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Abstract 

The purpose of this study is to explore the mathematical preference of high school AP 

Calculus students by examining their tendencies for using differing methods of thought. A 

student’s preferred mode of thinking was measured on a scale ranging from a preference for 

analytical thought to a preference for visual thought as they completed derivative and 

antiderivative tasks presented both algebraically and graphically. This relates to previous studies 

by continuing to analyze the factors that have been found to mediate the students’ performance 

and preference in regards to a variety of calculus tasks. Data was collected by Dr. Erhan 

Haciomeroglu at the University of Central Florida. Students’ preferences were not affected by 

gender. Students were found to approach graphical and algebraic tasks similarly, without any 

significant change with regards to derivative or antiderivative nature of the tasks. Highly analytic 

and highly visual students revealed the same proportion of change in visuality as harmonic 

students when more difficult calculus tasks were encountered. Thus, a strong preference for 

visual thinking when completing algebraic tasks was not the determining factor of their preferred 

method of thinking when approaching graphical tasks.  
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Introduction 

Previous studies that examine the relationship of preferred method of thinking with 

mathematical performance have produced mixed results. The inventors of the Mathematical 

Processing Instrument for Calculus, or the MPIC, [1] hypothesized that the differences in 

mathematical performance might be caused by students’ underlying preference for specific 

methods of thought, and thus designed the MPIC to reveal what each student’s preferred method 

was. They believe that a student’s ability to master calculus is directly related to their ability to 

harmonize analytical and visual methods of thought in their approach to a graphically presented 

antiderivative or derivative task. They believe that by clearly defining preference as a separate 

entity from ability, they may better explore the mediating factors affecting mathematical 

performance in calculus based courses.  

The approach taken by this current study has built upon the findings of many other 

studies as interest in the relationships between preference and performance has been well 

established. The study performed by Carr, Steiner, Kyser, and Biddlecomb [2] with second grade 

students compared to the study by Orhun [3] with college students revealed that while 

mathematical competency and the use of cognitive strategy  was more prevalent with second 

grade boys over girls, there existed no significant difference in mathematical achievement 

between men and women at the college level. The only difference that Orhun discovered was 

that there existed a significant difference in the learning methods employed by the male and 

female college students that he studied.  

Fennema, Carpenter, Jacobs, Franke, and Levi [4], as a result of their study of elementary 

students, found that female students very often used concrete strategies when solving 

mathematical problems while boys tended to employ abstract strategies to solve problems. The 

findings of that study are a contradiction to the findings of Lowrie and Kay [5] in their study of 

middle school students in the sixth grade, because these researchers saw no significant difference 

in visual preference, whether it be visual or analytical methods of thought, across gender. Again, 

the findings are in contradiction of each other.  

Krutetskii [6] hypothesized that mathematical performance was a result of a student’s 

capacity to apply analytical methods of thought, while the strength of their aptitude to implement 

visual methods of thought determined the kind of mathematical ability the student possessed. 

Moses [7] and Suwarsono [8] researched the mathematical abilities of elementary students and 

middle school students. Their studies did not reveal a correlation between visual aptitude and 

mathematical performance, either. Contradictory to the findings of these mathematicians, 

Ferrini-Mundy [9] and Ubuz [10] in fact found that there was a very distinctive relationship 

between visual proficiency and mathematical performance.  

Again, it is the belief of the inventors of the Mathematical Processing Instrument for 

Calculus (MPIC) that some preference for a method of thought does not directly relate to a 
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student’s ability to use other methods of thought. This distinction between preference and ability 

has been ignored in the reviewed aforementioned research studies. Preference is not necessarily 

the same as ability, although these visual preferences may be affecting their mathematical ability.  

This continuation of the study conducted by the inventors of the MPIC sought to further explore 

visual preference using the MPIC and asked the following questions: 

 

1. Do students change their preference when presented with graphic, algebraic, 

derivative, or antiderivative tasks?  

 

2. Do students differ in visuality on graphic derivative, visuality on algebraic derivative, 

visuality on graphic antiderivative, and visuality on algebraic derivative tasks?  

 

3. Do high-visual and high-analytic students change their preference when presented 

with more difficult derivative-antiderivative tasks? 

 

Methodology 

Participants 

All of the data used was provided by Dr. Erhan Haciomeroglu of the School of Teaching, 

Learning, and Leadership at The University of Central Florida. Any identifying information had 

already been removed by Dr. Haciomeroglu.  I only had access to student genders, scores on 

mathematical performance exams and scores from visuality assessment tools.  Data was 

collected from AP Calculus students attending high school in various school districts in Northern 

and Central Florida.  

Procedure 

 Students were given calculus derivative and antiderivative tasks presented graphically. 

The Mathematical Processing Instrument for Calculus (MPIC) determined the student’s 

preference for visual or analytical thinking. A questionnaire was given to each student after 

completing all the tasks provided by the MPIC. The questionnaire asked the students to select a 

method of solution, either visual or analytical, that most closely resembled their own.  Select 

students were interviewed by the data collectors to give additional insight into their visual 

preferences. 

