK |O2|ΦK〉 =
1

2

N∑
m

N∑
n

[(mm|nn)− (mn|nm)] (D.4)

where (mm|nn) and (mn|nm) are two-center integrals defined as in 2.27
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• Case 2, when the two determinants differ by one spin orbital, that is, |ΦK〉 = | · · ·mn · · · 〉
and |ΦL〉 = | · · · pn · · · 〉

〈ΦK |O2|ΦL〉 =
N∑
n

[(mp|nn)− (mn|np)] (D.5)

• Case 3, when the two determinants differ by two or more orbitals, that is |ΦK〉 =

| · · ·mn · · · 〉 and |ΦL〉 = | · · · pq · · · 〉

〈ΦK |O2|ΦL〉 = (mp|nq)− (mq|np) (D.6)

Now that we have developed the notation and formalism of second quantization, the

reader should hopefully be able to follow closely the rest of this dissertation.
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[104] Fabian Lackner, Iva Březinová, Takeshi Sato, Kenichi L. Ishikawa, and Joachim
Burgdörfer. High-harmonic spectra from time-dependent two-particle reduced-density-
matrix theory. Phys. Rev. A, 95:033414, Mar 2017.

[105] A. J. Lee, F. D. Vila, and J. J. Rehr. Local time-correlation approach for calculations
of X-ray spectra. Phys. Rev. B, 86:115107, Sep 2012.

[106] B. H. Lengsfield. General secondorder MCSCF theory for large CI expansions. J.
Chem. Phys., 77(8):4073–4083, 1982.

[107] Bernard Levy and Gaston Berthier. Generalized Brillouin theorem for multiconfig-
urational SCF theories. International Journal of Quantum Chemistry, 2(2):307–319,
1968.

[108] Chenyang Li and Francesco A. Evangelista. Multireference driven similarity renor-
malization group: A second-order perturbative analysis. J. Chem. Theory Comput.,
11(5):2097–2108, 2015. PMID: 26574413.

[109] Xiangzhu Li and Josef Paldus. The general-model-space state-universal coupled-cluster
method exemplified by the LiH molecule. J. Chem. Phys., 119(11):5346–5357, 2003.

[110] Xiangzhu Li and Josef Paldus. General-model-space state-universal coupled-cluster
theory: Connectivity conditions and explicit equations. J. Chem. Phys., 119(11):5320–
5333, 2003.

117



[111] Xiangzhu Li and Josef Paldus. Performance of the general-model-space state-universal
coupled-cluster method. J. Chem. Phys., 120(13):5890–5902, 2004.

[112] Giovanni Li Manni, Rebecca K. Carlson, Sijie Luo, Dongxia Ma, Jeppe Olsen, Don-
ald G. Truhlar, and Laura Gagliardi. Multiconfiguration pair-density functional theory.
J. Chem. Theory Comput., 10(9):3669–3680, 2014.

[113] Giovanni Li Manni, Dongxia Ma, Francesco Aquilante, Jeppe Olsen, and Laura
Gagliardi. SplitGAS Method for Strong Correlation and the Challenging Case of Cr2.
J. Chem. Theory Comput., 9(8):3375–3384, 2013. PMID: 26584093.

[114] Giovanni Li Manni, Simon D. Smart, and Ali Alavi. Combining the complete ac-
tive space self-consistent field method and the full configuration interaction Quantum
Monte Carlo within a Super-CI framework, with application to challenging metal-
porphyrins. J. Chem. Theory Comput., 12(3):1245–1258, 2016. PMID: 26808894.
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[124] Per-Åke. Malmqvist, Alistair. Rendell, and Björn O. Roos. The restricted active space
self-consistent-field method, implemented with a split graph unitary group approach.
Journal of Physical Chemistry, 94(14):5477–5482, 1990.

[125] Elvis Maradzike and A Eugene DePrince III. Modeling core-level excitations with
variationally optimized reduced-density matrices and the extended random phase ap-
proximation. J. Chem. Phys., 149(23):234101, 2018.

[126] Elvis Maradzike, Gergely Gidofalvi, Justin M. Turney, Henry F. Schaefer, and A. Eu-
gene DePrince. Analytic energy gradients for variational two-electron reduced-density-
matrix-driven complete active space self-consistent field theory. J. Chem. Theory Com-
put., 13(9):4113–4122, 2017. PMID: 28731720.

[127] Konrad H. Marti, Irina Malkin Ond́ık, Gerrit Moritz, and Markus Reiher. Density
matrix renormalization group calculations on relative energies of transition metal com-
plexes and clusters. J. Chem. Phys., 128(1):014104, 2008.

[128] David A. Mazziotti. 3,5-contracted Schrödinger equation: Determining quantum en-
ergies and reduced density matrices without wave functions. Int. J. Quantum Chem.,
70(4-5):557–570, 1998.

[129] David A Mazziotti. Approximate solution for electron correlation through the use of
Schwinger probes. Chem. Phys. Lett., 289(5-6):419 – 427, 1998.

[130] David A. Mazziotti. Contracted Schrödinger equation: Determining quantum energies
and two-particle density matrices without wave functions. Phys. Rev. A, 57:4219–4234,
Jun 1998.

[131] David A. Mazziotti. Pursuit of N -representability for the contracted Schrödinger equa-
tion through density-matrix reconstruction. Phys. Rev. A, 60:3618–3626, Nov 1999.

