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ABSTRACT

The availability of high resolution temperature and water vapor data is critical for thea$tudy
mesoscale scale weather phenomena (e.g., convective initiations, and tropical cyclones). As
hyperspectral infrared sounders, the Atmospheric Infrared Sounder (AIRS) and Geosynchronous
Imaging Fourier Transform Spectrometer (GIFTS) could provide high resolution atmogmiodites
by measuring radiations in many thousands of different channels. This work foouesassessment
of the potential values of satellite hyperspectral radiance data orutltyea$tconvective initiations (CI)
and the assimilation of AIRS radianglservations within tropical storms.

First, the potential capability of hyperspettiafrared measurements (GIFTS) to provide
convective precipitation forecasts has been studied assessed. Using both the observed and the
model-predicted profiles as input to the GIFTS a#ide transfer model (RTM), it is shown that the
simulated GIFTS radiance could capture the high vertical and temporal variability of the real and
modeled atmosphere prior to a convective initiation, as well as the differences betweeatms and
model forecasts. This study suggests the potential for hyperspectral infrared radianoentka &n
important contribution to the improvement of the forecast skill of convective pegmpit

Second, as the first step toward applying AIRf& da tropical cyclone (T) prediction, a set of
dropsonde profiles during Hurricane Rita (2005) isduto simulate AIRS radiance data and to assess
the ability of AIRS data in capturing the vertical variability within TCs through one-dimensional
variational (1D-Var) twin experiments. The AIR#bservation errors andabkground errors are first
estimated. Five sets of 1D-Var twin experiments are then performed using different combiogtions
AIRS channels. Finally, results from these 1D-Var experiments are analyzed. Major findings are: (1)
AIRS radiance data contain useful information alibatvertical variability of the temperature and water
vapor within hurricanes; (2) assilation of AIRS radiances significantly reduced errors in background
temperature in the lower tropospl and relative humidity in the upper troposphere; (3) the near-real
time (NRT) channel set provided by NOAA/NESDIS seems sufficient for capturing the vertical
variability of the atmosphere in the upper troposphere of TCs, but not in the loweptrepnsand (4)
the channels with weighting functions peak within the layer between 500-700 hPa could prdite use
information to the atmospheric state below 700 hPa. A channel selection method is proposed to capture

most vertical variability of temperature and water vapor within TCs containetRi& data.
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Finally, AIRS radiance data within TCs have been assimilated in the 1D-Var experiments with
comparisons of the retrieval temperature and water vapor profiles with co-located Global Positioning
System (GPS) radio occultation (RO) soundings and dropsonde profiles. The comparisons bDAIRS
Var retrieval profiles with GPS R®ounding show that AIRS data can greatly improve the analysis of
temperature and water vapor profiles within TCse Tomparisons of retrieval profiles with dropsonde
data during Hurricane Rita, however, showed some discrepancies partly due to the difference of these

two measurements and the uncertainties of the AIRS errors.
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CHAPTER 1

INTRODUCTION

It is well known that the lack of high-resolutidata preceding the start of the storm is a critical
factor limiting the precipitation prediction ofonvective storms (National Research Council 1998;
Emanuel et al. 1995; Dabberdt and Schlatter 1996; Wextkh et al. 2006). It is also hard to obtain
accurate high resolution, three-dimensional wat@ovaata (Weckwerth et al. 1999; Weckwerth et al.
2006), which are crucial for studying mesoscale atmospheric phenomena. Monmeswigiciency of
observations over oceans contributes partly to thiewlties of the prediction ohurricane intensity and
inner-core structure. Atmospheric temperature, water vapor, and motion vectors can \edréuia
the top-of-atmosphere (TOA) radiances. Temperatme water vapor soundings from satellites have
been available for many years and are expected to provide significant improvements in aiumeric
weather prediction (NWP) (Smith 1991) since the launch of two pioneering sensors on the Nimbus 3
satellite in April 1969 (eg., Wick, 1971). However, the benefits from these satellite observations for
improved weather forecasting have been limited owing to the relatively low vertical resolution provided
by current broadband sensors (Smith 1991; Tobin et al. 2006), such as the Advanced TIROS Operational
Vertical Sounding (ATOVS) on NOAA’s current Polar Operational Environment Satellite. The
implementation of a higher vertical resolution advanced sounder is needed for improving modern NW
forecast skills (Smith1991). With the development of thetedite remote sensing techniques, the
hyperspectral infrared radiance data could provide high-resolution deta tpr and throughout
convective or tropical cyclones (TC), especially in the conventional data-sparse areas (e.g., the oceans).
As infrared atmospheric sounders, the Atmospheric Infrared Sounder (AIRS; Aumann et al. 2003) and
Geosynchronous Imaging Fourier Transform Spectrometer (GIFTS; Smith et al. 2001a), whiale measu
radiation in many thousands of different channels, have the potential to prowmsgpheric temperature
and water vapor information at a much higher vertical resolution and accuracy, as weli apatial
and/or high temporal resolution (particularly for GBWith 10 seconds temporal resolution). With the
availability of the voluminous hyperspectral radiance data, successful exptoitati this new

generation of satellite instruments, assessment of the potential application of the new radiance data,



assimilation of infrared radiance data, and the seleaiahannels from thousands of infrared channels
have become challenges for NWP centers (Foarrée Thépaut 2003) andetlscientific community.

Can and if so, how well do the hyperspectralaade data capture the vertical variability of
temperature and water vapor prior to and throughout a convective storm? The first part of this study is
aiming to answer the above question using rtheéiative transfer model (RTM) simulated GIFTS
brightness temperatures (BTS). A set of observed and modeled vertical profiles of tempachtuager
vapor during a convective initiation (Cl) eventthwn the observing period of the InternationaiCH
Project (IHOP_2002) are used as input to the GIFTS RTM to assess the potential values of hyperspectral
infrared measurements to convective precipitation forecasts.

AIRS, launched in May 2002 on the NASA Earth Observing System (EOS) polar-orbiting Aqua
platforms, is the first new generatiof satellite-based advanced in&drsounders. AIRS radiance data,
which provide high spectral and spatial resolutiofaired radiance data, have been shown to have
positive impact on both global and mesoscale forecasts (Le Marshall et al. 2005 and 2006; Chahine et al.
2006; McNally et al. 2006; Joiner et al. 2007; Carrier 2008). With its very high spectral resolution,
vertical temperature and water vapor profiles with about 1-2 km vertical resolution can bedolotaime
AIRS measurements (Aumann et al. 2003, Susskind et al. 2003). The required retrieval accuracy in
terms of root mean square (RMS) errors is 1 KM 1 km vertical layers for temperature and 20%
RMS in 2 km vertical layers for water vapor below 100 hPa under clear or partly cloudy candition
(Aumann et al. 2003, Tobin 2006). The validation and comparison of AIRS retrievals with other
measurements and model forecasts have been investigated intensively by previous researchers (Fetzer
al. 2003; Fetzer 2006; Tobin et al. 2006; Divakarla 2006; McMillin et al. 2007, Carrier 2008, Chou et al.
2009).

The assessment of AIRS channel sets has been shown to satisfactorily capture most of the
variability of different atmospheric situations (Foarand Thépaut 2003). The assessment, verification,
and effective utilization of AIRS radiance data withimd around tropical cyclones (TCs), however, still
remain to be seen. As the first step toward applying AIRS data to TC study, the second part of this work
is a focus on the assessment of the ability of AIRS data in capturing vertical variabittyperature
and water vapor within TCs through one-dimensional dasamilation (1D-Var) twin experiments. First,

a set of dropsonde profiles during Hurricane Rita (2005) is used to simulate AIRS eatiéa@s the
“observed” radiance through the Stand-alone ARRfsliative Transfer Algorithm (SARTA, Strow et al.

2003) model and the AIRS observation errors and background errors are alateéstitive sets of 1D-



Var twin experiments are then performed using different combinations of AIRSielea channel
selection method is proposed to capture most akn@riability of temperature and water vapor within
TCs contained in AIRS data. Finally, results frdmse 1D-Var experiments are examined to see how
well the AIRS radiance data captures the thermodynamic vertical structures within TCs and the
sensitivity of retrieval results to channel selection.

Finally, as the third part of this work, AIRSdiance data within TCs have been assimilated with
the retrieval profiles compared with matched Global Positioning System (@&ig)occultation (RO)
soundings and dropsonde profiles. The preliminary verification results of applying AIRSceadizia
on the study of TCs are shown with the discussion of the difficulties.

The assessment of the potential values of GIFTS hyperspectral infrared measurements to
convective precipitation forecasts is provided iaptler 2. The 1D-Var assimilation of AIRS radiances
simulated with dropsonde data is presented in chapter 3, which shows the ability of AIRS data to capture
the vertical variability of temperature and water vapahin TCs and the sensitivity of retrieval results
to channel selection. Chapter 4 contains the 1D-Var assimilation of AIRS radiancestratral results
compared to GPS RO soundings and dropsonde profiles within TCs. A summary and future work are

given in chapter 5.



CHAPTER 2

CAN GIFTS CAPTURE VERTICAL AND TEMPORAL VARIABILITY
OF A CONVECTIVE ATMOSPHERE

2.1 Introduction

It is well known that one of the most challenging tasks in numerical weather prediction (NWP) is
obtaining accurate quantitative precipitation forec6QBFs), especially convective QPFs. The lack of
high-resolution data preceding the start of the storm is a critical factor limiting the precipitation
prediction of convective storms (National Resedacuncil 1998; Emanuel et al. 1995; Dabberdt and
Schlatter 1996; Weckwerth et al. 2006). AccordingMeckwerth et al. (1999and Weckwerth et al.
(2006), it is hard to obtain accteahigh resolution, three-dimaosal water vapor data, which are
crucial for studying mesoscale atmospheric phenomena (e.g., convective storms). As noted in
Weckwerth et al. (2006), radiosondes are insufficdund to their widely distributed locations, very
coarse temporal resolution (usually twice daily), and their significant errors and basdsrie to time
(e.g., Soden and Lanzante 1996; Guichard et al. 2000; Wang et al. 2002; Revercomb et al. 2003; Turner
et al. 2003; Ciesielski et al. 2003, Weckwerttalel2006). Current satellitgystems can provide water
vapor observations with high horizontal and/or spectral resolutions, but not high temporal resolution.
The Atmospheric Infrared Sound&lIRS) carried onboard NASA'’s Aqusatellite simultaneously scans
2378 distinct spectral channels, with a spatial resolution of 13.5 km at nadir (Aumann et al. 2003). The
Geosynchronous Imaging Fourier Transform Spectrometer (GIFTS), a hew hyperspectral gapstatio
satellite measurement system, could provide radiance observations with high resolutions in spectral,
horizontal and temporal spaces. An effort is mad@isstudy to assess potential applications of GIFTS
measurements to improving mesoscale QPFs.

The GIFTS was selected for NASA'S New Mitinium Program (NMP) Earth Observing-3 (EO-

3) mission. It combines new and emerging sensors (Large area format Focal Plane array (LFPA)
Infrared (IR) detector (128 X 128) in a Fourier Transform Spectrometer (FTS) mounted on a
geosynchronous satellite) and advandath processing technologiesg@nvector regression retrieval
methods) to observe and gather nearly instantaneous surface thermal properties and atnwesitiner

and chemistry variables with very high horizontal (4-km at nadir), vertical (1-2 kmpotain(10

4



seconds), and spectral (0.6 mesolutions (Huang et al. 2000; Smith et al. 2001, Tobin et al. 2001;
Marshall et al. 2003; Huang et al. 2004; Smith et al. 2004 ). There are more than 1600 infrared channels
at two GIFTS bands covering a large geographical area of 512 km X 512 km over thentairitinged

States (Smith et al. 2001; Smith et al. 2004). The GIFTS uses two detector arrays within a Michelson
Interferometer to cover the spectral bands with spectral regions of the longwave band (6854130 cm
including CQ, O; absorption and IR window region, usually used for temperature, cloud and ozone
retrievals) and short middlewave band (1650-2250,dre., including water vapor absorption, CO, and

O3 absorption regions, mainly used for water vapor retrievals) (Huang et al. 2000; Smith et al. 2004; Liu
et al. 2004; Li et al. 2004). It is hoped that these multiple channels with different shapes and broadness
of the weighting function in the hyperspectralaserement system will prale sufficient information

about the vertical and temporal variability of the atmosphere at resolutiogisawtneved previously.

The GIFTS radiative transfer model (GRTM), which calculates clear-sky radiances based on
input temperature, mixing ratio, ozone, and presaurE01 standard verticaressure levels (unevenly
distributed from 1100 to 0.005 hPa), has been Idped and tested by the Cooperative Institute for
Meteorological Satellite Studies (CIMSS) at the Wmsity of Wisconsin--Madison for the preparation
and validation of the GIFTS launch and the launch of Hyperspectral Environment Sounder (HES)
(Huang et al. 2004). There are a total of 3073 channels ranging from 587.4646 2849.6291 cih
with 0.6 cmi' interval in the GIFTS forward model (Fig. 2.1). An example of a GRTM simulation is
shown in Fig. 2.1. Using a cloud-free atmospheric profile as input, GRTM calculates values of
brightness temperature (BT) at 3073 wavenumbers ranging from 587.4046 2849.6291 cihat 0.6
cm® intervals, covering GIFTS two observing spectral bands (685 — 11%0anth 1650 -2250 cib)
which are indicated by two solid lines in Fig. 2.1a.

Atmospheric motion vectors, water vapor and temperature can be retrieved frohOAhe
radiances. High-resolution mesoscale model-simulated data were used in support of the algorithm
development of various retrieval techniques (Otkin et al. 2007). In this chapterebahtion model
simulations are used to assess potential capability for GIFTS radiances to capture the observed
atmospheric variability within a convective system. In order to accomplishatis the vertical and
temporal variations of model-predicted water vapor and temperature profiles are fipgirednwith
high-resolution observations from Atmospheric EmitRadiance Interferometer (AERI) instruments,
Scanning Raman Lidar (SRL), and dropsondes during a severe convective initiation (Cl) which occurred
on 2100 UTC 12 June 2002 during the Internation® Rroject (IHOP_2002) period. The possibility



for GIFTS to provide measurements that resolve vertical and temporal small scale vaattioas
atmosphere prior to the CI is then discussed by examining BT variations simulated by the GRTM.
Observed and model predicted vertical profiles of temperature and water vapor are used as direct input
to the GRTM for BT simulations. Section 2.2 provides a brief case description. The IHORatioss

used in this study are summarized in section 2.3. Section 2.4 describes nmbigeiratoon, discusses

model forecasts, and verifies precipitation forecast with observations. The temporakréodl
variability of the atmosphere during a connectivesege is shown in section 2.5, while observations

and model forecasts of the atmospheric temperature and water vapor are compared. Variations of BTs
simulated by GRTM using observed and modeled atmospheric profiles are shown in séction 2.
Summary and future work are provided in section 2.7. The work in this chapter was published in Lin and
Zou (2008).

