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(57) ABSTRACT

A method of detecting a compromised machine on a network.
The method receives an email message from a machine on the
network and classifies it as either spam or non-spam. A prob-
ability ratio is then updated, according to whether the mes-
sage was spam or non-spam, by applying a sequential prob-
ability ratio test. If the probability ratio is greater than or equal
to a first threshold, then the machine is compromised. If the
probability ratio is less than or equal to a second threshold,
then the machine is normal. The operations of receiving a
message, classifying the message, updating the probability
ratio, and indicating the machine is normal or compromised
until the probability ratio is greater than or equal to the first
threshold are repeated for a plurality of messages. Such
repeated operations are performed on each of the messages
one at a time, as each of the messages is received.

5 Claims, 8 Drawing Sheets

205 Recsive an email message 4

v
Classify the email message as

210 5,

215

Yes Spam?

Update probabilty ratio /in
according fo the equation
Ao+ In (€4/©1)

‘spam or non-spam

.| Update probabiliy ratio Ay
295" | according to the equation

A += 1 {{1-O:H(1-84)),

20 isthe

Yes

_~probability ratio Ay 3.
“.. predetermined MO

" hreshold B2, !

2857 Nachine is g
_compromised ¢

240 o
T Isthe T
“probability ratio A, 2.,

... predetermined
Yes threshold A7

b S

Repeat for newly |

> received emaii
messages



US 8,572,197 B2
Page 2

(56)

7,610,344
7,664,812
7,882,542
7,899,866
7,930,353
8,006,305
8,069,471
8,171,553
2005/0071432
2006/0168024
2007/0038705
2007/0192855
2007/0250930
2007/0282955
2008/0005782
2008/0028463
2008/0080518
2008/0104186
2008/0244748
2010/0100962

References Cited

U.S. PATENT DOCUMENTS

B2 *
B2 *
B2 *
BL*
B2 *
B2 *
B2 *
B2 *
Al*
Al*
Al*
Al*
Al*
Al*
Al*
Al*
Al*
Al*
Al*
Al*

10/2009
2/2010
2/2011
3/2011
4/2011
8/2011

11/2011
5/2012
3/2005
7/2006
2/2007
8/2007

10/2007

12/2007
1/2008
1/2008
4/2008
5/2008

10/2008
4/2010

Mehretal. ......cocvenne 709/206
Daniell et al. ................ 709/200
Neystadtetal. ................. 726/3
Buckingham et al. . 709/206
Chickering et al. ... 709/206
Aziz ... .. 726/24
Boren ...... ... 726/3
Aziz et al .. 726/24
Royston, IIT . . 709/206
Mehr et al. ...... .. 709/206
Chickering et al. 709/206
Hultenetal. ................... 726/22
Azizetal. ....ocooeeiinnnn. 726/24
Linetal. .. 709/206
AZIZ ... ... 726/3
Dagonetal. ....cccceeenne. 726/22
Hoeflin et al. .. 370/395.42
Wieneke et al. ... 709/206
Neystadt et al. .. 726/25
Boren ......cocooviiiiiiininns 726/25

OTHER PUBLICATIONS
Duan, Z. “Detecting Spam Zombies by Monitoring Outgoing Mes-
sages ” Apr. 2009. INFOCOM 2009, IEEE, p. 1764-1772, http://
ieeexplore.ieee.org/xpl/articleDetails.jsp?arnumber=5062096.*
Mengjun Xie, Heng Yin, Haining Wang, “An Effective Defense
Against Email Spam Laundering”, ACM conference CCS’06, Oct.
30, 2006-Nov. 3, 2006, pp. 179-190.*
Duan et al., Behavioral Characteristics of Spammers and Their Net-
work Reachability Properties, IEEE International Conference on
Communications, Jun. 2007.
Gu et al., BotHunter: Detecting Malware Infection Through IDS-
Driven Dialog Correlation, Proc. 16th USENIX Security Sympo-
sium, Boston, MA, Aug. 2007.
Xie et al., Spamming Botnets: Signatures and Characteristics, Proc.
ACM SIGCOMM,, Seattle, WA, Aug. 2008.
Zhuang et al., Characterizing Botnets from Email Spam Records,
Proc. of 1st Usenix Workshop on Large-Scale Exploits and Emergent
Threats, San Francisco, CA, Apr. 2008.
Xie et al., An Effective Defense Against Email Spam Laundering,
ACM Conference on Computer and Communications Security, Alex-
andria, VA, Oct. 30, 2006-Nov. 3, 2006.
Wald, Sequential Analysis, 1947, John Wiley & Sons, Inc., pp. 37-69.

