a2 United States Patent
Whalley et al.

US009600418B2

10) Patent No.: US 9,600,418 B2
45) Date of Patent: Mar. 21, 2017

(54) SYSTEMS AND METHODS FOR
IMPROVING PROCESSOR EFFICIENCY
THROUGH CACHING

(71) Applicant: Florida State University Research
Foundation, Inc., Tallahassee, FL. (US)

(72) Inventors: David Whalley, Tallahassee, FL (US);
Hans Magnus Sjalander, Tallahassee,
FL (US); Alen Bardizbanyan,
Gothenburg (SE); Per
Larsson-Edefors, Asa (SE); Peter
Gavin, Tallahassee, FL, (US)

(73) Assignee: Florida State University Research
Foundation, Inc., Tallahassee, FL. (US)

(*) Notice: Subject to any disclaimer, the term of this
patent is extended or adjusted under 35
U.S.C. 154(b) by 569 days.

(21) Appl. No.: 14/084,433

(22) Filed: Nov. 19, 2013

(65) Prior Publication Data
US 2014/0143494 Al May 22, 2014

Related U.S. Application Data
(60) Provisional application No. 61/728,231, filed on Now.

19, 2012.
(51) Int. CL

GOGF 13/00 (2006.01)

GOGF 12/0862 (2016.01)
(52) US.CL

CPC ... GOGF 12/0862 (2013.01); YO2B 60/1225

(2013.01)

(58) Field of Classification Search
CPC ..ot GOG6F 12/08; GOGF 9/40
See application file for complete search history.

(56) References Cited
U.S. PATENT DOCUMENTS

5,404,484 A * 4/1995 Schlansker ......... GOGF 9/30047
711/133
5,765,184 A * 6/1998 Durante ............... Gl11C 16/102
365/185.29
5,987,561 A * 11/1999 Witt ....cccovvvnveene GOG6F 9/3004
711/128
2002/0138700 Al* 9/2002 Holmberg ............. GOG6F 9/3802
711/137
2003/0033510 ALl* 2/2003 Dice ..ccooeovvvnveennenn GOGF 9/383
712/235
2003/0074530 Al* 4/2003 Mahalingaiah ..... GOGF 9/30152
711/117

(Continued)

Primary Examiner — Charles Rones

Assistant Examiner — Han Doan

(74) Attorney, Agent, or Firm — Eversheds Sutherland
(US) LLP

(57) ABSTRACT

Certain embodiments herein relate to using tagless access
buffers (TABs) to optimize energy efficiency in various
computing systems. Candidate memory references in an .1
data cache may be identified and stored in the TAB. Various
techniques may be implemented for identifying the candi-
date references and allocating the references into the TAB.
Groups of memory references may also be allocate to a
single TAB entry or may be allocated to an extra TAB entry
(such that two lines in the TAB may be used to store .1 data
cache lines), for example, when a strided access pattern
spans two consecutive [L1 data cache lines. Certain other
embodiments are related to data filter cache and multi-issue
tagless hit instruction cache (TH-IC) techniques.

21 Claims, 13 Drawing Sheets

o100

Memory Unit

——————— < 108

L1 DATA CACHE

!

TAGLESS
ACCESS
BUFFER

(TAB)
1

DATA REGISTER(S)
108




US 9,600,418 B2

Page 2
(56) References Cited
U.S. PATENT DOCUMENTS
2006/0143396 Al* 6/2006 Cabot ............. GO6F 12/121
711/134
2010/0023700 Al* 1/2010 Chen ......ccceevneeee. GOGF 8/4442
711/135
2014/0068175 Al* 3/2014 Kaplan ... GOGF 9/30
711/108

* cited by examiner



U.S. Patent Mar. 21,2017  Sheet 1 of 13 US 9,600,418 B2

100

Memory Unit

———— e ————— < 108

L1 DATA CACHE
112

TAGLESS
ACCESS
BUFFER

(TAB)
110

A\ 4 Y
DATA REGISTER(S)
108

CPU
104

CLOCK
102

FIG. 1



U.S. Patent Mar. 21,2017  Sheet 2 of 13 US 9,600,418 B2

o 200

CONVERT PROGRAMMING LANGUAGE CODE INTO AN INTERMEDIATE
REPRESENTATION (IR}

202

PERFORM OPTIMIZFATIONS FOR MEMORY REFERENCES BASED AT LEAST IN
PART ON THE IR
204

A 4

DETERMINE CANDIDATE MEMORY REFERENCES FOR STORAGE IN A MEMORY
BUFFER {E.G., A TAB} BY DETECTING MEMORY REFERENCES WITH A
CONSTANT STRIDE OR A LOOP-INVARIANT ADDRESS
208

4
ALLOCATE MEMORY REFERENCES IN THE TAB FOR AT LEAST A PORTION OF
THE DETERMINED CANDIDATE MEMORY REFERENCES BASED AT LEAST IN
PFART ON WHICH REFERENCES ARE ESTIMATED TO AVOID THE MOST L1 DATA
CACHE ACCESSES
208

GENERATE INSTRUCTIONS FOR RETRIEVING DATA STORED AT MEMORY
REFERENCES IN THE TAB
210

FIG. 2



U.S. Patent Mar. 21,2017  Sheet 3 of 13 US 9,600,418 B2

o 300

START

MEMORY REFERENCE({S) WITHIN A LOOP AND HAVE
CONSTANT STRIDE?
302

MEMORY REFERENCE({S) IN A BASIC BLOCK THAT IS
EXECUTED ONCE PER ITERATION?
304

STRIDE LESS THAN THE TAB uiNg
BUFFER SUCH THAT AN INCREASED
NUMBER OF REFERENCES MAY BE
ACCESSED BEFORE ANOTHER L1 DATA
CACHE LINE IS PREFETCHED?
308

