Deep-C Study Area

SPATIAL SCALE

- Shallow shelf-shelf edge
 - > within MPAs
 - outside MPAs
- Slope
- De Soto Canyon
- Deep Sea
 - natural seeps (+,)
 - non-seep sites

Processes Influencing Biological Productivity

Overview

- To evaluate biological diversity and trophic interactions among organisms w/ impact of oil, dispersants other events
 - ➤ deep-sea benthos ↔ coast
 - \rightarrow 1° producers \rightarrow apex predators
- Evaluate versus backdrop of hydrology & geomorphology that influence distribution, fate of particles & dissolved material
- Combine w/ chemical, physical components in Food Web and Earth System Models

Ecological Pathways Primary Production

- To trace BP oil & dispersant impacts on diatoms, calcareous nannoplankton, & related protists in the NE GOMs
 - Focus on skeleton-bearing species (calcite, silicate)
 - Compare living with fossil forms in post spill & older sediments

Primary Production – Method & Outcome

- Sample photic zone @ 20 m intervals with rosette sampler
 - Diatoms
 - Calcareous nannoplankton
 - Water chemistry
- Filter onboard ship for future analysis using SEM
- To determine the ecological response at the base of the food chain in the photic zone to DwH and other anthropogenic events
 - Skeletal remains leave sedimentary record
 - Provide support for De Soto Canyon conduit hypothesis
 - \triangleright Foraminiferan skeletal deformities \uparrow in presence of n-alkanes in sediment

Microbial Component

Deep-C

- To quantitatively compare the influence of:
 - settling crude oil (old organic matter)
 - algal blooms (new organic matter)
- On sediment physical & chemical characteristics
- On sediment-dwelling microbes

Microbial Component – Hypothesis

- Pulses of oil and phytoplankton change permeabilities & mixing regime in sediments across the shelf & slope;
- These changes affect
 - sediment microbial community function
 - microbial community composition in concert with physico-chemical variables
- Using sediment cores mesocosm experiments
 - Create time-series database that populates model of depth-specific impact petroleum HC deposition in shelf sediments

Microbial Component – Outcome

OIL from DwH spill had **profound impact** on the abundance and community composition of microbes in sediments.

- Heavy oil deposition = 2-fold \downarrow sediment permeability, reducing pore water & air circulation.
- Despite this, embedded oil → bloom sedimentary bacteria @ ~4- fold →O2-consumption rates in oiled layers compared to clean sands
- Impact mimicked that of an algal layer imbedded in the beach sediments by wave action. .

Ecological Pathways Microbial Component – Mot

- Microbial Component Methods
- Characterize microbial communities w/ coupled culture-based & molecular approaches
 - ➤ 24 strains oil-degrading bacteria identified in oil containing sediments
 - Developed genetic sequencing & phylogenetic characterization methods for sedimentary microorganisms
- O₂ present cultures from oiled sediments degrade DwH oil in days
- O₂ absent oil persists for months

Oil-degraders = 3 to 4 orders of magnitude higher in oiled sediments than in "clean" sediments

Ecological Pathways Microbial Component – Outcomes

Molecular-based Enumeration

Impact on Community Structure

- Microbial bloom of oil-degraders covaried with respect to oil contamination
- Pronounced response of total and active communities to oil presence

Ecological Pathways Microzooplankton & Water Quality

Monthly (BP-FIO) thru April 2012 Quarterly (DEEP-C) thru fall 2015

Examines influence of

- Upwelling
- Mixing with MS river water, Mobile Bay, and Apalachicola discharge

Microzooplankton & Water Quality

Water Column Parameters

Physical & Chemical

- ADCP & CTD profiles
 - Salinity T, DO, Chl-a, CDM, Turbidity
- Light PAR, UVA, UVB
- Nutrients Dissolved Ammonium, nitrate, orthophosphate, TKN, Phosphorous, Chl

Biological

- Phytoplankton activity
- Bacterioplankton (N), activity
- Microzooplankton (N), Diversity

Sediment Parameters

- PAHs , Chl
- Microbial community Diversity (DNA sequencing)

Ecological Pathways Microzooplankton & Water Quality

Microbial Loop

- Consume primary and bacterial production
- Produce food for zooplankton, larvae

Objectives:

- To determine if flow controls on MS and Apalachicola affect production around De Soto Canyon
- To determine how production is mediated by oil & dispersants

Benthic Communities - Macrofauna

Seep Community

- Quantify benthic macrofaunal assemblages across seep & non-seep sites
 - spatial & temporal differences
 - biological diversity
 - species-specific distributions & abundances
- Determine presence & effect of hydrocarbon signal (natural & discharged)

Benthic macrofauna Megafauna photosurvey

Ecological Pathways Benthic Communities - Macrofauna

Methods

Acoustic Imaging

Sidescan sonar (topography, habitat)

Subbottom CHIRP (geologic framework)

Videographic Imaging

Ecological Pathways Benthic Communities - Macrofauna

Benthic imaging platform with USBL navigation deployed from surface ship – e.g. WB2

Real time video transects and high resolution still photographs .

Diagnostic bottom features and fauna delineate natural hydrcarbon seeps and/or other benthic habitats.

Ecological Pathways Benthic Communities – Fishes

Goals

- Conduct Meta-Analysis to define spatial and temporal differences in faunal diversity, distribution, and abundance
- Determine relationship b/w exposure to PAHs and fish health (relative to age, size, and reproductive condition (Non-consumptive)

Dean Grubbs, Chris Koenig, Felicia Coleman, (FSU), Mark Hay (Ga Tech), Jim Gelstleoicher (UNF))

Benthic Communities – Fishes-Sampling Methods

<u>Longline</u> – Slope & deep sea (200-2000 m) Traps – Continental shelf to edge (40 – 200 m)

- ➤ Vent fish at depth (~40% depth of capture)
- > Slow haul to surface

Tag w/standard, acoustic tags
Biopsy gonad (sex, reproductive condition, atresia

Spines & Rays (age)

Tissue Samples

- Genetics
- Isotopes (diet)
- PAH analysis
- Liver & bile (dead fish)

Ecological Pathways Benthic Communities – Fishes

Ecological Pathways Food Web Model

Characteristics:

- Spatially-explicit 3-D biogeochemical marine food web model (e.g., ATLANTIS)
- Submodels:
 - hydrographic processes
 - chemical & biological factors that influence ecological processes

Use to:

- Evaluate ecological, social, & economic effects of DwH oil discharge, other extreme events that influence ecosystem health & resilience
- Conduct risk analysis
- Identify critical data gaps
- Link to Earth System Model

