Some of the material in is restricted to members of the community. By logging in, you may be able to gain additional access to certain collections or items. If you have questions about access or logging in, please use the form on the Contact Page.
Superfluid helium (He II) contained in porous media is examined. In particular, heat transfer experiments were performed on He II contained in random packs of uniform size polyethylene spheres. Measured results include the steady state temperature and pressure drops across packs of spheres (35 micron, 49 micron, and 98 micron diameter) and the associated steady, step, and pulse heat inputs. Bath temperatures range from 1.6 K to 2.1 K to help grasp the superfluid effects. Laminar, turbulent, and transitional fluid flow regimes are examined. Turbulent results are fitted to an empirically derived turbulent He II heat flow in a channel equation with an added tortuosity (extra length traveled) term that accounts for the porous media. An average tortuosity of 1.33 ± 0.07 was obtained, which is in good agreement with the values of 1.36 - 1.41 concluded from published work on classical fluid pressure drop across random packed spheres. Laminar permeability and shape factor results are compared to past studies of He II in porous media and in channel flows. The average critical heat flux, which describes the onset of turbulence, is predicted to be 0.19 W cm-2. The onset of turbulence is determined through a critical heat flux from which a critical Reynolds number is formulated, but does not describe He II turbulence in the normal fluid component. Other proposed He II "Reynolds numbers" are examined. The addition of the laminar and turbulent heat flow equations into a unifying prediction fits the transition regime data within 25 %. Transient temperatures compare favorably to a one-dimensional numerical solution that considers a variable Gorter-Mellink exponent and a piece-wise determination of the heat flux. Turbulent pressure drop results are fitted with empirically derived friction factors. The laminar permeability and equivalent channel shape factor derived from the pressure drop are compared the permeability and shape factor obtained from the temperature drop. Results from the pressure drop experiments are more accurate than temperature drop experiments due to reduced measurement errors with the pressure transducer. Turbulent theories considering only dynamic pressure losses in the normal fluid yield the most consistent friction factors. The addition of the laminar and turbulent heat flow equations into a unifying prediction fits all regimes to within 10 %.
A Dissertation submitted to the Department of Mechanical Engineering in partial fulfillment of the requirements for the degree of Doctor of Philosophy.
Bibliography Note
Includes bibliographical references.
Advisory Committee
Steven Van Sciver, Professor Directing Dissertation; James Brooks, University Representative; William Oates, Committee Member; Chiang Shih, Committee Member.
Publisher
Florida State University
Identifier
FSU_migr_etd-8905
Use and Reproduction
This Item is protected by copyright and/or related rights. You are free to use this Item in any way that is permitted by the copyright and related rights legislation that applies to your use. For other uses you need to obtain permission from the rights-holder(s). The copyright in theses and dissertations completed at Florida State University is held by the students who author them.