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Abstract:

Over the past decaddettechnologies used to obtain sequencing data from bioldggsaks
have significantly improved. This has resulted in a mankei@ase in the ability of biological
researchers to collect unprecedented quantities of laege3bIA sequence data in a short timeframe.
Recent developments in genome sequencing algorithms hawedbioinformatics utilities to begin to
take full advantage of this data, paving the way for sicguifi increases in our understanding of
genomics. New methods of genomics research have novednesainy new opportunities for discoveries

in fields such as conservation ecology, personalizetiaime, and the study of genetic disease.

This research project consist of two major componemsutilization of recently-developed
computational biology methods to perform sequence asseminigtive Florida Species, and the
creation of new bioinformatics utilities to facilitate ganics research. This project includes the
completion of the first stage of the Florida Endande&pecies Sequencing Project, the assembly and
annotation of the transcriptome of the Florida wolflep Schizocosa ocreatand a preliminary
analysis of differential gene expressioroareataorganisms. Initial work is also included on Florida
Endangered Species Sequencing Project Stage Two: sequemskhagsejects for the Florida Manatee

and the Gopher Tortoise.

Discussion is included of two new computational biology w8itiTFLOW, a transcriptome
assembly pipeline designed to facilitate de novo transonpt@mssembly projects, and ongoing
development of the GATTICA web-based bioinformatics taolkhe TFLOW package has been

released for download through the FSU Center for Genomac®arsonalized Medicine.
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Introduction:

One of the types of scientific research that has ngae the most development in the last
decade is the field of Genomic Sequencing and Analysis. Sieasmpletion of the human genome
project with the full sequencing of the first human genam#003, the availability and accessibility of
genomic data has rapidly increased [1]. The advent of agquesicing technologieabcreated a digital
deluge of raw sequence data for hundreds of different sp&cighermore, as the cost of performing
sequencing experiments continues to drop, the amount of gedataithat is produced and the number
of new species studied via this method are growing at an erpalrate. As arL Q G L Y lgéhxreGsy V
the largest single defining factor in determinidgK D W L Q éharsdie@sxids @ffl\health, the
availability of this plethora of new data will representeavrirontier in scientific advancement. This
information will likely contain the keys to solving a divemrsange of issues. These issues will likely
include the combating of infectious disease, the treatamahpotential cure of genetic diseashs
preservation of endangered and extinct species, and trengogvand treatment of human cancers.
Rapid gene sequencing technology also has a major poterttie field of personalized medicine.
Targeted pharmaceutical prescript@D VHG RQ DQ LQGLYLGXDOYV JHIQR RHKHV D
next decade, and will likely lead to an increase in theaf{i of many drug therapies. In addition,
sequencing of a variety of different organisms on the afdife allows much more insight into the

history and mechanisms of the evolution of organisms tiwver



The primary barrier to the utilization of this these rsaguencing techniques lies in the sheer
volume of data that they produce. Since the sequencirig dif st human genome, the cost of all types
of sequencing has decreased by several orders of magnituderfate, the time to acquisition of
sequence information is now measured on a scale of vueseas the sequencing and assembly
projects for the first complete genomes were completed several years. The first human genome was
sequenced in 13 years, with a rough cost of 3 billion ddigr€urrent sequencing methods such as the
lllumina HiSeq technology deliver an average of 400 giga bdsksta per run at a rough cost of 5¥10
dollars per base, a very significant reduction in costpared to those initial genome sequencing

projects.

This rapid decrease in the cost of DNA sequencing has resalted collection of a vast
guantity of raw sequence data. This data can be up to se@fajtes in size, and often requires the
acquisition of data storage equipment for the specific perpbstoring the DNA sequence reads
produced from a single experimental run [2]. After theembibn of the data, several processing steps
such as trimming, assembly, annotation, and alignment & r&itjuired before the data can be used to
answer biological questions. As the computational algoritimaisare often used for these analyses often
have runtimes that are exponentially based on the anodsequence data, the analysis of the huge
amounts of raw sequence data that has recently becoitabkevhas been the major barrier to increased
utilization of ths data for genomics research. While efficient applicatiboomputational techniques to
SELJ GDWD”" LV D VLIJQLILFDQW IEH®R#8tRthevapphicationobig 8aRS XWHU V|
technigues to genomic data has lagged behind the developrment s€quencing technologies. This
lag has resulted in a significant gulf between available atadahe techniques used to analyze and

understand that data.



Over the past few years, researchers in computationafgyidlave begun to address this gap
with the development of several major genomic anatgsis. These tools have significantly increased
the capacity for the efficient analysi§genomic data on the scales provided by next-generation
sequencing technologies [3]. As the majority of these tqalesiare designed to utilize the type of
computational equipment standardly available at maj@arel universities, a significant opportunity
currently exists to explore many topics in genomics thsépreviously been inaccessible. Rapid
genomic analysis of numerous species is now possilteewisting equipment. This prowadthe
potential for major new discoveries in fields such défedintial expression, conservation ecology, and

phylogenic analysis [%6].

Even with the arrival of robust and efficient sequesssgembly tools, the increase in genome
sequencing and analysis projects has not increased as &ast enight expect given the opportunity
presented by the vast amount of new data available ambtterful new toolsets under development
One of the major factors that has prevented a greatematitin of these tools is the specialized
knowledge that is often required to acquire, implement usiide each different genomics tool. While
many recently developed bioinformatics tools have a sigmifipotential to provide new insight into
biological research across many disciplines, these ¢ilsrally require significant proficiency with the
UNIX command line interface. This often serves as a nt&gorier to biological scientists who may
have little familiarity with UNIX systems [6]. Thus, aysificant potential exists for the development of
utilities that increase the accessibility of theseadsy tools for researchers who do not have an

extensive background in computational biological analysis.

One genomics topic with significant potential for advaneeinvia cutting-edge genome analysis
tools is the genomic study of endangered wildlife nativéaedilorida region. By definition, endangered

species often have very small population sizes witlgiven geographic area. One major consequence
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of these small populations is that very few breedindcelsoare available, resulting in a high degree of
harmful inbreedingn many endangered species. Many Florida species sucé Agett Indian Manatee,
the Florida Panther, and the Whooping Crane are estitateave very small population sizes and are
thus at significant risk for the harmful effects of isding [7]. Genomic sequencing techniques can
provide a significant increase in understanding of many &spéthe genetic diversity within a given
population, especially in the case of highly inbred populatiohs. gresents a significant opportunioy t
assist in the preservation of Florida endangered spactt help ensure their survival for future

generations via use of cutting edggguencing and analysis methods.



Background:

Sequencing Technologies:

Many major sequencing technologies that have been developethe last two decades utilize
the 3 VKR W J X Q VHThH iQrkda@ing targdtWequences. This methodology wasefficused
by Celera Genomics and was successful in simultaneouslylebmg the sequence of the human
genome the same year as the completion of the S&mgprencing based Human Genome Proje@, [1
9]. In shotgun sequencing, DNA strands are broken into raf@@ments that vary in length based on
the chosen fragmentation process, such as with smmaatvia digestion with restriction enzymes].
These sequence fragments are then bound to a surface twed@rgoing several rounds of DNA
replication. Different sequencing technologies then usriaty of methods to read the nucleotide

sequences of the DNA fragments [11].

The ¥54° sequencing technology was developed in the early 000DQG ZDV RQH RI WK
SQHJWQH U gequerRiQy technologies to utilize large-scale shotgun sequerichgrt reads [5].
When it was released, this technology ol#direads with a relatively low error rate at a cost per
nucleotide that was significantly less than the techyietothat preceded it. In 454 sequencing, small
double-stranded DNA fragments are individually bound to a smatl bad re@ LFDWHG RYHU WKF
surface by emulsion polymerase chain reaction. (EmuR@©R) [12]. The complementary strand of
each replicated fragment is then removed and each $gdated into a small pore in a hexagonal grid.
ReadingR1 WKH IUDJPHQW 1 perioHnEX\HhQdsyhtHeSis b el mplementary DNAndtra

on each of the replicated fragments using fluorescéatigied nucleotides in a method called



pyrosequencing [13]. As a nucleotide is added to the growing caraptary sequence, it emits photons
that are received by a detector at the bottom of the patk.thé successive washing of the A, T, C, and
G nucleotides into the pores, a signal is detectedsymyreling to the addition of a specific nucleotide
base. This allows the reading of the identity of teetmdded base on the target strand. This process can
then be repeated over many cycles, allowing each dfabes of the fragment to be sequentially read

[14].

Although the 454 method represented a major advance in coategskibility over previously
used methods such as Sanger sequencing [13], the technoldgy usad the sequence of the DNA
fragment is susceptible to a specific type of sequencing known as homopolymer error [15]. This
type of error is caused by sequences in the DNA with nheiltgpeats of a specific basAs each type
of base is added independently, regions with repeate aiime base identity have each of the repeated
nucleotides added within the same step. While the light thetiscsensitive enough to differentiate
between the amplitude afsignal corresponding to the difference between one,dambyee bases,
when four or more bases are added simultaneously the chlamigdentification of the number of add
bases increases. Homopolymer sequences read via the 454 tetlavigw@esignificant potential for
base insertion or deletion in the homopolymer regiaich causes significant difficulty in subsequent

sequence assemldyd analysis steps [16.7].

The lllumina Next-Generation Sequencing Technology takesralesteps to correct issues
inherent in both the legacy and the Next-Generation 454 seigpgemethods [18]. lllumina technology
utilizes short-read sequencing technology, and can perfofmshotgun sequencing and targeted

amplification sequencing methods [19]. lllumina technology usifeaent method of replication of

16XFK DV 3$$$$$78&*"
26HTXHQFH 3$$$$$7&* LV WKHQ UHDG D3%$$$$$7&* GOOMWLRRQ RU



sequence DNA known as Bridge PCR [20]. In Bridge PCR, DNA satgrare fragmented into short
VHTXHQFHY DQG DWWDFKHG WR D ODWE BY RSERISQISMMEX HQ F|
PCR utilized by the 454 method [21]. These bound fragmeathan replicated to create a small patch
of DNA bound to the lawn. As in the 454 method, DNA basesead by the sequencing of
complementary DNA strands with fluorescently labeledewta@es. In this method, however, all four
nucleotides are washed over the DNA fragments simultaneandithe fluorescent group on the
nucleotide blocks addition of further nucleotide bases. diffsrence in technique addresses the
homopolymer error present in the 454 sequencing method lbgléhiely precise addition of one base
per cycle. As each nucleotide base is labeled witlffereint fluorescent group, the excitation of these
groups via an incident laser light allows identificatadrthe bases on different fragment regions based
on the light emanating from any given region. The flsoeat group is then cleaved from the base,

allowing addition of the next complementary nucleotidehafollowing cycle [18].

Visualizations of Sequencing Methods
For visualizations of each respective sequencing procesilkbwing resources are available:

454 Sequencing: FLX System Workflow: (Accessed 04/2015)
http://go0.gl/7zfDKy (Shortened URL)

lllumina: Genome Analyzer Workflow: (Accessed 04/2015)
http://goo.gl/61ySaf (Shortened URL)



http://goo.gl/7zfDKy
http://goo.gl/61ySaf

DNA Sequence Assembly:

Although next-generation short-read sequencing technolagpisas the lllumina HiSeq results
in very high quantities of sequence reads, the efficienhaodrate reassembly of these small fragments
into their original orders a non-trivial issue. As a result, optimization of geeaassembly has recently
been one of the major focuses of bioinformatics st@flyJome of the most significant advances in
sequencing technology made in the past few years haverbéenoptimization of algorithms for
genome assembly. Refinement of the recently introduced segjassemblers such as the Trinity,
Velvet, SOAPdenovo, and AllPaths assembly utilities havelgneareased the capability of thees
assemblers to handle large amounts of genomic data irakdifeerent forms [322-25]. Thes
assemblers are capable of producing high-quality DNA seq@essesnblies using high-performance

systems and the centralized UNIX servers that areadlailt major university research institutions.

There are several different types of sequences thadteassembled from short sequence reads
depending on the desired focus of the research. Two ofidiw types of DNA sequence assembly are
genome assembly and transcriptome assembly [3]. Genomense@ssembly attempts to recreate the
full genome of a particular organism. Whole-genome albeisioften an intensive project that requires
a significant investment of resources, both for the ne@gequired for the DNA sequencing as well as
the significant amount of computational time requirediierassembly of the genome sequence. The
other major type of sequence assembly is transcriptoseerdnty, which represents the sequence
information of the portion of the genome that is uratdive transcription into messenger RNA (mMRNA)

for translation into protein.



The central dogma of molecular biology states thatepr@ncoding information is passed
through the cell via a specific sequence of steff This sequence of steps is shown in Figure 1:

[adaeOAlacUAaA
& 0 # 100U 40

Figure 1, 3* HQHUDO ™ 7UDQVIHUV RI1 V
Molecular Biology

In the central dogma, DNA strands in a cell are actitralyscribed to mRNA by the action of RNA
polymerase enzymes. This mRNA is then translated imi@iprby the action of ribosomes located
either in the cell cytoplasm in prokaryotes or in¢heoplasmic reticulum organelle in eukaryotic
species. In order to obtain the DNA sequences of thedrgptome, the RNA-Seq method can be used
[27]. In this method, the viral reverse transcriptase/eezis utilized to convert the single-stranded
MRNA back into double-stranded DNA. The DNA created fromerse transcription of an mRNA
strand is called complementary DNA (cDNA). In eukaryopeaes, cDNA represents the coding
sequence of the DNA template used to transcribe the mRibAMron coding regions spliced out of
the DNA sequence. When reverse transcriptase is usée @oltection of mRNA present in a cell, it
provides a snapshot of the DNA that is actively beingstnaibed within a particular cell at the time of

sample collection.

In transcriptome assembly, the relative frequency@bitturrence of specific sequences is
assumed to indicate the frequency of occurrence ofatresponding mRNA strand in the cell. This is
subsequently assumed to indicate the abundance of tlesponding coded protein at the time of
sample collection. Generally grd small portion of the genome is used for coding of protains
eukaryotic organisms, such as the 2% of the human gen@udargrotein coding [28]. Thus, an
RUJDQLVPTV W Wite@ Micb th@rRnHAdthgthVhan its genome. Trapisarie assembly can

therefore often be performed with fewer29omputational ressuthan are often required for whole



genome assembly projects. In addition, transcriptomerdsgerovides information about different
expression levelfR | D Q R U JD Q.LAgdemMing ith® traxscriptomes of different individualshef
same species allows comparisonséaniade between differing individual gene expression |2elk
This then allows the relationship between specific genegplagabtypicor developmental states to be

established.