ALLOCATE A SINGLE STRIDED REFERENCE TO THE TAB
308




U.S. Patent Mar. 21, 2017

7 ™\ N
END °

Sheet 4 of 13

4— 350

ALL MEMORY REFERENCE(S) IN A

GROUP OF REFERENCES WITHIN THE
SAME LOOQFPT
352

366

TAB PREFETCHES TWC LINES FROM THE L1 DATA
CACHE UPON EXECUTING "SET TAB” INSTRUCTION

ALLOCATE AN EXTRA TAB LINE BUFFER
364

DOES EACH MEMORY REFERENCE
E CONSTANT STRIDE
THE LGOP?
354

ALLOCATE A TAB LINE BUFF
GROUP OF REFEREN
362

MAXIMUM DISTANCE BETWEEN THE
ADDRESSES OF ANY TWO DISTINGT
REFERENCES LESS THAN THE L1
DATA CACHE LINE SIZE?
3648

REFERENCE CAUSING THE
PREFETCH EXECUTED ONLY ONCE
PER ITERATIONY

ABSOLUTE VALUE OF THE STRIDE
LESS THAN OR EQUAL TO THE L1
DATA CACHE LINE SiZE

388

Yeas

FIG. 3B

US 9,600,418 B2



U.S. Patent Mar. 21,2017  Sheet 5 of 13 US 9,600,418 B2

6 5 ;420 5 16 [~ 402
7

opcode rs rt immediate

(a) Original format for MIPS loads/stores

FIG. 4A

404
406/—408
6 5 420 5 1 1/—m 14-m 402
7 7 /

! /
opcode rs rt T|P TAB immediate
offset

(b) Revised format for loads/stores

FIG. 4B

414 — 416
420 410 402
6 5 f 4 /_ 2 1 [ 12 /-
7 7 - 7 7
opcode rs stride ZZZ E tﬁj immediate

(c) Proposed format for “get TAB” instruction

FIG. 4C

a /—418

7
opcode Number of TABs to release

(d) Proposed format for “release TAB” instruction

FIG. 4D



U.S. Patent

8

5

Mar. 21, 2017

4

2

Sheet 6 of 13

3 2

US 9,600,418 B2

— 500

Gp(,ocie

reg

siride

ah Eft

type

5‘10J 512-/ 514J 016-/ 518-/ SZQJ

FIG. 5A
6 5 5 5 2 1
opcode reg’ rege regl regd #T ABS
/ [




U.S. Patent Mar. 21,2017  Sheet 7 of 13 US 9,600,418 B2

a— 600

SIMD register file

_ SIMD £186
TABS ACCaSSes
antire 810
— > T aligned
L1 DATA CACHE lines <32,
a0CES30S
812
< - » Heqular register file
aligned accesses g 612

{a) TAB with SIMD Support

FIG. 6



U.S. Patent Mar. 21,2017  Sheet 8 of 13 US 9,600,418 B2

o 700

Base Offset
Fivhl 702

ALU
704

e

Logic Module Next Memory Reference
708 A 708

A 4

A 4

Dats Filter Cache
710

L1 Data Cache
712

FIG. 7



US 9,600,418 B2

Sheet 9 of 13

Mar. 21, 2017

U.S. Patent

98

oog —>

lﬁ SS8IPPY Yoe

_
Nl eusup |lin| zusup |[iw] rusur |[in] ousw |sieury |
. | 1
. [ ) [ [} _
. | 298~ Loy
AN susuy [lin| zusyp [|ln| susur |lan| ousur | zeum |
_
i susur |lin| zusu (fin| usw ||in] ousw | eun | 0og
_ Joxsdiyny
o _ * A
ANl osusup ||an] zusur |law| osusup [lan] ousup | gsu
%\ fe
EOHL _
18U —CE8
828 T8 cen wolg ff L 5| (01 HL Woid 118 10N)
U _ O LT Woi4 U0ed
028 ~ synen- uH sseibey |

BUOBDA L1

oL —" ﬂ

zig -

|



US 9,600,418 B2

Sheet 10 of 13

Mar. 21, 2017

U.S. Patent

oo6 —Y

5

4s

V6 Old

M pesueens & Buiuoied

SFA S
(— — |I|/ |||||
26 ™~
{sBei) piepEIaiy + SUOHOMIISU]
e1EpeIsiy -1
DHL
SUCHINASU|
OiFHL
A4S e L6 i

1B




US 9,600,418 B2

Sheet 11 of 13

Mar. 21, 2017

U.S. Patent

ase —¥

0ge

£ée

d6 Old

SSH [B1jUSI0 B Buioied

LCB

Gés N
1£4¢] ~
{sDg |} B1BpEISYY + SUSHITLISY]
FIEPEIO O
Oi-HL
| SUOHRONASUY
SFHL
2B / gLe -/




US 9,600,418 B2

Sheet 12 of 13

Mar. 21, 2017

U.S. Patent

g+ Sul

b+l SUY

L + u abed L+l S

]

L~ BUj

000 —¥

0L "Old

Arepunog abied & Buyppeng doo sidwexg (gL sunbig

b isut

g Isul

£ s

n

A

0e04 |%

o 18Ul

G 15U

¥ isu

0e01t Q

£ 18Ul

Z 184

A

LS

o:ﬁ\%

AN

SN




US 9,600,418 B2

Sheet 13 of 13

Mar. 21, 2017

U.S. Patent

Ll "Old

N@il/ Qm:J me.J mmSJ .wm:J mm:J Gm:)
cgefiel gig sseooy 08l qig sseooy {Hdd 88300y sd1LI 88800y ST 88300y 4717 d0
L-u
OCE
i
OFtT
O \

L8N A 48 9N gGN LN gisu

/{ LN SN
0411
ZiiL

Pill

8/1

oL —v

45 gN N LN cisu

AN SN

m 3
dS EN @N LN LIS 4SS gN 8N LN ow Y soee

LN SN |\ AN mz .
0231 @:

wwww @www%wwv

9%



US 9,600,418 B2

1
SYSTEMS AND METHODS FOR
IMPROVING PROCESSOR EFFICIENCY
THROUGH CACHING

CROSS-REFERENCE TO RELATED
APPLICATION

The present application is a non-provisional application
claiming priority to U.S. Provisional Application No.
61/728,231, entitled “Systems and Methods for Improving
Compiler Efficiency Through Caching,” filed on Nov. 19,
2012, which is hereby incorporated by reference in its
entirety as if fully set forth herein.

