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We present precision measurements of the target and beam-target spin asymmetries from neutral pion 
electroproduction in deep-inelastic scattering (DIS) using the CEBAF Large Acceptance Spectrometer 
(CLAS) at Jefferson Lab. We scattered 6-GeV, longitudinally polarized electrons off longitudinally polarized 
protons in a cryogenic 14NH3 target, and extracted double and single target spin asymmetries for 
ep → e′π0 X in multidimensional bins in four-momentum transfer (1.0 < Q 2 < 3.2 GeV2), Bjorken-x
(0.12 < x < 0.48), hadron energy fraction (0.4 < z < 0.7), transverse pion momentum (0 < P T < 1.0 GeV), 
and azimuthal angle φh between the lepton scattering and hadron production planes. We extracted 
asymmetries as a function of both x and P T , which provide access to transverse-momentum distributions 
of longitudinally polarized quarks. The double spin asymmetries depend weakly on P T . The sin 2φh

moments are zero within uncertainties, which is consistent with the expected suppression of the 
Collins fragmentation function. The observed sinφh moments suggest that quark gluon correlations are 
significant at large x.

© 2018 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license 
(http://creativecommons.org/licenses/by/4.0/). Funded by SCOAP3.
Despite several decades of research, the spin structure of the 
proton remains incompletely understood [1]. The quark and gluon 
spins can only partially account for the total proton spin of 1/2, 
leaving the deficit to be found in quark and gluon orbital an-
gular momenta. The orbital motion of quarks about the proton’s 
spin axis can be observed in deep-inelastic lepton scattering (DIS) 
when a knocked-out quark has momentum transverse to the di-
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rection of momentum transfer. Although the struck quark acquires 
transverse momentum in the hadronization process, there remains 
enough of a remnant of the original quark orbital motion to probe 
quark spin–orbit correlations. The theoretical motivations and early 
experiments measuring these transverse-momentum distributions 
(TMDs) have demonstrated that the theory is sound and the exper-
iments are feasible [2]. In this Letter we report results of unprece-
dented accuracy in measurements of spin-azimuthal asymmetries 
in neutral pion production in semi-inclusive DIS (SIDIS), which 
provides important information on the quark structure of the pro-
ton, complementary to that from charged pions.

DIS experiments have mapped the unpolarized structure func-
tion f1 and the polarized structure function g1 over a wide range 
of longitudinal momentum fraction x and momentum transfer 
Q 2. These provide a one-dimensional picture of nucleon structure. 
SIDIS provides access to the three-dimensional structure of the nu-
cleon via a new set of structure functions that depend on the 
transverse motion of the quarks. The scattered lepton and the lead-
ing hadron are detected in coincidence. Eight leading-order (i.e. 
leading twist) [3] transverse-momentum distributions (TMDs) ex-
ist for the different beam and target polarizations, which describe 
the correlations between a quark’s transverse momentum and the 
spin of the quark or the parent nucleon. These correlations mani-

http://creativecommons.org/licenses/by/4.0/
mailto:griff@wm.edu


664 S. Jawalkar et al. / Physics Letters B 782 (2018) 662–667
fest themselves in different spin-dependent azimuthal moments of 
the cross section, generated either by correlations in the distribu-
tion of quarks or in the fragmentation process, often referred as 
the Sivers [4] and Collins mechanisms [5], respectively.

For a longitudinally polarized nucleon, we have access to two 
leading-twist TMDs, g1L and h⊥

1L , which respectively describe lon-
gitudinally and transversely polarized quarks in a longitudinally 
polarized nucleon, and four higher-twist TMDs, f ⊥

L , g⊥
L , hL , and 

eL [6] that describe various quark–gluon correlations that vanish 
as Q 2 → ∞.

The HERMES Collaboration made the first observation of a 
single-spin asymmetry (SSA) in semi-inclusive DIS pion electropro-
duction [7]. This spawned a number of additional measurements 
of SSAs and double spin asymmetries (DSAs) using polarized hy-
drogen and deuterium targets [8,9]. The target SSAs for proton and 
deuteron targets published by HERMES [10–13] and COMPASS [14,
15], provided the first, direct indication of significant interference 
terms beyond the simple s-wave (L = 0) picture. These asymme-
tries become larger with increasing x, suggesting that spin–orbit 
correlations are more relevant for the valence quarks.

Measurements of SSAs at Jefferson Lab (JLab) with longitu-
dinally polarized proton [16] and transversely polarized neutron 
[17–20] targets suggest that spin–orbit correlations are significant 
for certain combinations of quark and nucleon spins and trans-
verse momenta. Large spin-azimuthal asymmetries were observed 
at JLab using a longitudinally polarized beam [21,22] in one case 
and a transversely polarized 3He target in the other [23]. These 
results are consistent with the corresponding HERMES [24] and 
COMPASS [25] measurements, which were interpreted in terms of 
higher-twist contributions related to quark–gluon correlations.