* cited by examiner



U.S. Patent Oct. 29, 2013 Sheet 1 of 8 US 8,572,197 B2

100 7

FIG. ]



U.S. Patent Oct. 29, 2013 Sheet 2 of 8 US 8,572,197 B2

I: An outgoing message arrives at SPOT

2: Get IP address of sending machine m

3: // all following parameters specific to machine m
4: Let n be the message index

5: Let X,, = 1 if message is spam, X,, = 0 otherwise
6: if (X,, == 1) then

7. // spam, Eq. 3

8: A+ = ln-g-f;

9: else

10:  // nonspam

1: A, += Z‘nifgé

12: end if

13: if (A,, > B) then

14:  Machine m is compromised. Test terminates for .
15: else if (A, < A) then

16:  Machine m is normal. Test is reset for m.

17 A, =0

18:  Test continues with new observations

19: else
20:  Test continues with an additional observation
21: end if

FIG. 2A
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Measure Non-spam | Spam | Aggregate
Period 8/25/2005 — 10/24/2005 (excld. 9/11/2005)
# of emails 6,712,392 | 18,537,364 25,249,756
# of yniversity emails 5,612,245 6,959,737 12,571,982
# of infected emails 60,004 103,222 223,226
# of infected univ. emails 34,345 43,687 78,032
FIG. 5
Total Non-spam only | Spam only Mixed
# of 1P (%) 2,461,114 | 121,103 (4.9) 2,224,754 (90.4) 115,257 (4.7)
# ofyniv. IP (%) | 440 175 (39.7) 74 (16.8) 191 (43.5)
FIG. 6
Total Neon-spam only | Spam only | Mixed
# of IP 10,385 1,032 6,705 2,648
# of univ. IP | 204 19 42 143
FIG. 7

cluster 1 cluster 2  cluster 3
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Total # Univ.IP | Detected | Confirmed (%) | Missed (%)
440 132 126 (94.7) 7 (5.3)

FIG. 9
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1
METHOD OF DETECTING COMPROMISED
COMPUTERS IN A NETWORK

CROSS REFERENCE TO RELATED
APPLICATIONS

This application is a continuation of and claims priority to
currently pending U.S. Non-provisional patent application
Ser. No. 12/762,714 with the same title, filed by the same
inventor on Apr. 19, 2010, which is a non-provisional of
Provisional Patent Application No. 61/170,894, entitled
“Method of Detecting Compromised Computers in a Net-
work,” filed by the same inventor on Apr. 20, 2009, both of
which are herein incorporated by reference.

FIELD OF INVENTION

This invention relates to network security; more specifi-
cally, to the detection of compromised computers by moni-
toring email messages originating from and forwarded by
computers on the network.

BACKGROUND

A major security challenge on the Internet is the existence
of the large number of compromised machines. Such
machines have been increasingly used to launch various secu-
rity attacks including DDoS, spamming, and identity theft.
Two natures of the compromised machines on the Internet—
sheer volume and wide spread—render many existing secu-
rity countermeasures less effective and defending attacks
involving compromised machines extremely hard. On the
other hand, identifying and cleaning compromised machines
in anetwork remain a significant challenge for system admin-
istrators of networks of all sizes.

The subset of compromised machines that are used for
sending spam messages are commonly referred to as spam
zombies. Given that spamming provides a critical economic
incentive for the controllers of the compromised machines to
recruit these machines, ithas been widely observed that many
compromised machines are involved in spamming. A number
of recent research efforts have studied the aggregate global
characteristics of spamming botnets (networks of compro-
mised machines involved in spamming) such as the size of
botnets and the spamming patterns of botnets, based on the
sampled spam messages received at a large email service
provider.