TECHNICAL FIELD

Embodiments of the disclosure relate generally to com-
puting, and more particularly, to computer processor effi-
ciency.

BACKGROUND

Energy efficiency has become a design constraint for
various processor devices from battery-powered, mobile
devices that execute digital signal processing applications,
audio/video codecs, etc., to exascale systems that run large-
data scientific computing applications. Existing techniques
for improving energy efficiency, such as multiscore scaling,
may be limited. Other techniques that may be crucial for
performance, for example, may also represent a significant
portion of a processor’s energy expenditure or may other-
wise increase energy expenditure. Existing processor
designers, therefore, have struggled to optimize both per-
formance and energy efficiency, among other things.

BRIEF DESCRIPTION OF THE FIGURES

Reference will now be made to the accompanying draw-
ings, which are not necessarily drawn to scale, and wherein:

FIG. 1 is a schematic block diagram of an illustrative
system architecture that includes a Tagless Access Buffer
(TAB), according to an embodiment of the disclosure.

FIG. 2 is a flow diagram of an example process for
generating machine instructions for use by a system archi-
tecture that includes a TAB, according to an embodiment of
the disclosure.

FIG. 3A illustrates a flow diagram of an example process
for allocating one strided reference to a TAB based on
certain conditions, according to an embodiment of the
disclosure.

FIG. 3B illustrates a flow diagram of an example process
for allocating an increased number of memory references
that may be accessed through the TAB in the presence of a
limited number of distinct TAB entries, according to an
embodiment of the disclosure.

FIGS. 4A-D illustrate schematic diagrams of example
instruction set architecture (ISA) formats, according to
embodiments of the disclosure.

FIGS. 5A-B illustrate schematic diagrams of alternative
instruction set architecture (ISA) formats, according to
embodiments of the disclosure.

FIG. 6 illustrates an example schematic diagram for
supporting misaligned single-instruction multiple-data
(SIMD) memory TAB accesses, according to an embodi-
ment of the disclosure.

15

20

25

45

55

60

2

FIG. 7 depicts an example of an illustrative system
architecture 700 that includes a filter cache in accordance
with one or more embodiments of the disclosure.

FIG. 8 illustrates an example schematic diagram of line
and state information for a Multi-Issue Tagless Hit Instruc-
tion Cache (TH-IC) architecture, according to an embodi-
ment of the disclosure.

FIG. 9A illustrates an example data flow for fetching
using a TH-IC in which a guaranteed hit is fetched, accord-
ing to an embodiment of the disclosure.

FIG. 9B illustrates an example data flow for fetching
using a TH-IC in which a potential miss is fetched, accord-
ing to an embodiment of the disclosure.

FIG. 10 illustrates an example loop straddling a page
boundary, according to an embodiment of the disclosure.

FIG. 11 illustrates examples of various bits that may be
included in the metadata organization of a TH-IC, according
to an embodiment of the disclosure.

DETAILED DESCRIPTION

Certain implementations will now be described more fully
below with reference to the accompanying drawings, in
which various implementations and/or aspects are shown.
However, various aspects may be implemented in many
different forms and should not be construed as limited to the
implementations set forth herein; rather, these implementa-
tions are provided so that this disclosure will be thorough
and complete, and will fully convey the scope of the
disclosure to those skilled in the art. Like numbers refer to
like elements throughout.

Certain embodiments herein may be directed to various
techniques for improving processor energy efficiency. Such
techniques are described in various sections of the disclo-
sure. For example, Section I includes descriptions of sys-
tems and methods that use a Tagless Access Buffer (TAB);
Section II includes descriptions of systems and methods that
use a Data Filter Cache (DFC); and Section III includes
descriptions of systems and methods that use a Multi-Issue
Tagless Hit Instruction Cache (TH-IC).

1. Tagless Access Buffer (TAB)

FIG. 1 is a schematic block diagram of an illustrative
system 100, according to an embodiment of the disclosure.
The system 100 may include, but is not limited to, a clock
signal generator 102, a central processing unit (CPU) 104, a
data register file 106, and a memory unit 108. Although only
one of each of these components is shown, more may exist
in other embodiments.

In one embodiment, the CPU 104 may be communica-
tively coupled to the memory unit 108. In one aspect of the
embodiment, the memory unit 108 may be located in close
proximity to the CPU 104 to permit direct and rapid access
by the CPU 104 of data or other information stored in the
memory unit 108. The clock signal generator 102 may
generate a clock signal that may control a timing of execu-
tion instruction by the CPU 104. In one embodiment, the
CPU 104 may retrieve a program instruction and corre-
sponding data for each clock cycle of the clock signal
generated by the clock 102.

The memory unit 108 may include a level one (L.1) cache
112 and a set of buffers that may include a Tagless Access
Buffer (TAB) 110. Although only one L1 data cache 112 and
one TAB 112 is shown, more may exist in other embodi-
ments. Further, although only one set of buffers that may
include a TAB 110 is mentioned, multiple sets of buffers that
may include one or more respective TABs 110 may exist in
other embodiments. In one embodiment, the memory unit



US 9,600,418 B2

3

108 may include a hierarchal structure in which multiple
levels of cache (e.g., level 2 (L2), level 3 (L3), etc.) may
exist. The [L1 data cache 112 may store data that has been
recently generated or manipulated and/or data that may be
utilized as part of future operations. The .1 data cache 112
may be divided into cache lines, which may vary in number
and size. In one example, the L1 data cache 112 may include
512 lines that each have a size of 32-bytes, which may
amount to a total cache size of 16 kilobytes (KB).