Sequence Assembly Methods:

Both whole-genome assembly and transcriptome assemblyegaerformed via either the
SUHIHUHQFHROW WHKRMETQ3H QR YR B[BVIH GhovdasBdily eGience reads are
assembled into a genome or transcriptome without asststeom outside reference sources [18]. This
is generally the most computationally intensive methogbgftience assembly, often requiring the
comparison of every read with every other read. Thusrgéy an exponential relationship exists
between the number of sequence reads and the amount of ation@alttime required for assembly,
giving a native runtime complexity df: J&; where Jis the number of sequence reads. Some examples
of commonly used de novo assembly utilities are the VeMgySS, and SOAPdenovo assemblers for
de novo whole genome assembly,[28, 30], and the Trinity and Oases assemblers for de novo
transcriptome assembly [221, 32]. In addition, many other assemblers are under develtpnid the
goal of optimizing assembly accuracy and speed under bothafjeedrand specialized sequencing

conditions [3].

S)URP WKH /DWLQ 3*%HJLQQLQJ $IUHVK"
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In reference assemblya previously assembled genome (reference genome) issiseguide
for the assembly of the genome or transcriptome oéxperimental target [3]. The reference genome
can either be supplied by an individual of the same speciesm an individual of a closely related
species [33]. The efficacy of using a reference genomaskambly is directly linked to the genome
similarity between the target species and the selectecenee genome. Utilization of a whole-genome
sequence of the same species provides the most assistagference assembly. Two examples of
recently released reference assembly utilities ardligaGraph assembler for reference-assisted
genome assembly [34], and the BRANCH assembler for referassisted transcriptome assembly [35].
The BRANCH utility uses the transcriptome sequence outpot frale novo assembler, such as that
produced by Trinity or Oases, and uses an existing refegammame to create additional connections
between transcriptome sequence fragmdegerence assembly methods have the potential to
significantly increase the speed of sequence assembly aset®they can significantly reduce the

potential number of required comparisons between sequencergsgme

Further Reading:
For further introduction to sequencing technologidsture Reviews: Geneticdfers an accessible
series of review articles on next-generation sequencitig@guence assembly.

Review Atrticle Series: Applications of next-generation sequencing
http://www.nature.com/nrg/series/nextgeneration/index.htmi

Sequencing technologies 2 the next generation
http://www.nature.com/nrg/journal/vi1/nl/abs/nrg2626.html

Sequence assembly demystified
http://www.nature.com/nrg/journal/v14/n3/full/nrg3367.html

Next-generation transcriptome assembly
http://www.nature.com/nrg/journal/v12/n10/full/nrg3068.html

Next-generation sequencing data interpretation: enhancing reproducibility and accessibility
http://www.nature.com/nrg/journal/v13/n9/abs/nrg3305.html

4$0OVR UHIHUUHG WR DV 30DSSLQJ $VVHPEO\’
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ndangered Species in Florida:

Recent advances in sequencing technology have createteasiex opportunity for the
genomic study of species native to the State of FloriddaBgered species have some of the greatest
potential for impact by genetic disorders due to the smas $if remaining population groups. Otie o
the primary consequences of these small population feizasgiven species is that few choices in mate
selection are available. This results in a signifieanbunt of mating between closely related

individuals, known as inbreeding.

For many species, inbreeding is significantly detrimetotalverall population health. The
detrimental effects of inbreeding are referred to as ilimgedepression, a condition in which many
individuals within a population are homozygous for harmggkessive traits [3@7]. Inbreeding
depression is characterized by species populations that iyl propensity for genetic disorders and
a corresponding decrease in population fitness [38-40&misting sequences for the genomes of
endangered species provides an insight into the genetica&sds endemic to species with inbred
populations [4142]. Genomic analysis thus has a significant potentialdistans the species

preservation efforts of endangered Florida wildlife.

As of April, 2015, 47 species native to the Florida regiorclassified as endangered by the
National Oceanic and Atmospheric Administration-Natidvlafine Fisheries Service (NOAA-NMFS)
and the U. S. Fish and Wildlife Service, with 43 moregifeesl as threatened by either the
aforementioned federal agencies or by the FloridadishWildlife Conservation Commission (FYY
[7]. The Florida Panther is one example of a Florjukecses that has suffered a profound decrease in
average population fitness due to the inbreeding depressisacchy small population sizes [43].

Furthermore, the species has served as a model of #mipbfor the assistance of restoration efforts

12



through genome sequencing and analysis484 Similarly, many other threatened and endangered
Florida species such as the Florida Manatee, the Gdjoinise the Grasshopper Sparrow, the Beach

Mouse, and the Red Wolf, also have the potential to ssgnifly benefit through conservation genosnic

study utilizing cutting-edge genomics methods4g-50].
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Research Design

Major opportunities exish two primary directions of computational biologicaleasch: the
development of new utilities designed to increase thesaiibty of new bioinformatics tools,ra the
utilization of those tools in new avenues of genomic resediab.research project has undertaken to

make advancements in both of these directions throlgfaraated project design.
Development of Computational Utilities, TFLOW and GATGA:

The computational portion ofigproject focuses on the development of two utilities toaase
the accessibility of cuttingege sequence analysis tools. This is accomplished throughetit@®on ofa
de novo transcriptome assembly pipeline named TFLOW andiegign and implementation af

program backend as part of the GATTICA Project

One of the primary barriers to a greater utilizatiocwtfing edge sequencing assembly methods
is the significant learning curve associated with ead¢heindividual utilities required for a sequence
DVVHPEO\ SURMHFW 7R KHOS WR |ID\GHFGYUHEXEMOWEHES \6 draatéeXtd D 3S LS
provide a streamlined process from raw shotgun transcript réadodde final transcriptome assembly.
This pipeline is titled Transcriptome FIG@WFLOW) and encompasses transcript read quality trimming,
transcriptome sequencing, combination of multiple trapgrpost-sequencing transcriptome analysis,
and gene annotation. The output from each step of theguoeis prepared for subsequent steps by
utilities written in the Python language for the TFLOW pagek§pl]. These utilities will be made

available as an open-source python module through thedestér for Genomics and Personalized

5%$77,&% LV DQ DFURQ\P IRU 3*HQ R PHODERU\VWY YYHR RORX Q@ HSERLFDWLRQ °
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Medicine (CGPM) [52], allowing for future expansion upon the tt®lrovided. This package will
allow an increase in the accessibility of de novodtaptome sequence assembly by providing a ready-

made kit for de novo transcriptome assembly projects okXdhstems.

Another major barrier to greater utilization of bioinfatigs tools is a lack of familiarity among
many biological researchers with the command line mterthat is commonly used by bioinformatics
utilities. To help to address this issue, the GATTICA projeas initiated in 2014 by the Florida State
University Center for Genomics and Personalized Medicihe.gbal of the GATICCA project is to
provide access to the majority of genome analysis tools uger-friendly web-browser interface. This
interface is designed to allow access to high-performbioceformatics utilities users without extensive
experience in command-line UNIX systems. While the GATIGGiRy is a collaboration between
several researchers working with the CGPM, this profailves the design and implementation of the
Python backend for the GATICCA Project, including theatios of a task scheduler and a template for

future modular addition of bioinformatics tools.

Genonic Sequencing of Florida Species:

The new bioinformatics tools that have become availalileeitast decade provide a significant
opportunity for new discovery in genomics. Endangered spamgesne group that can significantly
benefit from study via the new genome sequencing techmeslogliorida is home to several species that
are significantly endangered, such as the Florida Marsatd the Florida Panther [48]. The
genomic study of these species has the potential to sigmiify aid in conservation efforts for
endangered species by providing more insight into the gemetiknesses that threaten small

populations.
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In order to help to address this problem, th

sparkffs 3 cmaa 0 s [

Sequencing Florida Endangered Species
Arts & Sciences

FSU CGPM launched th&equencing Florida
Endangered Species Proje(BFES) in 2014. Tik a
multi-stage project to assist in conservation effofts
Florida species [5%4]. This project will endeavor

to conduct sequencing studies on several Florida

endangered species utilizing new sequencing

(13 Lo JED W Tweet (2

<> embed % Remind me

technologies and cutting-edge bioinformatics

We seek $45,000 to enable FSU undergraduate students pursuing a degree
in Computational Biology to perform DNA sequence assembly for three

methOdS The |nf0rmat|0n prOV|ded by these endangered species that have never been sequenced: the Manatee, the

Florida Panther and the Whooping Crane.
Launched:
Feb 09, 2014

sequencing projects will be made public by inclusiq &

May 10, 2014

share on g3 (2

in the NCBI reference database of genome seesernc
Figure 2, Announcement of the36 HT X H Q

[55], providing an open-access resource to sequer JORULGD (QGDQJHUHG 6¢

information for scientists conducting research on tispseies. By making the genome sequence results

of these studies publicly available, this project aims toifsagntly increase rate of discovery and the

ability of researchers to help recover endangered Flspdaies from the brink of extinction.

The research conducted in this project represents thettige of the SFES project as well as the
initial steps towards the second phase. Before undertalqo@seing projects involving endangered
species, an initial project was selected that alloweashablishment of the framework required for
further de novo sequencing endeavors. The first Floridaespselected for analysis w&shizocosa
ocreatg a wolf spider native to the Florida regi@®everal practical advantages exist in the selection of
ocreataas the initial candidate for sequencing. Multiple stequsdiready been performed to prepare for
the assembly of thBchizocosa ocreat@anscriptome. Tissue samples for several differegamsms

had been previously collected with subsequent preparaititve cDNA tissue libraries from the mRNA

16



transcript sequences. Short-read DNA sequencing had thempédermed on these libraries, resulting
in a large quantity of sequences 101 base pairs (bp) irhlefgas, high-quality raw DNA sequersce
were available for use in de novo assembly ofSblizocosa ocreat@anscriptome, making it an ideal
first subject in the acquisition and installation of deenputational tools required for de novo

transcriptome assembly.

In addition to practical considerations, there arersg\mological reasons for the selection of
Schizocosa ocreatar transcriptome sequence. The genome siz8dbizocosa ocreata on the same
order of magnitude with that of the target endangered splecidse project. The genome size for
Schizocosa ocreatadividuals has been determined to bé&vG riéwL € or u &y G riédw) > in
lengt [56, 57], as compared to the length ofi s) >for the Florida Manatég58]. In addition,
potential similarities betweeBchizocosa ocreatand the model organisrosophila melanogastét,
provide a significant advantage in the annotation of geneidumafter the completion of sequence

assembly.

As transcriptome assembly requires significantly less cormpngéhresources than a genome
assemblythe assembly of a high-quality de novo transcriptome was takaer as the initial stage of
the SFES project. After assembly, transcriptome annatatiperformed utilizing homology to several
different reference genomes and sequence databasedetri@mprovide insight into differences in gen
expression between different organismal states, theetisamples used for transcriptome sequencing
were collected from several categoriesSohizocosa ocreatadividuals. Differential gene expression

between the selected individuals is then determined kigtgtat analysis.

8 picograms

7 giga base pairs

8 1 picogram = 0.978 Gb

9 Species Name: Trichechus manatus latirostris
10 A species of fruit fly
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The next stage of the SFES project includes the genactheanscriptome sequencing of several
endangered Florida Species. The first two endangered spbo®sn for sequencing studies are the
Florida Manatee and the Florida Gopher Tortoise. A wholege scaffold assembly for the Florida
manatee has already been assembled by the BroadtmstitMIT and Harvard [59]. The potential
exists to further characterize the manatee genome thimligistion of cellular mMRNA for RNA-Seq.

To accomplish this, a tissue sample will be collectethfthe same individual used in the original work
by the Broad Institute. Library preparation will then befgrened on the sample, and the cDNA
sequences will be obtained by lllumina sequencing. Referesmagctiptome assembly will then be
performed on the sequence reads to assemble the manasegiptome. Identification of regions of the
genome corresponding to coding sequences will then be pedpproviding annotation of genome
sequences with function information. This project encasgs the preliminary work on the
improvement of the manatee draft genome. The sequencemhgénobtained from the Broad Institute
genome browser [60]. Preliminary analysis is then beguheassembly to identify regions for

potential improvement.

The final sequencing portion of the project includes the pagpg work for the full-genome
sequencing of the Florida Gopher Tortoise. The permittingga®is currently underway for the
collection of tissue samples from a gopher tortoigkeénClinic for the Rehabilitation of Wildlife
(CROW) in Sanibel, FL. Once tissue has been collected|ltimina HiSeq instrument resident in the
FSU College of Medicine will be utilized to obtain shotgun Dél#rt-read sequences for the Gopher
Tortoise. De novo genome sequence assembly will then be pedanmthe sequence data to produce a

high-quality genome sequence assembly for the tortoise.
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Development of the GATICCA Framework:

Biological researchers are often unfamiliar with caamptommand line interfaced the type
utilized in high-performance computational clusters [6].gxBicant portion of the most commonly
used bioinformatics utilities such as the NCBI BLAST Sarte the BWA Sequence Alignment Tool
are utilized via a command line [682]. Many of these tools have a significant learning curfereea
high degree of proficiency is achieved. Some onlineieslihave been developed to address this
problem, such as the access to BLAST and other analy#i®dseoffered by EMBL [63]. While these
online utilities are effective in increasing access to twslsmall data sets, an opportunity exists to
further develop methods to increase accessibility of th&t powerful bioinformatics tools for batch

processing of both small and large datasets.

The design for GATICCA is to provide an easydse web interface to a centralized
bioinformatics server. As with other web-interfacesdésign will provide access to utilities for
sequence assessment and manipulation as well as many othtarbiatics tasks. However, the
GATICCA utility is also designed to include many features t

a
are lacking in other bioinformatics browser interfacashsas a G AT éCC A

file browser for performing multi-step tasks on an inputdihel

Figure 3, Beta Logo for the

a modular tool inclusion kit to facilitate easy expangidgin GATTICA Project

newly-released tools.
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As the GATICCA project is a collaboration of multipksearchers at Florida State, the project
was divided up into several portiodlSLWK D SULPDU\ GLYLVLRQ EHdWeaHHQ WKH 3
interface DQG WKH elddd ptaQi@ing task functionality. This project incluttesmajority of
the development of the GATICCA backend, including impletaigon of a HTTP page retrieval system,

a task scheduler, and a data storage framework.

The Python 2.7 language was chosen as the language BBATECA backend due to the
expansive number of Python modules that are availableafoying out specific functions [51]. One
such module is calledljango,” a web-framework for Python [64]. This framework allowgration of
python code into web-page design, providing a very good foumdatiavhich to build the GATTICA
project. Django 1.6.5 was thus acquired and installed on weébsserver in the FSU Department of
Biology. Django operates through modular components knevpn@ects, apps, and models with
automated constructors included to facilitate the creati@act type of component. The function of a
GMD QJR 3SUR MH F \AekplaNatbry Theywdre desi@red/tbl @ncompass one djasgd-ba
ZHEVLWH DQG EDFNHQG LPSOH P H-QowHWritdoDa projddtGhararé Oesignéd D U F
WR EH PRGXODU DQG WKXV UHXVIMDAH FE HIVWZGHQVG UIHH K Bl QUWAR F-U
data structures within apps, with each model possessingificpgethod of storage in and recall from

the project database file.

