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ABSTRACT 
 
 
 
 The availability of high resolution temperature and water vapor data is critical for the study of 

mesoscale scale weather phenomena (e.g., convective initiations, and tropical cyclones). As 

hyperspectral infrared sounders, the Atmospheric Infrared Sounder (AIRS) and Geosynchronous 

Imaging Fourier Transform Spectrometer (GIFTS) could provide high resolution atmospheric profiles 

by measuring radiations in many thousands of different channels. This work focuses on the assessment 

of the potential values of satellite hyperspectral radiance data on the study of convective initiations (CI) 

and the assimilation of AIRS radiance observations within tropical storms. 

 First, the potential capability of hyperspectral infrared measurements (GIFTS) to provide 

convective precipitation forecasts has been studied and assessed. Using both the observed and the 

model-predicted profiles as input to the GIFTS radiative transfer model (RTM), it is shown that the 

simulated GIFTS radiance could capture the high vertical and temporal variability of the real and 

modeled atmosphere prior to a convective initiation, as well as the differences between observations and 

model forecasts. This study suggests the potential for hyperspectral infrared radiance data to make an 

important contribution to the improvement of the forecast skill of convective precipitation. 

 Second, as the first step toward applying AIRS data to tropical cyclone (TC) prediction, a set of 

dropsonde profiles during Hurricane Rita (2005) is used to simulate AIRS radiance data and to assess 

the ability of AIRS data in capturing the vertical variability within TCs through one-dimensional 

variational (1D-Var) twin experiments. The AIRS observation errors and background errors are first 

estimated. Five sets of 1D-Var twin experiments are then performed using different combinations of 

AIRS channels. Finally, results from these 1D-Var experiments are analyzed. Major findings are: (1) 

AIRS radiance data contain useful information about the vertical variability of the temperature and water 

vapor within hurricanes; (2) assimilation of AIRS radiances significantly reduced errors in background 

temperature in the lower troposphere and relative humidity in the upper troposphere; (3) the near-real 

time (NRT) channel set provided by NOAA/NESDIS seems sufficient for capturing the vertical 

variability of the atmosphere in the upper troposphere of TCs, but not in the lower troposphere; and (4) 

the channels with weighting functions peak within the layer between 500-700 hPa could provide useful 

information to the atmospheric state below 700 hPa. A channel selection method is proposed to capture 

most vertical variability of temperature and water vapor within TCs contained in AIRS data. 
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 Finally, AIRS radiance data within TCs have been assimilated in the 1D-Var experiments with 

comparisons of the retrieval temperature and water vapor profiles with co-located Global Positioning 

System (GPS) radio occultation (RO) soundings and dropsonde profiles. The comparisons of AIRS 1D-

Var retrieval profiles with GPS RO sounding show that AIRS data can greatly improve the analysis of 

temperature and water vapor profiles within TCs. The comparisons of retrieval profiles with dropsonde 

data during Hurricane Rita, however, showed some discrepancies partly due to the difference of these 

two measurements and the uncertainties of the AIRS errors. 
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CHAPTER 1 

INTRODUCTION 
 
 
 
 It is well known that the lack of high-resolution data preceding the start of the storm is a critical 

factor limiting the precipitation prediction of convective storms (National Research Council 1998; 

Emanuel et al. 1995; Dabberdt and Schlatter 1996; Weckwerth et al. 2006). It is also hard to obtain 

accurate high resolution, three-dimensional water vapor data (Weckwerth et al. 1999; Weckwerth et al. 

2006), which are crucial for studying mesoscale atmospheric phenomena. Moreover, insufficiency of 

observations over oceans contributes partly to the difficulties of the prediction of hurricane intensity and 

inner-core structure. Atmospheric temperature, water vapor, and motion vectors can be retrieved from 

the top-of-atmosphere (TOA) radiances. Temperature and water vapor soundings from satellites have 

been available for many years and are expected to provide significant improvements in numerical 

weather prediction (NWP) (Smith 1991) since the launch of two pioneering sensors on the Nimbus 3 

satellite in April 1969 (e. g., Wick, 1971). However, the benefits from these satellite observations for 

improved weather forecasting have been limited owing to the relatively low vertical resolution provided 

by current broadband sensors (Smith 1991; Tobin et al. 2006), such as the Advanced TIROS Operational 

Vertical Sounding (ATOVS) on NOAA’s current Polar Operational Environment Satellite. The 

implementation of a higher vertical resolution advanced sounder is needed for improving modern NWP 

forecast skills (Smith 1991). With the development of the satellite remote sensing techniques, the 

hyperspectral infrared radiance data could provide high-resolution data prior to and throughout 

convective or tropical cyclones (TC), especially in the conventional data-sparse areas (e.g., the oceans). 

As infrared atmospheric sounders, the Atmospheric Infrared Sounder (AIRS; Aumann et al. 2003) and 

Geosynchronous Imaging Fourier Transform Spectrometer (GIFTS; Smith et al. 2001a), which measure 

radiation in many thousands of different channels, have the potential to provide atmospheric temperature 

and water vapor information at a much higher vertical resolution and accuracy, as well as high spatial 

and/or high temporal resolution (particularly for GIFTS with 10 seconds temporal resolution). With the 

availability of the voluminous hyperspectral radiance data, successful exploitation of this new 

generation of satellite instruments, assessment of the potential application of the new radiance data, 
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assimilation of infrared radiance data, and the selection of channels from thousands of infrared channels 

have become challenges for NWP centers (Fourrié and Thépaut 2003) and the scientific community. 

 Can and if so, how well do the hyperspectral radiance data capture the vertical variability of 

temperature and water vapor prior to and throughout a convective storm? The first part of this study is 

aiming to answer the above question using the radiative transfer model (RTM) simulated GIFTS 

brightness temperatures (BTs). A set of observed and modeled vertical profiles of temperature and water 

vapor during a convective initiation (CI) event within the observing period of the International H2O 

Project (IHOP_2002) are used as input to the GIFTS RTM to assess the potential values of hyperspectral 

infrared measurements to convective precipitation forecasts. 

 AIRS, launched in May 2002 on the NASA Earth Observing System (EOS) polar-orbiting Aqua 

platforms, is the first new generation of satellite-based advanced infrared sounders. AIRS radiance data, 

which provide high spectral and spatial resolution infrared radiance data, have been shown to have 

positive impact on both global and mesoscale forecasts (Le Marshall et al. 2005 and 2006; Chahine et al. 

2006; McNally et al. 2006; Joiner et al. 2007; Carrier 2008). With its very high spectral resolution, 

vertical temperature and water vapor profiles with about 1-2 km vertical resolution can be obtained from 

AIRS measurements (Aumann et al. 2003, Susskind et al. 2003). The required retrieval accuracy in 

terms of root mean square (RMS) errors is 1 K RMS in 1 km vertical layers for temperature and 20% 

RMS in 2 km vertical layers for water vapor below 100 hPa under clear or partly cloudy conditions 

(Aumann et al. 2003, Tobin 2006). The validation and comparison of AIRS retrievals with other 

measurements and model forecasts have been investigated intensively by previous researchers (Fetzer et 

al. 2003; Fetzer 2006; Tobin et al. 2006; Divakarla 2006; McMillin et al. 2007, Carrier 2008, Chou et al. 

2009). 

 The assessment of AIRS channel sets has been shown to satisfactorily capture most of the 

variability of different atmospheric situations (Fourrié and Thépaut 2003). The assessment, verification, 

and effective utilization of AIRS radiance data within and around tropical cyclones (TCs), however, still 

remain to be seen. As the first step toward applying AIRS data to TC study, the second part of this work 

is a focus on the assessment of the ability of AIRS data in capturing vertical variability of temperature 

and water vapor within TCs through one-dimensional data assimilation (1D-Var) twin experiments. First, 

a set of dropsonde profiles during Hurricane Rita (2005) is used to simulate AIRS radiance data as the 

“observed” radiance through the Stand-alone AIRS Radiative Transfer Algorithm (SARTA, Strow et al. 

2003) model and the AIRS observation errors and background errors are also estimated. Five sets of 1D-
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Var twin experiments are then performed using different combinations of AIRS channels. A channel 

selection method is proposed to capture most vertical variability of temperature and water vapor within 

TCs contained in AIRS data. Finally, results from these 1D-Var experiments are examined to see how 

well the AIRS radiance data captures the thermodynamic vertical structures within TCs and the 

sensitivity of retrieval results to channel selection. 

 Finally, as the third part of this work, AIRS radiance data within TCs have been assimilated with 

the retrieval profiles compared with matched Global Positioning System (GPS) radio occultation (RO) 

soundings and dropsonde profiles. The preliminary verification results of applying AIRS radiance data 

on the study of TCs are shown with the discussion of the difficulties. 

 The assessment of the potential values of GIFTS hyperspectral infrared measurements to 

convective precipitation forecasts is provided in chapter 2. The 1D-Var assimilation of AIRS radiances 

simulated with dropsonde data is presented in chapter 3, which shows the ability of AIRS data to capture 

the vertical variability of temperature and water vapor within TCs and the sensitivity of retrieval results 

to channel selection. Chapter 4 contains the 1D-Var assimilation of AIRS radiances with retrieval results 

compared to GPS RO soundings and dropsonde profiles within TCs. A summary and future work are 

given in chapter 5. 
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CHAPTER 2 

CAN GIFTS CAPTURE VERTICAL AND TEMPORAL VARIABILITY 
OF A CONVECTIVE ATMOSPHERE  

 
 
 

2.1 Introduction 

 It is well known that one of the most challenging tasks in numerical weather prediction (NWP) is 

obtaining accurate quantitative precipitation forecasts (QPFs), especially convective QPFs. The lack of 

high-resolution data preceding the start of the storm is a critical factor limiting the precipitation 

prediction of convective storms (National Research Council 1998; Emanuel et al. 1995; Dabberdt and 

Schlatter 1996; Weckwerth et al. 2006). According to Weckwerth et al. (1999) and Weckwerth et al. 

(2006), it is hard to obtain accurate high resolution, three-dimensional water vapor data, which are 

crucial for studying mesoscale atmospheric phenomena (e.g., convective storms). As noted in 

Weckwerth et al. (2006), radiosondes are insufficient due to their widely distributed locations, very 

coarse temporal resolution (usually twice daily), and their significant errors and biases from time to time 

(e.g., Soden and Lanzante 1996; Guichard et al. 2000; Wang et al. 2002; Revercomb et al. 2003; Turner 

et al. 2003; Ciesielski et al. 2003, Weckwerth el al. 2006). Current satellite systems can provide water 

vapor observations with high horizontal and/or spectral resolutions, but not high temporal resolution. 

The Atmospheric Infrared Sounder (AIRS) carried onboard NASA’s Aqua satellite simultaneously scans 

2378 distinct spectral channels, with a spatial resolution of 13.5 km at nadir (Aumann et al. 2003). The 

Geosynchronous Imaging Fourier Transform Spectrometer (GIFTS), a new hyperspectral geostationary 

satellite measurement system, could provide radiance observations with high resolutions in spectral, 

horizontal and temporal spaces. An effort is made in this study to assess potential applications of GIFTS 

measurements to improving mesoscale QPFs. 

 The GIFTS was selected for NASA’S New Millennium Program (NMP) Earth Observing-3 (EO-

3) mission. It combines new and emerging sensors (Large area format Focal Plane array (LFPA) 

Infrared (IR) detector (128 X 128) in a Fourier Transform Spectrometer (FTS) mounted on a 

geosynchronous satellite) and advanced data processing technologies (eigenvector regression retrieval 

methods) to observe and gather nearly instantaneous surface thermal properties and atmospheric weather 

and chemistry variables with very high horizontal (4-km at nadir), vertical (1-2 km), temporal (10 
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seconds), and spectral (0.6 cm-1) resolutions (Huang et al. 2000; Smith et al. 2001, Tobin et al. 2001; 

Marshall et al. 2003; Huang et al. 2004; Smith et al. 2004 ). There are more than 1600 infrared channels 

at two GIFTS bands covering a large geographical area of 512 km X 512 km over the continental United 

States (Smith et al. 2001; Smith et al. 2004). The GIFTS uses two detector arrays within a Michelson 

Interferometer to cover the spectral bands with spectral regions of the longwave band (685-1130 cm-1, 

including CO2, O3 absorption and IR window region, usually used for temperature, cloud and ozone 

retrievals) and short middlewave band (1650-2250 cm-1, i.e., including water vapor absorption, CO, and 

O3 absorption regions, mainly used for water vapor retrievals) (Huang et al. 2000; Smith et al. 2004; Liu 

et al. 2004; Li et al. 2004). It is hoped that these multiple channels with different shapes and broadness 

of the weighting function in the hyperspectral measurement system will provide sufficient information 

about the vertical and temporal variability of the atmosphere at resolutions never achieved previously. 

 The GIFTS radiative transfer model (GRTM), which calculates clear-sky radiances based on 

input temperature, mixing ratio, ozone, and pressure at 101 standard vertical pressure levels (unevenly 

distributed from 1100 to 0.005 hPa), has been developed and tested by the Cooperative Institute for 

Meteorological Satellite Studies (CIMSS) at the University of Wisconsin--Madison for the preparation 

and validation of the GIFTS launch and the launch of Hyperspectral Environment Sounder (HES) 

(Huang et al. 2004). There are a total of 3073 channels ranging from 587.4046 cm-1 to 2349.6291 cm-1 

with 0.6 cm-1 interval in the GIFTS forward model (Fig. 2.1). An example of a GRTM simulation is 

shown in Fig. 2.1. Using a cloud-free atmospheric profile as input, GRTM calculates values of 

brightness temperature (BT) at 3073 wavenumbers ranging from 587.4046 cm-1 to 2349.6291 cm-1 at 0.6 

cm-1 intervals, covering GIFTS two observing spectral bands (685 – 1150 cm-1 and 1650 -2250 cm-1) 

which are indicated by two solid lines in Fig. 2.1a. 

 Atmospheric motion vectors, water vapor and temperature can be retrieved from the TOA 

radiances. High-resolution mesoscale model-simulated data were used in support of the algorithm 

development of various retrieval techniques (Otkin et al. 2007). In this chapter, high-resolution model 

simulations are used to assess potential capability for GIFTS radiances to capture the observed 

atmospheric variability within a convective system. In order to accomplish this task, the vertical and 

temporal variations of model-predicted water vapor and temperature profiles are first compared with 

high-resolution observations from Atmospheric Emitted Radiance Interferometer (AERI) instruments, 

Scanning Raman Lidar (SRL), and dropsondes during a severe convective initiation (CI) which occurred 

on 2100 UTC 12 June 2002 during the International H2O Project (IHOP_2002) period. The possibility 
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for GIFTS to provide measurements that resolve vertical and temporal small scale variations of the 

atmosphere prior to the CI is then discussed by examining BT variations simulated by the GRTM. 

