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ABSTRACT

Shape represents a complex and rich source of biological information that is fundamentally linked

to underlying mechanisms and functions. Many fields of biology employ mathematical tools for the

statistical analysis of shape variation. However, difficulties in reliably quantifying biological shape,

especially for newly emerging shape data, still present an obstacle for researchers to understand

how shape variation relates to biological functions and development processes. To overcome these

difficulties, it is desirable to build efficient ways to quantify shapes. Having a quantitative tool in

hand, we can further design methods to correlate shape with biological information. The integration

of these models with machine learning and statistical inference methods will allow biologists to

explore how morphological variation correlates to biological variates and to help advance various

areas of research.

One goal of this dissertation is to construct new type of shape representation to quantify gene

expression data. Advances in microscopy and techniques such as Optical Projection Tomography

(OPT) allow researchers to visualize and to study 3D morphological patterns of gene expression

domains. Quantitative analysis of gene expression domains and investigation of relationships be-

tween gene expression and developmental and phenotypic outcomes are central to advancing our

understanding of the genotype-phenotype map. However, quantification of shape variation in gene

expression domains poses particularly challenging problems, as these domains typically have no

clearly defined forms, often appearing seemingly amorphous. Those properties of the gene expres-

sion domains make it difficult to analyze shape variation with the tools of landmark-based geometric

morphometrics. In addition, 3D image acquisition and processing introduce many artifacts that

further exacerbate the problem. To overcome these difficulties, we present a method that combines

OPT scanning, a shape regularization technique and a landmark-free approach to quantify varia-

tion in the morphology of sonic hedgehog expression domains in the frontonasal ectodermal zone

(FEZ) of avians and investigate relationships with embryonic craniofacial shape. The landmark-

free approach quantifies variation in shape of amorphous gene expression domains, enhancing their

most salient morphological characteristics and being robust to uninformative local shape variation

and irregularities associated with image acquisition. The correlation analysis reveals axes in FEZ

and embryonic-head morphospaces along which variation exhibits a sharp linear relationship at
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high statistical significance. Combined with qualitative findings, these results have the potential

to benefit biologists in exploring the gene expression pathway and in understanding the underlying

expression mechanisms. The techniques we used to deal with FEZ meshes should be applicable to

analyses of other 3D surface-like biological structures that have ill-defined shape and are relevant

to understanding developmental processes and phenotypic variation.

Existing biological shape models, such as those based on landmarks, rely on sparse landmarks

on the shapes to model shape variations. However, on soft-tissue surfaces as the face there are few

such landmarks. Across the cheek and forehead, for instance, there are no points that have exact

biological correspondence and yet aspects of their shape contains useful biological information. The

analysis based on the sparse landmarks will compromise the deep and comprehensive morphological

information collected by advanced image processing technologies. Thus, instead of using only the

limited number of landmarks, we propose to use the spline method to construct dense surface model

which covers the entire shape. This brings another goal of this dissertation - to develop such a spline

method to build a dense correspondence across all shapes. Although, spline is an active area in

shape analysis and also in many other disciplines for interpolation, approximation and regression.

Most results have been focused on Euclidean domain. However, data living on manifold occurs

often, especially when dealing with shape surfaces, so constructing spline with manifold domain

and providing effective computation method for such spline are desirable in real-life problems.

To fulfill this goal, we present a general theoretical framework of spline in which the Euclidean

domain can be extended to manifold domain. Additionally, we provide computationally effective

algorithm to compute such spline function based on bounded rectangular domain. We demonstrate

the advantages of this framework by using examples on closed and open manifold domains and by

comparing performance with other spline methods. The computation framework shows comparable

result with the spline directly constructed on the manifold and also shows clear improvement respect

to the thin plate spline method. This manifold spline method has been applied to construct dense

surface models of avian embryos shapes. Those dense surface models can establish a correspondence

of thousands of points across each 3D image and provide dramatic visualization of shape variation.
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CHAPTER 1

INTRODUCTION

This dissertation is concerned with developing shape analysis methods for newly emerging data.

Those methods include the construction of shape representation, shape space and shape metrics.

The notion of shape we refer to are geometric objects that are invariant of certain transformations,

e.g., the invariance of translation, scaling or rotation. The fundamental question in shape analysis is

to quantify shape similarities and dissimilarities in a reliable, effective and computationally efficient

way, and this is the main concern of this dissertation as well.

Shape analysis applications to problems such as shape registration, statistical shape analysis,

modeling of shape, shape classification, and shape recognition are widely addressed in the fields of

biological morphology, biomedical imaging, computer vision and computer graphics. Specifically,

with the evolution of scanning technologies, shape analysis is playing an increasingly important

role in evolutionary study. For example, the use of shape analysis in quantifying the morphological

features of gene expression domain has provided a new direction to study the relationships between

genotype and phenotype.

1.1 Remarks on Shape Analysis

A traditional approach in shape analysis, carried out mainly by biologists, is known as mul-

tivariate morphometrics or “traditional” morphometrics. A variety of measurements of shapes,

such as lengths, angles, masses, areas and ratios, are collected and subjected to multivariate anal-

ysis. However, these kinds of measurement only provide simple summaries about the shape. One

main drawback is that the geometry is very difficult to reconstruct after the analysis, so that it

is impossible to visualize the change of the shape. A more geometrical approach is to employ the

entire configuration of the shape. These kinds of studies can be traced back to as early as D’Arcy

Thompson (1917)[62], who began to consider the direct transformation between complete geomet-

rical objects. Thompson helped to advance the notion that perhaps nature could be studied in a

more quantitative way, instead of just by the empirical methods that were the normal at the time.
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More importantly, he introduced the idea that the variation in similar anatomical shape might be

described by mathematical transformations, and his work is often credited with inspiring the field

of morphometrics. For illustration, Fig. 1.1 shows Thompson’s image of the transformation of

Argyropelecus olfersi into Sternoptyx diaphana by applying a 70o shear mapping. The deformation

illustrated by this case of Argyropelecus is precisely analogous to the simplest and commonest kind

of deformation to which fossils are subject as the result of shearing-stresses in the solid rock.

Figure 1.1: The transformation of Argyropelecus olfersi into Sternoptyx diaphana by applying a
70o shear mapping.

Shape analysis developed rapidly around late 1970s and early 1980s, based on contribution

from D.G.Kendall (1984, 1999) [29, 30] and F.L. Bookstein (1986) [6], where the former brought

shape analysis to a more theoretical level. Kendall’s model is based on a collection of ordered

landmark points. Landmarks begin to more completely represent the geometry of the anatomy

and can be more easily interpreted in the context of statistical analysis of shapes. An important

feature of such geometric models is that shapes are naturally morphable as geodesics yield natural

shape interpolators. An example of landmark representation of shapes is shown in Fig. 5.1A. The

Kendall’s model has solid theoretical foundation and is computationally easy to handle. A general

framework for landmark-based shape analysis has been developed which is still in widespread use

today. Many of the current geometric morphometric analysis of shape in evolutionary biology is

still based on these theories. However, this model can not apply to shapes those do not have natural

landmarks.
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In recent years, theories of many new shape models have been proposed which involve different

shape representations and metrics, such as those presented in Younes (1998, 1999) [72, 73]; Miller

and Younes (2001) [46]; Younes et al. (2007) [74]; Klassen et al. (2004) [32]; Mio et al. (2007,

2007, 2009) [47, 49, 48]; Joshi et al. (2007) [28]; Michor and Mumford (2006, 2007) [43, 44]; Yezzi

and Mennucci (2005) [71]; Michor et al. (2008) [45]; and Fuchs et al. (2009) [16]. In practical

applications, shapes in 3D space are represented either by their outer contour surfaces or by the

whole volumes. However, the development of applicable methods of handling noisy and complex

shape data is still incipient.

1.2 Contributions of this Dissertation

To accommodate newly emerging shape data, which differs from traditional data in size and

type, the existing models have to be modified and new methods have to be developed. We are

exploring these ideas in two projects.

The first project involves quantifying variations in morphology of gene expression domains.

However, quantification of shape variations in gene expression domains poses particularly chal-

lenging problems, as these domains typically have no clearly defined forms, often appearing seem-

ingly amorphous. Those properties make it difficult to analyze shape variation with the tools of

landmark-based geometric morphometrics. Another serious difficulty encountered in all methods

for quantifying expression patterns is that the extracted domains are often corrupted with different

types of artifacts. Therefore, to analyze the morphological features, it will be necessary to pro-

pose a method to noise removal, pattern enhancement and shape preservation. Since the loss of

anatomical landmarks, thus, in order to build model for expression patterns, it will be desirable to

build new “correspondence” that is biological meaningful and captures the fundamental properties

of the pattern.

This idea is initiated from studying the relationship between the spatial information of the

sonic hedgehog (Shh) expression domain and the facial features during embryonic stage of two

avian species (chickens and ducks). Shh is a protein whose signaling plays an essential role in the

epithelial mesenchymal interactions that control proximodistal extension and dorsoventral polarity

of the vertebrate upper jaw [25, 39, 23, 75]. In amniotes, including both mice and avians, Shh is first

expressed in the forebrain prior to outgrowth of the facial prominences. As neural crest cells migrate

3



into the midface, Shh is activated in the adjacent epithelium, and this frontonasal ectodermal zone

(FEZ) acts as a signaling center that controls growth [39]. The spatial organization of this signaling

center differs among avians, and these differences correspond to sonic hedgehog (Shh) expression

in the basal forebrain and embryonic facial shape. Hu and Marcucio [23] show spatial organization

of the FEZ regulates morphological variation in the developing upper jaw.

In this dissertation, we present a computational technique that overcome those difficulties. Our

method involves two key components, the first is shape regularization to remove the artifacts.

We consider each dissected gene expression pattern as the graph of a function f of x and y.

The bounded domain of this function is estimated by principle component analysis and kernel

density estimation. We have also adopted the thin plate spine algorithm which has only been used

extensively in morphometric analysis [7], to estimate the smooth function f from pre-triangulated

domain. The second component is the representation and registration method. We estimated

the sagittal plane for each embryo and sectioned each correspondent gene expression domain with

multiple parallel translates of the plane. It is a continuum of sections. Sweeping from left to

right, we measured the length of each of these intersected curves that registers these expression

patterns. The canonical correlation analysis reveals axes in FEZ and embryonic-head morphospaces

along which variation exhibits a sharp linear relationship at high statistical significance. This

relationship has been validated by the experimental data of two transplanted groups. Combined

with qualitative findings, these results have the potential to benefit biologists in exploring the gene

expression pathway and in understanding the underlying expression mechanisms. The techniques

we used to deal with FEZ meshes should be applicable to analyses of other 3D surface-like biological

structures that have ill-defined shape and are relevant to understanding developmental processes

and phenotypic variation.

The analysis based on the sparse landmarks will compromise the deep and comprehensive mor-

phological information collected by advanced image processing technologies. Thus, instead of using

only the limited number of landmarks, in the second project, we present a general theoretical frame-

work of spline to construct dense correspondence. In this spline method, the Euclidean domain can

be extended to manifold domain to better accommodate the nature of surface shape data. Addi-

tionally, to apply this spline method onto modern data set, we provide computationally effective

algorithm to compute such spline function based on bounded rectangular domain. The advantages
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of this framework is demonstrated by using examples on closed and open domain and by comparing

performance with other spline methods. The computation framework shows comparable result with

the spline directly constructed on the manifold and shows clear improvement respect to the thin

plate spline method [67, 7, 68].

Beside providing the theoretical derivation and computational algorithm, we also apply this

spline method to the construction of dense surface model of avian embryos. Those dense surface

models can establish a correspondence of thousands of points across each 3D image, so that it can

take full advantages of geometrical information. The dense surface models not only provide dramatic

visualization of 3D embryo-shape variation but also enable modular analysis which is impossible

under sparse landmark representation. The dense facial models carry the potential for precisely

identifying the facial features and the syndrome effects that can benefit a serious of following up

studies. Beside applications in shape modeling, the spline method can be easily extended to general

maps from manifold domain. e.g in order to compute dense point correspondences between two

objects.

The reminder of this dissertation is organized as follows: In Chapter 2, we cover the mathe-

matical preliminaries, including Riemannian manifolds and the Laplace-Beltrami operator on Rie-

mannian manifold. The discretization of the Laplacian on triangular meshes and point clouds is

discussed in Chapter 3. Several multivariate statistic models used in this dissertation are brief dis-

cussed in Chapter 4 which includes principal component analysis [53], canonical correlation analysis

[21] and thin spline spline method [69]. In Chapter 5, statistical shape analysis including algorithms

to calculate mean shapes and to perform tangent principal component analysis is sketched. The

algorithm of handling noisy gene expression domains and the results of quantifying variations in

morphology of FEZ shapes are presented in Chapter 6. The correlation analysis between FEZ

and embryonic-head morphospaces is also presented in this chapter. The spline model on manifold

domain and the comparison result on simulated surfaces are shown in Chapter 7. A summary and

discussion is in Chapter 8.
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CHAPTER 2

MATHEMATICAL PRELIMINARIES

In this chapter, we will review some basic facts about Riemannian manifold [8] and the Laplace-

Beltrami operator on a connected oriented Riemannian manifold.

2.1 Riemannian Manifolds

As a preliminary to the definition of a differentiable manifold, we recall the definition of a

topological manifold M of dimension n: it is a Hausdorff space with a countable basis of open sets

and with the further property that each point has a neighborhood homeomorphic to an open subset

of R
n. Each pair (U,ϕ), where U is an open set of M and ϕ is a homeomorphism of U to an open

subset of R
n, is called a coordinate neighborhood.