[132] David A Mazziotti. Complete reconstruction of reduced density matrices. Chemical
Physics Letters, 326(3-4):212–218, 2000.

119



[133] David A. Mazziotti. Variational minimization of atomic and molecular ground-state
energies via the two-particle reduced density matrix. Phys. Rev. A, 65:062511, Jun
2002.

[134] David A. Mazziotti. Extraction of electronic excited states from the ground-state
two-particle reduced density matrix. Phys. Rev. A, 68:052501, Nov 2003.

[135] David A. Mazziotti. Anti-Hermitian Contracted Schrödinger Equation: Direct Deter-
mination of the two-electron Reduced Density Matrices of Many-Electron Molecules.
Phys. Rev. Lett., 97:143002, Oct 2006.

[136] David A. Mazziotti. Variational reduced-density-matrix method using three-particle
N -representability conditions with application to many-electron molecules. Phys. Rev.
A, 74:032501, Sep 2006.

[137] David A. Mazziotti. Multireference many-electron correlation energies from two-
electron reduced density matrices computed by solving the anti-Hermitian contracted
Schrödinger equation. Phys. Rev. A, 76:052502, Nov 2007.

[138] David A. Mazziotti. Large-scale semidefinite programming for many-electron quantum
mechanics. Phys. Rev. Lett., 106:083001, Feb 2011.

[139] David A. Mazziotti and Robert M. Erdahl. Uncertainty relations and reduced density
matrices: Mapping many-body quantum mechanics onto four particles. Phys. Rev. A,
63:042113, Mar 2001.

[140] A. D. McLachlan and M. A. Ball. Time-Dependent Hartree-Fock Theory for Molecules.
Rev. Mod. Phys., 36:844–855, Jul 1964.
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Pérez-Romero. Combining the g-particle-hole hypervirial equation and the hermitian
operator method to study electronic excitations and de-excitations. Journal of Math-
ematical Chemistry, 50(3):492–509, 2012.

[219] Helen van Aggelen, Brecht Verstichel, Guillaume Acke, Matthias Degroote, Patrick
Bultinck, Paul W. Ayers, and Dimitri Van Neck. Extended random phase approxima-
tion method for atomic excitation energies from correlated and variationally optimized
second-order density matrices. Comp. and Theor. Chem., 1003(0):50 – 54, 2013.

[220] Helen van Aggelen, Brecht Verstichel, Patrick Bultinck, Dimitri Van Neck, and Paul W.
Ayers. Considerations on describing non-singlet spin states in variational second order
density matrix methods. J. Chem. Phys., 136(5):014110, 2012.

127



[221] Lieven Vandenberghe and Stephen Boyd. Semidefinite programming. SIAM Rev.,
38(1):49–95, March 1996.

[222] Brecht Verstichel, Helen van Aggelen, Dimitri Van Neck, Patrick Bultinck, and Stijn De
Baerdemacker. A primal-dual semidefinite programming algorithm tailored to the
variational determination of the two-body density matrix. Comput. Phys. Commun.,
182(6):1235 – 1244, 2011.

[223] Brecht Verstichel, Helen van Aggelen, Dimitri Van Neck, Paul W. Ayers, and Patrick
Bultinck. Variational determination of the second-order density matrix for the isoelec-
tronic series of beryllium, neon, and silicon. Phys. Rev. A, 80:032508, Sep 2009.

[224] Konstantinos D. Vogiatzis, Dongxia Ma, Jeppe Olsen, Laura Gagliardi, and Wibe A.
de Jong. Pushing configuration-interaction to the limit: Towards massively parallel
mcscf calculations. J. Chem. Phys., 147(18):184111, 2017.

[225] Arnold C Wahl and G Das. The method of optimized valence configurations: A
reasonable application of the multiconfiguration self-consistent-field technique to the
quantitative description of chemical bonding. In Advances in quantum chemistry,
volume 5, pages 261–296. Elsevier, 1970.

[226] Florian Weigend. A fully direct RI-HF algorithm: Implementation, optimised auxiliary
basis sets, demonstration of accuracy and efficiency. Physical Chemistry Chemical
Physics, 4(18):4285–4291, 2002.

[227] Florian Weigend. Hartree-Fock exchange fitting basis sets for H to Rn. J. Comp.
Chem., 29(2):167–175, 2008.

[228] Jan Wenzel, Michael Wormit, and Andreas Dreuw. Calculating core-level excitations
and X-ray absorption spectra of medium-sized closed-shell molecules with the Algebraic
Diagrammatic Construction scheme for the polarization propagator. J. Comp. Chem.,
35(26):1900–1915, 2014.

[229] Jan Wenzel, Michael Wormit, and Andreas Dreuw. Calculating X-ray absorption spec-
tra of open-shell molecules with the unrestricted Algebraic-Diagrammatic Construction
scheme for the polarization propagator. J. Chem. Theory Comput., 10(10):4583–4598,
2014.

[230] Hans-Joachim Werner and Peter J Knowles. An efficient internally contracted
multiconfiguration–reference configuration interaction method. J. Chem. Phys.,
89(9):5803–5814, 1988.

128



[231] Philippe Wernet, Kristjan Kunnus, Simon Schreck, Wilson Quevedo, Reshmi Kurian,
Simone Techert, Frank M. F. de Groot, Michael Odelius, and Alexander Föhlisch. Dis-
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