Observed and model predicted vertical profiles of temperature and water vapor are used as direct input 

to the GRTM for BT simulations. Section 2.2 provides a brief case description. The IHOP observations 

used in this study are summarized in section 2.3. Section 2.4 describes model configuration, discusses 

model forecasts, and verifies precipitation forecast with observations. The temporal and vertical 

variability of the atmosphere during a connective episode is shown in section 2.5, while observations 

and model forecasts of the atmospheric temperature and water vapor are compared. Variations of BTs 

simulated by GRTM using observed and modeled atmospheric profiles are shown in section 2.6. 

Summary and future work are provided in section 2.7. The work in this chapter was published in Lin and 

Zou (2008). 

2.2 Case Description 

 A convective initiation (CI) case that occurred over the central plains of the United States is 

selected for this study. Figure 2.2 shows the sea level pressure, the 10-meter horizontal wind, 2-meter 

specific humidity and temperature fields from the National Centers for Environmental Prediction (NCEP) 

analysis at 1200 UTC 12 and 0000 UTC 13 June 2002, respectively. A mesoscale low-pressure center 

developed over the Oklahoma (OK) panhandle at 1200 UTC 12 June 2002 (Fig. 2.2a). A cold front 

extended from southern Nebraska through northwestern Kansas (KS) and into southeastern Colorado, 

along with a low-level dry line extending from the Texas Panhandle through northeastern OK into 

southern KS (Figs. 2.2c-d). The near surface winds converge along the borders of OK and KS (Figs. 

2.2a-b), bringing ample moisture supply and providing a favorable moisture environment for CI. The 

area of convergence is ahead of and parallel to the cold front, indicating an existence of a squall line, 

which is a line with strong thunderstorms. 

 Figure 2.3 shows the radar reflectivity distributions from 2100 UTC 12 to 0300 UTC 13 June 

2002 at three-hour intervals. The positions of the cold front, dry line, outflow boundary (from an earlier 

squall line), gust font and squall lines are schematically indicated in Fig. 2.3. It is seen that the CI was 

initiated at the intersection (to be called the triple point for the rest of the paper) of the dry line and the 

outflow boundaries at 2100 UTC 12 June 2002 (Fig. 2.3a), and both were located ahead of the cold front. 

Four gust front boundaries then developed 3-hours later at 0000 UTC 13 June (Fig. 2.3b), which finally 

evolved into a mature squall line that is about 350 km long at 0300 UTC 13 June 2002 (Fig. 2.3c). The 
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3-h accumulative rainfall ending at 0000 UTC, 0300 UTC and 0600 UTC are shown in Fig. 2.4. It is 

apparent that strong precipitation occurred along the dry line and at the triple point near the borders of 

Oklahoma and Kansas from 2100 UTC 12 to 0000 UTC 13 June 2002 (Fig. 2.4a). The rainband 

associated with the squall line intensified with time, resulting in severe precipitation in the northern OK 

and borders of OK and KS in the next three hours (0000 UTC to 0300 UTC, Fig. 2.4b). In this 3-h 

period, the hourly precipitation reached its maximum at 0200 UTC 13 June 2002. The rainband moved 

southeastward in the following three hours, with reducing intensity and diminishing the southwestern 

half of the rainband (Fig. 2.4c). The reader is referred to Wilson and Roberts (2006) and Weckwerth et 

al. (2008) for a more detailed discussion on the environment and development of the squall lines of this 

case. 

2.3 Observations 

 The International H2O Project (IHOP_2002) was designed to sample the three-dimensional time-

varying moisture field to better understand convective storms. Many in situ and remote sensing 

measurement systems were operated in order to obtain observations of water vapor within convective 

storms at storm scales over the U.S. Southern Great Plains (SGP) (Weckwerth et al. 2004; Weckwerth 

and Parsons 2006; Weckwerth et al. 2008). The IHOP_2002’s observing period started from 13 May and 

ended on 25 June 2002, thus providing observations for the case described above. Specifically, vertical 

profiles of temperature and water vapor from dropsondes, Atmospheric Emitted Radiance Interferometer 

(AERI), and Scanning Raman Lidar (SRL) are used for this study. 

 The AERI systems provided temperature and water vapor profiles at less than 10-min temporal 

resolution and 100-250 meter vertical resolution (from 100 m resolution near the surface to 250 m 

resolution at 3 km) in the planetary boundary layer (PBL; 0-3 km). These observations are inferred from 

the downwelling high-spectral-resolution infrared radiances (3.3–19 µm at one-wave-number resolution) 

(Feltz et al. 2003). Observations from the AERI system located at Vici, Oklahoma (see Fig. 2.4a for its 

location relative to the convective rainband), are used in this study. 

 Vertical profiles of water vapor from SRL are also used in this study. SRL is an active, ground-

based laser remote sensing instrument. Lidar is the optical analog of radar, using pulses of laser radiation 

to probe the atmosphere (Turner and Goldsmith 1999). The daytime SRL measurements are limited to 

below roughly 3.5 to 4 km due to the relatively weak Raman backscattered signal and the presence of 

high solar background levels during the day (Turner and Goldsmith 1999). The nighttime SRL profiles 
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extend from the surface to about 10 km. The SRL was located at the ARM Central Facility near Lamont, 

Oklahoma (also see Fig. 2.4a for its location relative to the convective rainband), providing 10 minute 

temporal resolution water vapor profiles with an average vertical resolution of 78 meter (Revercomb et 

al., 2003). 

 High vertical resolution (0.5 seconds) dropsonde profiles were also made available near the 

convective area for the case selected by the Flight International Learjet along two flight legs. The first 

dropsonde leg began at 1918:56 UTC and ended at 1940:53 UTC 12 June 2002 and contained ten 

temperature and water vapor profiles. The second dropsonde leg commenced at 2047 UTC and 

continued until 2111 UTC, releasing nine dropsondes during the 24-minute time period. Since these two 

dropsonde legs are close to each other, data from the first flight leg will be used for verification. 

2.4 Model Configuration and Precipitation Forecasts 

 Numerical simulations of the IHOP_2002 CI case selected for this study are carried out using the 

fifth-generation Pennsylvania State University-National Center for Atmospheric Research (NCAR) 

Mesoscale Model (MM5; Dudhia 1993). MM5 is a primitive equation, nonhydrostatic mesoscale model 

(Anthes and Warner 1978; Dudhia 1993; Grell et al. 1994). Two single domain simulations were 

performed using version 3.7 of the MM5 with two different horizontal and vertical resolutions. The 

coarse-resolution run is conducted at 12-km horizontal resolution (total 135X135 horizontal grids) with 

23 sigma layers. The high-resolution run has 400X400 horizontal grid points and 35 sigma layers. The 

horizontal resolution of the high-resolution run is 4 km, which is consistent with the 4-km horizontal 

resolution of GIFTS data. The domain of the coarse-resolution run is slightly larger than that of the high-

resolution run. Both forecasts started at 0000 UTC 12 June and ended at 1200 UTC 13 June 2002. 

Dudhia’s simple ice explicit moisture scheme, the medium-range forecast (MRF) planetary boundary 

layer scheme and the rapid radiative transfer model (RRTM) were used in the model integrations. 

 Figure 2.5 shows the 3-h precipitation ending at 0000 UTC, 0300 UTC, and 0600 UTC 13 June 

2002, respectively, from the high-resolution model simulation. Compared with the observed 

distributions of precipitation (Fig. 2.4), the high-resolution model simulation captured reasonably well 

the main features of the development and movement of the rainbands of the convective storm. 

 The threat scores (TS) for 3-h rainfall from both model simulations are calculated using the 

NCEP 4-km observed hourly rainfall data (Fig. 2.6). The TS is calculated within a rectangular area 

indicated in Fig. 2.4b. The threat scores for the precipitation simulated by the 4-km resolution 
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experiment are higher than those from the 12-km resolution experiment throughout the nine hours when 

convective precipitation was observed. The 4-km high-resolution model simulation will be used for 

simulating GIFTS "observations". 

2.5 Comparisons between Observed and Modeled Atmospheric Profiles 

 Figure 2.7a shows the SRL-observed time evolution of the vertical variability of water vapor 

from 1200 UTC 12 to 1200 UTC 13 at the Lamont location (see Fig. 2.4a for its geographical location). 

The time evolution of the observed hourly precipitation in the same 24-h time window is shown at the 

bottom of Fig. 2.7a. A strong vertical gradient of water vapor is seen in the lower troposphere both 

before and after CI occurred. A remarkable change of the vertical variability of water vapor occurred 

right before convective precipitation reached its maximum intensity. A relatively large water vapor 

content (>12 g/kg) extended to about 700-800 hPa before CI with the approaching of the squall line. The 

low-level water vapor decreases significantly once the squall line is passed and precipitation occurred 

(around 0100 UTC 13 June 2002). The model-simulated time evolution of the vertical variability of 

water vapor and hourly precipitation are shown in Fig. 2.7b within the same 24-h time window as Fig. 

2.7a. It can be seen that the convective precipitation at the Lamont location in model simulation 

occurred at the same time as observations, but the reduction of water vapor in the lower levels in model 

simulation did not happen as quickly and dramatically as that of observations. The water vapor content 

prior to (after) the CI is not as high (low) as observations in the lower troposphere. 

 Figure 2.8a shows the AERI-observed temporal evolution of water vapor from 1200 UTC 12 to 

1200 UTC 13 at the Vici location (see Fig. 2.4a for its geographical location). The Vici location is 

located to the southeast of the triple point. Convection was initialized at this location at about 2100 UTC 

12 June 2002 in the model simulation, which is about two to three hours earlier than observations. 

Similar to the SRL observations and model simulations at the Lamont location (Fig. 2.7), the layer depth 

of high water vapor content increases (decreases) greatly before (after) the CI from both observations 

and model simulations. However, as a result of advanced precipitation, the rapid change of the vertical 

structure of water vapor occurred two hours earlier than observations. Once the convective precipitation 

ended, the water vapor content becomes very small in the model forecast while the observed water vapor 

at Vici recovered to a similar amount and layer depth as that before CI as soon as the observed 

convective precipitation stopped. 
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 The AERI-observed and MM5-model-simulated temporal evolutions of temperature at the Vici 

location are shown in Fig. 2.9. Similar to the variation of the water vapor field (Fig. 2.8), a phase error is 

also noticed in the time evolution of model-simulated temperature field (Fig. 2.9). Nevertheless, both 

model simulations and observations indicate a development of a warm temperature anomaly in the lower 

troposphere before the CI. The temperature immediately cooled down once the convective system 

passed the Vici location. 

 Dropsonde data were collected between 1918 to 2111 UTC 12 June 2002 near the dry line on 

two flight legs. Figure 2.10 shows the locations of these dropsonde data. The model-simulated water 

vapor mixing ratio and temperature at the surface around this time are also shown. The two dropsonde 

flight legs are nearly normal to the outflow boundary (see Fig. 2.3). The first flight track intersects with 

the cold front and the second track is nearly parallel to the cold front. The cross sections of water vapor, 

temperature, and the temperature anomaly from the first flight dropsondes are shown in Fig. 2.11. It is 

apparent that the moist and cool air is located north of the outflow boundary. A deep layer of high water 

vapor content is seen on the northern part of the flight track, with the dropsonde-observed one extending 

much further to the south than the model simulation. A warm temperature anomaly and a cold 

temperature anomaly are seen from both dropsonde and model data on the southern and northern portion 

of the flight track, respectively. This observation is consistent with the fact that this flight leg intersected 

with the cold front. However, the warm and cold temperature anomalies in the model simulation are not 

as strong as the observed ones and the model-simulated along-track gradients of both water vapor and 

temperature are much weaker than observations. Figure 2.12 shows the skew-T diagrams of two 

dropsonde profiles in the most-unstable region sampled by the first dropsonde flight leg (Weckwerth et 

al. 2008). It is seen that this region is characterized by low convective inhibition (CIN), low lifted index 

(LI), and high convective available potential energy (CAPE). Profiles from the mesoscale simulation are 

much smoother than dropsonde profiles. The inversion level from model simulation is about 50 hPa 

lower than observations. It is also noticed that the forecast-model-simulated water vapor profiles 

compared much less favorably to dropsonde measurements than temperature profiles. 

2.6 Simulated GIFTS Brightness Temperatures 

 Can GIFTS capture the vertical and temporal variability of a convective atmosphere seen from 

observations and model simulations shown above? Satellite radiance at a specified channel is a 

measurement of the contribution of the atmospheric emission to the total emission received at the top of 
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the atmosphere by that channel. Different atmospheres and different atmospheric layers produce 

different emission amounts. Satellite instruments are capable of providing a measurement of emission at 

a specified frequency (channel). For each channel, the so-called weighting function (WF), a channel-

dependent vertical profile, quantifies the contribution of emission from each atmospheric layer to the 

total emission of that channel at the top of the atmosphere. The larger the WF value is within an 

atmospheric layer, the larger the contribution of emission from that atmospheric layer is to the total 

emission (radiance). The height of the maximum WF of radiance in a particular channel thus indicates 

the atmospheric layer that contributes most significantly to the measured radiance. Of course, the 

broadness of the WF reflects the thickness of that atmospheric layer contributing most significantly to 

the measured radiance. 

 In order to assess the potential capability for GIFTS to capture the vertical and temporal 

variability of a convective atmosphere, GIFTS BTs are simulated using observations from dropsondes 

and AERI as well as MM5 simulation data as input to the GRTM. The vertical and temporal variations 

in BTs are then examined and compared between observation simulation and model simulation and with 

variations in temperature and water vapor variables. To complete this step, the BT data are first divided 

into two groups: (i) the carbon dioxide channels (including window channels in GIFTS longwave band) 

and (ii) the water vapor channels in GIFTS short middlewave band. The carbon dioxide absorption 

region in GIFTS’s longwave band covers a frequency range approximately from 684 cm-1 to 790 cm-1 

and the window channels cover a range from about 810 cm-1 to 1130 cm-1 (excluding the ozone channels 

from about 1000 cm-1 to 1077 cm-1); the water vapor absorption region in GIFTS’s short middlewave 

band is from approximately 1650 cm-1 to 2091 cm-1. Then, BTs in each group in the spectral space (i.e., 

Tb
�D, where �D is the channel number) for each vertical sounding of the atmosphere is presented as a 

vertical profile (Tb (p
WFmax

�D ) , where p
WFmax

�D  is the pressure at which the WF for the �Dth channel reaches its 

maximum value. If there is more than one channel in each group that has the same maximum WF height, 

a mean BT value is calculated and used as the BT at that pressure level. 

