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ABSTRACT

In this dissertation, we investigate the approach of pure SU(2) lattice gauge theory to its continuum

limit using the decon�nement temperature, six gradient scales, and six cooling scales. We �nd that

cooling scales exhibit similarly good scaling behavior as gradient scales, while being computationally

more e�cient. In addition, we estimate systematic error in continuum limit extrapolations of

scale ratios by comparing standard scaling to asymptotic scaling. Finally we study topological

observables in pure SU(2) using cooling to smooth the gauge �elds, and investigate the sensitivity of

cooling scales to topological charge. We �nd that large numbers of cooling sweeps lead to metastable

charge sectors, without destroying physical instantons, provided the lattice spacing is �ne enough

and the volume is large enough. Continuum limit estimates of the topological susceptibility are

obtained, of which we favor �1=4=Tc = 0:643(12). Di�erences between cooling scales in di�erent

topological sectors turn out to be too small to be detectable within our statistical error.

xii



CHAPTER 1

INTRODUCTION

The Standard Model (SM) of particle physics classi�es all known elementary particles, i.e. par-

ticles with no known substructure, and describes three fundamental forces: the electromagnetic,

weak, and strong forces. Elementary particles can be divided into matter particles (quarks and

leptons); gauge bosons, which mediate the three aforementioned forces; and a scalar boson, the

Higgs boson, whose �eld interacts directly with elementary particles that thereby acquire their

mass. For each particle there exists a corresponding antiparticle; sometimes a particle is its own

antiparticle. Figure 1.1 gives a schematic overview of the SM. The SM has a long history of ex-

perimental con�rmations culminating in the 2012 discovery of the Higgs boson by the ATLAS and

CMS experiments [6, 21].

The theoretical framework underlying the SM is Quantum Field Theory (QFT). In QFT, the

strength of an interaction is parameterized by some coupling g, and in practice, one obtains analytic

results in the small coupling limit by Taylor expanding in g. This is known as a perturbative

calculation. Not all quantities lend themselves well to perturbative methods. In particular physical

observables m with units of mass behave as

m � e�1=g2
; (1.1)

which is zero to all orders in perturbation theory. To calculate such a quantity therefore requires an

alternative, non-perturbative method. Lattice Field Theory (LFT), which was introduced in 1974 by

Wilson [59], gives access to non-perturbative quantities, supplementing perturbative calculations.

One of the early successes of LFT came with the 1980 paper of Creutz [22], which supported

quark con�nement. Lattice calculations can also test the SM, for instance by calculating baryon

and meson spectra from �rst principles. Along this vein, lattice calculations can achieve arbitrary

precision in principle, provided enough computing power is available.

Lattice simulations of the full SM are not yet within our grasp, so for the time being, we are

restricted to examinations of parts of the SM. Nowadays one can study, for instance, quantum

1



Figure 1.1: Summary of elementary SM particles. The �rst three columns give the three generations
of matter particles. Image taken from the Physics Institute at University of Zurich [56].
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chromodynamics (QCD) with Nf = 4, which is a theory with gluons and four fermion avors

[48]. Even with this restriction, useful information about the SM can still be gleaned. Two of the

simplest theories pure SU(3), which is a theory of gluons only, and pure SU(2), which is a theory

of gluon-like particles only. When the particle content of an LFT includes only gauge bosons,

it is usually referred to as a lattice gauge theory (LGT). Because of their relative computational

simplicity, LGTs are often used as a proving ground for new algorithms and techniques, allowing

for high precision calculations with modest computational resources.

Lattice calculations begin by discretizing space-time, where space-time points are separated by

a �nite lattice spacing. The physical theory is recovered in the in�nite volume continuum limit,

where one sends the volume to in�nity and the lattice spacing to zero compared to a physical

length. Using lattice regularization, one can calculate dimensionless length ratios

rij =
‘i
‘j

(1.2)

in the continuum limit, where each ‘ is some physical length; for instance ‘i could be the character-

istic wavelength of a pion. Therefore if one wishes to extract ‘i from the lattice, one must know ‘j

precisely and accurately. Not all reference scales ‘j are equally suited for this purpose; one reason

is that di�erent reference scales may require di�erent computational e�ort. Choosing a reference

scale is what we mean by scale setting.

Scale setting is an important source of error for the purpose of extracting dimensionful quantities

from the lattice, because the precision of the reference scale propagates to the �nal result. It is

important to �nd a reference scale that can be computed with high statistical precision, since

modern lattice calculations, in particular those that compare against or supplement experimental

results, often aim at relative statistical error bars of 1% or smaller [55]. Additional details about

scale setting can be found in the review by Sommer [50].

Scale setting enjoyed renewed interest with the introduction of L�uscher’s gradient ow [40],

from which a novel reference scale, the gradient scale, was de�ned. The gradient ow also gained

popularity as a technique for dampening local UV uctuations; such techniques are called smoothing

or smearing. In a pure SU(3) study, Bonati and D’Elia [16] showed that for topological observables,

smoothing using standard cooling, introduced originally by Berg [10], produces similar results as the

gradient ow, while progressing through ow time much faster. In the same paper, they suggested

3



that cooling could be used to de�ne a cooling scale in a similar manner as the gradient scale. In this

context, we decided to investigate cooling scales in pure SU(2) LGT. Since high precision results

are computationally even less demanding for SU(2) than SU(3), we were able to reach a greatly

enhanced accuracy when compared with Bonati and D’Elia.

The gauge bosons of the SM are thought to be excitations of underlying �elds, mathematical

objects whose value depends on their space-time location. Vacuum con�gurations of SU(Nc) gauge

�elds have intrinsic topologies classi�ed by an integer topological charge. Con�gurations of the

same charge can be continuously deformed into one another, i.e. they are topologically equivalent

or homeomorphic. The topology of gauge �elds is relevant to physical quantities in our world; in

particular the mass of the �0 meson depends on the topological charge distribution [54, 60, 57].

On the lattice, con�gurations updated by Markov Chain Monte Carlo (MCMC) algorithms can

get stuck on con�gurations of a particular charge, so that the distribution of con�gurations is not

well-sampled. This topological freezing can lead to a bias in observables; �nding ways to circumvent

this issue is an active area of research [41]. Encouraged by the recent success of standard cooling

as a smoothing algorithm for pure SU(3), we investigated the topology of pure SU(2) LGT and

obtained an accurate estimate of the SU(2) topological susceptibility.

The structure of this dissertation is as follows: In Chapter 2, the lattice formulation, along with

background theory for scale setting and topology on the lattice, is introduced. Chapter 3 reviews

MCMC along with details of how we implemented computer simulations. Numerical results for our

project are given in Chapters 4 and 5. Conclusions are given in Chapter 6.

The author attempted to write this dissertation to be readable by junior high energy physicists

interested in lattice gauge theory. Therefore there is a collection of Appendices containing extra

background. A brief introduction to statistical analysis in in Appendix B. To keep the discussion

of this dissertation focused, some calculational details are postponed to Appendix C.
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CHAPTER 2

PRELIMINARIES

LGT is introduced in Section 2.1 by reviewing local gauge symmetries in QFT, regularizing a pure

gauge theory on the lattice, discussing the true continuum limit, and introducing �nite temperature.

In Section 2.2, reference scales are de�ned, and systematic error within the context of scale setting

is explored. Topological observables are introduced in Section 2.3, and e�ects of topology barriers

are considered.

2.1 Lattice gauge theory

Physically, QFT is de�ned on a 4D Minkowskian space-time. In LGT the 4D space-time is

instead equipped with a Euclidean metric, which is related to the original metric via a Wick

rotation

t! i�: (2.1)

Therefore we will work with a Euclidean metric and use downstairs summation indices. We will

also use natural units ~ = c = kB = 1. In natural units, every physical quantity has units of some

power of length. For example time has units of length, while energy, mass, and momentum have

units of inverse length. We �rst work in the continuum, then discretize the theory by de�ning the

lattice.

2.1.1 Local gauge symmetries

Local gauge symmetries play a central role in the SM. Starting from a Lagrangian that depends

on the derivatives of some �eld, the requirement of local gauge invariance suggests that we introduce

a gauge �eld. This gauge �eld allows one to de�ne a covariant derivative whose transformation law

will respect the local gauge symmetry. Excitations of the gauge �eld are gauge bosons, which are

the force-carrying particles of the SM.

5



As an example consider Nc complex scalar �elds �i(x) equipped with a global SU(Nc) symmetry.

The Lagrangian is

LM = �@��y(x)@��(x) +m2�y(x)�(x); (2.2)

where �(x) is the Nc-dimensional vector formed by these �elds. LM becomes invariant under local

SU(Nc) transformations, i.e. transformations of the form

�(x)! U(x)�(x); (2.3)

where U(x) 2 SU(Nc), when one replaces the partial derivative by the covariant derivative D�,

which transforms as

D�(x)! U(x)D�(x)U y(x): (2.4)

We de�ne

D�(x) � @� +A�(x); A�(x) � �igAa�(x)T a; (2.5)

where g is the bare coupling constant, A�(x) is the gauge �eld, and T a, a = 1; : : : ; N2 � 1, are

the generators of the SU(Nc) Lie algebra su(Nc). For notational convenience we now suppress

dependence on x. Using this de�nition of D�, the gauge �elds must change according to

A� ! UA�U
y �

�
@�U

�
U y: (2.6)

The gauge �eld becomes dynamic by adding the kinetic part

LG =
1

4
F a��F

a
�� = � 1

2g2
trF��F�� ; (2.7)

where

F a�� � @�Aa� � @�Aa� + gfabcAb�A
c
� ; F�� � �igF a��T a = [D�; D� ] ; (2.8)

and fabc are the structure constants of SU(Nc). LG is also invariant under the transformation of

eqs. (2.3) and (2.4). Taken altogether, the gauge-invariant, dynamical, scalar theory is described

by the Lagrangian

L = �
�
D��

�y
D��+m2�y�� 1

2g2
trF��F�� : (2.9)

We would like to point out that the de�nitions (2.5) and (2.8) are somewhat di�erent than the

convention of many QFT books such as Srednicki [51] or Peskin and Schroeder [46]. An advantage
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of the convention we have taken, which is also used in, for instance, Montvay and M�unster [45], is

that one can explicitly see the dependence of the Lagrangian (2.7) on the coupling.

In this dissertation we will be primarily interested in a theory with LG only and gauge group

SU(2); such a theory is referred to as pure SU(2). SU(2) is the simplest, phenomenologically

interesting, non-Abelian gauge group. Often the gauge particles of pure SU(2) theories are referred

to as \gluons," even though Nc 6= 3. Because it is non-Abelian, it has nonzero structure constants,

which means it contains self-interactions of the form AAA and AAAA. For the purpose of a lattice

study, it is useful to look at a non-Abelian theory, which has a well-de�ned continuum limit.

2.1.2 Lattice regularization

We now de�ne QFT on a lattice. Let N1; N2; N3; N4 2 N. The lattice  L is de�ned by

 L � fx jx� = an�; n� � N�; � = 1; 2; 3; 4g: (2.10)

Here a is called the lattice spacing. After our Wick rotation, we identify N1, N2, and N3 as

the extensions of the lattice in the spatial directions, and N4 is taken to be the extension in the

Euclidean time direction. Matter �elds and gauge transformations are de�ned on the sites x 2  L.

We shall take the lattice to have periodic boundary conditions (BCs), i.e.

x+ aN��̂ = x; (2.11)

where �̂ is the unit vector in the direction indicated by �. Since the lattice is discrete, one must

replace partial derivatives by �nite di�erences,

@�f(x)! ��f(x) � f(x+ a�̂)� f(x)

a
; (2.12)

and similarly replace integrals with sums,Z
d4x! a4

X
x

: (2.13)

Moreover the BCs (2.11) imply for every direction that the momentum is discretized as

p� =
2�

a

n�
N�

; (2.14)

which means that momentum space integrals must also be replaced by sumsZ
d4p

(2�)4
! 1

a4N1N2N3N4

X
p

: (2.15)
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Putting QFT on a lattice regularizes the theory. To see this, consider a �eld � de�ned on the

lattice. Its Fourier transform e�(p) = a4
X
x

e�ipx�(x) (2.16)

is periodic in momentum space, which gives us the correspondence p� $ p� + 2�=a. Hence we can

restrict momenta to the �rst Brillouin zone,

� �

a
< p� �

�

a
(2.17)

and one obtains a UV cuto� jp�j � �=a.