Based on email messages received at a large email service
provider, two recent studies (Y. Xie etal. and L. Zhuang et al.)
investigated the aggregate global characteristics of spamming
botnets including the size of botnets and the spamming pat-
terns of botnets. Y. Xie, F. Xu, K. Achan, R. Panigrahy, G.
Hulten, and 1. Osipkov, “Spamming Botnets: Signatures and
Characteristics,” in Proc. ACM SIGCOMM, Seattle, Wash.
(August 2008); L. Zhuang, J. Dunagan, D. R. Simon, H. J.
Wang, 1. Osipkov, G. Hulten, and J. D. Tygar, “Characterizing
Botnets from Email Spam Records,” in Proc. of 1st Usenix
Workshop on Large-Scale Exploits and Emergent Threats,
San Francisco, Calif. (April 2008). These studies provided
important insights into the aggregate global characteristics of
spamming botnets by clustering spam messages received at
the provider into spam campaigns using embedded URLs and
near-duplicate content clustering, respectively. However,
their approaches are better suited for large email service
providers to understand the aggregate global characteristics
of' spamming botnets instead of being deployed by individual
networks to detect internal compromised machines. More-
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over, their approaches cannot support the online detection
requirement in the network environment.

Xie, et al. developed an effective tool DBSpam to detect
proxy-based spamming activities in a network relying on the
packet symmetry property of such activities. M. Xie, H. Yin,
and H. Wang, “An effective defense against email spam laun-
dering,” in ACM Conference on Computer and Communica-
tions Security, Alexandria, Va., (Oct. 30, 2006-Nov. 3, 2006).
This technique only identifies the spam proxies that translate
and forward upstream non-SMTP packets (for example,
HTTP) into SMTP commands to downstream mail servers. It
does not identify all types of compromised machines
involved in spamming.

BotHunter, developed by Gu et al., detects compromised
machines by correlating the IDS dialog trace in a network. G.
Gu, P. Porras, V. Yegneswaran, M. Fong, and W. Lee, “BotH-
unter: Detecting Malware Infection Through IDS-Driven
Dialog Correlation,” in Proc. 16th USENIX Security Sympo-
sium, Boston, Mass., (August 2007). It was developed based
on the observation that a complete malware infection process
has a number of well-defined stages including inbound scan-
ning, exploit usage, egg downloading, outbound bot coordi-
nation dialog, and outbound attack propagation. By correlat-
ing inbound intrusion alarms with outbound communications
patterns, BotHunter can detect the potential infected
machines in a network. BotHunter relies on the specifics of
the malware infection process and requires support from the
network intrusion detection system.

SUMMARY

The present invention includes a spam zombie detection
system that detects compromised machines by monitoring the
outgoing email messages originated or forwarded by
machines inside the network. A machine originating or for-
warding sufficient email spam messages is flagged as a com-
promised machine. The monitoring point may be co-located
with the mail transfer agent (MTA) server(s) deployed by the
network; it may also be located in a machine separated from
the MTA servers. In the latter case, MTA servers need to
replicate the outgoing messages to the monitoring point, in
addition to the regular email deliveries. The present invention
also includes a method of examining if a machine has gener-
ated sufficient spam messages to be flagged as being compro-
mised.

In an embodiment, the method of detecting a compromised
machine on a network begins by receiving an email message
from a machine on the network. The email message may
originate from the machine or the email message may be
forwarded by the machine. The email message is then classi-
fied as either spam or non-spam. Such classification may be
carried out by a spam filter and such a spam filter may be a
content-based spam filter. The classification may also be car-
ried out using user feedback. A probability ratio is then
updated by applying a sequential probability ratio test
(SPRT). The probability ratio is updated according to whether
the email message was classified as spam or non-spam. If the
probability ratio is greater than or equal to a first predeter-
mined threshold (B), then the status of the machine is indi-
cated as compromised. If the probability ratio is less than or
equal to a second predetermined threshold (A), then the status
of'the machine is indicated as normal and the probability ratio
is reset. The operations of receiving an email message, clas-
sifying the email message, updating the probability ratio, and
indicating the machine is normal or compromised until the
probability ratio is greater than or equal to the first predeter-
mined threshold are repeated for a plurality of email mes-
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sages. Such repeated operations are performed on each of the
plurality of email messages one at a time as each of the
plurality of email messages is received.

The SPRT may use the approximate probability that an
email message transmitted by a machine on the network is
spam if the computer is compromised and the approximate
probability that an email message transmitted by the machine
is spam if the computer is not compromised.