 As shown above, both dropsonde and AERI instruments provide high-vertical resolution profiles 

of water vapor and temperature of the atmosphere. The AERI also provides high-vertical resolution 

profiles of both water vapor and temperature of the atmosphere with high temporal resolution. The 

GRTM calculates the atmospheric radiances for all GIFTS channels (see Fig. 2.1) for a given vertical 

profile of water vapor and temperature. The radiances are then converted to brightness temperature in 

GRTM using the inverse of the Planck function. There are a total of 101 pressure levels in GRTM. 
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However, the dropsonde data are only available from about 930 to about 450 hPa, and the AERI data 

from about 930 hPa to about 650 hPa. In order to show the water vapor and temperature variability in 

the lower troposphere from GIFTS simulated BTs, the lowest pressure level of each dropsonde profile is 

used as the lowest pressure level in GRTM. A reference profile is used in GRTM above the highest data 

level. To avoid discontinuity, a linear relaxation is applied near the data boundaries. 

 Figure 2.13 shows simulated GIFTS BTs in two channel groups (carbon dioxide and water vapor) 

using dropsonde data and MM5 model forecasts on the first dropsonde flight leg as input to GRTM. 

Having examined GOES-8 satellite data, it is known that the first flight leg was located in a clear-sky 

condition. Since the WF is calculated for each channel and each profile, the channels selected for BTs 

vary profile-by-profile as the WF does. Since most vertical and temporal variability is seen in the lower 

troposphere (Figs. 2.7-2.9, 2.11), the highest level shown in Fig. 2.13 is 650 hPa. It can be seen from Fig. 

2.13a that BT depicts the along-track variability of both temperature and water vapor, with higher values 

for a warmer and drier atmosphere. Differences in water vapor distribution along the flight leg between 

dropsondes (Fig. 2.11a) and model forecasts (Fig. 2.11b) are seen in the BT distribution in water vapor 

channels (Fig. 2.13c-d). The shallower layer of the model-simulated warm atmosphere and deeper layer 

of the model-simulated moisture atmosphere compared to that of dropsonde simulation correspond to a 

shallower layer of model-simulated warm BT in both carbon dioxide and water vapor channels than 

dropsonde-simulated BTs.  

 In order to estimate how much the vertical and along-track variability of GIFTS BTs seen in Fig. 

2.13 is attributed to the variability of water vapor and temperature, we calculate the GIFTS BTs using a 

mean vertical profile of temperature (Fig. 2.14) and a mean profile of water vapor (Fig. 2.15) averaged 

along the flight leg. By comparing Figs. 2.14 and 2.15 with Fig. 2.13, we find that the along-track 

variability of GIFTS BTs results mainly from the water vapor variability and the vertical variability of 

GIFTS BTs attributes to the vertical variability of temperature. In other words, GIFTS BTs could 

capture the water vapor variations in a convective atmosphere near a dry line. It is noted that not only 

water vapor channels but also carbon dioxide channels contain useful water vapor information, which 

explains the variations of BTs both in carbon dioxide and water vapor channels in Figs. 2.13 and 2.14. 

 GIFTS will provide not only high vertical and horizontal resolution data, but also with high 

temporal resolution (10 seconds). It is important to examine the temporal evolution of simulated BTs. 

Figures 2.16 and 2.17 show the temporal variation of BTs in GIFTS water vapor channels (Fig. 2.16) 

and carbon dioxide channels (including window channels) (Fig. 2.17) using AERI and MM5 hourly 
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forecasts within the time period from 1200 UTC 12 to 1200 UTC 13 at the Vici location. Figure 2.18 

shows the GOES-8 satellite derived hourly cloud top pressure (CTP) at the Vici location from 1200 

UTC 12 to 1200 UTC 13. The AERI data have a 10-minute time interval and thus there are 139 vertical 

profiles (excluding the missing data) of AERI water vapor and temperature in this 24-h time period. 

Since the RTM used to calculate the GIFTS radiances is only suitable for clear sky atmospheres, cloudy 

profiles (see Fig. 2.18) are also removed from Figs. 2.16 and 2.17. Comparing with Figs. 2.8 and 2.9, it 

is apparent that GIFTS BTs in the water vapor channels (Fig. 2.16) capture the main features of the 

temporal evolutions of the vertical structures of both temperature and water vapor. The BTs show a 

decrease when convection is initiated. However, the decrease in BT is not as significant as the 

temperature itself, reflecting the added effect of water vapor whose decrease will increase the BT values. 

GIFTS BTs in the carbon dioxide and window channels (Fig. 2.17) reflect more enhance features of both 

temperature and water vapor than seen in Figs. 2.8 and 2.9. Differences of BTs between AERI 

simulations (Figs. 2.16a and 2.17a) and MM5 forecast simulations (Figs. 2.16b and 2.17b) are consistent 

with the differences between AERI observed and MM5 forecasted temperature and water vapor fields. 

These results suggest that GIFTS BTs could capture the rapid temporal evolution of the atmospheric 

water vapor and temperature evolution within a convective system. 

2.7 Conclusions 

 It is believed that QPFs will be greatly improved if satellite observations such as those from 

GIFTS are made available for mesoscale forecasts. This study demonstrates the potential capability for 

GIFTS to provide observations that resolve 4D variability of the atmosphere prior to and throughout a 

convective event. Observations from IHOP_2002 field experiments are used for simulating GIFTS BTs 

and for verifying model forecasts. A high resolution MM5 simulation is made and compared to 

observations. 

 Specifically, a set of high vertical and temporal resolution temperature and water vapor profiles 

within a convective system from dropsondes, AERI and SRL were used to examine the temporal and 

vertical variability of the atmosphere, to simulate GIFTS measurements, and to make comparisons with 

model forecasts. Both observed and modeled profiles show remarkable temporal and vertical variability 

of water vapor during the CI period. It was shown that GIFTS BTs could capture the temporal and 

vertical variability seen in the water vapor and temperature fields within a convective system. The 

along-track characteristic features of the atmosphere near a dry line and outflow boundary can be 
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represented by simulated GIFTS measurements. In addition, the strong water vapor variability is found 

in both the carbon dioxide and water vapor channels of the GIFTS measurements. 

 At a given time and spatial location, a hyperspectral geostationary satellite system provides 

radiance measurements at thousands of channels. Radiances at different channels are sensitive to the 

atmospheric state within different layers of the atmosphere with different thicknesses. Having seen the 

capability for a hyperspectral geostationary satellite measurement system to capture observed temporal 

and vertical variability within a convective system, we will (i) study how the multi-channel radiance 

information (in spectral space) can be effectively transferred into an explicit description of the vertical 

variability of the atmosphere (in vertical space) and (ii) assess the potential values of GIFTS-type 

measurements to improved forecasts of mesoscale convection at various stages of development, 

including initialization, intensification, movement and decaying. Such a study will provide useful 

insights on the predictability of convection.  
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Figure 2.1: (a) GIFTS forward model spectral coverage and the brightness temperature spectrum of a 
cloud-free atmosphere. The two solid horizontal lines indicate GIFTS two spectral bands (685 – 1150 
cm-1 and 1650 -2250 cm-1). Input profiles for the simulated GIFTS brightness temperature in (a) are 
shown in (b) for temperature and (c) for water vapor mixing ratio. 

(a) 

(b) (c) 
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Figure 1.2: (a)-(b) Sea level pressure (contour interval: 1 hPa) and 10 meter wind at (a) 1200 UTC 12 
and (b) 0000 UTC 13 June 2002. (c)-(d) The 2-meter specific humidity (shaded, g/kg) and temperature 
(contour interval: 2o C) at (c) 1200 UTC 12 and (d) 0000 UTC 13 June 2002 from NCEP reanalysis. 

(a) 

(d) (c) 

(b) 
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Figure 2.3: Radar reflectivity at (a) 2100 UTC 12 June, (b) 0000 UTC 13 June, and (c) 0300 UTC 13 
June 2002 (from http://data.eol.ucar.edu/codiac/dss/id=77.091). Cold front, dry line, outflow boundary, 
gust front boundary and squall line boundary are indicated schematically by while lines in each figure. 
The locations of all above boundary lines are adopted from Wilson and Roberts (2007).  
 
 
 
 

(a) (b)

(c) 
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Figure 2.4: NCEP observed 3-h accumulative rainfall (mm) ending at (a) 0000 UTC, (b) 0300 UTC, 
and (c) 0600 UTC June 13 2002. Lamont and Vici stations in Oklahoma are indicated in (a). 
 
 
 
 
 

(a) 

(b) (c) 



 

19 
 

 

 

  
Figure 2.5: Same as Fig. 2.4 except for MM5 model simulation initialized at 0000 UTC 12 June 2002. 

(a) 

(b) (c) 
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Figure 2.6: Threat scores for 3-h accumulative rainfall ending at (a) 0000 UTC 13 June, (b) 0300 UTC 
13 June, and (c) 0600 UTC 13 June 2002. The threat scores are calculated within the rectangular area 
indicated in Fig. 2.4b by red lines. 

(c) 

(a) (b) 
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Figure 2.7: Time evolution of water vapor from 1200 UTC 12 to 1200 UTC 13 at the Lamont location 
(see Fig. 2.4a). (a) Lidar observation at 10-minute interval. (b) High-resolution MM5 simulation at 1-h 
interval. Shown at the bottom of each figure are the hourly precipitations from NCEP 4-km rainfall 
observations and MM5 model simulations. 

(a) 

(b) 
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Figure 2.8: Time evolution of water vapor from 1200 UTC 12 to 1200 UTC 13 at the Vici location (see 
Fig. 2.4a). (a) AERI observation at 10-minute interval. (b) High-resolution MM5 simulation at 1-h 
interval. The blank area in (a) indicates missing data. Shown at the bottom of each figure are the hourly 
precipitations from NCEP 4-km rainfall observations and MM5 model simulations. 

(a) 

(b) 
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Figure 2.9: Same as Fig. 2.8 except for temperature. 

(b) 

(a) 
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Figure 2.10: Surface water vapor mixing ratio (shaded) and temperature (contour) at 1900 UTC 12 June 
2002 from the high resolution MM5 simulation. The white plus symbols indicate the locations of the 
two dropsonde flight legs from the Flight International Learjet aircraft. Data on the first leg (the flight 
track with a larger slope) were collected from 1918:56 UTC at the north end to 1940:53 UTC at the 
south end on 12 June 2002. Data on the second leg (the track with a smaller slope) were collected from 
2047:38 UTC at the north end to 2111:38 UTC at the south end of the track on 12 June, 2002. 
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Figure 2.11: Cross-sections of (a-b) water vapor mixing ratio (g/kg) and (c)-(d) temperature (shading) 
(K) temperature anomaly (contour) (K, temperature minus the mean temperature averaged along the 
flight leg) from dropsondes (left panels) and the high-resolution model (right panels) simulation along 
the first flight leg from the south end to the north end (see Fig. 2.10). 
 
 

(a) (b) 

(d) (c) 
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Figure 2.12: Skew-T diagrams from the dropsonde data and high-resolution MM5 model forecast (right 
panels) during the first flight (left panels) at time (a)-(b) 1931:43 UTC and (c)-(d) 1934:38 UTC. The 
first and second soundings are 65-km and 45-km from the southern end of the flight leg, respectively. 

(b) (a) 

(c) (d)



 

27 
 

 

 
Figure 2.13: Cross-sections of dropsonde-simulated (left panels) and model-simulated (right panels) 
GIFTS brightness temperature (Tb) along the first flight leg (from the south end to the north end, see Fig. 
2.10) for (a)-(b) carbon dioxide plus window channels and (c)-(d) water vapor channels. 

(a) (b) 

(c) (d)
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Figure 2.14: Same as Fig. 2.13 except for using the along-track mean temperature profile. 

(b)

(d) 

(a) 

(c) 
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Figure 2.15: Same as Fig. 2.13 except for using the along-track mean water vapor profile. 

(b) (a) 

(d) (c) 
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Figure 2.16: Time-height cross-section of (a) AERI-simulated GIFTS brightness temperature (Tb) and 
(b) model-simulated Tb for the water vapor channels at the period of 1200 UTC 12 to 1200 UTC 13 at 
the Vici location (See Fig. 2.4a). The blank area in (a) indicates either missing AERI data or cloudy 
profiles. 

(a) 

(b) 
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Figure 2.17: Same as Fig. 2.16 except for carbon dioxide and window channels. 

(a) 

(b) 
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Figure 2.18: Cloud top pressure at the Vici location from GOES-8 satellite data during the 24-h period 
from 1200 UC 12 to 1200 UTC 13 June 2002. 
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CHAPTER 3 

1D-VAR ASSIMILATON OF AIRS RADIANCES SIMULATED WITH 
DROPSONDE DATA  

 
 
 

3.1 Introduction 

 Insufficiency of observations over oceans contributes partly to the difficulties of the prediction of 

hurricane intensity and inner-core structure. Hyperspectral infrared radiance data have been 

demonstrated to have the ability to resolve 3D variability of the atmosphere prior to and throughout a 

convective event (Lin and Zou 2008). Atmospheric Infrared Sounder (AIRS, Aumann et al. 2003) data, 

which provide high spectral and spatial resolution infrared radiance data, have been shown to have 

positive impact on both global and mesoscale forecasts (Le Marshall et al. 2005 and 2006; Chahine et al. 

2006; McNally et al. 2006; Joiner et al. 2007; Carrier 2008). Effective utilization of AIRS radiance data 

within and around tropical cyclones (TCs), however, still remains to be seen. This chapter presents the 

first step of applying AIRS data to tropical cyclone prediction. 

 A reduced set of AIRS channels has been selected by the AIRS science team (Susskind et al. 

2003) and are distributed to several Numerical Weather Prediction (NWP) centers for operational 

weather prediction in near real time (NRT) by National Oceanic and Atmospheric Administration 

(NOAA) National Environment Satellite Data and Information Service (NESDIS) (Goldberg et al. 2003). 

The assessment of the AIRS NRT channel set has been made and shown to satisfactorily capture most of 

the variability of different atmospheric situations (Fourrié and Thépaut 2003); however, no such 

assessment of NRT channel set for TCs has been made. In this study, aircraft dropsonde data is used to 

simulate AIRS radiances and to study how well AIRS could capture the vertical variability of the 

atmosphere in TCs and how sensitive 1D-Var assimilation results are to channel selections.  

 This chapter is organized as follows: a brief description of Hurricane Rita and its operational 

forecast results are summarized in section 3.2. Section 3.3 gives a description of dropsonde and AIRS 

data. The comparison between NCEP analysis and dropsonde data is given in Section 3.4. In Section 3.5, 

five sets of 1D-Var twin experiments are performed to assess the ability of the AIRS NRT channel set or 

other selections of channels to capture the atmospheric variability of temperature and water vapor within 
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TCs. Differences in 1D-Var retrievals resulting from several difference choices of AIRS channels are 

also presented in section 3.5. Section 3.6 gives summary and conclusions. 