If q also lies in the second coordinate neighborhood (V, ψ), since ϕ,ψ are both homeomorphisms,

this further defines a homeomorphism as

ψ ◦ ϕ−1 : ϕ (U ∩ V ) → ψ (U ∩ V ) (2.1)

The domain and range being the two open subsets of R
n which correspond to the points U ∩ V

by the two coordinate maps ϕ,ψ, respectively. If ψ ◦ ϕ−1 is a diffeomorphism, then these two

coordinate neighborhoods U,ϕ and V, ψ are C∞ compatible.

The basic idea that leads to differentiable manifolds is to try to select a family or sub collection

of neighborhoods so that the change of coordinates is always given by differentiable functions.

Definition of differentiable manifold

A n-dimensional differentiable or C∞ structure on a topological manifold M is a family µ =

{Uα, ϕα} of coordinate neighborhoods such that:

1. The Uα cover M

2. For any α, (Uα, ϕα) is coordinate neighborhood.

3. Each pair of coordinate neighborhoods is C∞ compatible.
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A C∞ manifold is a topological manifold together with a C∞-differentiable structure. Each ϕα is

called chart [35].

Given a differentiable manifold, there is no natural way to define the Laplacian of a function

r : M → R, without additional “geometry”. This “geometry” is prescribed in the form of a

Riemannian metric.

Let M be a differentiable manifold. A real-valued function f : M → R belongs to C∞(M), if

f−1 is infinitely differentiable for every chart ϕα. The definition of C∞(M) is stated here in order

to motivate the general definition of the tangent spaces of a differentiable manifold. The tangent

space TpM to M at p ∈ M is defined to be all the linear maps Dp : C∞(M) → R which has the

property for all f, g ∈ C∞(M):

Dp(fg) = Dp(f) · g(p) + f(p) ·Dp(g) (2.2)

The elements of the tangent space TpM are called tangent vectors at p. All the tangent spaces

have the same dimension, and this dimension equals to the dimension of the manifold. For example,

the 2-sphere S2 is a 2-manifold, one can picture the tangent space at a point p as the plane which

touches the sphere at that point and is perpendicular to p.

A Riemannian manifold or Riemannian space (M,Φ) is a differentiable manifold M in which

each tangent space is equipped with an inner product Φ, a Riemannian metric, which varies

smoothly from point to point.

More preciously, let M be a differentiable manifold of dimension n. A Riemannian metric Φ on

M is a smooth family of inner products Φp such that,

Φp : TpM × TpM → R, p ∈M (2.3)

Given a Riemannian metric, the length of a curve γ : [0, 1] →M is defined as

l (γ) =

∫ 1

0
Φγ(t)

(

γ′(t), γ′(t)
) 1

2 dt (2.4)

For any point p and q on the manifold, dM (p, q) which is the geodesic distance between p and

q is defined to be the infimum of the lengths of curves joining p and q. Two Riemannian manifolds

(M, g) and (N,h) are called isometric if there exists a smooth diffeomorphism f : M → N such

that dM (p, q) = dN (f(p), f(q)) for any p and q on M .
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2.2 The Laplace-Beltrami Operator on a Riemannian Manifold

The Laplacian ∆ of smooth function on M is often referred to as the Laplace-Beltrami operator.

It is defined as ∆ = − div grad ,where div and grad are the divergence and gradient on a Riemannian

manifold, respectively. The minus sign is just a convention to make eigenvalues of ∆ nonnegative.

The standard Laplacian on Euclidean domain ∆Rn = −
n

∑

i=1

(∂2/∂x2
i
) agrees with this definition. We

will define the volume element of a Riemannian metric, followed by a definition of L2 functions on

a connected oriented Riemannian manifold. We will also review the basic properties of eigenvalues

and eigenfunctions of ∆ [56].

Let (M,Φ) be a connected oriented Riemannian manifold of dimension n, if ∂x1 , ..., ∂xn is a

positively oriented basis of TpM , then the volume element dV (p) is defined in local coordinates as

dV (x) =
√

g(x)dx1 ∧ ... ∧ dxn, where gij = Φ(∂xi
, ∂xj

),
√

g(x) =
√

det(g(x)). Then the volume

of (M,Φ) is defined to be Vm =

∫

M

dV (p). Let L2(M,Φ) be the Hilbert space of real-valued

square-integrable functions on (M,Φ) with the inner product.

< f, g >=

∫

M

f(p)g(p)dV (p) (2.5)

Let gij=(gij)
−1, and f̂ = f ◦ ϕ−1. The Laplacian ∆ on differentiable functions of (M,Φ) is the

linear differential operator given in local coordinates by

∆f = − 1√
g

∑

ij

∂xj
(gij√g∂xi

f̂) (2.6)

An Example: The Laplacian on S2

There is a coordinate neighborhood (U,ϕ) of S2 s.t ϕ : S2 → R
2

ϕ−1(u, v) = (cosu sin v, sinu sin v, cos v) (2.7)

Simple calculation shows that

∂u = (− sinu sin v, cosu sin v, 0); ∂v = (cosu cos v,− sinu cos v,− sin v) (2.8)

The Euclidean metric on R
3 induces a Riemannian structure on tangent space of S2. The metric

is expressed by

(gij) =

[

sin2 v 0
0 1

]

(2.9)
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and so

(gij) =

[

1
sin2 v

0

0 1

]

(2.10)

For any f ∈ C∞(M), define f̂ = f ◦ ϕ−1. Then Eqs. 2.6, 2.9 and 2.10 imply that

∆f = − 1

sin2 v
f̂uu − 1

sin v
∂v(sin vf̂v) (2.11)

Theorem 2.2.1 (Hodge Theorem for Functions) Let (M,Φ) be a compact connected oriented Rie-

mannian manifold. There exists a complete orthonormal set of L2(M,Φ) consisting of eigenfunc-

tions of the Laplacian. All the eigenvalues are positive, except that zero is an eigenvalue with

multiplicity one. Each eigenvalue has finite multiplicity, and the eigenvalues accumulate only at

infinity.

The positive eigenvalues of ∆ on a compact connected Riemannian manifold M may have

multiplicity more than one, this phenomenon is mostly introduced by the symmetrical characteristic

of a shape. In practice, due to noise, shape irregularity and computation error, all the eigenvalues

are distinct [63, 64]. Hence, if we represent eigenfunctions and eigenvalues of ∆ by φi, λi, i = 0, 1, . . . ,

respectively, where they satisfy ∆φi = λiφi. We can assume all eigenvalues form a strictly monotone

increasing set and can be ordered as λi+1 > λi. The eigenfunctions φi making up the complete

orthonormal set of L2(M,Φ) only carry a sign ambiguity. According to the Hodge Theorem for

Functions in theorem 2.2.1, connected manifold M implies λ0 = 0 and λi > 0 for i ≥ 1. The set

{λi} is called the spectrum of ∆. In shape analysis, this set is also known as shape DNA. And this

shape DNA can be used as shape representation in problems such as shape classification and shape

retrieval. More detail of application of shape DNA can be found in [55].

2.3 A Definition of Shape and Shape Metric

Two Riemannian manifolds M and N are isometric if there is a diffeomorphism f : M → N

such that dM (p, q) = dN (f(p), f(q)) for all p, q ∈ M . This f is then called an isometry between

M and N . Isometry gives a natural equivalence relation ∼ on Riemannian manifolds. We consider

the collection of closed, connected Riemannian manifolds M . M is partitioned into isometric

equivalence classes M/ ∼, which are sometimes called geometric structures. The intrinsic geometry

of (M, g) refers to all properties of its equivalence class in M/ ∼.
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Definition 2.3.1 (Shape) A shape is an equivalence class in S = M/ ∼. Note that every element

of S has a fixed underlying differentiable manifold.

Ideas from morphometry have motivated this definition of shape, and it should not be taken to

be universal. For instance, a shape and its mirror image are equivalent from the point of view of

intrinsic geometry. However, other studies may need to consider chirality, for example, and in such

instances isometry is too weak a relation.

A shape metric

We ultimately compare differences between shapes, such as healthy and diseased structures, native

and mutated forms. The shape metric we consider is the Gromov-Hausdorff distance dGH ,

Definition 2.3.2 (Hausdorff Distance) Let (Z, dZ) be a metric space and M,N compact subsets

of Z. The Hausdorff distance between M and N is defined as

dZ
H(M,N) = max{sup

p∈M

dZ(p,N), sup
q∈N

dZ(M, q)} (2.12)

Where dz(p,N) = infq∈N dZ(p, q). Intuitively, dH measures the overhang of M and N . The full

expression simply imposes symmetry for the definition of distance.

The Gromov-Hausdorff distance between any two compact metric spaces (M,dM ) and (N, dN )

is then defined as

dGH(M,N) = inf
Z,iM ,iN

dZ
H(iM (M), iN (N)) (2.13)

Where iM : M → Z, iN : N → Z are any isometric embedding of M , N into any common metric

space (Z, dZ).
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CHAPTER 3

DISCRETE LAPLACIAN

In order to achieve computer implementation, a shape need to be represented and stored as certain

data type. Hence we need introduce numerical computable discrete analogy of ∆ operator. In this

chapter, the case where a 3D shape is represented as a triangular mesh is mainly discussed. For

triangle mesh in the computer data structure, we will have the coordinate for each 3D point, the

index for each point and the information of the triangles in term of the indexes of the three vertices

of the triangle and triangle itself index. Point cloud is another major type of data structure which

contains only the coordinate of points. In this section, we will discuss the discretization of ∆ on

triangular mesh and point cloud.

Before diving into the discussion, examples of mesh representation and point cloud representa-

tion are shown in Fig. 3.1.

(A) (B) (C)

Figure 3.1: Examples of shape data. (A) Triangular surface of a heart shape. (B) Triangular
surface of a dolphin. (C) Point cloud of a human body shape.

3.1 Mesh Laplacian

Let V = [v1, ..., vn] be the vertex set of a triangular mesh. The order of vertices is arbitrary.

The R(i) is the 1-ring of vi, that is, R(i) is the index set of vertices adjacent to vi. Thus, if
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j ∈ R(i), then vi and vj are connected by an edge eij (denotes by blue line in Fig. 3.2). We denote

the length of the edge eij by lij . We denote the length of the 1-cell ẽij , which is the green line in

Fig. 3.2, as l̃ij . The 1-cell ẽij is the pair of line segments that connects the centroids of the two

triangles with eij in common to the midpoint of eij . The area of the 2-cell dual (area inside the

red and green curve in Fig. 3.2) to vi as Ai. Note that the l, l̃ are both symmetric operator, which

means l(ij) = l(ji) and l̃(ij) = l̃(ji).

Figure 3.2: Example of a dual cell of triangular mesh

A function f : V → R is represented by the vector f = [f1 . . . fn]T , where fi = f(vi). Follow the

general definition of Laplace-Beltrami operator ∆ = −div(grad), div and grad are the Riemannian

divergence and gradient operator, respectively, we can define the Laplacian operator on mesh

structures.

The Laplacian of f at vi is defined such that the discrete divergence theorem is satisfied

∫

Ai

∆fdV = −
∫

∂Ai

∂f

∂n
ds (3.1)

The right part of Eq. 3.1 measures all the out flow from vi. Discretization of this part becomes

∫

∂Ai

∂f

∂n
ds =

∑

j∈R(i)

(fj − fi)

lij
l̃ij (3.2)

The discrete counterpart of left part of Eq. 3.1 becomes

∫

Ai

∆fdV = ∆fiAi (3.3)
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Then Eqs. 3.1, 3.2 and 3.3 imply that

∆fiAi = −
∑

j∈R(i)

(fj − fi)

lij
l̃ij (3.4)

The summation estimates the total outward flux of the gradient filed ∇f across the boundary

of the 2-cell, and the full expression represents the minus of the flux density over the 2-cell. More

details of this discrete version of ∆ are shown in [20].

Eq. 3.3 introduces the discrete L2 (M) inner product over the mesh

< f, g >=
n

∑

i=1

(figi)Ai (3.5)

It can be seen from Eq. 3.4 that the discrete Laplacian is a linear operator. Hence, It can be

written in matrix form. If we define

wij =

{

l̃ij/lij if j ∈ R(i)
0 otherwise

(3.6)

and Di =
∑

j

wij , then Eq. 3.4 becomes

∆fiAi = −
∑

j

wij(fj − fi) (3.7)

We can further define matrices A = diag(A1, ..., An), D = diag(D1, ..., Dn) and L = D −W ,

then Eq. 3.4 can be written in the following form,

A(∆f) = −(Wf −Df) = Lf (3.8)

Note that A, D, W and L are all symmetric matrices. Next, I will use the definition to show that

L is positive semi-definite matrix.