Analysis 

With the intent of exploring the data associated with the visualities of AP Calculus 

students currently in high school in North Florida, I ran several analyses. In the study’s first 

question, the area of interest was discerning whether or not students have different preferences 
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when presented with graphic, algebraic, derivative, or antiderivative tasks. This analysis was 

performed by examining students’ visualities measured in graphic (calculus) derivative (DGV), 

algebraic derivative (DAV), graphic antiderivative (AGV), and algebraic antiderivative (AAV) 

test questions. It is assumed that there are a percentage of highly visual and highly analytic 

students within the data set. After analyzing multiple comparisons of student visualities, separate 

classifications were made categorizing students as ‘Highly Visual’ and ‘Highly Analytic’. 

Creating these two subsets addressed question two of the study, which was to determine whether 

a highly analytic or visual student will change their preferred method of solving calculus 

problems when faced with more difficult derivative and antiderivative tasks.  

For each student, the data consists of one or two AP scores, twenty visual preference 

scores from the MPIC test questions. These MPIC visual test questions were each divided into 

seven graphical derivative, seven algebraic derivative, three algebraic antiderivative, and three 

graphical antiderivative questions. The visuality data also included interview results for select 

students which were used in previous papers to validate the MPIC questions.  Additionally, I 

know the gender of each student.  This data has already been collected.   

The analysis began by first reducing the complexity of the data through the creation of 

statistics for each student.  I used mean scores for MPIC preference on the seven graphical 

derivative, seven algebraic derivative, three algebraic antiderivative, and three graphical 

antiderivative questions, and the quartiles for MPIC visuality scores.  Average preference scores 

were further assembled into scores that involved derivatives or antiderivatives.  The quartiles 

were used to designate students as visual (top quartile of the students with respect to MPIC 

visuality), analytic (bottom quartile) or harmonic (any remaining students).  Following this, 

exploratory data analysis was used to get a feel for the properties of the data. 

Initially, I used an analysis of variance (ANOVA) [11] to see if performance scores were 

affected by gender and visuality. I used both parametric and nonparametric methods since prior 

research shows that this type of data does not necessarily meet the strict assumptions required for 

parametric tests.  Parametric ANOVA is based on normality assumptions for the errors within 

the data, while nonparametric ANOVA will not rely on this assumption.  Both types of methods 

assume constant variance.  I use Kruskal-Wallis analysis and permutation methods for the 

nonparametric ANOVA [12, 13, 14]. The permutation method is computationally intensive, but 

is valid over a wider range of assumptions than ANOVA.   

 

Variables 

To analyze changes of preference among students in graphic, algebraic, derivative, and 

antiderivative tasks, I created new variables. A matrix of the student responses that determine 

their visuality in the four task groups of interest was constructed. It combined graphical 

antiderivative (AGV), graphical derivative (DGV), algebraic antiderivative (AAV), and algebraic 
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derivative (DAV) visuality scores from all of the students in addition to the unweighted mean 

(CVU) and weighted mean (CVW) of the students’ visualities. The weighted mean was calculated 

by taking into consideration the number of questions in each category and weighting their 

averages accordingly. All tests conducted use a significance level of 0.05. 

 

Results 

An ANOVA was conducted to explore the students’ changes in preference when 

presented with graphic, algebraic, derivative, and antiderivative tasks. The means for all 150 

students in the study for the calculus visualities are referenced in Figure 1 and Table 1.  

 

Variable Mean 

CVU  0.95 

DGV  1.15 

DAV  0.61 

AGV  1.04 

AAV  0.59 

CVW  0.85 

Table 1.  Means of Calculus Visualities 
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Figure 1. Box-and-Whisker Plot of the Weighted (CVW) and Unweighted (CVU) Means 

 

I created an ANOVA containing the variables gender and treatment.  I ran an analysis 

using treatment, gender, and their interaction as the factor levels. Treatment included the 

graphical antiderivative, graphical derivative, algebraic antiderivative, and algebraic derivative 

questions from the MPIC. According to the output below, it did not appear that gender or the 

interaction of gender and treatment significantly affected the data; however, treatment was 

significant.  
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Response: Visuality 

   Sum Sq Df F value  p-value 

Treatment  36.844  3 23.6522 0.0000 

Gender     1.268  1   2.4415 0.1187 

Treatment:Gender   3.078  3 1.9759  0.1164 

Residuals           307.392  592 

 

Table 2. ANOVA using Treatment, Gender, and their interactions a 

factor 

 

I used the Shapiro-Wilks test to check for normality [15]. It appeared that the 

data was not normal; see the Q-Q plot in Figure 2. The test statistic was 0.9537 and the 

p-value was small (p=0.0000); however, the sample size was large so I felt 

comfortable proceeding with the ANOVA.  

 

 
Figure 2. Q-Q Plot for Normality 

 

Next, I conducted Bartlett’s Test for the homogeneity of variances [16]. 