Now we de�ne the building blocks necessary to construct paths on the lattice. The directed link

connects x with the neighboring point x+ a�̂, and its corresponding link variable U�(x) 2 SU(Nc)

is de�ned by

U�(x) = e�aA�(x); (2.18)

where A�(x) 2 su(Nc). A link variable is depicted in Fig. 2.1 (left). We associate to any path C

the ordered product of its link variables U(C). If we follow a path and then reverse our steps, we

should end up back where we started; hence

U��(x+ a�̂)U�(x) = 1: (2.19)

Furthermore U y(x)U(x) = 1, so we can see the e�ect of the dagger on link variables:

U y�(x) = U��(x+ a�̂): (2.20)

Let Cx be a path on the lattice that originates and terminates at the point x. The corresponding

Wilson loop is de�ned by trU(Cx). Under local gauge transformations, link variables transform as

U�(x)! �y(x)U�(x)�(x+ a�̂); �(x) 2 SU(2); (2.21)

which ensures the gauge invariance of Wilson loops. A plaquette, shown in Figure 2.1 (middle), is

the smallest Wilson loop, an oriented square of side length a with corresponding link variable

U���(x) = U�(x)U�(x+ a�̂)U y�(x+ a�̂)U y� (x): (2.22)

Every link variable in 4D LGT is part of six plaquettes. The remaining three edges of any particular

plaquette are shaped like a staple; therefore we call the combination

Ut� (x) =
X
� 6=�

h
U�(x)U�(x+ a�̂)U y� (x+ a�̂) + U y� (x� a�̂)U�(x� a�̂)U�(x� a�̂ + a�̂)

i
(2.23)
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Figure 2.1: Left: A link variable. Middle: A plaquette. Right: A staple matrix in 2D.

the staple matrix. A 2D staple matrix is shown in Fig. 2.1 (right); alternatively one can view it as

one of the three terms in the sum (2.23).

Plaquettes are used to construct the gauge invariant SU(Nc) Wilson action [59], given by

SW � �
X
x;�<�

�
1� 1

Nc
Re trU���(x)

�
: (2.24)

The factor � is given this name in analogy to the inverse temperature in statistical mechanics.

Using the Campbell-Baker-Hausdor� formula, one can show

U���(x) = exp
�
�a2F��(x) +O

�
a3
��
: (2.25)

After some algebra, the connection between the Wilson action and the action corresponding to

eq. (2.7) becomes clear. We �nd

SW = � �

4Nc

X
x

a4 trF��(x)F��(x) +O
�
a5
�
: (2.26)

In the limit a! 0, the Wilson action coincides with the action SG =
R
d4xLG when one identi�es

� =
2Nc

g2
: (2.27)

Because of this identi�cation, � is also (besides g) sometimes referred to as the coupling constant.

We close this subsection with a remark about con�nement. Let CRT be a rectangular loop on

the lattice of side lengths R and T and let W (CRT ) be the corresponding Wilson loop. Then the

static quark potential V (R) is de�ned by

V (R) � � lim
T!1

1

T
logW (CRT ) (2.28)
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and gives the energy of the gauge �eld due to two color sources separated by a distance R. The

string tension � is de�ned by

� � lim
R!1

1

R
V (R): (2.29)

If the string tension is non-vanishing, then the potential scales linearly with R in the large R

limit; this phenomenon has been observed in LGT simulations [45]. Thus we see one of the major

successes of LGT: it pro�ers an explanation of con�nement.

2.1.3 The renormalization group and the continuum limit

In the limit a! 0, physical quantities P should agree with experimental results, which means

they should become independent of a, \forgetting" about the lattice structure. Since P depends

in general also on g, this means that changes in a have to be compensated by changes in g to keep

the physics constant. More precisely, it must be that

lim
a!0

P
�
g(a); a

�
= P0 (2.30)

where P0 is the physical quantity’s experimental value. Callan [19] and Symanzik [52, 53] indepen-

dently formulated the requirement of constant physics as a di�erential equation�
@

@ log a
+

@g

@ log a

@

@g

�
P = 0: (2.31)

(The RHS of this equation is more precisely O
�
(a=�)2 log(a=�)

�
for a lattice system with correlation

length � [45].) Equation (2.31) relates to a semi-group of scale changing transformations called the

renormalization group (RG). The coe�cient of the second term is called the beta function,

� � � @g

@ log a
; (2.32)

and it measures how the bare coupling g must change when a changes. The use of the symbol �

here is unfortunately a convention; it is not to be confused with the coupling constant. It is usually

clear from context what is meant. In practice � can be determined from perturbation theory. An

explicit dependence of g on a is then determined by solving the di�erential equation (2.32).

For example the pure SU(Nc) lattice beta function has been calculated up to 3-loop order in

perturbation theory. It is given by

�L(g) = �b0g3 � b1g5 � bL2 g7 +O
�
g9
�

(2.33)
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where

b0 =
11

3

Nc

16�2
; b1 =

34

3

 
Nc

16�2

!2

; bL2 =

 
� 366:2 +

1433:8

N2
c

� 2143:0

N4
c

! 
Nc

16�2

!3

(2.34)

have been calculated at one-loop [33, 47], two-loop [8, 20, 34], and three-loop order [3], respectively.

The constants b0 and b1 are universal in the sense that they do not depend on the regularization

scheme; however b2 does depend on the regularization scheme, with bL2 being the value using lattice

regularization. The RG equation on the lattice is

�L(g) = �adg
da
; (2.35)

and its solution is given by

a�L = exp

 Z g dg0

�L(g0)

!
= fas

�
g2
�
� f0

as

�
g2
� 1X
i=0

qi g
2i; (2.36)

where q0 = 1, the other qi are coe�cients that can be, in principle, calculated perturbatively, and

f0
as

�
g2
�
� exp

 
� 1

2b0g2

!
(b0g

2)�b1=2b2
0 : (2.37)

In fact from eq. (2.33) and (2.34), one obtains

q1 =
b21 � bL2 b0

2b30
=

(
0:08324 for SU(2)

0:18960 for SU(3):
(2.38)

The integration constant �L has units of mass and is called the lattice �-parameter. From eq. (2.36)

one sees that

�L = lim
g!0

1

a
f0
as

�
g2
�
: (2.39)

The fact that pure SU(Nc) theory has a negative beta function (2.33) has a profound physical

implication. In particular when we invert eq. (2.36) keeping only universal terms, we �nd

g(a)�2 = b0 log
�
a�2��2

L

�
+
b1
b0

log log
�
a�2��2

L

�
+O

�
1= log

�
a2�2

L

��
: (2.40)

Two consequences are that the coupling g(a) is driven to zero as a approaches zero (UV cuto�),

which is known as asymptotic freedom, while at low energies, g(a) becomes too large for reliable

perturbative analysis.

From eq. (2.36) we see that taking g ! 0 drives a! 0. However the limit g ! 0 is not enough

to ensure a well-de�ned continuum limit. The physical size of the lattice is proportional to a4,
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Figure 2.2: A schematic representation of the continuum limit. The red object represents some
physical quantity. As the images progress to the right, the lattice spacing decreases relative to the
physical length, and the bare coupling becomes weaker.

and hence collapses to zero unless we also increase the number of sites. Therefore we extrapolate

to the continuum limit by calculating our observable of interest at di�erent values of the coupling

constant, with the extensions N1, N2, N3, and N4 chosen so that the physical size of the lattice

is large enough for a reliable calculation of the observable of interest. A schematic representation

is shown in Figure 2.2. We note that two kinds of systematic uncertainty arise in this context.

Namely, to what extent do �nite lattice spacing (which limits the smallest wavelength) and �nite

lattice size (which limits the largest wavelength) a�ect our results? These questions are discussed

in detail in Section 2.2.

2.1.4 Finite temperature

We now restrict our attention to lattices that have extension N1 = N2 = N3 � Ns and N4 � N� .

Expectation values of physical observables X are given in 4D, Euclidean, pure SU(2) LGT at zero

temperature by

hXi =
1

Z

Z
DU e�S(U)X(U); (2.41)

where the action is related to the Lagrangian by

S =

Z
d4xL; (2.42)

Z is the partition function

Z �
Z
DU e�S(U); (2.43)
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and the integration measure, called the Haar or Hurwitz measure, isZ
DU �

Z Y
x;�

dU�(x): (2.44)

The quantities X and S appearing in the integral (2.41) are functionals of the con�guration U , and

this integral is called a functional integral. The Haar measure is a product of measures, one measure

per link, each running over all possible values of the link; in other words, the Haar measure runs over

all possible con�gurations. The functional integral is therefore a weighted average of the observable

X over all possible con�gurations, each con�guration receiving a weighting factor
R
DU e�S=Z.

The functional integral for a 3D, pure SU(2) LGT system in contact with a thermal reservoir

at temperature T has the same structure, except that the corresponding action is

S(T ) =

Z 1=T

0
dx4

Z
d3xL; (2.45)

and the Haar measure runs over �elds that are periodic in the x4 direction. Because the functional

integral for both systems is formally the same, we interpret a 4D system with Ns � N� as a 3D

system at �nite temperature, with x4 running along a temperature direction rather than a time

direction. The continuum limit of the �nite temperature system corresponds to a ! 0 with aNs

and aN� �xed. The physical temperature is seen to be

T =
1

aN�
: (2.46)

2.2 Reference scales

Lattice computations deliver dimensionless quantities L = ‘=a, where ‘ is some physical length.

The requirement that the theory has a well-de�ned continuum limit means that for two length

scales ‘i and ‘j

rij �
‘i
‘j

= lim
a!0

Li
Lj
� lim

a!0
Rij ; (2.47)

i.e. in the continuum limit, length ratios attain their physical values. Continuum limit extrapo-

lations of a particular length ‘i therefore depend on how one determines Rij and on the choice of

the reference scale or reference length ‘j . Choosing a reference scale to use for continuum limit

extrapolation is called scale setting, and commonly one says \we set the scale with ‘j ."
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Calculation of the constants Rij is prone to nontrivial statistical and systematic errors because

they come from MCMC simulations performed on �nite lattices with nonzero spacing. Therefore it

is desirable to set the scale with a quantity that is computable with low numerical e�ort, has small

systematic uncertainties, and good statistical precision. Controlling systematic error is discussed

in Section 2.2.2, while the discussion of statistical error is postponed to Chapter 3. We begin by

introducing some reference scales.

2.2.1 De�ning reference scales

One choice of scale in this project is the decon�ning phase transition temperature

Tc =
1

a(�c)N�
: (2.48)

For T < Tc gluons are bound into glueballs, while at higher temperatures T > Tc they exist in a

gluon plasma. The decon�ning phase transition is a second-order phase transition for SU(2) (see

Engels et al. [28] and references therein) and a �rst-order transition for SU(Nc) when Nc > 2. The

order parameter for this transition is the Polyakov loop,

P (~x) = tr
Y
�

U4(~x; �); (2.49)

which is a straight Wilson loop of length N� that is parallel to the Euclidean time axis and closes

due to the periodic BCs. In practice, we determine �c by looking at plots of the Polyakov loop

susceptibility,

� =


jP j2

�
� hjP ji2 ; P �

X
~x

P (~x); (2.50)

as a function of � and estimating (in the in�nite volume limit) where it diverges. Numerical

estimates of Tc are prone to systematic error because the simulations are performed at �nite lattice

size while T is only sharp in the in�nite volume limit. It is therefore necessary to extrapolate, for

�xed N� , the dependence of �c(N� ) on the spatial size Ns to the in�nite volume limit Ns ! 1.

Inverting �c(N� ) gives our �rst length scale N� (�), which we call the decon�nement scale.