In certain embodiments, data stored in the L1 data cache
112 may be managed in accordance with any suitable
algorithm including, but not limited to, a least-recently used
(LRU) algorithm in which the line used least recently is
removed from the L1 data cache 112. Further, various types
of L1 data cache 112 may be used, such as a fully associative
cache, a direct mapped cache, or any intermediary form of
cache, such as an N-way set associative cache (for example,
a two-way set associative cache), etc.

The TAB 110 may store at least a portion of data stored
in the [L1 data cache 112. In one configuration, the TAB 110
may include, but is not limited to, a TAB top pointer, line
buffers, and metadata. The line buffers may be configured to
store data that may be accessed via the memory addresses or
references. The TAB may also include one or more respec-
tive data units, which may include index bits that may be
accessed by at least in part using an offset value.

In one embodiment, the metadata may be stored in a
register in the TAB 110 along with various other informa-
tion. The metadata may include, but is not limited to, a
stride, type information bits, an extra line indication bit, and
a TAB valid indication bit. The stride may be used to
implement the processes described herein. For example, the
stride may include a constant value by which memory
addresses or references may be incremented to obtain suc-
ceeding memory addresses. The stride may also be used to
load values into the TAB 110 prior to such values being
retrieved from the memory unit 108. In this way, the stride
value may be used to identify whether the next line in the L1
data cache 112 is to be retrieved, or put another way, whether
a prefetch needs to be performed after a TAB load/store
operation.

The type information bits may control how data are
transmitted to and from the TAB. The extra line indication
bit may include a bit that indicates if a TAB entry is
associated with two line buffers instead of one line buffer. If
the extra line indication bit is set, then the least significant
bit of the L1 data cache 112 set index field within the data
address may be used to select which of the two line buffers
to access. If the TAB valid indication bit for a corresponding
TAB entry is clear, then the TAB access may be treated as
a conventional load/store instruction accessing the L1 data
cache 112.

The metadata associated with the line buffer may include
various indications, such as but not limited to, a fetched
indication bit, a line valid indication bit, a dirty bits indica-
tion, a line number indication field, the L1 data cache 112
way, the physical page number (PPN), and a write mask. The
fetched indication bit may indicate whether the cache line
has been transferred from the L1 data cache 112. The line
valid indication bit may indicate whether valid data still
resides in the TAB line buffer. Such an indication may be
useful since a L1 data cache 112 line may become invalid
due to an eviction, for example, because it may be the least
accessed.

The line number indication bit may be used to calculate
the next prefetch address. In one embodiment, the line
number used in conjunction with the [.1 data cache 112 way

10

15

20

25

30

35

40

45

50

55

60

65

4

information may indicate the position of the TAB line
buffer’s contents inside of the L1 data cache 112 so that the
TAB may interpret regular load/store operations to the data
contents. The position information may also be used during
TAB writebacks to the L1 data cache 112, allowing the
operation to occur without checking the [.1 data cache 112
tags.

The PPN may be concatenated with the next sequential
line number when prefetching a line from the .1 data cache
112, in one embodiment. Data Translation Lookaside Buffer
(DTLB) access may only be needed when the TAB entry is
acquired (for example, for the initial 11D line prefetch)
and/or when prefetches cross a page boundary, according to
some embodiments. The write mask may make it possible to
transfer only the dirty bits of the line back to the L1 data
cache 112. The write mask bits may be set whenever one or
more of the corresponding bytes in the line buffer are set, in
one embodiment.

The one or more data registers 106 may be configured to
store data, such as but not limited to, data that may be
received from the L1 data cache 112 and/or the TAB 110, as
will be described in greater detail below.

In certain embodiments herein, the system 100 may be
embedded within or otherwise associated with a computing
device. As used herein, a “device” may refer to any com-
puting component that includes one or more processors
(e.g., the CPU 104) that can be configured to execute
computer-readable, computer-implemented, or computer-
executable instructions. Example devices can include per-
sonal computers, server computers, digital assistants, smart
phones, personal digital assistants, digital tablets, Internet
appliances, application-specific circuits, microcontrollers,
minicomputers, transceivers, customer premise equipment
such as set-top boxes, kiosks, or other processor-based
devices. The execution of suitable computer-implemented
instructions by one or more processors associated with
various devices may form special purpose computers or
other particular machines that may facilitate the processes
described herein.

The memory unit 108 may store program instructions that
are loadable and executable on the CPU 104, as well as data
generated during the execution of these programs. Depend-
ing on the configuration and type of computing device in
which the system 100 may be embedded, the memory unit
108 may be volatile, such as random access memory
(RAM), and/or non-volatile, such as read-only memory
(ROM), flash memory, etc.

The above embodiments and examples associated with
FIG. 1 are for purposes of illustration and are not meant to
be limiting. For example, various other configurations may
be implemented for the [.1 data cache 112 and/or the TAB
110.

FIG. 2 depicts a flow diagram of an example process 200
for generating machine instructions for use by a system
architecture that includes a Tagless Access Buffer, according
to an embodiment of the disclosure. The process flow
diagram may be implemented at least in part by the system
architecture 100 shown in FIG. 1, in one embodiment. The
example process may begin at block 202, where a compiler
may convert a programming language (e.g., a high-level
programming language) into an intermediate representation
(IR). An application program may be written in a high-level
programming language. Application program code (also
referred to as source code) may be translated into instruc-
tions that may be compiled for execution by a CPU (e.g., the
CPU 104 in FIG. 1) based on a corresponding instruction set.
During the translation process, there may be many refer-



US 9,600,418 B2

5

ences to data within memory locations that may be opti-
mized for improved efficiency. Example types of instruc-
tions may include conditional branches, loops that iterate
similar operations through many memory locations, etc.
These instructions may reference data located in particular
memory references and/or may write data into the memory
locations.