If the email message is classified as spam, the probability
ratio may be updated according to the equation

A, += Ik
n _neoa

wherein A, represents the probability ratio, 0, represents the
probability that an email message received from a machine on
the network is spam given that the machine is not compro-
mised, and 0, represents the probability that an email mes-
sage received from a machine on the network is spam given
that the machine is compromised.

If the email message is classified as non-spam, the prob-
ability ratio may be updated according to the equation

1-6,

/\n+:ln1_00,

wherein A, represents the probability ratio, 0, represents the
probability that an email message received from a machine on
the network is spam given that the machine is not compro-
mised, and 0, represents the probability that an email mes-
sage received from a machine on the network is spam given
that the machine is compromised.

The present invention also includes a computer system
adapted to detect a compromised machine on a network. The
system includes a processor and a tangible memory storage
including software instructions that cause the computer sys-
tem to perform the above-described method of detecting com-
promised machines on a network.

BRIEF DESCRIPTION OF THE DRAWINGS

For a fuller understanding of the invention, reference
should be made to the following detailed description, taken in
connection with the accompanying drawings, in which:

FIG. 1 is a diagram illustrating an example network utiliz-
ing the spam zombie detection system in accordance with an
embodiment of the present invention.

FIG. 2A is an outline of the spam zombie detection method
in accordance with an embodiment of the present invention.

FIG. 2B is a flowchart of the spam zombie detection
method in accordance with an embodiment of the present
invention.

FIG. 3 is a graph showing the average number of required
observations of an embodiment of spam zombie detection
system when H, is true ($=0.01) and 6,=0.9.

FIG. 4 is a graph showing the average number of required
observations of an embodiment of spam zombie detection
system when H, is true ($=0.01) and 6,=0.2.

FIG. 5 is a table summarizing an email trace conducted in
an exemplary deployment of the spam zombie detection sys-
tem.

FIG. 6 is a table showing the classifications of the observed
IP addresses.
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FIG. 7 is a table summarizing the IP addresses sending a
virus/worm.

FIG. 8 is an illustration of the message clustering process.

FIG. 9 is a table showing the performance of an exemplary
deployment of the spam zombie detection system.

FIG. 10 is a graph showing the number of actual observa-
tions that the spam zombie detection system took to detect the
compromised machines in an exemplary deployment.

FIG. 11 is a graph showing the distribution of spam mes-
sages in a cluster in an exemplary deployment of the spam
zombie detection system.

FIG. 12 is graph showing the distribution of the total mes-
sages in a cluster in an exemplary deployment of the spam
zombie detection system.

FIG. 13 is graph showing the distribution of the cluster
duration in an exemplary deployment of the spam zombie
detection system.

DETAILED DESCRIPTION OF THE PREFERRED
EMBODIMENT

In the following detailed description of the preferred
embodiments, reference is made to the accompanying draw-
ings, which form a part hereof, and within which are shown
by way of illustration specific embodiments by which the
invention may be practiced. It is to be understood that other
embodiments may be utilized and structural changes may be
made without departing from the scope of the invention.

The present invention includes a tool that may be used to
automatically detect compromised machines in a network in
an online manner. The present invention includes a method of
automatically identifying compromised machines in the net-
work as outgoing messages pass the monitoring point sequen-
tially. The approaches developed in previous work cannot be
applied here. The locally generated outgoing messages in a
network normally cannot provide the aggregate large-scale
spam view required by these approaches. Moreover, these
approaches cannot support the online detection requirement
in the environment considered here.

An embodiment of the spam zombie detection system was
designed based on a statistical method called Sequential
Probability Ratio Test (SPRT), developed by A. Wald in his
seminal work, Sequential Analysis, which is herein incorpo-
rated by reference. A. Wald, Sequential Analysis, John Wiley
& Sons, Inc (1947). SPRT is a powertul statistical method that
can be used to test between two hypotheses (in this case, the
machine is compromised vs. the machine is not compro-
mised), as the events (in our case, outgoing messages) occur
sequentially. SPRT minimizes the expected number of obser-
vations required to reach a decision among all the sequential
and non-sequential statistical tests with no greater error rates.
This means that the spam zombie detection system can iden-
tify a compromised machine quickly. Moreover, both the
false positive and false negative probabilities of SPRT can be
bounded by user-defined thresholds. Consequently, users of
the spam zombie detection system can select the desired
thresholds to control the false positive and false negative rates
of'the system.