3.2 Case Description 

3.2.1 An Overview of Hurricane Rita 

 Hurricane Rita (2005) is chosen for this study. Figure 3.1 shows the track (Fig. 3.1a), the 

maximum wind speed (Fig. 3.1b) and the minimum sea level pressure (Fig. 3.1c) of the observed 

Hurricane Rita based on Tropical Prediction Center (TPC) data provided by National Hurricane Center 

(NHC). Hurricane Rita originated from a complex interaction between a tropical wave and the remnants 

of a cold front (Beven et al. 2008). A tropical depression formed at 0000 UTC 18 September 2005 

approximately 70 n mi east of Grand Turk in the Turks and Caicos. It became a tropical storm by 1800 

UTC 18 September 2005. Rita then moved westward, strengthened and reached hurricane intensity (of 

70 kt maximum wind) by 1200 UTC 20 September when it was about 100 n mi east-southeast of Key 

West, Florida. Due to the warm water condition, Rita continued its intensification in the following day, 

reaching category 5 strength at 1800 UTC 21, with a maximum wind of 145 kt (Fig. 3.1b) and a 

minimum pressure of 920 hPa (Fig. 3.1c). Rita then remained as a category 5 hurricane for about 18 

hours, achieved its peak intensity of 155 kt (maximum wind) and 895 hPa (minimum central sea-level 

pressure) by 0300 UTC 22. Rita abruptly weakened to category 4 by 1800 UTC 22 due to the inner 

eyewall deterioration while moving northwestwardly. It weakened to a category 3 hurricane by 1800 

UTC 23 and remained as a category 3 hurricane until it made landfall at 0740 UTC 24 September. The 

approaching of Rita to the southwestern Louisiana coast provoked one of the largest evacuations in U.S. 

history, and caused seven fatalities and about 10 billion dollars in total damage. 

3.2.2 Operational Forecast Results 

 The average official OFCL track forecast errors for Rita are considerably smaller than the 

corresponding average official Atlantic track errors for the 10-year period 1995-2004 although OFCL 

errors varied widely during the life span of Rita (Knabb et al. 2006). The average official intensity errors, 

however, are considerably larger than the corresponding Atlantic 10-year average. OFCL did not predict 

well the rapid intensification of Rita from a tropical storm to a Category 5 hurricane in less than 36 h 

(Knabb et al. 2006). Figure 3.2 shows model-forecasted track and intensity for Hurricane Rita initialized 
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on 0600 UTC 19 Sep. 2005 officially from the NHC (OFCL), the Geophysical Fluid Dynamics 

Laboratory (GFDL), and the Navy Operational Global Prediction System (NGPS). The GFDL Hurricane 

model is a limited-area, grid-point model that was designed especially for TC prediction. The GFDL 

model consists of a triply-nested grid configuration with an outer mesh resolution of 1/2o (approximately 

30 km), and a finest resolution of 1/12o (approximately 9 km) (Bender et al. 2007). The GFDL uses a 

sigma vertical coordinate system with 42 vertical levels. The NGPS model is a global spectral model 

with approximately 55 km horizontal grid spacing and 30 vertical levels. As shown in Fig. 3.2, the 

OFCL produced the most accurate track prediction during the first 72 h but had a westward shift from 

the observed track in the following 24 h. The GFDL predicted hurricane has a systematic northward 

shift throughout the 5-day forecast period. The track forecast from NGPS follows that of GFDL in the 

first 3.5 days and experiences a westward shift as is seen in the OFCL forecast. The intensity forecasts 

vary greatly among three models. The GFDL hurricane intensified more rapidly than the observed and 

reached the maximum intensity 40 h earlier than the observed Rita. Neither OFCL nor NGPS captured 

the rapid intensification of Hurricane Rita. The averaged intensity forecast from OFCL is much better 

than NGPS. 

3.3 Data Description 

3.3.1 Dropsonde Observations 

 The dropsonde data from the Gulfstream-IV (G-IV) airplanes, operated by the National 

Hurricane Center, for Hurricane Rita (2005) are used for this study. Using Global Positioning System 

(GPS) dropwindsondes (Hock and Franklin 1999, Rogers et al. 2002), the airplane G-IV observes the 

pressure, temperature, relative humidity, and wind within tropical storms to improve its forecast (Burpee 

et al. 1996; Aberson and Franklin 1999, Rogers et al. 2002). There are a total of 203 dropsonde profiles 

from airplane G-IV available from 19 September to 23 September 2005. The spatial distributions of 

these dropsonde soundings are shown in Fig. 3.3. Data are available up to around 13-14 km (or 150 hPa) 

altitude at 0.5 seconds vertical resolution. There are 11 dropsonde profiles (Fig. 3.4) which have 

significant missing data and are not used in this study, leaving a total of 192 dropsonde profiles from 

which AIRS radiances are simulated and with which the results of 1D-Var retrieval are compared. It is 

known that the dropsondes drift from where they are dropped. The drift distance was calculated for each 

dropsonde profile. Figure 3.5 shows the mean drifting distance and the mean drifting distance plus or 
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minus the standard deviations of the distances. It can be seen from Fig. 3.5 that the maximum mean 

distance is less than 8 km near the surface. 

3.3.2 NCEP Analysis 

 The National Centers for Environmental Prediction (NCEP) global analysis are available at 6-h 

intervals with 0 01 1�u  horizontal resolution at 26 pressure levels from 1000 hPa to 10 hPa, with an 

exception of relative humidity being available only below 100 hPa. The NCEP analysis at the nearest 

time to the release time of dropsonde (within 3�r h), bi-linearly interpolated to dropsonde locations, are 

used as the input background profiles of all the 1D-Var experiments. It is noted that the dropsonde 

temperature data were assimilated in the Global Data Assimilation System (GDAS), which generates 

NCEP analyses (Abserson and Franklin 1999; Aberson 2002). It is also noted that at the time of 

Hurricane Rita, the NCEP analysis did not assimilate AIRS data in their assimilation.  

 Figure 3.6 shows the mean temperature difference (Fig. 3.6a) and mean relative humidity (Figs. 

3.6b,c,d) from dropsondes and NCEP analysis, calculated from 192 profiles within Hurricane Rita. It is 

noted from Fig. 3.6a that temperature from NCEP is warmer below and colder above 450 hPa than 

dropsonde measurements (Fig. 3.6b), reaching a maximum difference of about 1.7oC near 1000 hPa. It is 

noted that the calculation methods for relative humidity used in dropsonde observation and NCEP 

analysis for temperature below 0oC differ. Figure 3.6b shows the mean relative humidity from 

dropsondes and NCEP analysis without the corrections. Figure 3.6c shows the mean relative humidity 

from dropsondes and NCEP analysis with RH values calculated with respect to liquid water for 

temperatures above 273 K, with respect to ice for temperatures below 253 K, and with respect to 

blending of water and ice for temperatures between 253 K and 273 K. Figure 3.6d shows the mean 

relative humidity with RH values calculated with respect to liquid water. The saturation vapor pressure 

formulation from Murray (1967) is used in the calculation. It is noted that the relative humidity of NCEP 

is larger than that from dropsonde data in the upper troposphere. After correction using the same 

formulation, the relative humidity from the NCEP analysis is larger than dropsonde observations by 

~5% in the upper troposphere. It is also noted that we will use the dropsonde data as the “truth” to 

generate the simulated AIRS brightness temperature during Hurricane Rita, so the original relative 

humidity values will be used in this study.  



 

37 
 

3.3.4 AIRS Observations 

 AIRS, launched in May 2002 on the NASA Earth Observing System (EOS) polar-orbiting Aqua 

platforms, is an infrared spectrometer that covers the 3.7-15.4 m�P  spectral range with 2378 spectral 

channels (Aumann et al. 2003). AIRS data are available twice daily with 13.5 km spatial resolution at 

nadir (Aumann et al. 2003). The AIRS Infrared (IR) level 1B data contain EOS Aqua AIRS calibrated 

infrared radiances. AIRS data during a one-day period are divided into 240 scenes (granules), each of 6 

minutes duration. The level 1B radiances are used in this study and are converted to brightness 

temperature (BT) by the inverse of the Planck function. The readers are referred to Aumann et al. (2003) 

and Pagano et al. (2003) for more details on AIRS instrumentation and performance. The measurement 

goal of AIRS is to retrieve temperature and water vapor profiles with accuracies approaching those of 

conventional radiosonde data. As the primary scientific achievement, AIRS has improved weather 

prediction (Le Marshall et al. 2005 and 2006; Chahine et al. 2006). 

3.4 Comparison between NCEP Analysis and Dropsonde Data 

 The AIRS observation errors have been evaluated and estimated at ECMWF using AIRS 

observations and background-simulated radiance (McNally et al. 2006). In Jointer et al. (2007), when 

assimilating AIRS radiance data, error for each selected AIRS channel is assigned a value calculated by 

the difference between the observed and background BTs. In this study, the AIRS observation errors 

within hurricane environment have been estimated based on the differences of radiances simulated from 

dropsonde and those from NCEP analysis using the Stand-alone AIRS Radiative Transfer Algorithm 

(SARTA, Strow et al. 2003) model. Specifically, the variance 2�V  at the th�D  channel is calculated by  

    
�V�D

2 � 
1

192
Ti ,NCEP

b,�D �� Ti ,drop
b,�D �� �H�D� � � �2

i � 1

192

�¦ , (3.1) 

and 

    
�H�D � 

1
192

Ti ,NCEP
b,�D �� Ti ,drop

b,�D�� ��
i � 1

192

�¦ ,  (3.2) 

where   
Ti ,NCEP

b,�D
 is the SATAR model simulated AIRS brightness temperature (BT) in channel �D from 

the NCEP analysis corresponding to the ith dropsonde profile while Ti ,drope
b,�D

 is the same as Ti ,NCEP
b,�D

 

except for using dropsonde data as input to SARTA model. 
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 The AIRS’s 2378 channels are approximately classified into five groups: stratospheric carbon 

dioxide channels, tropospheric carbon dioxide channels, ozone channels, water vapor channels, and 

window channels. There are two spectral bands in AIRS that are carbon dioxide bands: one from 649 

1cm��  to 810 1cm��  (this is also referred to as the 15 m�P  longwave band) and the other from 2181 1cm��  

to 2450 1cm��  (the 4.3 m�P  shortwave band). The carbon dioxide channels with the peak weighting 

function (PWF) height above (below) than 200 hPa are regarded as stratospheric (tropospheric) carbon 

dioxide channels. AIRS window channels include two spectral bands at the longwave regions (810 1cm��  

to 980 1cm��  and 1080 1cm��  to 1136 1cm�� ) and one spectral band at the shortwave band (2450 1cm��  to 

2665 1cm�� ). The ozone channels have wavelengths ranging from 980 1cm��  to 1080 1cm��  (9.6 m�P  band) 

and the water vapor channels are from 1216 1cm��  to 1619 1cm�� . 

 Figure 3.7 is a scatter plot showing BT differences (Ti ,NCEP
b,�D �� Ti ,drop

b,�D ) for the 192 dropsonde 

soundings. It is seen that the difference in simulated AIRS radiances between dropsonde observations 

and NCEP analysis for individual soundings located within Hurricane Rita can be as large as 15oC�� . 

The largest difference is found in water vapor channels. In other classified channel groups, 

Ti ,NCEP
b,�D �� Ti ,drop

b,�D �d5oC . The mean and standard deviation of Ti ,NCEP
b,�D �� Ti ,drop

b,�D are shown in Fig. 3.8. The 

mean difference of brightness temperature is positive except for the water vapor channels and some low 

wavenumber tropospheric carbon dioxide channels. 

 Radiances are sensitive to both temperature and water vapor. Even in water vapor channels, 

radiances are more sensitive to temperature than to water vapor (Carrier et al., 2008). In order to see if 

the large differences of brightness temperatures in water vapor channels are caused by the large 

differences of water vapor content of the atmosphere between dropsonde and NCEP data (see Fig. 3.6b), 

BT differences are vertically arranged by the channels’ PWF height and shown in Figs. 3.9 and 3.10. 

Figures 3.9a shows the Ti ,NCEP
b,�D �� Ti ,drop

b,�D  differences for all of AIRS’s 2378 channels and Fig. 3.9b is the 

same as Fig. 3.9b except for the 324 NOAA/NESDIS NRT channels. The mean and standard deviation 

are shown in Fig. 3.10. It can be seen that the largest BT differences are located in upper troposphere for 

water vapor channels. In fact, the large negative BT differences from water vapor channels with PWF 

heights in the upper troposphere are consistent with the fact that NCEP analysis in the upper troposphere 

is significantly wetter than dropsonde data (see Fig. 3.6b). It is noted that the NRT channel set captures 

the general error pattern of AIRS BTs.  
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 Figure 3.11 shows the satellite images, BT differences, vertical profiles of temperature and 

relative humidity of four selected dropsonde soundings. It is noted that different thermodynamic 

structures within hurricanes result in different PWF height distributions as well as different BT 

differences. This suggests a need to develop a sounding-dependent channel selection method, which is 

discussed in Section 3.5. 

 The variances and mean errors for AIRS channels are estimated and evaluated from dropsonde 

and NCEP simulated SARTA BTs. The channel dependent variances will be used in the 1D-Var twin 

experiments. 

3.5 The 1D-Var Experiments 

3.5.1 Mathematical Formulation of Cost Function 

 The variational assimilation method proposed by Le Dimet and Talagrand (1986), and utilized by 

Eyre et al. (1993) to include satellite observed radiances, minimizes the value of a scalar cost function: 

 

, T 1 , T 11 1
( ) ( ( ) ) ( ( ) ) ( ) ( ),

2 2
obs obs b bJ H H� D � D� � � ��  � � � � � �� � � �x x T R x T x x B x x  (3.3) 

where x  is a state vector composed of atmospheric variables (temperature and relative humidity profiles 

in this study) and bx  is a background vector usually composed of values taken from a previous forecast 

(in this study, use NCEP analyses as bx ). ,obs�DT  is the observed AIRS BT or simulated SARTA BT at 

the th�D  channel. ( )H x  is the SARTA model that computes simulated BTs using the input values 

provided by x . R  is the estimated error covariance of the ,obs�DT  observations. Finally, B  is the 

estimated error covariance of the background field. The errors are assumed to be uncorrelated between 

channels.  

 For simplicity, the background error covariance matrix is assumed diagonal. The diagonal 

elements of B  are calculated based on the differences between NCEP analysis and dropsonde data using 

the National Meteorological Center method (Parish and Derber 1992; Amerault and Zou 2006). 

Assuming d  represents temperature (T) or relative humidity (f), then the diagonal elements of B  are 

estimated using 

    
�V

i ,db

2 � 
1
N

(di , p �� di )
2

p� 1

N

�¦ , i=1, 2, …,k  (3.4) 
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where N is the total number of dropsonde profiles ( 192N � ), dropsonde
pi

NCEP
pipi ddd ,,, ���  is the difference 

between NCEP and dropsonde profiles, ,
1

1 p N

i i p
p

d d
N

� 

� 

� �¦  is the mean difference over all dropsonde 

soundings, and k  is the number of vertical levels ( 38K � ). The 38 vertical levels extend from 986 hPa 

to 247 hPa. 