At block 204, the compiler may perform optimization for
memory references. Such optimizations may be based at
least in part on the IR, in one embodiment. In order for a
CPU to execute one or more instructions per clock cycle,
corresponding data may generally be retrieved from avail-
able data registers. If the data is located outside of the data
registers, there may be a latency associated with accessing
the data located farther away from the CPU. To optimize the
number of times that corresponding data for a proximate
instruction is stored in a data register, a compiler may
perform optimization procedures that may include detecting
access patterns associated with data that may be required to
execute future instructions. Therefore, if data stored in a
memory location is predicted for use in a proceeding instruc-
tion, the data may be transferred to, for example, the [.1 data
cache (e.g., the L1 data cache 112 in FIG. 1) and/or the TAB
(e.g., the TAB 110 in FIG. 1) in the memory unit 108.

If the desired data is available for transfer into a data
register 106 from the memory unit 108 for use in executing
a proceeding instruction during the next clock cycle, this
may be referred to as a hit. If the desired data is not available
in the memory unit 108 such that it may not be used for
executing a proceeding instruction during the next clock
cycle, this may be referred to as a miss. In cases of a miss,
instruction execution may be delayed until the data becomes
available in the appropriate cache or buffer (e.g., the [.1 data
cache or the TAB) in the memory unit 108. Examples of
types of optimizations that may be performed include loop-
unrolling, loop strength reduction, and register allocation,
among others.

At block 206, a compiler may determine candidate
memory references for storage in a memory buffer (e.g., the
TAB). In one embodiment, such a determination may be
based at least in part on an identification of access patterns
of memory references, which may be based at least in part
on an analysis of program code (e.g., the IR generated from
the source code, the source code, etc.). The compiler may
analyze instructions for program code to determine retrieval
patterns to facilitate determining whether a memory refer-
ence is a candidate for placement in the TAB, in certain
embodiments. Such determinations may be associated with
the execution of program instructions in a loop, or program
instructions that are executed repeatedly. Various access
patterns may be used to determine the candidate memory
references, such as those described in the following
examples.

An example access pattern may include instructions that
access successive memory references having a constant
stride. The constant stride may be associated with a loop in
certain embodiments herein. In one example, a loop asso-
ciated with a constant stride may include the instructions
r[2]=M[r[7]]; r[7]=r[7]+4. In these instructions, the data
value of the register r2 may be loaded with the data value
stored in register r7, which may be a memory address
associated with a memory location. The next instruction may
then proceed to calculate addresses of following memory
location by incrementing the present memory address by
increments of four (4). Accordingly, an access pattern that
includes a constant stride of four (4) may include candidate
memory references for placement in the TAB. Any succes-

20

25

30

40

45

50

55

6

sive memory reference that may be determined based on
predetermined criteria may be a candidate for placement into
the TAB in other examples.

Another example access pattern may be based on a loop
invariant address. For example, if the same memory address
is referenced during multiple execution cycles of a loop, the
address may be invariant throughout the loop. Therefore, the
loop invariant address may be placed into the TAB. Yet
another example access pattern may be based on memory
references that are to be retrieved from the L1 data cache and
which may be executed exactly once per iteration. Yet
another example access pattern may be based on the size of
the stride with respect to the length of a line buffer in the
TAB and/or the .1 data cache. For example, if the size of the
stride is less than the length of the line buffer in the TAB,
then the memory reference may be determined to be located
in the TAB.

At block 208, memory references may be allocated in the
TAB for at least a portion of the determined candidate
memory references. In one embodiment, such allocation
may be based at least in part on the number of available line
buffers in the TAB. In this manner, memory references may
be redirected to the TAB. In certain embodiments, to deter-
mine which memory references should be allocated to the
TAB and which memory references to reference only in the
L1 data cache, the compiler may perform a calculation to
estimate the average number of [.1 data cache accesses that
may be avoided by allocating memory references in the
TAB. In so doing, the compiler may weight each memory
references based at least in part on a probabilistic prediction
of expected future usage of the memory reference, in one
embodiment. The memory references may be allocated in
the TAB in accordance with the assigned weights, in one
embodiment. For example, if an instruction is part of a loop
iteration that is executed multiple times, the total number of
iterations through the loop may be unknown at compile time.
According to this example, each memory reference may be
assigned a corresponding weight that may be indicative of
an estimated number of accesses of that memory reference.
The optimal memory references for placement in the TAB
may thereafter be selected based at least in part on the
assigned weights, in one embodiment.

An example determination of which TAB entries should
be maintained in instances in which the number of TAB
entries that may be potentially allocated exceeds the number
of physical TAB entries may be as follows. A compiler may
first detect all possible memory references within a loop that
may be allocated to the TAB. As mentioned, the possible
memory references may exceed the number of physical TAB
entries. The determination may include a calculation in
which the average number of [.1 data cache accesses that
may be avoided on each iteration rather than for the entire
loop may be estimated. If the TAB reference is in condi-
tionally executed code, then the compiler may divide the
number of references by two. If the TAB reference occurs
within an inner loop, then its value may be increased to
reflect that it will be accessed multiple times for each
iteration of the current loop. The compiler may then sum the
estimated number of references for all memory accesses
associated with each TAB entry and subtract the fraction of
times that the reference may cause an L1 data cache access
due to a prefetch or a writeback (which may be determined
by dividing the stride by the L1 data cache size). The
compiler may also divide the result by two if an extra TAB
line buffer requires allocation. Various other calculations or
techniques for determining which TAB entries to retain may
exist in other embodiments.



US 9,600,418 B2

7

Continuing with FIG. 2, the compiler may detect memory
references with a constant stride or a loop-invariant address
and allocate a distinct TAB entry for each such reference by
inserting a “get TAB” or gtab instruction in the pre-header
of a loop or otherwise before the loop, at block 210. When
the compiler detects a reference with a constant stride or an
invariant address within the loop, it may modify the refer-
ence to access the value associated with the reference from
the TAB instead of the L1 data cache. According to one
example, an application may consist of instructions in a loop
that sum elements of an array. A compiler may determine,
for example, that the memory reference (r[2]=M]r[7]];) is
accessed with a constant stride of four (e.g., r[7]=r[7]+4;),
and may replace the memory reference with a TAB access.
The “get TAB” instruction may prefetch the [.1 data cache
line referenced by the initial value of r[7] into the TAB 110.