2fTLf

= 2fTDf − 2fTWf

= 2
∑

i

Dif
2
i − 2

∑

ij

wijfifj

=
∑

i

Dif
2
i +

∑

j

Djf
2
j − 2

∑

ij

wijfifj

=
∑

ij

wijf
2
i +

∑

ij

wijf
2
j − 2

∑

ij

wijfifj
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=
∑

ij

wij(f
2
i + f2

j − 2fifj)

=
∑

ij

wij(fi − fj)
2 (3.9)

Since all wij ≥ 0, based on Eq. 3.9 we know that fTLf is always nonnegative. We should

also notice that if f is a non zero constant vector, fTLf = 0. Therefore, L is positive semi-

definite matrix. Assume there are solutions λ, f to the eigenvalue problem ∆f = λf , Eq. 3.8

becomes Lf = λAf , the solutions to this generalized eigenvalue problem can be found and they

satisfy ΦTLΦ = Λ,ΦTAΦ = I. Here Φ is the eigenvector matrix defined as [φ0, φ1, . . . , φn]T ,

Λ = diag(λ0, λ1, . . . , λn), where 0 = λ0 < λ1 <, . . . , < λn. The eigenvectors can be scaled to form an

orthonormal basis with respect to the inner product defined in Eq. 3.5. The eigenvalues (λ0, . . . , λn)

and a corresponding set of orthonormal eigenvectors φ̃0, . . . , φ̃n within normal Euclidean inner

product can be computed as

φ̃i = [φi1

√

A1, . . . , φin

√

An]T (3.10)

All the eigenvalues can be put in the ascending order, henceforth, for convenience, I will use

the smaller eigenfunction to denote the eigenfunction with the smaller eigenvalue.

In above setup, both matrices A and D are diagonal matrices, L is a large symmetric sparse

matrix, lij 6= 0 if and only if the vertices i and j are connected by an edge. It has efficient algorithm

to compute small number of eigenvalues and eigenvectors by krylov subspace method.

To close up this part of discussion, we show how these eigenvalues and eigenvectors are invariant

under the effects of rotation, translation and scaling. Because they are isometry invariant, they only

depend on the gradient and divergence which in turn just depend on the structure and topology

of the Riemannian manifold. The effects of translation and rotation have been removed naturally.

For scaling, if the manifold is scaled by an factor a > 0 in every dimension, the eigenvalues is scaled

by 1/a2. In order to keep orthonormality, the eigenvectors need to be scaled by 1/a. Particularly,

if we set a =
√
λ1, the normalized eigenvalues are defined by λi/λ1 and the normalized eigenvectors

are given by φi/
√
λ1. These normalized eigenvalues and eigenvectors are insensitive to scale. After

normalization, λ0 is always 0, and λ1 is always 1. Hence, if scaling has no effect on shape, we will

use normalized eigenvalues and eigenfunctions of ∆ in the further application.
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3.2 Point Cloud Laplacian

A Laplacian on point clouds is discussed in [3]. The algorithm of constructing point cloud

Laplacian is briefly listed below,

Given k points x1, . . . , xk in R
l, we construct a weighted graph with k nodes, one for each point,

and a set of edges connecting neighboring points.

1. Constructing the adjacency graph

• ǫ− neighborhood. Nodes i and j are connected if ||xi − xj ||2 < ǫ.

• n nearest neighbors. Nodes i and j are connected if i is among n nearest neighbors of j

or the other way around. This condition is required to ensure the symmetric relation.

2. Weighting the edge

• Heat kernel. i and j are connected then Wij = e−
||xi−xj ||

2

t , otherwise Wij = 0.

• Simple-minded. Wij = 1 if and i and j are connected, Wij = 0 if they are not.

3. Constructing the generalized eigenvalue problem

Lf = λDf (3.11)

where the ith element Dii in the diagonal matrix D is defined as
∑

j

Wji and L = D −W .

The approach considered here uses a graph which is connected with exponentially decay weights.

The computation of eigenvalues and eigenfunctions is an analog to mesh Laplacian after construct-

ing large sparse matrix L and the diagonal matrix D. The normalized version can be computed

as the same fashion in mesh Laplacian. But it is not easy to choose the decay parameter t and

the number of neighbors n. “How to choose the appropriate parameters” is still an open problem.

Other definitions of discrete Laplacian operator are also discussed in [51, 4, 5, 55].

Like many other discretization methods, the accuracy of discrete Laplacian are depending on

the quality of the shape data and the choice of the parameters. The following Fig. 3.3 shows

the comparison of the eigenvalues of the Laplacian operator on the sphere with several shape

discretization and different choice of parameters. From those pictures, we can see although the

sphere is generated as almost equal area triangular mesh (Fig. 3.3A), there is still difference

between analytic eigenvalues and the computed eigenvalues. This phenomenon is more obvious as

the order of the eigenvalue increases. The computed eigenvalues not only depend on the number
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of vertices on the spherical mesh (Fig. 3.3B) but also depend on the choice of parameters (Fig.

3.3C).

(A) (B) (C)

Figure 3.3: The comparison of eigenvalues of Laplacian operator on sphere. (A) Triangular surface
of a sphere with 642 vertices. (B) The comparison of analytical eigenvalues (black curve) on
sphere with several sphere triangulation with different number of vertices (colored curves). (C)
The comparison of analytical eigenvalues (black curve) on sphere with point cloud of sphere with
2562 vertices with difference combination of ǫ and t in point cloud laplacian (colored curves).
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CHAPTER 4

MULTIVARIATE STATISTICAL MODELS

The term “multivariate statistics” is appropriately used to include all statistics where there are

more than two variables simultaneously analyzed. Multivariate statistics concerns understanding

the different aims and background of each of the different forms of multivariate analysis, and how

they relate to each other. The practical implementation of multivariate statistics to a particular

problem may involve several types of univariate and multivariate analyses in order to understand

the relationships between variables and their relevance to the actual problem being studied. In this

section, we will cover several multivariate statistical models that have been used in this dissertation.

4.1 Principal Component Analysis

Principal component analysis (PCA) is a mathematical algorithm that reduces the dimensional-

ity of the data while retaining most of the variation in the data set. It accomplishes this reduction

by identifying directions, called principal components, along which the variation in the data is

maximal. By using a few components, each sample can be represented by relatively few numbers

instead of by values for thousands of variables. Samples can then be plotted, making it possible to

visually assess similarities and differences between samples and determine whether samples can be

grouped/clustered.

4.1.1 Interpretation of PCA

PCA is mathematically defined as an orthogonal linear transformation that transforms the data

to a new coordinate system such that the greatest variance by projecting the data into the new

coordinate system comes to lie on the first coordinate (first principal component).

For a given set of points P1, P2, ..., Pn ∈ R
m, the data matrix can be defined asX = [P1, P2, . . . , Pn]T .

This X matrix is n×m matrix with each row as an observation with m features. We can assume

X is a matrix with column-wise zero empirical mean. Even though most time this is not the case,

zero empirical mean can be simply achieved by subtracting mean of each column.
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First Component. The first loading vector w1 = [w1
1, w

2
1, ..., w

m−1
1 , wm

1 ]T thus has to satisfy

w1 = argmax
||w||=1

{||Xw||2} = argmax
||w||=1

{wTXTXw} (4.1)

Since w has been defined to be a unit vector, it also equivalently satisfies

w1 = argmax{w
TXTXw

wTw
} (4.2)

The quantity to be maximized can be recognized as a Rayleigh quotient. A standard result for

a symmetric matrix, such as XTX, is that the quotient’s maximum possible value is the largest

eigenvalue λ1 of the matrix XTX, which occurs when w1 is the corresponding eigenvector. The

projection (scores) of the data onto the first principal component can be computed as Xw1.

Following Components. Suppose that column vectors w1, w2, ...wk−1 are the first k − 1

principal components respectively, then the kth principal component satisfies

wk = argmax{w
TXTXw

wTw
, 0 =< wk, w1 >=< wk, w2 >= ... =< wk, wk−1 >} (4.3)

It turns out that this gives the remaining eigenvectors of XTX, with the maximum values for the

quantity in brackets given by their corresponding eigenvalues.

In summary, the k eigenvectors W = [w1, w2, w3, ..., wk−1, wk] associated with the first k largest

eigenvalues [λ1, λ2, λ3, ...., λk−1, λk] of XTX are the first k principal components. The scores in the

transformed coordinates are given as XW .

Selection of k in Dimensionality Reduction. The XW maps the data from the original

space of m dimension into k << m dimension which are uncorrelated over the dataset. Such

dimensionality reduction can be a very useful step for visualizing and processing high-dimensional

datasets, while still retaining as much of the variance in the dataset as possible.

Dimensionality reduction may also be appropriate when the variables in a dataset are noisy. If

each column of the dataset contains independent identically distributed Gaussian noise, then the

columns of scores will also contain similarly identically distributed Gaussian noise. However, with

more of the total variance concentrated in the first few principal components compared to the same

noise variance, the proportionate effect of the noise is less - the first few components achieve a

higher signal-to-noise ratio. PCA thus can have the effect of concentrating much of the signal into

the first few principal components, which can usefully be captured by dimensionality reduction;
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while the later principal components may be dominated by noise, and so disposed of without great

loss.

The appropriate k is normally selected by the proportion of the variance accounted for by first

k dimensional scores. This proportion can be computed as the quotient between λ1 + λ2 + ...+ λk

and the summation of all the eigenvalues.

Alternative Way of Computation. Normally, we compute covariance matrix XTX and

do singular value decomposition (SVD) of the the covariance matrix. However, for data with small

sample size n and high dimensional featurem (this happens a lot in shape/image and bioinformatics

analysis), the covariance matrix will be a large matrix, the dimension of this matrix is the number

of feature m×m. In this case, applying SVD directly on covariance matrix is time-consuming and

totally unnecessary. An better way is to decompose matrix XXT instead, because the matrices

XXT and XTX share the same nonzero eigenvalues, and if wi is the ith largest eigenvector of

XTX, vi is the ith largest eigenvector of XXT , and they both correspondent to the eigenvalue λi.

One can check these eigenvectors are related in identity wi = XT vi.

An Example: PCA Analysis on 3D Data with Linear Structure and 3D Random

Data. The following example in Fig. 4.1 shows an illustration of the PCA process. The left

panel shows the original data. The middle panel shows the centered data projected onto the first

two principal components. We can see from this picture, the spread is mainly along the first PC

direction. The right panel shows the percent variability explained by each principal component. The

first PC contains more than 90% variance of the three dimensional data. If there is a dimensional

reduction problem, it is safe to reduce the original data to one dimension.

We also look at an example of 3D random data in Fig. 4.2. The random generated data is shown

in left panel. The randomness is also inherited in the projection plot in the middle panel. When

we look at the variability plot in the right panel, we can see that the three principal components

contain roughly the same amount of variance.

PCA on Big Data. Now, principal component analysis (PCA) is a widely-used tool in

genomic and statistical genetics, as well as in big industrial data. However, traditional approaches

to compute the PCA are computationally expensive. For example, PCA based on the singular value

decomposition (SVD) scales as O(min(n2m,nm2)), where n and m are the number of samples and

dimension of the features, respectively. This makes it time-consuming to perform PCA on large data

19



−50

0

50

−100

−50

0

50

100

−80

−60

−40

−20

0

20

40

60

80

(A) Original Data

Principal Component 1

P
ri

n
c
ip

a
l 

C
o

m
p

o
n

e
n

t 
2

(B) PC1 VS PC2

1 2 3
0

20

40

60

80

100

Principal Component

V
a
ri

a
n

c
e
 E

x
p

la
in

e
d

 (
%

)

(C) Proportion of Variance Ex-
plained

Figure 4.1: PCA example of 3D data with linear structure. (A) Original data. (B) Projection on
the first two principal components. (C) Percent variability explained by each principal component.
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Figure 4.2: PCA example of 3D random data. (A) Original data. (B) Projection on the first two
principal component. (C) Percent variability explained by each principal component.

sets such as those routinely being analyzed in genetics and customer behavior studies, involving

millions of features and tens of thousands of individuals, with this difficulty only likely to increase

in the future with the availability of even larger studies.

In recent years, research into randomized matrix algorithms has yielded alternative approaches

for performing PCA and producing these top principal components (PCs), while being far more

computationally tractable and maintaining high accuracy relative to the traditional “exact” algo-

rithms. These algorithms are especially useful when we are interested in finding only the first few

PCs of the data, as is often the case in PCA analysis. A recently published method, flashpca[1],

provide one efficient way to handle PCA on big dataset.
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4.2 Canonical Correlation Analysis

Principal component analysis involves only one data set. Canonical correlation analysis (CCA)

is a standard statistical technique for finding linear projections of two data sets that are maximally

correlated.

Proposed by Hotelling in 1936 [21], CCA can be seen as the problem of finding basis vectors for

two sets of variables such that the correlation between the projections of the variables onto these

basis vectors is mutually maximized. Correlation analysis is dependent on the coordinate system

in which the variables are described, so even if there is a very strong linear relationship between

two sets of multidimensional variables, depending on the coordinate system used, this relationship

might not be visible as a correlation. CCA was designed to overcome this problem. CCA seeks

a pair of linear transformations, one for each of the sets of variables, such that when the set of

variables is transformed, the corresponding coordinates are maximally correlated.

