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ABSTRACT

Methods from shape analysis are used for morphometry, whichis the quantitative

analysis of macroscopic anatomical features.

We assume that anatomy is exible, and this brings us to the �rst problem of

resolving how \shape" should be represented if it is allowedto bend. We are motivated

to use representations of intrinsic geometry, which, for example, does not distinguish

a at sheet of paper from a rolled sheet. In particular, the spectral embedding

(\heat kernel representation") as a representation of intrinsic geometry has many

desirable features for computational anatomy and other areas of shape and data

analysis. Several breakthroughs are made toward understanding and applying this

representation. A novel shape representation inspired by the spectral invariance of

the heat kernel is also considered and used for classi�cation of control and a�ected

groups.

One goal of morphometry is to make statistically objective comparisons. Hence,

once a suitable representation of shape is chosen, the second problem is to compare

shapes. Shape comparison may occur at many levels of scale. The simplest com-

parisons are made with global features: volume, length, etc. Finer comparisons may

occur at regional levels. The �nest level of comparison can be made after matching

all homologous points, that is, after �nding a one-one correspondence between points

of shapes. A point correspondence is found by a registrationalgorithm. A method

for unsupervised shape registration is presented and applied to localize di�erences

between control and a�ected groups.

We focus on the 3D case, where imaging has made anatomical surface data readily

available, yet the analysis challenging. Structural MRI ofliving persons is currently

xi



used to study macroscopic e�ects on anatomy by neurodegenerative disease (e.g.

Alzheimer's). In the earliest stages of Alzheimer's disease,certain brain structures

have been observed to have reduced volume, in autopsy and in vivo, including the

hippocampus, putamen, and thalamus. Our methods will be applied to these surfaces.

xii



CHAPTER 1

INTRODUCTION

Morphometry is the measurement of the physical shape of organisms and their anatom-

ical structure, and it is of interest in biology and medicine. This particular study is

motivated by the potential of morphometry to improve our understanding of human

development, genetic expression, and disease. Herein we focus on computational

methods that draw from spectral geometry, the reasons for which are enumerated be-

low. In order to demonstrate and compare our methods, we choose for our theme the

goal of pro�ling neurodegeneration along a timeline of symptoms and their severity.

Such pro�les are sought to better understand illnesses and to increase precision in

diagnosis and intervention.

1.1 Goals and challenges

We �rst introduce some speci�c brain structures to which morphology has been

applied in the study of neurodegenerative disease. Structures whose morphometry

has been observed to correlate with some stage of disease arecalled \markers". First,

the hippocampus, in shape and volume, has frequently been observed as a sensitive

marker of Alzheimer's disease [25, 26, 57, 64, 65, 79] and alsosecondary progressive

multiple sclerosis [77]. Next, the basal ganglia system has been studied as a marker of

Parkinson's disease [37]. Structures in the basal ganglia system such as the caudate

nucleus, putamen, and thalamus have also been studied as markers of Alzheimer's

disease [26]. Additionally, the putamen and caudate nucleushave been studied in
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schizophrenia [59]. The thalamus has been studied in Huntington's disease [47]. Some

functional roles of these brain structures will be described in the next chapter along

with further details on their role as markers.

Each of these anatomical markers can be computationally represented as a closed

surface. In this work we study methods that can be used to analyze such markers at

both coarse and �ne scales, which immediately leads to questions regarding represen-

tation and comparison of surfaces. One very coarse measure is the volume enclosed

by the surface. Volume is a standard measurement in such studies, as we discuss in

the next chapter. We now consider the problem of detecting di�erences at the �nest

level.

The practical goal of this work is to study and contribute methods that can be

used to draw a statistical picture of anatomical data, whose�nal purpose is to assist

researchers and clinicians. For instance, these methods allow us to generate a surface

model that is color-coded by statistically signi�cant di�erences in shape between

sets of putamen data input by a user. At the �nest level, theseshape di�erences

are identi�ed through a point correspondence, which is established by a registration

algorithm. See Figure 1.1.