FIG. 1 illustrates the logical view of example network
model 100. In this example, messages 115 originate from
machines 105 inside network 110 and will pass the deployed
spam zombie detection system 120. This network model can
be achieved in a few different scenarios. First, in order to
alleviate the ever-increasing spam volume on the Internet,
many ISPs and networks have adopted the policy that all the
outgoing messages originated from the network must be
relayed by a few designated mail servers in the network.
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Outgoing email traffic (with destination port number of 25)
from all other machines in the network is blocked by edge
routers of the network. In this situation, the detection system
can be co-located with the designated mail servers in order to
examine the outgoing messages. Second, in a network where
the aforementioned blocking policy is not adopted, the out-
going email traffic can be replicated and redirected to the
spam zombie detection system. The detection system does
notneed to be on the regular email traffic forwarding path; the
system only needs a replicated stream of the outgoing email
traffic. Moreover, the spam zombie detection system works
even if it cannot observe all outgoing messages. It only
requires a reasonably sufficient view of the outgoing mes-
sages originated from the network in which it is deployed.

A machine in the network is assumed to be either compro-
mised or normal (i.e., not compromised). Here, the focus is on
the compromised machines that are involved in spamming.
Therefore, the term compromised machine is used to denote
a spam zombie and the two terms are used interchangeably.
Let X, fori=1, 2, . . . denote the successive observations of a
random variable X corresponding to the sequence of mes-
sages originated from machine m inside the network. Let
X,=1 if message i from the machine is a spam, and X,=0
otherwise. The detection system assumes that the behavior of
a compromised machine is different from that of a normal
machine in terms of the messages they send. Specifically, a
compromised machine will with a higher probability generate
a spam message than a normal machine. Formally,

Pr(X~1|H,)>Pr(X=1Hy) o)

where H, denotes that machine m is compromised and H,
denotes that the machine is normal.

The sending machine, as observed by the spam zombie
detection system, may be any machine that generates or for-
wards email. Such machines may include, for example, end-
user client machines or mail relay servers. A mechanism to
classify messages as either spam or non-spam is also
deployed on the network either at the spam zombie detection
system or in communication with it. Such a mechanism may
be a spam filter. In an exemplary embodiment the spam filter
is a content-based spam filter. The spam filter does notneed to
be perfect in terms of the false positive rate and the false
negative rate. An increasing number of networks have started
filtering outgoing messages in recent years.

Inits simplest form, SPRT is a statistical method for testing
a simple null hypothesis against a single alternative hypoth-
esis. Intuitively, SPRT can be considered as a one-dimen-
sional random walk with two user-specified boundaries cor-
responding to the two hypotheses. As the samples of the
concerned random variable arrive sequentially, the walk
moves either upward or downward one step, depending on the
value of the observed sample. When the walk hits or crosses
either of the boundaries for the first time, the walk terminates
and the corresponding hypothesis is selected. In essence,
SPRT is a variant of the traditional probability ratio tests for
testing under what distribution (or with what distribution
parameters) it is more likely to have the observed samples.
However, unlike traditional probability ratio tests that require
a pre-defined number of observations, SPRT works in an
online manner and updates as samples arrive sequentially.
Once sufficient evidence for drawing a conclusion is
obtained, SPRT terminates.

In SPRT, both the actual false positive and false negative
probabilities of SPRT can be bounded by the user-specified
error rates. This means that users of SPRT can pre-specify the
desired error rates. A smaller error rate tends to require a
larger number of observations before SPRT terminates. Thus
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users can balance the performance and cost of an SPRT test.
Second, SPRT minimizes the average number of the required
observations for reaching a decision for a given error rate,
among all sequential and non-sequential statistical tests. This
means that SPRT can quickly reach a conclusion to reduce the
cost of the corresponding experiment, without incurring a
higher error rate. The formal definition and a number of
properties of SPRT are presented below.

Let X denote a Bernoulli random variable under consider-
ation with an unknown parameter 0, and X, X,, . . . the
successive observations on X. As discussed above, SPRT is
used for testing a simple hypothesis H,, that 6=0, against a
single alternative H, that 6=0,. That is,

Pr(X=1|Hy)=1-PrX=0H,)=6,

Pr(X=1|H,)=1-PrX=0H,)=0,.