Let (X1, X2) ∈ R
n1×R

n2 denote random vectors with covariance (Σ11,Σ22) and cross-covariance

Σ12. CCA finds pairs of linear projections of two vectors, (wT
1 X1, w

T
2 X2) that are maximally

correlated:

(w∗
1, w

∗
2) = argmax

w1,w2

corr(wT
1 X1, w

T
2 X2),

= argmax
w1,w2

wT
1 Σ12w2

√

wT
1 Σ11w1wT

2 Σ22w2

Since the objective is invariant to scaling of w1 and w2, the projections are constrained to have

unit variance:

(w∗
1, w

∗
2) = argmax

wT
1 Σ11w1=wT

2 Σ22w2=1

wT
1 Σ12w2 (4.4)

When finding multiple pairs of vectors (wi
1, w

i
2), subsequent projections are also constrained to

be uncorrelated with previous ones, that is wi
1Σ11w

j
1 = wi

2Σ22w
j
2 = 0 for i < j. Assembling the top

k projection vector wi
1 into the columns of a n1 × k matrix A1, and similarly placing wi

2 into n2 × k

matrix A2, we obtain the following formulation to identify the top k ≤ min(n1, n2) projections:

maximize: tr(AT
1 Σ12A2)

subject to: AT
1 Σ11A1 = AT

2 Σ22A2 = I
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Figure 4.3: The illustration of the CCA analysis. For two multivariate dataset X1 and X2, CCA
detects two direction w1 and w2 within each dataset, such that wT

1 X1 and wT
2 X2 are maximally

correlated.

There are several ways to express the solution to this objective. We follow the one shows in [40].

Define T as Σ
− 1

2
11 Σ12Σ

− 1
2

22 , and let Uk and Vk be the matrices of the first k left and right singular

vectors of T . Then the optimal objective value is the sum of the top k singular value of T and

the optimum is attained at (A∗
1, A

∗
2) = (Σ

− 1
2

11 Uk,Σ
− 1

2
22 Vk). Note that this solution assumes that the

covariance matrices Σ11 and Σ22 are nonsingular, which is satisfied in practice because they are

estimated from data with regularization: given centered data matrices H̄1 ∈ R
n1×m, H̄2 ∈ R

n2×m,

one can estimate, e.g.

Σ̂11 =
1

m− 1
H̄1H̄1

T
+ r1I (4.5)

where r1 > 0 is a regularization parameter. Estimating the covariance matrices with regularization

also reduces the detection of spurious correlation in the training data.

4.3 Thin Plate Spline on Euclidean Domain

Thin-plate spline interpolation can be stated as a multivariate interpolation problem: given a

number n of corresponding point landmarks {Xi, yi}, i = 1, · · · , n with Xi = (x1i, · · · , xdi) ∈ R
d
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and yi ∈ R, find a continuous transformation f : R
d → R within a suitable Hilbert space of

admissible functions that minimizes the following energy function:

Etps =
n

∑

i=1

1

n
|yi − f(Xi)|2 + w

∑

α1+···+αd=m

m!

αi! · · ·αd!

∫

Rd

(
∂mf

∂xα1
1 · · · ∂xαd

d

)2dX (4.6)

Where αk being non-negative integers and w is the parameter that controls the smoothness of the

function f . Note that for the special case of d = m = 2 we obtain the widely used energy function

for interpolating two dimensional data

Etps =

n
∑

i=1

1

n
|yi − f(Xi)|2 + w

∫∫

[(
∂2f

∂x2
1

)2 + 2(
∂2f

∂x1∂x2
)2 + (

∂2f

∂x2
2

)2]dx1dx2 (4.7)

Let a set of functions φj span the space of all polynomials on R
d up to order m − 1, which

is the null space of the functional
∑

α1+···+αd=m
m!

αi!···αd!

∫

Rd

(
∂mf

∂xα1
1 · · · ∂xαd

d

)2dX. The dimension of

this space is M = (d+m−1)!
d!(m−1)! and must be lower than n. This condition determines the minimum

number of landmarks, e.g., for d = m = 2 the number of landmarks must be larger than three, and

the null space is spanned by φ1(X) = 1, φ2(X) = x, and φ3(X) = y. The solution of of minimizing

the functional in Eq. 4.6 can now be written in analytic form:

f(X) =

M
∑

j=1

djφj(X) +

n
∑

i=1

ciUm(X,Xi) (4.8)

Where Um is a Green’s function for the m-iterated Laplacian (∆mUm(., Xi) = δXi
, where δXi

is

the Dirac delta function). Choosing the space of functions on R
d for which all partial derivatives of

total order m are square integrable, i.e., are in L2(R
d), this results in the basis functions is showing

in Eq. 4.9 as defined in Wahba [69].

Um(X,Xi) =

{

θm,d|r|2m−d ln |r| if 2m− d is an even integer,
θm,d|r|2m−d otherwise,

(4.9)

Where |r| is the Euclidean distance between X and Xi. And the coefficient θm,d is defined as

θm,d =











(−1)
d
2 +1+m

22m−1π
d
2 (m−1)!(m− d

2
)!

if 2m− d is an even integer,

Γ( d
2
−m)

22mπ
d
2 (m−1)!

otherwise,
(4.10)

For m = d = 2 we have the well-known function U2(X,Xi) = 1
8π
||X − Xi||2 ln ||X − Xi||. To

compute the coefficients D = (d1, · · · , dM )T and C = (c1, · · · , cn)T of the analytic solution to Eq.
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4.8 we have to solve the following system of linear equations:

(K + nwI)C + PD = Y (4.11)

P TC = 0 (4.12)

Where Kij = Um(Xi, Xj), the ith row of Pij = φj(Xi), and Y is the column vector of yi. 0 is a

M × 1 column vector of zeros.

The parameter w > 0 controls the smoothness of the resulting transformation. If w is small, we

obtain a solution with good adaption to the local structure of the deformations and if w is large,

we obtain a very smooth transformation with little adaption to the deformations. There are two

limiting cases: For w → 0 we put more emphasis on the goodness of fit, and for w → ∞ we have a

global polynomial of order up to m− 1, which has no bending energy at all.

We do a QR decomposition of P , we can have P =
(

Q1[n×M ]
|Q2[n×(n−M)]

)

(

R[M×M ]

0[(n−M)×M ]

)

.

The solution can be found by solving the system

QT
2 Y = QT

2 (K + nwI)C (4.13)

RD = QT
1 (Y − (K + nwI)C) (4.14)

4.3.1 Smoothing Parameter Estimation

We use the generalized cross validation [2] to choose the smooth parameter w. The idea is find

{fk, k = 1, 2, · · · , n} based on all samples except {Xk, yk} for given w. Then among all the ws,

choose the one minimizes Eq. 4.15
n

∑

k=1

|yk − fk(Xk)|2 (4.15)

Based on Q2, Y and K, we can find L, W2, U , D1, Z and V form the following identities.

QT
2KQ2 = LTL (4.16)

W2 = QT
2 y (4.17)

LT = UD1V
T (4.18)

Z = UTW2 (4.19)

D1 is diagonal matrix with diagonal element di > di+1.
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The optimal w can be found by minimize

V (w) =

n
∑n−1

j=1

[

nλ
d2

j+nλ

]2

z2
j

∑n−1
j=1

[

nλ
dj+nλ

]2 (4.20)

The effect of the smoothing parameter w is illustrated in Fig. 4.4 with d = m = 2. For 2d

{Xk}, the surfaces in Fig. 4.4 show the fitted scalar functions. The black dots are {Xk, yk}.

(A) Small w = 0.01× w̃ (B) Optimal w̃ (C) Large w = 100× w̃

Figure 4.4: The effect of smoothing parameter w. (A) For small smoothing parameter w, the
fitted surface tends to go through each point of the data set without much of the smoothness. (B)
The optimal parameter w gives a transformation which approximates the distance between the
landmark sets and is sufficiently smooth. (C) For large smoothing parameter w, we tend to have a
global polynomial fitting up to the order of m− 1. Because m = 2 in this case, so the fitted surface
looks like a plane.
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CHAPTER 5

KENDALL’S MODEL AND STATISTICAL

ANALYSIS OF SHAPE

5.1 Procrustes Alignment

The first mathematical model of shape was developed by Kendall [29] and is based on Pro-

crustean alignment. The model uses a geodesic metric to quantify shape divergence. This model

is based on landmark representations and on a metric based on the position of landmark points.

An example of the landmark representation of two shapes is shown in Fig. 5.1A. Most commonly,

landmark points are selected manually according to biological correspondences, however, with the

evolution of scanning and computation techniques, algorithms are being developed to automate

this landmarking process.

In Kendall’s model, two shapes in R
k are represented by collections of n homologous landmark

point sets p1, p2, · · · , pn ∈ R
k and q1, q2, · · · , qn ∈ R

k. Formally, shapes are encoded in a

k × n matrices P = [p1, p2, ..., pn] and Q = [q1, q2, ..., qn]. As a reminder, the notion of shape we

refer to are geometric objects that are invariant of certain transformations, e.g., the invariance of

translation, scaling or rotation. Thus, in Procrustes analysis, two shapes being compared need to be

centered, scaled and orthogonal aligned first in order to be invariant under those transformations.

To factor out indeterminacies in the representation due to translation and scale, one places the

centroid of the points at the origin and scales the matrix to have unit Frobenius norm. To deal

with orientation, one also wants to find an orthogonal matrix U , such that ||P −UQ|| is minimized

for centered and scaled P and Q.

Definition 5.1.1 ||.||F is the Frobenius norm associated with the inner product < P,Q >=
n

∑

i=1

pjqj.

• Step 1: Centering (Translation)

The mean (centroid) p̄ of p1, · · · , pn ∈ R
k is computed as

p̄ =
∑

i

pi/n (5.1)
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Centering a matrix P is the operation that corresponds to placing the centroid of p̄ of

p1, · · · , pn at the origin

P → [p1 − p̄, ..., pn − p̄] (5.2)

From this point, we assume that all shapes are centered.

• Step 2: Normalizing (Scale)

The Frobenius norm of P is

||P ||F =

√

∑

i

||pi||2F (5.3)

Here, we assume that the cases where all landmarks are the same are excluded. This guar-

antees that the ||P ||F 6= 0.

The following operation

P → P

||P ||F
(5.4)

will make the matrix into unit Frobenius norm.

Note 5.1.1 The collection of all centered and scaled k × n matrix forms a pre-shape space

Ω(k, n), a hypersphere of a unit radius. Each pre-shape can be viewed as a point in Ω(k, n).

• Step 3: Invariant under rotation

In the following, we will discuss the details of how to solve this minimization problem to find

the optimal orthogonal matrix U . Suppose P and Q are two pre-shapes. We want to find

the U ∈ O(k), such that UTU = UUT = I, we define distance between P and Q, dist, as the

following

dist = min
A∈U(k)

||P − UQ||F (5.5)

Where O(k) is the orthogonal group formed by k × k orthogonal matrices.

It is the same as find the minimizer for

min
U∈O(k)

||P − UQ||2F (5.6)

Rewrite this into inner product form

min
U∈O(k)

||P − UQ||2F (5.7)

= min
U∈O(k)

< P − UQ,P − UQ > (5.8)

= min
U∈O(k)

< P,P > −2 < P,UQ > + < Q,Q > (5.9)
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For giving P and Q, < P,P > and < Q,Q > are constant, so the minimization problem can

be computed from maximizing < P,UQ >.

According to the properties of inner product, < P,UQ >=< PQT , U > and then PQT can

be decomposed into

PQT = U1ΣV
T
1 (5.10)

Where U1, V1 ∈ O(k), and Σ is a diagonal matrix, we denote the diagonal elements by

λ1, ..., λk.

< P,UQ >=< PQT , U >=< U1ΣV
T
1 , U >=< Σ, UT

1 UV1 > (5.11)

If we define UT
1 UV1 = W , Eq. 5.11 can be write explicitly as

λ1w11 + λ2w22 + ...+ λkwkk ≤
∑

i

λi = trace(Σ) (5.12)

Since all U1, U , and V1 all belong to O(k), all wii < 1. To achieve the equal sign, we need to

have UT
1 UV1 = I, so U = U1V

T
1 .

• Step 4: Shape distance

Since all the sample data has been normalized, so the sample data can be considered as a data

point in a spherical surface of the shape space, if we define Q̃ = UQ, the geodesic distance

between two shapes

d̃([P ], [Q]) = arccos < P, Q̃ >= arccos(trace(Σ)) (5.13)

Here [P ], [Q] are the representation of shapes which are invariant under scaling, translation

and rotation. The d̃ is the geodesic distance defined in the pre-shape space. It is also the

length of the shortest path among all the paths connect these two shapes within pre-shape

space.

• Step 5: Geodesic interpolation

If P 6= Q̃, we can interpolate intermediate shapes between P and Q̃ by using the following

equation

PQ(t) = cos(wt)P + sin(wt)
Q̃− (trΣ)P

||Q̃− (trΣ)P ||F
(5.14)

where w = arccos(tr(Σ)) and 0 ≤ t ≤ 1.

A toy example about Procrustes alignment of two hand shapes and shape geodesic interpo-

lation between those two hands is shown in Fig. 5.1. Each of the hand is represented by 200

landmark points in R
2. In Fig. 5.1A, we only show 11 landmarks on those hands.
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Figure 5.1: A geodesic interpolation between two shapes in pre-shape space.

5.2 Statistical Models of Shape

Summary statistics are used to summarize a set of observations, in order to communicate the

largest amount of information as simply as possible. Because of this property, mean shape and

its variation of sample shapes have always been an important topic of shape analysis research.
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In this section, we propose to build statistical models to capture characteristic variation within a

given population of shapes. To achieve this, definition and calculation of the mean shape become

necessary. Based on mean shape, we can define the variation as the spread around the mean shape.