A reference scale due to L�uscher [40] involves using the gradient ow. We begin by introducing

a �ctitious ow time t and evolve the system according to the evolution equation

_V�(x; t) = �g2V�(x; t) @x; �S[V (t)] (2.51)
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with initial condition

V�(x; 0) = U�(x): (2.52)

In the above, the SU(Nc) link derivatives are de�ned by

@x; �f(V ) � i
X
a

T a
d

ds
f
�
eitX

a
V
� ���
t=0

; Xa(x0; �0) �

(
T a if(x0; �0) = (x; �)

0 otherwise.
(2.53)

L�uscher showed that the gradient ow averages the gauge �eld A� over a sphere with mean-square

radius
p

8t in 4D. Hence t has dimension length squared, and
p

8t is interpreted as the smoothing

range of the ow. From eq. (2.51) we see that the gradient ow lowers the action. For pure SU(2)

the link derivative of the action takes the simple form

g2@x;�S(V ) =
1

2

�
V �� (x)� V �� (x)y

�
: (2.54)

After choosing an energy density discretization E (for example one might use the Wilson action)

a scale is de�ned by choosing an appropriate, �xed, dimensionless target value y and integrating

the gradient ow equation until

y = t2E(t): (2.55)

As a function of �, a gradient scale

s(�) =
p
t(�) (2.56)

scales like a length, provided that

1. lattice sizes are chosen so that Nmin �
p

8t, where Nmin = min Ni for simulations on an

N1N2N3N4 lattice;

2. the target values are large enough so that
p

8t� 1 for the smallest used ow time; and

3. the values of � are large enough to be in the SU(2) scaling region.

In contrast to the decon�nement scale, the computation of a gradient scale does not require �ts or

extrapolations. The only remaining ambiguity is how to choose a target value.

An alternative to the gradient ow that is similar and algorithmically simpler is known as

cooling. Cooling was introduced as part of an investigation of topological charge in the 2D O(3)

sigma model [10]. Bonati and D’Elia showed that using cooling as a smoothing technique produces
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similar results for topological observables as the gradient ow for pure SU(3) LGT [16]. In pure

SU(2) a standard cooling step is

V�(x; nc) =
V t� (x; nc � 1)q
detV t� (x; nc � 1)

; (2.57)

where nc is the number of cooling steps. The update (2.57) minimizes the local contribution to

the action, so that the \cooling ow" decreases the action. Like with the gradient ow, one picks

a target value and iterates eq. (2.57) until

y = t2cE(tc); (2.58)

and a cooling scale is given by

u(�) =
p
tc(�): (2.59)

2.2.2 Continuum limit extrapolation and �nite size scaling

One desires to know the ratio rij of two scales in the continuum limit. In principle this could

be estimated by simulating very near to the continuum limit, where a � 1. The continuum

limit of LGT is de�ned in the vicinity of a second order phase transition in the bare coupling.

Because the correlation length diverges near critical points, subsequent con�gurations become more

correlated, and it requires more con�gurations to obtain e�ectively independent data. This is called

critical slowing down. In practice, one therefore calculates Rij at multiple � (hence multiple a) and

extrapolates the continuum limit result based on these data. We now discuss two possible �tting

forms for continuum limit extrapolation.

Using the Wilson action, ratios of observables that have units of length are known to scale as

Rij �
Li
Lj

=
‘i
‘j

�
1 +O

�
a2�2

L

��
: (2.60)

In the continuum limit, ratios of lengths approach their continuum limit values. Sometimes correc-

tions depending on a, such as in the equation above, are referred to as lattice artifacts. In general

the approach to the continuum limit is thought to have lattice artifacts of power p (RG consider-

ations show that these ap artifacts are modi�ed by powers of logarithms [45]) where p depends on

the lattice discretization. The Wilson action in particular has p = 2. Equation (2.60) suggests a

two-parameter �t of the form

Rij = rij + cij

�
1

Lj

�2

; (2.61)
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where rij and cij are the �t parameters. We will refer to this behavior as standard scaling.

Another possibility for continuum limit extrapolation uses the asymptotic scaling relation (2.36)

a�L = fas(�): (2.62)

We start by noting that the scale Li calculated on the lattice is some function of the spacing, so it

can be expanded as a power series in a:

Li =
ci
a�L

 
1 +

1X
k=1

�i k(a�L)k

!
; (2.63)

where the �i k are expansion coe�cients. Allton suggested using this equation to �t the approach

to the continuum limit [4]. Inserting eq. (2.62) into the above power series yields

Li =
ci

fas(�)

 
1 +

1X
k=1

�i k fas(�) k

!
: (2.64)

In practice fas is only known up to three loops, so we must truncate it at some order m. Furthermore

to have a �nite number of �t parameters, we must truncate the power series at some order n. Hence,

the approach of a length to the continuum limit can be �t according to

Li =
cmni
fmas(�)

 
1 +

nX
k=1

�mni k fmas(�) k

!
; (2.65)

where upper indices m and n are attached to quantities that will change if m or n change. The �t

parameters are cmni and the �mnik .

In general, asymptotic scaling would allowO(a) corrections. In order to ensure non-perturbative

corrections are O
�
a2
�
, we improve on Allton by demanding that all scales have the same k = 1

term �mni;1 ; then terms of order a cancel in the ratio. Using eq. (2.65) along with this restriction,

one obtains

Rij = rij +
nX
k=2

�mni k fmas (Lj)
k ; (2.66)

where the �t parameters are now rij and the �mni k . One can switch the domain of fmas from � to

the reference Lj using, for instance, eq. (2.65). The continuum limit estimate rij also depends on

m and n, but we have suppressed these indices for clearer comparison with the standard scaling

�t (2.61). We will refer to the behavior of eq. (2.65) or (2.66) as asymptotic scaling.

If we carry out a naive continuum limit without changing the extension of the lattice, its

physical volume collapses to zero. Ideally, calculations would be performed in the thermodynamic
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limit, where Ns !1 and N� !1, and then take the limit a! 0. In practice, the in�nite volume

observable is determined by simulating at �xed � on lattices of several sizes, then extrapolating

to the thermodynamic limit. For some observables, the dependence on �nite lattice size is known

from theory. For example the critical coupling constant �c(N� ) is known [28] to depend on Ns as

�c(N� ; Ns) = �c(N� ) + a1(N� )Na2(N� )
s : (2.67)

The Ns =1 result �c(N� ) can then be extracted from a �t of the three parameters �c(N� ), a1(N� ),

and a2(N� ).

2.3 Topological invariants

2.3.1 Topological charge and instantons

This section follows Chapter 93 of Srednicki [51]; more details can be found there. We start by

considering classical, pure SU(2) gauge theory

L = � 1

2g2
F��F�� (2.68)

at �xed x4, focusing for the moment on U that are time-independent. Let U � U(~x) 2 SU(2), and

set the BC U(1) = U0 for some constant matrix U0. The topological winding number or Pontryagin

index of the map U is

n � 1

24�2

Z
d3x �ijk trU @iU

yU @jU
yU @kU

y: (2.69)

The winding number is invariant under coordinate changes since the Jacobian of the measure

cancels the Jacobian of the partial derivatives. Given the BC, it is also invariant under smooth

deformations of U , which follows from integration by parts.

The quantity (2.69) is called a winding number because it counts the number of times the

mapping U \winds around" or \covers" the integration region. Let us see how this works in the

present case. The integration region is the 3D surface of space-time, which is homeomorphic to the

3-sphere S3. A point x̂ 2 S3 is speci�ed by two polar angles � and  and an azimuthal angle � as

x̂ =

0BB@
s� s c�
s� s s�
s� c 

c�

1CCA : (2.70)
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Then the mapping U : S3 ! SU(2) given by

U(x̂) =

�
c� +i s� c i s� s e

�im�

i s� s e
im� c� � i s� c 

�
; (2.71)

has winding number m. Intuitively, one can see this in the following manner: Any SU(2) matrix

can be written in terms of four real components as

U = a41 + i~a � ~�; (2.72)

where a�a� = 1. The vector corresponding to the map (2.71) is

â =

0BB@
s� s cm�
s� s sm�

s� c 
c�

1CCA : (2.73)

We see that if we sweep through �, x̂ sweeps over S3 once while â sweeps over S3 m times. Plugging

the mapping (2.71) into eq. (2.69) we �nd n = m, con�rming that the integral extracts the winding

number.

In QFT, Noether’s theorem tells us that to each continuous symmetry of the Lagrangian there

exists a corresponding conserved charge. Similarly we can identify a charge for each topological

invariant of a system. Since n is invariant under smooth deformations, it is a topological invariant,

so it is sometimes referred to as a topological charge, and represented by Q instead of n.

Consider two maps U and U 0 that are gauge transformations of zero and with di�erent winding

numbers. Since the winding number is a topological invariant, the only way to deform U to U 0 is

to pass through con�gurations with F�� 6= 0; in other words, there is an energy barrier between U

and U 0. The corresponding quantum theory therefore has degenerate vacuum states characterized

by their winding numbers.

We will now discuss the topology of gauge �eld con�gurations de�ned on all space-time. Let

r = (x�x�)1=2. We require that

A�(x)! U(x)@�U
y(x) (2.74)

as r ! 1 to keep the action �nite. (In�nite actions are exponentially suppressed in the path

integral.) The 3D integration region will be the surface of space-time at in�nity. In addition to the

BC U(1) = U0, we specify U at x4 = �1 to have winding number n� and U at x4 = +1 to have

winding number n+. The entire boundary is homeomorphic to S3, and the winding number of U is

Q � n+ � n�; (2.75)
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where the relative minus sign is due to the surfaces at x4 = �1 having opposite orientation. By

viewing the integrand of eq. (2.69) as the surface integral over a 4D region, de�ning the Chern-

Simons current

JCS� � 2����� tr

�
a�F�� +

2

3
A�A�A�

�
; (2.76)

and applying Gauss’s theorem, one can identify the winding number as an integral over the four-

divergence of JCS� . We �nd

Q =
1

16�2

Z
d4x tr �F��F�� �

Z
d4x q; (2.77)

where

�F�� =
1

2
�����F�� (2.78)

is the dual �eld strength tensor. The quantity q is called the topological charge density.

With eq. (2.77) we can �nd vacuum solutions to the Euclidean �eld equations

D�F�� = 0: (2.79)

The trick is to construct a lower bound on the action. Then if we can �nd a solution saturating the

bound, it must solve the �eld equations, since it minimizes the action. This is called a Bogomolny

bound. Using eq. (2.68), we �nd

S � 8�2jQj=g2; (2.80)

which becomes saturated when

�F�� = (sign n)F�� : (2.81)

We arrive at an explicit solution to the above equation using the map (2.71) with Q = 1 (m = 1).

We make the ansatz

A�(x) = f(r)U(x̂)@�U
y(x̂) (2.82)

where f(1) = 1 to match the BC, and f(0) = 0 so that A� is well-de�ned at the origin. Then this

is a solution of eq. (2.81) when

f(r) =
r2

r2 +R2
: (2.83)

This solution is called the instanton [9] and the integration constant R is called the instanton size.

The instanton mediates between vacuum con�gurations at Euclidean times 1 and �1 with

winding numbers n+ and n�. When Q = �1 we have an anti-instanton. When jQj > 1, the
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mediating solution is constructed of multiple instantons or anti-instantons. When separations

are large compared to their sizes, we call this a dilute gas of instantons or anti-instantons. From

eq. (2.80) we see that each instanton or anti-instanton contributes 8�2=g2 to the Bogomolny bound.

The topological susceptibility is de�ned as

�Q �
Z
d4x hq(x)q(0)i ; (2.84)

where q is the topological charge density of eq. (2.77). The topological susceptibility gives evidence

that the topological structure of the underlying gauge �elds has phenomenological signi�cance. In

particular, by performing a calculation in the large Nc limit, Witten and Veneziano [60, 57] showed

that at Nc =1 the �0 mass is related to the topological susceptibility through

m2
�0 +m2

� � 2mK =
4Nf�Q
f2
�

; (2.85)

where m� is the � mass, mK is the mass of the kaon, Nf is the number of fermion avors, and

f� is the pion decay constant. This mechanism can be used to explain the � � �0 mass di�erence.

Plugging experimental values into the above formula for Nf = 3, one �nds

�Q � (180 MeV)4: (2.86)

While a conventional derivation of the Witten-Veneziano formula depends on large Nc, lattice

calculations for pure SU(2) and pure SU(3) land relatively close to eq. (2.86).