There is no consensus in computational anatomy as to what this registration algo-

rithm is, however. Ideally, a registration algorithm should match points between any

given pair of surfaces in a natural, biologically meaningful way. In practice, we will

be satis�ed with an e�ective registration algorithm. With an e�ective registration

algorithm, a point correspondence between a diseased surface and average healthy

surface might reveal localized di�erences that are speci�cto some stage of disease.

First, however, the average healthy surface must itself be constructed through regis-

tration across a sample of the healthy population. Producing an e�ective registration

algorithm is a fundamental goal of this work.

The registration problem is complicated by the realistic assumption that anatomy

is elastic. That is, registration algorithms based on Euclidean distance alone are seen

to misrepresent anatomy, suggesting that we consider intrinsic geometry. See Fig-

2



ure 1.1. Intrinsic geometry, however, is high-dimensionaldata, whose analysis often

relies on dimensionality reduction techniques to make it computationally tractable.

Spectral methods have been useful for this purpose, as described below.

Although some registration methods call for manual input, our aim is an unsu-

pervised registration algorithm. An unsupervised algorithm is desired to increase

repeatability of results and to allow for large data sets to be timely processed.

Euclidean
intrinsic

Figure 1.1: Shape registration matches homologous points (left), and Eu-
clidean and intrinsic distance between homologous points (right).

Of course, registration is not the only way to measure di�erences. Between the

coarsest and �nests levels of shape comparison, we may consider particular features

captured by shape metrics and pseudometrics. These allow usto compare various

details of the geometry and topology of shapes without having a complete point

correspondence. We will have more to say regarding incomplete shape representations

and shape metrics.

A brief outline of the contributions of this dissertation proceeds as follows. Careful

consideration of spectral embeddings is given in Chapter 3 along with a spectral

shape pseudo-metric. These embeddings are used for registration in Chapter 7 and

the spectral pseudo-metric is used for classi�cation in Chapter 6. In Chapter 4, we

consider a class of spectral representations that are applied in classi�cation in Chapter

3



6. Chapter 5 addresses the intial steps of these applications, including parameter

selection in the graph Laplacian and data smoothing with theheat kernel.

1.2 What is shape?

Socrates asks this very question in Plato'sMeno, there answering that shape

is the limit of an object. Centuries of mathematics since, attimes motivated by

problems of navigation and geodesy (cf. [17]), have produced more analytic de�nitions,

and we provide a working de�nition in the next chapter. As already explained, we

assume that a good model of anatomy should only see intrinsicgeometry. Spectral

geometry provides a way to do this. The purpose of this section is to o�er a colloquial

introduction to the objects of spectral geometry of a given shape, which, by de�nition,

derive from its intrinsic geometry. A couple more questionswill help to motivate these

objects.

Can onehear shape? This question was popularized by Kac in a lecture on the

geometry and topology captured by the fundamental harmonics of a \drum", i.e. the

spectrum of a planar domain [46, 67]. Although Kac's question was later answered

negatively, the utility of the spectrum as a simple shape representation has been

established [71]. In the generality of Riemannian manifolds, the spectrum holds the

dimension, volume, and average scalar curvature. For surfaces in particular, this

implies that the Euler characteristic can be read from the spectrum, and it follows

that the spectrum of an oriented surface determines its topology. If the manifold has

multiple connected components, the number of these components is also contained in

the spectrum. Moreover, some manifolds, such as the disk, have been shown to be

uniquely identi�able by their spectrum (cf. [12]).

An even more fanciful question: Can a shape be identi�ed with just a thermometer

and torch? For example, could two technologically advancedants living on a large

uniformly-conducting structure determine the shape of this structure, one recording

temperature at various locations while the other applies a heat source? The answer

to this question is, astonishingly,yes!, which is explicitly written out in a formula by
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Varadhan (Section 2.4). This is one of the strongest resultswe will use in our study

of shape representation. Indeed, a ruler and compass are notthe only way to practice

geometry!

Behind these two fanciful questions are the wave and heat equations, both of

which sense geometry through the Laplacian �. The Laplaciancarries a shape's

intrinsic geometry, and it is the fundamental operator in spectral methods. This

alternative approach to intrinsic geometry comes from the practical necessity of having

computable tools. As already mentioned, intrinsic geometryis highly complex data.