Bartlett’s test determined that the data did not have significantly different variances 

since the Bartlett K-square was 3.6841 and the p-value was 0.2977.  I did not reject the 

null hypothesis that the variances were equal. However, Bartlett’s test is sensitive to 

non-normal data, so I ran Levene’s Test, which has no assumption of normality, to 

check for homogeneity of variances [17].  The test statistic was 2.4893 on 7 degrees of 
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freedom, with a p-value of 0.0159.  This implies that the variances are not all the 

same, not the same conclusion as Bartlett’s test.  Since the data is not normal, 

Bartlett’s test may be failing.  I will go with the results of Levene’s test. 

 

The data was shown to have unequal variances. Since the assumption of equal 

variances was not met, I decided to conduct a weighted ANOVA on the data (Table 4).  

Again, I believe large sample size will make non-normality a non-issue. 

 

Response: Visuality 

                         Sum Sq     Df      F value      p-value     

Treatment                52.92         3      24.5392      0.0000  

Gender                    2.26         1        3.1480      0.0765    

Treatment:Gender           3.28         3        1.5195      0.2083     

Residuals                     425.52       592    

 

Table 4. Weighted ANOVA on Visuality                   

 

The weighted ANOVA agreed with the unweighted ANOVA in that treatment was a 

significant factor while gender and the interaction factor were not (Table 4).  For confirmation, I 

decided to conduct a nonparametric permutation version of ANOVA on the three factors (Table 

5). 

   

                                     Df   SumsOfSqs  MeanSqs  F.Model p-value    

Treatment                      3            36.84  12.2812  23.6008  0.0010 

Gender                           1              1.39    1.3861     2.6637  0.1030     

Treatment:Gender   3               2.29      0.7634     1.4670  0.2220     

Residuals                     592        308.06      0.5204          

Total                            599        348.58                  

 

Table 5. Permutations Test on Visuality 

 

Again, the permutations test agreed with the ANOVA, even though this test did not take 

into account differing variances and hence the p-values may not be strictly accurate.  The 

students seemed to change their preference for analytical or visual methods when presented with 

different treatments.  

 

Because of non-normality, I also ran a Kruskal-Wallis rank sum test on the visuality 

scores for the eight treatments formed by the combination of treatment on both genders [18]. The 

treatments, in order, are graphical derivative (DG) for males and females, algebraic derivative 

(DA) for males and females, graphical antiderivative (AG) for males and females, and algebraic 

antiderivative (AA) for males and females. Due to the large size of the output from this test, 

Table 23a and Table 23b can be seen in the Appendix. 

 

The output from the test suggests that a significant difference in visuality occurs when 

females encounter graphical derivative and algebraic derivative questions. The results also show 

that males approach graphical derivative and algebraic derivative questions differently. Female 
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visuality scores for graphical antiderivative and algebraic antiderivative questions differ 

significantly. For females, it is apparent that the nature of the problem, whether graphical or 

algebraic, significantly affects their visuality score. 

 

The visuality score of females for graphical derivative questions is also different from the 

visuality score of males for algebraic derivative questions. It remains unknown whether the 

change is a result of gender or question type. A similar problem is found with the comparison of 

female visuality scores for algebraic antiderivative and graphical derivative questions. It is 

apparent that females on average approach these two questions differently; however, it is 

unapparent as so whether that change is a result of the transition from graphical to algebraic or 

from derivative to antiderivative. Males approach algebraic antiderivative questions differently 

than females approach graphical derivative questions. The reason for this change could be 

because of gender, graphical/algebraic, or derivative/antiderivative transitions. Male visuality 

scores for graphical derivative questions are significantly different from female visuality scores 

for algebraic derivative questions. This difference could be the result of gender or subject change 

from graphical to algebraic. 

 

As there are 28 total comparisons, the output from the Kruskal-Wallis rank sum test 

became difficult to interpret. Many of the comparisons with significant differences had no 

conclusive findings as to the cause of their difference.  This is why I prefer to use the weighted 

ANOVA results. 

 

 Although the assumption of normality was not met, the sample size was large; hence, 

multiple comparisons for the pairwise differences were conducted on the combination of 

treatment and gender so as to compare the ANOVA output with Kruskal-Wallis. Table 7 for the 

ANOVA can also be referenced in the Appendix.  The method used is Tukey’s HSD [19]. 

  

 The significant differences correspond with the output from the Kruskal-Wallis rank sum 

test with the exception of one. I am satisfied that the Kruskal-Wallis rank sum test was accurate. 

 

The interaction between gender and treatment is not significant, so a reduced model for 

both the Kruskal-Wallis and the ANOVA was conducted to analyze the factors treatment and 

gender without their interaction term.  

 

 I also ran an ANOVA with gender as the only factor to determine whether or not one 

gender of students changed their preference significantly more or less than the other gender.  

Although the initial model showed gender was not a significant factor, I ran this to confirm this 

conclusion without any possible effect due to including the treatment factor.  These tests can be 

referenced in the Appendix (Table 24a and Table 24b). No new conclusions were drawn.  