2.3.2 Topological charge on the lattice

De�nitions of topological charge on the lattice can be found in reviews such as the review by

Kronfeld [36]. For our de�nition of topological charge, we follow the example of eq. (2.77) using

the rule (2.13). It is reasonable to measure a topological charge on the lattice by

QL = a4
X
x

qL(x); (2.87)

where the sum is over all lattice sites and

qL(x) = � 1

29�2

�4X
����=�1

~����� trU���(x)U���(x): (2.88)

Here ~� = � for positive indices while ~����� = �~�(��)��� for negative indices. The summation over

backwards indices along with the de�nition of ~� ensures qL has negative parity. The restriction
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of generated con�gurations to a subset with some �xed topological charge is what we mean by

topological sector. The lattice expression for the topological susceptibility is

�L = a4
X
x

hqL(x)qL(0)i =
1

N4



Q2
L

�
; (2.89)

where we have assumed a geometry N � N1 = N2 = N3 = N4 and utilized the translational

invariance due to periodic BCs.

Lattice gauge theories typically experience local uctuations of the gauge �elds, which are pro-

duced stochastically. These uctuations blur the topological structure of the lattice, and must

therefore be stripped away from the con�guration before measuring QL. The signal is consider-

ably improved by smoothing, where one replaces each link by a local average of links; QL is then

constructed on the smoothed �eld.

Standard cooling minimizes the local contribution to the action, which forces a gauge �eld

to take a more typical (smoother) value given its neighbors. As mentioned earlier, the gradient

ow averages the gauge �eld over a neighborhood, and therefore also has a smoothing e�ect.

Ideally, these methods work because they make local modi�cations, which therefore leave the global

topological charge relatively intact. A delicate issue with these smoothing algorithms is that they

can destroy physical instantons; in fact after protracted cooling, a lattice will eventually be brought

to QL = 0. This happens because certain exceptional con�gurations or dislocations do not allow for a

well-de�ned topological charge. A lattice can then change its topological charge by passing through

these exceptional con�gurations. In practice, one cools just enough that topological observables

become quasi-stable, i.e. just enough that they do not change after many additional cooling sweeps.
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CHAPTER 3

MCMC SIMULATIONS

As discussed in Section 2.1.4, expectation values of physical observables X in pure SU(2) LGT are

given by functional integrals

hXi =
1

Z

Z
DU e�S(U)X(U): (3.1)

Even though the integral (3.1) is well-de�ned on a lattice because there are �nitely many sites, it is

not feasible to evaluate it numerically; even relatively small lattices have 4� 104 links. The goal of

an MCMC simulation is to estimate hXi by randomly generating con�gurations, distributed with

probability e�S , and on each con�guration, making a measurement Xi. The average

�X =
1

Nconf

NconfX
i=1

Xi (3.2)

serves as the estimator.

In Section 3.1 we introduce MCMC simulations as they are applied to the project. Section 3.2

summarizes some of the tools needed to statistically analyze the generated data; a more detailed

presentation of probability and statistics is given in Appendix B. The �nal Section 3.3 provides

details of how our simulation is implemented on the computer. Further details can be found in, for

instance, Berg [11] and Gattringer and Lang [32].

3.1 Markov chain Monte Carlo

To generate our con�gurations, we start from some arbitrary con�guration C0 and construct a

stochastic sequence of con�gurations. Con�guration Ci is generated based on con�guration Ci�1,

which we call an update or Monte Carlo step. The result is a Markov chain

C0 ! C1 ! C2 ! ::: (3.3)

of con�gurations.
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Markov chain Monte Carlo (MCMC) is characterized by the probability WCC0 � P (C 0jC), the

probability to jump to con�guration C 0 given that the system started in con�guration C. The

MCMC transition matrix

W �
�
WCC0

�
(3.4)

is constructed to bring the system to equilibrium. In equilibrium, the chain should have no sinks or

sources of probability, which means that the probability of jumping into a con�guration C 0 should

be the same as jumping out of C 0. This property is called balance

X
C

WCC0
P (C) =

X
C

WC0C P
�
C 0
�
; (3.5)

with the LHS representing the total probability to end up in C 0 and the RHS representing the

probability to transition out of C 0. If W satis�es

1. ergodicity, i.e.

P (C) > 0 and P
�
C 0
�
> 0 ) 9 n 2 N s.t.

�
Wn

�CC0
> 0; (3.6)

2. normalization, i.e. X
C0

WCC0
= 1; (3.7)

3. and balance,

then the Markov process is guaranteed to bring the ensemble toward equilibrium. Using normal-

ization, one �nds from eq. (3.5)

X
C

WCC0
P (C) = P

�
C 0
�
; (3.8)

which shows that the equilibrium distribution is a �xed point of the Markov chain. The �rst

property, ergodicity, guarantees that it is possible to transition from C to C 0 in a �nite number

of steps. In realistic simulations, it is important that the n appearing in eq. (3.6) is not too

large. For example the Markov chain may have di�culty connecting di�erent topological sectors in

con�guration space.
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3.1.1 Update: Metropolis and heat bath

In this and the following subsection, we omit the Lorentz index and space-time point from link

variables to avoid clutter. We use U to indicate the link to be updated, Ut to indicate the staple

matrix attached to U , and U 0 to indicate a trial link. We will use the Boltzmann distribution

P (C) / e�SC .

One trivial way to satisfy the balance condition (3.5) is to �nd an update that satis�es it

term-by-term. For such an update,

WCC0
P (C) = WC0C P

�
C 0
�
: (3.9)

This property is known as detailed balance. One of the most well-known Monte Carlo updates

satisfying detailed balance is the Metropolis algorithm [44]. In the Metropolis algorithm, a trial

con�guration C 0 is selected with some probability distribution T (C 0jC). Then C 0 is accepted with

likelihood

P
�
C ! C 0

�
= min

�
1;

T (CjC 0) e�SC0

T (C 0jC) e�SC

�
; (3.10)

where SC is the action corresponding to C. If C 0 is rejected, the unchanged con�guration is

counted in the Markov chain. Using the fact that the total probability to transition from C to C 0

is WCC0
= T (C 0jC) P (C ! C 0), one can show that this update satis�es detailed balance.

Another update is the heat bath (HB). In our simulations, a new con�guration is generated from

an old one by updating one link. For the SU(2) HB algorithm, the trial link distribution is

dT
�
U 0
�
/ dU 0 exp

�
�

2
tr U 0Ut

�
(3.11)

and the transition probability is

P
�
C ! C 0

�
= min

h
1; e�(SC0�SC)

i
: (3.12)

This construction also satis�es detailed balance. The new con�guration is automatically accepted

whenever it lowers the action, and increases in the action are exponentially suppressed. HB updates

ensure local equilibrium, but they often take more CPU time. For SU(2) the guarantee of local

equilibrium turns out to be more impactful, so heat bath updates are more e�cient than general

Metropolis updates.

Single link Metropolis or HB updates of links carried out in a systematic (as opposed to random)

order ful�ll balance, but do not ful�ll detailed balance.
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3.1.2 Update: Over-relaxation

An additional useful update for SU(2) is the over-relaxation (OR) update. Adler introduced

OR algorithms [1] and they were further developed by Creutz [23] and others. The idea of the

OR algorithm is to speed up relaxation by generating a group element \far away" from U without

destroying equilibrium, which is here achieved by keeping the action constant.

More precisely let U 2 SU(Nc) and suppose we have some method of choosing another link

variable U0 that maximizes the action for this staple. We assume that this method of selection has

no dependence on U . Pick some element V 2 SU(Nc) such that U = V U0; viewed in this way, U

is \on one side of U0," and the element \on the other side" is U 0 = V �1U0. Note that

V = UU�1
0 ; (3.13)

which implies

U 0 = U0U
�1U0: (3.14)

This manner of constructing a new link variable U 0, which generates a group element \far away"

from U without changing the action, is what we mean by over-relaxation.

In principle an OR update should be more e�cient than a Monte Carlo update. This is because

we chose the new link variable to be two group elements away from the old one, thrusting us

further along con�guration space. However unlike Metropolis updates, OR updates only sample

the subspace of constant action, and are therefore not ergodic. Hence to ensure an approach to

equilibrium, they must be supplemented with, for instance, HB updates.

We implement the SU(2) OR update by

U ! U 0 =
1

detUt
�
UtUUt

�y
: (3.15)

It is easily seen that this update does not change the SU(2) Wilson action, which means the

proposal is always accepted. This simple behavior is special to U(1) and SU(2) LGT. Its usefulness

is extended to SU(Nc) when Nc > 2 via the method of Cabibbo and Marinari [18].

3.2 Statistical analysis

Since Ci is generated based on Ci�1, measurements on subsequent con�gurations are correlated.

In our simulations, these correlations are reduced in two ways:
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1. Subsequent con�gurations are separated by multiple updating sweeps; and then

2. con�gurations are grouped into Nconf blocks or bins.

The �nal measurements Xi used in data analysis are obtained by averaging within each block. To

check whether the �nal data are e�ectively independent, one can use the integrated autocorrelation

time. For statistically independent measurements, we expect the variance �2
�X

of �X to be

�2
�X =

�2

Nconf
(3.16)

due to the Central Limit Theorem. In practice, however, one �nds

�2
�X =

�2

Nconf
�int: (3.17)

The factor �int is the integrated autocorrelation time. It is the ratio between the estimated variance

of the sample mean and what this variance would have been if the data were independent. For

e�ectively independent data, �int = 1.

So, the �nal measurements are drawn from some distribution with mean hXi and variance

�2 and are e�ectively independent. The estimator �X of the mean is the average (3.2), while the

unbiased estimator ��2 of the variance is

��2 =
1

Nconf � 1

NconfX
i=1

�
Xi � �X

�2
: (3.18)

An estimator is biased if its mean for �nite Nconf does not agree with the exact result; the bias is the

di�erence. Generally, problems with bias emerge whenever one wishes to estimate some non-linear

function f of the mean hXi. Naively one might guess

�fbad =
1

Nconf

NconfX
i=1

f(Xi) (3.19)

as an estimator; however it can be shown that the bias of �fbad is O(1), i.e. it never converges to

the exact result. An estimator for f(hXi) that converges to its true value is

�f = f( �X); (3.20)

in particular, the bias of this estimator is O(1=Nconf). Therefore in the large Nconf limit, the bias

vanishes faster than the statistical error bar.
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We have introduced a way to estimate the mean and variance of some operator, as well as a

way to estimate the mean of some function of that operator. Now we need a way to estimate the

error bar of that function. We cannot use

��2
�f =

��2
�f

Nconf
=

1

Nconf (Nconf � 1)

NconfX
i=1

�
f(Xi)� �f

�2
(3.21)

because f(Xi) is not a valid sample point. One could analytically produce an error bar for �f

using error propagation. However when the function is complicated, error propagation becomes

extremely unwieldy.

Jackkni�ng allows one to extract a mean and error bar, and it is straightforward to implement;

therefore it makes sense to use the jackknife method generally. The idea of jackkni�ng is to throw

away the �rst measurement, leaving Nconf�1 resampled values. Then we resample again, this time

throwing out the second point, and so on. The resulting jackknife bins are

XJ;i =
1

Nconf � 1

X
j 6=i

Xj : (3.22)

The jackknife estimator for f(hxi) is then

�fJ =
1

Nconf

NconfX
i=1

f(XJ;i); (3.23)

while the estimator for the variance of �fJ is

��2
fJ

=
Nconf � 1

Nconf

NconfX
i=1

�
f(XJ;i)� �fJ

�2
: (3.24)

In many instances, we will need to compare two estimates of the same quantity against each

other and decide whether the di�erence between them is signi�cant. This can happen, for example,

if we want to compare another group’s results with our own. Let their result be �X with uncertainty

� �X and ours be �Y with uncertainty � �Y . Then the probability that these two estimates di�er by at

least D is

q = P
�
j �X � �Y j > D

�
= 1� erf

0BB@ Dr
2
�
�2

�X
+ �2

�Y

�
1CCA (3.25)

assuming �X and �Y are normally distributed with the same mean. This is called a Gaussian

di�erence test. The quantity q is called the q-value. In practice we take q � 0:05 to be an
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indication of a possible discrepancy between �X and �Y , keeping in mind that q � 0:05 by chance

one out of twenty times.