Spectral objects, which at �rst may appear unnatural, o�er ameans to organize this

geometry into di�erent resolutions, thereby allowing us towork with computationally

tractable representations of intrinsic geometry. In particular, they allow us to choose

the resolution of intrinsic geometry according to the application.

The use of spectral methods in data analysis has acceleratedsince a 2001 paper

in which Belkin-Niyogi use eigenfunctions of the discretized manifold Laplacian for

dimensionality reduction and parametrization of data [6].These methods have found

many applications, including dimensionality reduction and parametrization of data

[54, 23], shape classi�cation and retrieval [71], general shape registration [63, 69], and

registration in computational anatomy [5, 78, 77]. In Section 2.6.5, we follow these

methods to their theoretical forebears in geometric analysis in hopes of tracing a fair

history of these big ideas.

1.3 Data

We demonstrate and validate our methods using data providedby several research

centers:

1. MGH data:

Subcortical surfaces from normal individuals provided by the Center for Morphome-

tric Analysis at Massachusetts General Hospital. See below for details.

2. ADNI data:

Several subcortical surfaces segmented by the FSU Imaging Lab from 102 MR scans

5



provided by the Alzheimer's Disease Neuroimaging Initiative. See below for details.

3. Synthetic data:

Surfaces (triangle meshes) provided by the McGill 3D Shape Benchmark. These are

available at http://www.cim.mcgill.ca/%7eshape/benchMark/.

1.3.1 MGH data

The MGH surfacescome from MR scans of six normal subjects. These are pro-

vided by the Center for Morphometric Analysis at Massachusetts General Hospital

(http://www.cma.mgh.harvard.edu/ibsr/). Each subject c ontributes four right-brain

structures: a caudate nucleus, hippocampus, putamen, and thalamus. Each of the

24 surfaces is represented by a triangle mesh on the order of 103 vertices. Figure 1.2

shows four samples of each structure.

Caudate nucleus Hippocampus Putamen Thalamus

Figure 1.2: MGH surfaces. Examples of each structure are overlaid.

1.3.2 ADNI data

The ADNI surfaces come from baseline MR scans of 102 ADNI subjects. In

particular, these comprise 51 normal controls and 51 classi�ed as having mild cognitive

impairment at the time of the scan but who later progressed toAD (labeled MCI-

AD). Hippocampus, putamen, and thalamus surfaces were segmented from these MR

scans by the FSU Imaging Lab using the softwareFreeSurfer [34, 33]. Our thanks to

Xiuwen Liu, Dominic Pafundi, and Prabesh Kanel in segmentingthis data.

Figure 1.3 shows a hippocampus and putamen from each group. Note the atrophy

visible in the MCI-AD cases.
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Hippocampus Putamen

Figure 1.3: ADNI surfaces. A right hippocampus and right putamen from
the MCI-AD group (top) and Control group (bottom).

The ADNI data used in this dissertation come from the Alzheimers Disease Neu-

roimaging Initiative (ADNI) database (adni.loni.ucla.edu). The ADNI was launched

in 2003 by the National Institute on Aging (NIA), the National Institute of Biomedical

Imaging and Bioengineering (NIBIB), the Food and Drug Administration (FDA), pri-

vate pharmaceutical companies and non-pro�t organizations, as a $60 million, 5-year

public-private partnership. The primary goal of ADNI has beento test whether se-

rial magnetic resonance imaging (MRI), positron emission tomography (PET), other

biological markers, and clinical and neuropsychological assessment can be combined

to measure the progression of mild cognitive impairment (MCI) and early Alzheimers

disease (AD). Determination of sensitive and speci�c markers of very early AD pro-

gression is intended to aid researchers and clinicians to develop new treatments and

monitor their e�ectiveness, as well as lessen the time and cost of clinical trials.