 Figure 3.12 shows the numerical results of the standard deviations (STD) of both temperature (T) 

and relative humidity (f), i.e., 
  
�V

i ,Tb and �V
i , f b . The standard deviation of temperature remains nearly 

constant in both the low troposphere (about 0.74 K) and the upper troposphere (0.58 K). The standard 

deviation of relative humidity increases with height, reaching 19% at about 300 hPa. 

 To minimize the cost function ( )J x , the gradient of ( )J x  is needed, which can be written as: 

  
1 , 1( ) ( ( ) ) ( ),obs bJ H �D� � � �� ’ �  � � � � � �Tx H R x T B x x  (3.5) 

where 
( )H�w

� 
�w

x
H

x
 is the tangent linear operator of the SARTA model and TH  is the adjoint operator 

of SARTA. The Quasi-Newton limited memory BFGS (Broyden, Fletcher, Goldfarb, and Shanno) 

method (LBFGS) (Nocedal 1980, Liu and Nocedal 1989) is used to find the minimum of the cost 

function. The AIRS SARTA 1D-Var system first developed by Carrier (2008) is used in this study. 

3.5.2 Channel Selection 

 It is well known that the weighting function (WF) quantifies the contribution of emission from 

each atmospheric layer to the total emission at the top of the atmosphere. The peak weighting function 

(PWF) height of a channel and the width of the WF indicate which atmospheric layer and how thick this 

layer is that contributes most significantly to the measured radiance. Two channels can have the same 

PWF height, but the BT differences are different due to different broadness of WF of these two channels. 

In order to study the sensitivity of channel selection on the 1D-Var results, five sets of 1D-Var 

experiments are performed using different channel combinations (Table 1). The first set of 1D-Var 

experiments is conducted using all AIRS channels (E1_ALL). The second set of experiments includes 

237 NRT channels. Channels assimilated in E3-NW are selected as follows: excluding NRT channels, 

the remaining channels are placed in two groups: carbon dioxide channels and water vapor channels. For 

each dropsonde profile, at each PWF height, two channels with the narrowest widths and two channels 

with the widest widths are selected from each of the two groups, where the width of a channel is defined 



 

41 
 

as the pressure difference for which the WF is at or greater than 90% of its peak value (Joiner et al. 

2007). If there are no more than four channels at the same PWF height, all channels are selected. 

 Two additional sets of experiments are carried out to further improve the accuracy of the 1D-Var 

retrieval in the lower troposphere. The experiment E4_ALL500-700 is the same as E3_NW except all 

channels with PWF height within 500-700 hPa are added. The fifth experiment (E5_SM500-700) is the 

same as E4_ALL500-700 except only some channels with PWF heights within 500-700 hPa are 

included. Figure 3.13 shows the WFs of 43 channels selected from a total of 435 channels with PWF 

height within the layer between 500-700 hPa for the dropsonde profile in Fig. 3.11c. These channels are 

selected as follows: The black dashed line connects the two points: (0.5, 700) and (1, 1000). The lower 

branch of each WF intersects with the dashed line. The distance of each intersection to the point of (0.5, 

700) is calculated, with the pressure being normalized by 1000 (hPa). In order words, the point of (0.5, 

700) is transformed to (0.5, 0.7) and the point of (1, 1000) becomes (1, 1). The dashed line from point 

(0.5, 0.7) to point (1, 1) is divided into 0.01 interval. One channel is selected in each interval. If there is 

more than one channel in one interval, the channel with the minimum variance estimated from 192 

profiles is selected.  

 Figure 3.14 plots the widths of WF for the dropsonde profile in Fig. 3.11c with PWF height at 

640 hPa. Figure 3.15 is the same as Fig. 3.14 except for the dropsonde profile in Fig. 3.11d with PWF 

height at 684 hPa. It is thus seen that the proposed three additional channel selections (E3, E4 and E5) 

are sounding dependent. 

3.5.3 Numerical Results 

 1D-Var twin experiments were performed over all of the 192 dropsonde profiles. The 

convergence of the 1D-Var experiments is examined first. Figures 3.16 and 3.17 show the mean and 

standard deviation of model minus “observed” (i.e., dropsonde simulated) BT differences for the 237 

NRT channels before and after 1D-Var shown in terms of wavelengths (Fig. 3.16) and PWF heights (Fig. 

3.17). It can be seen that the BT differences, mean BT differences, and the standard deviations of BT 

differences are significantly reduced after the 1D-Var experiments.  

 Figures 3.18 and 3.19 show the mean and root mean square (RMS) of background and analysis 

errors for temperature and relative humidity, respectively. It can be seen that assimilation of AIRS 

radiances reduces the mean and RMS errors, especially in the lower troposphere, where the temperature 

differences between dropsonde and NCEP analysis are largest. An error reduction of more than 1oC  is 
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obtained in the temperature analysis by assimilating all channels of AIRS in the lower troposphere. The 

NRT channels seem to be sufficient for observing the atmosphere above 700 hPa, but not below 700 hPa. 

The E2_NRT analysis is not as accurate as the E1_ALL analysis. Adding more channels to the NRT 

selection (E3_NW) further improved the accuracy of the temperature analysis in the lower troposphere. 

The relative humidity errors are reduced significantly, especially in the upper troposphere where the 

dropsonde and NCEP relative humidity differences are extremely large. The mean error of the analysis 

from any of the three experiments (E1_ALL, E2_NRT, and E3_NW) is less than 5% and the RMS error 

is less than 12%. Adding more channels to the NRT selection (E3_NW) only slightly improved the 

accuracy of the relative humidity analysis in the upper troposphere.  

 Results of two single-sounding experiments assimilating five different sets of AIRS channels 

(see Table 3.1) are shown in Fig. 3.20, in which the temperature differences (T �� T drop ) are shown for 

the dropsonde profile in Fig. 3.11c and Fig. 3.11d. It is seen that the adding more channels within the 

500-700 hPa layer improves the retrieval accuracy below 700 hPa. It is also noted that the retreival 

accuracy adding much fewer channels in E5_SM500-700 (43 and 39 channels for the soundings in Fig. 

11c and 11d respectively) is close to that in E4_ALL500-700, for which a total of 435 and 170 channels 

with PWF in 500-700 hPa are added to E3_NW for the soundings in Fig. 3.11c and 3.11d respectively. 

 If there are very few channels or none available within the layer between 500-700 hPa, if there 

are enough other channels within the layer between 500-700 hPa in E3_NW, or if the the WFs are 

narrow and do not extend into the lower troposphere, improvements from E5_SM500-700 on results 

from E3_NW in the low troposphere are found to be marginal. Figure 3.21 presents the numerical results 

for the dropsonde profile in Fig. 3.11b. The WFs of those channels added in E5_SM500-700 for the 

dropsonde profile in Fig. 3.11b are quite narrow. Improvement on the accuracy of the analysis is neither 

achieved by E4_ALL500-700 nor by E5_SM500-700. 

 A total of 42 dropsonde soundings is found for which the accuracy of the temperature analysis at 

904 hPa is improved by more than 0.05oC  when compared with E3_NW. Figure 3.22 shows the RMS 

and mean errors of temperature averaged over these 42 dropsonde profiles. It is apparent that adding a 

subset of middle-level channels improves the retrieval accuracy in the lower troposphere. The 

E5_SM500-700 analysis is nearly as accurate as that of E4_ALL500-700, although the former uses more 

10 times less channels than the latter (Fig. 3.23). The total number of channels included in the 

assimilation experiments E2_NRT and E3_NW are also shown in Fig. 3.23. It is felt that the channel 

selection used for E5_SM500-700 is probably adequate for assimilating AIRS data in hurricanes. 
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3.6 Summary and Conclusions 

 As the first step of applying AIRS data on tropical storm prediction, five sets of 1D-Var twin 

experiments are carried out to study the ability for AIRS data to capture the vertical variability within 

TCs and the sensitivity of retrieval results to channel selection. The AIRS observation errors have been 

estimated using a set of dropsonde profiles during Hurricane Rita. Five AIRS channel sets have been 

selected based on the vertical location of PWF, as well as the width and shape of WFs. The temperature 

and relative humidity retrievals are much more accurate than the NCEP background profiles after the 

assimilation of dropsonde-simulated AIRS radiances. It is noted that by adding the narrowest and widest 

channels to the NRT channels, the retrieval accuracy could be further improved. It is also found that the 

channels with PWF within the layer between 500-700 hPa could provide useful information for the 

atmospheric state below 700 hPa, depending on the structure of WFs.  

 Having seen the capability of simulated AIRS radiances to capture the vertical variability within 

hurricane environment through 1D-Var twin experiments, we will move on to the assimilation of AIRS 

radiance data using the channel selection method of E5_SM500-700 with verifications using 

independent observations. 
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Table 3.1: Five sets of 1D-Var experiments using different combinations of AIRS channels. 

1D-Var Exp. Description 
E1_ALL  All channels*  
E2_NRT  NRT channels  

E3_NW 
E2_NRT channels plus 2 narrow and 2 wide channels at 
each PWF height in each of carbon dioxide and water vapor 
groups  

E4_ALL500-700 E3_NW channels plus all other channels with PWF within 
500-700 hPa  

E5_SM500-700 E3_NW plus some channels within 500-700 hPa selected 
based on WF width 

    *Channels with PWF heights above 200 hPa are excluded in all experiments.  
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Figure 3.1: The observed (a) track, (b) maximum wind, and (c) minimum SLP of Hurricane Rita during 
a nine-day period from 0000 UTC 18 to 0600 UTC 26 September 2005 plotted at 6-h interval. 

(b) 

(c) 

(a) 
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Figure 3.2: The observed and model forecasted (a) track, (b) maximum wind speed and (c) minimum 
SLP for Hurricane Rita. Model forecasts are initialized at 0600 UTC 19 September 2005. The GFDL 
hurricane model is a limited-area, grid-point model that was designed especially for the TC prediction. It 
consists of a triply-nested-grid configuration with an outer mesh resolution of 1/2o (approximately 30 
km), and a finest mesh resolution of 1/12o (approximately 9 km) (Bender et al. 2007). The GFDL uses a 
sigma vertical coordinate system with 42 vertical levels. The NGPS model is a global spectral model 
with approximately 55-km horizontal grid spacing and 30 vertical levels. OFCL is the official forecast 
from NHC. 

(a) 

(b) (c) 
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Figure 3.3: Spatial distribution (19-23 September, 2005) of a total of 203 dropsonde soundings from the 
Gulfstream IV airplane (N49RF) during a 5-day period from 19 to 23 September for Hurricane Rita. 
Dropsonde locations on 19, 20, 21, 22, and 23 are indicated by red, blue, magenta, black and green 
symbols. The cyan circle symbols are added to the plus symbols to indicate the 11 removed profiles due 
to missing data. 
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Figure 3.4: The 11 removed dropsonde profiles with missing temperature data (blue) and relative 
humidity data (red). 
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Figure 3.5: The mean drifting distance (solid blue line) calculated from all 192 dropsonde profiles. The 
red dashed lines are the mean drifting distance plus and minus the standard deviations of the distances. 
For each dropsonde profile, the distance is the vertical location of each dropsonde profile to the 
beginning releasing location. 
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Figure 3.6: (a) Mean temperature difference (NCEP minus dropsonde), (b) Mean dropsonde (red) and 
NCEP (blue) relative humidity profiles without corrections, (c) mean dropsonde and NCEP relative 
humidity (RH) profiles with RH values calculated with respect to liquid water for temperatures above 
273 K, with respect to ice for temperatures below 253 K, and with respect to blending of water and ice 
for temperatures between 253 K and 273 K, and (d) the same as (c) except that RH values are calculated 
with respect to liquid water. The mean dropsonde (NCEP) profiles are calculated from 192 dropsonde 
(NCEP) profiles during Hurricane Rita.  

(a) (b) 

(c) (d) 
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Figure 3.7: Difference (Ti ,NCEP
�D �� Ti ,dropsonde

�D ) between dropsonde simulated and NCEP simulated BTs for 

AIRS channels using a total of 192 dropsonde and NCEP temperature and water vapor relative humidity 
profiles. The green color indicates the stratospheric carbon dioxide channels (with peak weighting 
function height above 200 hPa); the magenta color indicates the tropospheric carbon dioxide channel 
(with peak weighting function height below 200 hPa); the blue color indicates the window channel; the 
cyan color indicates the ozone channel; the red color indicates the water vapor channel. 
 



 

52 
 

 

 

Figure 3.8: (a) Standard deviation (�V) and (b) mean error (�H�D ) of brightness temperature in all AIRS 
channels. Different classified groups are indicated in color as in Fig. 3.7. 

(b) 

(a) 
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Figure 3.9: Difference Ti ,NCEP
b,�D �� Ti ,drop

b,�D  (i=1, 2, …, 192) for (a) all AIRS channels and (b) 324 

NOAA/NESDIS NRT channels. Differences are vertically arranged by peak weighting function height 
calculated from dropsonde data. Different classified groups are indicated in color as in Fig. 3.7.  

(a) 

(b) 
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Figure 3.10: Standard deviation (�V) (a-b) and mean error (�H�D ) (c-d) of brightness temperature 
differences in (a) and (c) for all AIRS channels, and (b) and (d) for 324 NOAA/NESDIS NRT channels. 
Standard deviation and mean errors are vertically arranged by the peak weighting function heights 
calculated from the mean dropsonde profile. Different classified groups are indicated in color as in Fig. 
3.7. 
 

(a) (b) 

(c) (d) 
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Figure 3.11: Satellite cloud images at (a) 0845 UTC 19 (b) 2345 UTC 19, (c) 2215 UTC 22, and (d) 
2015 UTC 23 September 2005. (e)-(h) BT differences for all AIRS channels vertically arranged by 
channels’ peak weighting function height. (i)-(l) Dropsonde temperature profiles. (m)-(p) Dropsonde 
relative humidity profiles. Locations of the four dropsonde profiles are indicated in (a)-(d) by blue “+”. 
(a) is obtained from NOAA/NESDIS/CLASS (see online at www.class.noaa.gov ) and (b)-(d) from NRL, 
Monterey, CA. 

(e) 

(a) 

(i) 

(m) 

(b) (c) 

(k) 

(d) 

(f) (g) (h) 

(j) (l) 

(n) (o) (p) 
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Figure 3.12: (a) Temperature and (b) relative humidity background error standard deviations calculated 
from the 192 dropsonde and NCEP profiles. 

(a) 

(b) 
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Figure 3.13: WFs of 43 channels selected from a total of 435 channels with PWF height within the layer 
between 500-700 hPa for the dropsonde profile in Fig. 3.11c.  
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Figure 3.14: The widths of WF for the dropsonde profile in Fig. 3.11c with PWF height at 640 hPa. (a) 
carbon dioxide channels, and (b) water vapor channels. The NRT channels are indicated in red; Added 
channels in E3 are in green; those selected in E5 are indicated in magenta; all remaining channels are 
indicated by black dashed line. The dashed cyan line indicates the PWF height. 