 

I then conducted a one-way ANOVA on the reduced model, which accounted for the four 

treatment factors (Table 6).  The response continues to be visuality scores measured through 

CVW. 

 

 

 



 

 

12 

 

         Sum Sq     Df      F value       p-value     

Treatment      36.844       3       23.48          0.0000 

Residuals     311.738     596                       

 

Table 6.  ANOVA table for visuality on treatment (DGV, AGV, DAV, AAV) 

 

I followed-up with a Tukey HSD test to determine which variables have significantly 

different means (Table 7).  

 

           diff     lwr                   upr                p adj 

2-1  -0.5333333     -0.7484808     -0.3181859      0.0000000 

3-1  -0.1076190     -0.3227665      0.1075284      0.5704962 

4-1  -0.5533333     -0.7684808     -0.3381859      0.0000000 

3-2   0.4257143       0.2105668      0.6408617      0.0000028 

4-2  -0.0200000     -0.2351474      0.1951474      0.9951655 

4-3  -0.4457143     -0.6608617     -0.2305668      0.0000008 

 

Table 7. Tukey HSD Test for Equality of Means.  Bold are significant  

    differences. 

 

The data shows there exists a significant difference in the means of graphical and 

algebraic derivative visuality, graphical derivative and algebraic antiderivative visuality, 

algebraic derivative and graphical antiderivative visuality, and graphical antiderivative and 

algebraic antiderivative visuality. The data did not suggest that there was any significant 

difference between graphical derivative and graphical antiderivative visuality, nor between 

algebraic derivative and algebraic antiderivative visuality.   

 

In short, the differences found by the Tukey HSD test were a result of the transition from 

graphical to algebraic questions or vice versa. No significant change of preference was found 

between antiderivative and derivative questions.  

 

I was not convinced that the data satisfied the assumptions of normality and equality of 

variances for the ANOVA, so I first conducted the Shapiro-Wilks test for normality. With a test 

statistic of 0.9372 and an extremely small p-value (p=0.0000) the data was not normal (Figure 3).  
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Figure 3. QQ Plot for Normality 

 

I next conducted the Bartlett Test of homogeneity of variances. The Bartlett K-squared 

statistic was 3.6841 and the p-value was 0.2977. I did not reject the null hypothesis that there 

was no difference in the variances. The Bartlett Test, however, is susceptible to non-normal data; 

thus, I conducted Levene’s Test, which is not susceptible to non-normal data. Levene’s Test 

yielded a p-value of 0.0043 and a test statistic of 4.4347, which did not agree with the Bartlett 

Test. The variances are not equal, see Figure 4. It can be seen that the Bartlett Test failed as a 

result of non-normal data. 
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Figure 4. Box-and-Whisker Plot of Visuality scores for all 150 students in the study. 

 

The sample size was large, so I proceeded with the parametric ANOVA. Since the data 

had unequal variances, I used a weighted ANOVA on the reduced model. Treatment was found 

to be significant with a p-value of 0.0000. 

 

A nonparametric permutations test was then run on the reduced model. The permutations 

test had a p-value of 0.0010 for treatment, which was in agreement with both the unweighted and 

weighted ANOVA for the reduced model (Table 8).  Note that the permutation test did not 

account for non-constant variance. 
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                         Df  SumsOfSqs  MeanSqs  F.Model  p-value     

Treatment    3        36.84   12.281     23.48   0.0010 

Residuals          596     311.74    0.523          

Total                 599     348.58                  

 

  Table 8. Nonparametric Permutations Test 

 

I decided to conduct the Multiple Comparison Test after Kruskal-Wallis and the Holm-

Bonferroni method [20]. The p-value (p=0.0000) for the Kruskal-Wallis Rank Sum test was 

consistent with the p-value for the ANOVA. The output of the Multiple Comparison Test after 

Kruskal-Wallis (Table 9) was also consistent with the Holm-Bonferroni adjustment tests (Table 

10). I was satisfied that the results were accurate. 

 

 

              obs.dif       critical.dif    difference 

1-2    117.910000      52.8091        TRUE 

1-3      26.896667      52.8091        FALSE 

1-4    126.446667      52.8091        TRUE 

2-3      91.013333      52.8091        TRUE 

2-4        8.536667      52.8091        FALSE 

3-4      99.550000      52.8091        TRUE 

  

  Table 9. Multiple Comparison Test After Kruskal-Wallis  

 

trt 1  trt 2       p       Bon     rej=1         Holm    rej=1 

      1      2 0.00000  0.00833     1   0.008333333      1 

        1      4 0.00000  0.00833     1   0.010000000      1 

      2      3 0.00000  0.00833     1   0.012500000      1 

3     4 0.00000  0.00833     1   0.016666667      1 

1      3 0.21514  0.00833     0   0.025000000      0 

2      4 0.80340  0.00833     0   0.050000000      0 

 

Table 10. Holm and Bonferroni adjustments for unequal varaince t-tests  

      (trt=treatment; rej=rejection). 