To ease exposition and practical computation, the loga-
rithm of the probability ratio is computed instead of the prob-
ability ratio in the description of SPRT. For any positive
integer n=1, 2, . . ., define

Pr(X1, X, ...
NP XL, Xas

> X | HY)
s Xu | Ho)

@

n=

If it is assumed that X,’s are independent (and identically
distributed), then

n 3
[]Pxiimy ki

Ap =1n i = Pr(X‘-:Hl) =) 7Z
0 prximy = P
1

where
_ ., PriXi|H)
"7 UPrX; | Ho)

which can be considered as the step in the random walk
represented by A. When the observation is one (X,=1), the
constant

is added to the preceding value of A. When the observation is
zero (X,=0), the constant

1-6,

1n1—00

is added.

The Sequential Probability Ratio Test (SPRT) for testing
H, against H, is then defined as follows. Given two user-
specified constants A and B where A<B, at each stage n of the
Bernoulli experiment, the value of A,, is computed as in Eq.
(3), then
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A, <4 = accept H,, and terminate test,
A, 2B = accept H, and terminate test,

A<A,<B=>take an additional observation 4

In the following a number of important properties of SPRT
are described. If H, is considered as a detection and H, as a
normality, an SPRT process may result in two types of errors:
false positive, where H,, is true but SPRT accepts H,, and false
negative, where H, is true but SPRT accepts H,,. Let c.and
denote the user-desired false positive and false negative prob-
abilities, respectively. Some fundamental relations exist
among o, 3, A, and B,

B

1-
Azln ,Bﬁln—ﬁ,
1- @

for most practical purposes, the equality can be taken, that is,

1—
L ,B=In ﬁ,
l-«a @

A=lIn ®

This only slightly affects the actual error rates. Formally,
let o' and P' represent the actual false positive rate and the
actual false negative rate, respectively, and let A and B be
computed using Eq. (5), then the following relations hold,

p @ - B (6)
oz_—_ﬁ andﬁ’_—l_w

and

o +f <a+p. @]

Egs. (6) and (7) provide important bounds for o' and p'. In
all practical applications, the desired false positive and false
negative rates will be small, for example, in the range from
0.01 to 0.05. In these cases,

very closely equal the desired o and f, respectively. In addi-
tion, Eq. (7) specifies that the actual false positive rate and the
false negative rate cannot be both larger than the correspond-
ing desired error rate in a given experiment. Therefore, in all
practical applications, the boundaries A and B can be com-
puted using Eq. (5). This will provide at least the same pro-
tection against errors as if the precise values of A and B were
used for a given pair of desired error rates. The precise values
of A and B are difficult to obtain.

Another property of SPRT is the number of observations,
N, required before SPRT reaches a decision. The following
two equations approximate the average number of observa-
tions required when H, and H, are true, respectively.

ﬁ’ln1 A +(1 —ﬁ)lnl;ﬁ ®
EIN|H]= —5= =4
011n0—0 +(1 —01)1n1 %
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-continued
1=
(1- oz)ln1 A + aln A ®
EIN | H] = —p—————-
Olln% +(1 - Ol)lnl —4,

As shown in the above equations, the average number of
required observations when H, or Hj, is true depends on four
parameters: the desired false positive and negative rates (o
and f3), and the distribution parameters 0, and 0, for hypoth-
eses H; and H,, respectively. SPRT does not require the pre-
cise knowledge of the distribution parameters 0, and 6,. As
long as the true distribution of the underlying random variable
is sufficiently close to one of hypotheses compared to another
(thatis, Ois closer to either 0, or 6,), SPRT will terminate with
the bounded error rates. An imprecise knowledge of 6, and 6,
will only affect the number of required observations for SPRT
to reach a decision.

In an embodiment, H, represents a detection and H,, rep-
resents a normality. That is, H, is true if the concerned
machine is compromised, and Hj, is true if it is not compro-
mised. In addition, X,=1 if the ith message from the con-
cerned machine in the network is a spam, and X,=0 otherwise.
Recall that SPRT requires four configurable parameters from
users, namely, the desired false positive probability c, the
desired false negative probability (3, the probability that a
message is a spam when H, is true (0,), and the probability
that a message is a spam when H, is true (6,). How these
values can be configured is discussed below. Based on the
user-specified values of o and f3, the values of the two bound-
aries A and B of SPRT are computed using Eq. (5).