Previous CLAS measurements [16] improved the world data set 
in two ways: they showed the first hint of a non-zero sin 2φh az-
imuthal moment for charged pions, and they extracted azimuthal 
moments in multi-dimensional kinematic bins. COMPASS extended 
the proton DSAs to low-x [26] using a muon beam and a polarized 
NH3 target, and they were able to extract the dependence on P T , 
albeit with low statistical accuracy above x = 0.2.

The world’s SSAs and DSAs are dominated by the charged pion 
results. High statistical accuracy is still needed to study asymme-
tries as two-dimensional functions of P T and x in order to access 
the transverse-momentum dependence of different partonic dis-
tributions, most notably the helicity distribution, gq

1. This is true 
especially for the case of the neutral pion. This paper presents new 
results intended to help correct this deficiency.

The electroproduction of neutral pions has several important 
advantages compared to charged pions: 1) suppression of higher-
twist contributions at large hadron energy fraction z [27], which 
are particularly important at JLab energies where small-z events 
are contaminated by target fragmentation; 2) reduction of the 
background from diffractive ρ decays into pions, which mar the 
interpretation of the charged single-pion data; 3) similarity of frag-
mentation functions for u and d quarks leading to π0, which re-
duces the dependence of the DSAs on the fragmentation functions 
at large x, where valence quarks dominate; and 4) suppression of 
spin-dependent fragmentation for π0s, due to the roughly equal 
magnitude and opposite sign of the Collins fragmentation func-
tions for up and down quarks [13,15,28–30]. These factors simplify 
the interpretation of π0 SSAs and DSAs. Furthermore, neutral pi-
ons are straight-forward to identify with little background using 
the invariant mass of two detected photons.

The azimuthal angular dependence (φh) of the asymmetry in 
the yield for the observed hadron around the direction of momen-
tum transfer provides our experimental observable. Longitudinally 
polarized beams and targets give access to longitudinal target SSAs 
and the longitudinal DSAs as a function of φh , 4-momentum trans-
fer Q 2, Bjorken x, transverse hadron momentum P T , and hadron 
energy fraction z. These spin asymmetries are defined in the labo-
ratory frame, for which beam and target polarizations are along the 
beam-line (L) or unpolarized (U). From the φh-dependence of these 
asymmetries (defined on the left-hand side of Eq. (1) for SSAs and 
Eq. (2) for DSAs) we can extract the experimental azimuthal mo-
ments (given on the right-hand side of Eqs. (1) and (2)) using the 
φh-dependence:[

1

Pt f

]
Y ↓↓ + Y ↑↓ − Y ↓↑ − Y ↑↑

Y ↓↓ + Y ↑↓ + Y ↓↑ + Y ↑↑

= Asin φh
U L sinφh + Asin 2φh

U L sin 2φh

1 + Acos φh
U U cosφh + Acos 2φh

U U cos 2φh

(1)

and[
1

Pb Pt f

]
Y ↓↑ + Y ↑↓ − Y ↑↑ − Y ↓↓

Y ↓↑ + Y ↑↑ + Y ↓↓ + Y ↑↓

= ALL + Acos φh
LL cosφh

1 + Acos φh
U U cosφh + Acos 2φh

U U cos 2φh

. (2)

The first (second) superscript on the yield Y denotes the sign of 
the beam (target) polarization. The first (second) subscript on the 
azimuthal moment A denotes whether the beam (target) is polar-
ized or not. The superscript on A denotes the azimuthal moment. 
No superscript, as in ALL , denotes a φh-independent asymmetry. 
The angle φh is the hadron azimuthal angle with respect to the 
lepton plane as defined in the Trento convention [31]. We normal-
ized the asymmetries using experimentally determined beam and 
target polarizations, Pb and Pt , respectively, and the dilution factor 
f , which accounts for the unpolarized material in the target.

In this letter, we present the results for the target SSA AU L
and the longitudinal DSA ALL for π0 production in SIDIS using the 
CLAS detector at JLab [32] with the addition of a small-angle in-
ner calorimeter (IC) for photons. The experiment (eg1-dvcs) took 
place from February to October, 2009 [33,34]. We scattered lon-
gitudinally polarized electrons off a longitudinally polarized solid 
14NH3 target and collected a total of 30 mC of charge at a beam 
energy of 5.94 GeV. We detected scattered electrons and neutral 
pions in coincidence using CLAS. The present SIDIS data constitute 
a subset of our inclusive measurements [33], and they improve the 
older CLAS eg1b π0 measurements [16] by an order of magnitude 
in integrated luminosity.