 

So, the reduced model using visuality as response and treatment as factor completely 

agrees with the full model. 

 

Since the previous analyses had shown that students used similar methods when 

presented with graphical antiderivative and graphical derivative questions, I pooled those 

treatments into one group so as to compare them with the algebraic derivative and algebraic 

antiderivative questions, which were also combined into a single treatment group. I conducted an 

ANOVA on the range of visuality scores given on graphical and algebraic questions while again 

taking into account gender as a factor. I created two new variables to combine responses in 

treatment and simplify the data into responses of one or two. The ANOVA output revealed that 

treatment was significant and that, again, gender was an insignificant factor (Table 11). There 
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were no new conclusions.  (The interaction term was also insignificant; the results shown are a 

reduced model.) 

 

Response: Visuality  

                     Sum Sq     Df     F value        p-value     

Treatment      35.945       1     68.9189     0.0000 

Gender             1.268       1      2.4306       0.1195     

Residuals    311.369     597                       

 

  Table 11. ANOVA using treatment and gender as factors 

 

The difference in mean visuality for algebraic questions is 0.48 below the mean visuality 

for graphical (calculus) questions. The Shapiro-Wilks test reconfirmed that the data was not 

normal with a test statistic of 0.9439 and a small p-value (p=0.0000). I then conducted the 

Bartlett test for homogeneity of variances. The Bartlett test statistic was 6.6293 and the p-value 

was 0.0847. Knowing that the Bartlett Test was sensitive, I ran Levene’s Test as well. Levene’s 

Test resulted in a test statistic of 4.9358 and a p-value of 0.0022, and thus did not agree with 

Bartlett’s Test. I use Levene’s Test as it is not sensitive to non-normality. The data does not have 

constant variance. This test implies non-constant variance and so weighted ANOVA is employed 

(Table 12).  As before, the sample size makes non-normality a non-issue for the ANOVA. 

 

Response: Visuality  

            Sum Sq Df F value  p-value     

Treatment 51.18    1  70.8741  0.0000 

Gender    2.24    1     3.0991    0.0789   

Residuals      431.11   597                       

   

  Table 12. Weighted ANOVA using treatment and gender as factors 

 

Similarly, I ran a test comparing the range or spread of answers given on derivative and 

antiderivative questions by combining graphical and algebraic derivative questions into one 

variable, combining graphical and algebraic antiderivative questions into another variable, and 

taking into account gender as a factor (Table 13). Multiple previous analyses had shown that the 

interaction factor between gender and treatment was not significant, and thus I did not include it 

in the current analyses.  

 

Response: Visuality 

                      Sum Sq     Df     F value      p-value 

Treatment         0.61         1      1.0517       0.3055 

Gender   1.27         1      2.1829        0.1401 

Residuals     346.70        597    

 

Table 13. ANOVA using Gender and Treatment as factors 

 

 The ANOVA shows that when considering graphical and algebraic treatments neither 

treatment nor genders are significant factors. I decided to check the data for non-normality and 
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inconstant variance. I ran the Shapiro-Wilks test for normality and the test statistic was 0.8813 

and the p-value was 0.0000. The data is not normal, but the sample size is large; thus, I continued 

and conducted Bartlett’s Test. The Bartlett test statistic was 1.013 and the p-value was 0.7981. I 

ran the follow-up Levene’s Test, and found that the results agreed with Bartlett’s Test. The data 

has constant variance. The test statistic for Levene’s Test was 0.9804 with a p-value of 0.4015. 

As the variances are constant, there is no need for a weighted ANOVA.   

 

In summary, when pooling treatment data, I find that there is a difference in the visuality 

scores of students on graphical questions versus algebraic questions. There is not a significant 

difference in the visuality scores of students in regards to derivative and antiderivative questions. 

In each analysis, gender remains an immaterial factor. 

 

 An additional observation was that the data values of the male students seemed to have less 

variance, propelling another analysis beyond the original study questions put forth in the 

introduction: what is the difference? This can be seen in Figure 4. 

 
Figure 4. Box-and-Whisker plot of the unweighted visuality scores for males and females 
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 The male students had a larger difference in their visualities for algebraic and graphical 

questions than female students did. Girls were more visual on graphical questions than they were 

on algebraic questions, but the differences for males were more extreme. 

 

Curious as to how large the differing variances and visuality scores were between each 

type of question, I began testing each gender subset to see which questions were treated the same 

and which questions were had significantly different visuality scores. Were the results consistent 

between genders? I created a new variable for the difference between graphical and algebraic 

visuality scores and conducted an ANOVA with the difference as the response (Table 14). From 

the ANOVA I concluded that there is a significant difference in the response when gender is a 

factor.  

 

 

Response: Difference between Graphical and Algebraic Visuality Scores 

                        Sum Sq   Df F value  p-value   

Gender    2.190    1    4.865   0.02895  

Residuals        66.636   148                    

 

Table 14. ANOVA using Gender as a factor 

 

According to the Shapiro-Wilks test statistic, which was 0.9854, and the p-value of 

0.1138, the data is normal; see Figure 5. The Bartlett test statistic was 1.1621 and the p-value for 

Bartlett’s test was 0.2810, so I did not reject the null hypothesis of equal variances. I confirmed 

this conclusion with Levene’s Test and found that Levene’s Test agrees with Bartlett’s Test. 