2.2 Case Description

A convective initiation (Cl) case that occurreder the central plains of the United States is
selected for this study. Figure 2.2 shows the sea level pressure, the 10-meter horizdn2dmeter
specific humidity and temperature fields from the National Centers for Environmental Prediction (NCEP)
analysis at 1200 UTC 12 and 0000 UTC 13 Jur@22@espectively. A mesoscale low-pressure center
developed over the Oklahoma (OK) panhandle at 1200 UTC 12 June 2002 (Fig. 2.2a). A cold front
extended from southern Nebraska through northwedfansas (KS) and into southeastern Colorado,
along with a low-level dry line extending from the Texas Panhandle through northeastamoOK
southern KS (Figs. 2.2c-d). The near surface winds converge along the borders of OK and KS (Figs.
2.2a-b), bringing ample moisture supply and providing a favorable moisture engibfon Cl. The
area of convergence is ahead of and parallel to the cold front, indicating an existence of a squall line,
which is a line with strong thunderstorms.

Figure 2.3 shows the radar reflectivity distributions from 2100 UTC 12 to 0300 UTC 13 June
2002 at three-hour intervals. The positions of the cold front, dry line, outflow boundary (from an earlier
squall line), gust font and squall lines are schematically indicated in Fig. 2.3. dinisheet the CI was
initiated at the intersection (to be called the triple pton the rest of the paper) of the dry line and the
outflow boundaries at 2100 UTC 12 June 2002 (Fig. 2.3a), and both were located ahead of the cold front.
Four gust front boundaries then developed 3-hours later at 0000 UTC 13 June (Fig. 2.3b), which final
evolved into a mature squall line that is about 350 km long at 0300 UTC 13 June 2002 (Fig. 2.3c). The
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3-h accumulative rainfall ending at 0000 UTC, 0300C and 0600 UTC are shown in Fig. 2.4. It is
apparent that strong precipitation occurred along tiidinle and at the triple point near the borders of
Oklahoma and Kansas from 2100 UTC 12 to 0000 UTC 13 June 2002 (Fig. 2.4a). The rainband
associated with the squall line intensified with time, resulting in sewe@pitation in the northern OK

and borders of OK and KS in the next three hours (0000 UTC to 0300 UTC, Fig. 2.4b). In this 3-h
period, the hourly precipitation reached its maximum at 0200 UTC 13 June 2002. The rainband moved
southeastward in the following three hours, with reducing intensity and diminishing the southweste
half of the rainband (Fig. 2.4c). The readereferred to Wilson and Roberts (2006) and Weckwerth et

al. (2008) for a more detailed discussion on the environment and development of the squall lines of this

case.

2.3 Observations

ThelnternationaH,O Project (IHOP_2002) was designed to sample the three-dimensional time-
varying moisture field to betteunderstand convective storms. Maiy situ and remote sensing
measurement systems were operated in order tenotbgervations of water vapor within convective
storms at storm scales over the U.S. Southegai@?lains (SGP) (Weckwerth et al. 2004; Weckwerth
and Parsons 2006; Weckwerth et al. 2008). The IHOP_2002’s observing period started from 13 May and
ended on 25 June 2002, thus providing observatianthécase described above. Specifically, vertical
profiles of temperature and water vapor from dropsondes, Atmospheric Emitted Radiance Inéézferom
(AERI), and Scanning Raman Lidar (SRL) are used for this study.

The AERI systems provided temperature and water vapor profiles at less than 10-min temporal
resolution and 100-250 meter vertical resolution (from 100 m resolution near the surface to 250 m
resolution at 3 km) in the planetary boundary layer (PBL; 0-3 km). These observationgraeel iftbom
the downwelling high-spectral-resolution infraredismces (3.3—-19 pm at one-wave-number resolution)
(Feltz et al. 2003). Observations from the AERI system located at Vici, Oklahoma (see Fig. 2.4a for its
location relative to the convective rainband), are used in this study.

Vertical profiles of water vapor from SRL are alsged in this study. SRL is an active, ground-
based laser remote sensing instrument. Lidar is the optical analog of radar, ugagplalser radiation
to probe the atmosphere (Turner and Goldsmith 1999). The daytime SRL measurements ar® limited
below roughly 3.5 to 4 km due to the relatively weak Raman backscattered signal and the presence of
high solar background levels during the day (Turner and Goldsmith 1999). The nighttime SRL profiles
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extend from the surface to about 10 km. The SR& Meated at the ARM Camal Facility near Lamont,
Oklahoma (also see Fig. 2.4a for its location relative to the convective rainband), providing 10 minute
temporal resolution water vapor profiles with an average vertical resolution of 78 meter (Revetcomb
al., 2003).

High vertical resolution (0.5 seconds) dropsonde profiles were also made availabteenea
convective area for the case selected by the Higbtnational Learjet alontyvo flight legs. The first
dropsonde leg began at 1918:56 UTC and erateti940:53 UTC 12 June 2002 and contained ten
temperature and water vapor profiles. The second dropsonde leg commenced at 2047 UTC and
continued until 2111 UTC, releasing nine dropsordiesg the 24-minute time period. Since these two

dropsonde legs are close to each other, data from the first flight leg will beousedfication.

2.4 Model Configuration and Precipitation Forecasts

Numerical simulations of the IHOP_2002 CI cadeded for this study are carried out using the
fifth-generation Pennsylvania State University-National Center for AtmosplRasearch (NCAR)
Mesoscale Model (MM5; Dudhia 1993). MM5 is arpitive equation, nonhydrostatic mesoscale model
(Anthes and Warner 1978; Dudhia 1993; Grell et al. 1994). Two single domain simulations were
performed using version 3.7 of the MM5 with two different horizontal and vertisalutoons. The
coarse-resolution run is conducted at 12-km horizontal resolution (total 135X135 horizontal grids) with
23 sigma layers. The high-resolution run has 400X400 horizontal grid points argh@&blayers. The
horizontal resolution of the high-resolution run is 4 km, which is consistent with the 4-kmriakizo
resolution of GIFTS data. The domain of the coarse-resolution run is slightly larger than that of the high-
resolution run. Both forecasts started at 0000 UTC 12 June and ended at 1200 UTC 13 June 2002.
Dudhia’s simple ice explicit moisture scheme, the medium-range forecast (MRF) planetary boundary
layer scheme and the rapid radiative transfer model (RRTM) were used in the model imggratio

Figure 2.5 shows the 3-h precipitation ending at 0000 UTC, 0300 UTC, and 0600 UT@e13 Ju
2002, respectively, from the high-resolution model simulation. Compared with the observed
distributions of precipitation (Fig. 2.4), the high-resolution model simulation capturechabisovell
the main features of the development and movement of the rainbands of the convective storm.

The threat scores (TS) for 3-h rainfall from both model simulations are calculsitegl the
NCEP 4-km observed hourly rainfall data (Fig. 2.6). The TS is calculated within a rectangular area

indicated in Fig. 2.4b. The threat scores the precipitation simulated by the 4-km resolution
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experiment are higher than those from the 12-km resolution experiment throughout the nine hours when
convective precipitation was observed. The 4-km high-resolution model simulation will be used for

simulating GIFTS "observations".

2.5 Comparisons between Observed and Modeled Atmospheric Profiles

Figure 2.7a shows the SRL-obsed time evolution of the vectl variability of water vapor
from 1200 UTC 12 to 1200 UTC 13 at the Lamont location (see Fig. 2.4a for its gaogldmptation).
The time evolution of the observed hourly precipitation in the same 24-h time wisdgivown at the
bottom of Fig. 2.7a. A strong vertical gradientvediter vapor is seen in éhlower troposphere both
before and after Cl occurred. A remarkable chamigthe vertical variabilityof water vapor occurred
right before convective precipitation reached raximum intensity. A relavely large water vapor
content (>12 g/kg) extended to about 700-800 hPa before CI with the approacthieggfall line. The
low-level water vapor decreases significantly once the squall line is passed and precipitation occurred
(around 0100 UTC 13 June 2002). The model-simulated time evolution of the vertical variability of
water vapor and hourly precipitation are shown in Fig. 2.7b within the same 24-itchawv as Fig.
2.7a. It can be seen that the convective precipitation at the Lamont location in model simulation
occurred at the same time as observations, but the reduction of water viiq@lomver levels in model
simulation did not happen as quickly and dramatically as that of observations. Theapatecontent
prior to (after) the Cl is not as high (low) as observations in the lower troposphere.

Figure 2.8a shows the AERI-observed temporal evolution of water vapor from 1200 U®C 12 t
1200 UTC 13 at the Vici location (see Fig. 2.4a for its geographical location). The ¥atiolo is
located to the southeast of the triple point. Conwectvas initialized at thikcation at about 2100 UTC
12 June 2002 in the model simulation, which l®wt two to three hours earlier than observations.
Similar to the SRL observations and model simulations at the Lamont location (figh&.layer depth
of high water vapor content increases (decreases) greatly before (after) the ®bfroobservations
and model simulations. However, as a result of advanced precipitation, the rapje cfizhe vertical
structure of water vapor occurred two hours earlier than observations. Once the convective precipitation
ended, the water vapor content becomes very small in the model forecast while the obserwegarater
at Vici recovered to a similar amount and layer depth as that before Cl as soon as the observed

convective precipitation stopped.



The AERI-observed and MM5-model-simulated tengb evolutions of temperature at the Vici
location are shown in Fig. 2.9. Similar to the vaaatof the water vapor field (Fig. 2.8), a phase error is
also noticed in the time evolution of model-simulated temperature field (Fig. 2.9rtNeless, both
model simulations and observations indicate a development of a warm temperature amtmediywer
troposphere before the CI. The temperature imatelyi cooled down once the convective system
passed the Vici location.

Dropsonde data were collected between 1918 to 2111 UTC 12 June 2002 near the dry line on
two flight legs. Figure 2.10 shows the locatimfsthese dropsonde data. The model-simulated water
vapor mixing ratio and temperature at the surface around this time are also shown. The two dropsonde
flight legs are nearly normal to the outflow boundase(&ig. 2.3). The first flight track intersects with
the cold front and the second track is nearly parallel to the cold front. The cross sectiotes vhpar,
temperature, and the temperature anomaly from theflight dropsondes are shown in Fig. 2.11. It is
apparent that the moist and cool air is located north of the outflow boundary. A deep layer of éigh wat
vapor content is seen on the northern part of the flight track, with dpsaitde-observed one extending
much further to the south than the model datian. A warm temperature anomaly and a cold
temperature anomaly are seen from both dropsordienadel data on the southern and northern portion
of the flight track, respectively. This observation isgsistent with the fact that this flight leg intersected
with the cold front. However, the warm and cold temperature anomalies in the madatisimare not
as strong as the observed ones and the model-simulated along-track goddietitswater vapor and
temperature are much weaker than observations. Figure 2.12 shows the skew-T diagrams of two
dropsonde profiles in the most-unstable region sainipyethe first dropsonde flight leg (Weckwerth et
al. 2008). It is seen that this region is characterigetbw convective inhibition (CIN), low lifted index
(LD, and high convective available potential energy (CAPE). Profiles from the mesoscale simulation are
much smoother than dropsonde profiles. The inversion level from model simulatibauis5® hPa
lower than observations. It is also noticed that the forecast-model-simulated water vapor profiles

compared much less favorably to dropsonde measurements than temperature profiles.

2.6 Simulated GIFTS Brightness Temperatures

Can GIFTS capture the vertical and tempeeaiability of a convectig atmosphere seen from
observations and model simulations shown above? Satellite radiance at a specified channel is a

measurement of the contribution of the atmospheric emission to the total emission receiveapatfthe t
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the atmosphere by that channel. Different atmospheres and different atmospheric layers produce
different emission amounts. Satellite instruments are capable of providing a meagweamission at

a specified frequency (channel). For each channel, the so-called weighting function (WF)hel-chan
dependent vertical profile, quantifies the contribution of emission from each atmospheric layer to the
total emission of that channel at the top of #imosphere. The larger th&F value is within an
atmospheric layer, the larger the contribution of emission from that atmospdggicis to the total
emission (radiance). The height of the maximum WF of radiance in a particular channatibates

the atmospheric layer that contributes most significantly to the measured radiance. Of course, the
broadness of the WF reflects the thickness of that atmospheric layer contribusingigndicantly to

the measured radiance.

In order to assess the potential capability ®FTS to capture the vertical and temporal
variability of a convective atmosphere, GIFTS Bire simulated using observations from dropsondes
and AERI as well as MM5 simulation data as infjuthe GRTM. The vertical and temporal variations
in BTs are then examined and compared between observation simulation and model simulation and with
variations in temperature and water vapor variables. To complete this step, the BT data are first divided
into two groups: (i) the carbon dioxide channels (including window channels in GIFTS longwave band)
and (ii) the water vapor channels in GIFTS shoiddlewave band. The carbon dioxide absorption
region in GIFTS’s longwave band covers a frequency range approximately from 68# a0 cnit
and the window channels cover a range from about 81 0t@rh130 crit (excluding the ozone channels
from about 1000 cfhto 1077 crif); the water vapor absorptiongien in GIFTS’s short middlewave
band is from approximately 1650 &no 2091 crit. Then, BTs in each group in the spectral space (i.e.,

T,°, where £ is the channel number) for each vertical sounding of the atmosphere is presented as a

vertical profile (T, (p,.. ), wherep, _, is the pressure at which the WF for ti¥echannel reaches its

maximum value. If there is more than one channel in each group that has the samenmakrheight,
a mean BT value is calculated and used as the BT at that pressure level.