In this section, we will give the definition of the Frechet mean shapes and propose algorithm to

compute it. The numerical method we used here is based on an attracting fixed point method,

which is extended from Huckemann and Ziezold’s method [27]. More details can be found in Liu et

al.[38]. As in Dryden and Mardias work [10], to realize PCA on the non-linear pre-shape space, we

approximate the problem by using its tangent space. The idea is: first project each pre-shape to

a tangent plane at the mean shape; then perform PCA on this tangent plane; and finally project

the principal components back to the pre-shape space. Since the biological shape data supposed

to be analyzed tends to be concentrated around the mean, which suggests that the tangent plane

is a good approximation of the local geometry on the pre-shape space. The tangent space PCA

provides an effective way to analyze the main modes of variation within a population of shapes.

5.2.1 Mean Shape

Let us consider the normal meaning of mean in Euclidean space. Let x1, . . . , xn be n data

samples in R
m, and their arithmetic mean is given by

µ =
1

n

n
∑

i=1

xi (5.15)

The mean can also be interpreted as the minimizer of the scatter function V : R
m → R, where

V (x) is defined as

V (x) =
n

∑

i=1

||x− xi||2 (5.16)

In the following, we show in details that µ is the minimizer of V (x):

V (x) =
n

∑

i=1

||x− µ− (xi − µ)||2

=
n

∑

i=1

< x− µ, x− µ > −2
n

∑

i=1

< x− µ, xi − µ > +
n

∑

i=1

< xi − µ, xi − µ >

= n||x− µ||2 − 2 < x− µ,
n

∑

i=1

(xi − µ) > +
n

∑

i=1

||xi − µ||2 (5.17)

= n||x− µ||2 +
n

∑

i=1

||xi − µ||2 (5.18)
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The reason Eq. 5.18 and Eq. 5.18 are equal is that, from the definition of µ showing in Eq. 5.15,
n

∑

i=1

(xi−µ) is the zero vector in R
m. Since both terms in Eq. 5.18 are nonnegative and

n
∑

i=1

||xi−µ||2

is a fixed number for given sample. Thus, V is minimal when n||x− µ||2 = 0. This requires x = µ.

We show in the following how the scatter function can be extended to shape space. Let p1, . . . , pn

be shapes in pre-shape space Ω(k, n). Given a pre-shape p, let Ui(p) be the orthogonal transfor-

mation that optimally aligns pi to p. The mean shape p of the family of shapes is a shape that

minimizes the total scatter function.

V (p) =
1

2

n
∑

i=1

d̃2(p, pi) (5.19)

d̃ is the shape distance as defined in Eq. 5.13, and the 1/2 is added just for computational

convenience. We plug d̃ into Eq. 5.13, V (s) can be written as

V (s) =
1

2

n
∑

i=1

arccos2 < p,Uipi > (5.20)

Then the unconstrained gradient of V is given by

▽V (p) = −
n

∑

i=1

arccos(ζi(p))
√

1 − ζ2
i (p)

Uipi (5.21)

where ζi =< p,Uipi >. At a minimum of V restricted to the pre-shape space, we must have

▽V (p) = λp, the λ here is also the projection of ▽V (p) onto p, we get

λ =< ▽V (p), p >= −
n

∑

i=1

ζi(p) arccos(ζi(p))
√

1 − ζ2
i (p)

(5.22)

At a minimum, it requires

p = sign(λ)
▽V (p)

||▽V (p)||F
(5.23)

Thus, if a function T : Ω → Ω defined by T (p) = sign(λ) ▽V (p)
||▽V (p)||F

as they lead to the stable minimal

of V . The strategy of moving towards the fixed point by an iteration of T , initializing the procedure

with a pre-shape p, say, one of the pre-shape in the given family. For a given threshold value ǫ > 0,

one calculates T (p), . . . , Tn(p) iterating until ||Tn(p) − Tn−1(p)||F < ǫ.
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Table 5.1: Eight hands and their mean (in frame).

5.2.2 Tangent Space PCA

The algorithm of PCA in tangent space are list below.

1. Given n shapes, compute pre-shapes respectively.

2. Suppose we have n samples in pre-shape space, we can calculate the mean shape p.

3. Calculate the Wi for i = 1, . . . , n

Wi =
Uipi− < p,Uipi > p

||Uipi− < p,Uipi > p||F
d̃(p, pi) (5.24)

From a geometric point of view, Wi is the tangent vector at p on the great circle, as shown in

Fig. 5.2B. < p,Uipi > p is the projection of Uipi onto mean shape p; Wi is in the direction of

Uipi− < p,Uipi > p, with the length d̃(p, pi). Thus, we can see the Wi as the velocity vector

between p and pi.
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Table 5.2: Nine registered horses and their mean (in frame).

(A) (B)

Figure 5.2: Tangent space projection. (A) pi is optimally aligned to the mean shape p, the distance
between p and pi is the length of the shortest path (red in Fig. 5.2A) among all the paths connect
these two shapes within pre-shape space. (B) The great circle through mean shape p and Uipi.
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4. Let X = [W1, . . . ,Wn], if we compute XXT , then this will be a large matrix, the dimension

is the number of corresponding points. An alternative way is to compute XTX, because the

matrices XXT and XTX share the same nonzero eigenvalues, and if ui is the eigenvector of

XXT , vi is the eigenvector of XTX, and they both correspondent to the eigenvalue σ2
i . One

can check these eigenvectors are related in identity ui = Xvi.

So we compute K = XTX, the Kij =< Wi,Wj >.

5. Diagonalize XTX, here XTX = V ΣV T , the Σ is a diagonal matrix with a decreasing order

σ2
i on the main diagonal. So the ith principle component PCi can be computed by XVi, Vi

is the ith column of V . Where σ2
i is the variation along the direction of PCi, and σi is the

standard deviation.

6. Project the PCs back to the pre-shape space by

pασi
= cos(ασi)p+ sin(ασi)

PCi

||PCi||F
(5.25)

So the distance d̃(pασi
, p) = ασi.
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Table 5.3: Horse shape variation along the first three principal directions.

PC1

PC2

PC3

Mean-1SD Mean Mean+1SD
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CHAPTER 6

CORRELATIONS BETWEEN THE MORPHOLOGY

OF SONIC HEDGEHOG EXPRESSION DOMAINS

AND EMBRYONIC CRANIOFACIAL SHAPE

Quantitative analysis of gene expression domains and investigation of relationships between gene

expression and developmental and phenotypic outcomes are central for advancing our understand-

ing of the genotype-phenotype map. Gene expression domains typically have smooth but irregular

shapes lacking homologous landmarks, making it difficult to analyze shape variation with the tools

of landmark-based geometric morphometrics. In addition, 3D image acquisition and processing

introduce many artifacts that further exacerbate the problem. To overcome these difficulties, we

present a method that combines optical projection tomography scanning, a shape regularization

technique and a landmark-free approach to quantify variation in the morphology of Sonic hedgehog

expression domains in the frontonasal ectodermal zone (FEZ) of avians and investigate relation-

ships with embryonic craniofacial shape. The model reveals axes in FEZ and embryonic-head mor-

phospaces along which variation exhibits a sharp linear relationship at high statistical significance.

The technique should be applicable to analyses of other 3D surface-like biological structures that

have ill-defined shape and are relevant to understanding developmental processes and phenotypic

variation.

6.1 Biological Background and Introduction

A current line of thought is that the process of embryonic development acts to structure and

modulate genetic and phenotypic variation in ways that influence how natural selection can act on

that variation to produce morphological change. However, it is unclear how various developmental

processes generate and structure variation [66, 19, 22, 18]. Developmental processes can be identi-

fied and characterized by specific gene expression patterns, and are often visualized through mRNA

or protein localization. To uncover relationships between developmental processes and phenotypic

variation, spatial patterns of protein and mRNA expression are being systematically recorded over
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a range of spatial and temporal scales in several animal systems [34, 50, 65, 37, 61, 70]. However,

quantitative studies have focused primarily on building atlases for studies of variation of gene ex-

pression level and relationships between different genes [37, 15, 13]. We focuses on methodology for

investigation of a different facet of this problem, how variation in the morphology of gene expres-

sion domains relates to developmental and phenotypic outcomes. Here, we develop a morphometric

method to quantify 3D shape variation in Sonic hedgehog (Shh) mRNA expression domains in

avians (chickens and ducks) and explore relationships with embryonic facial shape. The focus here

is on methods and a more thorough discussion of the experimental model and its biological context

appears elsewhere [26].

Signaling by Sonic hedgehog plays an essential role in the development of the vertebrate upper

jaw [25, 39, 23, 75]. In amniotes, including mice and avians, Shh is first expressed in the forebrain

prior to outgrowth of the facial prominences. As neural crest cells migrate into the midface, Shh

expression is activated in the frontonasal ectodermal zone (FEZ), which acts as a signaling center

that controls growth of the upper jaw [39]. Hu and Marcucio [23] demonstrate empirically that

spatial organization of the FEZ regulates morphological variation in the developing upper jaw.

The methods of this paper let us uncover quantitative relationships between the morphology of Shh

mRNA expression in the FEZ and embryonic facial shape.

Quantification of shape variation in gene expression domains poses particularly challenging

problems, as these domains typically have no clearly defined forms, often appearing seemingly

amorphous, as illustrated in Figs. 6.1C and 6.1D. In particular, 3D morphometrics based on

landmarks [29, 30] is not easily applicable to this problem, severely limiting the effectiveness of

some existing methods of statistical shape analysis [36, 10]. Another layer of difficulty is related

to image acquisition. The geometric 3D meshes representing gene expression domains tend to be

noisy and contain multiple local topological and geometrical defects such as holes and irregularities

that are not really present in the tissues. For these reasons, our approach has two key components:

(i) A Shape Regularization Technique The FEZ is a thin, surface-like structure. A difficulty in

fitting a smooth surface model to a 3D FEZ image is that FEZes among organisms lack ho-

mologous landmarks. If landmarks were available, we could construct a smooth template and

morph the template to fit the image using the landmarks as guides. Dense template morphing

can be done with such techniques as thin-plate spline (TPS) interpolation [11, 41]. Section

6.3 describes a method that combines TPS interpolation with probability density estimation

to bypass landmarks and obtain smooth FEZ models that remove noise and enhance shape.
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(ii) FEZ Topography Vectors Lack of well-defined form makes it difficult to develop statistical

FEZ shape models using standard techniques. To obtain an informative model of shape

variation, we use the relative position of the FEZ in the embryonic face. We introduce FEZ

topography vectors that let us construct effective shape summaries that retain the most salient

morphological features and filter out confounding details. A topography vector essentially

describes how the FEZ height varies across its extension.

Using optical projection tomography scans of 17 specimens (7 chickens and 10 ducks), the

shape regularization method and FEZ topography vectors, we show that there is a strong linear

association between particular characteristics of FEZ morphology and embryonic craniofacial shape.

Variation in craniofacial shape is quantified using geometric morphometrics based on 67 landmarks,

covering the face, mouth, eyes, and forebrain. The landmarks are depicted in Fig. 6.1A and 6.1B.

Analysis of Shh expression in the FEZ guided the development of the landmark-free morphometric

technique, but the method should be useful in many other settings, particularly in analysis of

irregular, surface-like shapes that lack landmarks.

Figure 6.1: The visualization of landmarks on the embryonic head and the visualization of FEZ
shape. (A, B) Frontal and side views of landmarks on embryonic head of a chicken and a duck. (C,
D) Embryonic heads of avians and close-up view of Shh expression domains in the FEZ.
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6.2 Experimental Procedures

6.2.1 Embryo Preparation

To determine the extent to which FEZ spatial organization differs among the two bird species,

fertilized eggs from white Leghorn chicken (Gallus gallus) and White Pekin duck (Anas platyrhyn-

chos) were incubated at 37oC in a humidified chamber until stage-matched at HH 1 22, at which

time Shh expression in the surface ectoderm is robust, and then performed whole mount in situ

hybridization to examine Shh expression in the FEZ.

6.2.2 Forebrain Transplantation

Our goal was to test the intrinsic ability of the forebrain to direct unique expression patterns

of Shh in the FEZ to control divergent facial morphology. To achieve this goal, fertilized eggs were

incubated at 37oC in a humidified chamber until stage-matched at HH 7/8 prior to neural crest

cell emigration. Eggs were prepared for surgery as described in [24]. To develop this method, the

entire basal portion of the prosencephalon from donor duck embryos were removed at HH 7 and

transplanted orthotopically into stage-matched chicken hosts. Tissue grafts of the basal forebrain

were harvested from stage 7/8 embryos using sharpened tungsten needles. The grafts, measuring

0.3 mm in height by 0.2 mm in width, were transferred into DMEM containing Neutral Red (23oC,

2 minutes), which was added to facilitate visualization when transferred to the host. Care was

taken to avoid excessive disruption of underlying endoderm. The donor grafts were positioned to

replace the extirpated tissue. For the experiments duck embryos were used as donors and chicken

embryos were used as hosts. To examine the effects of the surgery, as controls, chick-chick chimeras

were also created. Both of these species have more similar rates of brain growth. Chimeric embryos

were incubated for 48 and 72 hours, and to day 6 or 10 for molecular, cellular, histological, and

morphological analysis.