Levene’s Test reported a test statistic of 0.3033 and a p-value of 0.5827.  
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Figure 5. Q-Q Plot for Normality 

 

 

Behaviors of Highly Visual, Highly Analytic Students  

 

A separate analysis was performed on the students who exhibited the most extreme 

visuality scores. The top twenty five percent of students, those who were the most visual, were 

placed into a single subgroup. Similarly, the lowest twenty five percent of students, those who 

were most analytic, were also placed into another subgroup. Any students in between were 

categorized as harmonic. To analyze the propensity of a high analytic or high visual student 

changing their preference when encountering more difficult derivative and antiderivative tasks, a 

Chi-Square test [21] was conducted on the proportion of change in visuality score between the 

two extreme groups.  
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The p-value from the first chi-square test was 0.1862 which revealed that the proportion 

of students who changed their preference from analytic to harmonic was not significantly 

different from the proportion of students who changed from visual to harmonic. Neither was the 

proportion of change from analytic to visual significantly different from the proportion of change 

from visual to analytic. However, the assumptions for the chi-square test were not met since the 

expected values were not all greater than five (Table 15).  

 

Observed Number of Types of Changes 

                    None      To Harmonic  To Opposite 

Visual          27        7         0 

Analytic       25       15        1 

 

Expected Number of Types of Changes 

                     None         To Harmonic            To Opposite 

Visual      23.57333         9.973333        0.4533333 

Analytic   28.42667       12.026667        0.5466667 

 

Table 15. Pearson’s Chi-Square Test 

 

To account for this, I combined all changes in preference into one group. The visuality 

scores were described as either having ‘no change’ or ‘change’. The output from the altered chi-

square test satisfied the assumption of each group having more than five observations. The p-

value for the test was 0.2063. I concluded that the proportion of students who changed their 

preference from highly visual was not significantly different from the proportion of students who 

changed their preference from highly analytic (Table 16).  

 

 

Observed Number of Types of Changes 

                  No Change     Change 

Visual        27                  8 

Analytic       25                    16 

 

Expected Number of Types of Changes 

                  No Change         Change 

Visual         23.94737         11.05263 

Analytic      28.05263         12.94737 

 

Table 16. Pearson's Chi-squared test with Yates' continuity correction 

 

To further examine the data, both the high analytic students and the high visual students 

were compared to those students who were categorized as harmonic. A chi-square test was 

performed to analyze their proportions of change. The p-value was 0.3200 which suggested that 

all three groups of students shared the same proportions of change in preference when confronted 

with a series of more difficult antiderivative and derivative tasks (Table 17).      
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Observed Number of Types of Changes 

                    No Change        Change 

Visual                27                       8 

Analytic             25                   16 

Harmonic           51                    24 

 

Expected Number of Types of Changes 

                     No Change       Change 

Visual           23.87417          11.12583 

Analytic       27.96689           13.03311 

Harmonic     51.15894           23.84106 

 

Table 17. Pearson's Chi-squared test 

 

Conclusions 

In the present study, I investigated the mediating methods of thought in mathematics; in 

particular, the preference for visual versus non-visual strategies of North Floridian high school 

students taking AP Calculus. The students’ preferences for a certain method of thought were 

measured using the Mathematical Processing Instrument for Calculus (MPIC). The MPIC 

calculated their visuality score on a scale that ranged from zero to two; zero meaning their visual 

preference was highly analytic and two meaning their visual preference was highly visual. A 

visuality score of one was considered to be harmonic, meaning the student took equally from 

both visual and analytic methods when attempting to solve a mathematics problem. It was my 

goal to explore these relationships in order to better understand visual preference with regards to 

gender, question type, and question difficulty. 

My results suggested that the students as a whole approached graphical (calculus) 

problems similarly, regardless of whether the problems involved derivative or antiderivative 

tasks. Likewise for algebraic problems, the students’ visuality scores did not seem to alter when 

facing tasks involving derivatives and antiderivatives. The trend was not found when analyzing 

visuality scores associated with derivative or antiderivative questions. In short, I found that 

students approached these types of questions differently, depending on whether the question was 

graphical or algebraic in nature. None of the tests I conducted suggested that visuality scores 

changed significantly across gender. 

Further analysis revealed, however, that females changed their method of thought more 

frequently than males did. While a significant change in visuality score was found when 

analyzing the individual differences for females as they changed from graphical antiderivative to 

algebraic antiderivative, as well as when they changed from graphical antiderivative to algebraic 

derivative questions, no such significant change in visuality score was observed amongst the 

male students when the individual differences where similarly analyzed. 
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It was not observed that highly visual or highly analytic students changed their preference 

statistically more or less than the other. This was also observed when comparing high visual and 

high analytic students to the harmonic students in the sample.  