The Principal Investigator of the ADNI is Michael W. Weiner, MD, VA Medical

Center and University of California { San Francisco. ADNI is theresult of e�orts

of many coinvestigators from a broad range of academic institutions and private

corporations, and subjects have been recruited from over 50sites across the U.S. and

Canada. The initial goal of ADNI was to recruit 800 subjects butADNI has been
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followed by ADNI-GO and ADNI-2. To date these three protocols have recruited over

1500 adults, ages 55 to 90, to participate in the research, consisting of cognitively

normal older individuals, people with early or late MCI, andpeople with early AD.

The follow up duration of each group is speci�ed in the protocols for ADNI-1, ADNI-

2 and ADNI-GO. Subjects originally recruited for ADNI-1 and ADNI-GO had the

option to be followed in ADNI-2. For up-to-date information, see www.adni-info.org.
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CHAPTER 2

BACKGROUND AND LITERATURE
REVIEW

2.1 Brain morphology, function, and disease

We now have several reasons to briey discuss human brain anatomy and function.

First, we should explain the content in the magnetic resonance data used and why

these structures are studied. Second, we should provide evidence that the clinical

stages of some neurodegenerative diseases correlate with macroscopic changes, indi-

cating that the imaging modality used, in this work 3D structural MRI, has su�cient

discriminatory power. Third, we would like to provide evidence that the spatial scale

of functional di�erentiation known for these structures warrants a surface model with

high resolution.

We focus our discussion on the hippocampus, putamen, and thalamus, which are

paired subcortical gray matter structures within the humanbrain, as depicted in

Figure 2.1. Functionally, the hippocampus is the primary component of the limbic

system [85], and the putamen and thalamus are components of the basal ganglia.

These structures have been studied for their potential as markers of neurodegenerative

disease, which is strengthened by their low anatomical variability relative to the

cortex [38]. We now briey describe the hippocampus, putamen, and thalamus,

whose prominent functional roles are summarized in Table 2.1.

In humans, a hippocampus substructure is found in each of thetwo medial tem-

poral lobes [83]. In terms of size, the neurons contained in one hippocampus number
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Figure 2.1: Horizontal section of right cerebral hemisphere.From front to
back, the putamen, thalamus, and hippocampus are marked. (Modi�ed from
Fig. 742, [40])
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on the order of 1 million, out of around 85 billion neurons in the whole brain [89].

Structurally, the hippocampus has three primary divisions: the hippocampus proper

(CA), the dentate gyrus, and the subiculum. The CA itself is divided into di�erent

neuronal zones of various functional roles [25, 83, 31, 2].

The hippocampus is active in the formation of new memories, episodic memory,

registration of information, maintaining attention, establishing emotional aspects of

personality, and registration of spatial relationship andlocation [83, 85, 10, 19]. Dur-

ing learning tests, the anterior of the hippocampus has beennoted to activate when

presented with a novel stimulus [74]. Its role in spatial awareness has been traced

back to speci�c cells calledplace cells, whose �ring rates are modulated by spatial

location. This suggests that a spatial map is programmed in these structures and

that location of self is programmed in speci�c zones of the hippocampus [83, 31].

The basal ganglia regulate voluntary movement and are involved in regulating pro-

cesses that control cognition, decision-making, and planning of behavioral strategies

[14]. They also participate in circuits connecting to frontal lobe regions known to have

a role in aspects of working memory, rule-based learning, attention, and emotional

regulation [14].

Speci�c roles of the putamen and thalamus have been identi�ed in addition to their

general roles as components of the basal ganglia. The putamen is one of the input

nuclei of the basal ganglia [30]. It is active in motor function, learning, and executive

functions, such as organization of parallel processes [30]. Nearby, the thalamus rests

on the brain stem and is viewed as the major relay to the cerebral cortex [76]. Several

distinct nuclei comprise the thalamus, each of which transmits a characteristic type

of a�erent signal, such as visual, auditory, or somatosensory, to speci�c �elds of the

cerebral cortex [76]. Furthermore, the thalamus actively modulates the transmission

of signals to the cortex according to attentive state (waking or sleeping) and stimulus

intensity [76].