$ GMDQJR SURMHFW ZDV FUHDWHGSRADVY$F U HRIW B Q GVR FMDUN
VXEPLVVLRQ IXQFWLRQDOLW\ :LWdate@ ohe b\étur¥ infomn@@n BrRGHOV ZF
available tools (bioinformatics utilities within GATTICAnd another to store information on submitted
WDVNV QDPHG 37RRO" DQG 37DVNS\WKRHFRVAXBID\ZOOKHD F& M DU
submissionand ¥ HXLQJ DQG DSSURSULDWH IXQFWLR @MW ZIHUMHL GOSAHS -

WKH 3&HOHU\" WDVN TXHXLQJ VHUHGH IR UWB WREB X OMXE FIHWXER @D YL
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each included GATTICA tool being read from individual pythoraddés within a given directory. This

provided the maximum ability for modular addition of new toatsthe appropriate parameter file need

RQO\ EH DGGHG WR WKH 37RROV’ GIKWHHGWR WARRR D &WNRKPHD WH7F/D &

/[ GATTICA Lagin x \

€« C i QU --- GATTICA ---

‘Welcome to the GATTICA Bioinformatics Utility!

Please Register Here or Login:

Please Enter Your Username and Password:
User name:
Password:

login

Figure 4, Functional Prototype GATTICA
Login from Django Template

Several features of django allow for robust
handling of tasks, tools and users. Django includes
facility for user registration and differentiation, inding
login, logout, password authentication, cookie
placement, and customization of the shown interface
based on the particular user. Django also includes
templates for login, logout, and registration webpages
that can be customized according to the needs of the

project. A functioml user registration and login system

was implemented, differentiating between users and adnaittissy with users given a custom interface

based on user permissions.

$Q *DGPLQLVW U
interface template is also
provided within the django
framework, allowing for easy
management of users, tasks an(
tools. Django includes the ability

to modularly include data on

[ site administration | GATT %

&« C i --- GATTICA --- =

GATTICA Admln Welcome, dstribling. Change password / Log out

Site administration

Groups

Users

Crontabs
Intervals
Periodic tasks
Tasks

Workers

Tasks

Tools

Recent Actions

gk Add Change My Actions
dendd  # Change None available

g add Change
deadd  # Change
g Add ¢ Change

Change

g add Change

& Add Change
deadd  # Change

given model class objects withi

Figure 5, Functional Prototype GATTICA Administration Page
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the administration webpage, so desired content can e ieakided. Additionally, tasks can be created

from within the administration interface for testipgrposes and task and queue status can be monitored.

= =
[ Select task to change | G~ % \
<« C fi o ---GATTICA --- =
Home > Task = Tasks
Select task to change | Add task |+]
Q, Search
By User
--------- v | = 15 selecte All
Task ID User Tool Start Date/Time Last Updated TestUse
16 TestUser grep_multi Aug. 28, 2014, 3:09 p.m. Aug. 28, 2014, 3:09 p.m. By tool
15 TestUser grep_multi Aug. 28, 2014, 3:08 p.m. Aug. 28, 2014, 3:08 p.m. S«II_
14 TestUser grep_multi Aug. 28, 2014, 2:58 p.m. Aug. 28, 2014, 2:59 p.m.
13 TestUser grep_multi Aug. 28, 2014, 2:41 p.m. Aug. 28, 2014, 2:42 p.m. =
12 TestUser grep_multi  Aug. 28, 2014, 2:41 p.m. Aug. 28, 2014, 2:41 p.m. ep_
11 TestUser grep_multi  Aug. 28, 2014, 2:33 p.m. Aug. 28, 2014, 2:33 p.m. By Start Date/Time
Any date
10 TestUser grep_multi Aug. 28, 2014, 2:32 p.m. Aug. 28, 2014, 2:32 p.m. Tod
9 TestUser grep_multi Aug. 28, 2014, 2:30 p.m. Aug. 28, 2014, 2:31 p.m. f
8 TestUser grep_multi Aug. 28, 2014, 2:29 p.m. Aug. 28, 2014, 2:29 p.m. Th i
7 TestUser | grep_multi  Aug. 28, 2014, 2:19 p.m. Aug. 28, 2014, 2:19 p.m. ?F Status
i} Testlser grep Aug. 28, 2014, 2:18 p.m. Aug. 28, 2014, 2:18 p.m. :”
5 TestUser grep_mult Aug. 28, 2014, 2:15 p.m. Aug. 28, 2014, 2:16 p.m.
4 TestUser grep_multi Aug. 28, 2014, 2:04 p.m. Aug. 28, 2014, 2:10 p.m. -

Figure 6, Functional Prototype GATTICA Task Administration Page
Several points of the backend framework must interfaeetlly with frontend utiltities, such as
the included file browser, dynamic task status viewing, and dynfommn generation for job submission
based on tool parameters. For each of these toolsteafage was created between the framework
django backend and the relevant coding language for thg,wilich as the JSON parameter passing

interface for the Javascript template generation tootlaadile browser.

The backend work on the GATTICA utiltity, together with warkthe frontend performed by

other FSU CGPM researchers, resulted in a functional ppatatiithe GATTICA utiltiy. A user
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interacting with this prototype is able to register for amant and log into the site. Once there, they

can select a bioinformatics tool from a dynamically getesl list and submit a job to the selected tool.

The job will be queued, completed on the prototype servdrrenoutput of the job will be made

available to the user. AjobHi8 RU\ LV DYDLODEOH RQ D SHAK XWHHW E\D KILW WIRC

job outputs are limited by the password protected accounifieation system. This prototype system is

currently under expansion and testing, and will be reteaséhe public once an initial version with the

desired features has been completed.

" [ Gaticca

y -

=

x ¥

B - oEN

C fi S ---GATTICA ---

GATSCCA
Functions File Browser
All Tools Top Level Directory
Personal
echo
test Menu

test_output
grep )
grep_multi Select An Action ~

Home / Library

Function execution

Tool: test
Arg1
Arg2
Arg3 Supmit |

Welcome dstribling

Status

Progress bar

Sign Out

Figure 7, Functional Prototype GATTICA Utility
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Transcriptome Assembly of the Florida Spider Schizocosa Ocreata

The next portion of the project involved the assemblylmfa-quality de novo transcriptome for
Schizocosa ocreata spider native to the Florida regiddchizocosa ocreata a wolf spider which
comprise the Lycosidae family of spiders. One of theomagtable characteristics abdithizocosa

ocreatais that, as a wolf spide§chizocosa ocreateaptures its prey by waiting and pouncing rather

Figure 8, The Florida Wolf Spider:
Schizocosa ocreata

than by use of a web [65]. Wolf spiders are a membédreophylum Arthropoda which contains
exoskeletal invertebrates with jointed limbs. This phylsmne of the most highly studied groups of
organisms, as it also contains the spebDiesophila melanogasteone of the primary model organisms

for genetic study [66].
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Read Trimming:

In order to obtain a transcriptome that captures the rahgenes expressed in in different
organismal states &chizocosa ocreat#drain tissue samples were collected from 12 different
individuals. Four distinct types of specimen were selededdquencing study in order to characterize
the differential expression between these organisms sé tigpes. The tissue samples used were
collected from the brain tissue of 3 immature femalenmature male, 3 mature female, and 3 mature
male organisms (subsequently referred to as ImmFemateliale, MatFemale, and MatMale).
Shotgun sequencing for each of the samples was then pedamthe FSU College of Medicine HiSeq
2500 SystemA total of approximately 190 million paired end reads 101 bp in lengtle achieved
from the sequencing across the twelve samples as sholiable 1. Errors in the procedure for the
library preparation of ImmFemale Sample 1 and MatMala@a 1 resulted in very low counts of reads
obtained from these tissues. The count of paired end obsaised on a per-sample basis with totals for

each category are presented in Table 1:

Table 1 Schizocosa OcreatRaw Paired End Sequence Reads

Sample | ImmFemale| ImmMale | MatFemale| MatMale Combined
Sample 1 1,859 10,931,231| 24,774,698 223 -
Sample 2 | 26,120,368 13,646,459 8,236,968 | 21,704,520 -
Sample 3| 16,900,060( 20,198,523 23,161,868 24,176,589 -

Total 43,022,287 44,776,213 56,173,534| 45,881,332| 189,853,366

In order to obtain a high-quality transcriptome assenthigming was then performed on the

raw sequenced data obtained from the Illlumina HiSeq instrumeatious work by Mbandet al. has
shown that the utilization of trimmed reads in the deortoanscriptome sequencing of non-model

organisms results in higher-quality transcriptome sequehaesaould be obtained by the use of raw
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sequence data [67]. The quality of sequence reads is detefyitieel estimated potential for error per
nucleotide in the read as given by the PHRED quality §6&je This score is included for the bases of
each read in the sequencer output. The Trimmomatic utilisysekected for trimming of the sequence
reads based on several sequence characteristics [6PteAdaquences utilized by lllumina sequencing
instruments were identified and trimmed from the endseqtiences, matching if a sequence in the read
matched to the adapter sequence with up to one differebesés. Extensive trimming was performed
to raise the average quality score for nucleotides in déatie oeads to a target threshold PHRED score.
The previous work by Mbanget al. suggests that the optimum read quality threshoiesveor

different transcriptome assembly projects depending oddtaset. An analysis was performed in which
several different PHRED thresholds were used to determmegtimum assembly strategy for the

ocreatatranscriptome. This analysis is presented in Appendix A.

An optimum threshold score of 33wvas identified for the assembly of the experimental
transcriptome as shown in Appendix BHRED-quality score based trimming was then accomplished in
three steps. The first and second trimming steps involvadviag the leading and trailing bases with a
PHRED score Qu tfrom each sequence read. This was followed by a sliding bagess in which the
average PHRED score of each sequential group of 25 basashimead was examined. If any 25-base
sequence within the read was determined to have an averadeDP3¢Bre Q u t the read was
discarded. As longer reads are generally of more significdne in sequence assembly, any read that
was trimmed below 75 bp in length was discarded in the fieplaf the trimming procedure. The

system call used for read trimming via the Trimmomatic ytiditprovided in Appendix B.

11 Indicating a 1 in 1995 chance that the base was calledtéatly.
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Table 2 Schizocosa Ocreatdrimmed Paired End Sequence Reads

Sample | Initial Count | Final Count| % Retained
ImmFemale| 43,022,287 | 20,275,442 47.0%
ImmMale | 44,776,213 | 25,233,488 56.0%
MatFemale| 56,173,534 | 29,911,490 53.0%
MatMale | 45,881,332 | 25,474,553 56.0%

Total 189,853,366| 100,894,973 53.0%

The results of the read trimming procedure are presenfiembie 2. From the initial 189 million
reads, 47% of the reads were discarded by the trimming prodésapproximately 101 million reads
remaining. The resulting reads ranged in length from 75 to AOTHe distributions of read lengths and
guality scores for each sample type were then analyzédha FastQC utility to display the qualities of

the trimmed reads [70]. These analyses are presenteguire§i9+16.
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Figure 9, Trimmed ImmFemale Read Quality:
Base Phred Score vs. Sequence Position

Figure 10, Average Trimmed ImmFemale Read Quality:
Read Count Average Sequence Quality Distribution
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Figure 11, Trimmed ImmMale Read Quality:
Base Phred Score vs. Sequence Position

Figure 12, Average Trimmed ImmMale Read Quality:
Read Count Average Sequence Quality Distribution
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Figure 13, Trimmed MatFemale Read Quality:
Base Phred Score vs. Sequence Position

Figure 14, Average Trimmed MatFemale Read Quality:
Read Count Average Sequence Quality Distribution
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Figure 15, Trimmed MatMale Read Quality:
Base Phred Score vs. Sequence Position

Figure 16, Average Trimmed MatMale Read Quality:
Read Count Average Sequence Quality Distribution
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Single-Category Transcriptome Assembly:

As advances in sequencing technology have rapidly occurredh@vpast decade, relatively few
choices of assembler exist for de novo transcriptomic sequge[3 33]. These choices include genome
assemblers with modifications to support transcriptoeggisncing, such as the Velvet/Oases Assemble
and the Trans-ABySS assembler,[31], as well as transcriptome-specific assemblers sucleas th
Trinity assembler [22]. A study performed by Ayoub et. ampared the outputs and gene recapture
rate of both the Trinity and Velvet/Oases assemblers, isgawat Trinity was superior in recapturing
transcripts for known sequences in the genome of the YMeBlack Widow:Latrodectus Hesperuys
another arthropod species [72]. Trinity was therefolecsad for the de novo transcriptome assembly

for Schizocosa ocreati®m maximize assembly quality and the recapture rate of esquegnes.

Several variant assembly procedures were explored to ghsumequisition of the optinm
transcriptome from the experimental dataset. Thesantarincluded utilization of several different
initial minimum read quality scores, as well as using diffeseibsets of category data for transcriptome
assembly. The process of selection of the optimunmasdgestrategy is discussed in Appendix A. The
strategy chosen to produce the optimum assembly restditsertilization of the Trinity transcriptome
assembler semately for each category of Schizocosa ocreata orgakianoh assembly was performed
independently by the execution of Trinity on the FSU DepartroéBiological Science Computational
Server. Trinity was run in paired end mode, utilizing 10GB oMRand 4 CPUs per process. System
calls for the Trinity processes are shown in Appendiwi®, statistics on the output assemblies shown
in Table 3. The four assemblies created with the Trassembler resulted in an average of 155,927
assembled isoforms with a corresponding average N50 len@8v bases, a measure providing a

weighted indication of median read length [73].
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Table 3 Category-Specific Trinity Assembly Output Statistics

Trinity Assembly| Count | Total (Mb) | Mean (b) | Min (b) | Max (b) | Median (b) | N50 (b)
ImmFemale 105,935 69 653 201 27,687 359 1,004
ImmMale 147,519 82 556 201 30,238 308 786
MatFemale 182,555 96 525 201 30,212 294 693
MatMale 187,700 95 511 201 29,873 288 663
Average 155,927 86 561 201 29,503 312 787

The Trinity algorithm is designed to capture small variationsaquences resulting from allelic

differences in transcripts [22]. As the experimentalgles intended to assemble the highest quality

multi-tissue transcriptomic assembly, a balance mustrbek between maintaining small sequence

variations and optimization of transcript length. Totlertassemble transcript isoforms, the CAP3

sequence assembler was additionally utilized on each cgtsgecific assembly to collaptranscript

isoforms with small sequence variations into a singledtript sequence [74]. This process also assisted

in preparation for assembly of the multi-category trapsame by reducing the complexity of each

category-specific transcriptonassembly. For each category tyg@AP3 was run with default settings

on the output Trinity sequences with the system call showppendix B. The utilization of the CAP3

assembler resulted in combination of several thousaniesees for each category assembly as shown

in Table 4. Statistics for transcript sequences resuitorg the CAP3 assembly are shown in Table 5.