6.2.3 In Situ Hybridization and Optical Projection Tomography (OPT)
Imaging

Shh expression in the avian embryos was detected by standard in situ hybridization resulting

in the domain of interest being stained dark blue [26, 9]. 3D data of both this domain, as well

1Indevelopmental biology, theHamburgerHamilton stages(HH) are a series of 46 chronological stages inchickdevel-
opment, starting from laying of theeggand ending with a newly hatched chick. It is named for its creators, Viktor
Hamburger and Howard L. Hamilton.
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as exterior surface of the avian embryo were acquired on Bioptonics 3000 OPT system (Sky Scan,

Germany). OPT has the advantage over more conventional imaging methods that it can generate

3D surface data of 1-3 cm3 objects as well as detect colorimetric or fluorescent signals. It therefore,

allows the correlation of multiple data types [54, 58]. Embryos were imaged on the OPT system

as previously published [54]. Briefly, embryos were embedded in 1% low melt agarose (Invitrogen),

which was then cut into a hexagonal block, mounted onto a magnetic chuck dehydrated for 48 hours

in methanol and cleared in BABB (2 parts Benzyl Benzoate: 1 part Benzyl Alcohol). Embryos

were imaged in the UV range on the GFP channel ( 480 nm) and in the visual light range. The

NRecon software package (SkyScan, Germany) was used to align the stacks and reconstruct the

images. Image stacks were imported into Amira (Version 5.0, FEI, Hillsboro OR, USA) for landmark

placement and segmenting of the Shh FEZ domain. Sixty-seven landmarks were registered on each

embryo, as shown in Figs. 6.1A and 6.1B.

6.3 Quantitative Methods

In this section we develop (i) a shape regularization technique that is used to construct smooth

surface models of Shh expression domains in the FEZ and (ii) FEZ topography vectors that capture

the most salient morphological characteristics of Shh expression and yet are robust to uninformative

details. Henceforth, we refer to an expression domain in the FEZ simply as FEZ.

6.3.1 Shape Regularization

As illustrated in Figs. 6.1C and 6.1D, FEZ meshes acquired through 3D imaging are very

irregular with numerous artifacts, whereas the FEZ itself resembles a smooth surface. To remove

these irregularities and make the meshes more tractable, we build smooth surface models from

imaging data. We approximate a FEZ mesh K by the graph of a smooth function f defined over

a plane region D, as indicated in Fig. 6.2A. We begin with the construction of a plane P that

contains D and then proceed to the estimation of D and construction of f .

Viewing the vertices v1, · · · , vn of the mesh K as n data points in 3D space, we use principal

component analysis (PCA) to construct a plane P parallel to the first two principal directions, as

indicated in Fig. 6.2A. The usual practice is to choose P containing the mean v̄ = (v1 + · · ·+vn)/n,

but for the present purposes the plane may be translated off the mean. This is done primarily to
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facilitate visualization. Orthogonal projection of v1, · · · , vn onto P gives a point cloud p1, · · · , pn

that delineates a region D in the plane P , as shown in Fig. 6.2A. We now describe a procedure to

estimate the domain D from these points.

We assume that the vertices v1, · · · , vn produced by the imaging and segmentation processes are

n independent and identically distributed (i.i.d.) samples from a distribution on the FEZ surface.

Thus, p1, · · · , pn may be viewed as i.i.d. samples from the corresponding distribution on the plane P

induced by projection. We estimate this distribution using the Gaussian density estimator [52, 56].

φ(p) =
1

n2πσ2

n
∑

i=1

exp

(

−‖p− pi‖2

2σ2

)

(6.1)

φ is the uniform mixture of isotropic Gaussians of width σ centered at the points pi. For a

discussion of selection of the bandwidth parameter σ, one may consult, for example, [59]. A key

observation is that φ is large within the domain D relative to the values it attains outside D

because only the interior of D is well populated by (projected) data points. Thus, the contour

∂D of the region D comprises points where a transition occurs. This suggests that we estimate

∂D as an isocontour of φ, that is, ∂D = {p ∈ P : φ(p) = ǫ}, where ǫ > 0 is a fixed small value

learned from data. In the unlikely event that the isocontour consists of multiple curves, we take

the component that encloses the most points. Fig. 6.2B shows an example of a contour obtained

with this technique.

The final step in the mesh regularization process is the construction of a smooth function f on

the domain D whose graph interpolates the points v1, · · · , vn. We introduce a coordinate system,

where P becomes the x−y plane and the z− axis is orthogonal to P , as indicated in Fig. 6.2A. Let

vi = (ai, bi, ci) be the coordinates of the vertex vi, so that the (x, y)− coordinates of its projection

pi are (ai, bi). The goal is to construct a smooth function f(x, y) such that f(ai, bi) ≈ ci, which

ensures that the graph of f smoothly interpolates the data points. We use thin-plate spline (TPS)

interpolation to construct such a function. TPS interpolation is a technique widely used in data

analysis, including geometric morphometrics [7]. In simple terms, a TPS interpolation balances

out minimization of the average residual
∑

i |f(ai, bi) − ci|2/n and the smoothness of f . One may

consult [69] for further details. The TPS interpolant f is defined over the entire plane P , but the

part of the graph over the domain D gives the desired smooth FEZ model. To discretize the model,

we use the (restricted) Delaunay triangulation [17, 14] τ of the region D associated with the points
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p1, · · · , pn. We lift the vertices of τ to 3D space via the TPS interpolant f and construct a mesh

with the same connectivity as τ . Fig. 6.2C shows a FEZ model constructed with this method.

Figure 6.2: FEZ regularization process: (A) Original FEZ mesh K and projection D onto the plane
P spanned by first two PCs. (B) Estimation of interpolation domain with colormap of the density
value. The wire shows the triangulation of the estimated domain. (C) Regularized FEZ.

6.3.2 FEZ Topography Vectors

We develop a quantitative representation, termed FEZ topography vector, which summarizes

the most salient morphological properties of the FEZ and to a large extent is blind to confounding

details. This yields a representation that is robust to the large variability observed in local and

regional FEZ morphology. Although the lack of homologous landmarks makes it difficult to find

point correspondences between FEZ meshes for different specimens, a relaxed notion of shape

correspondence that exploits the position of the FEZ in the embryonic head is implicit in topography

vectors.

Using 67 landmarks, depicted in Figs. 6.1A and 6.1B, covering the face, mouth, eyes, and

forebrain, we normalize centroid size and employ Procrustes superimposition to standardize position

and spatial orientation of an embryonic head by aligning it to a template. In particular, this fixes

a scale and orientation for the FEZ. We construct a sagittal plane, as shown in Fig. 6.3A, and use

parallel translates of this plane to slice up the FEZ along a series of curves. These curves are used

in the construction of the FEZ topography vector. To estimate the sagittal plane, we exploit the

following facts: (i) the head landmarks are nearly symmetrical about the sagittal section and (ii) the

dominant spatial spread of the head landmarks occurs in a direction perpendicular to the sagittal
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plane. Thus, PCA on the landmarks gives a simple way of estimating the sagittal plane as the plane

through the centroid of the landmarks that is parallel to the second and third principal directions

since we expect the first principal direction to be orthogonal to the sagittal plane. Sweeping the

FEZ from left to right with parallel translates of the sagittal plane yields a continuous family of

sections of the FEZ by spatial curves, as shown in Figs. 6.3B and 6.3C. As the shape of these

spatial curves is still sensitive to the high variability of the FEZ across specimens, we only use

their lengths to describe FEZ morphology. In this manner, we obtain FEZ shape descriptors that

encode how the “height” of the FEZ varies as we sweep it from left to right. As this variation is

gradual, in practice, it suffices to consider a discrete, sparse family comprising k (equally spaced)

sections across the width of the FEZ. Denoting the length of the ith section by hi, FEZ shape is

summarized in a FEZ topography vector h, the k− dimensional vector whose coordinates are hi,

1 ≤ i ≤ k.

Figure 6.3: Sectioning the FEZ: (A) Sagittal plane of an embryo head (green plane). (B) FEZ
sections by translates of the sagittal plane of a Chicken FEZ. (C) FEZ sections by translates of the
sagittal plane of a duck FEZ.

6.4 Correlations between FEZ Morphology and Craniofacial
Shape

After eliminated individuals obviously damaged during preparation for OPT, the sample for 3D

morphometric analysis consisted of 10 duck embryos, 7 chicken embryos, 11 duck-chick transplants

43



and 14 chick-chick transplants.

We employed FEZ regularization and topography vectors to model variation in FEZ morphology

and to study correlations with embryonic craniofacial shape. The analysis was based on optical

projection tomography scans of the embryonic heads of 7 chickens and 10 ducks. FEZ meshes

were smoothed with the regularization technique of Section 6.3.1 and FEZ shape variation was

quantified using topography vectors. Head shape variation was modeled with standard techniques

of geometric morphometrics using sixty-seven manually placed landmarks. The landmarks cover

the face, mouth, eyes, and forebrain, and are depicted in Fig. 6.1.

6.4.1 Modeling Native Groups

We employed topography vectors of dimension k = 8 to model variation in FEZ morphology.

We adopted a sparse representation with only eight FEZ sections because topographical variation

across the FEZ is gradual and experiments indicated that little additional information relevant

to this analysis is obtained with denser samplings. Figs. 6.3C and 6.3D show examples of FEZ

sections used in the construction of topography vectors for a chicken and a duck.

Principal component analysis showed that PC1 and PC2 explain 92% of FEZ topography vari-

ation. Fig. 6.4A shows a plot of the PC scores. The figure also indicates that the PC1 and PC2

scores discriminate chickens from ducks sharply. An examination of the PC loadings revealed that

PC1 is primarily about FEZ height at its center and PC2 about height gradient from the center

to the left and right ends. To quantify variation in head shape, we standardized centroid size and

used Procrustes superimposition to spatially align all head meshes to the mean head of the entire

group. The mean was calculated with the fast converging fixed-point algorithm developed by Liu et

al.[38]. PC1-PC6 explained approximately 80% of the variation. Fig. 6.4B shows a plot of the first

two PC scores. PC1 sharply discriminates chickens from ducks and reflects the fact that embryonic

duck heads are longer and narrower than chicken heads.

To explore relationships between FEZ morphology and embryonic facial shape, we used canon-

ical correlation analysis (CCA) [21, 57, 33] on the FEZ morphospace determined by the first two

PC scores and head shape space determined by the first six PC scores. CCA uncovers a pair of

directions and in the FEZ and head morphospaces, respectively, such that variation along these

axes has maximal correlation coefficient. CCA produced a pair of axes along which the correlation

coefficient is ρ = 0.96 at high significance (p = 0.0012). Fig. 6.4C shows a plot of the scores
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along these axes, the regression line of head shape over FEZ topography, as well as illustrations

of shape variation along these directions. The first canonical direction in the FEZ morphospace

nearly coincides with the anti-diagonal direction in the PC1-PC2 plane, whereas the axis in the

head morphospace captures the fact that the heads of ducks are narrower, deeper and longer than

the heads of chickens. The scores along these directions yielded FEZ and head shape signatures

that sharply discriminate chickens and ducks. For the second pair of canonical directions, the cor-

relation coefficient dropped to ρ = 0.5, revealing no additional statistically significant correlations

between FEZ topography and head shape.

Figure 6.4: 3D Morphometric analysis of FEZ and craniofacial shape based on optical projection
tomography imaging of native groups (chicken in red and duck in green). (A) PC scores for FEZ
morphology. PC1 captures 81% of the variation, PC2 captures 11% of the variation. (B) PC scores
for head shape. PC1 captures 35% of the variation, PC2 captures 17% of the variation. (C) First
pair of canonical directions in FEZ and head morphospaces. The first canonical direction in the
FEZ morphospace nearly coincides with the anti-diagonal direction in the PC1-PC2 plane, whereas
the axis in the head morphospace captures the fact that the heads of ducks are narrower, deeper
and longer than the heads of chickens.

6.4.2 Mapping the Chimeras

We mapped the chimeras onto the FEZ V. Head CCA plot as Fig.6.4C. In Fig.6.5A, the axes are

the first pair of the canonical directions whose construction only involves the native chick and duck
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group. The native chick specimens are indicated in red, the native duck specimens are indicated in

green, the duck-chick chimeras are indicated in purple, and the chick-chick chimeras are indicated

in yellow.

Figure 6.5: 3D Morphometric analysis of FEZ and craniofacial shape based on optical projection
tomography imaging on native specimens and chimeras (chicken in red, duck in green, duck-chick
chimera in purple and chick-chick chimera in yellow). (A) Canonical correlation scores for chick
and duck embryos for FEZ and head shape. This plot show the clear separation of both FEZ and
head shape in duck and chick embryos as well as the correlation between Shh expression in the FEZ
and head shape. (B) Here the two hemi-forebrain transplant groups (duck-chick and chick-chick)
are added to the data shown in graph A. Morphometric analysis for the transplants is performed
only on the transplant side. Here, the clear separation of facial shape among these groups is shown
with the duck-chick transplant group shifted significantly towards the duck group. (C) and (D)
show the medians and dispersions of the canonical correlation scores for FEZ and head shape.