A number of dementias and mental disorders have been found tosigni�cantly

correlate with atrophy of the limbic or basal ganglia systems, as indicated in Table
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Table 2.1: Functional activation of hippocampus and basal ganglia. Sources:
[74, 35]

Function
hippocampus

activation
basal ganglia

activation
executive function *
motivation *
declarative memory *
non-declarative memory

(e.g. habit learning) *
spatial learning tasks * *
categorization tasks *
novel stimulus *

2.2. For example, volume loss in limbic system structures such as the hippocampus

accompanies Alzheimer's disease (AD), epilepsy [83], post traumatic stress disorder

[18], depression [18], schizophrenia [2], and other dementias (Lewy body, semantic,

etc.) [83, 2]. Volume loss in the basal ganglia accompanies Parkinson's disease [29, 35],

Huntington's disease [43], and Alzheimer's [26].

Table 2.2: Some dementias that correlate with reduced volume of the limbic
system or basal ganglia.

limbic system basal ganglia
Alzheimer's * *
depression *
epilepsy *
Huntington's *
Parkinson's *
post traumatic stress disorder *
schizophrenia *

The case of Alzheimer's disease (AD) o�ers a prototype of a pro�le of neurode-

generative disease. Symptoms of Alzheimer's disease progress from impairment of
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memory, to changes in personality, language impairment, defective recognition of ob-

jects, and ultimately to motor dysfunction [1]. These symptoms reect the progression

of atrophy which initiates in limbic areas and then di�uses across the hippocampus,

neocortex, and various subcortical nuclei. Braak and Braak[19] identi�ed six stages

of AD according to neuro�brillary changes. The transentorhinal stages (I-II) are

characterized by the accumulation of tau protein and amyloid-beta peptide, but do

not produce clinical symptoms [1]. In the limbic stages (III-IV), the hippocampus

degenerates and lesions disrupt limbic circuits, however the cerebral cortex and most

of the neocortex is not signi�cantly a�ected. Impairment of cognitive functions and

subtle personality changes appear in these stages. The �nalneocortical stages (V-VI)

are characterized by severe atrophy in the neocortex. Only the neocortical stages

concur with the diagnosis of AD [1].

The need to improve early diagnosis of Alzheimer's disease has been universally

recognized, and MRI morphological imaging is seen as havingthe potential to help

accomplish this even at the clinical level [1, 25, 49]. Currently, a de�nitive diagnosis

of AD requires a histological sample [1]. Most a�ected individuals do not go through

this invasive test, but are labeled as havingprobable AD(pAD), which is diagnosed

on the basis of a patient's mental history and a psychometrictest score [1]. The mini

mental state exam (MMSE) and clinical dementia rating test (CDR) are examples of

such tests. As described above, pAD status is preceded by yearsof cognitive decline

corresponding to the Braak limbic stages. Individuals in these stages are designated

as having mild cognitive impairment (MCI). Imaging studiesin AD typically pro�le

control, MCI, and AD groups.

2.1.1 Examples of imaging studies of AD

One of our aims is to classify surface data. That is, given a surface model from a 3D

scan, can a classi�er determine whether the scanned individual has a dementia? Here

we consider several studies that use 3D structural magneticresonance (MR) data.
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We remark that features of right brain structures seem to have greater discriminatory

power in these AD studies.

In [50], Kl•oppel et al. classify 57 control and 33 pAD individuals using SVM1 on a

feature space of local volume measurements. With whole brainimages, 81.1% classi�-

cation accuracy is attained. Focusing around the hippocampus, accuracy increases to

85.6%. The combination of features from both cases improvesthe accuracy to 88.9%.

In [32], Fan et al. classify 66 control and 88 MCI individuals. Leave-one-out clas-

si�cation accuracy is 76.0% with SVM applied to normalized hippocampal volumes.

With whole brain images and local volume data, 81.8% classi�cation accuracy is

attained.

Longitudinal data is used to measure individual change. Forinstance, in a study

of hippocampus volume loss, Thompson et al. [82] �nd in the AD group that the rate

of volume loss of the right hippocampus exceeds the left hippocampus.