(a) 

(b) 
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Figure 3.15: Same as Fig. 14 except for the dropsonde profile in Fig. 3.11d with PWF height at 684 hPa.  

(a) 

(b) 
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Figure 3.16: Model minus observation BT differences (a) before (black) and (b) after (red) 1D-Var. (c) 
Mean BT differences. (d) Standard deviation (STD) of BT differences. 237 NRT channels are used in 
the 1D-Var assimilation experiments. 

(c) 

(a) (b) 

(d) 
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Figure 3.17: Same as Fig. 3.16 except that channels are vertically arranged by their PWF height. 
 

 

(a) (b) 

(d) (c) 
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Figure 3.18: 1D-Var twin experiment temperature (a) RMS error (averaged over 192 profiles) and (b) 
mean error (averaged over 192 profiles) with model temperature (T ) from background (blue), E1_ALL 
(solid black), E2_NRT (red), E3_NW (green). 

(a) 

(b) 
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Figure 3.19: Same as Fig. 3.18 except for relative humidity. 

(a) 

(b)
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Figure 3.20: Temperature differences (T �� T drop ) for the dropsonde profile in (a) Fig. 3.11c and (b) Fig. 
3.11d with model temperature (T ) from background (blue), E1_ALL (solid black), E2_NRT (red), 
E3_NW (green), E4_ALL500-700 (dashed black) and E5_SM500-700 (magenta).  

(a) 

(b) 
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Figure 3.21: (a) WFs of those channels added in E5_SM500-700 for the dropsonde profile in Fig. 3.11b. 
(b) Same as Fig. 3.20a except for the dropsonde profile in Fig. 3.11b. 

(a) 

(b) 
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Figure 3.22: 1D-Var twin experiment temperature (a) RMS error (averaged over 42 profiles) and (b) 
mean error (averaged over 42 profiles) with model temperature (T ) from background (blue), E1_ALL 
(solid black), E2_NRT (red), E3_NW (green), E4_ALL500-700 (dashed black) and E5_SM500-700 
(magenta). 

(a)

(b)
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Figure 3.23: Total number of channels used for the 42 dropsonde profiles for E2_NRT (red), E3_NW 
(green), E4_ALL500-700 (dashed black) and E5_SM500-700 (magenta).  
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CHAPTER 4 

ASSIMILATION OF AIRS RADIANCES AND VERIFICATION WITH 
INDEPENDENT OBSERVATIONS  

 
 
 

4.1 Introduction  

 High vertical temperature and water vapor data are critical for weather prediction. With its very 

high spectral resolution, vertical temperature and water vapor profiles with about 1-2 km vertical 

resolution can be obtained from AIRS measurements (Aumann et al. 2003, Susskind et al. 2003). The 

validation and comparison of AIRS retrievals with other measurements and model forecasts have been 

investigated intensively by previous researchers (Fetzer et al. 2003; Fetzer 2006; Tobin et al. 2006; 

Divakarla 2006; McMillin et al. 2007, Chou et al. 2009). A wide range of data sets including 

observations from assimilation models, operational radiosondes, meteorological surface instruments, 

instrumented commercial aircraft and surface marine buoys, as well as observations from instruments 

dedicated to AIRS product validation have been used in the AIRS validation activities (Fetzer et al. 

2003). In Divakarla et al. (2006), the AIRS retrieval profiles produced by an iterative physical retrieval 

algorithm (Susskine et al. 2003) have been compared with over a two-year period of matched radiosonde, 

model forecasts, and other satellite sounding systems. Their results showed that the RMS difference for 

clear-only cases is close to the expected goal accuracies of 1oC  in 1 km layers for temperature and 

better than 15% in 2-km layers for the water vapor. The specific humidity profiles retrieved from GPS 

RO data have been compared with AIRS humidity retrieval profiles and good agreement (generally less 

than 20% through the troposphere) averaged over large areas and extended periods of time was attained 

(Chou et al. 2009). A previous study has also demonstrated that the assimilation of AIRS data through 

the 1D-Var method can lead to a notable improvement in the temperature and water vapor profiles over 

background when compared to GPS RO data (Carrier 2008). The comparisons of AIRS retrieval profiles 

with other data sets during tropical cyclone environments, however, remained unexplored. Having seen 

the ability of AIRS data in capturing the vertical variability within a hurricane environment using 

simulated AIRS radiances in chapter 3, we will perform 1D-Var experiments using the real AIRS 

radiance data and compare the retrieval profiles with the GPS RO profiles and dropsonde profiles within 

TCs. 
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 In this chapter, a brief description about observations is given in section 4.2. The verification 

results of AIRS 1D-Var experiments, as well as the discussion of the discrepancy of the comparisons, 

are presented in section 4.3, with a summary provided in section 4.4. 

4.2 Observations  

4.2.1 AIRS Hyperspectral Radiances 

 AIRS, launched in May 2002 on the NASA Earth Observing System (EOS) polar-orbiting Aqua 

platforms, is an infrared spectrometer that covers the 3.7-15.4 m�P  spectral range with 2378 spectral 

channels (Aumann et al. 2003). AIRS data is available twice daily with 13.5 km spatial resolution at 

nadir (Aumann et al. 2003). The AIRS Infrared (IR) level 1B data contains EOS Aqua AIRS calibrated 

infrared radiances. AIRS data during a one-day period is divided into 240 scenes (granules), each of 6 

minutes duration. The level 1B radiances are used in this study and are converted to brightness 

temperature (BT) by the inverse of the Planck function. The readers are referred to Aumann et al. (2003) 

and Pagano et al. (2003) for more details on AIRS instrumentation and performance.  

4.2.2 GPS RO Data for Verification 

 The Global Positioning System (GPS) radio occultation (RO) limb-sounding technique makes 

use of radio signals from the GPS satellites to get Earth’s atmospheric soundings. The radio path of 

radio occultation transverses the Earth’s atmosphere and is deflected primarily by the vertical gradient of 

atmospheric refractivity. The vertical profiles of bending angle and refractivity can be derived from the 

raw RO measures of the excess Doppler shift to the radio signal transmitted by GPS satellite (Kursinski 

et al .1997). The dry and wet retrieval products can be generated from the refractivity profiles. The 

refractivity is related to atmospheric parameters following the equation (Bean and Dutton, 1968, Healy 

and Eyre 2000):  

  

5
277.6 3.73 10 wpP

N
T T

�  � � � u
 

(4.1) 

where p  is the pressure (hPa), T  is temperature (K), and wp  is water vapor pressure (hPa). The first 

term on the right-hand-side of (4.1) is the dry term; the second one is the wet term. In the COSMIC Data 

Analysis and Archive Center (CDAAC), a 1D-Var algorithm, using equation (4.1) as the forward 
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operator, is applied to retrieve both temperature and water vapor profiles (Healy and Eyre 2000; Palmer 

et al. 2000). 

 The GPS RO missions have been developed initially from GPS Meteorology (GPS/MET) 

(Kursinski et al. 1996) to a later GPS mission called the Challenging Minisatellite Payload (CHAMP; 

Wickert et al. 2001). Later, it was incorporated in the Argentina’s Satelite de Aplicaciones Cientificas-C 

(SAC-C; Hajj et al. 2004), and most recently in the Constellation Observing System for Meteorology, 

Ionosphere, and Climate (COSMIC; Anthes et al. 2008). The precision of COSMIC GPS RO soundings 

is the most accurate one with approximately 0.05o in the upper troposphere and lower troposphere 

(Anthes et al. 2008). Six low-Earth-orbit (LEO) microsatellites, which were launched on 15 April 2006 

into a circular, 72o inclination orbit at 512 km altitude, form the constellation for the COSMIC satellite 

system (Anthes et al. 2008). Approximately 2000 soundings per day are produced globally from current 

and near-final orbital COSMIC configuration (Anthes et al. 2008). The vertical resolution of RO data 

ranges from better than 100 m in the lower troposphere to about 0.5 km in the stratosphere. The great 

advantage of GPS RO data lies in the fact that they provide high vertical resolution temperature, 

pressure and water vapor information for all weather conditions. The COSMIC RO data from CDAAC 

will be used herein to compare with the AIRS 1D-Var retrieval profiles. 

4.2.3 Dropsonde Data for Verification 

 The dropsonde data from the Gulfstream-IV (G-IV) airplanes, operated by the National 

Hurricane Center, for Hurricane Rita (2005) are used as another verification data source. Using Global 

Positioning System (GPS) dropwindsondes (Hock and Franklin 1999, Rogers et al. 2002), the airplane 

G-IV observes the pressure, temperature, relative humidity, and wind within tropical storms to improve 

its forecast (Burpee et al. 1996; Aberson and Franklin 1999, Rogers et al. 2002). More details about the 

dropsonde data are given in chapter 3. 

4.2.4 MODIS Cloud Mask 

 The Aqua satellite’s Moderate Resolution Imaging Spectroradiometer (MODIS) is a 36-channel 

scanning radiometer and has 36 spectral bands with nadir spatial resolution of 250 m (bands 1-2); 500 m 

(bands 3-7); and 1000 m (bands 8-36) (Barnes et al. 1998, Platnick et al. 2003). The cloud properties 

from MODIS data on the pixel-level retrievals (the Level-2 products) have 1-km or 5-km spatial 
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resolution at nadir (Platnick et al. 2003). The MODIS cloud mask products for cloud identification and 

cloud height have been used by researchers to quantity the cloud property of AIRS pixels in each 

granule (Ackerman et al. 2002; Haines et al. 2004). The MODIS cloud mask is obtained from the 

Goddard Distributed Active Archive Center (GDAAC) for each AIRS swath. The MODIS cloud top 

pressure (CTP) data have been used in the limited cloud-contaminated data removal (LCCDR) algorithm 

(Carrier et al. 2007). 

4.3 AIRS 1D-Var Experiment  

4.3.1 Mathematical Formulation of Cost Function 

 The variational assimilation method proposed by Le Dimet and Talagrand (1986), and utilized by 

Eyre et al. (1993) to include satellite observed radiances, minimizes the value of a scalar cost function: 

 

, T 1 , T 11 1
( ) ( ( ) ) ( ( ) ) ( ) ( )

2 2
obs obs b bJ H H� D � D� � � ��  � � � � � �� � � �x x T R x T x x B x x  (4.2) 

where x  is a state vector composed of atmospheric variables (temperature and relative humidity profiles 

in this study) and bx  is a background vector usually composed of values taken from a previous forecast 

(in this study, use NCEP analyses as bx ). ,obs�DT  is the observed AIRS BT at the th�D  channel. ( )H x  is 

the SARTA model that computes simulated BTs using the input values provided by x . R  is the 

estimated error covariance of the ,obs�DT  observations. Finally, B  is the estimated error covariance of the 

background field.  

 For simplicity, the background error covariance matrix is assumed diagonal and the calculated 

background variance from dropsonde and NCEP profiles in chapter 3 will be used herein. The 

observational error covariance matrix is assumed diagonal (i.e., assuming no correlation between 

channels). The calculated mean group variances (i.e., tropospheric carbon dioxide channels have a 

standard deviation(STD) of 0.66 K, water vapor channels have a higher error value of 1.72 K, window 

channels are 0.91 K, and ozone channels are 0.66 K) in chapter 3 have been used as the observation 

weightings. It is noted that in McNally et al. (2006), stratospheric channels have STD of 1.0 K; all 

tropospheric channels have an error of 0.6 K with window channels and water vapor channels assigned 

an error of 2.0 K. 

 To minimize the cost function ( )J x , the gradient of ( )J x  is needed, which can be written as: 

  
1 , 1( ) ( ( ) ) ( ),obs bJ H �D� � � �� ’ �  � � � � � �Tx H R x T B x x  (4.3) 
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where 
( )H�w

� 
�w

x
H

x
 is the tangent linear operator of the SARTA model and TH  is the adjoint operator 

of SARTA. The Quasi-Newton limited memory BFGS (Broyden, Fletcher, Goldfarb, and Shanno) 

method (LBFGS) (Nocedal 1980, Liu and Nocedal 1989) is used to find the minimum of the cost 

function. The AIRS SARTA 1D-Var system first developed by Carrier (2008) is used in this study. 

 A brief description of the 1D-Var experiment procedure is as follows: first, the dropsonde or 

GPS RO soundings with clear sky conditions or low altitude CTPs within TCs, which are spatially co-

located with AIRS data locations and temporally 3�r h offset with AIRS observation swatch time, are 

selected. The spatially co-located (using bi-linear method to interpolate the NCEP data to dropsonde or 

RO locations) and temporally 3�r h offset NCEP profiles (NCEP profiles are also served as the 

background profiles in the 1D-Var system) are used as input to the SARTA model to get WFs for those 

profiles. Then, a channel set for each profile has been selected based on the channel selection method of 

E5_SM500-700 proposed in chapter 3.5.2 using the WFs. Prior to 1D-Var assimilation, the LCCDR 

algorithm (Carrier et al. 2007) has been used to do the quality control. So the channel set is further 

thinned to remove cloud contaminated data and the outliers by the LCCDR algorithm. It is noted that 

like McNally et al. (2006), all channels shorter than 4.46 um (past AIRS channel 1928) are eliminated 

due to the large biases in these channels. Finally, the selected channels have been used in the AIRS 1D-

Var system to get the retrievals of temperature and water vapor profiles. 

4.3.2 Verification of AIRS 1D-Var Results with GPS RO Data 

 For the comparison of AIRS retrieval with GPS RO profiles, two tropical storms (Karen and 

Melissa) during 2007 are selected in this study. Hurricane Karen formed from a tropical wave from the 

west coast of Africa on 21 September 2005. Moving west-northward with little change until late on 24 

September, Karen became a tropical depression when convective banding became sufficient. Karen 

strengthened significantly early on 26 September, reaching hurricane strength with peak intensity of 

about 65 kt later that day (Brennan et al. 2009). Karen quickly became weakened below hurricane status 

early on 27 September (Brennan et al. 2009). Melissa originated from a tropical wave that left the west 

coast of Africa on 26 September. Melissa moved very slowly westerly and became a tropical storm early 

on 29 September. It remained at its peak intensity of 35 kt for one day (Brennan et al. 2009). Melissa 

weakened to a depression early on 30 September due to increasing westerly wind shear.  
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 There are a total of 10 GPS RO profiles which are spatially co-located with AIRS locations and 

temporally 3�r h offset with AIRS observational swath times with clear sky pixels or low altitude CTPs. 

These 10 GPS RO soundings are used to evaluate the real AIRS data in capturing the vertical variability 

within TCs. 