This revealed clear separation of facial shape for the two transplant groups (t-test, df=24,

p=0.008). Procrustes permutation tests in MorphoJ confirmed this result with head shape differing

significantly between the two transplant groups (p <0.001). The duck-chick transplant group is

moved in the direction of the duck group although it was significantly different form both the duck
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and chick group. The chick-chick is closer to the chick group (Procrustes distance = 0.12) than

to the duck group (Procrustes distance = 0.21). Both transplant groups, though, appear shifted

towards the lower end of the head shape range in plot 6.5A such that both overlap the range of

variation in the chick group. The chick-chick group likely differs from the chick group due to the

perturbing effect of the transplant surgery. While FEZ shape was not significantly different between

the transplant groups, the shape of the FEZ in the duck-chick chimeras was shifted in the direction

of the duck shape. The 3D data suggest that transplanting duck forebrain into a chick embryo

moves facial morphology significantly in the direction of the duck.
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CHAPTER 7

SPLINE MODEL ON MANIFOLD DOMAIN

Splines are widely used in shape analysis and also in many other disciplines for interpolation,

approximation and regression, but most experimental results have focused on Euclidean domain

[68]. Although the theory of spline methods has been previously generalized to the flat torus and

the standard sphere [11, 41, 67], as well as to closed compact Riemannian manifold [31], on arbitrary

domain, these authors have not presented numerical methods for computing such splines. Since

manifold-valued data occur in numerous problems, constructing splines with manifold domains and

providing effective computational methods are desirable.

In this chapter, we present the spline method, which naturally extend the concept of the popular

thin plate spline (TPS) [68, 7] to compact Riemannian manifold domains. The key approach is to

use mathematical framework of reproducing kernel Hilbert space, along with integrating spectral

geometry associated with compact Riemannian manifolds. Incorporate with Neumann boundary

condition, we propose an computational scheme based on a bounding box. The efficiency of our

spline method is proved by comparing the interpolation results with TPS on closed and open

surfaces.

This spline method has also been applied to construct dense surface model of avian embryos.

More details of this application can be found in section 7.6. Those dense surface models can

establish a correspondence of thousands of points across each 3D embryo image, so that it can take

full advantages of the high resolution geometrical information. This models also carry the potential

for precisely identifying the local shape features and the syndrome effects that can benefit a series

of following up studies.

7.1 Model Derivation

7.1.1 Preliminaries on Reproducing Kernel Hilbert Space (RKHS)

To setup the problem, let M be a compact Riemannian manifold. We assume that we are given

n observations {xi, yi} , i = 1, · · · , n, with xi ∈M and yi ∈ R. The yi are function values at location
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xi. Our goal is to infer “best” transformation f between {xi} and {yi}. In order to define “best”,

we introduce the energy function

E(f) =
1

n

n
∑

i=1

|yi − f(xi)|2 + w

∫

M

(∆pf)2dM (7.1)

Here ∆ is the Laplace-Beltrami operator taking functions on M to functions and defined as ∆f =

−div grad(f). p is an integer with value ≥ 1.

Definition 7.1.1 A symmetric, real-valued function K(s, t) of two variables s, t ∈M is said to be

positive definite if, for any real a1, · · · , an, and t1, · · · , tn ∈M

n
∑

i,j=1

aiajK(ti, tj) ≥ 0

that is, if every square matrix [K(ti, tj)]
n
i,j=1 is positive definite matrix.

The minimizer of the E defined in Eq. 7.1 gives the “best” transformation f between {xi} and

{yi}. To find this minimizer we first need to introduce a search space for f . Because continuous

linear functional of point-wise evaluation is necessary in interpolation problems, it is natural to

consider reproducing kernel Hilbert space (RKHS) in which point-wise evaluation is a continuous

linear functional. Based on the Riesz representation theorem, for a given a positive definite function

K(., .) : M ×M → R, we can associate it with a unique RKHS H, which is a Hilbert space of real

valued function on M with the property that for each t ∈M , the evaluation functional Lt : H → R

defined as Lt(f) = f(t) is continuous.

The construction of the space H can be described as follows. We denote K(t, .) as Kt(.) for

t ∈ M , we can see Kt(.) is a function defined from M → R. We first construct a vector space H

by taking all finite linear combination of the form in Eq. 7.2

n
∑

i=1

aiKti (7.2)

for all choices of n, ai, ti.

Inner product in H is defined as

〈

n
∑

i=1

aiKti ,

m
∑

j=1

bjKsj

〉

=

n
∑

i=1

m
∑

j=1

aibjK(ti, sj) (7.3)
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It is not hard to check this is a well defined inner product because of the positive definiteness of

K(., .) , and we can also check the validity of f(x) =< f,Kx >. To make this space complete, we

can add in the limits of all Cauchy sequences over H into this space. To better show the dependency

between kernel K and space H, henceforth, we will use Hk to represent the RKHS associate with

kernel K.

Let M be a compact Riemannian manifold. Consider the integral operator T : L2(M) → L2(M)

defined by

Tf(x) =

∫

M

K(x, t)f(t)dV (t) (7.4)

If kernel K satisfies
∫∫

M

K2(s, t)dV (s)dV (t) <∞ (7.5)

Then there exists eigenvalues 0 ≤ λk
0 ≤ λk

1 ≤ . . . . By the fundamental theorem of self-adjoint com-

pact operator [63, 64], the corresponding L2 normalized eigenfunctions
{

φK
i

}∞

i=1
of operator T form

an orthonormal basis for L2(M). For ∀f ∈ L2(M), f can be expressed in the form f =

∞
∑

i=0

aiφ
k
i ,

where ak
i =

∫

M

f(t)φK
i (t)dV (t). Mercer’s theorem [42] states that K(s, t) =

∞
∑

i=0

λk
i φ

k
i (s)φ

k
i (t).

Then we can find the condition for f belongs to Hk and the relation between ||.||L2 and ||.||Hk

by lemma 7.1.1.

Lemma 7.1.1 f ∈ Hk ⇔
∞

∑

i=0

(ak
i )

2

λK
i

<∞ and ||f ||2Hk
=

∞
∑

i=0

(ak
i )

2

λk
i

.

More detail of this proof can be found in [68].

7.1.2 Kernel for Spline Energy Function

From Hodge theorem for functions, if M is compact connected oriented Riemannian manifold,

there exists a complete orthonormal set of L2(M,Φ) consisting of eigenfunctions of the ∆. Suppose

{φi, λi, i = 0, · · · ,∞} are the eigenfunctions and eigenvalues associated with operator ∆, λi ≤
λi+1, for ∀i ≥ 0. All the eigenvalues are positive, except λ0 = 0. Each eigenvalue has finite

multiplicity, and the eigenvalues accumulate only at infinity. Thus we can express f in L2(M) as f =
∞

∑

i=0

aiφi, where ai =

∫

M

f(t)φi(t)dV (t). From the fact that {φi, λi, i = 0, · · · ,∞} are the normalized

eigenfunctions and eigenvalues associated with operator ∆, we have

∫

M

(∆pf)2dM =
∞

∑

i=0

a2
iλ

2p
i .
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Motivated by Lemma 7.1.1, the kernel defined as Eq. 7.6 satisfies

∫

M

(∆pf)2dM = ||f ||2Hk
.

K(s, t) =

∞
∑

i=1

φi(s)φi(t)

λ2p
i

(7.6)

Suppose

∫∫

M

K2(s, t)dV (s)dV (t) =
∞

∑

i=1

1

λ4p
i

< ∞ and
∞

∑

i=1

a2
iλ

2p
i < ∞, we can define a RKHS

associate with this kernel K in Eq. 7.6 with norm ||f ||2Hk
=

∞
∑

i=1

a2
iλ

2p
i . Since the null space of Hk

is spanned by φ0, for ∀f ∈ L2(M) satisfies
∞

∑

i=1

a2
iλ

2p
i <∞, we can decompose this function into the

form shows in Eq. 7.7

f(t) =
∞

∑

i=0

aiφi(t) = a0φ0+ < Kt, f > (7.7)

Using the inner product to rewrite Eq. 7.1, we have this simple linear system

E(f) = E(c0, f) =
1

n

n
∑

i=1

(yi − c0− < Kxi
, f >)2 + w < f, f > (7.8)

To find the minimizer f , we could take directional derivative for Eq. 7.8

∂fE(h) =
2

n

n
∑

i=1

(yi − c0− < Kxi
, f >) < −Kxi

, h > +2w < f, h >

= < h,
2

n

n
∑

i=1

(yi − c0− < Kxi
, f >) (−Kxi

) + 2wf > (7.9)

In order to have ∂fE(h) = 0 for ∀h, it is necessary to have wf = 1
n

n
∑

i=1

(yi−c0− < Kxi
, f >)Kxi

.

This implies f must be some linear combination of Kxi
. As we mentioned before, the constant

function is in the null space of Hk and can not be represented by {Kxi
}. Put all those together,

we have f = c0 +

n
∑

i=1

ciKxi
.

To determine f , the only parameters we need to find are c0 and c = [ci, c2, · · · , cn]T . By

substituting in the expression f into Eq. 7.8.

E(c0, c) =
1

n

n
∑

i=1

(yi − c0 −
n

∑

j=1

cjK(xi, xj))
2 + wcT Σc

=
1

n
||Y − Tc0 − cΣ||2 + wcT Σc (7.10)
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Where Y = [y1, y2, · · · , yn]T , Σ is a n × n matrix with (i, j) element K(xi, xj), and T is a n × 1

vector with 1s.

A straightforward calculation for taking derivatives respect to c0 and c shows that the minimizer

c0 and c will satisfy the following equations.

Y − Tc0 − Σc = nwc

cTT = 0 (7.11)

We can have the solution by solving the linear system Eq. 7.11. The optimal smoothing

parameter w is chosen by generalized cross validation method introduced in [2].

7.2 Extension from Single Variate to Multivariate Problem

In shape analysis, the spline interpolation can usually be stated as a multivariate problem:

Given n observations{xi,yi}, with xi ∈M and yi ∈ R
d, finding a transformation f : M → R

d which

satisfies the smoothing interpolation conditions can be decomposed in d interpolation problems each

one of them only depends on only one component
{

yk

i

}

of {yi}. We use fk to denote the best

transformation for the kth component. Those d problems can be considered as the minimizer of the

following energy function.

E(f) =
1

n

n
∑

i=1

||yi − f(xi)||2 + w

∫

M

(∆pf)2dM (7.12)

Where

∫

M

(∆pf)2dM =
d

∑

k=1

∫

M

(∆pfk)2dM .

The minimizer of Eq. 7.12 can be written in analytical form of the same basis functions as

before, the n× d coefficients matrix c and 1× d constant matrix c0 of the analytic solution satisfy

the following equation system

Y − Tc0 − Σc = nwc (7.13)

cTT = 0 (7.14)

Where Y = [y1,y2, · · · ,yn]T .
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7.3 Extension from Interpolation to Approximation

7.3.1 Multivariate Problem with Isotropic Errors

The interpolation describe previously assume that the correspondence matched exactly, however,

feature points in shape analysis are most learnt by automatic landmarking methods, there are

unavoidable corresponding variance or even mismatched landmarks. Even for human experts,

there is still unavoidable inter-observer and intra-observer errors. In order to take account of the

landmark variances or errors, we propose to extend this by involve a symmetric positive definite

matrix W into the cost function. It is same as we redefine our energy function as

E(f) =
1

n
||W (Y − f(X))||2 + w

∫

M

(∆pf)2dM (7.15)

Where f(X) = [f(x1), f(x2), · · · , f(xn)]T .

The first term in Eq. 7.15 measures the sum of the quadratic Euclidean distance between the

transformed feature points and the target feature points plus possible interactions between them.

The second term still measures the smoothness of the transformation.

The computation is nearly the same and the solution to the approximation problem in Eq. 7.15

can also be stated analytically by solving the following linear system,

W 2(Y − Tc0 − Σc) = nwc (7.16)

cTT = 0 (7.17)

If W is the identity matrix, this is equivalent to the previous model. A diagonal matrix W means

only assigning different weights to the landmarks. A special case is that we take a diagonal matrix
(

W 2
)−1

and define diagonal elements as the variances σ2
i of each landmark

(

W 2
)−1

=

























σ2
1 0 · · · · · · · · · 0

0 σ2
2

. . . · · · · · · ...
...

. . . 0
. . . · · · ...

...
...

. . .
. . .

. . .
...

...
...

...
. . . σ2

n−1 0
0 · · · · · · · · · 0 σ2

n

























(7.18)

This is same as define the cost function as

E(f) =
1

n

n
∑

i=1

||yi − f(xi)||2
σ2

i

+ w

∫

M

(∆pf)2dM (7.19)
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To interpret Eq. 7.19, we can think that each quadratic Euclidean distance between the transformed

feature points and the target feature points is weighted by the variances σ2
i representing landmark

localization errors. If, for example, the variance is high, i.e., landmark localization is uncertain,

the the influence on the overall approximation error is weighted low. Those σ2
i can be learned from

empirical data, training replica experiments or learning algorithms for specific purpose, such as the

learning metric learned for classification purpose [12].

7.3.2 Multivariate Problem with Anisotropic Errors

In the above case of isotropic errors, we assume that the error occurs only within the landmark

level. But generally, this assumption will not hold, since the errors are different in different direc-

tions and thus are anisotropic. In order to accommodate this, we can further extend the model by

involving a nd × nd symmetric positive definite matrix WL. Each element represents the weights

for each coordinate of every landmark.

E(f) =
1

n
||WL(YL − fL(X))||2 + w

∫

M

(∆pf)2dM (7.20)

where YL and fL(X) are nd× 1 vectors reshaped point wisely from Y and f(X) respectively.

Indeed, the computation scheme has the same structure as before and the solution can be stated

in analytical form with the same basis functions as well.

WL2(YL − (T ⊗ Id)c0 − (Σ ⊗ Id)C) = nwC (7.21)

CT (T ⊗ Id) = 0 (7.22)

Where ⊗ means Kronecker product. C is a nd×1 coefficient vector which is the row-wisely reshaped

version of the n× d coefficients matrix c.