It is important that my study does not attempt to draw any conclusions that are beyond 

the limitations of the methods employed. A limitation of this study is that an ANOVA to 

compare each student to the rest of the sample was not performed.  

The findings of this study are in agreement with Lowrie and Kay [5], as I saw no 

conclusive difference in preference for visual or analytical methods of thought across gender. 

The findings of this study are then contradictory to the findings of Fennema, Carpenter, Jacobs, 

Franke, and Levi [4], as my findings do not support the difference in visuality scores evidenced 

in their work.   

Further studies that could come from this could seek to discover whether the ability of a 

student to perform mathematically can be explained by their preference for analytical, visual, or 

even harmonic methods of thought.  

 

APPENDIX 

Gender only ANOVA: 

 

 I analyzed how large on average the variance was between genders using visuality as 

the only factor. I began by creating two subsets of male and female students. I first ran an 

ANOVA on the unweighted mean for visuality (CVU) with just gender as a factor (Table 18). 

The ANOVA shows that gender is not a significant factor. 

 

 

Response: CVU 

                     Sum Sq     Df      F value     p-value 

Gender           0.086     1     0.2751     0.6007 

Residuals      46.087  148                

 

Table 18. ANOVA of Visuality (Unweighted Mean)      

 

 I conducted the Shapiro-Wilks test for normality and the test statistic was 0.9596 with a 

p-value of 0.0002. The data is not normal, but the sample size is large. I feel comfortable 

proceeding with the ANOVA. I also ran Bartlett’s Test, which had a statistic of 0.4933 and a p-

value of 0.4825. I do not reject the null hypothesis of equal variances. To confirm that Bartlett’s 

Test is not failing due to its sensitivity to non-normal data, I also ran Levene’s Test. The test 

statistic for Levene’s Test was 0.6816 with a p-value of 0.4104. The output from this test agrees 

with Bartlett’s Test, so I feel comfortable proceeding with the unweighted ANOVA.  
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 I conducted a nonparametric Kruskal-Wallis rank sum test on the unweighted mean for 

visuality scores. The test statistic was 0.2029 and the p-value was 0.6524. Gender is not a 

significant factor. I ran a nonparametric ANOVA using gender as a factor (Table 19). It agrees 

with both the parametric ANOVA and the Kruskal-Wallis test that gender is not a factor 

 

              Df  SumsOfSqs   MeanSqs  F.Model  p-value 

Gender     1      0.086   0.085655  0.27507   0.609 

Residuals   148     46.087  0.311398         0.99814        

Total        149     46.173             1.00000        

    

  Table 19. Nonparametric ANOVA on Unweighted Mean for Visuality Scores 

 

 

 Similarly, I ran an ANOVA on the weighted mean visuality score using gender again as 

the only factor (Table 20). The ANOVA shows that gender is an insignificant factor on visuality. 

 

  Response: CVW 

             Sum Sq Df F value  p-value 

Gender     0.347    1   1.3081  0.2546 

Residuals   39.206  148                

 

Table 20. ANOVA of Visuality (Weighted Mean)      

 

 In addition to the parametric ANOVA, I conducted the Shapiro-Wilks test to check the 

assumption of normality for the ANOVA. The statistic for the Shapiro-Wilks test was 0.9767 

with a p-value of 0.0119. The data is not normal; however, I proceeded with the ANOVA 

because of the large sample size. Bartlett’s test statistic was 1.2130 and the p-value was 0.2707. I 

did not reject the null hypothesis of equal variances. To confirm that Bartlett’s test didn’t fail due 

to non-normal data, I also conducted Levene’s Test. Levene’s test agrees with Bartlett’s test with 

a test statistic of 0.8066 and a p-value of 0.3706. I am confident that the data has equal variances. 

 

 I ran the nonparametric Kruskal-Wallis rank sum test, and with a test statistic of 1.1655 

and a p-value of 0.2803, it agrees with the ANOVA. Gender is not a significant factor. I 

conducted another nonparametric ANOVA on the weighted mean for visuality scores (Table 21). 

Its p-value agrees with both the parametric ANOVA and the Kruskal-Wallis test. 

 

 

             Df  SumsOfSqs  MeanSqs  F.Model      p-value 

Gender    1      0.347   0.34653    1.3081    0.248 

Residuals   148     39.206  0.26491           0.99124        

Total       149     39.553             1.00000 

 

Table 21. Nonparametric ANOVA on the weighted mean for visuality scores        
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Non interaction ANOVA 

 

From previous analyses, I already knew that a weighted ANOVA must be used on the data. I 

conducted the Shapiro-Wilks test and found that the data was not normal as the test statistic was 

0.9481 and the p-value was 0.0000. The sample size is large, however, so I continued with the 

weighted ANOVA using the factors treatment and gender without the interaction factor. The 

factor gender is not significant; treatment, however, is significant with a p-value of 0.0000 

(Table 22).   