Table 4 Combination of Individual Category Transcripts by CAP3 Assembler

Sample Trinity Trans.| CAP3 Trans| %Reduction
ImmFemale 105,935 96,396 9.0%
ImmMale 147,519 135,848 7.9%
MatFemale 182,555 171,547 6.0%
MatMale 187,700 175,262 6.6%
Total 155,927 144,763 7.2%
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Table 5 Category-Specific CAP3 Assembly Output Statistics

CAP3 Assembly Count | Total (Mb) | Mean (b) | Min (b) | Max (b) | Median (b) | N50 (b)
ImmFemale 96,396 61 634 195 27,687 352 950
ImmMale 135,848 72 534 201 30,238 302 719
MatFemale 171,547 86 506 201 30,212 291 633
MatMale 175,262 85 488 170 29,873 284 593
Average 144,763 76 541 192 29,503 307 724

Single-Category Transcriptome Assessment:

One of the primary means to assess the quality of aciiptome assembly is by the evaluation
of the rate of recapture of known or expected genes [N&2franscriptome or genome assemblies have
as yet been published f8chizocosa ocreatand only a few studies have incorporated any sequencing
of ocreatagenes. Thus, two representative protein sequence datalmseselected for comparison to
the experimental transcriptome assemblies. The fitstteel comparison dataset was the Core
Eukaryotic Genes Mapping Approach (CEGMA) database [75]. Thésetas comprised of 458 highly-
conserved proteins that have been identified to exist i@ range of eukaryotes across many taxa. As
such, comparison of this dataset to the predicted proteingdpsoaibaseline analysis of the rate of
proten recapture. The second selected database was the Bekicignsats of Universal Singl€eopy
Orthologs (BUSCO) Arthropod Dataset, which contains 3078 geows38 arthropod species [76].
Each gene in the BUSCO dataset is required to be pressrieast 90% of the 38 selected species. As
such, this dataset serves as an effective benchmattefassessment of gene recapture in transcriptome

assemblies foBchizocosa ocreata member of the Arthropod phylum.

The National Center for Biotechnology Information Bdsocal Alignment Search Tool Plus
(NCBI BLAST+) sequence comparison tool was used to deternmmkasties between each of the

reference protein sequence databases and the assemidedpts for each tissue-specific libraBA].
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The Transcript BLAST Nucleotide (TBLASTN) applicatiotoals the comparison of protein sequences
to a reference nucleotide database. This is performed Bicping the protein sequence of greatest
length from each of the six possible reading framesgiwWen DNA sequences. The standard protein to
protein scoring algorithm is then used to determine similagtyeen the sequences [77]. For each
database, a gene was determined to be present in the askénatdcriptome if a database protein
matched to a predicted transcript protein with an expece ¢escore)of Q s § r’64(denoted as 1le-

20) [78]. The system calls for the TBLASTN analysis d&@a in Appendix B. The presence or
absence of each CEGMA and BUSCO gene in the assemblectiptose was then determined by a

custom script written in the Python language version 2.J7 fi&kcribed further in the TFLOW section.

Table 6. Recapture of CEGMA and BUSCO Genes by Single-Type Transcriptome Assemblies

CEGMA BUSCO
Sample Category | Hit | Miss | Total | Percent Hit | Miss | Total | Percent
ImmFemale 455| 3 458 99.3% 3,272| 105 | 3,377| 96.9%
ImmMale 456 | 2 458 99.6% 3,263| 114 | 3,377| 96.6%
MatFemale 456 | 2 458 99.6% 3,264 | 113 | 3,377| 96.7%
MatMale 454 | 4 458 99.1% 3,261| 116 | 3,377| 96.6%

The resulting analysis for each database is shownhle B In the case of both analyses, it can
be seen that the transcripts achieved a high rate aptiee of both the core eukaryotic CEGMA genes
as well as the Arthropod genes from the BUSCO datab&BM2a\ genes were recaptured at a rate of

R {{& " in each tissue specific library, whereas the BUSCO Apitniayenes were captured at a rate of
R {x& ". These high recapture rates signify that it is likebt the assembled transcriptome for each
tissue category is successful in recapturing a significatibpaf expresse&chizocosa ocreatgenes.
These rates compare favorably to the gene recaptureotatased by other transcriptome assemblies

for Arthropod species [72].
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Multi-Category Transcriptome Assembly:

In order to provide a transcriptome that represents gemession across each category of
Schizocosa ocreatgender and maturity, a final assembly step was performetliahhe
transcriptomes resulting from each of the single-ty\gsemblies were combined into a multi-type
transcriptome. The CAP3 assembler was also used fadsesnbly step, with the system call as shown
in Appendix B. Two different sets of sequences resuttau this stage of the assembly representing
WZR GLIIHUHQW FDWHJRULHV RNKMUYQQBOHWN RXKHE XMRQW&ES Y’
SFRQWLJV' ™ RchtygdtHasBetMyOake those sequences that were idetuifie similar,
identical, or connected from two or more of the singdéegory transcriptome assemblies. Each of the
respective identical or similar transcript sequences weareddogether in a single transcript in the
SFRQWLJV™ RXW Satéorp asyeddity. PheQikglet output of the asseraphgsents those
sequences that were only identified in one of the trgstscne expression categories. These transcript
are output unchanged in the singlet output file of the CARR8rabler. The transcript abundance of the
multi-category assembly is shown in Table 7. In this tahke sum of the number of initial transcripts

from each single-type category is shown for comparisothe first row.

Table 7. CAP3 Assembly of Multi-Category Transcriptome

Transcriptome Count Reduction | % Reduction
Sum of Single-Types 579,053 - -
Comprehensive Multi-Type | 353,027 226,026 39.0%
Overlapping Multi-Type 85,194 493,859 85.3%
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A total of 311,220 transcripts were identified by CAP3 as havopgfgant overlap and were
combined into 85,149 unique contigs. These transcripts reptesesequences that were identified as
existing in more than one single-category transcriptdrhe.267,83% remaining transcripts from the
individual tissue types were labeled as singlets and osgparatelyThere are several possible reasons
that each of the singlet transcripts may be unique to aydartcategory and thus not reflected in the
multi-type contigs. A given gene may only maintain a sigarft enough expression for detection in a
single organismal category and would thus not be reflectewre than one of the single-category
assemblies. In addition, allelic variation may be sigaifit enough between certain transcripts to
prevent identification as belonging to the same gene, tlewemiing the combination of these
transcripts. Although the Trinity assembler used for initenscriptome assembly includes several
components designed to reduce the number of transcruiitimg from sequencing error, a significant
possibility still exists for that singlet transcripts n&go be a result of sequencer base miscalling.

Statistics for the transcripts in each of the madtiegory transcriptomes are shown in Table 8.

Table 8 Multi-Category Transcriptome Statistics

CAP3 Assembly Count | Total (Mb) | Mean (b) | Min (b) | Max (b) | Median (b) | N50 (b)
Combined 579,053 306 529 170 30,238 299 700
Comprehensive Multi-Type| 353,027 174 495 171 37,840 281 603
Overlapping Multi-Type 85,194 80 942 171 37,840 540 1,438

7KH 3&RPSUHKHQWIH HDUXGIWEO\ ZDV FUHDWHG E33WKH FRQF
contig and singleton outputs into a single transcriptofhés transcriptome retains significant variation
in coded transcript sequences as it includes a significaoirgrof the allelic variation resulting from

the utilization of 12 distinct tissue samples in theeatbly process. The genes expressed in more tha

12 This number represents the additional transcripts regeesenthe Comprehensive Multi-Type Assembly that ate no
represented in the Overlapping Multi-Type Assembly. (353,82%,194 = 276,833)
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RQH RI WKH WLVVXH FDWHJRUQHW POWHIL Y M @bibrfEeWitif)scutplt U O D S
of the CAP3 assembler. Requiring the existence of ganedripts in multiple categories significantly

reduces the contribution of sequencing error in the raguitanscriptome and serves to reduce the

allelic variation expressed in the sequences. As suclasbembly is more minimal and represents a

slightly smaller set of genes, but eliminates a signifigantion of the transcripts resulting from

sequencing errors and major allelic variation. The oppify category transcriptome can also be seen

to have a significantly longer N50 length than the comprehesanscriptome QW ks gagoaalyau
tau Owr, 5255002 deSt@geESting that the transcript isoforms not presenbie than one category

are generally of a significantly shorter length tharséhfound in multiple categories.

Transcripts predicted only to encode proteins with leng@hsrresidues are not considered
relevant to the transcriptome assembly. In order to etlsatéranscripts in each of the assembled
transcriptomes meet the required length of 30 resjguwetein sequences were predicted and transcripts
predicting proteins with insufficient length were remo¥@h the transcriptomel he predicted protein
of maximum length was determined for each of the six ngallames for transcript sequence by the
EMBOSS Get Open Reading Frame (GetORF) tool with the minimum tdletmyth parameter set to 30
amino acids [79]. A custom script was then written to usetiyeut of the GetORF utility to cull any
WUDQVFULSWYV ZLWK LQVXIILFLHQWHSUWRB LIFW HERBHBREHQ D OINE.
multi-type transcriptome. This utility is discussed furtimthe TFLOW section. Removal of noncoding
transcripts resulted in only a slight reduction in thegcaipt countsn each of the assemblies as shown

in Table 9.
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Table 9 Multi-Category Transcriptome Statistics

Transcriptome Count Reduction | % Reduction
Comprehensive Multi-Type 353,027 - -
Comprehensive Multi-Type, Coding| 350,183 2,844 0.8%
Overlapping Multi-Type 85,194 - -
Overlapping Multi-Type, Coding 85,097 97 0.1%

Multi-Category Transcriptome Assessment:

To assess the quality of each multi-category transcrigtamalysis utilizing the CEGMA and
BUSCO databases was performed for each transcriptome abeesorthe previous Single-Category
Transcriptome Assessment section with results presenfieable 10. A slight increase can be seen in
the combined recapture rate of the BUSCO genes in the coamgired assembly with 97.3% of
BUSCO genes recaptured as compared to the previous range 96.6% to @a@Ureaate in the
single-type assemblies. The recapture rate for CEGMAg&nalso comparable to the multi-type
assemblies with 99.3% recapture as compared to the raB§eléb to 99.6% recapture rate seen in the

single-type assemblies.

Table 10 Recapture of CEGMA and BUSCO Genes by Multi-Type Transcriptome Asgablies

CEGMA BUSCO
Multi-Type Transcriptome Hit | Miss | Total | Percent Hit | Miss | Total | Percent
Comprehensive Multi-Type, Coding| 455| 3 458 99.3% 3286| 91 | 3377| 97.3%
Overlapping Multi-Type, Coding 453 | 5 458 98.9% 3261| 116 | 3377 | 96.6%

The statistics for the assembled transcripts for etagje ©f the assembly procedure are collected

in Table 11 to allow comparison between the single-type ar-type assemblies. The BUSCO and

CEGMA analysis results are similarly collected in Table 12.
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Table 11 All Transcriptome Assembly Statistics

CAP3 Assembly Count | Total (Mb) | Mean (b) | Min (b) | Max (b) | Median (b) | N50 (b)
Immature Female 96,396 61 634 195 27,687 352 950
Immature Male 135,848 72 534 201 30,238 302 719
Mature Female 171,547 86 506 201 30,212 291 633
Mature Male 175,262 85 488 170 29,873 284 593
Single-Type Average 144,763 76 541 192 29,503 307 724
Single-Type Combined 579,053 306 529 170 30,238 299 700
Comp. Multi-Type 353,027 174 495 171 37,840 281 603
Comp. Multi-Type, Coding| 350,183 174 497 171 37,840 283 608
Overlp. Multi-Type 85,194 80 942 171 37,840 540 1,438
Overlp. Multi-Type, Coding 85,097 80 943 171 37,840 540 1,438

Table 12: Recapture of CEGMA and BUSCO Genes by All Transcriptome Assembée

CEGMA BUSCO
Transcriptome Hit | Miss | Total | Percent Hit | Miss| Total | Percent
ImmFemale 455 3 458 99.3% 3,272| 105 | 3,377| 96.9%
ImmMale 456 458 99.6% 3,263| 114 | 3,377 | 96.6%
MatFemale 456 458 99.6% 3,264 | 113 | 3,377| 96.7%
MatMale 454 458 99.1% 3,261| 116 | 3,377 | 96.6%

458 99.3% 3286 | 91 | 3377 | 97.3%
458 98.9% 3261 | 116 | 3377 | 96.6%

Comp. Multi-Type, Coding| 455
Overlp. Multi-Type, Coding 453

ol|lw AININ

Transcriptome Annotation:

After the assembly and optimization of the experimemnsaildcriptome, transcript sequences are
then annotated with a predicted function utilizing simiara highly-annotated genomes of model

organisms. This allows the biological function of differganes to be predicted, as well as allowing
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meaningful differential analysis to be performed. In otdeannotate the assembled Comprehensive
Transcriptome, several protein sequence databases were deqdreompared via BLASTFEODYWHG”
to the assembled transcripts using the TBLASTN utility asipusly discussed in the Transcriptome
Assessment section. Each protein sequence databasepiared to the predicted proteins from each of
the six potential reading frames of the transcript raitle sequencd&xample BLAST system calls are
shown in Appendix B. The databases chosen for compeai® knowrSchizocosa ocreataucleotide
sequences in the NCBI GenBank Database [80-82], ki@nliizocosa ocreatgarotein sequences in the
UniProt KnowledgeBase (UniProtkKB) Database [81-84], the UniPrati@Bually annotated and
reviewed Swiss-Prot Database 2015-03 Release [83], the NCBedrBiShredundant Invertebrate
Protein Database Release 69 [85], the OrthoDB BUSCO Arthrbptabase [76], the full CEGMA set
of core eukaryotic genes [75], the Ensembl Release 79 Drosaopbiinogaster annotated protein

database [86], and the Ensembl Release 79 Ixodes scajpniaoisited protein database [86].

The results of each BLAST comparison were then reagtquence-specific annotations into a
custom written data structure as described in the TFLQMbse Multiple thresholds were used in the
examination of sequence similarities for annotatiod, esscore similarity values were determined for
similarity between a predicted protein sequence for eadlsdript and a reference database protein. As
several databases were used in the annotation of theriparsequences, each transcript was allowed to
carry multiple annotations along with their associaestore values throughout the annotation process.
Once comparison to all annotation databases had beenmped{adhe annotation with the most
significant match (as given by the lowest e-score vaies) chosen as the annotationdachtranscript
sequence. When multiple annotations were present for a fyasescript with the same corresponding e-
score values, the first assigned annotation was sdlédtétiple e-score threshold values were used to

examine the strength of matches between reference pratelrennotated sequences. E-score cutoffs of
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e-scoreGle-5, 1e-20, and 1e-40 were examined for both the overlappingamaehensive

transcriptome assemblies with results shown in Table 13.