FIG. 2A outlines the steps of a method of detecting com-
promised computers (spam zombies) in a network according
to an embodiment of the present invention. FIG. 2B is a
flowchart of the method. When an outgoing message arrives
at the spam zombie detection system (FIG. 2A: line 1; FIG.
2B: operation 205), the sending machine’s IP address is
recorded (FIG. 2A: line 2), and the message is classified as
either spam or non-spam (FIG. 2A: line 5; FIG. 2B: operation
210). Such classification may be achieved by using a spam
filter. The spam filter may be a content-based spam filter. For
each observed IP address, the spam zombie detection system
maintains the logarithm value of the corresponding probabil-
ity ratio A,,, whose value is updated according to Eq. (3) as
message n arrives from the IP address (FIG. 2A: lines 6 to 12;
FIG. 2B: operations 220 and 225). Based on the relationship
between A,, and B (FIG. 2A: line 15; FIG. 2B: operation 230)
and the relationship between A, and A (FIG. 2A: line 13; FIG.
2B: operation 240), the method determines if the correspond-
ing machine is compromised (FIG. 2A: line 14; FIG. 2B:
operation 235), normal (FIG. 2A: line 16; FIG. 2B: operation
245), or a decision cannot be reached (FIG. 2A: line 20; FIG.
2B: operation 250). If the machine is found to be compro-
mised, the method terminates for that machine; however new
iterations of the method may continue for other machines in
the network. If the machine is found to be normal, the prob-
ability ratio A,, is reset (FIG. 2A: line 17; FIG. 2B: operation
245) and the method repeats for newly received emails (FIG.
2A: line 18; FIG. 2B: operation 250). If a decision could not
bereached, then the method repeats for newly received emails
(FIG. 2A: line 20; FIG. 2B: operation 250). The method
receives and operates on emails in a sequential manner.

In the context of spam zombie detection, from the view-
point of network monitoring, it is more important to identify
the machines that have been compromised than the machines
that are normal. After a machine is identified as being com-
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promised (FIG. 2A: lines 13 and 14), it can be added into the
list of potentially compromised machines that system admin-
istrators can go after to clean. The message-sending behavior
of the machine may also be recorded should further analysis
be required. Before the machine is cleaned and removed from
the list, the spam zombie detection system does not need to
further monitor the message sending behavior of the machine.

On the other hand, a machine that is currently normal may
get compromised at a later time. Therefore, machines that are
found to be normal may be continuously monitored by the
spam zombie detection system. Once such a machine is iden-
tified by the spam zombie detection system, the records of the
machine in the spam zombie detection system are re-set, in
particular, the value of A, is set to zero, so that a new moni-
toring phase starts for the machine (FIG. 2A: lines 15 to 18).

The spam zombie detection system uses four user-defined
parameters: o, p, 0,, and 8. As discussed above, o and f§ are
normally small values in the range from 0.01 to 0.05, which
users can easily specify independent of the behaviors of the
compromised and normal machines in the network.

Ideally, 0, and 0, should indicate the true probability of a
message being spam from a compromised machine and a
normal machine, respectively. However, as discussed previ-
ously, 0, and 8, do notneed to accurately model the behaviors
of the two types of machines. Instead, as long as the true
distribution is closer to one of them than another, SPRT can
reach a conclusion with the desired error rates. Inaccurate
values assigned to these parameters will only affect the num-
ber of observations required by the method to terminate.
Moreover, the spam zombie detection system may rely on a
(content-based) spam filter to classify an outgoing message
into either spam or non-spam. In practice, 0, and 6, should
model the detection rate and the false positive rate of the
employed spam filter, respectively. Note that all of the
widely-used spam filters have a high detection rate and low
false positive rate.