In practice, the true variances � �X and � �Y are not known. If one wishes to use the estimators

�� �X and �� �Y instead, one can perform a Student di�erence test or t-test to investigate whether the

discrepancy D is due to chance. Suppose the estimate �X comes from Mconf data, while �Y comes

from Nconf data. Assume � �X = � �Y , which happens when the sampling methods used are identical.

We introduce the random variable

t =
D

��D
; (3.26)

where D = �X � �Y , and

��2
D =

�
1

Mconf
+

1

Nconf

�
(Mconf � 1) ��2

�X
+ (Nconf � 1) ��2

�Y

Mconf +Nconf � 2
: (3.27)

Then the probability that these two estimates di�er by at least D is

q = 2

(
I
�
z; �2 ;

1
2

�
for t � 0;

1� 1
2 I
�
z; �2 ;

1
2

�
otherwise;

(3.28)

where I is the incomplete beta function, � = Mconf +Nconf � 2, and

z =
�

� + t2
: (3.29)

To estimate �nite size corrections and carry out continuum limit extrapolations, we need a way

to �t data to curves. Consider a sample of Nsim Gaussian, independent data points (Xi; Yi), where

the Yi have standard deviations �i and the Xi have no errors. For instance, if one is interested in

a continuum limit extrapolation, the Xi are � values while the Yi are ratios of scales evaluated at

that �. We model these data with a �t that depends on some set of M parameters

y = y(x; a); (3.30)

where a = (a1; :::; aM ) is the vector of these parameters. Our goal is to estimate the aj . Assuming

that y(x; a) is the exact law for the data, the probability distribution for the measurements Yi is

f(y1; :::; yNsim) =

NsimY
i=1

1p
2��i

exp

�
�(yi � y(xi; a))2

2�2
i

�
: (3.31)

The probability that the data fall within a region near what was observed is

P =

NsimY
i=1

1p
2��i

exp

�
�(yi � y(xi; a))2

2�2
i

�
dyi: (3.32)
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Our strategy for determining the correct �t will be to �nd the vector a that maximizes the above

probability. This happens when

�2(a) �
NsimX
i=1

(yi � y(xi; a))2

2�2
i

(3.33)

is minimized. This strategy is an example of a maximum likelihood method.

We now describe an iterative method to search for the minimum of �2. Let an be the vector

of parameters for the nth iteration. As long as a is in a small enough neighborhood of an, we can

safely approximate

�2(a) � �2(an) + (a� an) � b+
1

2
(a� an)A (a� an); (3.34)

where the coe�cients of the vector b and the M �M matrix A are given by the �rst and second

derivatives of �2 evaluated at an. In the Newton-Raphson method, the next iteration an+1 is

determined from the condition r�2(a)ja=an+1 = 0, which yields

an+1 = an �A�1b: (3.35)

If the approximation (3.34) is not good, one can instead move a small step in the direction of the

gradient by

an+1 = an � c b; (3.36)

where c is a constant that is small enough not to overshoot direction of steepest descent. This is

an example of a steepest descent method. The Levenberg-Marquardt method [37, 43], which is our

method of choice, varies smoothly between (3.35) and (3.36). Steepest descent is used far from the

minimum, and then it switches to the Newton-Raphson method when the minimum is approached.

3.3 Computer implementation

Now that we have introduced the general idea of MCMC, along with some speci�c updating

schemes, and complications for statistical analysis, we are ready to discuss the computer imple-

mentation.

As mentioned earlier, we design the simulation using local updates, which means we update

the links one at a time. This is done in a systematic order, because there is some computational
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advantage compared to updating in a random order [11]. An updating sweep updates every link on

the lattice once. To maximize e�ciency while maintaining ergodicity, our updating sweeps have a

combination of HB and OR updating. We call this a Monte Carlo Over-relaxation (MCOR) sweep.

An MCMC simulation of LGT broadly consists of three essential steps:

1. Initialization: The �rst thing to do is get everything ready for the simulation. This includes

initializing the random number generator, and setting up an initial con�guration.

2. Equilibration: To avoid over-sampling rare con�gurations, one must perform many sweeps to

bring the system to its equilibrium distribution. The structure of this section looks like

do from n=1 to n=nequi

call MCOR update

end do

3. Measurements: All observables of interest are measured on the equilibrated con�gurations.

To help reduce correlations between measurements, multiple updating sweeps are performed

in between. This section is structured as

do from n=1 to n=nmeasurements

do from n=1 to n=ndiscarded

call MCOR update

end do

take measurement

end do

For simulations like ours, it may take months (or years!) for a single-processor MCMC simula-

tion to generate enough data to get reasonable error bars. Therefore it is advantageous to divide

the lattice into smaller sublattices, updating simultaneously on each sublattice, passing relevant

information between the sublattices whenever necessary. Parallelizing in this way o�ers a speed up

factor somewhat less than the number of sublattices used. A standard way to parallelize code is to

use the Message Passing Interface (MPI). MPI allows for e�cient exchange of information between

processors and is easily included in Fortran or C programs.

One may wish to optimize the number of OR sweeps. To do this we looked at the action and

Polyakov loops for 83 � 4, 123 � 6, and 163 � 8 lattices and calculated the improvement ratio

I =
�int(0)

�int(n)

t(0)

t(n)
; (3.37)
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Figure 3.1: Left: Improvement factor for action as a function of the number of OR sweeps. Right:
Improvement factor for Polyakov loops. The error bars of the Polyakov loop are magni�ed by a
factor of 10 to increase visibility.

where �int(n) and t(n) are, respectively, the integrated autocorrelation time and CPU time for a

simulation using one HB update and n OR updates per sweep. Figure 3.1 shows the improvements

for the action (left) and Polyakov loops (right). The action improvement seems to peter out after

the �rst OR sweep, while the Polyakov loop improvement increases up to at least four OR sweeps.

Therefore using two OR sweeps is a good compromise for these observables.

The goal of some simulations is to determine phase transition points. Close to these points, on

a �nite lattice, the susceptibility of the relevant order parameter attains its maximum. The most

straightforward strategy of estimating this maximum is to run multiple simulations in the vicinity

of the transition point. Because this strategy requires multiple runs, it is ine�cient. Reweighting

(see [30] and references therein) is an e�cient alternative. Consider the expectation value of an

observable X calculated at �0. We have

hXi�0 = Z�1
�0

Z
d� e��

0E(�)X(�)e(���)E(�)

= Z�1
�0

Z
d� e(���0)E(�)X(�)e��E(�)

= Z�1
�0 Z�

D
e(���0)EX

E
�

=

�
Z�
Z�0

e(���0)EX

�
�

:

(3.38)

We can calculate the expectation value in the last line using data from a time series generated at �,

and this gives us an estimate for hXi�0 . Reweighting is only useful when E�� = O(1). Provided
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that the critical parameter �c is su�ciently close to the simulation point �, it su�ces to have only

one simulation, then estimate the maximum by reweighting to multiple nearby �0. An example

reweighting curve is shown in Figure 3.2.

Our simulations were performed on the FSU HEP theory cluster, as well as at the National

Energy Research Scienti�c Computing Center (NERSC) using HEP and nuclear physics computing

grants. The FSU HEP cluster consists of 16 nodes, each with 4 Intel Core i7 CPU processors, and

each processor supports 2 threads. The HEP cluster is well-suited for simulations of our smaller

lattices, and we used it extensively. However there is no MPI communication between nodes, so

simulations can e�ciently use at most 8 processes. It is desirable for larger lattices to use many

more processes, and when this is necessary, we turn to NERSC. NERSC’s supercomputer Cori lets

us use up to 1,932 Intel Xeon Haswell nodes with 32 cores each, allowing for up to 61,824 processes.

Using 8,000 processors on Cori, we were able to simulate an 803 � 8 lattice with high statistics in

less than two days of real time. Summing over all simulations we have run on NERSC, we have

carried out 14.9 million raw machine hours (about 1,700 years) of single-processor calculation.
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CHAPTER 4

COMPARISON OF SCALING VIOLATIONS

We investigate three types of reference scale: the decon�nement scale, the gradient scale, and

the cooling scale. The goals of this investigation are to compare the computational e�ciency of

these scales, determine whether they experience seriously distinct scaling behavior, and estimate

the systematic error accrued from the choice of �tting form for continuum limit extrapolation.

Altogether we examine thirteen scales: the decon�nement scale, which we label L0; six gradient

scales L1 � L6; and six cooling scales L7 � L12.

Our results are obtained by analyzing con�gurations generated by MCMC simulation at NERSC

and on the FSU HEP computer cluster. The statistics are reported in units of MCOR sweeps. One

MCOR sweep updates each link in a systematic order using the Fabricius-Haan-Kennedy-Pendleton

heat bath algorithm [29, 35] then, in the same order, twice by over-relaxation [1]. The lattice is

checkerboard updated [7] and, using MPI Fortran, divided into sublattices that are updated in

parallel. Lattice sizes are reported as N3
s �N� . Statistical error bars are reported in the last two

digits of each measurement, in parentheses.

This chapter covers our investigation of the continuum limit of the aforementioned scales [13, 14].

In Section 4.1 we report our numerical results for the decon�nement scale, which we used to guide

our choice of target values for the gradient and cooling scales. Sections 4.2 and 4.3 give our results

for six gradient scales and six cooling scales, respectively. Scaling and asymptotic scaling behavior of

these altogether thirteen reference lengths are analyzed in Section 4.4. Our �ndings are summarized

in Section 4.5.

4.1 Decon�nement length numerical results

To obtain results for the decon�nement length, we use lattices with Ns � 2N� because temper-

ature de�nitions are only sharp in the Ns ! 1 limit. The decon�nement length L0 is extracted

using the following procedure:
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Figure 4.1: Three-parameter �t (4.2) for N� = 12.

1. Simulations are carried out at a coupling constant �sim expected to be near the critical point,

given the lattice size.

2. The location of pseudo-critical coupling constants �c(N� ; Ns) and their error bars are then

estimated by reweighting the Polyakov loop susceptibility curve.

3. After repeating this process for multiple space-like sizes N3
s , the critical coupling

�c(N� ) � �c(N� ;1) (4.1)

is extrapolated from the three-parameter �t

�c(N� ; Ns) = �c(N� ) + a1(N� )Na2(N� )
s : (4.2)

4. The decon�nement length for the coupling constant �c is then L0(�c) = N� (�c).

Table 4.1 collects our data for pseudo-critical coupling constants for lattices with N� up to

12 and Ns up to 80. The statistics assembled ranges between 218 � 223 MCOR sweeps, with an

exceptional 225 MCOR sweeps for the 403 � 12 lattice. The range in MCOR sweeps depended

somewhat on what passed through the NERSC scavenger queue. To produce error bars, the time

series is grouped into 32 or more bins, we reweight in each bin, and the bins are then jackknifed.

Critical coupling constants and their corresponding decon�nement lengths are reported in Ta-

ble 4.2. The three-parameter �t (4.2) is carried out using the Levenberg-Marquardt approach; the
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Table 4.1: Pseudo-critical coupling constants �c(Ns; N� ).

Ns N� = 4 N� = 6 N� = 8 N� = 10 N� = 12

8 2.30859(53)
12 2.30334(33) 2.43900(33)
16 2.30161(30) 2.52960(90)
18 2.43096(43)
20 2.30085(17) 2.42973(11) 2.59961(52)
24 2.30060(16) 2.42873(35) 2.51678(43) 2.58909(49) 2.66317(91)
28 2.30025(19) 2.427939(74) 2.58497(26)
30 2.427690(87)
32 2.299754(99) 2.51296(20) 2.58270(27) 2.64450(39)
36 2.427274(67) 2.58117(13) 2.64223(33)
40 2.299593(74) 2.51192(12) 2.58046(26) 2.64039(26)
44 2.426827(67) 2.51150(11) 2.58002(17) 2.63925(24)
48 2.299452(83) 2.426756(64) 2.51119(11) 2.57941(15) 2.63839(27)
52 2.51130(11) 2.57949(23) 2.63744(19)
56 2.299435(29) 2.426605(62) 2.511096(85) 2.57876(18)
60 2.426596(55)
64 2.510635(83) 2.57851(15)
72 2.510716(72)
80 2.510517(79)

Table 4.2: Critical coupling constants �c(N� ) and corresponding decon�nement lengths L0(�).