As shown above, both dropsonde and AERI instruments provide high-vertical resolution profiles
of water vapor and temperature of the atmosphere. The AERI also provides high-verticéioreso
profiles of both water vapor and temperature of the atmosphere with high temporal aesdibge
GRTM calculates the atmospheric radiances for all GIFTS channels (see Fig. 2.1) fan aegiical
profile of water vapor and temperature. The radiances are then converted to briggrnessture in

GRTM using the inverse of the Planck function. There are a total of 101 pressure rieG&3 M.
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However, the dropsonde data are only available from about 930 to about 450 hPa, and the AERI data
from about 930 hPa to about 650ahMh order to show the water vapor and temperature variability in
the lower troposphere from GIFTS simulated BTs, thneeki pressure level of each dropsonde profile is
used as the lowest pressure level in GRTM. A refegegrofile is used in GRTM above the highest data
level. To avoid discontinuity, a linear relaxation is applied near the data boundaries.

Figure 2.13 shows simulated GIFTS BTs in two channel groups (carbon dioxide and water vapor)
using dropsonde data and MM5 model forecasts on the first dropsonde flight leg as input to GRTM.
Having examined GOES-8 satellite data, it is knowat the first flight leg was located in a clear-sky
condition. Since the WF is calculated for each channel and each profile, the channels selected for BTs
vary profile-by-profile as the WF does. Since mostigal and temporal variability is seen in the lower
troposphere (Figs. 2.7-2.9, 2.11), the highest level shown in Fig. 2.13 is 650 hPa. It canfloersE&n
2.13a that BT depicts the along-track variability oftbmperature and water vapor, with higher values
for a warmer and drier atmosphere. Differences itemaapor distribution along the flight leg between
dropsondes (Fig. 2.11a) and model forecasts (Fig. 2.11b) are seen in dgri®ttion in water vapor
channels (Fig. 2.13c-d). The shallower layer of the model-simulated warrspdtere and deeper layer
of the model-simulated moisture atmosphere compared to that of dropsonde simolaéspond to a
shallower layer of model-simulated warm BT intbaarbon dioxide and water vapor channels than
dropsonde-simulated BTs.

In order to estimate how much the vertical afahg-track variability of GIFTS BTs seen in Fig.
2.13 is attributed to the variability of water vaord temperature, we calculate the GIFTS BTs using a
mean vertical profile of temperature (Fig. 2.14) and a mean profile of water vapor (Fig. 2.15) averaged
along the flight leg. By comparing Figs. 2.14 and 2.15 with Fig. 2.13, we firidtithaalong-track
variability of GIFTS BTs results mainly from the wateapor variability and the vertical variability of
GIFTS BTs attributes to the vertical variability of temperature. In other words, GIFTS BTs could
capture the water vapor variations in a convective atmosphere near a dry line. It is noted thigt not o
water vapor channels but also carbon dioxide channels contain useful water vapor information, which
explains the variations of BTs both in carbon dioxide and water vapor channels in Figs. 2.113land 2

GIFTS will provide not only high vertical and horizontal resolution data, but also with high
temporal resolution (10 seconds). It is important to examine the temporal evolution of simulated BTs.
Figures 2.16 and 2.17 show the temporal variation of BTs in GIFTS water vapor channels (Fig. 2.16)
and carbon dioxide channels (including window channels) (Fig. 2.17) using AERI and MM5 hourly
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forecasts within the time period from 1200 UTC 12 to 1200 UTC 13 at the Vici location. Figure 2.18
shows the GOES-8 satellite derived hourly cloud pogssure (CTP) at the Vici location from 1200

UTC 12 to 1200 UTC 13. The AERI data have a 10-teiitme interval and thus there are 139 vertical
profiles (excluding the missing data) of AERI water vapor and temperature in this 24-h tioe peri
Since the RTM used to calculate the GIFTS radiances is only suitable for clear sky atmospheres, cloudy
profiles (see Fig. 2.18) are also removed from Figs. 2.16 and 2.17. Comparing with&asd 2.9, it

is apparent that GIFTS BTs in the water vapomalets (Fig. 2.16) capture the main features of the
temporal evolutions of the vertical structures of both temperature and water vapor. The BTa show
decrease when convection is initiated. However, the decrease in BT is not as significant as the
temperature itself, reflecting the added effect of water vapor whose decrease will increase the BT values.
GIFTS BTs in the carbon dioxide and window channels (Fig. 2.17) reflect more enhance fediatls of
temperature and water vapor than seen in Figs. 2.8 and 2.9. Differences of BTs between AERI
simulations (Figs. 2.16a and 2.17a) and MM5 forecast simulations (Figs. 2.16b and 2.17b) are consistent
with the differences between AERI observed and MM5 forecasted temperature and water vapor fields.
These results suggest that GIFTS BTs could capture the rapid temporal evolution of the atmospheric

water vapor and temperature evolution within a convective system.

2.7 Conclusions

It is believed that QPFs will be greatly iroped if satellite obsertimns such as those from
GIFTS are made available for mesoscale forecasts.slidy demonstrates the potential capability for
GIFTS to provide observations that resolve 4D algitity of the atmospherprior to and throughout a
convective event. Observations from IHOP_20@kfiexperiments are used for simulating GIFTS BTs
and for verifying model forecasts. A high resolution MM5 simulation is made angbareth to
observations.

Specifically, a set of high vertical and tempaedolution temperature and water vapor profiles
within a convective system from dropsondes, AERI and SRL were used to examine the temporal and
vertical variability of the atmosphere, to simulate GIFTS measurements, and to make comparisons with
model forecasts. Both observed and modeled profiles show remarkable temporal and vertidélvariab
of water vapor during the CI period. It was shown that GIFTS BTs could capture the temporal and
vertical variability seen in the water vapor andhperature fields within a convective system. The

along-track characteristic features of the atrhesp near a dry line and outflow boundary can be
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represented by simulated GIFTS measurements.diti@ud the strong water vapor variability is found
in both the carbon dioxide and water vapor channels of the GIFTS measurements.

At a given time and spatial location, a hsgpectral geostationaryatellite system provides
radiance measurements at thousands of channels. Radiances at different channelsiaetsensit
atmospheric state within different layers of the atmosphere with different thicknessfsgy seen the
capability for a hyperspectral geostationary satetfisasurement system to capture observed temporal
and vertical variability within aonvective system, we will (i) stychow the multi-channel radiance
information (in spectral space) can be effectively transferred into an explicit description oftited ve
variability of the atmosphere (in vertical spaea)d (ii) assess the potential values of GIFTS-type
measurements to improved forecasts of mesoscale convection at various stageslopimdeate
including initialization, intensification, movement and decaying. Such a studypvailide useful

insights on the predictability of convection.
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Figure 2.1 (a) GIFTS forward model spectral coveragel éhe brightness temperature spectrum of a
cloud-free atmosphere. The two solid horizontal lines indicate GIFTS two spectral(686ds 1150

cm® and 1650 -2250 ci). Input profiles for the simulated GIFTS brightness temperature in (a) are
shown in (b) for temperature and (c) for water vapor mixing ratio.
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Figure 1.2: (a)-(b) Sea level pressure (contour intentahPa) and 10 meter wind at (a) 1200 UTC 12
and (b) 0000 UTC 13 June 2002. (c)-(d) The 2-mgpexcific humidity (shaded, g/kg) and temperature
(contour interval: 2C) at (c) 1200 UTC 12 and (d) 0000 UTC 13 June 2002 from NCEP reanalysis
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Figure 2.3 Radar reflectivity at (a) 2100 UTC 12 June, (b) 0000 UTC 13 June, and (c) 0300 UTC 13
June 2002 (from http://data.eol.ucar.edu/codiac/dss/id=77.091). Cold front, dry line, outflow gpundar
gust front boundary and squall line boundary are ineicachematically by while lines in each figure.
The locations of all above boundary lines are adopted from Wilson and Roberts (2007).

17



40N 1 = ° - "‘

38N 4

F4M 4

32N

hae

106W 1044 102 100W 28w 96w 94 gaW

(b) B (©

40N 40N
35N ' 35H 4
36M 36N
34N 4
39 32N
s o ‘ . ‘ . ‘ ‘
106W 1044 102W 100W g SEW 40 2

106w 1080 102W  100W 98 oW S 8w

=l -7-{}.1 4.5 1 3 5 7 10 20 30 40 50 6O
41 05 1 3 05 7 10 20 30 40 50 B0

Figure 2.4: NCEP observed 3-h accumulative rainfall (mm) ending at (a) 0000 UTC, (b) 0300 UTC,
and (c) 0600 UTC June 13 2002. Lamont and Vici stations in Oklahoma are indicated in (a).
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Figure 2.5: Same as Fig. 2.4 except for MM5 model simulation initialized at 0000 UTC 12 June 2002.
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(a) (b)

(©)

Figure 2.6: Threat scores for 3-h accumulative rainfaiding at (a) 0000 UTC 13 June, (b) 0300 UTC
13 June, and (c) 0600 UTC 13 June 2002. The threat scores are calculated within the rectangular aree
indicated in Fig. 2.4b by red lines.
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Figure 2.7: Time evolution of water vapor from 1200 UTC 12 to 1200 UTC 13 at the Lamont location
(see Fig. 2.4a). (a) Lidar observation at 10-minute interval. (b) High-resolution MM%agonuat 1-h
interval. Shown at the bottom of each figure are the hou#dgipitations from NCEP 4-km rainfall
observations and MM5 model simulations.
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Figure 2.8: Time evolution of water vapor from 1200 UTC 12 to 1200 UTC 13 at the Vici location (see
Fig. 2.4a). (a) AERI observation at 10-minutéemal. (b) High-resolution MM5 simulation at 1-h
interval. The blank area in (a) indicates missing data. Shown at the bottom of each figure are the hourly
precipitations from NCEP 4-km rainfadbservations and MM5 model simulations.
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Figure 2.9: Same as Fig. 2.8 except for temperature.
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Figure 2.10: Surface water vapor mixing ratio (shaded) and temperature (contour) at 1900 UTC 12 June
2002 from the high resolution MM5 simulation. Tivbite plus symbols indicate the locations of the

two dropsonde flight legs from the Flight Internatibbearjet aircraft. Data on the first leg (the flight
track with a larger slope) were collected fronil@%6 UTC at the north end to 1940:53 UTC at the
south end on 12 June 2002. Data on the second leg (the track with a smaller slep)llaeted from
2047:38 UTC at the north end to 2111:38 UTC at the south end of the track on 12 June, 2002.
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(@) (b)

(c) (d)

Figure 2.11: Cross-sections of (a-b) water vapor mixingadg/kg) and (c)-(d) temperature (shading)
(K) temperature anomaly (contour) (K, temperature minus the mean temperatureeé\adoay the
flight leg) from dropsondes (left panels) and the high-resolution model (right pameilgatsdin along

the first flight leg from the south end to the north end (see Fig. 2.10).
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Figure 2.12: Skew-T diagrams from the dropsonde data and high-resolution MM5 model forecast (right
panels) during the first flight (left panels) at time (a)-(b) 1931:43 UTC and (c)-(d) 1934:38 UTC. The
first and second soundings are 65-km and 45-km from the southern end of thiedligaspectively.
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(c) (d)

Figure 2.13: Cross-sections of dropsonde-simulated (left panels) and model-simulated (right panels)
GIFTS brightness temperaturg,f along the first flight leg (from the south end to the north end, see Fig.
2.10) for (a)-(b) carbon dioxide plus window channels and (c)-(d) water vapor channels.

27



(a) (b)
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Figure 2.14:Same as Fig. 2.13 except for using the along-track mean temperature profile.
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Figure 2.15: Same as Fig. 2.13 except for using the along-track mean water vapor profile.
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(b)

Figure 2.16: Time-height cross-section of (a) AERI-simulated GIFTS brightness temperagund

(b) model-simulated, for the water vapor channels at the period of 1200 UTC 12 to 1200 UTC 13 at
the Vici location (See Fig. 2.4a). The blank area in (a) indicates either missing AERI ddtady
profiles.
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(b)

Figure 2.17:Same as Fig. 2.16 except for carbon dioxide and window channels.
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Figure 2.18: Cloud top pressure at the Vici location from GOES-8 satellite data during the 24-h period
from 1200 UC 12 to 1200 UTC 13 June 2002.
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CHAPTER 3

1D-VAR ASSIMILATON OF AIRS RADIANCES SIMULATED WITH
DROPSONDE DATA

3.1 Introduction

Insufficiency of observations over oceans contabipartly to the difficulties of the prediction of
hurricane intensity and inner-core structure. Hyperspectral infrared radissiee héive been
demonstrated to have the ability to resolve 3D variability of the atmosphere primdl tbraughout a
convective event (Lin and Zou 2008). Atmospheritdred Sounder (AIRS, Aumann et al. 2003) data,
which provide high spectral and spatial resolutiofiaired radiance data, have been shown to have
positive impact on both global and mesoscale forecasts (Le Marshall et al. 2005 and 2006; Chahine et al.
2006; McNally et al. 2006; deer et al. 2007; Carrie2008). Effective utilization of AIRS radiance data
within and around tropical cyclones (TCs), however, still remains to be seen. This chapter presents the
first step of applying AIRS data tropical cyclone prediction.

A reduced set of AIRS channels has been selected by the AIRS science team (Susskind et al.
2003) and are distributed to several Numerical Weather Prediction (NWP) centers for operational
weather prediction in near real time (NRT) by National Oceanic and Atmospheric Administration
(NOAA) National Environmengatellite Data and Information SergiNESDIS) (Goldberg et al. 2003).

The assessment of the AIRS NRT channel set has been made and shown to satisfactorily capture most c
the variability of different atmospheric situat® (Fourrié and Thépaut 2003); however, no such
assessment of NRT channel set for TCs has been made. In this study, aircraft dropsasdeseiatt
simulate AIRS radiances and to study how welR&I could capture the vertical variability of the
atmosphere in TCs and how sensitive 1D-Var assimilation results are to channel selections.