We determined the beam polarization (about 85%) using a 
Møller polarimeter [35] and deduced the target polarization from 
the product of beam and target polarization (about 65%) obtained 
from ep elastic scattering. We polarized the protons in 14NH3 via 
Dynamic Nuclear Polarization [36]. The CLAS acceptance for scat-
tered electrons (17◦ < θ < 50◦) was constrained by the IC at small 
angles and the polarized target walls at large angles.

Together, the CLAS electromagnetic calorimeter (EC) and the IC 
were able to detect photons from π0 decay over a range of an-
gles from 4◦ to 50◦ . We selected neutral pions by reconstructing 
the invariant mass of two photons, Mγ γ [37]. We analyzed sep-
arately three neutral pion topologies, EC–EC, EC–IC, and IC–IC, to 
take full advantage of the improved energy resolution of the IC 
and the larger angular range of the EC. Neutral pion mass cuts for 
EC-EC, EC-IC, and IC-IC were (0.10, 0.17), (0.102, 0.17), and (0.105, 
0.165) GeV, respectively.

Additionally, we applied fiducial cuts to both the EC and IC and 
removed tracks around the edges of the EC where there was a 
higher negative pion contamination in the electron sample. We 
also removed events on the inner edge of the IC (hot blocks close 
to the beam line), as well as blocks on the outer edges of the 
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IC (blocks with incomplete energy reconstruction). Approximately 
4.3 M events survived these cuts.

We defined our variables using the Trento Convention [31], and 
selected SIDIS events by imposing kinematic cuts on the squared 
4-momentum transfer (Q 2 > 1 GeV2), Bjorken-x (0.12 < x < 0.48), 
the target plus virtual photon invariant mass (W > 2 GeV), the 
fractional energy of the π0 (0.40 < z < 0.70), and the missing 
mass (Mx > 1.5 GeV), which suppressed the contributions from 
target fragmentation and exclusive events. We divided the data 
into 4 bins in x, 9 bins in Q 2, 4 bins in z, 6 bins in P T , and 
12 bins in φh . Here, φh is the azimuthal angle around the direc-
tion of momentum transfer. Because beam and target polarization 
lie along the beam direction, all asymmetries were corrected by a 
depolarization factor.

We calculated the corresponding SIDIS yields by scaling the 
events by the charge measured with the Faraday Cup in Hall B. 
We scaled the raw asymmetries by the beam and target polar-
ization for ALL and by the target polarization for AU L . In order 
to remove contributions from the unpolarized part of the 14NH3
target, we normalized the raw asymmetries by the dilution factor 
(about 3/17), which we calculated using a kinematically depen-
dent model [38] optimized to fit the ratio of SIDIS events [39] from 
reference targets. The dilution model takes into account the SIDIS 
cross section per nucleon and an attenuation factor due to final 
state interactions of the π0 in the target. The relative uncertainty 
in the dilution factor, due to the determination of the length of 
the frozen target, is 3%, and the uncertainty from the model de-
pendence is 5%. Systematic uncertainties also resulted from the 
beam and target polarizations, background subtractions, and ra-
diative corrections. Additionally, we studied the systematic fitting 
uncertainties for the moment extraction in detail. The strong de-
pendence of the dilution factor for π0s on different kinematic vari-
ables is one of the main sources of systematic uncertainty. We also 
estimated via Monte Carlo simulation the uncertainties on the mo-
ment extraction, especially due to the imprecisely measured cos φ

and cos 2φ dependence in the asymmetry denominators.
We performed radiative corrections on the data following the 

theoretical developments in Ref. [40]. We evaluated the spin-
dependent radiative corrections using the Mo–Tsai formalism [41]
in the angle peaking approximation (photon emission along the 
incident and scattered electron directions only) and the equivalent 
radiator approximation (radiation from the same nucleus as the 
hard scattering process is equivalent to an external radiator of a 
few percent). We used fits to the world data on spin-dependent 
exclusive and inclusive π0 electroproduction cross sections and 
evaluated the radiative tails for each helicity combination sepa-
rately using a Monte-Carlo integration technique. The net effect 
was relatively small in most kinematic bins, and is included in the 
systematic uncertainty budget.

The main goal of this experiment was the extraction of SSAs 
and DSAs in fine bins in x and transverse hadron momentum P T . 
We show here representative results. Fig. 1 shows ALL for π0 as a 
function of P T , together with curves calculated for our kinematics 
using different theoretical approaches to parton distributions [42,
43]. The general magnitude is predicted well by these calculations, 
while the P T -dependence is less well described. The dependence 
of the DSA on P T indicates that spin orbit correlations may be 
significant, and that these dependencies are sensitive to details of 
the momentum distributions of the polarized quarks. Because ALL

is related to the ratio of polarized to unpolarized structure func-
tions, this suggest that transverse momentum is correlated with 
spin orientation. Extraction of the underlying quark transverse mo-
mentum kT of the helicity distributions, however, will require an 
established framework for TMD extraction from a combination of 
measurements with unpolarized and polarized targets [44].
Fig. 1. The moment ALL versus P T for π0 compared with calculations using 
the quantum statistical approach to parton distributions [42,43] (gray bands). The 
dashed, dotted, and dash-dotted curves are calculations assuming that the g1 to 
f1 transverse-momentum width ratios are 0.40, 0.68, and 1.0, respectively, using 
a fixed width for f1 (0.25 GeV2) [45]. The error bars represent the statistical un-
certainties, whereas the yellow bands represent the total experimental systematic 
uncertainties.