Table 13: Transcriptome Assembly Annotations

Overlapping Transcripts Comprehensive Transcripts
Best* Best*

Annotation Databasel 1E5 1E20 1E40 | ~G-40) 1E5 1E20 | 1E40 | ~G-40)
NCBI-Ocreata 27 23 14 2 42 31 21 2
UniProtKB-Ocreata 28 23 16 3 43 34 23 5
CEGMA 2,007 | 1,177 822 233 2995 | 1,675 | 1,132 287
BUSCO 12,264 | 9,011 | 6,704 3,739 20,772 | 14,197 | 10,121 5,682
Ensembl-Drosophila | 13,841 | 11,006 | 8,551 2,172 23,407 | 17,300 | 12,692 3,128
Ensembl-Ixodes 16,208 | 12,399 | 9,393 4,035 28,371 | 19,445 | 13,875 5,958
UniProtkB-SwissProf 16,311 | 12,810 | 9,982 3,297 29,148 | 20,496 | 15,027 4,849
NRInvertebrate 21,204 | 16,043 | 12,571 | 10,824 43,539 | 26,618 | 18,871 | 16,168
Total Sequences 85,097 350,183
Total Annotated 21,309 | 16,159 | 12,686 43,905 | 26,977 | 19,128
Percent Annotated 25.04%| 18.99%| 14.91% 12.54%| 7.70% | 5.46%

*7TKH 3% HVW™ GHVLIQDWLRQ UHIHURYWRL QY K M KN -DEHUR R/IDWH TR
lowest e-score value for a given transcript. As some finabtations shared equivalent e-score value matc
this column contains some repeated annotations and thus doemrtotthe total count given in each respec

3 (- ~ FROXPQ

For the overlapping transcriptome assembly, transcrimttations were determined for 21,309
of 85,097 transcripts (~25%) with an e-score cutoff of 1e-%,120686 of 85,097 transcripts (~15%)
with an e-score cutoff of 1e-40. Of the 265,086 single-typestrépt sequences additionally represented
in the comprehensive assembly, 22,569 additional transcripésameotated at a cutoff of 1e-5 and
6,442 additional transcripts at 1e-40, resulting in total aedttranscript numbers of 43,905 of 350,183
(~13%) at 1e-5 and 19,128 of 350,183 (~5%) at 1e-40. Differences betwabens of annotated

transcripts between the two assemblies are shown in Tdble
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Table 14: Comparison of Transcriptome Assembly Annotations

Overlapping | Comprehensivel Difference
Sequences 85,097 350,183 265,086

1E5 21,309 43,905 22,596
Percent 25.0% 12.5% 8.5%

1E20 16,159 26,977 10,818
Percent 19.0% 7.7% 4.1%
1E40 12,686 19,128 6,442
Percent 14.9% 5.5% 2.4%

The Comprehensive Assembly contains both the transcriptstfre Overlapping Assembly as
well as the single-type transcripts only representedentissue category. Table 14 shows that of the
265,086 single-tissue transcripts additionally included in a@ehensive Assembly, only a small
percentage were successfully annotated. This likely inditdaaes significant portion of coded proteins
with known function are included in the Overlapping Assembilih 85% (1e-5) and 14.9% (1e-40)
respective annotated transcripts. Thus, while single-typedniats are included in the Comprehensive
Final Assembly for the purposes of analysis of differemeésanscript expression and sequence in
different Schizocosa ocreatarganisms, a majority of the gene coding information pravimethis
transcriptome assembly is contained within the 85,079 tratsgiven in the overlapping tissue

assembly.

The 1e-40 threshold was selected as the cutoff for predicfitunction by homology for the
comprehensive transcriptome. This e-score represenegtiaaly rigorous requirement for matching
identity. While some correct annotations are likely inctuaematches with a higher e-score value,
(e-score > 1e-40), the more rigorous match requirementhesen in order to reduce the number of

potential false positive sequence matches included inrthktfanscriptome by the annotation process.
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Analysis of Differential Expression:

In order to examine differences in the expression astmapt in differentSchizocosa ocreata
organisms, differential expression analysis was perfoutiézing the annotated Comprehensive
Transcriptome and the initial raw transcript reads. Trgptsassembly by the Trinity assembler
produces transcript variations that account for alteraaxon splicing of mRNA transcripts [22]. As
the target of differential analysis in this study is éix@mination of expression of coded proteins, a
clustering algorithm was performed on the comprehensivedrigtome to collapse transcripts resulting
I URP DOWHUQDWLYH VSOLFLQJ HYHKQWVDIUMFR BSMWQWR CEVBMWVLD
Clustering was performed utilizing a custom program writteBbyPeter Chand. For the clustering
process, a BLASTN search was performed of each transtiepassembly against itself using each
respective sequence set both as the search query anerasaef For every BLASTN hit between two
different transcript sequences with an e-score < ler8dge was drawn between the two nodes
representing the queried sequence and the hit. After assn@éimilar sequences, connected
subgraphs were extracted and labeled as a gene clustemiioza errors in clustering associated
domain sharing, the distribution of edge valencies folh eacster was characterized and an edge was
removed if it connected two nodes having edge valencies beyorgtandard deviations of the mean
valency. If the removal of these edges resulted icodisected subgraphs, these individual subgraphs

were then classified as different gene clusters. Restithis process are shown in Table 15.

Table 15: Gene Clustering of Transcriptome Assemblies

Transcriptome | Transcripts Genes % Sequenceg
Overlapping 85,097 63,817 75.0%
Comprehensive 350,183 223,524 63.8%

13 Research Scientist at UC Davis
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The gene clustering process for each of the transcripassemblies resulted in the reduction of

85,097 transcripts in the overlapping assembly to 63,817 gerne850h183 transcripts in the

Comprehensive assembly were likewise clustered into 222,930 gemegations were conserved in

the clustering process, with gene annotation informatiowshn Tables 16 and 17. A small number of

chimeric sequence clusters were identified as resultimg figh-sequence similarity, and were

removed from subsequent analysis.

Table 16: Transcriptome Assembly Gene Annotations

Overlapping Gene Annotations

Comprehensive Gene Annotations

Best* Best*
Annotation DB 1E5 1E20 1E40 | ~G-40) 1E5 1E20 1E40 | ~G-40)

NCBI-Ocreata 19 16 8 2 23 17 9 2
UniProtKB-Ocreata 28 23 16 3 22 16 11 4
CEGMA 1,511 926 647 192 1,584 962 656 198
BUSCO 8,592 6,329 4,765 2,658 9,659 6,648 | 4,820 2694
Ensembl-Drosophila| 9,707 7,724 5,992 1,413 10,879 | 8,131 6,061 1414
Ensembl-Ixodes 11,246 | 8,642 6,592 2,787 13,348 | 9,156 | 6,700 2834
UniProtKB-SwissProt 11,298 | 8,900 6,969 2,252 13,452 | 9,539 | 7,137 2,349
NRInvertebrate 14,459 | 11,007 | 8,713 7,451 20,691 | 12,335 | 8,920 7,627
Total Genes 63,817 - 223,524 -
Total Annotated 14,551 | 11,094 | 8,794 - 20,870 | 12,551 | 9,072 -
Percent Annotated 22.80% | 17.38% | 13.78% - 9.34% | 5.62% | 4.06% -

*7TKH 3% HVW™ GHVLJQDW LR Qeduéhtesiphovidirg the Krido@timitH ldsRithan or eqtred
lowest e-score value for a given gene. As some final annaati@ared equivalent e-score value matches,
column contains some repeated annotations and thus does notteentotal coX QW JLYHQ LQ HD+

FROXPQ
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Table 17: Transcriptome Assembly Gene Annotation Comparison

Overlapping | Comprehensivel Difference
Genes 63,817 223,524 159,707
1E5 14,551 20,870 6,319
Percent 22.8% 9.3% 4.0%
1E20 11,094 12,551 1,457
Percent 17.4% 5.6% 0.9%
1E40 8,794 9,072 278
Percent 13.8% 4.1% 0.2%

It can be seen that, as with the annotated transchigtsnajority of annotated genes are present
in the overlapping transcriptome assembly. This is edheeident in the 1e-40 e-score cutoff

analysis, with only 278 additional annotated gene clustersdad by the comprehensive assembly.

In order to provide a count of expression of each ofrees, alignment of the raw sequence
reads was performed to the Comprehensive Transcriptome Asseitibthe BWA alignment tool
version 0.6.1-r104 with default parameters. System callsdoh of the steps of the alignment process
are provided in Appendix B [62]. Each successful read alignmasthen assigned to a given gene
using the gene clustering information provided by the previmys Results of the alignment process are

provided in Table 18.
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Table 18: Read Alignment to Comprehensive Transcriptome

Sample Aligned Unaligned Total % Aligned
ImmFemalel 1,285 574 1,859 69.1%
ImmFemale2 | 12,387,861 | 13,732,507 | 26,120,368 | 47.4%
ImmFemale3 | 9,865,203 | 7,034,857 | 16,900,060| 58.4%
ImmMalel 7,898,789 | 3,032,442 | 10,931,231| 72.3%
ImmMale2 9,733,051 | 3,913,408 | 13,646,459| 71.3%
ImmMale3 9,054,856 | 11,143,667 | 20,198,523 | 44.8%
MatFemalel | 13,876,035| 10,898,663 | 24,774,698 | 56.0%
MatFemale2 6,763,111 | 1,473,857 | 8,236,968 82.1%
MatFemale3 | 11,422,952| 11,738,916| 23,161,868 | 49.3%
MatMalel 134 89 223 60.1%
MatMale2 11,426,628 | 10,277,892| 21,704,520 52.6%
MatMale3 14,715,111 | 9,461,478 | 24,176,589| 60.9%
Total 107,145,016 82,708,350| 189,853,366 56.4%

AcrossSchizocosa ocreat#ssue type categories, 56.4% of reads aligned to the tigissa the
comprehensive transcriptome. Remapping of the transcriptradints to genes was then performed,
resulting in alignments to 223,254 of the 223,524 clustered genes (99'@8%¢ alignment counts for
each gene were then output in a tabular format foeriftial expression analysis on a per-gene basis.
Due to the low number of reads recovered for the ImmFenaaiéthe MatMalel tissue categories,
these samples were not considered in the differesxfkession analysis. Removal of the these two
tissue categories still resulted in symmetric overall coispias, allowing comparison of five male vs.

five female individuals and five mature vs. five immaturevichials.

Statistical analysis for differences in expressiotwiken genes was performed with a script
utilizing version 3.8.5 of the edgeR Bioconductor Statisticallysis package with version 3.1.2 of the

R Programming Language [838]. Statistical analysis of differential expressiors\parformed across 2
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axes in six categories. Differences in gene expressiandture vs. immature individuals, as well as
sex-linked differences in expression for mature and imreatatividuals were each examined. The
number of genes that were differentially expressed withvalue of P < 0.05 were determined for each

comparison with results presented in Table 19.

Table 19: Analysis of Differentially Expressed Genes

Comparison Compared Categories Count | Percent
Female Maturity ImmFemale vs. MatFemalg 23,209 | 10.4%
Male Maturity ImmMale vs. MatMale 24,624 | 11.0%
All Maturity All-Immature vs. All-Mature| 35,232 | 15.8%
Immature Sex ImmFemale vs. ImmMale | 16,919 | 7.57%
Mature Sex MatFemale vs. MatMale | 19,892 | 8.90%
All Sex All-Female vs. All-Male 21,703 | 9.71%

A scatter plot was created to provide a visual representatidifferential expression grouping
between each of the sample categories as shown in RiguF®r each comparison, a Bland-Altman
plot was prepared with non-differentially expressed gemnasrslas black points and differentially
expressed genes (P < 0.05) shown as red points. In eacthelmgarithm of difference in expression
(ratio of expression levels) for each gene betweesdlexted comparison categories is plotted as
function of the logarithm of the average expressionllef/the gene in each of the categories. These

plots are shown in Figures 18-23.
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Figure 17, Differential Gene Expression
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Figure 18, Differential Gene Expression
Bland-Altman Plot, Log Fold-Change vs. Log Concentraon
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Figure 19, Differential Gene Expression
Bland-Altman Plot, Log Fold-Change vs. Log Concentraon
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Figure 20, Differential Gene Expression
Bland-Altman Plot, Log Fold-Change vs. Log Concentraon
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Figure 21, Differential Gene Expression
Bland-Altman Plot, Log Fold-Change vs. Log Concentraon
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Figure 22, Differential Gene Expression
Bland-Altman Plot, Log Fold-Change vs. Log Concentraon
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Figure 23, Differential Gene Expression
Bland-Altman Plot, Log Fold-Change vs. Log Concentraon
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Discussion:

The first stage of the Sequencing Florida Endangered Sg&oiect achieved a high degree of
success in its goal of assembly of a high-quality trapiserie for the Florida wolf spideBchizocosa
ocreata The optimum assembly procedure was determined and assenshpeMa med by sequentially
utilizing the Trinity Transcriptome Assembler and the CAP3 Secpidssembler. The sequential steps

used in the assembly process are summarized in Figure 24

The BLAST sequence comparison tool was then utilized alorigansustom script to determine
the recapture rates of reference genes. A high degreeayture of expected coding sequences was
obtained in both the preliminary single-category assemasiesgell as the final comprehensive multi-
caegory assembly. Evaluation of single category assesntiiewed recapture rates of 99.1% to 99.6%
of CEGMA core eukaryotic genes, and 96.6% to 96.9% of the BUS@®opod gene dataset. The
comprehensive multi-category assembly showed equivalemittieeaof CEGMA genes at 99.3%, with
a slightly higher recapture of the BUSCO genes at 97.3%. Usaagture rates as a benchmark for
assembled transcriptome quality, these results compginky fiavorably to other arthropod

transcriptome assembly projects [72].

Assembled transcripts were then annotated using seviéeaddt database sources, including
the CEGMA and BUSCO Databases, the NCBI RefSeq Non-Redumi@ntdbrate Database, the
UniProtkKB Swiss-Prot Non-Redundant Database, The Ensembl Aadd®eotein Sequence Database
for both Drosophila melanogaster and Ixodes scapuladsthenexisting known coding sequences for
Schizocosa ocreatia the GenBank and UniProtKB databases. A custom pydhatarstructure was then

used to read and parse the BLAST annotation results.
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Figure 24, Assembly Overview
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The annotations with the smallest expect scoreshessdr equal to a rigorous e-score threshold of le-

40 were then assigned to transcript sequences, resulting in 19 dlz8twodtated transcripts.

Analysis of differential expression of coding sequemneas then performed using the edgeR
statistical analysis tool in the R programming language.3bg183 transcripts from the comprehensive
transcriptome were clustered into 223 3 * H Qldddd on sequence similarity as determined by a
self-on-self BLASTN search. Raw sequence reads were aligned tothgrehensive transcriptome
using the BWA alignment tool and subsequently mapped to assignedigstiees. Edge-R analysis of
differential expression then revealed 7.57%-15.8% of itleditgenes were differentially expressed

across categories for each of the six different osgarstate comparisons.