Longitudinal data is also used to benchmark preclinical detection of AD. In one

such study, Csernansky et al. monitor the hippocampus shapeand volume in 49

nondemented elders [25], some of whom later converted to AD. They �nd that the

pattern of structural deterioration precedes AD symptoms, and that they are able to

predict conversion to very mild dementia. In another study,Klein et al. [49] consider

29 subjects who decline cognitively and 29 who remain stableto the end of a speci�ed

period. With SVM on a feature space that includes local volume measurements, they

attain 81% classi�cation accuracy with whole brain images.Focusing on the right

hippocampus, 78%, and with the left hippocampus, 74%, accuracies are attained.

2.2 Riemannian manifolds

The fundamental objects we need to compare shapes are the intrinsic distance

between points on a manifold and the ability to measure volume (i.e. surface area for

a 2-manifold). The Hilbert function spaceL2 associated with a Riemannian mani-

fold and its corresponding Laplacian � must also be discussed before the theory of
1SVM is a standard classi�er which stands forsupport vector machine.
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spectral methods. We discuss the Laplacian below, including its eigenvalues, eigen-

functions, and computation. We now assume the basics of di�erentiable manifolds and

briey introduce the fundamental objects of Riemannian geometry essential to this

dissertation. More details can be found in any standard introduction to Riemannian

geometry, for example, Lee [52].

For most every purpose in this work, \Riemannian manifold" will refer to a surface

bounding a solid in Euclidean space. That is, the Riemannianmanifold (M; g) is

usually a closed, oriented surface inRN , and the length of any tangent vector can

be measured as usual with the inner product ofRN . Nevertheless, we must come

to terms with results stated in the more general and abstractsetting of Riemannian

manifolds, which we shortly de�ne.

At each point p 2 M of a smooth manifoldM k is a tangent spaceTpM . M k will

mean that k = dim M . In local coordinatesx = ( x1; : : : ; xk), the coordinate tangent

vectors @1; : : : ; @k at p, which are sometimes denoted@=@xi = @i , constitute a basis

for TpM called the coordinate frame atp. The coordinate frame slides anywhere in

the neighborhood ofp on which the coordinatesx are de�ned, giving a basis forTqM

for all points q in the neighborhood ofp.

A Riemannian metric g : TpM � TpM ! R is an inner product on each tangent

space. More formally,g is a C1 symmetric 2-tensor �eld that is positive de�nite

at each point in M . In local coordinates,g is the quadratic form corresponding to

the k � k matrix gij (x) := gx (@i ; @j ), where k = dim M . By de�nition, the gij are

smooth inx. The inverse and determinant ofg commonly appear, such as in the local

expression for the Laplacian. We use the conventions

(gij ) := ( gij )� 1

jgj := det( gij ) :

De�nition 1 (Riemannian manifold). A Riemannian manifold (M k ; g) is a di�eren-

tiable manifold M with a Riemannian metric g. As explained below, a Riemannian

manifold is a metric measure space. That is,g endowsM with a cannonical distance
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metric dM and Borel measuredV. A closed Riemannian manifoldis a compact Rie-

mannian manifold without boundary. A closed Riemannian manifold is a complete

metric space.

2.2.1 The Riemannian manifold as a metric measure space

A Riemannian metricg allows one to take natural measurements onM , including

lengths of curves and volumes of open sets. The normjX jp :=
p

gp(X; X ), X 2 TpM ,

associated withg allows us to calculate arclength in the usual way. That is, the length

of a smooth curve : I ! M is de�ned by

l( ) :=
Z

I
j 0(t)j  (t ) dt : (2.1)

For any p; q 2 M , the intrinsic , or geodesic, distancedM (p; q) between them is

de�ned to be the in�mum of the lengths of all paths joiningp and q.

The volume measure associated with a given Riemannian metric will now be

de�ned. Any oriented Riemannian manifold (M k ; g) has a uniquek-form dV on

M called the Riemannian volume form. In oriented local coordinatesx, we have

dV(x) =
p

jgj(x) dx1 ^ � � � ^ dxk . Then, for a Borel setU � M in this neighborhood,

its volume is given by

vol(U) =
Z

U
dV : (2.2)

Because local coordinate charts are orientable,dV extends to a Borel measure on

(M; g) without any assumption on the orientability of M . Henceforth,dV will denote

this Borel measure, which is the canonical volume measure for g.