N� �c(N� ) q L0(�)

4 2.299188(61) 0.56 4.00000(63)
6 2.426366(52) 0.73 6.0000(11)
8 2.510363(71) 0.14 8.0000(19)
10 2.57826(14) 0.29 10.0000(45)
12 2.63625(35) 0.06 12.000(13)
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Figure 4.2: Left: Reweighted Polyakov loop susceptibility curve on a 643 � 10 lattice simulated at
� = 2:5788. Right: Susceptibility curve with maximum value divided out in each jackknife bin.

corresponding goodness-of-�t q is reported in the third column. Figure 4.1 gives an example �nite

size �t for N� = 12; the remaining �ts are included in Appendix A. Error bars are attached to the

decon�nement length using the equation

4L0 =
L0

L1;3
10 (�c)

h
L1;3

10 (�c)� L1;3
10 (�c �4�c)

i
; (4.3)

where the cooling length L1;3
10 (�) is introduced in Section 4.4. Equation (4.3) is justi�ed because

L0 error bars depend only mildly on the choice of the interpolation of its scaling behavior.

Let us contextualize the results Table 4.2 by comparing these critical coupling estimates with

other pure SU(2) results. Previously Engels et al. [28] studied N� = 4 with volumes up to N3
s = 263

and showed that it falls into the 3D Ising universality class. Their estimate �c(4) = 2:29895(10)

is somewhat lower than ours, with the Gaussian di�erence test giving q = 0:042. Lucini et al. [39]

present estimates �c(4) = 2:2986(6), �c(6) = 2:4271(17), and �c(8) = 2:5090(6), for which Gaussian

di�erence tests against our estimates give q = 0:33, q = 0:67, and q = 0:022, respectively; we see

good agreement for the N� = 4 and N� = 6 estimates and some tension with their slightly lower

N� = 8 estimate. We seem to have the only results for N� = 10 and N� = 12, which appear to be

the largest N� for which pure SU(2) decon�nement temperatures have been calculated.

As a technical note, our reweighting curves for N� = 10 and N� = 12 are rather at near the

maximum susceptibility �max within large error bars. This can be seen for our 643 � 10 lattice in

Figure 4.2 (left). The astonishingly accurate estimates �c(Ns; N� ) given in Table 4.1 are due to
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correlations between the error bars of the reweighted Polyakov loop susceptibilities. Dividing out

the maximum value �max in each jackknife bin leads us to Figure 4.2 (right), which makes the small

error bar of the estimate pseudo-critical coupling estimate plausible.

4.2 Gradient length numerical results

Our numerical results rely on MCMC simulations for the � values and lattice sizes given in

Table 4.3. In each run 128 = 27 con�gurations were generated, and on each of them, the gradient

ow was performed. To implement the SU(2) gradient ow on the computer, we use the SU(2)

relationship (2.54) and integrate the ow equation (2.51) numerically. Following Ref. [40] we applied

a Runge-Kutta scheme with � = 0:01 and

Zi = �Z(Wi); Z(Wi) =
1

2

�
Wi �W yi

�y
; W0 = U�(x): (4.4)

To optimize our use of computational resources, we allocated our CPU time in approximately

equal parts to generation of con�gurations and to the gradient ow. Subsequent con�gurations are

separated by 211 to 3�212 MCOR sweeps, where the increase from 211 to larger numbers of MCOR

sweeps is due to the number of gradient sweeps needed to reach the target values. The dividing line

from 211 to 212 sweeps is between � = 2:574 and � = 2:62, and from 212 to 213 between � = 2:67

and � = 2:71. We estimated integrated autocorrelation times �int using software of Ref. [11] for

the time series of 128 measured scale values and found all �int compatible with the lower bound 1,

where the unit is set by the number of sweeps between the con�gurations. This gives evidence that

our data are statistically independent. Error bars are calculated using the jackknife method with

respect to these 128 con�gurations. The lattices are hypercubic (N� = Ns) with the exception of

243 � 48 and 323 � 64, which were generated to compare with Ref. [40].

Let us now discuss the de�nitions of our gradient scales. Each gradient scale is characterized

by an energy density and a target value. We parameterize lattice expectation values of plaquette

matrices by 

U�(t)

�
L

= a0(t)1 + i
3X
i=1

ai(t)�i: (4.5)

To follow our gradient and cooling ows, we use three discretizations of the energy density

E0 � 2(1� a0); E1 �
3X
i=1

a2
i ; and E4 �

1

16

3X
i=1

�
auli + auri + adli + adri

�2
; (4.6)
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Table 4.3: Gradient length scales.

� Lattice L1 L2 L3 L4 L5 L6

2.3 84 1.361(13) 1.361(13) 1.359(15) 1.897(24) 1.897(24) 1.900(25)
124 1.3538(52) 1.3538(50) 1.2955(88) 1.8905(84) 1.8897(83) 1.824(12)
164 1.3593(28) 1.3589(27) 1.2756(75) 1.8963(48) 1.8956(48) 1.807(11)

2.43 124 2.126(20) 2.115(20) 2.038(20) 2.849(34) 2.842(33) 2.771(34)
164 2.0961(91) 2.0848(90) 1.964(14) 2.791(15) 2.784(15) 2.653(20)
244 2.1066(41) 2.0952(40) 1.974(11) 2.8044(66) 2.7968(65) 2.644(15)
284 2.1023(30) 2.0911(30) 1.9666(98) 2.7994(48) 2.7920(47) 2.645(13)

2.51 164 2.730(21) 2.715(21) 2.603(23) 3.586(34) 3.575(34) 3.436(34)
204 2.766(15) 2.750(15) 2.585(20) 3.653(25) 3.642(25) 3.453(29)
284 2.7590(73) 2.7428(73) 2.570(14) 3.624(12) 3.613(12) 3.406(19)

2.574 204 3.389(26) 3.369(26) 3.166(28) 4.437(39) 4.423(39) 4.178(44)
244 3.395(17) 3.374(17) 3.175(22) 4.429(26) 4.415(26) 4.171(29)
324 3.406(11) 3.385(11) 3.193(17) 4.454(15) 4.440(15) 4.219(22)
404 3.4103(72) 3.3896(71) 3.149(16) 4.458(12) 4.444(11) 4.175(21)

2.62 244 3.993(28) 3.968(28) 3.711(35) 5.252(46) 5.233(45) 4.916(49)
24348 3.947(22) 3.923(21) 3.699(26) 5.135(33) 5.119(33) 4.868(38)
284 3.950(20) 3.926(20) 3.704(24) 5.145(30) 5.129(30) 4.849(32)
404 3.954(10) 3.9293(99) 3.672(19) 5.156(16) 5.140(16) 4.827(26)

2.67 284 4.680(33) 4.651(33) 4.350(39) 6.131(53) 6.110(53) 5.740(60)
324 4.651(27) 4.622(27) 4.350(33) 6.057(40) 6.038(40) 5.719(46)
404 4.622(17) 4.593(17) 4.297(24) 6.020(27) 6.000(27) 5.645(32)

2.71 324 5.217(37) 5.185(37) 4.867(42) 6.776(55) 6.754(55) 6.357(56)
364 5.252(33) 5.220(33) 4.852(42) 6.831(50) 6.809(50) 6.401(57)
404 5.199(22) 5.167(22) 4.817(27) 6.773(32) 6.751(32) 6.334(39)

2.751 32364 5.879(35) 5.843(34) 5.466(39) 7.642(51) 7.617(51) 7.179(57)
364 5.893(38) 5.856(38) 5.465(48) 7.659(60) 7.633(59) 7.161(68)
404 5.909(34) 5.872(34) 5.457(41) 7.694(50) 7.668(50) 7.211(59)

2.816 444 7.092(48) 7.049(47) 6.530(54)
2.875 524 8.510(64) 8.456(65) 7.883(68)
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Figure 4.3: Con�guration of plaquettes used for symmetric de�nition of energy density. The �� �
plane lies in the paper, with �̂ to the right and �̂ upward. All of the plaquettes begin and terminate
at x, which is in the center.

where E4 is L�uscher’s energy density [40] that averages over four plaquettes in a �xed � 6= �

plane. The superscripts of ai stand for up (u), down (d), left (l), and right (r); the con�guration

of plaquettes for this de�nition is shown in Figure 4.3. The de�nition E0 is the Wilson action

density. The de�nitions E0 and E1 will be highly correlated since 1 = a�a�. All de�nitions become

� F��F�� in the continuum limit. We introduce the notation si to indicate a gradient scale that

uses the energy density Ei.

Next we de�ne target values. Our strategy was to choose target values so that initial estimates

of the scales si agree with the decon�nement scale for small �. More precisely we use target values

satisfying
si(N = 12; � = 2:43)

si(N = 8; � = 2:3)
� N� (� = 2:43)

N� (� = 2:3)
=

6

4
= 1:5; (4.7)

where the left approximate equality holds due to scaling. For instance from eq. (2.60) we expect

N� (a) = s(a)

�
N�

s
+O

�
a2
��

; (4.8)

so that by considering two lattice spacings a1 and a2 one �nds

N� (a1)

N� (a2)
=
s(a1)

s(a2)

�
1 +O

�
a2

1

�
+O

�
a2

2

� �
: (4.9)

Figure 4.4 (left) plots the gradient scale ratio against the target value. We see essentially two

intersections with 1.5, the �rst coming from the E4 curve and another coming from the E0 and E1

curves, which practically agree. Figure 4.4 (right) plots the function t2Ei against the ow time.
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Figure 4.4: Left: Gradient ow ratios as function of y. The horizontal line indicates the decon�ne-
ment ratio 1.5. Right: Gradient ow of an 84 lattice at � = 2:3.

Picking initially y1
4, the target value corresponding to the aforementioned E4 intersection, de�nes

a ow time, indicated by the vertical dotted blue line at t = 1:85. This ow time is then used to

de�ne two more target values y1
0 and y1

1, determined by following the vertical dotted blue line up

until it intersects with the E0 and E1 curves. Similarly, picking initially y2
0 (or equivalently y2

1)

delivers a target value from the E0 intersection in the left �gure, then two more target values y2
1

and y2
4 from the vertical solid red line at t = 3:61 in the right �gure. Altogether we consider the

six gradient ow target values

y1
0 = 0:0376; y1

1 = 0:0370; y1
4 = 0:030; (4.10)

y2
0 = 0:0755; y2

1 = 0:0748; y2
4 = 0:061: (4.11)

A gradient length scale sji is obtained according to eq. (2.55) and (2.56) when the gradient ow

hits the target value yij . For later convenience we de�ne

L1 � s1
0; L2 � s1

1; L3 � s1
4; L4 � s2

0; L5 � s2
1; L6 � s2

4: (4.12)

Our MCMC estimates for these scales are reported in Table 4.3. We see the strong correlation

between scales de�ned using E0 and E1, often being identical within error. To control for �nite

size e�ects, these scales are simulated for multiple lattice sizes. For the largest lattices, �nite size

e�ects are negligible, with di�erences between scales calculated on the largest lattice and on the

second largest lattice being comparable to or smaller than the statistical error. Gradient scales at
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Figure 4.5: Left: Cooling ow ratios as function of y. The horizontal line indicates the decon�ne-
ment ratio 1.5. Right: Cooling ow of an 84 lattice at � = 2:3.

� = 2:816 and � = 2:875 were not simulated for smaller lattices because results for the cooling scale

give evidence that these lattices are already large enough for �nite size e�ects to be negligible (see

Table 4.4.) For these two lattices, the allocated gradient ow was too short to reach its y2
i targets.