At block 210, the compiler may also deallocate the TAB
entries for the loop by inserting a “release TABs” or rtabs
instruction in the post-header of the loop or otherwise after
the loop. In this way, the compiler may generate pre-header
and post-header blocks for the loop associated with a TAB
if they do not already exist. The compiler may also insert
additional instructions, for example, in the pre-header of the
loop, to determine the memory address of the first TAB
access before the “get TAB” instruction, in one embodiment.

Instructions for retrieving data stored at the allocated
memory references may also be generated at block 210.
During access to the TAB, the processor may determine
whether the next access to the TAB crosses a cache line
boundary. The initial address within the TAB may not need
to be aligned to the line boundary. After a number of
accesses corresponding to a constant stride (e.g., four
accesses), in one example, the next [.1 data cache line in
succession may be loaded into the TAB. The next TAB
reference may then access the next sequential line of data. If
the current accessed line of data is dirty, then the current line
may be written back before the new line is fetched. Such a
write back may also occur when a TAB entry containing a
dirty line is released by the “release TABs” instruction.

In one embodiment, load/store instructions to locations
allocated to the TAB may be annotated to reference a
specific TAB entry and to indicate whether an access to the
TAB should possibly prefetch the next line. In a different
embodiment, the address source register of the load/store
instructions to locations allocated to the TAB can be used to
indicate that the TAB should be referenced instead of the L1
data cache. The “get TAB” or gtab instruction may also be
annotated to facilitate minimizing false interferences, which
may occur when a variable shares the same cache line with
a different variable assigned to the TAB, or for various other
reasons. For example, the compiler may annotate the “get
TAB” instruction to indicate that the TAB entry will not
interfere with regular memory references. Such an annota-
tion may minimize the frequency of false interferences. In
determining whether to make the annotation, the compiler
may perform various actions, such as detecting when the
range of memory references allocated to a TAB may not be
accessed by regular loads/stores in the same loop. If the
compiler determines that the TAB accesses are distinct from
regular memory references, or both the TAB accesses and
the regular memory references are loads, then the “get TAB”
instruction may be annotated to indicate that the TAB entry
will not interfere with regular memory references.

The above descriptions associated with FIG. 2 are for
purposes of illustration and are not meant to be limiting.
Such processes may be modified in various ways in accor-
dance with certain embodiments of the disclosure. Further,

10

15

20

25

30

35

40

45

50

55

60

65

8

one or more of the processes may be added, eliminated, or
performed in a different order in other embodiments.

FIG. 3A depicts a flow diagram of an example process for
allocating one strided reference to a TAB (e.g., the TAB 110
in FIG. 1) based on certain conditions, according to an
embodiment of the disclosure. A first condition or require-
ment may be verified at block 302, such as whether each
memory reference is within a loop and has a constant stride.
Also, whether each reference is in a basic block that is
executed exactly once per iteration (for example, due to the
prefetches initiated by TAB references) may be verified at
block 304. Further, at block 306, whether the stride is less
than the TAB line buffer size such that an increased number
of references may be accessed before another L1 data cache
112 line is prefetched may be verified. If each of the
conditions at blocks 302, 304, and 306 are met, then the
compiler may allocate a single strided reference to the TAB
at block 308.

FIG. 3B depicts a flow diagram of an example process for
allocating an increased number of memory references that
may be accessed through a TAB (e.g., the TAB 110 in FIG.
1) in the presence of a limited number of distinct TAB
entries, according to an embodiment of the disclosure. In
certain embodiments, such allocation may require allocating
a group of references to a single TAB entry. Several condi-
tions or requirements may be verified before allocating a
group of references to a single TAB entry. For example,
whether all memory references in the group of references are
in the same loop may be verified at block 352; whether each
reference has the same constant stride within that loop may
be verified at block 354; whether the reference causing the
prefetch is executed exactly once per loop iteration may be
verified at block 356; whether the absolute value of the stride
is no larger than the [.1 data cache may be verified at block
358; and whether the maximum distance between the
addresses of any two distinct references is less than the .1
data cache line size may be verified at block 360. If each of
these conditions is met, then processing may continue in one
embodiment.

If the group of references to a strided access pattern spans
two consecutive L1 data cache lines (e.g., the L1 data cache
112 lines in FIG. 1) from memory, at block 362, then the
compiler may allocate an extra TAB line buffer at block 364.
For example, upon recognizing such a condition, the com-
piler may allocate two TAB line buffers. The TAB may then
prefetch two lines from the L1 data cache upon executing the
associated “get TAB” instruction, at block 366. In some
embodiments, multiple memory references with distinct
addresses may be allocated to the TAB without using an
extra line buffer. A single TAB line buffer may be used, for
example, if the memory references are accessed in order
with respect to the direction of the stride, the distance
between each reference is the same, and the distance
between the last reference in one loop iteration and the first
reference in the next loop iteration is the same.

In some embodiments, memory references with loop-
invariant addresses may also be candidates for access via the
TAB, although they may not be accessed as frequently as
strided accesses. In one configuration, the loop-invariant
addresses may require no more than one prefetch from the
L1 data cache 112 memory before the loop and no more than
one writeback after the loop.

FIG. 4A illustrates a schematic diagram of an example
instruction set architecture (ISA) format based on a 32-bit
instruction set, such as the MIPS instruction set. Such an
ISA format may include an immediate field 402, which may
be modified to support TAB accesses, as shown in FIG. 4B.



US 9,600,418 B2

9

The bit fields used to control TAB accesses may replace the
most significant bits of the immediate field of the modified
instructions, which may limit the maximum positive and the
minimum negative immediate values that can be repre-
sented. As a result, the compiler may insert additional
instructions to avoid the use of relatively high positive or
relatively low negative address offsets. In one embodiment,
a TAB operation may be forwarded to the [.1 data cache as
a regular load/store instruction when the TAB is marked as
invalid.