This chapter is organized as follows: a brie$a#tion of Hurricane Rita and its operational
forecast results are summarized in section 3.2. Section 3.3 gives a descriptiopsohde and AIRS
data. The comparison between NCEP analysis and dropsonde data is giveiom3&cin Section 3.5,
five sets of 1D-Var twin experinmés are performed to assess the ability of the AIRS NRT channel set or

other selections of channels to capture the atmospreriability of temperature and water vapor within

33



TCs. Differences in 1D-Var retrievals resulting from several difference choices of AIRS channels are

also presented in section 3.5. Section 3.6 gives summary and conclusions.

3.2 Case Description
3.2.1 An Overview of Hurricane Rita

Hurricane Rita (2005) is chosen for this study. Figure 3.1 shows the track (Fig. 3.1a), the
maximum wind speed (Fig. 3.1b) and the minimum sea level pressure (Fig. 3.1c) of theedbser
Hurricane Rita based on Tropical Prediction Ce(iié&1C) data provided by National Hurricane Center
(NHC). Hurricane Rita originated from a complex interaction between a tropical wave and the remnants
of a cold front (Beven et al. 2008). A tropical depression formed at 0000 UTC 18 September 2005
approximately 70 n mi east of Grand Turk in the Turks and Caicos. It became a tropical storm by 1800
UTC 18 September 2005. Rita then moved westward, strengthened and reached hotecsite (of
70 kt maximum wind) by 1200 UTC 20 September when it was about 100 n mi east-souttkegst of
West, Florida. Due to the warm water condition, Rivatinued its intensification in the following day,
reaching category 5 strength at 1800 UTC 21, with a maximum wind of 145 kt (Fig. 3.1b) and a
minimum pressure of 920 hPa (Fig. 3.1c). Rita then remained as a category 5 hdorcareut 18
hours, achieved its peak intensity of 155 kt (maximum wind) and 895 hPa (minimum central sea-level
pressure) by 0300 UTC 22. Rigdruptly weakened to category 4 by 1800 UTC 22 due to the inner
eyewall deterioration while movingorthwestwardly. It weakened to a category 3 hurricane by 1800
UTC 23 and remained as a category 3 hurricane until it made landfall at 0740 UTC 24 September. The
approaching of Rita to the southwestern Louisiana coast provoked one of the largest evacuations in U.S.

history, and caused seven fatalities and about 10 billion dollars in total damage.

3.2.2 Operational Forecast Results

The average official OFCL track forecast errors for Rita are considerably smaller than the
corresponding average official Atlantic track errors for the 10-year period 1995-2004 although OFCL
errors varied widely during the life span of Rita (Knabb et al. 2006). The average official ingermisy
however, are considerably larger than the cormedipg Atlantic 10-year average. OFCL did not predict
well the rapid intensification of Rita from a tropicstorm to a Category 5 hurricane in less than 36 h

(Knabb et al. 2006). Figure 3.2 shows model-forecasted track and intensity for HurricanetiRlitzeohi

34



on 0600 UTC 19 Sep. 2005 officially from theHC (OFCL), the Geophysical Fluid Dynamics
Laboratory (GFDL), and the Navy Operational Global Prediction System (NGPS). The GFDL Hurricane
model is a limited-area, grid-point model that was designed especially for TC predi¢teoGHADL

model consists of a triply-nested grid configuration with an outer mesh resolutior? ¢(ddpgPoximately

30 km), and a finest resolution of 1?1@pproximately 9 km) (Bender et al. 2007). The GFDL uses a
sigma vertical coordinate system with 42 vertical levels. The NGPS model is a global spectral model
with approximately 55 km horizontal grid spacing and 30 vertical levelsshdsvn in Fig. 3.2, the
OFCL produced the most accurate track prediction during the first 72 h but had a westward shift from
the observed track in the following 24 h. The GFDL predicted hurricane has a aystearthward

shift throughout the 5-day forecast period. The track forecast from NGPS follows that of GFDL in the
first 3.5 days and experiences a westward shift aséa in the OFCL forecast. The intensity forecasts
vary greatly among three models. The GFDL hurricane intensified more rapidly than theedlzsel
reached the maximum intensity 40 h earlier than the observed Rita. Neither OFCL nor NGPS captured
the rapid intensification of Hurricane Rita. The aged intensity forecast from OFCL is much better
than NGPS.

3.3 Data Description
3.3.1 Dropsonde Observations

The dropsonde data from the Gulfstream-IV (G-1V) airplanes, operated by the National
Hurricane Center, for Hurricane Rita (2005) are used for this study. Using Global RogiBystem
(GPS) dropwindsondes (Hock and Franklin 1999, Rogei. 2002), the airplane G-IV observes the
pressure, temperature, relative humidity, and wind witttpical storms to improve its forecast (Burpee
et al. 1996; Aberson and Franklin 1999, Rogers et al. 2002). There are a total of 203 dropsonde profiles
from airplane G-IV available from 19 September to 23 September 2005. The spatial distribtitions
these dropsonde soundings are shown in Fig. 3.3. Data are available up to around 13-14 km (or 150 hPa
altitude at 0.5 seconds vertical resolution. Thare 11 dropsonde profiled=ig. 3.4) which have
significant missing data and are not used in this study, leaving a total of 192 dropsonde profiles from
which AIRS radiances are simulated and with which the results of 1D-Var retrieval are abnhipire
known that the dropsondes drift from where they are dropped. The drift distance was calculated for each

dropsonde profile. Figure 3.5 shows the mean drifting distance and the mean drifting gikiarme
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minus the standard deviations of the distances. It can be seen from Fig. 3t thetximum mean

distance is less than 8 km near the surface.
3.3.2 NCEP Analysis

The National Centers for Environmental Prediction (NCEP) global analysis are available at 6-h

intervals with1’ ul® horizontal resolution at 26 pressure levels from 1000 hPa to 10 hPa, with an
exception of relative humidity being available only below 100 hPa. The NCEP analysis at the nearest

time to the release time of dropsonde (withi8h), bi-linearly interpolated to dropsonde locations, are

used as the input background profiles of all the 1D-Var experiments. It is noted that the dropsonde
temperature data were assimilated in the Gl&mth Assimilation System (GDAS), which generates
NCEP analyses (Abserson and Franklin 1999; Aberson 2002). It is also noted that at the time of
Hurricane Rita, the NCEP analysis did not mdisite AIRS data in their assimilation.

Figure 3.6 shows the mean temperature difference (Fig. 3.6a) and mean relative humidity (Figs.
3.6b,c,d) from dropsondes and NCEP analysis, calculated from 192 profiles within Hurricane Rita. It is
noted from Fig. 3.6a that temperature from NCEP is warmer below and colder above 450nhPa tha
dropsonde measurements (Fig. 3.6b), reaching a maximum difference of afoutehi7 1000 hPa. It is
noted that the calculation methods for relative humidity used in dropsonde observation and NCEP
analysis for temperature below’@ differ. Figure 3.6b shows the mean relative humidity from
dropsondes and NCEP analysis without the corrections. Figure 3.6¢ shows the manhuetaidity
from dropsondes and NCEP analysis with RH values calculated with respect to ligeid fara
temperatures above 273 K, with respect to ice for temperatures below 253 K, and with respect to
blending of water and ice for temperatures betw2g3 K and 273 K. Figure 3.6d shows the mean
relative humidity with RH values taulated with respect to liquid water. The saturation vapor pressure
formulation from Murray (1967) is used in the calculatiti is noted that the relative humidity of NCEP
is larger than that from dropsonde data in tipper troposphere. After correction using the same
formulation, the relative humidity from the NCEP analysis is larger than dropsonde observations by
~5% in the upper troposphere. It is also noted that we will use the dropsonde data as the “truth” to
generate the simulated AIRS brightness temperadureng Hurricane Rita, so the original relative
humidity values will be used in this study.
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3.3.4 AIRS Observations

AIRS, launched in May 2002 on the NASA Earth Observing System (EOS) polar-orbiting Aqua

platforms, is an infrared spectrometer that covers the 3.7-#.4pectral range with 2378 spectral

channels (Aumann et al. 2003). AIRS data are availtwice daily with 13.5 km spatial resolution at

nadir (Aumann et al. 2003). The AIRS Infrared (IR) level 1B data contain EOS Aqua AliRGted

infrared radiances. AIRS data during a one-day period are divided into 240 scenes (granules), each of 6
minutes duration. The level 1B radiances are used in this study and are converted tosbrightne
temperature (BT) by the inverse of the Planck function. The readers are referred to Aumann )al. (200
and Pagano et al. (2003) for more details on AIRS instrumentation and performanoeeaBueement

goal of AIRS is to retrieve temperature and water vapor profiles with accuracies appraaokengf
conventional radiosonde data. As the primary scientific achievement, AIRS has improved weather
prediction (Le Marshall et al. 2005 and 2006; Chahine et al. 2006).

3.4 Comparison between NCERnalysis and Dropsonde Data

The AIRS observation errors have been evaluated and estimated at ECMWF using AIRS
observations and background-simulated radiance (McNally et al. 2006). In Jointer et al. (2007), when
assimilating AIRS radiance data, error for each selected AIRS channel is assigned a value calculated by
the difference between the observed and backgr&drsd In this study, the AIRS observation errors
within hurricane environment have been estimated based on the differences of radiancesl Shomlate

dropsonde and those from NCEP analysis usiegStand-alone AIRS Radiative Transfer Algorithm
(SARTA, Strow et al. 2003) model. Specifically, the variarieat the ' channel is calculated by

1 1?2 b, D bO — 2
‘3{) Ezi |1 -E,NCEP -I_i,c;rop /Z ’ (31)
and
1 1?2 b, D b, D
2 o5 1 Titcer Tidrop 3.2
192| |1 ,NCEP ,drop ( )

where-ri’b,'\ng,D is the SATAR model simulated AIRSig@intness temperature (BT) in channglfrom

the NCEP analysis corresponding to iledropsonde profile Whiléﬂlbc;,fpe is the same aéﬁf’g,ﬁEP

except for using dropsonde data as input to SARTA model.
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The AIRS’s 2378 channels are approximately classified into five groups: stratospheric carbon
dioxide channels, tropospheric carbon dioxide channels, ozone channels, water vapor channels, anc

window channels. There are two spectral bands in AIRS that are carbon dioxide barfdsmo649

cm?' to 810cm* (this is also referred to as the 1M1 longwave band) and the other from 218t *

to 2450cm* (the 4.3 An shortwave band). The carbon dioxide channels with the peak weighting
function (PWF) height above (below) than 200 hParagarded as stratospheric (tropospheric) carbon
dioxide channels. AIRS window channels include spectral bands at the longwave regions (&h0'

to 980cm* and 1080cm * to 1136cm ') and one spectral band at the shortwave band (246Dto

2665cm ). The ozone channels have wavelengths ranging fronc880to 1080cm* (9.6 An band)

and the water vapor channels are from 1246" to 1619cm *.

Figure 3.7 is a scatter plot showing BT differenc@si{.» T.o,) for the 192 dropsonde

i,drop
soundings. It is seen that the difference in $at@ad AIRS radiances between dropsonde observations
and NCEP analysis for individual soundings located within Hurricane Rita can be as larfg@@s

The largest difference is found in water vapor channels. In other classified channel groups,

ThCer  Tivmeo| d5°C. The mean and standard deviationTgfc., T';c,are shown in Fig. 3.8. The

mean difference of brightness teenature is positive except for the teavapor channels and some low
wavenumber tropospheric carbon dioxide channels.

Radiances are sensitive to both temperature and water vapor. Even in water aap@isch
radiances are more sensitive to temperature than to water vapor (Carrier et al., 2008). In order to see if
the large differences of brightness temperatures in water vapor channels are caused by the large
differences of water vapor content of the atmosphere between dropsonde and RCEPedgig. 3.6b),

BT differences are vertically arranged by the channels’ PWF height and shdwgsi 3.9 and 3.10.

Figures 3.9a shows thE 2 T, differences for all of AIRS’s 2378 channels and Fig. 3.9b is the

i,drop
same as Fig. 3.9b except for the 324 NOAA/NESDIS NRT channels. The mean and standara deviatio
are shown in Fig. 3.10. It can be seen that the largest BT differences are located in upper teofavsphe
water vapor channels. In fact, the large negativedBférences from water vapor channels with PWF
heights in the upper troposphere are consistent with the fact that NCEP analysis in ithepppghere

is significantly wetter than dropsonde data (see Fig. 3.6b). It is noted that the BRelhket captures

the general error pattern of AIRS BTs.
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Figure 3.11 shows the satellimages, BT differences, vertical profiles of temperature and
relative humidity of four selected dropsonde soundings. It is noted that different thermodynamic
structures within hurricanes rdsun different PWF height distributions as well as different BT
differences. This suggests a need to develop a sounding-dependent channel selection method, which i
discussed in Section 3.5.

The variances and mean errors for AIRS channels are estimated and evaluated from dropsonde
and NCEP simulated SARTA BTs. The channel dependent variances will be used in the 1D-Var twin

experiments.

3.5 The 1D-Var Experiments
3.5.1 Mathematical Formulation of Cost Function

The variational assimilation method proposed by Le Dimet and Talagrand (1986), and utilized by

Eyre et al. (1993) to include satadlibbserved radiances, minimizes the value of a scalar cost function:
00 S(HE TS RUHK T e x)B(x X)) ° @3

wherex is a state vector composed of atmospheric variables (temperature and relative humidity profiles
in this study) andk® is a background vector usually composed of values taken from a previoustforecas

(in this study, use NCEP analysesxd3. T ?°™ is the observed AIRS BT or simulated SARTA BT at

the [h channel.H(x) is the SARTA model that computes simulated BTs using the input values

provided byx. R is the estimated error covariance of fhé°* observations. FinallyB is the
estimated error covariance of the background field. The errors are assumed to be uncorrelated betweer
channels.

For simplicity, the background error covariance matrix is assumed diagonal. Theatliagon
elements oB are calculated based on the differences/den NCEP analysis and dropsonde data using
the National Meteorological Center method (§tarand Derber 1992; Amerault and Zou 2006).
Assumingd represents temperaturé) (or relative humidity f), then the diagonal elements Bfare

estimated using

R
|

d)?,i=1, 2, ...k (3.4)

v, L
id N

o

p1
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whereN is the total number of dropsonde profiled (192), d,, d/™ d**"“is the difference

_ PN
between NCEP and dropsonde profiles, % : d , is the mean difference over all dropsonde
pl

soundings, and is the number of vertical level&( 38). The 38 vertical levels extend from 986 hPa
to 247 hPa.