As mentioned in the previous section, each simulation for the decon�nement length took at

least 218 MCOR sweeps, requiring as many as 223 MCOR sweeps for large �. By contrast our

longest gradient ow simulation required 128 � 213 = 220 MCOR sweeps. Furthermore �nite size

scaling extrapolations are necessary in order to obtain a reliable estimate for the decon�nement

scale, usually requiring 10 or so simulations to achieve the desired error bars. The gradient length,

meanwhile, is already well-de�ned without requiring Ns � N� , so that arguably only one simulation

at each � is necessary. Taking achieved error bars, lattice sizes, and number of simulations needed

into account, using the gradient scale over the decon�nement scale amounts to a two to three order

of magnitude improvement. For instance at � = 2:62 a gradient scale can be estimated with at

worst a relative error of 5� 10�4 on a 404 lattice using 219 MCOR sweeps. Meanwhile the nearby

decon�nement length N� = 12 required 224 MCOR sweeps on four lattices that are very roughly

half as large as 404 to achieve a relative error of 10�3. Putting this together, the gradient scale at

this spacing is at least 256 times as e�cient.
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4.3 Cooling length numerical results

Bonati and D’Elia [16] showed that nc cooling sweeps corresponds to a ow time

t = nc=3: (4.13)

If ng denotes the number of sweeps of the gradient ow algorithm, then t = � ng = 0:01ng, so the

above relation implies

ng = 33:�3nc; (4.14)

i.e. one cooling sweep traverses the same ow time as 33:�3 gradient sweeps. Combined with the

fact that a gradient sweep is computationally more intensive than a cooling sweep due to the

Runge-Kutta, one expects the cooling ow to reach its target value at least 34 times faster than

the gradient ow.

The cooling ow (2.57) is performed on the same con�gurations as the gradient ow. Cooling

sweeps are performed in the same systematic order as our MCMC sweeps. As another check of

statistical independence, we calculated on our largest lattices the topological charge (2.87) of each

con�guration, using the cooling ow to smooth them, and looked at �int for the time series of 128

topological charges. These �int were found to be statistically compatible with 1, con�rming again

the statistical independence of these con�gurations. The topological charge was de�ned at 100

cooling sweeps, which may be too low to be metastable for our smallest lattices, but is su�cient

for the purpose of checking statistical independence. More details are given in Chapter 5.

To determine target values, we follow the same approach as with the gradient ow. The analogue

to Figure 4.4 is given in Figure 4.5. Due to the large cooling steps, gaps between the points are

clearly visible. The intersection of target value lines and ow time lines in Figure 4.5 (right) are

determined using linear interpolation. We �nd target values

y1
0 = 0:0440; y1

1 = 0:0430 ; y1
4 = 0:0350; (4.15)

y2
0 = 0:0822; y2

1 = 0:0812 ; y2
4 = 0:0656; (4.16)

where a superscript 1 again indicates target values obtained from the E4 ratio curve crossing 1.5

in Figure 4.5 (left), and the superscript 2 indicates target values obtained from the E0 ratio curve.

These target values deliver cooling length scales uji according to eq. (2.59). For later convenience
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we de�ne

L7 � u1
0; L8 � u1

1; L9 � u1
4; L10 � u2

0; L11 � u2
1; L12 � u2

4: (4.17)

Our MCMC estimates for these scales are reported in Table 4.4. Again we see evidence that

�nite size e�ects are not detectable within our statistics for the largest lattices, and that scales

de�ned with densities E0 and E1 give almost identical results.

4.4 Scaling and asymptotic scaling behavior

We analyze the approach of ratios of the length scales L0�L12 to the continuum limit. We �rst

�t using standard scaling, then asymptotic scaling. Additionally we provide estimates of systematic

uncertainty from the choice of continuum limit �tting form. All gradient and cooling scale results

rely on the largest lattice at each �, since �nite size e�ects are not detectable within statistical

error for these sizes. Results from � = 2:928 are not included in the following analysis, which was

carried out before simulations at this coupling constant �nished.

4.4.1 Standard scaling

We begin with standard scaling using eq. (2.61)

Rij =
Li
Lj

= rij + cij

�
1

Lj

�2

: (4.18)

This is a linear �t in the squared lattice spacing with �t parameters rij and cij , rij being the

continuum limit estimate for the ratio Rij . Table 4.5 reports these continuum limit estimates for

various scale combinations. The �rst column labels the numerator Li and the top row labels the

denominator Lj . The scales L2, L5, L8, and L11 are omitted from the table, since they use the

discretization E1, which essentially agrees with E0. For example r10;11 = 0:995397(24). Data points

from � = 2:3 were omitted from �ts with q < 0:05, as they may not be deep enough in the scaling

region. After applying this cut, these �ts satisfy 0:11 � q � 0:98. The decon�nement �t relies on

all �ve points from Table 4.2 with goodness-of-�t q = 0:25.

To compare scaling corrections between the ratios, we rescale Rij with the extrapolation rij

and choose ‘10 as a reference scale. We chose ‘10 for aesthetic reasons: the �ts distribute rather

evenly about Ri;10=ri;10 = 1 with this choice. A collection of these �ts is shown in Figure 4.6. The
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Table 4.4: Cooling length scales.

� Lattice L7 L8 L9 L10 L11 L12

2.3 84 1.342(12) 1.337(12) 1.342(14) 1.846(22) 1.844(22) 1.843(22)
124 1.3391(47) 1.3343(45) 1.2730(85) 1.8241(74) 1.8217(72) 1.743(12)
164 1.3433(24) 1.3385(23) 1.2575(74) 1.8307(39) 1.8282(39) 1.728(10)

2.43 124 2.111(19) 2.092(18) 2.013(20) 2.769(29) 2.759(29) 2.669(32)
164 2.0837(90) 2.0653(90) 1.951(13) 2.725(14) 2.715(14) 2.572(18)
244 2.0929(38) 2.0744(38) 1.947(11) 2.7395(57) 2.7287(57) 2.561(14)
284 2.0892(28) 2.0707(28) 1.9446(95) 2.7317(43) 2.7212(42) 2.565(12)

2.51 164 2.728(19) 2.703(19) 2.587(23) 3.531(30) 3.516(30) 3.370(31)
204 2.753(14) 2.727(14) 2.567(20) 3.571(23) 3.555(23) 3.359(27)
284 2.7522(68) 2.7267(66) 2.548(15) 3.552(10) 3.5371(99) 3.315(18)

2.574 204 3.396(25) 3.365(24) 3.157(26) 4.356(37) 4.337(37) 4.084(38)
244 3.389(16) 3.357(16) 3.155(22) 4.352(24) 4.333(24) 4.080(29)
284 3.422(13) 3.390(13) 3.168(18) 4.405(20) 4.386(29) 4.123(25)
324 3.4001(97) 3.3686(95) 3.153(17) 4.374(14) 4.355(14) 4.100(21)
404 3.4048(69) 3.3730(67) 3.137(17) 4.377(11) 4.358(10) 4.074(20)

2.62 244 3.988(26) 3.949(26) 3.717(32) 5.157(40) 5.133(39) 4.836(44)
24348 3.949(20) 3.912(19) 3.688(25) 5.070(30) 5.047(29) 4.788(34)
284 3.952(19) 3.915(19) 3.680(23) 5.059(28) 5.037(28) 4.751(30)
404 3.9509(95) 3.9137(93) 3.645(22) 5.068(15) 5.045(15) 4.725(26)

2.67 284 4.676(32) 4.631(31) 4.314(39) 6.021(46) 5.993(46) 5.603(58)
324 4.644(27) 4.600(26) 4.282(31) 5.950(38) 5.923(38) 5.532(42)
404 4.618(17) 4.574(16) 4.298(26) 5.910(25) 5.884(25) 5.536(33)

2.71 284 5.232(41) 5.184(40) 4.829(47) 6.675(58) 6.645(57) 6.228(67)
324 5.216(36) 5.167(35) 4.833(41) 6.656(51) 6.626(51) 6.208(55)
364 5.256(31) 5.207(31) 4.803(42) 6.724(48) 6.692(48) 6.223(58)
404 5.203(21) 5.154(21) 4.794(28) 6.656(31) 6.626(30) 6.188(38)

2.751 284 5.880(82) 5.824(78) 5.487(74) 7.55(13) 7.52(13) 7.07(11)
32364 5.874(32) 5.819(32) 5.437(37) 7.515(49) 7.481(48) 7.010(52)
364 5.892(36) 5.836(35) 5.478(49) 7.531(53) 7.497(53) 7.033(66)
404 5.913(32) 5.857(32) 5.434(40) 7.576(46) 7.541(46) 7.038(54)

2.816 284 8.247(27) 8.167(26) 7.561(25) 10.48(35) 10.44(35) 9.72(34)
404 7.089(58) 7.021(58) 6.517(68) 9.076(84) 9.034(84) 8.426(92)
444 7.105(45) 7.039(45) 6.511(55) 9.056(65) 9.015(64) 8.349(73)

2.875 404 8.55(11) 8.464(10) 7.885(97) 10.98(16) 10.93(16) 10.21(16)
444 8.637(93) 8.554(92) 7.912(89) 11.11(15) 11.06(15) 10.29(15)
524 8.514(60) 8.433(59) 7.825(68) 10.879(87) 10.830(86) 10.122(92)

2.928 404 10.90(30) 10.79(29) 9.89(27) 13.99(42) 13.92(42) 12.87(40)
444 10.01(16) 9.92(16) 9.18(14) 12.78(23) 12.72(23) 11.82(21)
524 9.940(88) 9.846(87) 9.112(93) 12.72(13) 12.67(13) 11.76(13)
604 9.835(67) 9.742(66) 9.053(70) 12.561(97) 12.503(96) 11.653(95)
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Table 4.5: Continuum limit estimates of ratios rij from scaling.

i n j L1 L4 L7 L10

L0 2.8896(71) 2.2290(46) 2.8855(68) 2.2618(42)
L1 0.77382(61) 0.99845(38) 0.78433(43)
L3 0.9250(19) 0.7163(17) 0.9241(19) 0.7264(16)
L4 1.2943(11) 1.29135(99) 1.01520(49)
L6 1.2090(26) 0.9346(20) 1.2081(27) 0.9490(21)
L7 1.00156(38) 0.77398(79) 0.78570(50)
L9 0.9222(21) 0.7141(19) 0.9213(20) 0.7243(17)
L10 1.27509(70) 0.98508(47) 1.27300(80)
L12 1.1835(24) 0.9164(21) 1.1825(24) 0.9292(19)
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Figure 4.7: Left: Enhancement of the scaling �ts of Figure 4.6 for scales using E0 as well as L11

and the decon�nement scale. Right: Enhancement of the scaling �ts of Figure 4.6 for scales using
E4.

abscissa ranges up to (1=L10)2 � 0:3, which corresponds to � = 2:3. Goodness-of-�t cuts were

made for the scales L11, L2, L1, and L7; correspondingly in the �gure, one can see the deviations

of their � = 2:3 points from the �t lines. The L11 scale is close to 1 throughout, again because L10

and L11 rely on the E0 and E1 densities and have the same target value. There is clear overlap

between cooling and gradient scales; for example cooling scales L10 � L12 fall within the spread of

gradient scales L1 � L6, which shows that cooling scales do not su�er signi�cant scaling violations

compared to gradient scales. At (1=L10)2 � 0:3 we read o� scaling violations of about 10%.

Figure 4.7 shows enhancements of Figure 4.6 for two scale sets, deep in the scaling region. The

abscissa ranges up to (1=L10)2 � 0:05, which corresponds to � = 2:574. Both �gures include two

gradient and two cooling scales. Comparing the relative sizes of their error bars shows that there

is no discernible loss of precision using cooling scales over gradient scales. Figure 4.7 (left) features

gradient and cooling scales relying on E0, with the exception of L11, which relies on E1 and is

included because L10 was taken as reference. Figure 4.7 (right) features scales relying on E4. These

scales clearly exhibit larger error bars than scales using the E0 density. Since both sets of scales

show similar scaling violations, and since E0 has the simplest de�nition, we recommend using E0

over the other two densities for the purpose of de�ning gradient and cooling scales in pure SU(2).
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4.4.2 Asymptotic scaling

Next we consider asymptotic scaling �ts (2.65) of the length scales

Li =
cmni
fmas(�)

 
1 +

nX
k=1

�mni k fmas(�) k

!
: (4.19)

Since the pure SU(2) beta function is only known to three-loop order on the lattice, we consider

only m = 0; 1. We arrive at de�nitions

f 0
as(�) = C0

�
4b0
�

��b1=2b2
0

exp

�
� �

8b0

�
and f1

as(�) =
C1

C0
f0
as(�)

�
1 +

4q1

�

�
; (4.20)

where b0, b1, and q1 are the constants from eqs. (2.34) and (2.38). We have also introduced

normalization constants C0 and C1 to enforce for convenience

fmas(2:3) = 1: (4.21)

Estimates of normalization constants for asymptotic scaling �ts of gradient and cooling scales

are collected in Table 4.6. As explained in Section 2.2.2, we demand the same �mni;1 for all scales.