The T bit 404 may identify whether the instruction is a
TAB operation or a regular load/store operation. Thus,
various techniques may be implemented for identifying a
TAB reference. One such technique may include annotating
load and store instructions. In one embodiment, each archi-
tectural register may include a T bit 404 for use in identi-
fying the load and store instructions associated with a TAB
entry. Load and store instructions, along with a specified
base address register (which is described below), may be
serviced by the TAB from the point of a “get TAB” instruc-
tion being executed until the allocated TAB entry is released
by a “release TABs” instruction. In one embodiment, the T
bit of the referenced instruction may be set and the value of
the TAB top may be used to determine which TAB index
field to access when a “get TAB” instruction is executed.
When a load or store instruction is decoded, the T bit
associated with that register may be checked. If the T bit is
set, then the TAB index may be used to access the TAB. If
the T bit is not set, then the instruction may be executed as
normal and serviced by the L1 data cache.

As an alternative to modifying the load and store instruc-
tions, the compiler may ensure that all references to a TAB
entry may use the same base address register to facilitate
identification of a TAB reference. The “get TAB” instruction
may specity which base address register is used to calculate
the initial memory address associated with a particular TAB
entry according to this technique. In one embodiment, the
base address register may be used in conjunction with
metadata that may be tracked for each register file entry to
identify a TAB reference.

The P bit 406 may indicate whether the TAB access may
trigger a prefetch operation. The TAB offset may be sub-
tracted from the TAB top pointer (which may hold the index
of'the next available TAB entry and may initially point to the
first TAB entry) to indicate which index is associated with a
particular TAB access.

FIG. 4C illustrates example instruction formats used to
acquire TAB entries, according to an embodiment of the
disclosure. For example, a “get TAB” instruction may be
implemented to allocate a TAB index and prefetch the first
L1 data cache line. The initial address may be calculated
similar to regular load/store operations by adding the con-
tents of the register (rs) 420 and the immediate offset. The
stride 410 may be encoded by two separate fields, which
may be the base of the stride (a signed integer) and the shift
size, in one embodiment.

The E bit 414 may indicate that an extra line buffer is to
be allocated when TAB data is being accessed by multiple
references with distinct addresses. The type information bits
416 may be used to avoid unnecessary data transfers
between memory hierarchy levels and to avoid false inter-
ferences with regular load/store operations, as described
above.

FIG. 4D illustrates example instruction formats used to
release TAB entries, according to an embodiment of the

10

20

30

40

45

50

55

65

10

disclosure. For example, the “release TABs” instructions
may indicate a number of TAB entries to be released 418,
among other information.

The TAB allocation and deallocation described above
may be further described as follows. In example embodi-
ments, the TAB_top_pointer may initially point to the first
TAB entry and TAB entries may generally be allocated and
deallocated in last-in first-out (LIFO) order. In one embodi-
ment, each “get TAB” operation may increment the TAB_
top_pointer by one, or two if the E bit (extra line bit) (e.g.,
the E bit 414 in FIG. 4C) is set, and may allocate the
corresponding line buffer(s). During load/store operations
from the TAB, the TAB offset (e.g., the TAB offset 408 in
FIG. 4B) may be subtracted from the TAB top, and the
resulting index_value may be used to access the correct line
buffer. If the number of allocated TAB entries exceeds the
total number available, then some entries may be overwrit-
ten.

In one embodiment, each TAB entry may be marked
invalid when deallocated. According to this technique, the
compiler may not keep track of TAB allocations between
function calls. If a TAB entry is overwritten (or marked
invalid due to a context switch or other reason), then the
TAB entry may be invalid when it is next referenced. As a
result, subsequent accesses to this TAB entry access the L1
data cache 112 instead.

Additional operations associated with prefetching as
described above may be as follows. In one example, a first
prefetch for a TAB may occur when a “get TAB” instruction
allocates a TAB entry. When the prefetch bit of a TAB
load/store instruction is set, a prefetch operation may be
initiated when there is a carry out from the sum of the stride
and the line offset of the memory address, which may
indicate that the next TAB reference will cross the line
boundary. If dirty, the current line may be written back to the
L1 data cache, and the next line may be prefetched at least
in part by adding or subtracting one (1) from the line
number. Whether the value of one (1) is added or subtracted
from the line number may depend on the sign of the stride,
in one embodiment. The PPN returned from the DTLB may
be set during the initial prefetch, in one embodiment. DTLB
accesses may not be required during prefetches, for
example, if the line to be fetched does not cross a page
boundary. If a TAB entry uses two line buffers (as may be
indicated by the extra line bit), the prefetch operation may
be initiated for the line not currently being accessed.

Certain systems and methods herein may also relate to
intercepting regular loads and stores. In one embodiment, an
intercept bit may be added to each L1 data cache line (e.g.,
the L1 data cache 112 line). The intercept bit may be set
when the line is loaded into the TAB (e.g., the TAB 110 in
FIG. 1). If the intercept bit is found to be set during the .1
data cache tag check of a regular load/store operation, then
the data may be read from the associated TAB line buffer on
the next cycle. The compiler may also detect when the
intercept bit need not be set to facilitate prevention of false
interferences. Such processes, as well as redirecting regular
load/store instructions referencing an .1 data cache line that
resides in the TAB, may maintain coherence between the
TAB and the [.1 data cache. Further, a T bit (e.g., similar to
the T bit 404 in FIG. 4B) may be added to each L1 data
cache. The T bit may be set when the L1 data cache line
resides in the TAB, in one embodiment. Invalidation
requests from various cores may access the TAB only when
a block is present in the .1 data cache and the T bit is set,
in one embodiment.



US 9,600,418 B2

11

Certain systems and methods herein may also relate to
determining which memory references to write first to a
TAB. In one embodiment, when a line containing part of an
array is associated with the TAB, the L1 data cache line may
not be read at least for the reason that the TAB references
may not interfere with regular loads or stores. In such
instances, the memory locations referenced through the TAB
accesses may be written first. Example embodiments
describing such determinations may be as follows.