FIGS. 3 and 4 are graphs showing the average number of
required observations for SPRT to reach a decision. FIGS. 3
and 4 show the value of E[NIH,] as a function of 0, and 0,
respectively, for different desired false positive rates. In the
figures the false negative rate is set as $=0.01. In FIG. 3, the
probability of a message being spam when H, is true is
assumed to be 0.9 (6,=0.9). That is, the corresponding spam
filter is assumed to have a 90% detection rate. As shown in the
figure, it only takes a small number of observations for SPRT
to reach a decision. For example, when 8,=0.2 (the spam filter
has a 20% {false positive rate), SPRT requires about three
observations to detect that the machine is compromised if the
desired false positive rate is 0.01. As the behavior of a normal
machine gets closer to that of compromised machine (or
rather, the false positive rate of the spam filter increases), i.e.,
0, increases, a slightly higher number of observations are
required for SPRT to reach a detection.

In FIG. 4, the probability of a message being spam from a
normal machine is assumed to be 0.2 (6,=0.2). That is, the
corresponding spam filter has a false positive rate of 20%. As
shown in the figure, it also only takes a small number of
observations for SPRT to reach a decision. As the behavior of
a compromised machine gets closer to that of a normal
machine (or rather, the detection rate of the spam filter
decreases), i.e., 0, decreases, a higher number of observations
are required for SPRT to reach a detection.

As shown in FIGS. 3 and 4, as the desired false positive rate
decreases, SPRT needs a higher number of observations to
reach a conclusion. The same observation applies to the
desired false negative rate. These observations illustrate the
trade-offs between the desired performance of SPRT and the

20

25

30

40

45

10

cost of the method. In the above discussion, the average
number of required observations when H, is true are only
shown because a user is likely more interested in the speed of
the spam zombie detection system in detecting compromised
machines. The study on E[NIH,] shows a similar trend (not
shown).

To ease exposition it was assumed that a sending machine
m (FIG. 1) is an end-user client machine. In practice, a net-
work may have multiple subdomains and each has its own
mail servers. A message may be forwarded by a number of
mail relay servers before leaving the network. The spam
zombie detection system can work well in these kinds of
network environments. In a first example approach, the spam
zombie detection system can be deployed at the mail servers
in each subdomain to monitor the outgoing messages so as to
detect the compromised machines in that subdomain. In a
second example, and possibly more practically, the spam
zombie detection system is only deployed at the designated
mail servers, which forward all outgoing messages (or the
spam zombie detection system gets a replicated stream of all
outgoing messages), as discussed previously. The spam zom-
bie detection system may rely on the ‘Received:”header fields
to identify the originating machine of a message in the net-
work. Given that the ‘Received:” header fields can be spoofed
by spammers, the spam zombie detection system should only
use the ‘Received:” header fields inserted by the known mail
servers in the network. The spam zombie detection system
can determine the reliable ‘Received:” header fields by back-
tracking from the last known mail server in the network that
forwards the message. It terminates and identifies the origi-
nating machine when an IP address in the ‘Received:” header
field is not associated with a known mail server in the net-
work.

Given that the spam zombie detection system relies on
spam filters to classify messages into spam and non-spam,
spammers may try to evade the developed spam zombie
detection system by evading the deployed spam filters. They
may send completely meaningless non-spam messages (as
classified by spam filters). However, this will reduce the real
spamming rate, and hence, the financial gains, of the spam-
mers. More importantly, even if a spammer reduces the spam
percentage to 50%, the spam zombie detection system can
still detect the spam zombie with a relatively small number of
observations (25 when 0=0.01, $=0.01, and 6,=0.2). So,
trying to send non-spam messages will not help spammers to
evade the spam zombie detection system. Moreover, in cer-
tain environment where user feedback is reliable, for
example, feedback from users of the same network in which
the spam zombie detection system is deployed, the spam
zombie detection system can rely on classifications from end
users (which may be used in addition to the spam filter).
Although completely meaningless messages may evade the
deployed spam filter, it is impossible for them to remain
undetected by end users who receive such messages. User
feedbacks may be incorporated into the spam zombie detec-
tion system to improve the spam detection rate of the spam
filter. As discussed previously, trying to send spam at a low
rate will also not evade the spam zombie detection system.
The spam zombie detection system relies on the number of
(spam) messages, not the sending rate, to detect spam zom-
bies.

For comparison, two alternative designs in detecting spam
zombies are presented, one based on the number of spam
messages and another based on the percentage of spam mes-
sages sent from a machine. For simplicity, they are referred to
as the count-threshold (CT) detection method and the per-
centage-threshold (PT) detection method, respectively.