Using the E0 and E4 scales, these coe�cients were determined by a maximum likelihood approach,

varying �mni;1 and minimizing q by bisection. E1 scales are left out because they would just amplify

the weight of the E0 scales. We �nd

�1;2
i;1 = �0:6209; �0;3

i;1 = �0:38157; and �1;3
i;1 = �0:32536: (4.22)

On a technical note, we eliminate the normalization constants cm;ni from the search for the �2

minimum by treating them as functions of the �mnik parameters [12]. This stabilizes the minimization

considerably, for which we used the Levenberg-Marquardt approach.

Fitting the gradient and cooling scales with only one additional parameter, �1;2
i;2 , the normal-

ization constants c1;2
i of column two are obtained. Most q-values of these �ts are too low, so we

allowed one more �t parameter, �m;3i;3 . The results are shown in columns four and six with m = 0; 1.

The q-values for these �ts would be suspiciously high if they were statistically independent. But

as they all rely on the same data set, correlations can explain that a whole series of �ts exhibits

q > 0:5, mostly close to 0.9. Notably, consistent �ts due to adding the parameter �m;3i;3 come at

the price of roughly doubled error bars compared to those of column two. In Table 4.7 we collect
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Table 4.6: Normalization constants cmni for asymptotic scaling �ts of gradient and cooling scales,
along with the corresponding goodness-of-�t.

Li c1;2
i q c0;3

i q c1;3
i q

L1 2.2481(32) 0.04 2.1937(64) 0.91 2.1083(61) 0.91
L2 2.2311(32) 0.03 2.1812(64) 0.92 2.0961(60) 0.92
L3 2.0743(56) 0.17 2.022(11) 0.66 1.9432(98) 0.67
L4 2.8945(54) 0.08 2.846(11) 0.98 2.735(11) 0.98
L5 2.8835(53) 0.04 2.837(11) 0.98 2.727(11) 0.98
L6 2.7068(85) 0.95 2.658(18) 0.95 2.555(17) 0.95
L7 2.2498(30) 0.02 2.1996(61) 0.93 2.1138(57) 0.94
L8 2.2254(30) 0.01 2.1807(60) 0.92 2.0956(57) 0.93
L9 2.0664(58) 0.16 2.018(11) 0.69 1.9397(99) 0.69
L10 2.8501(46) 0.02 2.8037(91) 0.89 2.6942(86) 0.89
L11 2.8357(45) 0.01 2.7914(89) 0.88 2.6824(85) 0.89
L12 2.6485(74) 0.26 2.599(14) 0.52 2.498(13) 0.52

Table 4.7: Normalization constants cmni for asymptotic scaling �ts of the decon�nement length,
along with the corresponding goodness-of-�t.

Li c1;3
i q c0;4

i q c1;4
i q

L0 6.6682(56) 0.00 6.114(29) 0.71 5.892(27) 0.68
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Figure 4.8: Asymptotic scaling corrections for lengths Li. The top abscissa and left ordinate
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normalization constants for the decon�nement scale. The decon�nement scale requires an addi-

tional �t parameter �m;40;4 to obtain acceptable q-values. This is accompanied by some instability

discussed later. We conclude that n = 3 is essentially the smallest number of terms in the power

series expansion needed to obtain acceptable q-values.

Using m = 1 instead of m = 0 for the asymptotic scaling function decreases the cmnik values

of Tables 4.6 and 4.7 by slightly less than 4%. More prominent is the decrease between 6.7% to

9% from column two to column six, which comes from allowing one more free parameter. We take

these decreases as an indication that the remaining truncation error may be as large as 10%.

We now consider asymptotic scaling �ts of gradient and cooling scales with m = 1 and n = 1.

Figure 4.8 plots eq. (4.19) with m = 1 and n = 3 against �, with the asymptotic scaling behavior

divided out. With this normalization the curves approach 1 in the continuum limit. The curves
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Table 4.8: Continuum limit estimates of ratios rij from asymptotic scaling. The asterisks indicate
scales that required an additional �t parameter for an acceptable q value.

i n j L1 L4 L7 L10

L0 (as) 2.795(16) 2.154(14) 2.787(15) 2.187(13)
L0 *2.914(15) 2.2393(52) *2.903(14) 2.2692(48)
L1 *0.7703(12) 0.99808(34) *0.78185(77)
L3 0.9240(20) 0.7187(19) 0.9221(20) 0.7275(17)
L4 *1.2996(21) *1.2957(27) 1.01373(57)
L6 1.2000(31) 0.9334(23) 1.1972(32) 0.9465(24)
L7 1.00188(34) *0.7728(16) *0.78419(88)
L9 0.9214(22) 0.7171(21) 0.9197(22) 0.7255(18)
L10 *1.2795(13) 0.98638(55) *1.2760(15)
L12 1.1786(26) 0.9167(24) 1.1760(26) 0.9283(20)

on the left use the top abscissa and left ordinate. The curves on the right are an enhancement of

the left curves for the lowest three �. These curves use the bottom abscissa and right ordinate. At

� = 4 all �ts have almost reached the asymptotic value 1. At � = 2:3 asymptotic scaling violations

are seen to range from 28% to 37%. The relative di�erences reach only 0:72=0:63 � 1:14, consistent

with the ratio 1:04=0:93 � 1:12 observed at (1=L10)2 � 0:3 in Fig. 4.6.

For a more direct comparison with scaling, we compute ratios of length scales using asymptotic

scaling (2.66)

Rij = rij +
nX
k=2

�mni k fmas (Lj)
k ; (4.23)

where �mni;1 = 0 because all scales are assumed to have the same �rst order term in eq. (4.19).

Except for the decon�nement length scale L0, which is statistically independent from the other

scales, we can not use error propagation. Therefore for the gradient and cooling scales we calculate

Rij in jackknife bins built from the individual runs.

Results for the continuum limit extrapolations rij using m = 1 are given in Table 4.8. One

free parameter �1;2
i;2 , in addition to the continuum estimate rij , su�ces to deliver in more than

half of the cases 0:13 � q � 0:99. For the other cases, indicated by an asterisk in the table, one

more free parameter �1;3
i;3 is also needed. For these ratios the goodness-of-�t falls within the range

0:45 � q � 0:75. Error bars of asymptotic scaling estimates are similar to the standard scaling

estimates of Table 4.5, except for the starred estimates, whose error bars are approximately twice

as large. It is reassuring that the estimates of rij from Tables 4.5 and 4.8 never di�er by more than
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Figure 4.9: Direct comparison between representative scaling �ts and asymptotic scaling �ts deep
in the scaling region. Slightly curved �ts of the pairs belong to the asymptotic scaling form. Data
and error bars are omitted.

roughly 1%, which is nevertheless up to an order of magnitude larger than the statistical errors.

Statistical uncertainties of ratios can be extremely small due to correlations between the estimators.

We conclude that the two �tting approaches supplement each other and give insight to systematic

errors one might expect due to choice of continuum limit �tting form.

In Figure 4.9 we plot the normalized ratio Ri;10=ri;10 for both standard scaling and asymptotic

scaling �ts against the squared lattice spacing. Straight line �ts are standard scaling �ts, while

slightly curved �ts are asymptotic scaling �ts. The abscissa ranges up to (1=L10)2 � 0:05, which

corresponds to � = 2:574. At this spacing, systematic error due to choice of �tting form alone seems

not to exceed about 0.6%. The combined systematic error due to choice of scale and continuum

limit �tting form is read o� to be around 2%.

Let us now discuss the instabilities of the L0 �t mentioned earlier. In the L0 (as) row of Table 4.8

we report estimates obtained from using the constants of the sixth column of Table 4.6 and error

propagation. Compared with the standard scaling estimates of Table 4.5, we �nd a systematic
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decrease between 3.2% and 3.6%. This is larger than the statistical error, which never exceeds

0.6%. Since the asymptotic scaling �t for L0 needs four parameters to �t just �ve data points,

one may suspect over-�tting. As a tie-breaker, we perform the �t (4.23) for jackknifed ratios R0;j ,

j = 1; 4; 7; 10, and obtain the estimates of the L0 row of Table 4.8. Systematic di�erences between

Table 4.5 are now down to less than 1%.

The normalized ratio R0;10=r0;10 is plotted for three di�erent �ts in Figure 4.10. The bottom

curve corresponds to the eq. (4.23) using jackknifed ratios. The next lowest �t is the straight line

scaling �t from Figure 4.6. The top curve is obtained by dividing the L0 �t from column six of

Table 4.7 by the L10 �t of column six of Table 4.6. As suspected, this �t looks rather strange. One

should keep in mind that absolute di�erences between these three �ts are small. Systematic errors

at � = 2:3 are read o� to be less than 4%.
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4.5 Summary

We calculated the pure SU(2) decon�nement temperature out to larger � than has been done

in previous literature using reweighting curves of Polyakov loop susceptibilities. Dividing out the

maximum susceptibility in each jackknife bin veri�es that small error bars in the critical coupling

constant are reasonable.

We calculated six gradient scales and six cooling scales, distinguished by choice of energy den-

sity operator and target value. Reasonable target values were determined by requiring that initial

estimates of gradient or cooling scales agree with the decon�nement scale for low �. Measured in

CPU time, gradient scales are at least two orders of magnitude faster to calculate than decon�ne-

ment scales. Cooling scales take at least a factor 34 less CPU time than gradient scales; however in

this case, the generation of con�gurations takes the same CPU time for both. Looking at scaling

�ts, cooling scales fall within the spread of gradient scales, showing that cooling and gradient scales

do not exhibit seriously distinct scaling behavior. We �nd no loss of precision using cooling over

gradient scales. Therefore cooling scales are viable alternatives to gradient scales for the purpose

of scale setting.

The approach to the continuum limit was �tted using scaling �ts and asymptotic scaling �ts.

For scaling �ts, we �nd scaling violations of about 10% at � = 2:3; these violations are reduced

to less than 5% at � = 2:46, deeper in the scaling region. For asymptotic �ts, enforcing a com-

mon �t parameter yields the expected O(a2) corrections to ratios of scales. Systematic error of

normalization constants due to distinct truncations of asymptotic �ts are estimated to be up to

roughly 10%. This drops out in ratios, and at � = 2:574, combined systematic error of length ratios

due to reference scale and �tting form is around 2%. Continuum limit estimates of ratios di�er

systematically by at most 1.3%, but this is still larger than statistical errors.

Our suggestion is that cooling scales may o�er a computationally more e�cient alternative to

gradient scales in physically realistic theories as well. One may test this at some coupling constant

values and, if con�rmed, continue with the cooling scale.
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CHAPTER 5

TOPOLOGY IN PURE SU(2) LGT

Here we present detailed analysis of the topological susceptibility and reinforce that standard

cooling can be used to obtain stable topological sectors. We estimate �nite size corrections of the

topological susceptibility and come up with a continuum limit extrapolation.

Topological freezing has often been a point of concern, even though �xed topological sectors

imply a bias of only 1=V for local operators [17, 5]. Generally, topological freezing can not be

ignored, since some observables are known to have dependence on Q [27] and hence require the

topological sectors to be well-sampled. This is an active area of research; for instance L�uscher and

Shaefer [42] proposed that topological freezing can be alleviated using open boundary conditions,

and even more recently, L�uscher [41] has suggested the use of master-�eld simulations. Therefore,

we investigate whether there are statistically signi�cant di�erences between cooling scales that are

restricted to di�erent topological sectors. In our investigation we �nd our lattices are large enough

that the 1=V bias is swallowed by statistical uncertainty.

This chapter focuses on our study of cooling scales and topological observables [15]. In Sec-

tion 5.1 we discuss our data for the topological charge using cooling as a smoothing algorithm.

The following Section 5.2 presents new data for cooling scales along with an estimate of the pure

SU(2) topological susceptibility. In Section 5.3 we search for correlations between cooling scales

and topological sectors. A summary is given in the �nal Section 5.4.

5.1 Smoothing using standard cooling

Our discretization of the topological charge density

qL(x) = � 1

29�2

�4X
����=�1

~����� trU���(x)U���(x); (5.1)

which is given in eq. (2.88), follows the �eld-theoretical de�nition

q(x) =
1

16�2
tr �F��(x)F��(x): (5.2)
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