Now we can calculate the volume ofM . Moreover, we may now consider the

Hilbert spaceL2(M; g) of real-valued square-integrable functions on (M; g) with inner

product

hf; g i :=
Z

M
f (p)g(p) dV(p): (2.3)
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2.2.2 Scaling the metric

To scale (M k ; g) by a factor a > 0 means that all lengths are multiplied bya. We

now want to know how the objects of intrinsic geometry changeunder scaling, since

both scale and size are fundamental in morphometry. Considering the length function

l( ) above,aj 0j =
p

a2g( 0;  0) implies that scaling bya is equivalent to substituting

the Riemannian metrica2g. When g is understood,aM will refer to (M; a2g).

As for integration, the volume form ofaM is

dVaM (x) =
p

ja2gj(x) dx1 ^ � � � ^ dxk

= ak
p

jgj(x) dx1 ^ � � � ^ dxk

= akdVM (x):

For example, vol(aM ) = akvol(M ). For another example, which we will refer to

again, if f 2 L2(M ) is normalized, that is kf kL 2 (M ) = 1, then

kf k2
L 2 (aM ) =

Z

M
f 2(p) ak dVM (p) = ak : (2.4)

Thus, a� k=2f is normalized in L2(aM ) i� f is normalized in L2(M ). Moreover, we

see thatV 1=2
M f , whereVM = vol( M ), is invariant to scaling since

vol(aM )1=2ka� k=2f kL 2 (aM ) = ak=2vol(M )1=2a� k=2kf kL 2 (M )

= vol( M )1=2kf kL 2 (M ) :
(2.5)

2.2.3 Derivatives of the metric

First and second derivatives of the Riemannian metricg often arise. The �rst

derivatives are written in Christo�el symbols

� k
ij :=

1
2

gkl (@i gjl + @j gli � @lgij );

where the indexl is understood to be summed over according to the convention of

Einstein summation notation.

Curvature arises in Riemannian geometry as a measure of how un-Euclidean the

geometry of the space is. The various curvatures are writtenin terms of �rst and
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second derivatives ofg, which vanish for constantg, for example, in Euclidean space.

Expressions for the various curvatures can be found in any Riemannian geometry

book, see especially [12]. We will not write their lengthy formulas here, but, as we

have particular interest in surfaces, we observe (cf. [12, 72]) that Gaussian curvature

� 2 C1 (M ), dim M = 2, is related to scalar curvature as

sg = 2�

and Ricci curvature as

Ricg = �g :

2.3 The Laplacian

The Laplacian is a fundamental di�erential operator and arises in both the heat-

di�usion and wave equations. It has a sibling on every Riemannian manifold. That

is, given a Riemannian manifold (M; g), there is a unique linear operator � that

suitably generalizes the Laplacian of Euclidean space. In fact, it will be seen to be

an essentially geometric operator.

In Euclidean space, it is easy to overlook how the geometry ofthe domain is slipped

into the heat and wave equations. However, on manifolds we seethe Laplacian's ge-

ometric nature. In particular, the Riemannian metric and Laplacian are completely

interdependent, and the metric can be read back from the Laplacian. Most signi�-

cantly, the Laplacian of a shape is invariant under any rigidtransformation or more

general isometry.

The Laplacian encodes the fundamental resonance structureof a shape in terms

of frequencies - square roots of the eigenvalues - and vibrations - the eigenfunctions.

Ultimately, the eigenvalues and eigenfunctions will be usedto represent a shape. Note

that because they are determined by the Laplacian, they originate in its intrinsic

geometry.

In the computational setting, a manifold must be processed,stored, and visual-

ized as a data structure. This entails either a discretization of di�erentiable objects
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or a discrete theory analogous to it. Both a discretized (graph) Laplacian and a

combinatorial Laplacian are discussed below.