Fig. 2. The sin 2φh moments for AU L plotted versus x (left) and P T (right) com-
pared to previous CLAS measurements [16] (which had a lower z threshold of 0.3, 
no IC, and much lower integrated luminosity) and theory predictions (gray band) 
10.1103/PhysRevD.77.014023. The error bars represent the statistical uncertainties, 
whereas the yellow bands represent the total experimental systematic uncertain-
ties.

Studies of the Collins fragmentation functions at the e+e− ma-
chines, BELLE, [28,46,47], BABAR [48,29], and BESIII [30], indicate 
that the π± Collins fragmentation functions H⊥

1 are large and have 
opposite signs for the favored and unfavored cases. Because frag-
mentation into π0 is essentially the average of the π+ and π−
cases, this suggests a significant suppression of the Collins frag-
mentation function for π0. The measured sin 2φh moment of the 
single target spin asymmetry Asin 2φh

U L , which at leading twist has 
only a contribution from the Collins function coupled to the chiral-
odd TMD, h⊥

1L , is shown in Fig. 2. This Kotzinian–Mulders SSA [49], 
provides a unique opportunity to check the Collins effect. Our mea-
surement of Asin 2φh

U L for π0 is consistent with zero as expected.
A significant sin φh modulation of the target spin asymmetry 

has been observed for neutral pions by the HERMES Collabora-
tion [8]. There have been several attempts to describe the sinφh
moment of this asymmetry using twist-3 contributions originating 
from the unpolarized fragmentation function D1 and the Collins 
fragmentation function H⊥ [50–53]. Recently the effects of the 
1

https://doi.org/10.1103/PhysRevD.77.014023
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Fig. 3. The sinφh moments for AU L vs. x (left) and P T (right). The open triangles are 
the data from HERMES [9], and the solid triangles are our new measurements with 
z > 0.4. The long dashed line is zero for reference. The short-dashed and dotted 
lines are twist-3 calculations from Sivers (larger) and Collins (smaller) terms [54,55], 
respectively, and the solid line is the sum of the two. The error bars represent the 
statistical uncertainties, whereas the yellow bands represent the total experimental 
systematic uncertainties.

twist-3 TMDs f ⊥
L and hL have been calculated in two different 

spectator-diquark models [54,55]. Our data for Asin φh
U L (shown in 

Fig. 3 together with equaivalent data from [9] at higher beam 
energies) is plotted versus x and P T . The data suggest that a 
Sivers-type contribution coming from the convolution of f ⊥

L and 
D1 (dashed curve from Ref. [55] in Fig. 3) indeed may be dominat-
ing the sin φh moment of AU L , and quark–gluon correlations are 
significant for x > 0.2.

The x-dependence of AU L is consistent with HERMES mea-
surements [9] in both magnitude and x-dependence. The increas-
ing P T -dependence is also consistent with HERMES. Precise di-
rect comparisons, however, require taking out the kinematic factor √

2ε(1 + ε) from the structure functions, and adding a factor of Q
to account for the higher twist nature of this asymmetry, as de-
fined in Ref. [6]. Tables with detailed relevant information on dou-
ble and single target spin asymmetries for ep → e′π0 X , extracted 
for multidimensional bins including x, z and P T -dependences, are 
available at arXiv:1709 .10054.

In summary, kinematic dependencies of single and double spin 
asymmetries for neutral pions have been measured in multidi-
mensional bins over a wide kinematic range in x and P T us-
ing CLAS with a polarized proton target. Measurements of the 
P T -dependence of the double spin asymmetry, performed for the 
first time for different x-bins, indicate the possibility of differ-
ent average transverse momenta for quarks aligned or anti-aligned 
with the nucleon spin. A non-zero sin φh target single-spin asym-
metry was measured for neutral pions with high precision, indicat-
ing that the target SSA may be generated through the Sivers mech-
anism. A small sin 2φh moment of the target SSA is consistent with 
expectations of strong suppression of the Collins effect for neutral 
pions, due to cancellation of roughly equal favored and unfavored 
Collins functions. The extent to which higher twist contributes to 
these extracted moments at relatively low Q 2 constitutes a large 
part of the upcoming CLAS program with 11 GeV beams.
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