 

             Sum Sq   Df  F value    p-value     

Treatment   52.92      3  24.4751  0.0000 

Gender       2.26      1     3.1398    0.0769   

Residuals     428.80     595                      

 

Table 22. Weighted ANOVA using Treatment and Gender as factors 

 

Kruskal-Wallis Multiple Comparison Tests with interaction term 

 

   Treatment                Value 

   (DGV, Female) 1 

(DGV, Male)  2 

(DAV, Female) 3 

(DAV, Male)  4 

(AGV, Female) 5 

(AGV, Male)  6 

(AAV, Female) 7 

(AAV, Male)  8 

Table23a: Reference Table for Multiple Comparison Test after Kruskal-   

 Wallis  
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Comparisons 

1-2       4.86890847     88.93353       FALSE 

1-3   152.94776119     93.55650       TRUE 

1-4     94.49541449     88.93353       TRUE 

1-5     24.38805970     93.55650       FALSE 

1-6     33.79059522     88.93353       FALSE 

1-7   152.91791045     93.55650       TRUE 

1-8   109.94722172     88.93353       TRUE 

2-3   148.07885272     88.93353       TRUE 

2-4     89.62650602     84.05670       TRUE 

2-5     19.51915123     88.93353       FALSE 

2-6     28.92168675     84.05670       FALSE 

2-7   148.04900198     88.93353       TRUE 

2-8   105.07831325     84.05670       TRUE 

3-4     58.45234670     88.93353       FALSE 

3-5   128.55970149     93.55650       TRUE 

3-6   119.15716598     88.93353       TRUE 

3-7       0.02985075     93.55650       FALSE 

3-8     43.00053947     88.93353       FALSE 

4-5     70.10735479     88.93353       FALSE 

4-6     60.70481928     84.05670       FALSE 

4-7     58.42249595     88.93353       FALSE 

4-8     15.45180723     84.05670       FALSE 

5-6       9.40253552     88.93353       FALSE 

5-7   128.52985075     93.55650       TRUE 

5-8     85.55916202     88.93353       FALSE 

6-7   119.12731523     88.93353       TRUE 

6-8     76.15662651     84.05670       FALSE 

7-8     42.97068873     88.93353       FALSE 

Table 23b. Multiple comparison test after Kruskal-Wallis (p.value: 0.05)  

 

 

Pairwise Comparison Test 

Treatment   Value   Gender  Value 

DGV      1  Female  1 

DAV      2  Male  2 

AGV      3 

AAV      4 

Table 24a: Reference Table for Pairwise Comparisons 
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Treatment:Gender 

                        diff                 lwr                  upr             p adj 

2:1-1:1    -0.69154229    -1.0706524    -0.31243221    0.0000012 

3:1-1:1    -0.11513859    -0.4942487     0.26397148    0.9837228 

4:1-1:1    -0.67164179    -1.0507519    -0.29253171    0.0000028 

1:2-1:1    -0.03164898    -0.3920259     0.32872789    0.9999952 

2:2-1:1    -0.43727147    -0.7976483    -0.07689460    0.0059353 

3:2-1:1    -0.13319804    -0.4935749     0.22717884    0.9514119 

4:2-1:1    -0.48948031    -0.8498572    -0.12910343   0.0010688 

3:1-2:1     0.57640370     0.1972936     0.95551377    0.0001243 

4:1-2:1     0.01990050    -0.3592096     0.39901058    0.9999999 

1:2-2:1     0.65989330     0.2995164     1.02027018    0.0000011 

2:2-2:1     0.25427081    -0.1061061     0.61464769    0.3864542 

3:2-2:1     0.55834425     0.1979674     0.91872113    0.0000827 

4:2-2:1     0.20206198    -0.1583149     0.56243885    0.6837184 

4:1-3:1    -0.55650320    -0.9356133    -0.17739312    0.0002560 

1:2-3:1     0.08348961    -0.2768873     0.44386648    0.9968554 

2:2-3:1    -0.32213288    -0.6825098     0.03824399    0.1188740 

3:2-3:1    -0.01805944    -0.3784363     0.34231743    0.9999999 

4:2-3:1    -0.37434172    -0.7347186    -0.01396484    0.0352458 

1:2-4:1     0.63999281     0.2796159     1.00036968    0.0000027 

2:2-4:1     0.23437032    -0.1260066     0.59474719    0.4975500 

3:2-4:1     0.53844375     0.1780669     0.89882063    0.0001791 

4:2-4:1     0.18216148    -0.1782154     0.54253836    0.7867815 

2:2-1:2    -0.40562249    -0.7462374    -0.06500756    0.0076046 

3:2-1:2    -0.10154905    -0.4421640     0.23906588    0.9853900 

4:2-1:2    -0.45783133    -0.7984463    -0.11721639    0.0012743 

3:2-2:2     0.30407344    -0.0365415     0.64468837    0.1199114 

4:2-2:2    -0.05220884    -0.3928238     0.28840610    0.9997867 

4:2-3:2    -0.35628227    -0.6968972    -0.01566734    0.0329517 

                         Table 24b. Pairwise Comparison Test 
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