When all bytes in the TAB line buffer are not overwritten,
the cache line may be prefetched into the I.1 data cache if not
already present. Upon release (e.g., via a “release TABs”
instruction), the line buffer’s write mask may be used to
merge TAB data with the remaining bytes in the line. When
all bytes of a line are written, loading an [.1 data cache line
from the next level of the memory hierarchy (e.g., level 2
(L2) cache) may not be performed if it is not already present.
Only a tag allocation may be required in the .1 data cache
in such instances, since the entire cache line may be over-
written by TAB stores. When a write-first contiguous line in
the TAB is only partially overwritten, then when released by
a “release TABs” instruction, the write-first contiguous line
may first be loaded into the L1 data cache from the next
memory hierarchy level so that its data may be merged in the
TAB writeback.

Various instruction set architecture (ISA) formats in addi-
tion to, or as an alternative, to the formats described in FIGS.
4A-D may also be used in other embodiments. Two such
formats are illustrated in FIGS. 5A and 5B. FIG. 5A illus-
trates an example ISA format associated with a “get TAB”
instruction format, while FIG. 5B illustrates an example ISA
format associated with a “release TAB” instruction format.

Certain embodiments herein also relate to identifying
instructions that may cause prefetches. In one embodiment,
the compiler may be modified such that only a single
instruction for an access sequence may cause a prefetch. The
instruction may then be identified by its address (e.g., the
value of the program counter (PC)). The full address may not
be required as there may be a limited number of instructions
that may be associated with a particular TAB entry, and these
instructions may be within a short address range of the “get
TAB” instruction.

As shown, a single opcode may be used for both ISA
formats (e.g., opcode 510 in FIG. 5A and opcode 550 in FIG.
5B). The G bit (e.g., the G bit 524 in FIG. 5A and the G bit
562 in FIG. 5B) may indicate whether an instruction is a “get
TAB” instruction or a “release TAB” instruction. In FIG. 5A,
the reg field 512 may be used to identify which register is
associated with a particular TAB entry. The stride 514 and
shift size 516 fields may be used to encode the stride
between sequential accesses to the TAB. The type field 518
may be used to encode other information about the access
pattern, e.g., that an extra line buffer is required. The L/S
field 520 may indicate if all or at least a portion of all loads
and/or stores, or the PC field 522 is used for identifying
memory accesses that may cause a prefetch.

The PC field 522 may hold the least significant bits of the
address of the instruction that may cause a prefetch. The PC
field’s 522 value may be stored within the TAB entry and
may be compared against the PC value for each load or store
instruction that references the TAB. If there is a match, then
a prefetch may be triggered when the next access is deter-
mined to cross a cache line boundary.

Turning now to FIG. 5B, the “release TABs” instruction
may release up to four (4) TAB entries. The #TABs field 560
may indicate how many TAB entries are to be released. Each
released TAB entry has its associated register listed in one of

25

30

40

45

50

12

the reg fields (e.g., regl 552, reg2 554, reg3 556, and regd
558). This may simplify implementation of the TABs as the
reg fields may be used to clear the register T bits (e.g., the
T bit 404 in FIG. 4B).

The above configurations in FIGS. 5A and 5B are for
purposes of illustration and are not meant to be limiting.
Various other configurations that include additional or dif-
ferent fields, for example, may exist in other embodiments.

Certain embodiments herein may also relate to supporting
function calls. Certain embodiments may require that the
TAB be disabled at function calls since, in some instances,
the code executed in the function call may use an associated
TAB register as the base address register when performing
load or store operations. In addition, the return address stack
(RAS) may be extended with a bit indicating whether the
TAB is to be enabled on a return from a function. In one
embodiment, a “get TAB” instruction may reenable the TAB
and may continue the TAB’s operation. For each function
call, a new set of T bits and TAB index fields that are
associated with each data register may be used (for example,
in a similar fashion as register windows are used on some
architectures). Such information may be stored in the RAS.
If the RAS overflows, then the TAB information associated
with the function may be overwritten, in one embodiment.
Dirty TAB entries may be flushed, the remaining load and
store operations may be serviced directly from the L1 data
cache 112, in various embodiments.

FIG. 6 is an example schematic diagram 600 that illus-
trates supporting misaligned single-instruction multiple-data
(SIMD) memory TAB accesses, according to an embodi-
ment of the disclosure. As shown, the diagram 600 may
include one or more TABs 610, a L1 data cache 612, a
regular register file 614, and a SIMD register file 616. In
certain embodiments herein, a group of references to the
same TAB entry may be accessed before it is evicted. Such
a group of references may be simultaneously accessed. In
one embodiment, the compiler may allocate two TAB line
buffers when groups of references with distinct addresses
refer to the same TAB entry. According to this embodiment,
the entire group of references may be directly accessed from
these two TAB line buffers. In one aspect of the embodi-
ment, accesses to TAB line buffers may not require tag
comparisons or DTLB accesses.

II. Data Filter Cache

The data filter cache may have a hierarchical structure. In
one embodiment, the data filter cache may be placed in the
primary memory unit between the L1 data cache and a
register file, or the processor pipeline. When a request is
made, the data filter cache may be accessed, and upon a data
filter cache hit, the L1 data cache access may be avoided.
The relatively smaller size of the data filter cache may make
it more power efficient as the memory arrays for storing tags
and data are smaller (e.g., smaller than that associated with
the L1 data cache). On a data filter cache miss, an additional
cycle may be required to fetch the cache line from the L1
data cache into the data filter cache, while at the same time
providing the requested data (or instruction) to the CPU.

When combined with a write-back policy, a virtually
addressed data filter cache may complicate cache coherency.
To efficiently support cache coherency, the L1 data cache
may include the data filter cache contents, and the data filter
cache may store the [.1 data cache set index and way for
each of the data filter cache lines. When an L1 data cache
line is evicted, the set index and way may be checked against
those stored in the data filter cache, and if there is a match,
the corresponding line may also be evicted from the data
filter cache. The set index and way may also be used when