Figure 3.12 shows the numerical results of the standard deviations (STD) of both tem§Brature

and relative humidityf}, i.e., V., and Ve The standard deviation of temperature remains nearly

constant in both the low troposphere (about 0.74 K) and the upper troposphere (0.58 K). The standard
deviation of relative humidity increases with height, reaching 19% at about 300 hPa.
To minimize the cost functiod(x), the gradient ofJ(x) is needed, which can be written as:
Jx) HR'(HxxX) T B *x xP9, (3.5)

Wi ()
W
of SARTA. The Quasi-Newton limited memory BFGS (Broyden, Fletcher, Goldfarb, and Shanno)
method (LBFGS) (Nocedal 1980, Liu and Nocedal 1989) is used to find the minimum of the cos

function. The AIRS SARTA 1D-Var system first démeed by Carrier (2008) is used in this study.

is the tangent linear operator of the SARTA model khd is the adjoint operator

whereH

3.5.2 Channel Selection

It is well known that the weighting function (WF) quantifies the contribution of emission from
each atmospheric layer to the total emission at the top of the atmosphere. The peak weigttiomg fu
(PWF) height of a channel and the width of the WF indicate which atmospheric layer atiudhkotlis
layer is that contributes most significantly to the measured radiance. Two channels ecginehsame
PWF height, but the BT differences are different due to different broadness of WF of these tvadschan
In order to study the sensitivity of channel séten on the 1D-Var results, five sets of 1D-Var
experiments are performed using different channel combinations (Tablehe )first set of 1D-Var
experiments is conducted using all AIRS chaniiElls ALL). The second set of experiments includes
237 NRT channels. Channels assimilated in E3-NW are selected as followsirex®™Il channels,
the remaining channels are placed in two groups: carbon dioxide channels and vwateha&apels. For
each dropsonde profile, at each PWF height, tworaarwith the narrowest widths and two channels

with the widest widths are selected from each of the two groups, where the width of a channel is defined
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as the pressure difference for which the WF is at or greater than 90% of its peak value (Joiner et al.
2007). If there are no more than four channels at the same PWF height, all channels are selected.

Two additional sets of experiments are carriedtodurther improve thaccuracy of the 1D-Var
retrieval in the lower troposphere. The experiment E4_ALL500-700 is the same as E3_NWaéxcept
channels with PWF height within 500-700 hPa are added. The fifth experiment (E5_SM500-780) is th
same as E4 ALL500-700 except only some channels with PWF heights within 500-700 hPa are
included. Figure 3.13 shows the WFs of 43 channels selected from a total of 435 channels with PWF
height within the layer between 500-700 hPa for the dropsonde profile in Fig. 3.11c. These channels are
selected as follows: The black dashed line comsnne two points: (0.5, 700) and (1, 1000). The lower
branch of each WF intersects with the dashed line. The distance of each intersectiqoitat tfe(0.5,

700) is calculated, with the pressure being normalized000 (hPa). In order words, the point of (0.5,
700) is transformed to (0.5, 0.7) and the point of (1, 1000) becomes (1, 1). The ld@siien point

(0.5, 0.7) to point (1, 1) is divided into 0.01 interval. One channel is selected in each.ité¢nesé is

more than one channel in one interval, the channel with the minimum variance estimated from 192
profiles is selected.

Figure 3.14 plots the widths of WF for the dropsonde profile in Fig. 3.11c with PWF height at
640 hPa. Figure 3.15 is the same as Fig. 3.14 except for the dropsonde profile inl8igvibiIPWF
height at 684 hPa. It is thus seen that the proposed three additional chamtiehselE3, E4 and E5)
are sounding dependent.

3.5.3 Numerical Results

1D-Var twin experiments were performedeovall of the 192 dropsonde profiles. The
convergence of the 1D-Var experiments is examined first. Figures 3.16 and 3.17 show the mean and
standard deviation of model minus “observed” (i.e., dropsonde simulated) Bileddés for the 237
NRT channels before and after 1D-Var shown in terms of wavelengths (Fig. 301BYW\4n heights (Fig.
3.17). It can be seen that the BT differences, mean BT differences, and thedsthwiations of BT
differences are significantly reduced after the 1D-Var experiments.

Figures 3.18 and 3.19 show the mean and root mean square (RMS) of backgroundyarsd anal
errors for temperature and relative humidity, respectively. It can be seen that assimilaildSof

radiances reduces the mean and RMS errors, especially in the lower troposphere, where the temperatur

differences between dropsonde and NCEP analysitaegest. An error reduction of more thBE is
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obtained in the temperature analysis by assimilatinghainnels of AIRS in th lower troposphere. The

NRT channels seem to be sufficidot observing the atmosphere above 700 hPa, but not below 700 hPa.
The E2_NRT analysis is not as accurate as the E1_ALL analysis. Adding more channels to the NRT
selection (E3_NW) further improved the accuracy of the temperature analysidoméngroposphere.

The relative humidity errors are reduced significantly, especially in the upper troposphere where the
dropsonde and NCEP relative humidity differences are extremely large. The mean error of the analysis
from any of the three experiments (E1_ALL, E2_NRT, and E3_NW) is less than 5% and the RMS error
is less than 12%. Adding more channels to the NRT selection (E3_NW) only slightly impheved
accuracy of the relative humidity algsis in the upper troposphere.

Results of two single-sounding experiments assimilating five different sets of AIR8ethan

(see Table 3.1) are shown in Fig. 3.20, in which the temperature differéhcefd(op) are shown for
the dropsonde profile in Fig. 3.11c and Fig. 3.11d. It is seen that the adding mordschaihire the
500-700 hPa layer improves the retrieval accuracy below 700 hPa. It is also noted tleateihal r
accuracy adding much fewer channels in E5_SMBO®{43 and 39 channels for the soundings in Fig.
11c and 11d respectively) is close to that in BAL200-700, for which a total of 435 and 170 channels
with PWF in 500-700 hPa are added to E3_NW for the soundings in Fig. 3.11c and 3.2ttvelgp

If there are very few channels or none available within the layer between 500-700 hPa, if there
are enough other channels within the layer between 500-700 hPa in E3_NW, or if the the WFs are
narrow and do not extend into the lower troposphere, improvements from E5_SM500-700 on results
from E3_NW in the low troposphere are found to be marginal. Figure 3.21 presents the numerical results
for the dropsonde profile in Fig. 3.11b. The WFs of those channels added in E5_SM500-700 for the
dropsonde profile in Fig. 3.11b are quite narrow. lowement on the accuracy of the analysis is neither
achieved by E4_ALL500-700 nor by E5_SM500-700.

A total of 42 dropsonde soundings is found for which the accuracy of the temperature analysis at
904 hPa is improved by more th@r05C when compared with E3_NW. Figure 3.22 shows the RMS
and mean errors of temperature averaged over these 42 dropsonde profiles. It is apparent that adding .
subset of middle-level channels improves tierieval accuracy in thdower troposphere. The
E5_SM500-700 analysis is nearly as accurate as that of E4_ALL500-700, although the former uses more
10 times less channels than the latter (Fig. 3.23). The total number of channels included in the
assimilation experiments E2_NRT and E3_NW are also shown in Fig. 3.23. It is felt that the channel

selection used for E5_SM500-700 is probably adés for assimilating AIRS data in hurricanes.
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3.6 Summary and Conclusions

As the first step of applying AIRS data on tregdi storm prediction, five sets of 1D-Var twin
experiments are carried out to study the ability for AldR$a to capture the vertical variability within
TCs and the sensitivity of retrieval results to channel selection. The AIRS observation errorsehave be
estimated using a set of dropsonde profiles during Hurricane Rita. Five AIRS channel sets have been
selected based on the vertical location of PWF, as well as the width and shape of 8tesddrature
and relative humidity retrievals are much mocewaate than the NCEP background profiles after the
assimilation of dropsonde-simulated AIRS radiances. It is noted that by adding the shamdveridest
channels to the NRT channels, the retrieval accuracy could be further improved. It is also found that the
channels with PWF within the layer between 500-700 hPa could provide useful information for the
atmospheric state below 700 hPa, depending on the structure of WFs.

Having seen the capability of simulated AIRS radiances to capture tiemheariability within
hurricane environment through 1D-Var twin experinsemte will move on to the assimilation of AIRS
radiance data using the channel selection method of E5 SM500-700 with verificatging
independent observations.
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Table 3.1:Five sets of 1D-Var experiments using different combinations of AIRS channels.

1D-Var Exp. Description
E1 ALL All channels
E2 NRT NRT channels
E2_NRT channels plus 2 narrow and 2 wide channels at
E3_NW each PWF height in each of carbon dioxide and water v

groups

Apor

E4_ALL500-700

E3_NW channels plus all other channels with PWF withi
500-700 hPa

n

E5_SM500-700

E3_NW plus some channels within 500-700 hPa selecte
based on WF width

d

*Channels with PWF heights above 200 hPa are excluded in all experiments.
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Figure 3.1: The observed (a) track, (b) maximum wind, and (c) minimum SLP of HurricaneuRiig d
a nine-day period from 0000 UTC 18 to 0600 UTC 26 September 2005 plotted at 6-h interval.

45



(@)

(b) (€)

Figure 3.2: The observed and model forecasted (a) track, (b) maximum wind speed and (c)mrminimu
SLP for Hurricane Rita. Model forecasts are initialized at 0600 UTC 19 September 2005. The GFDL
hurricane model is a limited-area, grid-point model that was designed especially for the TC prediction. It
consists of a triply-nested-grid configuration with an outer mesh resolution otap@roximately 30

km), and a finest mesh resolution of 1/{2pproximately 9 km) (Bender et al. 2007). The GFDL uses a
sigma vertical coordinate system with 42 vertical levels. The NGPS model is a global spectral model
with approximately 55-km horizontal grid spacing and 30 vertical levels. OFCL is the lofficaast

from NHC.
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Figure 3.3: Spatial distribution (19-23 September, 2005) of a total of 203 dropsonde soundings from the
Gulfstream IV airplane (N49RF) during a 5-day period from 19 to 23 September for Hurricane Rita.
Dropsonde locations on 19, 20, 21, 22, and 23 are indicated by red, blue, magenta, black and green
symbols. The cyan circle symbols are added to the plus symbols toénidliectl removed profiles due

to missing data.
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Figure 3.4: The 11 removed dropsonde profiles with nmgstemperature data (blue) and relative
humidity data (red).
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Figure 3.5: The mean drifting distance (solid blue line) calculated from all 192 dropgmadiles. The

red dashed lines are the mean drifting distance plus and minus the standard deviations of the distances
For each dropsonde profile, the distance is the vertical location of each dropsonde profile to the
beginning releasing location.
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(a) (b)

(c) (d)

Figure 3.6: (a) Mean temperature difference (NCEP minus dropsonde), (b) Mean dropsonde (red) and
NCEP (blue) relative humidity profiles withoabrrections, (c) mean dropsonde and NCEP relative
humidity (RH) profiles with RH values calculatedtiwirespect to liquid water for temperatures above
273 K, with respect to ice for temperatures below 253 K, and with respect to blehdiagepand ice

for temperatures between 253 K and 273 K, and (d) the same as (c) except that RH valuesaissl calcul
with respect to liquid water. The mean dropso(ld€EP) profiles are calculated from 192 dropsonde

(NCEP) profiles during Hurricane Rita.
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Figure 3.7: Difference (T, Rcer T qropsonsd DETWeEEN dropsonde simulated and NCEP simulated BTs for

AIRS channels using a total of 192 dropsonde and NCEP temperature and water vapor relatitye hum
profiles. The green color indicates the stratospheric carbon dioxide channels (with peak gveightin
function height above 200 hPa); the magenta color indicates the tropospheric carbon dioxide channel
(with peak weighting function height below 200 hPa); the blue color indicates the withdowet; the

cyan color indicates the ozone channel; the red color indicates the water vapor channel.
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Figure 3.8: (a) Standard deviation () and (b) mean error_@) of brightness temperature in all AIRS
channels. Different classified groups are indicated in color as in Fig. 3.7.
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(b)

Figure 3.9: Difference T Tioie (i=1, 2, ..., 192) for (a) all AIRS channels and (b) 324

i,drop
NOAA/NESDIS NRT channels. Differences are vertically arranged by peak weightingofuihetight
calculated from dropsonde data. Different classified groups are indicated in col&igs3ry.
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() (d)

Figure 3.10: Standard deviation {) (a-b) and mean error_@) (c-d) of brightness temperature

differences in (a) and (c) for all AIRS channels, and (b) and (d) for 324ANTESDIS NRT channels.
Standard deviation and mean errors are vertically arranged by the peak weightingn fineogihts
calculated from the mean dropsonde profile. Diffedassified groups are indicated in color as in Fig.
3.7.
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(e) (f) (9) (h)

(i) () (k) ()

(m) (n) (0) (p)

Figure 3.11: Satellite cloud images at)(8845 UTC 19 (b) 2345 UTQ9, (c) 2215 UTC 22, and (d)
2015 UTC 23 September 2005. (e)-(h) BT diffexes for all AIRS channels vertically arranged by
channels’ peak weighting functidmeight. (i)-(I) Dropsonde tempegure profiles. (m)-(p) Dropsonde
relative humidity profiles. Locations of the four dropsonde profiles are indicat@)-{d) by blue “+”".
(a) is obtained from NOAA/ESDIS/CLASS (see online atww.class.noaa.goyand (b)-(d) from NRL,
Monterey, CA.
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Figure 3.12:(a) Temperature and (b) relative humidity background error standard deviations calculated
from the 192 dropsonde and NCEP profiles.
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Figure 3.13:WFs of 43 channels selected from a total of 435 channels with PWF height within the layer
between 500-700 hPa for the dropsonde profile in Fig. 3.11c.