 Figure 4.1 shows the tracks of the two tropical cyclones (Karen: red; Melissa: blue) and the 

locations of the RO soundings (the red color indicates the RO sounding for Karen; the blue color 

indicates the RO sounding for Melissa; the plus symbol indicates the RO sounding is at tropical storm 

intensity period and the circle symbol indicates the RO sounding is at tropical depression intensity 

period). Table 4.1 gives a brief description about the 10 RO soundings: the time, the intensity of the 

storm, the distance to the storm center, and the offset time in comparison to the AIRS swath time. Figure 

4.2 shows the lowest GPS pressure heights (the blue plus symbols), MODIS CTPs (the blue square 

symbols), as well as the distances (the red open circle symbols) of the MODIS data locations relative to 

the AIRS locations. It is apparent from Fig. 4.2 that the selected GPS RO soundings are in clear sky 

conditions or with low altitude CTP values (below 800 hPa). 

 Figure 4.3 shows the total cost function (red), AIRS observation cost function (black), and 

background cost function (green) as well as the log of the norm of the gradient with number of iterations 

for RO sounding number one. It can be seen from Fig. 4.3 that the total (observation) cost function 

reduces dramatically in the first several iterations and the log of the norm of gradient reduces three 

orders of magnitude, which proves the convergence of the minimization. 

 The convergence can be further proved by the BT differences. Figures 4.4 and 4.5 show the 

mean and standard deviation of model minus observed BT differences for the used channels before and 

after 1D-Var shown in terms of wavelengths (Fig. 4.4) and peak weighting function (PWF) heights (Fig. 

4.5). It can be seen that the BT differences, mean BT differences, and the standard deviations of BT 

differences are reduced after 1D-Var experiments. The black and red solid lines in Figs. 4.5c,d are the 

mean BT differences and mean STD values for channels with the PWF heights in 50-hPa layers before 

and after assimilation, respectively. It is apparent that the mean STD in terms of the PWF heights 

decreases for all PWF heights after assimilation especially within the layer of 500 hPa to 300 hPa. 

Figures 4.6 and 4.7 display the model minus BT differences for each individual RO sounding shown in 

terms of wavelengths (Fig. 4.6) and PWF heights (Fig. 4.7). It is evident from Figs. 4.6 and 4.7 that the 

BT differences generally decrease significantly after assimilation for all 10 RO soundings.  
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 It is also worthwhile to examine the BT differences between background and analysis simulated 

BTs and GPS RO simulated BTs, which could give hints on how close the retrieval profiles to RO 

profiles in terms of BTs. Figures 4.8 and 4.9 show the BT difference, mean and standard deviation of 

model minus GPS RO simulated BT differences for the used channels before and after 1D-Var shown in 

terms of wavelengths (Fig. 4.8) and peak weighting function (PWF) heights (Fig. 4.9). It is apparent that 

the BT differences, mean BT differences, and the standard deviations of BT differences are reduced 

greatly after 1D-Var experiments. The black and red solid lines in Figs. 4.9c,d are the mean BT 

differences and mean STD values for channels with the PWF heights in 50-hPa layers before and after 

assimilation, respectively. It is apparent that the mean STD in terms of the PWF heights decreases for all 

PWF heights after assimilation. Figures 4.10 and 4.11 display the model minus GPS RO simulated BT 

differences for each individual RO sounding shown in terms of wavelengths (Fig. 4.10) and PWF 

heights (Fig. 4.11). It is evident from Figs. 4.10 and 4.11 that the BT differences of the model and GPS 

simulated BT generally decrease significantly after assimilation for all ten RO soundings. These figures 

show that the BTs simulated from assimilated profiles are much closer to the BTs simulated from GPS 

RO profiles than those from background profiles, which could also indicate that the retrieval profiles are 

closer to the GPS RO profiles compared with NCEP background profiles, which will be shown later.  

 Before comparing the temperature and relative humidity profiles, we will compare the 

refractivity (the rawer GPS data) first, which will avoid the retrieval errors inherent with the GPS 1D-

Var retrieval process for temperature and water vapor. Figure 4.12 shows the mean errors and root mean 

square (RMS) errors of refractivity for background and assimilated profiles compared with GPS 

observed refractivity. The refractivity values for background and assimilated profiles are calculated 

using equation (4.1). It can be seen from Fig. 4.12 that after assimilation the mean and RMS errors of 

refractivity are reduced at most levels compared with those from the background profiles. Figure 4.13 

illustrates the refractivity differences ( RON N�� ) of background and analysis for each individual RO 

sounding. It is apparent from Fig. 4.13 that the refractivity differences have been reduced after AIRS 

data assimilation. Figures 4.12 and 4.13 indicate that assimilating AIRS data could eliminate much of 

the discrepancy of refractivity between the background and GPS RO profiles. 

 Figures 4.14 and Figure 4.15 show the temperature and relative humidity analysis increments 

(analysis minus NCEP background), respectively, for all ten RO soundings. The analysis increment 

could tell how much the assimilation adjusts the first guess profiles. Figures 4.16 and 4.17 show the 

mean and RMS of background and analysis errors for temperature and relative humidity, respectively. It 
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is evident that the assimilation of AIRS radiances reduces the mean and RMS errors both for 

temperature and relative humidity. An error reduction of about 1oC  is obtained in the temperature 

analysis near 800 hPa. The analysis RMS errors of temperature also reduce significantly for all vertical 

levels with best accuracy below 700 hPa. This may be partly owing to the selection method of 

E5_SM500-700, which selects more channels with PWF within the layer between 500-700 hPa, and 

which could provide information for atmospheric state below 700 hPa. The relative humidity errors are 

reduced significantly with a maximum RMS error reduction value of larger than 15% around 300 hPa. 

Figures 4.18 and 4.19 show the temperature and relative humidity differences (ROT T�� ; ROf f�� ) of 

background and analysis for each individual RO sounding. Figure 4.20 shows the scatter plot of 

temperature and relative humidity differences before and after assimilation for all RO soundings. It can 

be seen from these figures that the temperature and relative humidity differences were reduced after 

AIRS assimilation, which shows that AIRS data could lead to better temperature and water vapor 

retrievals over background. 

 It is also worthwhile to discuss the relationship between the BT differences of model and 

observation in terms of PWF height (Fig. 4.7) and the temperature and water vapor retrieval results (Figs. 

4.18 and 4.19), which will somewhat explain the performance of retrieval results.  For example, the gap 

between 750-900 hPa in RO1 in Fig. 4.7 may cause no improvement in these layers for the temperature 

retrieval (Fig. 4.18). The degradation of temperature and water vapor analysis around 550 hPa for RO2 

may be due to the channel gap around 550 hPa for this sounding.  

4.3.4 Verification of AIRS 1D-Var Results with Dropsonde Data 

 There are a total of 40 dropsonde profiles which are spatially co-located and within a temporal 

3�r h offset with AIRS data during Hurricane Rita (2005). Figure 4.21 shows the dropsonde profile 

locations and the track of Hurricane Rita. Table 4.2 gives a brief description of the 40 dropsonde profiles: 

the time, the intensity of the hurricane, the distance to the hurricane center, and the offset time in 

comparison to the AIRS swath time. More details about Hurricane Rita and the dropsonde data set are 

given in sections 3.2 and 3.3. Figure 4.22 shows the MODIS CTPs (the blue plus symbols), as well as 

the distances (the red open circle symbols) of the MODIS data locations relative to the AIRS locations. 

 It is known that a dropsonde is an in situ point measurement while AIRS gives the integrated 

atmospheric state information in a layer of the atmosphere (the width of layer depends on the width of 
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the channel’s WF). Moreover, the AIRS observed radiances have errors which arise from noise 

processes within the instruments and from imperfect calibration (Pagano et al. 2003), as well as from 

cloud contamination or residuals from the cloud-clearing process (Fetzer et al. 2003). Before performing 

the AIRS 1D-Var, the biases between dropsonde simulated and real AIRS BTs are worth investigating to 

find out the differences between these two measurements, and then to perform the simple radiance (BT) 

bias correction before the 1D-Var. In section 3.4, from the comparison between NCEP analysis and 

dropsonde data simulated BTs, it is found that NCEP simulated BTs have large cold biases for water 

vapor channels especially in the upper troposphere. Herein, the mean biases are estimated by way of the 

dropsonde simulated and real AIRS BTs using a total of 40 dropsonde profiles. Figure 4.23 shows the 

BT difference ( , ,
, ,
b b

i drop i AIRST T�D �D�� ; ,
,
b

i dropT �D  is the SARTA model simulated AIRS BT in channel �D from 

dropsonde data corresponding to the thi  dropsonde profile, ,
,
b

i AIRST �D  is the corresponding BT from real 

AIRS data), mean bias, and STD values vertically arranged by channels’ PWF heights between 

dropsonde simulated and AIRS observed BTs. The black dashed lines in Figs. 4.23a,b,c are the mean 

values for BT differences, mean bias and mean STD values for channels with the PWF heights in 50-hPa 

layers. It is noted that all real AIRS data used herein are quality controlled in order to remove the cloud 

contamination and outliers. Therefore, the numbers of dropsonde profiles for different channels used in 

the statistical analysis vary. Only those channels with a dropsonde number larger than 20 (Fig. 4.23d) 

are selected to calculate the mean bias and STD values. It is also noted that the top level of the 

dropsonde profile is about 250 hPa. Above that, a tropical reference profile is merged with dropsonde 

profile in SARTA, so the BT differences for stratospheric channels do not represent the actual 

differences between dropsonde and AIRS data. All stratospheric channels will be excluded in the 1D-

Var assimilation. It can be seen from Fig. 4.23a that the difference in dropsonde simulated AIRS and 

real AIRS BTs for individual soundings located within Hurricane Rita can be as large as 15oC . The 

largest difference is found in the water vapor channels, which is the same as the largest difference 

between NCEP and dropsonde simulated BTs found in water vapor channels in section 3.4. The mean 

bias can be as large as almost 8oC  for water vapor channels (Fig. 4.23b). It is shown from Fig. 4.23 that 

in comparison with dropsonde simulated AIRS BTs, the real AIRS data have cold biases, especially in 

the middle and upper troposphere. Before 1D-Var experiments, the calculated mean biases are used to 

perform the observation bias correction. It is noted that the channels which do not perform the bias 
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correction (i.e., those channels with a dropsonde number less than or equal with 20) will not be used in 

the 1D-Var experiments.  

 The convergence of the 1D-Var experiments is first examined. Figure 4.24 shows the total cost 

function (red), observation cost function (black) and background cost function (green), as well as the log 

of the norm of the gradient with number of iterations for dropsonde sounding number one. It can be seen 

from Fig. 4.24 that the total (observation) cost function reduces dramatically in the first several 

iterations and the log of the norm of gradient reduces three orders of magnitude, which proves the 

convergence of the minimization. Figures 4.25 and 4.26 show the BT difference, the mean and standard 

deviation of model minus observed BT differences for the used channels before and after 1D-Var shown 

in terms of wavelengths (Fig. 4.25) and PWF heights (Fig. 4.26). It can be seen that the BT differences, 

mean BT differences, and the mean standard deviations of BT differences are reduced after 1D-Var 

experiments. The black and red solid lines in Fig. 4.26c,d are the mean differences and mean STD 

values for those channels with the PWF heights in 50-hPa layers before and after assimilation 

respectively. It is apparent that the mean BT difference after assimilation (red) is very close to zero 

while the mean BT differences before assimilation (black) have negative biases. It also can be seen that 

STD in terms of the PWF heights decreases significantly for all PWF heights after assimilation with a 

maximum STD reduction about 2oC  between 500 hPa to 600 hPa. Figures 4.25 and 4.26 prove the 

convergence of the 1D-Var experiments.  

 Before comparing the 1D-Var retrieval results, the BT difference between model (background 

and analysis profile simulated BT) and dropsonde simulated BT is examined. Figures 4.27 and 4.28 

display the BT difference, mean and standard deviation of model minus dropsonde simulated BT 

differences for the used channels before and after 1D-Var shown in terms of wavelengths (Fig. 4.27) and 

peak weighting function (PWF) heights (Fig. 4.28). It is noted that after assimilation, the BT difference 

tends to increase, which could be true if the observed AIRS BTs are away from dropsonde simulated 

BTs. Figures 4.27 and 4.28 further confirm the discrepancy between AIRS data and dropsonde data, 

which also indicates that the retrieval profiles could somewhat away from the dropsonde data.  

 Figures 4.29 and 4.30 show the mean and RMS of background and analysis errors for 

temperature and relative humidity, respectively. It is noted that the biases and RMS errors shown in the 

left columns in Figs. 4.29 and 4.30 are in the SARTA model levels while the right columns are in 1-km 

layers for temperature and 2-km layers for water vapor. The degradation of vertical resolution has the 

dramatic effect of suppressing large errors associated with vertically fine-scale structures present in the 
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high-vertical resolution profiles (Tobin et al. 2006). The 1-km layer temperature biases are less than 0.5 

K at all levels. It is apparent that AIRS is colder than dropsondes below ~400 hPa and is warmer than 

the dropsondes above ~400 hPa. This is the opposite of NCEP background data, which have large bias 

values. The 1-km temperature analysis RMS errors are less than 2 K for all levels. The smallest RMS 

error is near 850 hPa, which is less than 1.5 K. The 2-km relative humidity analysis bias is less than 10% 

for all levels with almost zero bias values above 450 hPa (Fig. 4.30b). The RMS of analysis errors 

decreases in the upper troposphere but increases in the lower and middle troposphere (Fig. 4.30b). There 

is an apparent degradation (hike) around 550 hPa with larger than 20% RMS error. 

 The comparisons of AIRS 1D-Var retrievals with dropsonde data did not show much 

improvements in terms of RMS errors, which is partly due to the difference between these two different 

measurements. Dropsonde data provide point measurements of the atmosphere, which make it difficult 

to compare with AIRS data giving integrated atmospheric information for some layers of the atmosphere. 

Figure 4.23 illustrates the large differences between these two measurements within a hurricane 

environment; the differences also have been implied in Figures 4.27 and 4.28. Another factor causing 

the discrepancy between dropsonde and AIRS data may be due to the large variations of temperature and 

water vapor during TCs. It should be noted that the mean bias calculation herein is very rough owing to 

the very small number of available samplings. Larger data sets within TCs are needed to estimate the 

bias for AIRS channels. The AIRS bias correction is considered to be a daunting task (McNally et al. 

2006), which needs not only a large data set over long time periods but also the understandings of the 

source of biases of each AIRS channel. The better understanding of biases for all AIRS data is worth 

further investigation utilizing large data sets. Furthermore, another avenue to get improved retrieval 

profiles from AIRS data is to get the right specification of background errors, in particular the ratio 

between temperature and humidity errors (Joiner et al. 2007). Moreover, to get better agreement 

between dropsonde and AIRS measurements, one may use the adjusted dropsonde data. In McMillin et 

al. (2007), the GPS-adjusted radiosonde humidity profiles are compared with AIRS physical retrieval 

profiles and a better agreement has been shown. In addition to the performance of the NCEP background 

data, the smaller RMS difference may be attributed to the fact that the dropsonde temperature data 

during Hurricane Rita were assimilated in the Global Data Assimilation System (GDAS) to generate the 

NCEP analysis (Abserson and Franklin 1999; Aberson 2002).  
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4.4 Conclusions 

 As the second step of applying AIRS data on the tropical storm study, 1D-Var experiments using 

real AIRS radiance observations within TCs are performed and the retrieval temperature and water 

vapor profiles have been compared with matched GPS RO and dropsonde soundings. The comparison of 

AIRS 1D-Var retrieval profiles with GPS RO soundings show that AIRS data can greatly improve the 

analysis of temperature and water vapor profiles within TCs, which will hopefully give a better initiation 

for the prediction of TCs. The comparisons of retrieval profiles with dropsonde data during Hurricane 

Rita, however, show some discrepancies. This is partly due to the difference of these two measurements 

and the uncertainties of the AIRS errors.  

