Some of the material in is restricted to members of the community. By logging in, you may be able to gain additional access to certain collections or items. If you have questions about access or logging in, please use the form on the Contact Page.
Kang, N. -Y. (2014). Global Warming and Tropical Cyclone Climate in the Western North Pacific. Retrieved from http://purl.flvc.org/fsu/fd/FSU_migr_etd-9196
Violent tropical cyclones (TCs) continue to inflict serious impacts on national economies and welfare, but how they are responding to global warming has not been fully clarified. Here I construct an empirical framework that shows the observations supporting a strong link between rising global ocean warmth and increasing trade-off between TC intensity and frequency in the western North Pacific. Thermodynamic structure of the tropical western North Pacific with high global ocean warmth is characterized by convectively more unstable lower troposphere with greater heat and moisture, but this instability is simultaneously accompanied by anomalous high pressure in the middle and upper troposphere over the same region. Increasing trade-off level between TC intensity and frequency in a warmer year proves that this environment further inhibits the TC occurrences over the region, but TCs that form tend to discharge stored energy to upper troposphere with stronger intensities. By increasing the intensity threshold at higher levels we confirmed that the TC climate connection with global ocean warmth occurs throughout the strongest portion of TCs, and the environmental connection of the TC climate is more conspicuous in the extreme portion of TCs. Intensities at the strongest 10~% of the western North Pacific TCs are comparable to super typhoons on average, the increasing trade-off magnitude clearly suggests that super typhoons in a warmer year gets stronger. Conclusively, the negative collinear feature of the thermodynamics influences the portion of TCs at the highest intensities, and super typhoons are likely to become stronger at the expense of overall TC frequencies in a warmer world. The consequence of this finding is that record-breaking TC intensities occur at the expense of overall TC frequencies under global warming. TC activity is understood as a variation which is independent of global warming, and could be assumed to be an internal variability having no trend. Frequency variation and super typhoon intensity variation are regarded as the addition of global warming influence on TC activity variation. The structure depicts how a previous intensity record is overtaken and frequency falls continuously in the global warming environment in a linear perspective. A peak TC activity year when global ocean warmth is the highest ever is likely to experience a record-breaking intensity. In the same way, the least number of annual TCs may appear when a lull of TC activity occurs in the warmest year.
efficiency of intensity, global warming, super typhoon, Tropical cyclone climate
Date of Defense
August 25, 2014.
Submitted Note
A Dissertation submitted to the Geophysical Fluid Dynamics Institute in partial fulfillment of the requirements for the degree of Doctor of Philosophy.
Bibliography Note
Includes bibliographical references.
Advisory Committee
James B. Elsner, Professor Directing Dissertation; Robert Hart, University Representative; Kevin Speer, Committee Member; Mark Bourassa, Committee Member.
Publisher
Florida State University
Identifier
FSU_migr_etd-9196
Use and Reproduction
This Item is protected by copyright and/or related rights. You are free to use this Item in any way that is permitted by the copyright and related rights legislation that applies to your use. For other uses you need to obtain permission from the rights-holder(s). The copyright in theses and dissertations completed at Florida State University is held by the students who author them.
Kang, N. -Y. (2014). Global Warming and Tropical Cyclone Climate in the Western North Pacific. Retrieved from http://purl.flvc.org/fsu/fd/FSU_migr_etd-9196