Differences in gene expression between individuals &dreift maturity states were seen to
show more differentially expressed sequences than thaktenént sex states of the same maturity,
with percentage ranges of 10.4%-15.8% differential expregsised on maturity and 7.6% to 9.6% for
differential expression based on sex. An extensive asalyshe differential gene expression identified
in theSchizocosa ocreatarganisms is currently in progress. Once an examinatipattdrns of
differential expression have been completed, thdtsesfithis assembly project and subsequent
biological analysis will be submitted to a bioinformatics jwlr The annotated transcriptome assembly

will be submitted to the NCBI for inclusion in the RefSetptlase.
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Creation of the Transcriptome-Flow (TFLOW) Package:

RNA-Seq experimentsn non-model organisms can provide a significant amount ofrimdtion
about the genes that are actively transcribed by tipesges [27]. These experiments are often
conducted using short read sequencing and the resulting reatthos be reassembled into transcript
sequences to provide the greatest amount of meaningful etiormfrom the raw sequence data. Non-
model organisms often lack a closely-related referencengersequence and as such utilize the de novo
method of transcriptome assembly. In order to obtaimidfgest quality of resulting transcript
sequences with this methagkveral sequential steps are often necessary. Onglexaha preparation
step that is frequently required is the trimming of raw sequesmds before assembly to produee th
highest quality transcriptome. As the optimal minimum PBRIEore can vary based on the individual
dataset, testing of several trim thresholds can be smgetw determine the optimum threshold choice
[89]. Additionally, multiple assembly steps can be regliceproduce transcriptome sequences with the
desired balance between transcript variation and redundasayilar coding sequences. Once
transcriptome assembly has been completed, optimum a&nailgsedure requires several analysis steps
to assess the quality of assembled transcriptome. Ttegseisclude the statistical analysisthe
assembled transcripts to determine the assembly N50 lesgtvell as evaluation of the rates of

recapture of genes from one or more reference protgiresee databases.
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One example of the steps required for a de novo transtiepassembly project was provided in
the previous section®Transcriptome Assembly of the Florida Spid&chizocosa ocreatdFigure 25

shows the sequence of steps used in the workflow @¢h&ocosa ocreatsequencing project.

Figure 25, Workflow for the De Novo Transcriptome Assembly ofSchizocosa Ocreata

To attempt to achieve the highest quality results, this grajdized several preparation,
assembly, and analysis steps. The Trimmomatic read trinvae used before transcriptome assembly
to remove adapter sequences from reads and ensure that readsimenum PHRED score threshold
[69]. The FastQC analysis tool was then used to analyzgudiity of the trimmed reads [70]. The
Trinity de novo transcriptome assembler and the CABBesee assembler were each subsequently
used to assemble the trimmed reads into transcript sequencéd][2lb combine the assembled
transcripts from each of the single-type assembliesamulti-type assembly, the CAP3 assembler was
then used again on the concatenated transcriptome asseifntn each of the individual assembly
portions. Evaluation of each of the Trinity, SinglaR3, and Multi CAP3 transcriptomes was
performed by using NCBI BLAST [61] to establish homology to gdrem the reference CEGMA and

BUSCO protein sequence databases and determine the pereach afataset represented in each
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assembled transcriptome [755]. The performance of each step of the assembly prooesisiing
annotation, alignment, and differential gene expressiatyais is discussed in detail in the section:

STranscriptome Assembly of the Florida Spidechizocosa ocreatd

The significant number of steps required to produce high-quasityovo transcriptome
assemblies can cause transcriptome sequencing prajgatetsignificantly more time than would be
expected based simply on the sum of the respective congmatidiimes for each project step. For
researchers who are unfamiliar with de novo transcriptosenasy, project timeframes are often
extended even further by the time required to learn camegt parsing and output interpretation for

each of the trimming, assembly, and analysis tools usatidassembly process.

In order to help address these issues, the Transcriptomg H-LOW) De Novo Transcriptome
Assembly Pipeline was developed. This pipeline is designedetangiine the sequence of steps used in
the process of de novo transcriptome assembly and anbjyproviding continuous transitions from the
output of each project step to the input of each subsequepninghe project sequenckhis pipeline is
designed to be easily accessible by researchers who asamilidrf with the tools used for
transcriptome-sequencing projects. By handling the parsiaggaments for the commands required for
each project component, the learning curve required fardbef these utilities is significantly
decreased. The pipeline is also designed to provide utilagtanced users by providing an extensive
facility for pass-through of options to project compongtilities. Setting of advanced options is

facilitated via either a custom options file or by the TRL@ommand line interface.

The TFLOW pipeline was written concurrently with the cdetipn of theSchizocosa ocreata
sequencing project. The beta version of the TFLOW packdyy®.0) was publically released in April

2015 and is available for download via the FSU Center for Gesanit Personalized Medicine [52]
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GitHub code repositol. The following discussion represents the structuring@fTFLOW program in
the v0.9.0 release. TFLOW was written in the Pythongh@uage and is structured as a Python
package. This allows both for future addition of componetittsn the python package structure and for

use of TFLOW package utility functions by external pytpoograms if desired.

Figure 26, The TFLOW Repository on the FSU Genomics and Personalized mieine GitHub Database

The TFLOW pipeline is divided intothreeD MRU SR UW LR Q Yrogfailkg,Hr§iecdb QLIRO G’
SSLSHVINdNd@QabSLSH SVHIJPHQWYV ~ 7 KHIloPdie® &iFRVO CRZURD QBR#HROG S\ °
framework used for interacting with each different promponent. Manifold is responsible both for
interacting with single pipe segments as well as se@ligrtonducting each of the segments defined by
D VSHFLILF 3SLSH ~ 3LSHV DUH O8 HDUHHIGQIGQ FR/WAHREZ BAHW R H QQAD\P

3>7<3(@BSLSH S\" ZKHUH 3>7<3(@° B¥Y GHYQDE B® LZRQ KaDF KL 8 HKH

14 Accessible athttp://www.qgithub.com/fsugenomics/tflow
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python ordered dictionary that sequentially includes eathegpipe segments used for a particular type

of project. Options for relative input and output file looas within a given project directory are

provided to allow different segments to smoothly connect begénto a pipe3LSH 3VHIPHQWV’™ DL
ORFDWHG LQ 3SWIORZ VHIPHQWY ~ DQG MKHH GHH V8 QDWMH®@ ELV>6
with a given segment type. Segments are responsibteefming interactions with a specific tool used

in the transcriptome assembly process. Each segmentrsoatstandard set of functions that are then
DFFHVVHG E\ WKH PDQLIROG SURJUDPODQ@QBEEVH LQBEBRGH 33WHKQW
SFKHFNBGRQH ~ (DFK RI WKH DIRUBP?HQRHL RQWY\E U X RIS D W H R X
respective task with the associated external compoBanh segment also includes a subclass of the
2XWSXW3DUVHU FODVV FRQWDLQN GS QW RVILIBR ol bEtpLEiy\VAsS D U V
well as default options for all parameter arguments requor the running for &t particular segment.

Some segments contain full functionality for a particgtep within the segment, as is the case with the
ODNHB5HDGB/LVWY VHIPHQW ORFDWHGVMWYV::BAIOR K H HX¥® AQ WR/QML
these segments are included within the standdddX Q" IXQFWLRQ (DFFKQRM DL RHEH EX G F
DUH DOVR FDOODEOH DV DQ L @GIOXGHK® OX I [FVE XRUDEDHNW R @ VK

function is invoked.

The manifold program supports six program function optiéng:X Q ~ SWUDFN ~ 3DQDO\]}
SWHVW °~ DQG 3 SHathQriadB vaH e \wskedwiti either a selected pipe ndiaidual pipe
segment, but the following discussion will only refeus® with pipes for brevity. The run mode is used
to perform the tasks associated with each pipe using thergatt provided on the command line or in
WKH DVVRFLDWHG RSWLRQV ILOKWRZ KHKHNIWDENI HPRGR | LIV N WH®
the output of the currently running pipe utility as that outp 8 UR G XFHG 7 KnhbdeDsQEeOto] H ~

DQDO\]H WKH RXWSXW RI HDFK § LSRP 8B HRNWHHAIo@HEKMBRAREGYH J P H (
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output exists for each included pipe segment whether dhabsegment has yet been completed. The
SWHVW™ PRGH ORRNV IRU WKH HEKWHDUIFXDWHS BRQWDR IDDV V RYFH D W5HL ¢
ZKHWKHU RU QRW WKDW SURJUDP HWQ EGJURFRMW H&SUZ QWK WHW W
each variable associated with the current TFLOW proguemand then exits. The functionality for each

of these modes is implemented in the standard funatieed in each individual pipe.

The TFLOW pipeline is designed to allow easy upgradeabitithirrclusion of new pipes and
pipe segments as needed for new project applicationsstdihdard set of functions used by the
manifold program allows for the easy creation and inclusfarew custom pipe segments depending on
WKH XVHUfV QHHGV $GGLW LR@ateddY siQtyZiesning Bnivoreidd 6@ pipéd HD VL O

segments and the associated default options for egahesit within the pipe.

A recent review article b.. Nekrutenko and J. Taylor discusses a common lack of reganti
the exact experimental procedure utilized by many recenputational biology studies, leading to a
lack of reproducibility in many of these experiments 8je TFLOW package attempts to address this
issue by provision for a very verbose output of the detdieach step in the assembly process. Each
external command performed by pipe segments is saved &yitdefa file named
3>6(*0(17@ DXWR VK 7~ 7L Bds€ibing Gé¢ RwdaRidn\Wwf ea&cl)segment is also output in:
3>6(*0(17@ DXWR WLPLQJ " )RU YHUHRWNMXBRKRVIEBBK RMAWHSH BDBBR |
DVVRFLDWHG RSWLRQV DUH RXWSXWMWWGHRJID XOW PKRRI>W 1A VIH €
RXWSXW IRU WKH RYHUDOO SLSH(1ZWKRKVWW B H RUHSBDF R Q GALQN K3
appropriate pipeline. By providing easy access to the defalsch assembly run including any default
and non-default options, the TFLOW package is designecetilgincrease the ease of including a
high degree of bioinformatics project detail in publicatitra include de novo transcriptome assembly
projects.
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The primary functionality of the TFLOW Pipeline v0.9.0 i®yided by the pipe titled:
Trinity Pipe” ORFDWHG LQ 3WIORZ VHIJPHQWYV AMLLU@HG\BBR HOERP IBEY
steps required for de novo transcriptome assembly. Thefmptltis pipe is the raw RNA-Seq reads
and the pipe encompasses all assembly steps until @aréinatriptome assembly is produced. This
pipeline includes each of the steps that were utilized &ositigle-type transcriptome assemblies in the
Schizocosa ocreatmanscriptome assembly project, including read trimming with Trimate, Trinity
transcript assembly, CAP3 sequence assembly, N50 lengthiaradltfse resulting transcriptome, and
analysis of percent of expected gene recapture using the GEAG¥MBUSCO protein sequence
databases [259, 74-76]. The inclusion of automated analysis of gene recajpttine final
transcriptome assemblies is designed to provide an efeuigtric for determining the quality of the

given transcriptome assembly, in addition to that ofsthedardly used N50 sequence length.

Upgrades to the TFLOW beta version are currently in devedopriruture features will include
WKH 3)DVW4&~ SL autbnvaked Bridlgsig/ofl tRrimed sequence reads by the Fast@C rea
analysis tool, aswellas tife6 X PP D U\" V H bBtpuQoia firlsummary of all analysis steps
performed throughout the assembly process. [M@@se changes will be published to the FSU CGPM

GitHub site and made available as stable release versofinaized.
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Preliminary Work on SFES Stage 2 Sequencing Projects

The successful assembly of thehizocosa ocreatmanscriptome served to lay the groundwork
for the next portion of the Sequencing Florida Endang8pesties Project, the production of high-
guality whole-genome sequessnf several native Florida species that are clask#is threatened or
endangered [7]. The initial two species selected for sequgircthe project are the Florida Manatee
(Trichechus manatus latirostjisnd the Florida Gopher Tortoisegpherus polyphemus-or each
species, either transcriptome or genome sequencing will berpexd either towards the creation of a

full-genome sequence assembly or to add to known sequen@aiifan.
Transcriptome Assembly of the Florida Manatee, Trichechus Manatus Latirostris:

A scaffold whole-genome sequence assembly has alreadyp&dermed for a'richechus

manatus latirostrisndividual by researchers at the Broad Institute of i@ Harvard [59]. In order to

further add to the known sequence information f

P

this organism, a transcriptome sequencing project
will be performed to identify and assign function
to coding regions in the manatee genome. Tissue
will be collected from &richechus manatus

latirostris individual and RNA-Seq will be

performed to obtain cDNA sequences. If feasible,
Figure 27, The Florida Manatee:

Trichechus manatus latirostris
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tissue will be collected from the same individdaised by the sequencing performed by the Broad
Institute in order to maximize the efficacy of those sege&intthe annotation of the genome assembly.
As a whole-genome assembly exists for this organism, teeerefe assembly method will be used to

efficiently perform the transcriptome assembly.

In order to prepare for further sequencing of the manaae@sdriptome, the scaffold assembly
prepared by the Broad Institute was acquired via the Bro&tutesgenome browser [60]. Statistical
analysis was performed on the assembly with results shoWable 14. A total of 6,323 scaffold

sequences were identified with a combined length across ssgueinapproximately 3.liga bases.

Table 20: Trichechus manatus latirostriScaffold Assembly Statistics

Count | Total | Mean (b) | Min (b) Max (b) Median (b) N50 (b)
6,323 | 3.1Gbp| 490,875 | 1,000 | 45,942,467 3,585 14,442,683

Once funding for the project has been obtained, trggissgquences for the manatee will be
collected and used with the acquired genome to provide infamati coding regions within the
genome. The acquisition of a transcriptome assemblyrfohechus manatus latirostrisill
significantly assist in characterization of the whgénome assembly produced by the Broad institute,
providing new opportunities for understandiigl RQH R hOR signiBcArfly endangered

species.

Whole-Genome Assembly of the Florida Gopher Tortoise, Gopherus Polyphemus:

In addition to the transcriptome sequencing of the Fldvidaatee, a whole-genome sequencing

project will be performed for the Florida Gopher TortoiSepherus PolyphemuBa order to obtain a

3 orelei © D )HPDOH )OR U th& Bonbadsh Bptngs Vldlife State Park, FL, USA.
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tissue sample to prepare libraries for DNA sequencing, peomigsust be obtained from the Florida
Fish and Wildlife Conservation Commission. The FSUt€efor Genomics and Personalized Medicine

is currently in the process of obtaining permission toinlataissue sample from a gopher tortoise for

subsequent sequencing projects. FSU CGPM is
partnering with the Clinic for the Rehabilitation of
Wildlife (CROW) in Sanibel, FL [90] in the collection
of samples for the sequencing projéahce a tissue
sample has been obtained and a sample library has

been preparedghort-read sequencing will be

Figure 28 The Florida Gopher Tortoise: performed on the FSU College of Medicine lllumina
Gopherus polyphemus
HiSeq instrument. A cutting-edge whole-genome de novo seqasseebler will be selected and
utilized to create a whole-genome sequence assembly. Intonolevide annotated coding regions,

reference-assisted transcriptome sequencing may add#idsegtierformed on &opherus polyphemus

tissue sample provided by the CROW facility.
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Appendix A: Determination of Optimum Transcriptome Assembly Stategy:

This appendix discusses the process whereby the finattizosne assembly strategy was
selected for the sequencing of Behizocosa ocreataanscriptome. Trinity was chosen as the
transcriptome assembler for the project based on comgpeNidence provided in a recent successful
sequencing project conducted on another arthropod, the blacwspmider (Latrodectus Hesperus)
[72]. Choices of strategy in this step stem from the exmntal design. As sequences were obtained
from 12 distinct samples &chizocosa ocreata 4 different maturity and sex states, different
combinations of data were possible for the Trinity as$gnithe primary method of assembly was
chosen to be separate assembly of 3 samples from wéttimdifferent organism state. A Trinity
assembly was also performed using the combined reads fragsdimple categories to determine
whether Trinity more effectively assembled transcripth aisignificantly greater amount of raw data

utilized within a single run.