57



(@)

(b)

Figure 3.14: The widths of WF for the dropsonde profile in Fig. 3.11c with PWF heiggd@hPa. (a)
carbon dioxide channels, and (b) water vapor channels. The NRT channels are indicatedddegd;
channels in E3 are in green; those selected in E5 are indicated in magenta; all remaimiets cra
indicated by black dashed line. The dashed cyan line indicates the PWF height.
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(b)

Figure 3.15:Same as Fig. 14 except for the dropsonde profile in Fig. 3.11d with PWF height aia684 hP
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(b)

(d)

Figure 3.16: Model minus observation BT differences (a) before (black) and (b) after (red) 1D-Var. (c)
Mean BT differences. (d) Standard deviation (STD) of BT differences. 237 NRT channels are used in
the 1D-Var assimilation experiments.
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(€) (d)

Figure 3.17:Same as Fig. 3.16 except that channels are vertically arranged by their PWF height.
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(b)

Figure 3.18: 1D-Var twin experiment temperature (a) BMrror (averaged over 192 profiles) and (b)
mean error (averaged over 192 profiles) with model temperatyr&g¢m background (blue), E1_ALL
(solid black), E2_NRT (red), E3_NW (green).
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(b)

Figure 3.19: Same as Fig. 3.18 except for relative humidity.
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(b)

Figure 3.20: Temperature differenceg ( T**) for the dropsonde profile in (a) Fig. 3.11c and (b) Fig.
3.11d with model temperaturer § from background (blue), E1_ALL (solid black), E2_NRT (red),
E3_NW (green), E4_ALL500-700 (dashed black) and E5_SM500-700 (magenta).
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(b)

Figure 3.21:(a) WFs of those channels added in E5_SM500-700 for the dropsonde profile in Fig. 3.11b.
(b) Same as Fig. 3.20a except for the dropsonde profile in Fig. 3.11b.
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(b)

Figure 3.22: 1D-Var twin experiment temperature (a) BMrror (averaged over 42 profiles) and (b)
mean error (averaged over 42 profiles) with model temperatuydrém background (blue), E1_ALL
(solid black), E2_NRT (red), E3_NW (green), E4_ALL500-700 (dashed black) and E50SNB0
(magenta).
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Figure 3.23: Total number of channels used for the 42 dropsonde profiles for E2_NRT (red), E3_NW
(green), E4_ALL500-700 (dashed black) and E5_SM500-700 (magenta).
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CHAPTER 4

ASSIMILATION OF AIRS RADIANCES AND VERIFICATION WITH
INDEPENDENT OBSERVATIONS

4.1 Introduction

High vertical temperature and water vapor dagacaitical for weather prediction. With its very
high spectral resolution, vertical temperature and water vapor profilesawagbt 1-2 km vertical
resolution can be obtained from AIRS measurements (Aumann et al. 2003, Susskind et al. 2003). The
validation and comparison of AIRS retrievals with other measurements and model forecadiedra
investigated intensively by previous researcheetz@t et al. 2003; Fetzer 2006; Tobin et al. 2006;
Divakarla 2006; McMillin et al. @07, Chou et al. 2009). A wideange of data sets including
observations from assimilation models, operational radiosondes, meteorological swstagaents,
instrumented commercial aircraft and surface marine buoys, as well as observations from instruments
dedicated to AIRS product validation have been used in the AIRS validation activities (Fetzer et al.
2003). In Divakarla et al. (2006), the AIRS retrieval profiles produced by an iterative physical retrieval
algorithm (Susskine et al. 2003) have been compardower a two-year period of matched radiosonde,
model forecasts, and other satellite sounding systéhasr results showed théte RMS difference for
clear-only cases is close to the expected goal accuraciB€ ofh 1 km layers for temperature and
better than 15% in 2-km layers for the water vapor. The specific humidity profileeetfrom GPS
RO data have been compared with AIRS humidity retrieval profiles and good agreemerdlfgézss
than 20% through the troposphere) averaged over large areas and extended periodsasf aitteened
(Chou et al. 2009). A previous study has also demonstrated that the assimilation of AIRS data through
the 1D-Var method can lead to a notable improvement in the temperature and water vapsrquefi
background when compared to GPS RO data (C&0@8). The comparisons of AIRS retrieval profiles
with other data sets during tropical cyclone environments, however, remained unexplored. Having seen
the ability of AIRS data in capturing the verticahriability within a hurricane environment using
simulated AIRS radiances in chapter 3, we will perform 1D-Var experiments usingah@IRS
radiance data and compare the retrieval profiles thithGPS RO profiles and dropsonde profiles within
TCs.
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In this chapter, a brief description about observations is given in section 4.2. Theatrenfi
results of AIRS 1D-Var experiments, as well as the discussion of the discrepancy of the comparisons,

are presented in section 4.3, with a summary provided in section 4.4.

4.2 Observations
4.2.1 AIRS Hyperspectral Radiances

AIRS, launched in May 2002 on the NASA Earth Observing System (EOS) polar-orbiting Aqua

platforms, is an infrared spectrometer that covers the 3.7-#b.4pectral range with 2378 spectral

channels (Aumann et al. 2003). AIRS data is al@lawice daily with 13.5 km spatial resolution at

nadir (Aumann et al. 2003). The AIRS Infrared (IR) level 1B data contains EOS Aqua AIRS calibrated
infrared radiances. AIRS data during a one-day period is divided into 240 scenes (greaales)f 6
minutes duration. The level 1B radiances are used in this study and are converted to ®rightnes
temperature (BT) by the inverse of the Planck function. The readers are referred to Aumann et al. (2003)

and Pagano et al. (2003) for more details on AIRS instrumentation and performance.

4.2.2 GPS RO Data for Verification

The Global Positioning System (GPS) radi@utation (RO) limb-sounding technique makes
use of radio signals from the GPS satellites toEparth’s atmospheric soundings. The radio path of
radio occultation transverses the Earth’s atmosphere and is deflected primarilyestida gradient of
atmospheric refractivity. The vertical profiles of bending angle and refractivity caerived from the
raw RO measures of the excess Doppler shift to the radio signal transmitted by GPS satellite (Kursinski
et al .1997). The dry and wet retrieval products can be generated from the refractivity profiles. The
refractivity is related to atmospheric paramefetlowing the equation (Bean and Dutton, 1968, Healy
and Eyre 2000):

N 77.6? 373 16% u (4.1)

where p is the pressure (hPal), is temperature (K), ang,, is water vapor pressure (hPa). The first

term on the right-hand-side of (4.1) is the dry term; the second one is the wet term. In thEOI05M
Analysis and Archive Center (CDAAC), a 1D-Var algorithm, using equation (4.1) as the forward
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operator, is applied to retrieve both temperature and water vapor profiles (Healy an@@yredmer
et al. 2000).

The GPS RO missions have been developed initially from GPS Meteorology (GPS/MET)
(Kursinski et al. 1996) to a later GPS missionezhthe Challenging Minisatellite Payload (CHAMP;
Wickert et al. 2001). Later, it was incorporated in the Argentina’s Satelite de Aplicaciones Cientificas-C
(SAC-C; Hajj et al. 2004), and most recently in the Constellation Observing System for Meteorology,
lonosphere, and Climate (COSMIC; Anthes eR808). The precision of COSMIC GPS RO soundings
is the most accurate one with approximately 9.05the upper troposphere and lower troposphere
(Anthes et al. 2008). Six low-Earth-orbit (LEO) micatslites, which were launched on 15 April 2006
into a circular, 72inclination orbit at 512 km altitude, form the constellation for the COSMIC satellite
system (Anthes et al. 2008). Approximately 2000 soundings per day are produced globally from current
and near-final orbital COSMIC configuration (Anthes et al. 2008). The vertical resolution of RO data
ranges from better than 100 m in the lower troposphere to about 0.5 km in the stratoEpbeagreat
advantage of GPS RO data lies in the fact that they provide high vertical resolution temperature,
pressure and water vapor information for all weather conditions. The COBR data from CDAAC

will be used herein to compare with the AIRS 1D-Var retrieval profiles.

4.2.3 Dropsonde Data for Verification

The dropsonde data from the Gulfstream-IV (G-IV) airplanes, operated by the National
Hurricane Center, for Hurricane Rita (2005) are used as another verification data ¥surgeGlobal
Positioning System (GPS) dropwindsondes (Hock and Franklin 1999, Rogers et al. 2002), the airplane
G-IV observes the pressure, temperature, relativaidity, and wind within tropical storms to improve
its forecast (Burpee et al. 1996; Aberson and Frarlld®9, Rogers et al. 2002). More details about the

dropsonde data are given in chapter 3.

4.2.4 MODIS Cloud Mask

The Aqua satellite’s Moderate Resolution Imag®pectroradiometer (MODIS) is a 36-channel
scanning radiometer and has 36 spectral bands with nadir spatial resolution of 250 m (bands t+2); 500
(bands 3-7); and 1000 m (bands 8-36) (Barnes et al. 1998, Platnick et al. 2003). Theapeutiep

from MODIS data on the pixel-level retrievals (the Level-2 products) have 1-km or 5-km spatial
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resolution at nadir (Platnick et al. 2003). The MSloud mask products for cloud identification and
cloud height have been used by researchers to quantity the cloud property of ARSimpigach
granule (Ackerman et al. 2002; Haines et al. 2004). The MODIS cloud mask isedbfeom the
Goddard Distributed Active Archive Center (GDAAC) for each AIRS swath. The MODIS cloud top
pressure (CTP) data have been used in the limited cloud-contaminated data removal (LIgGDRNa
(Carrier et al. 2007).

4.3 AIRS 1D-Var Experiment
4.3.1 Mathematical Formuhtion of Cost Function

The variational assimilation method proposed by Le Dimet and Talagrand (1986), and utilized by

Eyre et al. (1993) to include satadlibbserved radiances, minimizes Wladue of a scalar cost function:

J(X) %(H(x) T )R Y(H(x) T°°%9 %(x x9"B (x xH ° (4.2)
whereXx is a state vector composed of atmospheric variables (temperature and relative humidity profiles
in this study) andk® is a background vector usually composed of values taken from a previoustforecas
(in this study, use NCEP analysesxd3. T % is the observed AIRS BT at th&th channel.H (X) is
the SARTA model that computes simulated BTs using the input values provided Byis the

estimated error covariance of tfié®™ observations. FinallyB is the estimated error covariance of the
background field.

For simplicity, the background error covariance matrix is assumed diagonal and the calculated
background variance from dropsonde and NCEP profiles in chapter 3 will be used herein. The
observational error covariance matrix is assumed diagonal (i.e., assuming no correlation between
channels). The calculated mean group variances, tropospheric carbon dioxide channels have a
standard deviation(STD) of 0.66 K, water vapor channels have a higher erroovali@ K, window
channels are 0.91 K, and ozone channels are 0.66 K) in chapter 3 have been used as the observatio
weightings. It is noted that in McNally et al. (2006), stratospheric channels have STID Kf all
tropospheric channels have an error of 0.6 K with window channels and water vapor channels assigned
an error of 2.0 K.

To minimize the cost functiod(x), the gradient ofJ(x) is needed, which can be written as:
J(x) H'R'H(X) T B'x x"), (4.3)
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where H is the tangent linear operator of the SARTA model khd is the adjoint operator

Wi ()
W

of SARTA. The Quasi-Newton limited memory 85 (Broyden, Fletcher, Goldfarb, and Shanno)
method (LBFGS) (Nocedal 1980, Liu and Nocedal 1989) is used to find the minimum of the cos
function. The AIRS SARTA 1D-Var system first démeed by Carrier (2008) is used in this study.

A brief description of the 1D-Var experiment procedure is as follows: first, the dropsonde or
GPS RO soundings with clear sky conditions or low altitude CTPs within TCs, which dedl\spa-

located with AIRS data locations and temporaligh offset with AIRS observation swatch time, are

selected. The spatially co-located (using bi-lineathoe to interpolate the NEP data to dropsonde or

RO locations) and temporally3 h offset NCEP profiles (NCEP giiles are also served as the

background profiles in the 1D-Var system) are usgdput to the SARTA model to get WFs for those
profiles. Then, a channel set for each profile has been selected based on the channel selection method ¢
E5_SM500-700 proposed in chapter 3.5.2 using the WFs. Prior to 1D-Var assimilation, the LCCDR
algorithm (Carrier et al. 2007) has been used to do the qualitirol. So the channel set is further
thinned to remove cloud contaminated data and the outliers by the LCCDR algdrittmoted that

like McNally et al. (2006), all channels shorter than 4.46 um (past AIRS channel 1928) aratetimin

due to the large biases in these channels. Finally, the selected channels have been used in the AIRS 1C

Var system to get the retrievals of temperature and water vapor profiles.

4.3.2 Verification of AIRS 1D-Var Results with GPS RO Data

For the comparison of AIRS retrieval withPS RO profiles, two tropical storms (Karen and
Melissa) during 2007 are selectedtis study. Hurricane Karen formed from a tropical wave from the
west coast of Africa on 21 September 2005. Mowirggt-northward with littlechange until late on 24
September, Karen became a tropical depression when convective banding became sufficient. Karen
strengthened significantly early on 26 September, reaching hurricane strength with pesitky infen
about 65 kt later that day (Brennan et al. 2009yeKauickly became weakened below hurricane status
early on 27 September (Brennan et al. 2009). Melissinatag from a tropical wave that left the west
coast of Africa on 26 September. Melissa moved very slowly westerly and became a tropicalsty
on 29 September. It remained at its peak intensity of 35 kt for one day (BrennaB0£93l.Melissa
weakened to a depression early on 30 September due to increasing westerly wind shear.
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There are a total of 10 GPS RO profiles whiaoh gpatially co-located with AIRS locations and
temporally r3h offset with AIRS observational swath times with clear sky pixels or low alti@ides.

These 10 GPS RO soundings are used to evaluateahBIRS data in capturing the vertical variability
within TCs.

Figure 4.1 shows the tracks of the two tropical cyclones (Karen: red; Melissa: blue) and the
locations of the RO soundings (the red color ¢atiks the RO sounding for Karen; the blue color
indicates the RO sounding for Melissa; the plus syinmMdicates the RO sounding is at tropical storm
intensity period and the circle symbol indicates the RO sounding is at tropical depression intensity
period). Table 4.1 gives a brief description abitngt 10 RO soundings: the time, the intensity of the
storm, the distance to the storm center, and the offset time in comparison to the AIRS swath time. Figu
4.2 shows the lowest GPS pressure heights (the blue plus symbols), MODIS CTPs (the blue square
symbols), as well as the distances (the red open circle symbols) of the MODIS datadaedaitive to
the AIRS locations. It is apparent from Fig. 4.2 that the selected GPS RO soundings are in clear sky
conditions or with low altitude CTP values (below 800 hPa).