If we take the a diagonal block matrix
(

WL2
)−1

and diagonal blocks are the covariances matrices

Σi of ith landmark. For instance, for 3 dimensional shape, {Σi} are 3 × 3 matrices.

(

WL2
)−1

=

























Σ1 0 · · · · · · · · · 0

0 Σ2
. . . · · · · · · ...

...
. . . 0

. . . · · · ...
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...
. . .

. . .
. . .

...
...

...
...

. . . Σn−1 0
0 · · · · · · · · · 0 Σn

























(7.23)
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This is same as define the cost function as

E(f) =
1

n

n
∑

i=1

< (yi − f(xi)),Σ
−1
i (yi − f(xi)) > +w

∫

M

(∆pf)2dM (7.24)

With the extended scheme it is possible to include different types of fearure points, e.g.,“normal”

point landmarks as well as other feature points. Normal anatomical/mathematical landmarks have

unique positions and low localization uncertainties in all directions. An example of other feature

points this algorithm can be extremely beneficial for are arbitrary edge points. Such points are

not uniquely definable in all directions, and they are used, for example, in the reference system

of Talaitach [60] to define the 3-D bounding box of the human brain. The incorporation of such

landmarks is important when normal point landmarks are hard to define, for example, at the outer

parts of the human head; or when the analysing process requires a large number of points.

7.4 Box Spline: Algorithm

A broad range of applications in shape modeling and analysis is concerned with processing

two-dimensional surface. Those surfaces are typically represented by point clouds or meshes. Thus,

interpolation on these objects requires the availability of discrete ∆ operator to numerically compute

the eigenfunctions and eigenvalues. The discretization of the Laplacian on triangular meshes and

point clouds is discussed in Chapter 3. We can constructed the kernel in the manner of Eq.

7.6. With the discrete kernel in hand, in principle, we have already resolved the interpolation

problem. However, several drawbacks of this discretization should be noticed. First, computation

efficiency. The naive way of computing the kernel in Eq. 7.6 requires discretization of Laplace-

Beltrami operator and explicit computation of the entire set or large number of the eigenvectors and

eigenvalues of Laplacian matrix L. This approach performs poorly on modern data set. Second,

accuracy. The approximation of L is highly depending on the point cloud or mesh structure and

choice of parameters. One example is shown in Fig.3.3. The convergence to the ∆ of underlying

surface is only guaranteed as the mesh becomes finer [4, 5]. Thus, for a given shape, convergence

is not guaranteed. As a result, the computed eigenvalues and eigenfunctions are not accuracy.

To solve those problems, we compromise ourselves to the spline domain as the convex 3D box

[x1, x2] × [y1, y2] × [z1, z2] of the mesh. The kernel function within in the box is constructed by
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Figure 7.1: Duck Embryo shape with convex 3D box spline domain (light blue).

the analytical eigenfunctions and eigenvalues of this rectangular domain. An example of such as

convex box is shown in Fig. 7.1. The light blue box shows the spline domain.

The eigenfunctions of ∆ with Neumann boundary conditions are explicit and they are given as

φmnl(x, y, z) = cos(
mπ(x− x1)

x2 − x1
) cos(

nπ(y − y1)

y2 − y1
) cos(

lπ(z − z1)

z2 − z1
) (7.25)

And the corresponding eigenvalues are given as

λmnl = (
mπ

x2 − x1
)2 + (

nπ

y2 − y1
)2 + (

lπ

z2 − z1
)2 (7.26)

Where m,n, l are positive integers. Then the kernel of can be computed by truncated version of

Eq. 7.6.

For 2D domain, we can construct kernel in a similar manner. Suppose we have fixed 2d convex

square domain as [x1, x2]×[y1, y2], the eigenfunctions and eigenvalues of ∆ with Neumann boundary

conditions are given as

φmn(x, y) = cos(
mπ(x− x1)

x2 − x1
) cos(

nπ(y − y1)

y2 − y1
)

λmn = (
mπ

x2 − x1
)2 + (

nπ

y2 − y1
)2 (7.27)

Where m,n are positive integers.

Similarly, for 1D domain [x1, x2], The eigenfunctions and eigenvalues of ∆ with Neumann bound-

ary conditions are given as

φm(x, y) = cos(
mπ(x− x1)

x2 − x1
)

λm = (
mπ

x2 − x1
)2 (7.28)
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Table 7.1: Rank of the three spline methods on spherical domain.

❳
❳

❳
❳

❳
❳

❳
❳

❳
❳

❳

Method
Rank

1st 2nd 3rd

TPS 0% 3% 97%

Spherical 62% 38% 0%

Box 38% 59% 3%

Where m is positive integer.

Because we are using the solution of the Laplacian equation with Neumann boundary condition.

To better deal with the interpolation problem, we did linear regression previous to the spline.

7.5 Comparison of Spline Methods

Although the spline domain is compromised from the compact Riemannian manifold to con-

vex bounding box, we still expect our method would improve results from TPS. We did several

experiments with simulated shape on closed spherical domain and open plain domain. We then

compared our results with spherical spline in [68] and TPS. Since the interpolation results depends

on other factors such as the distribution of the landmarks, thus, we repeated 100 experiments for

each example. For each experiment, we fixed the number of the random selected correspondent

points and ranked each method for that experiment by the errors.

The result for spherical domain is shown in Table. 7.1. From this table, we see that among

all the experiments, 62% time, the spherical spline achieved the best result; while 38% of the box

spline achieved the best result; 97% of the TPS result ranked 3rd. One example of such comparison

is shown in Fig. 7.2. From this example we can see, the result from Box spline (Fig. 7.2E) is

similar to the result from spherical spline (Fig. 7.2D) and both methods show great improvement

respect to the thin plate spline (Fig. 7.2C).

We also did experiments on domains with boundary. Because there is no explicit solution for

the Laplace’s equation on the open surface, we here only compared the TPS results with those from

box spline. From Table. 7.2, we can see that, among 100 repeated experiments with randomized

fixed number landmarks, 98% time box spline gave better result. One example of such comparison

is shown in Fig. 7.3.
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(A) Domain (B) Target Shape (C) TPS (D) Spherical Spline (E) Box Spline

Figure 7.2: One example of the spline results on the spherical domain. (A) The domain with
the landmarks(black). (B) The target shape with the landmarks(black). The color of (A) and (B)
shows the correspondence the points. (C) The result of the TPS. (D) The result of Spherical spline.
(E) The result of Box spline. In (C, D, E), the color map shows the magnitude of error at each
point, while red means large error, blue means small. The color map has been standardized to the
same range.

Table 7.2: Rank of the TPS and box spline on open surface domain.

❳
❳

❳
❳

❳
❳

❳
❳

❳
❳

❳

Method
Rank

1st 2nd

TPS 2% 98%

Box 98% 2%

(A) Domain (B) Target Shape (C) TPS (D) Box Spline

Figure 7.3: One example of the spline results on the open surface domain. (A) The domain with
the landmarks(black). (B) The target shape with the landmarks(black). The color of (A) and (B)
shows the correspondence of the points. (C) The result of the TPS. (D) The result of Box spline.
In (C, D), the color map shows the magnitude of error at each point, while red means large error,
blue means small. The color map has been standardized to the same range.

From Fig. 7.3, the error color map shown in Figs. 7.3C and 7.3D, we can clearly notice that

the error from Box spline was dramatically reduced from TPS method. This reduced error is more

obvious near the boundary.
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7.6 Dense Surface Model

Box spline described in Section 7.4 is used to find dense correspondence across samples by

interpolating the sparse landmarks (Fig: 7.1) on the avian embryos.

Figure 7.4: Examples of the mesh registration. First row shows the original mesh, second row
shows the registered mesh. The colormap of the second row indicates the correspondence.

Since the embryos data suffer from a lot artifacts through the scanning process, our registration

not only provide dense correspondence across sample but also complement the whole shape. Based

on the sparse landmarks, if the surface data is in high quality, we can also use iterative methods

to improve the dense correspondence. The algorithm is the following:

1. Choose an arbitrary mesh as the reference mesh.

2. Take all the meshes in the dataset as target meshes.

(a) For each target mesh, interpolate reference mesh to target mesh using sparse landmarks

by box spline. The result mesh is called splined mesh.

(b) For randomly selected points from the splined mesh, find the closest point in the target

mesh.

(c) Interpolate the splined mesh to the target mesh using the guidance of correspondent

points from previous step. The result mesh is called interpolated mesh.

(d) Use interpolated mesh as reference mesh.

3. After each iteration for every mesh, compute the mean shape and final set of aligned mesh

sets by Procrustes alignment [29].
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4. If the distance between two consecutive mean shapes and the average distance of the corre-

spondent aligned meshes are below certain threshold, stop; otherwise, go back to step 2.

From the dense correspondence, we conduct Procrustes analysis (PA) on the dense correspon-

dence of all the samples.

Table 7.3: Embryo shape variation along the first three principal directions of all samples in the
dataset

PC1

PC2

PC3

Mean-1SD Mean Mean+1SD

7.6.1 Patch Analysis

One aspect of necessity of patch analysis arises from the aspect of the shape analysis. Normally

we tend to build relationship between shape space and function space or even gene space. This

relationship was typically built using the leading several PC scores as the representation of the

shapes. This approach will give us robust result. However, in certain application the localized

variance holds the large interest, for instance, the analysis of cleft cleft and cleft palate. But, this

localized variance maybe overlooked when the analysis was done on a larger scale.
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Beside necessity of algorithm design, analyzing patches and studying the relationship between

patches also has potential in biological merits. During growth, object changes dramatically in

shape as well as in size. An organism comprises several interdependent bones/muscles that grow

and develop under the influence of various local and systemic factors. Patch analysis enable us to

further discover the pattern of individual region as well as the interaction between several regions.

Despite all the great applications, patch analysis is highly limited by the number of landmarks

under the sparse landmark. In certain region, there are even no points that have an exact biological

correspondence. The dense model provided by our spline method overcome this barrier. Since those

dense surface models can established a correspondence of thousands of points across each 3D image.

(A) (B) (C)

Figure 7.5: Examples of the patch analysis. (A) One patch sample (in black box). (B) Sparse Model:
patch Analysis is limited by the number of landmarks. Since there are only three landmarks (red)
in this region, the PA is impossible to capture the real anatomical change within this region. (C)
Dense Model: correspondence of thousands of points overcome the limitation.
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CHAPTER 8

DISCUSSION

To accommodate newly emerging shape data, which differs from traditional data in size and type,

the existing models have to be modified and new methods have to be developed. In this dissertation,

we explored these ideas from two aspects.

• Develop Landmark-free Model

In this dissertation, we also developed an ad hoc shape representation for quantifying amor-

phous shapes with no clearly defined form. Particularity, the analysis based on landmarks

is not applicable to this problem. Motivated by the study of gene expression domains, we

present a method that combines optical projection tomography scanning, a shape regulariza-

tion technique and a landmark-free approach to quantify gene expression domains variation.

A key strength of the method stems from the fact that it is difficult, or even impossible, to

quantify such variation with the usual methods of geometric morphometrics because gene

expression domains typically lack homologous landmarks. In addition, 3D image acquisition

and processing introduce many artifacts that further exacerbate the problem. Our landmard-

free approach quantifies variation in shape of seemingly amorphous gene expression domains,

enhances their most salient morphological characteristics and is robust to uninformative local

shape variation and irregularities associated with image acquisition.

Our model is applied to quantify variation in the morphology of Sonic hedgehog expression

domains in the frontonasal ectodermal zone (FEZ) of avians and investigate relationships

with embryonic craniofacial shape. Combined with PCA and CCA methods, the model re-

vealed axes in Shh expression and craniofacial morphospaces along which variation exhibits

a strong linear relationship at high statistical significance. Although in this dissertation,

we only applied this model to Shh expression domains, we believe that it has tremendous

potential for advancing quantitative integration across the genotype-phenotype map for com-

plex morphologies. The method should be particularly useful in quantitative analyses of 3D

smooth, surface-like structures that have ill-defined shape.

• Construct Dense Correspondence from Sparse Landmarks

To take full advantages of the high resolution geometrical information, we develop a spline

method to construct dense correspondence across all shapes. Instead of using Euclidean do-

main, because of the nature of shape surface as a manifold embedded in Euclidean space, we
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present a general theoretical framework of spline in which the Euclidean domain can be ex-

tended to manifold domain. In order to be practical applicable, we provide a computationally

effective algorithm to compute such spline function based on bounded rectangular domain.

The computation framework shows clear improvement respect to the thin plate spline method.

The proposed spline method can establish a correspondence of thousands of points across

each shape. Compared with sparse landmarks, the dense correspondence not only provides

dramatic visualization of the shape variation but also carries the potential for precisely identi-

fying the shape features. Without the limitation of the number of landmarks, the dense model

is also encouraging new studies, such as modular analysis on shape patches and correlation

analysis between patches.

All the pictures included in section 7.6 demonstrate that dense surface models can gener-

ate information visualizations of embryonic morphology in 3D. Any benefit the dense model

may provide in training of medical experts and disease diagnosis is yet to be evaluated. As

the data gathering for these become disease orientated, it will also become possible to study

the discriminate ability of dense models in disease diagnosis.

In conclusion, we believe, the integration of those newly developed shape analysis models with

machine learning algorithms and statistical inference methods will allow biologists to explore how

morphological variation correlates to biological variates and help advance various areas of research.
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