As the CAP3 assembler was additionally utilized on eachichehl transcriptome category to
further assemble reads, different types of outputesthgle-category CAP3 assemblies were also
utilized to observe the effect on assembly quality. The pyirmssembly method used both the single-
category contigs and the single-category singletons peadoyg the CAP3 assembly in the subsequent
mutli-category assembly. A variant was also tested in wintj single-category transcripts further
assembled by CAP3 were utilized in the multi-category Cas¥&mbly to determine the effect on

transcriptome quality.



Studies have suggested that the optimal read quality fdxNiAe Seq reads used in
transcriptome assembly may vary depending on the dataseT [&8] several different minimum
PHRED quality threshold scores were tested for sequenemlalys The score chosen for the primary
test assembly was a score of 30, arbitrarily chosen aghagbality starting threshold for further
iterative analysis [89]. Several different minimum scorere then tested to determine their effect on

overall transcriptome assembly quality.

As transcriptome assembly can be significantly assistedeoyse of a reference genome, the
BRANCH reference-assisted transcriptome assembler atedl tesdetermine whether it assisted in
obtaining an optimal transcriptome assembly [35]. As nole¥jenome assembly exists #chizocosa
ocreatg the genome dfatrodectus hesperwsas selected as a closest-identified relative of Schgac
ocreata. The scaffold genomelaitrodectus hesperusas thus acquired from the 5K Arthropod

Sequencing Project Portal for use with the BRANCH asserf@ilér

Both the single-category assemblies and each of the-camdigory assemblies produced by each
variant assembly procedure was assessed using the gene reasgtgsnent procedure as described in
WKH 36&QWAHHRU\ 7TUDQVFULSWRPH $\V&LHVN PRID\W U MO\GF WIKIHNV R XK
portions of the thesis. Both the statistical resaiftd the gene recapture assessment of each respective
transcriptome assembly are provided respectively in TablesJAlf@x each variant method, along with
a brief description of the analysis and determinatia@transcriptome quality obtained by the

alternate assembly procedure.

Alternate Assembly 4 was selected as the optimum trigtsere assembly. In this assembly, the
required minimum average PHRED score was increased from 30ite&&sing the number of raw

reads removed from the initial Transcriptome assemifestors supporting the choice of this assembly



include a greater maximum transcript length, a greatesdrgm N50 length, and the greatest obtained
recapture of BUSCO genes for the multi-category assemmaligating the likelihood of representation

of the maximum number of coding genes in the final tngpikone assembly.

Primary Assembly: Min PHRED 30, Separate-Trinity/CAP3_All/CAP3

Table Al: Primary Assembly Statistics

Assembly Transcripts| Av. Len| MinLen | MaxLen| Median N50
ImmFemale 99,605 637 201 19,818 350 965
ImmMale 143,488 530 201 30,238 299 711
MatFemale 184,476 497 201 30,232 288 608
MatMale 186,886 482 201 29,873 282 575
Average 153,614 537 201 27,540 305 715
Comp. Multi-Tissue 386,514 488 174 35,948 281 580
Comp. Multi-Tissue, Coding 383,464 490 174 35,948 282 585
Over. Multi-Tissue 88,606 936 174 35,948 534 1,429
Over. Multi-Tissue, Coding 88,521 937 174 35,948 535 1,430

Table A2: Primary Assembly Assessment
CEGMA BUSCO

Assembly Hit | Miss | Total | Percent Hit | Miss | Total | Percent
ImmFemale 456 | 2 458 | 99.6% 3276| 101 | 3377 | 97.0%
ImmMale 455| 3 458 | 99.3% 3264 | 113 | 3377 | 96.7%
MatFemale 455| 3 458 | 99.3% 3269 | 108 | 3377 | 96.8%
MatMale 454 | 4 458 | 99.1% 3260 | 117 | 3377 | 96.5%
Comp. Multi-Tissue Hit | Miss | Total | Percent Hit | Miss | Total | Percent
Comp. Multi-Tissue, Coding | 455| 3 458 | 99.3% 3289| 88 | 3377 | 97.4%
Over. Multi-Tissue Hit | Miss | Total | Percent Hit | Miss | Total | Percent
Over. Multi-Tissue, Coding | 452| 6 458 | 98.7% 3257 | 120 | 3377 | 96.4%

Assembly NotesThese settings were chosen as the settings likely to prihadaghest quality
transcriptome assembly and were thus used for subsequergignaly



Alternate Assembly 1: Min PHRED 30, Separate-Trinity/CAP3_Contigs/CAP3

Table A3: Alternate Assembly 1 Statistics

Assembly Transcripts| Av. Len| MinLen | MaxLen| Median N50
Comp. Multi-Tissue 27,255 1320 201 22296 793 2174
Comp. Multi-Tissue, Coding 27,231 1321 201 22296 794 2174
-- Diff. from Primary Assembly| -356,233 +831 +27 -13,652 | +512 +1,589
Over. Multi-Tissue 6,211 2310 220 22296 1787 3130
Over. Multi-Tissue, Coding 6,211 2310 220 22296 1787 3130
-- Diff. from Primary Assembly| -82,310 +1,373 +46 -13,652 | +1,252 | +1,700
Table A4: Alternate Assembly 1 Assessment
CEGMA BUSCO
Assembly Hit | Miss | Total | Percent Hit Miss | Total | Percent
Comp. Multi-Tissue, Coding | 264 | 194 | 458 57.6% 2457 | 920 | 3377 | 72.8%
-- Diff. from Primary Assembly -191 | +191| = -41.7% -832 | +832 = -24.6%
Hit | Miss | Total | Percent Hit Miss | Total | Percent
Over. Multi-Tissue, Coding 150 | 308 | 458 32.8% 1746 | 1631 | 3377 | 51.7%
-- Diff. from Primary Assembly -302 | +302| = -65.9% -1511 | +1511| = -44.7%

Assembly NotesThis assembly uses the same single-category assembédpreas in the primary
assembly, but only uses the small number of contigstiegdiom each single-category CAP3
assembly for multi-category analysis. This results sigaificant reduction of assembled transcripts, as
well as a significant increase in average sequence lasgthown by the increases in N50 Score shown
in Table A3. A significant reduction is seen in gene ragaptate, and thus this assembly procedure was
not selected.

A-4



Alternate Assembly 2: Min PHRED 30, (Separate-Trinity+Combined-Trinity)/ CAP3/CAP3

Table A5: Alternate Assembly 2 Statistics

Assembly Transcripts| Av. Len| MinLen | MaxLen| Median N50
AllData Trinity/CAP3 Assembly 424216 438 201 30140 280 451
Comp. Multi-Tissue 792434 456 201 30238 290 491
Comp. Multi-Tissue, Coding 786594 458 201 30238 291 493
-- Diff. from Primary Assembly| +403,130 -32 +27 -5,710 +9 -92
Over. Multi-Tissue 141261 671 201 23091 353 1075
Over. Multi-Tissue, Coding 140621 673 201 23091 354 1078
-- Diff. from Primary Assembly| +52,100 -264 +27 -12,857 -181 -352
Table A6: Alternate Assembly 2 Assessment
CEGMA BUSCO
Assembly Hit | Miss | Total | Percent Hit | Miss | Total | Percent
AllData Trinity/CAP3 Assemb| 454 | 4 458 99.1% 3280| 97 |3377| 97.1%
Hit | Miss | Total | Percent Hit | Miss | Total | Percent
Comp. Multi-Tissue, Coding | 455| 3 458 99.3% 3289| 88 | 3377| 97.4%
-- Diff. from Primary Assembly = = = = = = = =
Hit | Miss | Total | Percent Hit | Miss | Total | Percent
Over. Multi-Tissue, Coding 389| 69 458 84.9% 2933 | 444 | 3377 | 86.9%
-- Diff. from Primary Assembly -63 | +63 = -13.8% -324 | +324| = -9.5%

Assembly NotesThis assembly uses the same single-category assembédpreas in the primary
assembly, but additionally performs a Trinity assemblggisil pooled trimmed sequence data from
across several categories. This assembly is then fyntbeessed using CAP3 as with each of the
single-category assemblies, and finally assembled wétsitigle-category assemblies as in the primary
procedure. It can be seen that this type of Trinity aBBeis successful in recapturing a greater number
of known gene sequences than any of the single-categmambies, but less than the comprehensive
multi-tissue transcriptome of the primary assembly. It adiily produced a shorter overall N50
length, and equivalent or smaller gene recapture for edtie ofulticaegory assemblies and is thus

not selected.

Alternate Assembly 3: Min PHRED 25, Separate-Trinity/CAP3/CAP3

Table A7: Alternate Assembly 3 Statistics



Assembly Transcripts| Av. Len| MinLen | MaxLen| Median N50
ImmFemale 101975 638 201 28383 349 972
ImmMale 149015 525 201 30238 297 696
MatFemale 194285 492 201 29650 287 593
MatMale 196064 478 183 29873 281 562
Average 160335 533 197 29536 304 706
Comp. Multi-Tissue 418399 501 201 30238 284 619
Comp. Multi-Tissue, Coding 415190 503 201 30238 285 623
-- Diff. from Primary Assembly| +31,726 +13 +27 -5,710 +3 +38
Over. Multi-Tissue 90506 894 201 29900 517 1326
Over. Multi-Tissue, Coding 90412 895 201 29900 517 1327
-- Diff. from Primary Assembly| +1,891 -42 +27 -6,048 -18 -103

Table A8: Alternate Assembly 3 Assessment
CEGMA BUSCO

Assembly Hit | Miss | Total | Percent Hit | Miss | Total | Percent
ImmFemale 455| 3 458 99.3% 3277| 100 | 3377 | 97.0%
ImmMale 456 | 2 458 99.6% 3271| 106 | 3377 | 96.9%
MatFemale 456 | 2 458 99.6% 3269 | 108 | 3377 | 96.8%
MatMale 455| 3 458 99.3% 3266 | 111 | 3377 | 96.7%
Hit | Miss | Total | Percent Hit | Miss | Total | Percent
Comp. Multi-Tissue, Coding | 455 458 99.3% 3288| 89 |3377| 97.4%

-- Diff. from Primary Assembly = = = = -1 +1 = =
Hit | Miss | Total | Percent Hit | Miss | Total | Percent
Over. Multi-Tissue, Coding | 446 | 12 | 458 97.4% 3136 | 241 | 3377 | 92.9%
-- Diff. from Primary Assembly -6 | +6 = -1.3% -121 | +121| = -3.5%

Assembly NotesThis assembly uses a less-strict required average PHRE® &c25. The multi-
category assemblies can be seen to produce a greater rafrira@scripts with a smaller corresponding
maximum lengthA reduction in gene recapture relative to the primary asigecan also be observed

and this assembly is thus not selected.

Alternate Assembly 4: Min PHRED 33, Separate-Trinity/CAP3/CAP3

Table A9: Alternate Assembly 4 Statistics




Assembly Transcripts| Av. Len| MinLen | MaxLen| Median N50
ImmFemale 96396 634 195 27687 352 950
ImmMale 135848 534 201 30238 302 719
MatFemale 171547 506 201 30212 291 633
MatMale 175262 488 170 29873 284 593
Average 144763 541 192 29503 307 724
Comp. Multi-Tissue 353027 495 171 37840 281 603
Comp. Multi-Tissue, Coding 350183 497 171 37840 283 608
-- Diff. from Primary Assembly| -33,281 +7 -3 +1,892 +1 +23
Over. Multi-Tissue 85194 942 171 37840 540 1438
Over. Multi-Tissue, Coding 85097 943 171 37840 540 1438
-- Diff. from Primary Assembly -3,424 +6 -3 +1,892 +5 +8

Table A10: Alternate Assembly 4 Assessment

Assembly Hit Miss | Total | Percent Hit Miss | Total | Percent
ImmFemale 455 3 458 | 99.3% 3272 | 105 | 3377 | 96.9%
ImmMale 456 2 458 | 99.6% 3263 | 114 | 3377 | 96.6%
MatFemale 456 2 458 | 99.6% 3264 | 113 | 3377 | 96.7%
MatMale 454 4 458 | 99.1% 3261 | 116 | 3377 | 96.6%
Hit Miss | Total | Percent Hit Miss | Total | Percent

Comp. Multi-Tissue, Coding 455 3 458 | 99.3% 3286 | 91 | 3377 | 97.3%
-- Diff. from Primary Assembly = = = = -3 +3 = -0.1%
Hit Miss | Total | Percent Hit Miss | Total | Percent

Over. Multi-Tissue, Coding 453 5 458 | 98.9% 3261 | 116 | 3377 | 96.6%
-- Diff. from Primary Assembly  +1 -1 = +0.2% +4 -4 = +0.2%

Assembly NotesThis assembly uses a stricter cutoff of 33 for the reduaverage PHRED score. In
this assembly, a slight reduction can be seen in théeuaof recaptured genes in the Comprehensive
Multi-Category Assembly, but the highest recapture ratesbtained for the Overlapping MidTissue
Assembly. A greater N50 length is obtained for both m@tegory assemblies as well as a greater

maximum sequence length. This evidence supports the selettlna assembly procedure.