Figure 4.3 shows the total cost function (red), AIRS observation cost function (black), and
background cost function (green) as well as the lap@horm of the gradient with number of iterations
for RO sounding number one. It can be seen from Fig. 4.3 that the total (observatiomncbenh f
reduces dramatically in the first several iteratiansl the log of the norm of gradient reduces three
orders of magnitude, which proves the convergence of the minimization.

The convergence can be further proved by the BT differences. Figures 4.4 andwi.thesh
mean and standard deviation of model minus observed BT differences for dhehaseels before and
after 1D-Var shown in terms of wavelengths (Fig. 4.4) and peak weighting function (PWF) heights (Fig.
4.5). It can be seen that the BT differences, ni@ardifferences, and the standard deviations of BT
differences are reduced after 1D-Var experiments. The black and red solid lines in Figs. 4.5c,d are the
mean BT differences and mean STD values for channels with the PWF heights in 50-hPa layers bef
and after assimilation, respectively. It is apparent that the mean STD in terms of the PWF heights
decreases for all PWF heights after assimilation especially within the layer of 500 hPa to 300 hPa.
Figures 4.6 and 4.7 display the model minus BT differences for each individual RO sounding shown in
terms of wavelengths (Fig. 4.6) and PWF heights (Fig. 4.7). It is evident from Figs. 4.6 and th& tha

BT differences generally decrease significantly after assimilation for all 10 RO soundings.
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It is also worthwhile to examine the BT difésmces between backgrouadd analysis simulated
BTs and GPS RO simulated BTs, which could give hints on how close the retrieval profiles to RO
profiles in terms of BTs. Figures 4.8 and 4.9 show the BT difference, mean and s@ematitn of
model minus GPS RO simulated BT differences for the used channels before and &fégrshiown in
terms of wavelengths (Fig. 4.8) and peak weighting function (PWF) heights (Fig. 4.9). laieragpat
the BT differences, mean BT differences, and the standard deviations of BT détemecreduced
greatly after 1D-Var experiments. The black and red solid lines in Figs. 4.9c,d are the mean BT
differences and mean STD values for channels with the PWF heights in 50-hPa layers loe&fter an
assimilation, respectively. It is apparent that tham®TD in terms of the PWF heights decreases for all
PWF heights after assimilation. Figures 4.10 and 4.11 display the model minus GPS RO simulated BT
differences for each individual RO sounding shown in terms of wavelengths (Fig. 4.10) and PWF
heights (Fig. 4.11). It is evident from Figs. 4.10 and 4.11 that the BT differences of theamdb@&PS
simulated BT generally decreasgrsficantly after assimilation for all ten RO soundings. These figures
show that the BTs simulated from assimilated profiles are much closer to the BTs simulat&Pfom
RO profiles than those from background profiles, which could also indicate that theatqiri#iles are
closer to the GPS RO profiles compared with NCEP background profiles, which wsfibla later.

Before comparing the temperature and trneta humidity profiles, we will compare the
refractivity (the rawer GPS data) first, which waloid the retrieval errors inherent with the GPS 1D-
Var retrieval process for temperature and water vapgure 4.12 shows the mean errors and root mean
square (RMS) errors of refractivity for backgnad and assimilated profiles compared with GPS
observed refractivity. The refractivity values for background and assimilated prafdesalculated
using equation (4.1). It can be seen from Fig. 4.12 that after assimilation the mean and RMS errors of

refractivity are reduced at most levels compareith wiose from the background profiles. Figure 4.13

illustrates the refractivity differencedN( NF°) of background and analysis for each individual RO
sounding. It is apparent from Fig. 4.13 that the refractivity differences have been reflac@dRS
data assimilation. Figures 4.12 and 4.13 indicate that assimilating AIRS data could elimioatefmu
the discrepancy of refractivity between the background and GPS RO profiles.

Figures 4.14 and Figure 4.15 show the temperature and relative humidity analysis increments
(analysis minus NCEP background), respectively, for all ten RO soundings. Tlgsisaimacrement
could tell how much the assimilation adjusts finst guess profiles. Figures 4.16 and 4.17 show the

mean and RMS of background and analysis errors for temperature and relative humidityyedspliéct
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is evident that the assimilation of AIRS radiances reduces the mean and RMS errors both for

temperature and relative humidity. An error reduction of alit@tis obtained in the temperature
analysis near 800 hPa. The analysis RMS errors of temperature also reduce significantly focalll verti
levels with best accuracy below 700 hPa. Timay be partly owing to the selection method of
E5_SM500-700, which selects more channels \W¥F within the layer between 500-700 hPa, and
which could provide information for atmospheric state below 700 hPa. The relative humidity errors are

reduced significantly with a maximum RMS error reduction value of larger than 15% around 300 hPa.
Figures 4.18 and 4.19 show the temperature and relative humidity differéhc&’{; f fF°) of
background and analysis for each individual R@Qnsiting. Figure 4.20 shows the scatter plot of

temperature and relative humidity differences before and after assimilation for alluR@rgys. It can
be seen from these figures that the temperature and relative humidity differences were reduced after
AIRS assimilation, which shows that AIRS datauld lead to better temperature and water vapor
retrievals over background.

It is also worthwhile to discuss the retmship between the BT differences of model and
observation in terms of PWF height (Fig. 4.7) and the temperature and water vapal netsigits (Figs.
4.18 and 4.19), which will somewhat explain the performance of retrieval resuttexdfople, the gap
between 750-900 hPa in ROl in Fig. 4.7 may cause no improvement in theséolafre@demperature
retrieval (Fig. 4.18). The degradation of tempemtamd water vapor analysis around 550 hPa for RO2

may be due to the channel gap around 550 hPa for this sounding.

4.3.4 Verification of AIRS 1D-Var Results with Dropsonde Data

There are a total of 40 dropsonde profiles which are spatially co-located and within a temporal
r3h offset with AIRS data during Hurricane Rita (2005). Figure 4.21 shows the dropsonde profile

locations and the track of Hurricane Rita. Table 4.2 gives a brief descrybtibe 40 dropsonde profiles:
the time, the intensity of the hurricane, the distance to the hurricane center, and the offset time in
comparison to the AIRS swath time. More detailsudHurricane Rita and ¢hdropsonde data set are
given in sections 3.2 and 3.3. Figure 4.22 shows the MODIS CTPs (the blue pluds3yadbwell as
the distances (the red open circle symbols) oM@DIS data locations relative to the AIRS locations.

It is known that a dropsonde is ansitu point measurement while AIRS gives the integrated

atmospheric state information in a layer of the atrhesp (the width of layer depends on the width of
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the channel's WF). Moreover, the AIRS observed radiances have errors which arise from noise
processes within the instruments and from imperfect calibration (Pagano et al. 2003), as well as from
cloud contamination or residuals from the cloud-clearing process (Fetzer et al. 2003). Before npgrformi
the AIRS 1D-Var, the biases between dropsonde simulated and real AIRS BTs are worth tmgestiga

find out the differences between these two measurements, and then to perform the simple(Baiance
bias correction before the 1D-Var. In section 3.4, from the comparison between NCEP analysis and
dropsonde data simulated BTs, it is found that NCEP simulated BTs have large cold biases for water
vapor channels especially in the upper tropospheneifjghe mean biases are estimated by way of the

dropsonde simulated and real AIRS BTs using a total of 40 dropsonde profiles. Figure 4.23hghow
BT difference (%5 Toums: Tiae, iS the SARTA model simulated AIRS BT in channslfrom

i,drop i,drop
dropsonde data corresponding to tfiedropsonde profile‘,l'ifﬁ\,ﬁS is the corresponding BT from real

AIRS data), mean bias, and STD values vertically arranged by channels’ PWF heights between
dropsonde simulated and AIRS observed BTs. The black dashed lines in Figs. 4.234dli®aaean

values for BT differences, mean bias and mean STD values for channels with the PWF heights in 50-hPa
layers. It is noted that all real AIRS data useckimeare quality controlled in order to remove the cloud
contamination and outliers. Therefore, the numbers of dropsonde profiles for different channels used in
the statistical analysis vary. Only those channels with a dropsonde number larger (Ran 2(23d)

are selected to calculate the mean bias and STD values. It is also noted that the top level of the
dropsonde profile is about 250 hPa. Above that, a tropical reference profile is merged with dropsonde
profile in SARTA, so the BT differences for stratospheric channels do not represent the actual
differences between dropsonde and AIRS data. All stratospheric channels will béedxicl the 1D-

Var assimilation. It can be seen from Fig. 4.23a that the difference in dropsonditesinAlIRS and

real AIRS BTs for individual soundings located within Hurricane Rita can be as ladd8GsThe

largest difference is found in the water vapor chémnehich is the same as the largest difference
between NCEP and dropsonde simulated BTs foundaiier vapor channels in section 3.4. The mean

bias can be as large as alm8%t for water vapor channels (Fig. 4.23k)is shown from Fig. 4.23 that

in comparison with dropsonde simulated AIRS BTs, itbal AIRS data have cold biases, especially in

the middle and upper troposphere. Before 1D-Var experiments, the calculated mean biases are used t«

perform the observation bias correction. It is noted that the channels whiabt g@rform the bias
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correction (i.e., those channels with a dropsonde nuiebsrthan or equal with 20) will not be used in
the 1D-Var experiments.

The convergence of the 1D-Var experiments is first examined. Figure 4.24 shows the total cost
function (red), observation cost function (black) andkigagound cost function (green), as well as the log
of the norm of the gradient with number of iterations for dropsonde sounding number onédadtseen
from Fig. 4.24 that the total (observation) coshdiion reduces dramatically in the first several
iterations and the log of the norm of gradient reduces three orders of magniticke,pwdves the
convergence of the minimization. Figures 4.25 and 4.26 show the BT difference, the meandand stan
deviation of model minus observed BT differences for the used chawefele and after 1D-Var shown
in terms of wavelengths (Fig. 4.25) and PWF heights (Fig. 4.26). It can be seen that the BT é#ferenc
mean BT differences, and the mean standard deviations of BT differences are reduced after 1D-Var
experiments. The black and red solid lines in Fig. 4.26¢,d are the mean differences and mean STD
values for those channels with the PWF heights50-hPa layers beforand after assimilation
respectively. It is apparent that the mean BT diifiee after assimilation (red) is very close to zero
while the mean BT differences befassimilation (black) have negative biases. It also can be seen that

STD in terms of the PWF heights decreases sigmiflg for all PWF heights after assimilation with a
maximum STD reduction abo@’C between 500 hPa to 600 hPa. Figures 4.25 and 4.26 prove the

convergence of the 1D-Var experiments.

Before comparing the 1D-Vaetrieval results, the BT diffence between model (background
and analysis profile simulated BT) and dropsonde simulated BT is examined. Figuremd.2728
display the BT difference, mean and standard deviation of model minus dropsondtesin®IT
differences for the used channels before and after 1D-Var shown in terms of wavdlErgt#h27) and
peak weighting function (PWF) heights (Fig. 4.28)sIhoted that after assimilation, the BT difference
tends to increase, which could be true if the observed AIRS BTs are away from dropsonde simulated
BTs. Figures 4.27 and 4.28 further confirm the discrepancy between AIRS data and dragestand
which also indicates that the retrieval profiles could somewhat away from the nilep$ata.

Figures 4.29 and 4.30 show the mean and RMS of background and analysis errors for
temperature and relative humidity, respectively. Hased that the biases and RMS errors shown in the
left columns in Figs. 4.29 and 4.30 are in the SARiodel levels while the right columns are in 1-km
layers for temperature and 2-km layers for watgrovaThe degradation of vertical resolution has the

dramatic effect of suppressing large errors associated with vertically finessealtires present in the
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high-vertical resolution profiles (Tobin et al. 2006). The 1-km layer temperature biases are less than 0.5
K at all levels. It is apparent that AIRS is colder than dropsondes below ~400 hPa and is warmer than
the dropsondes above ~400 hPa. This is the opposite of NCEP background data, which have large bias
values. The 1-km temperature analysis RMS errors are less than 2 K for all levels. The smallest RMS
error is near 850 hPa, which is less than 1.5 K. The 2-km relative humidity analysis bias is less than 10%
for all levels with almost zero bias values above 450 hPa (Fig. 4.30b). The RMS of analysis erro
decreases in the upper troposphere but increases in the lower and middle troposphere (Fig. 4.30b). Ther:
is an apparent degradation (hike) around 550 hPa with larger than 20% RMS error.

The comparisons of AIRS 1D-Var retrievals with dropsonde data did not show much
improvements in terms of RMS errors, which is partly due to the difference betweenthebterent
measurements. Dropsonde data provide point measurements of the atmosphere, which nmiakk it diff
to compare with AIRS data giving integrated atmospheric information for some layers ahtisplatre.

Figure 4.23 illustrates the large differences between these two measurements within a hurricane
environment; the differences also have been implied in Figures 4.27 and 4.28. Anotirecdasing

the discrepancy between dropsonde and AIRS data may be due to the large variations aturenamer

water vapor during TCs. It should be noted that the mean bias calculation herein @ugarpwing to

the very small number of available samplings. Ladpta sets within TCs are needed to estimate the
bias for AIRS channels. The AIRS bias correction is considered to be a dauntirflylta&ly et al.

2006), which needs not only a largata set over long time periods but also the understandings of the
source of biases of each AIRS channel. The better understanding of biases for all AIRSvdatta is
further investigation utilizing large data sets. Furthermore, another avenue to geteidhpetveval

profiles from AIRS data is to get the right specification of background errors, in particular the ratio
between temperature and humidity errors (Joiner et al. 2007). Moreover, to get bettaneg
between dropsonde and AIRS measurements, one may use the adjusted dropsomdM dislidinl et

al. (2007), the GPS-adjusted radiosonde humidity profiles are compared with AlRiSaphgtrieval

profiles and a better agreement has been shown. In addition to the performance of the NCEP backgrounc
data, the smaller RMS difference may be attributed to the fact that the dropsonde temperature data
during Hurricane Rita were assimilated in the Global Data Assimilation System (GDAS) totg¢hera

NCEP analysis (Abserson and Franklin 1999; Aberson 2002).
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4.4 Conclusions

As the second step of applying AIRS datalmntropical storm study, 1D-Var experiments using
real AIRS radiance observations within TCs are performed and the retrieval temperature and water
vapor profiles have been compared with matched GPS RO and dropsonde sodidiregsnparison of
AIRS 1D-Var retrieval profiles with GPS RO soungs show that AIRS data can greatly improve the
analysis of temperature and water vapor profiles within TCs, which will hopefully give a better mitiatio
for the prediction of TCs. The comparisons of retrieval profiles with dropsonde data durincghie
Rita, however, show some discrepancies. This is partly due to the difference of these two measurements
and the uncertainties of the AIRS errors.