 It is noted that although the comparisons of AIRS retrieval profiles with GPS RO soundings 

show significant improvements for temperature and water vapor retrieval in this work, the number of 

RO soundings used herein is quite small. Thus, in order to obtain a large enough number of comparisons 

for statistical significance, the next step of this work is to further examine the ability of AIRS data in 

capturing vertical variability within TCs using more co-located RO samplings. 
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Table 4.1: GPS RO soundings used in AIRS 1D-Var comparisons. 

GPS RO 
Number Time Intensity Distance to 

Storm Center 

Offset time 
between 

AIRS and 
GPS 

1 0421  UTC 25 Sept. 2007 TS 
(Karen) 665 km 1 h 

2 0211 UTC 26 Sept. 2007 TS 
(Karen) 450 km 2 h 19 min

3 0441 UTC 28 Sept. 2007 TS 
(Karen) 748 km 23 min 

4 1729 UTC 28 Sept. 2007 TS 
(Karen) 851 km 41 min 

5 1335 UTC 29 Sept. 2007 TS 
(Melissa) 765 km 2 h 13 min

6 1833 UTC 2 Oct. 2007 TD 
(Melissa) 269 km 2 h 15 min

7 0644 UTC 3 Oct. 2007 TD 
(Mellissa) 963 km 2 h 14 min

8 0656 UTC 3 Oct. 2007 TD 
(Mellissa) 659 km 2 h 26 min

9 0339 UTC 3 Oct. 2007 TD 
(Mellisa) 256 km 1 h 33 min

10 0446 UTC 3 Oct. 2007 TD 
(Mellisa) 914 km 26 min 

             *TS (Tropical Storm); TD (Tropical Depression) 
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Table 4.2: Dropsonde profiles used in AIRS 1D-Var comparisons. 
Dropsonde 

Profile Number Time Intensity Distance to 
Hurricane Center 

Offset 
time 

1 0649 UTC 19 TS 587 km 4 min 
2 0720 UTC 19 TS 996 km 27 min 
3 0738 UTC 19 TS 1176 km 45 min 
4 0757 UTC 19 TS 961 km 1 h 4 min 
5 0813 UTC 19 TS 764 km 1 h 20 min 
6 0829 UTC 19 TS 588 km 1 h 36 min 
7 0848 UTC 19 TS 487 km 1 h 55 min 
8 0927 UTC 19 TS 201 km 2 h 34 min 
9 0936 UTC 19 TS 161 km 2 h 43 min 
10 1856 UTC 19 TS 932 km 33 min 
11 1912 UTC 19 TS 962 km 17 min 
12 2030 UTC 19 TS 404 km 2 h 42 min 
13 1933 UTC 21 5 592 km 16 min 
14 1949 UTC 21 5 470 km 32 min 
15 2021 UTC 21 5 408 km 1 h 4 min 
16 2049 UTC 21 5 615 km 1 h 32 min 
17 2106 UTC 21 5 790 km 1 h 49 min 
18 2124 UTC 21 5 733 km 2 h 7 min 
19 2138 UTC 21 5 917 km 2 h 21 min 
20 2155 UTC 21 5 1088 km 2 h 38 min 
21 0909 UTC 22 5 528 km 1 h 46 min 
22 0925 UTC 22 5 529 km 2 h 2 min 
23 1954 UTC 22 4 487 km 6 min 
24 2016 UTC 22 4 684 km 16 min 
25 2031 UTC 22 4 720 km 31 min 
26 2051 UTC 22 4 984 km 51 min 
27 2108 UTC 22 4 838 km 1 h 8 min 
28 2121 UTC 22 4 890 km 1 h 21 min 
29 2135 UTC 22 4 702 km 1 h 35 min 
30 2150 UTC 22 4 506 km 1 h 50 min 
31 2204 UTC 22 4 491 km 2 h 4 min 
32 2218 UTC 22 4 460 km 2 h 18 min 
33 2233 UTC 22 4 616 km 2 h 33 min 
34 0841 UTC 23 4 695 km 30 min 
35 0857 UTC 23 4 806 km 46 min 
36 0916 UTC 23 4 767 km 1 h 5 min 
37 0935 UTC 23 4 930 km 1 h 24 min 
38 1001 UTC 23 4 849 km 1 h 50 min 
39 2057 UTC 23 3 405 km 1 h 52 min 
40 2159 UTC 23 3 761 km 2 h 54 min 

*Numerical value in the third column represents Saffir-Simpson intensity and TS represents  
tropical storm intensity. 
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Figure 4.1: The distribution of COSMIC GPS RO locations and hurricane track (star symbol) for 
Hurricane Karen (Sep 25-28 2007, red) and Tropical Storm Melissa (Sep 29 – Oct 4 2007, blue). The 
plus symbol indicates the RO sounding is at tropical storm intensity period and the circle symbol 
indicates the RO sounding is at tropical depression intensity period. 
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Figure 4.2: MODIS CTP (square symbol, blue), GPS lowest pressure (plus symbol, blue), and distance 
(circle, red, right axis) of MODIS data location relative to the AIRS location for the 10 GPS RO 
soundings. 
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Figure 4.3: (a) The total cost function (red), observation cost function (black), and background cost 
function (green), (b) the log of the norm of the gradient with the number of iterations for RO sounding 
number one. 

(a) 

(b) 
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Figure 4.4: Model minus observation BT differences (a) before (black) and (b) after (red) 1D-Var. (c) 
Mean BT differences, (d) Standard deviation (STD) of BT differences. 

(a) (b)

(c) (d)
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Figure 4.5: The same as Fig. 4.4 except that channels are vertically arranged by their PWF height 
(calculated from the mean NCEP background profile).  The black line (before assimilation) and red line 
(after assimilation) in (d) are the mean STD values for channels with the PWF heights in 50-hPa 
pressure interval layers. 

(a) (b)

(c) (d)
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Figure 4.6: Model minus observation BT differences before (black) and after assimilation (red) for each 
GPS RO profile. 
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Figure 4.7: Model minus observation BT differences before (black) and after assimilation (red) 
vertically arranged by channels’ PWF height for each GPS RO profile. 
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Figure 4.8: Model minus GPS RO simulated BT differences (a) before and (b) after 1D-Var. (c) Mean 
BT differences, (d) Standard deviation (STD) of BT differences. 

(a) (b) 

(c) (d) 
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Figure 4.9: The same as Fig. 4.8 except that channels are vertically arranged by their PWF height 
(calculated from the mean NCEP background profile).  The black line (before assimilation) and red line 
(after assimilation) in (c) and (d) are the mean error and mean STD values for channels with the PWF 
heights in 50-hPa pressure interval layers. 
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Figure 4.10: Model minus GPS RO simulated BT differences before (black) and after assimilation (red) 
for each GPS RO profile in terms of wavelength. 
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Figure 4.11: Model minus GPS RO profiles simulated BT differences before (black) and after 
assimilation (red) vertically arranged by channels’ PWF height for each GPS RO profile. 
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Figure 4.12: Refractivity (a) mean error (averaged over 10 GPS profiles) and (b) RMS error for 
background (blue) and assimilated profiles (red) using observed refractivity.  

(a) 

(b) 
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Figure 4.13: Refractivity difference (analysis refractivity minus observed refractivity) for NCEP 
background calculated (blue), and AIRS assimilated profiles calculated (red) for each GPS profile. 
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Figure 4.14: Temperature analysis increment (analysis minus background) for each GPS profile. 

RO1 RO2 RO3 

RO10 

RO4 RO5 RO6 

RO7 RO8 RO9 



 

96 
 

 
 

 
 

 
 

 
Figure 4.15: Relative humidity analysis increment (analysis minus background) for each GPS profile. 
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Figure 4.16: 1D-Var temperature (a) mean error (averaged over 10 GPS profiles) and (b) RMS error for 
background (blue) and assimilated profiles (red). 

(a) 
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Figure 4.17: 1D-Var relative humidity (a) mean error (averaged over 10 GPS profiles) and (b) RMS 
error for background (blue) and assimilated profiles (red). 
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Figure 4.18: Temperature difference for NCEP background (blue), and AIRS assimilated (red) for each 
GPS profile. 
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Figure 4.19: Relative humidity for NCEP background (blue), and AIRS assimilated (red) for each GPS 
profile. 
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Figure 4.20: Temperature difference (background/analysis minus observation) scatter plot (a) before 
assimilation and (b) after assimilated. Relative humidity difference scatter plot for (c) before 
assimilation and (d) after assimilation. 
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(c) (d) 
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Figure 4.21: The distribution of dropsonde profiles locations (red plus symbols) used in the AIRS 1D-
Var experiments and the track (blue line) for Hurricane Rita.  
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Figure 4.22: MODIS CTP (plus symbol, blue) as well as the distance (circle, red, right axis) of MODIS 
data location to the AIRS location for the 40 dropsonde soundings. 
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Figure 4.23: (a) BT difference , ,
, ,( )b b

i drop i AIRST T� D � D��  (b) mean bias, and (c) STD values between dropsonde 

simulated and AIRS observed BTs for channels whose number of dropsonde profiles is greater than 20. 
The dashed black lines in (a),(b),(c) are the mean values in 50-hPa layers. A total of 40 dropsonde 
profiles are used herein. The green color indicates the stratospheric carbon dioxide channels (with peak 
weighting function height above 200 hPa); the magenta color indicates the tropospheric carbon dioxide 
channel (with peak weighting function high below 200 hPa); the blue color indicates the window 
channel; the cyan color indicates the ozone channel; the red color indicates the water vapor channel. 

(a) (b)

(c) (d)



 

105 
 

 

 
Figure 4.24: (a) the total cost function (red), observation cost function (black), and background cost 
function (green), (b) the log of the norm of the gradient with the number of iterations for dropsonde 
profile 1. 

(a) 

(b) 
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Figure 4.25: Model minus observation BT differences (a) before and (b) after 1D-Var. (c) Mean BT 
differences, (d) standard deviation (STD) of BT differences. 
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Figure 4.26: Model minus observation BT differences (a) before (black) and (b) after (red) 1D-Var. (c) 
Mean BT differences, (d) standard deviation (STD) of BT differences. Channels are vertically arranged 
by their PWF height (calculated from the mean dropsonde profile). The black line (before assimilation) 
and red line (after assimilation) in (c) and (d) are the mean errors and mean STD values for channels 
with the PWF heights in 50-hPa layers. 

(a) (b)

(c) (d)
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Figure 4.27: Model minus dropsonde simulated BT differences (a) before (black) and (b) after (red) 1D-
Var. (c) Mean BT differences, (d) standard deviation (STD) of BT differences. 

(a) (b)

(c) (d)
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Figure 4.28: Model minus dropsonde simulated BT differences (a) before (black star) and (b) after (red 
circle) 1D-Var. (c) Mean BT differences, (d) standard deviation (STD) of BT differences. Channels are 
vertically arranged by their PWF height (calculated from the mean dropsonde profile). The black line 
(before assimilation) and red line (after assimilation) in (c) and (d) are the mean errors and mean STD 
values for channels with the PWF heights in 50-hPa layers. 

(a) (b)

(c) (d)
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Figure 4.29: 1D-Var temperature (a) mean error (averaged over 40 dropsonde profiles) and (b) RMS 
error for background (blue) and assimilated profiles (red). (c) and (d) are the same as (a) and (b) except 
that the mean error and RMS error are calculated in 1-km layers. 

(a) (b)

(c) (d)
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Figure 4.30: 1D-Var relative humidity (a) mean error (averaged over 40 dropsonde profiles) and (b) 
RMS error for background (blue) and assimilated profiles (red). (c) and (d) are the same as (a) and (b) 
except that the mean error and RMS error are calculated in 2-km layers. 
 
 
 

(a) (b)

(c) (d)
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CHAPTER 5 

SUMMARY 
 
 
 
 This work focuses on the investigation of the potential application of satellite hyperspectral 

radiance data on the study of convective initiations and the assimilation of AIRS radiance data within 

tropical cyclones. The first part of this study demonstrates the potential capability of hyperspectral 

radiance data to resolve 4D variability of the atmosphere before and throughout a convective event. 

Specifically, a set of high vertical and temporal resolution temperature and water vapor profiles within a 

convective system from dropsondes, AERI and SRL were used to examine the temporal and vertical 

variability of the atmosphere, to simulate GIFTS measurements and to make comparisons with model 

forecasts. It was shown that GIFTS BTs could capture the temporal and vertical variability seen in the 

water vapor and temperature fields within a convective system. 

 Next, as the first step of applying AIRS radiance data on tropical prediction, a set of 1D-Var twin 

experiments is carried out to study the ability for AIRS data to capture the vertical variability within TCs, 

as well as the sensitivity of retrieval results to channel selection. Five AIRS channel sets have been 

selected based on the vertical location of PWF as well as the width and shape of WFs. The temperature 

and relative humidity retrievals are much more accurate than the NCEP background profiles after the 

assimilation of dropsonde-simulated AIRS radiances. It has been shown that by adding the narrowest 

and widest channels to the NRT channels, the retrieval results could be further improved. It is also found 

that the channels with PWF within the layer between 500-700 hPa could provide useful information for 

atmospheric state below 700 hPa, depending on the structure of WFs. 

 Finally, using the proposed channel selection method, a set of 1D-Var experiments using AIRS 

data within TCs was performed and the retrieval temperature and water vapor profiles have been 

compared and verified with co-located GPS RO and dropsonde soundings. The comparisons of AIRS 

1D-Var retrieval profiles with GPS RO soundings show that AIRS data can greatly improve the analysis 

of temperature and water vapor profiles within TCs, which will hopefully give a better initiation for the 

prediction of TCs. The comparisons of retrieval results with dropsonde data during Hurricane Rita, 

however, still show some discrepancies partly owing to the difference of these two measurements and 

the uncertainties of the AIRS errors.  
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 Future work is required to further examine the ability of AIRS data in capturing vertical 

variability within TCs. More co-located RO samplings would be needed in order to obtain a large 

enough number of comparisons for statistical significance. A better specification of errors for all AIRS 

channels is also needed for better retrieval results. Furthermore, possible future work could include 

applying the AIRS radiances into four-dimensional variational data assimilation (4D-Var) for the 

improvement of the predictions of TCs.  
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