Alternate Assembly 5: Min PHRED 30, Separate-Trinity/ BRANCH/CAP3/CAP3

Table All: Alternate Assembly 5 Statistics




Assembly Transcripts| Av. Len| MinLen | MaxLen| Median N50
ImmFemale 104216 620 2 19818 343 937
ImmMale 150063 519 2 30238 296 694
MatFemale 192639 487 2 30232 285 596
MatMale 195618 472 2 29873 279 561
Average 160634 525 2 27540 301 697
Comp. Multi-Tissue 404794 479 2 35948 278 571
Comp. Multi-Tissue, Coding 398417 484 90 35948 280 577
-- Diff. from Primary Assembly| +14,953 -6 -84 = -2 -8
Over. Multi-Tissue 91215 922 56 35948 528 1407
Over. Multi-Tissue, Coding 90953 924 96 35948 529 1409
-- Diff. from Primary Assembly| +2,432 -13 -78 = -6 -21

Table A12: Alternate Assembly 5 Assessment
CEGMA BUSCO

Assembly Hit | Miss | Total | Percent Hit | Miss | Total | Percent
ImmFemale 456 | 2 458 99.6% 3276| 101 | 3377 | 97.0%
ImmMale 455| 3 458 99.3% 3264 | 113 | 3377 | 96.7%
MatFemale 455| 3 458 99.3% 3269 | 108 | 3377 | 96.8%
MatMale 454 4 458 99.1% 3260 | 117 | 3377 | 96.5%
Hit | Miss | Total | Percent Hit | Miss | Total | Percent
Comp. Multi-Tissue, Coding | 455| 3 458 99.3% 3289| 88 | 3377 | 97.4%

-- Diff. from Primary Assembly = = = = = = = =
Hit | Miss | Total | Percent Hit | Miss | Total | Percent
Over. Multi-Tissue, Coding | 450| 8 458 98.3% 3255| 122 | 3377 | 96.4%

-- Diff. from Primary Assembly -2 | +2 = -0.4% -2 +2 = =

Assembly NotesThis assembly utilizes the BRANCH Reference-Assisted ¢rggieme assembler to
further assemble transcripts output by Trinity for eag$ue category. A slight decrement is seen in N50
length and gene recapture rates and this method is thudewiede



Alternate Assembly 6: Min PHRED 36, Separate-Trinity/ CAP3/CAP3

Table A13: Alternate Assembly 6 Statistics

Assembly Transcripts| Av. Len| MinLen | MaxLen| Median N50
ImmFemale 77610 523 201 20534 345 628
ImmMale 91271 493 201 29598 322 581
MatFemale 102925 486 185 29512 315 572
MatMale 103162 474 201 15529 308 549
Average 93742 494 197 23793 323 583
Comp. Multi-Tissue 162976 508 187 29671 304 639
Comp. Multi-Tissue, Coding 161341 510 187 29671 307 644
-- Diff. from Primary Assembly| -222,123 +20 +13 -6,277 +25 +59
Over. Multi-Tissue 69955 761 193 29671 503 977
Over. Multi-Tissue, Coding 69834 762 193 29671 504 978
-- Diff. from Primary Assembly| -18,687 -175 +19 -6,277 -31 -452

Table Al4: Alternate Assembly 6 Assessment
CEGMA BUSCO

Assembly Hit | Miss | Total | Percent Hit | Miss | Total | Percent
ImmFemale 452 6 458 98.7% 3156 221 | 3377 | 93.5%
ImmMale 453| 5 458 98.9% 3142 | 235 | 3377 | 93.0%
MatFemale 454\ 4 458 99.1% 3145| 232 | 3377 | 93.1%
MatMale 450| 8 458 98.3% 3126| 251 | 3377 | 92.6%
Hit | Miss | Total | Percent Hit | Miss | Total | Percent

Comp. Multi-Tissue, Coding | 454 | 4 458 99.1% 3206 | 171 | 3377 | 94.9%
-- Diff. from Primary Assembly -1 | +1 = -0.2% -83 | +83 = -2.5%
Hit | Miss | Total | Percent Hit | Miss | Total | Percent

Over. Multi-Tissue, Coding | 453| 5 458 98.9% 3195| 182 | 3377 | 94.6%
-- Diff. from Primary Assembly +1 | -1 = +0.2% -62 | +62 = -1.8%

Assembly NotesThe increase in transcriptome quality obtained by arease in PHRED scores was

further explored by increasing the minimum required PHRED tgusdore to 36. This can be seen to

decrease N50 lengths, maximum transcript lengths, and gexpuecrates, and was thus not selected
as the assembly procedure.



Appendix B: Sequencing Project System Calls:

To assist in project reproducibility, the system calls useshch portion of the transcriptome sequencing
process are provided here. Executable path is omitteddemim listed call and file location directories

are given relative to the primary project directory. 8ystalls to beta versions of the custom scripts of

the TFLOW package are included for continubyQG LQGLFDWHG ZLWK DoubddHEHGLQJ
necessarily reflect the syntax of system calls ferdinrent TFLOW release. Processes performed in

more than one location, such as in the Trinity as$goftsingle-category transcriptomes, are listed for

only one location for brevity and clarity.

Read Trimming:

Utility: Trimmomatic

Function: Read Trimming

CWD: Production/ImmFemale/

Input: Raw Reads in FASTQ.GZ format
Output:  Trimmed Reads in FASTQ.GZ format

System Call:

3\Wmmomatic - baseout TrimmedData/Imm_Female -1 CAGATC_L0O05 001.fastg.gz thasein
.[../[Data/Sample_ImmFemale - 1/Imm_Female -1 CAGATC_L005 R1 001.fastq.gz - trimlog
TrimmedData/Imm_Female -1 CAGATC_L005 R1 001.trimlog
ILLUMINACLIP:[HOMEDIR]/programs/Trimmomatic - 0.32/adapters/TruSeq3 - PE 2.fa:1:30:10

LEADING:33 TRAILING:33 SLIDINGWINDOW:25:33 MINLEN:75
Notes: Repeated for each paired end read file

Utility: FastQC

Function: Read Quality Analysis

Input:  Trimmed Reads in FASTQ.GZ format

Output:  HTML Read Quality Reports

System Call:

sfastgc  Imm_Female-2_ACTTGA_L006_007_1P.fastq.gz Imm_Female -

2 ACTTGA_LO06_007_2P.fastg.gz Imm_Female-2_ACTTGA_L006_007_1U.fastq.gz Imm_Female -
2_ACTTGA_L006_007_2U.fastq.gz ’

Notes: Repeated for each trimmed paired end read file

Single-Category Transcriptome Assembly:




Utility: Trinity

Function: Transcriptome Assembly

CWD: Production/ImmFemale/

Input:  Trimmed Reads in FASTQ.GZ format
Output:  Assembled Transcripts

System Call:
3Trinity --seqType fq --JM 10G --output Assembly --left TrimmedData//*_1P*.gz --
r ight TrimmedData//*_2P*.gz --CPU 4

Notes: Repeated for each category of assembly data.

Utility: CAP3

Function: Sequence Assembly

CWD: Production/ImmFemale/CAP3

Input:  Assembled Transcripts in FASTA format
Output:  Assembled Transcripts in FASTA format

System Call:

3cap3 Trinity.fasta

Notes: Repeated for each category of assembly data, output files:

3Trinity.fasta.cap.singlets " D Q GT#inity.fasta.cap.contigs " FRQFDWHQDWHG LQWR
3Trinity.fasta.cap.CombinedResults “, The CombinedResults file from each single -

FDWHJRU\ DVVHPEO\ ZDV WKHQ FRQFD WIFSRGomMBnad@adteR 3

Utility: MakeBlastDB 16

Function: Blast Database Preparation

CWD: Production/ImmFemale/Analysis/BLAST DB

Input:  Assembled Transcripts in FASTA format

Output:  Blast Database of Assembled Transcripts

System Call:

3makeblastdb - in .././CAP3/Trinity.fasta.cap.CombinedResults - dbtype nucl - title
ImmFemale_33 Assembly - out ImmFemale_33_ Assembly

Notes: Repeated for each category of assembly data.

Utility: TBLASTN 7

Function: Sequence Comparison for Gene Recapture Analysis

CWD: Production/ImmFemale/Analysis/BUSCO

Input: BLAST Transcript Nucleotide Sequence Database, Query Protein Database
Output:  Sequence Similarity Comparison

System Call:
Sthlastn - db ../BLAST_DB/ImmFemale_33_Assembly - query
.1..1..1.IBUSCO_Arthropoda.fas -outfmt6  -evalue le -5 -num_threads 4

Notes: Repeated with CEGMA database

16 BLAST calls are standardly performed with reversed qdatgbase usage. The transcripts were selected as thecgeque
database for convenience in performing multiple sequeartelyses.
17 (See Above)



Multi-Category Transcriptome Assembly:

Utility: CAP3

Function: Assembly of Multi - Category Transcriptome

CWD: Production/Combined/CAP3

Input:  Concatenated Transcripts from Single - Category Assemblies in FASTA Format

Output:  Multi - Category Assembled Transcripts in FASTA Format

System Call:

3cap3 AllTissueCombined.fasta > cap3.out &

Notes:  3AllTissueCombined.fasta.cap.contigs "5HSUHVHQWYVY WKH VHTXHQFHYV XVHG IR

32YHUODSSLQJ-XOWXH 7UDQVFULSWRPH =~ ZKHUHDV
SAllITissueCombined.fasta.cap.contigs " D Q GAHTissueCombined.fasta.cap.singlets

ZHUH FRQFDWHQDWHG W R JAIWsKUdCorhliined Rasta.cap.CombinedResults ’
UHSUHVHQWLQJ WKH 23&RPSUHKKEQWHIHR OXOWDRQVFULSWRPH-

Utility: GetORF

Function: Prediction of Coded Protein Sequences

CWD: Production/Combined/Analysis_All/coding/

Input:  Multi - Category Assembled Transcripts in FASTA Format

Output:  Predicted Coded Protein Sequences >= 30 Residues in Length

System Call:

sgetorf - sequence ../../AlITissueCombined.fasta.cap.CombinedResults - outseq
codedProteins.fas --minsize 90 ’

Utility: *Full - Analysis.py *

Function: Separation of Coding and Noncoding Transcripts

CWD: Production/Combined/Analysis_All/

Input: Predicted Coding Sequences, Multi - Category Assembled Transcripts in FASTA
Format

Output:  Coding Multi - Category Assembled Transcripts in FASTA Format, Noncoding

Multi - Category Assembled Transcripts in FASTA Format

System Call:

3full_analysis.py > full_analysis.out 1>82°

Notes: The coding transcripts from the output file:

3AllTissueCombined.fasta.cap.CombinedResults.coding " ZHUH UHQDPHG
3Comprehensive_Transcriptome ID" DQG UHSUHVHQW WKH FRPSUHKiBs@VLYH PXOWL

transcriptome.



Transcriptome Annotation:

Utility: MakeBlastDB (See Above)

CWD: Comprehensive_Annotation/UniProtKB/

System Call:

3Smakeblastdb - in ../Comprehensive_Transcriptome.fa - dbtype nucl - title
Comprehensive_Transcriptome - out Comprehensive_Transcriptome - logfile

-

makeBlastDB.out

Utility: TBLASTN

Function: Sequence Comparison for Transcript Annotation

CWD: Comprehensive_Annotation/UniProtKB/

Input: BLAST Transcript Nucleotide Sequence Database, Query Protein Database
Output:  Sequence Similarity Comparison

System Call:
Stblastn - db ../BLAST_DB/Comprehensive_Transcriptome query
uniprot_sprot_2015 03.fasta -outfmt6  -evalue le -5 inum_threads8 - out blast.out >

blast.error 2>&1
Notes: Repeated with each protein sequence database utilized for annotation.

Utility: *Analyze - Annotation.py  *

Function: Construction of Annotation Data Structures

CWD: Comprehensive_Annotation/UniProtKB/

Input:  Sequence Similarity Comparison, Query Protein Database

Output:  Sequence Annotation Data Structures

System Call:

3analyze annotation.py blast.out uniprot_sprot 2015 03.fasta > annotation.out
&

Notes: Repeated with each protein sequence database utilized for annotation.

Utility: *Combine - Annotation.py  *
Function: Construction of Annotation Data Structures
CWD: Comprehensive_Annotation/UniProtKB/

Input: Individual Annotation Data Structures, Gene Mapping File

Output:  Tabulated Best Sequence Annotations

System Call:

~combine_annotation.py ../../Comprehensive_Transcriptome_Genemapped.fa ../Ocreata

NCBI- X/Best_Annotations.annDB ../Ocreata - UNIPROT/Best_Annotations.annDB
../CEGMA/Best_Annotations.annDB ../BUSCO/Best_Annotations.annDB ../Ensembl -
Drosophila - Protein/Best_Annotations.annDB ../Ensembl - Ixodes -
Protein/Best_Annotations.annDB ../UniProtKB/Best_Annotations.annDB ../NR -
Invertebrate - Protein/Best_Annotations.annDB Il FRPELQH RXW !

2>&1
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Differential Gene-Expression Analysis:

Utility: BWA (Indexing Transcriptome)

Function: Preparation for Alignment of Reads to Comprehensive Multi - Category
Transcriptome: Indexing Transcriptome

CWD: Comprehensive_Alignment/

Input:  Multi - Category Assembled Transcripts in FASTA Format

Output:  BWA Alignment Index

System Call:

3pbwa index ../Comprehensive_Transcriptome.fa > index.out 2>&1 &

Utility: BWA (Prealignment)

Function: Preparation for Alignment of Reads to Comprehensive Multi - Category
Transcriptome: Prealignment

CWD: Comprehensive_Alignment/Sample_ImmFemale -1/

Input:  BWA Alignment Index , Raw Sequence Reads in FASTQ Format

Output:  SAI Prealignment Files

System Call:

Sbwaaln -n6 -t4./Comprehensive_Transcriptome.fa ../../Data/Sample_ImmFemale
1/Imm_Female -1_CAGATC_L005_R1 001.fastq
Notes: Repeated with each of the 12 samples across 4 categories.

Utility: BWA (Alignment)

Function: Alignment of Reads to Comprehensive Multi - Category Transcriptome
CWD: Comprehensive_Alignment/Sample_ImmFemale -1

Input: BWA Alignment Index, Raw Sequence Reads in FASTQ Format, and BWA

Pre alignments

Output:  SAM Read Alignments

System Call:

3bwa sampe ../Comprehensive_Transcriptome.fa Imm_Female -1 CAGATC _L005 R1 001l.sai
Imm_Female-1_CAGATC _L005 R2 001.sai../../Data/Sample_ImmFemale - 1/lmm_Female -

1 CAGATC _L005 R1 001.fastq ../../Data/Sample_ImmFemale - 1/Imm_Female -

1 CAGATC_L005_R2_001.fastq
Notes: Repeated with each of the 12 samples across 4 categories.

Utility: *Alignment - Count.py *
Function: Conversion of SAM Read Alignments to Gene Expression Counts
CWD: Comprehensive_Alignment/Sample_ImmFemale -1

Input:  GeneMap File, BWA SAM Read Alignments

Output:  Tabulated Sequence Hit Counts

System Call:

3alignment_count.py - n ../../IComprehensive_Transcriptome_Genemapped.fa *.sam >
count.out 2>&1 ’

Notes: Repeated with each of the 12 samples across 4 categories.



Utility: *Alignment - Count.py * (Combine Mode)

Function: Combination of Tissue - Specific Tabular Sequence Hit Counts into a single
count table.

CWD: Comprehensive_Alignment

Input:  List of Tissue - Specific Tabular Count Tables

Output:  Combined Tabular Count Table

System Call:

salignment_count.py - m combine - o AllCounts.tsv combine_files.list >

combine_counts.out 2>&1 &

Utility: *EdgeRANalysis.R *

Function: Analysis of Category - Specific Differential Expression
CWD: N/A (Performed on Windows Machine)

Input:  Combined Tabular Count Table

Output:  Category - Specific Differential Expression Lists

System Call: 3(GJH5%$QDO\VLYV 57

Notes: Hardcoded Analysis Script

Utility: *Annotate - EdgeR.py *

Function: Addition of Annotations to Differential Expression Lists

CWD: EdgeR_Analysis/

Input:  Category - Specific Differential Expression Lists, Annotation Database
Output:  Annotated Category - Specific Differential Expression Lists
System Call: SSQQRWDWHB(GJH5 S\’