It is noted that although the comparisonsAtRS retrieval profiles with GPS RO soundings
show significant improvements for temperature antewaapor retrieval in ik work, the number of
RO soundings used herein is quite small. Thus, in order to obtain a large enough numbeaoncosmp
for statistical significance, the next step of thisrkvis to further examine the ability of AIRS data in

capturing vertical variability within TCs using more co-located RO samplings.
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Table 4.1: GPS RO soundings used in AIRS 1D-Var comparisons.

Offset time
GPS RO Time Intensit Distance to between
Number y Storm Center| AIRS and
GPS
1 0421 UTC 25 Sept. 2007 1> 665 km 1h
(Karen)
2 0211 UTC 26 Sept. 2007 1> 450km | 2h 19 min
(Karen)
3 0441 UTC 28 Sept. 2007 1> 748 km 23 min
(Karen)
4 1729 UTC 28 Sept. 2007 1> 851 km 41 min
(Karen)
5 1335 UTC 29 Sept. 2007 1O 765km | 2h 13 min
(Melissa)
6 1833 UTC 2 Oct. 2007 | 1D 269 km 2 h 15 min
(Melissa)
7 0644 UTC 3 Oct. 2007 | . . 1P 963 km 2 h 14 min
(Mellissa)
8 0656 UTC 3 Oct. 2007 | . . 1P 659 km 2 h 26 min
(Mellissa)
9 0339 UTC 3 Oct. 2007 | ,. . 1P 256 km 1 h 33 min
(Mellisa)
10 0446 UTC 3 Oct. 2007| . 1D 914 km 26 min
(Mellisa)

*TS (Tropical Storm); TD (Tropical Depression)
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Table 4.2: Dropsonde profiles used in AIRS 1D-Var comparisons.

Dropsonde Time Intensity Distance to Offset
Profile Number Hurricane Center time
1 0649 UTC 19 TS 587 km 4 min
2 0720 UTC 19 TS 996 km 27 min
3 0738 UTC 19 TS 1176 km 45 min
4 0757 UTC 19 TS 961 km 1 h 4 min
5 0813 UTC 19 TS 764 km 1 h 20 min
6 0829 UTC 19 TS 588 km 1 h 36 min
7 0848 UTC 19 TS 487 km 1 h 55 min
8 0927 UTC 19 TS 201 km 2 h 34 mlin
9 0936 UTC 19 TS 161 km 2 h 43 min
10 1856 UTC 19 TS 932 km 33 min
11 1912 UTC 19 TS 962 km 17 min
12 2030 UTC 19 TS 404 km 2 h 42 min
13 1933 UTC 21 5 592 km 16 min
14 1949 UTC 21 5 470 km 32 min
15 2021 UTC 21 5 408 km 1 h4 min
16 2049 UTC 21 5 615 km 1 h 32 min
17 2106 UTC 21 5 790 km 1 h 49 min
18 2124 UTC 21 5 733 km 2h 7 min
19 2138 UTC 21 5 917 km 2 h 21 min
20 2155 UTC 21 5 1088 km 2 h 38 min
21 0909 UTC 22 5 528 km 1 h 46 min
22 0925 UTC 22 5 529 km 2 h 2 min
23 1954 UTC 22 4 487 km 6 min
24 2016 UTC 22 4 684 km 16 min
25 2031 UTC 22 4 720 km 31 min
26 2051 UTC 22 4 984 km 51 min
27 2108 UTC 22 4 838 km 1 h 8 min
28 2121 UTC 22 4 890 km 1 h 21 min
29 2135 UTC 22 4 702 km 1 h 35 min
30 2150 UTC 22 4 506 km 1 h 50 min
31 2204 UTC 22 4 491 km 2 h 4 min
32 2218 UTC 22 4 460 km 2 h 18 min
33 2233 UTC 22 4 616 km 2 h 33 min
34 0841 UTC 23 4 695 km 30 min
35 0857 UTC 23 4 806 km 46 min
36 0916 UTC 23 4 767 km 1 h5min
37 0935 UTC 23 4 930 km 1 h 24 min
38 1001 UTC 23 4 849 km 1 h 50 min
39 2057 UTC 23 3 405 km 1 h 52 min
40 2159 UTC 23 3 761 km 2 h 54 min

*Numerical value in the third column represents Saffir-Simpson intensity and TS represents
tropical storm intensity.
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Figure 4.1: The distribution of COSMIC GPS RO locations and hurricane track (star symbol) for
Hurricane Karen (Sep 25-28 2007, red) and Trogstatm Melissa (Sep 29 — Oct 4 2007, blue). The
plus symbol indicates the RO sounding is at tropical storm intensity period and the circle symbol
indicates the RO sounding is at tropical depression intensity period.
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Figure 4.2: MODIS CTP (square symbol, blue), GPS lowest pressure (plus symbol, blue), and distance
(circle, red, right axis) of MODIS data locatiorlative to the AIRS location for the 10 GPS RO
soundings.
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(@)

(b)

Figure 4.3: (a) The total cost function (red), observation cost function (black), and background cost
function (green), (b) the log of the norm of the gradient with the number of itesdtto RO sounding
number one.
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(b)

(d)

Figure 4.4 Model minus observation BT differences (a) before (black) and (b) after (red) 1D-Var. (c)
Mean BT differences, (d) Standardvdgion (STD) of BT differences.
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(b)

(d)

Figure 4.5: The same as Fig. 4.4 except that chanaetsvertically arranged by their PWF height
(calculated from the mean NCEP background profile). The black line (before assimilation) and red line
(after assimilation) in (d) are the mean STD wealdor channels with the PWF heights in 50-hPa
pressure interval layers.
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Figure 4.6: Model minus observation BT differences before (black) and after assimilation (red) for each
GPS RO profile.
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Figure 4.7: Model minus observation BT differences before (black) and after assimilation (red)
vertically arranged by channels’ PWF height for each GPS RO profile.
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(b)

(d)

Figure 4.8 Model minus GPS RO simulated BT differeada) before and (b) after 1D-Var. (c) Mean
BT differences, (d) Standard deviation (STD) of BT differences.
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(b)

(d)

Figure 4.9: The same as Fig. 4.8 except that chanaedsvertically arranged by their PWF height
(calculated from the mean NCEP background profile). The black line (before assimilation) and red line
(after assimilation) in (c) and (d) are the mean error and mean STD values for channels with the PWF
heights in 50-hPa pressure interval layers.
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Figure 4.10: Model minus GPS RO simulated BT differences before (black) and after assimilation (red)
for each GPS RO profile in terms of wavelength.
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Figure 4.11: Model minus GPS RO profiles simulated BT differences before (black) and after
assimilation (red) vertically arranged byarimels’ PWF height for each GPS RO profile.
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(b)

Figure 4.12 Refractivity (a) mean error (averaged over 10 GPS profiles) and (b) RMS error for
background (blue) and assimilated profiles (red) using observed refractivity.
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Figure 4.13: Refractivity difference (analysis refractivity minus observed refractivity) for NCEP
background calculated (blue), and AIRS assimilated profiles calculated (red) for each GPS profile.
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Figure 4.14: Temperature analysis increment (analysis minus background) for each GPS profile.
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Figure 4.15: Relative humidity analysis increment (area$yminus background) for each GPS profile.
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(b)

Figure 4.16: 1D-Var temperature (a) mean error (averageset 10 GPS profiles) and (b) RMS error for
background (blue) and assimilated profiles (red).
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(@)

(b)

Figure 4.17: 1D-Var relative humidity (a) mean error (averaged over 10 GPS profiles) and (b) RMS
error for background (blue) and assimilated profiles (red).
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Figure 4.18: Temperature difference for NCEP background (blue), and AIRS assimilated (red) for each
GPS profile.
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Figure 4.19: Relative humidity for NCEP background (b and AIRS assimilated (red) for each GPS
profile.
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@) (b)

© (d)

Figure 4.20 Temperature difference (background/analysiaus observation) scatter plot (a) before
assimilation and (b) after assimilated. Relatikemidity difference scatter plot for (c) before
assimilation and (d) after assimilation.
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Figure 4.21: The distribution of dropsonde profiles locations (red plus symbols) used in the AIRS 1D-
Var experiments and the track (blue line) for Hurricane Rita.
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Figure 4.22: MODIS CTP (plus symbol, blue) as well as the distance (circle, red, right axis) of MODIS
data location to the AIRS location for the 40 dropsonde soundings.
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(@) (b)

(c) (d)

Figure 4.23: (a) BT differenc if;rop 'I'iffms) (b) meafi bias, and (c) STD values between dropsonde

simulated and AIRS observed BTs for channels whose number of dropsonde profiles is grea€er than 2
The dashed black lines in (a),(b),(c) are the mean values in 50-hPa layers. A total of 40 dropsonde
profiles are used herein. The green color indicates the stratospheric carbon dioxide channels (with peak
weighting function height above 200 hPa); the magenta color indicates the tropospheric carbon dioxide
channel (with peak weighting function high below 200 hPa); the blue color indicatesindow
channel; the cyan color indicates the ozone channel; the red color indicates the water vapor channel.
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(@)

(b)

Figure 4.24: (a) the total cost function (red), observation cost function (black), and backgrosind c
function (green), (b) the log of the norm of the gradient with the number of iterations psodd=
profile 1.
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(b)

(d)

Figure 4.25: Model minus observation BT differences (a) before and (b) after 1D-Var. (c) Mean BT
differences, (d) standard deviation (STD) of BT differences.
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(b)

(©) (d)

Figure 4.26 Model minus observation BT differences (a) before (black) and (b) after (red) 1D-Var. (c)
Mean BT differences, (d) standard deviation (STD) of BT differences. Channels are verticallydarrange
by their PWF height (calculated from the mean dropsonde profile). The black line (lsfondadion)

and red line (after assimilation) in (c) and (d) are the mean errors and mean STD values for channels
with the PWF heights in 50-hPa layers.
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(b)

(d)

Figure 4.27:Model minus dropsonde simulated BT differen@sbefore (black) ah(b) after (red) 1D-
Var. (c) Mean BT differences, (d) stamdaleviation (STD) of BT differences.
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(b)

(d)

Figure 4.28 Model minus dropsonde simulated BT differen@sbefore (black star) and (b) after (red
circle) 1D-Var. (c) Mean BT differences, (d) standard deviation (STD) of BT diffeserChannels are
vertically arranged by their PWF height (calculated from the mean dropsonde profile). The black line
(before assimilation) and red line (after assimilgtion(c) and (d) are the mean errors and mean STD
values for channels with the PWF heights in 50-hPa layers.
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(@) (b)

(c) (d)

Figure 4.29: 1D-Var temperature (a) mean error (averaged over 40 dropsonde profiles) andSb) RM
error for background (blue) and assimilated profilesl)r(c) and (d) are the same as (a) and (b) except
that the mean error and RMS error are calculated in 1-km layers.
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@ (b)

() (d)

Figure 4.30: 1D-Var relative humidity (a) mean error (averaged over 40 dropsonde profiles) and (b)
RMS error for background (blue) and assimilated peefilred). (c) and (d) are the same as (a) and (b)
except that the mean error and RMS error are calculated in 2-km layers.
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CHAPTER 5

SUMMARY

This work focuses on the investigation of the potential application of satellitespyotnal
radiance data on the study of convective initiations and the assimilation of AIRS radianesttiata
tropical cyclones. The first part of this study demonstrates the potentidildgpaf hyperspectral
radiance data to resolve 4D variability of the atmosphere before and throughout a convective event.
Specifically, a set of high vertical and temporal resolution temperature and water vapor profiles within a
convective system from dropsondes, AERI and SRL were used to examine the temporal and vertical
variability of the atmosphere, to simulate GIFTS measurements and to makeisong®aith model
forecasts. It was shown that GIFTS BTs could capture the temporal and vertical variability seen in the
water vapor and temperature fields within a convective system.

Next, as the first step of applying AIRS radiance data on tropical prediction, a set of tbiVa
experiments is carried out to study the ability for AIRS data to capture the verticailitanathin TCs,
as well as the sensitivity of retrieval results to channel selection. Five AIRS channel sebedmve
selected based on the vertical location of PWF as well as the width and shape of WFs. &heuemp
and relative humidity retrievals are much mocewaate than the NCEP background profiles after the
assimilation of dropsonde-simulated AIRS radiances. It has been shown thatiryy thednarrowest
and widest channels to the NRT channels, the retniesalts could be further improved. It is also found
that the channels with PWF within the layer betwB6@-700 hPa could provide useful information for
atmospheric state below 700 hPa, depending on the structure of WFs.

Finally, using the proposed channel selection method, a set of 1D-Var experiments using AIRS
data within TCs was performed and the retrieval temperature and water vapor profédebelean
compared and verified with co-located GPS RO and dropsonde soundings. The comparisons of AIRS
1D-Var retrieval profiles with GPS RO soundings show that AIRS data can greatly improve yistsanal
of temperature and water vapor profiles within TCs, which will hopefully give a bettetiamtiar the
prediction of TCs. The comparisons of retrieval results with dropsonde datey ddwirricane Rita,
however, still show some discrepancies partly owing to the difference of these two measurements and

the uncertainties of the AIRS errors.
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Future work is required to further examine the ability of AIRS data in capturing Vertica
variability within TCs. More co-located RO samplings would be needed in order tom @btarge
enough number of comparisons for statistical significance. A better specificatarors for all AIRS
channels is also needed for better retrieval results. Furthermore, possible future work could include

applying the AIRS radiances into four-dimensiowvalriational data assimilation (4D-Var) for the
improvement of the predictions of TCs.
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