2.3.1 The Laplacian on Riemannian manifolds

Let (M; g) be a Riemannian manifold. Di�erentiable functions ofM will be de-

notedC1 (M ). The Laplacian on (M; g) is the linear operator � : C1 (M ) ! C1 (M )

given in local coordinates by

� = �
X

ij

gij (
@

@xi

@
@xj

�
X

k

� k
ij

@
@xk

) : (2.6)

This Laplacian generalizes the standard Laplacian on Euclidean domains

� Rk = �
kX

i =1

@2

@x2i
; (2.7)

where the leading minus is \geometer convention". For example, accounting for the

minus, the Laplacian of a function at a local maximum has a positive value. We will

occasionally use the Einstein summation convention in which case

� = � gij (@i @j � � k
ij @k) : (2.8)

The Laplacian also has the coordinate-free de�nition � := � div � grad, where div

and grad are the Riemannian divergence and gradient, respectively.

As mentioned already, the Laplacian encodes geometry:

Lemma 1. Let p 2 M and x = ( x i ) coordinates centered atp. Then � can be applied

to recover thegij (0) (metric at p) in these coordinates.

Proof. Choosef 2 C1 (M ) such that f̂ (x) = x i x j in a neighborhood ofx = 0 (this

can be constructed via a bump function). Then

� f (p) = � gij (0)(@i @j f̂ � � k
ij (0)@k f̂ ) jx=0 (2.9)

= � 2gij (0) (2.10)

Sinceg is invertible, the result follows.
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As already mentioned, we are interested in the eigenvalues and eigenfunctions of

the Laplacian. They do exist:

Theorem 1 (Hodge Theorem for functions (cf. [72])). Let (M; g) be a compact con-

nected oriented Riemannian manifold. There exists a complete orthonormal set of

L2(M; g) consisting of eigenfunctions of the Laplacian. All the eigenvalues are pos-

itive, except that zero is an eigenvalue with multiplicity one. Each eigenvalue has

�nite multiplicity, and the eigenvalues accumulate only at in�nity.

We now have eigenfunctionsf � i gi � 0 and eigenvaluesf � i gi � 0, and we assume eigen-

values are ordered as� i +1 � � i . The set f � i g is called thespectrumof the Laplacian.

According to the Hodge Theorem,� 0 = 0, and it follows that � 0 is constant. Also,

� i > 0 for i � 1. It can be shown that the image of� i , i � 1, is a closed interval with

0 in its interior.

Remark 1. By de�nition, � � i = � i � i . Note, however,� � i also satis�es �( � � i ) =

� i (� � i ). Hence, the eigenfunctions making up the complete orthonormal set of L2

carry a sign ambiguity, which becomes quite signi�cant for us, as explained below.
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Figure 2.2: Spectrum of the unit sphere (analytic) and several unit sphere
meshes as computed from the combinatorial Laplacian.
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Eigenvalues of certain nice shapes have been explicitly calculated (cf. [24]). These

shapes are nice in the sense that they exhibit a high degree ofsymmetry. One also

notices that their nonzero eigenvalues tend to arise with multiplicity. For example,

S2 has eigenvalue� = n(n + 1) with multiplicity 2 n + 1, n � 0. The �rst part

of the spectrum ofS2 is shown in Figure 2.2. Notwithstanding, a deep theorem by

Uhlenbeck shows that these are exceptional and that eigenvalues are distinct for most

shapes.

Theorem 2 (Generic properties of eigenfunctions, Uhlenbeck [84]). Let M be a closed

manifold. For a generic metric g on M , the corresponding Laplacian� g has the

following properties:

1.) the eigenspaces are one-dimensional,

2.) 0 is not a critical value of the eigenfunctions,

3.) the eigenfunctions are Morse functions.

(The reader may consult the more technical statement of this theorem in [84].)

By property (1), we see that a generic shape has distinct eigenvalues. Conse-

quently, each normalized eigenfunction is unique up to sign. Property (2) implies

that the nodal set � � 1
i (0) generically has codimension 1, which in the case of a sur-

face means that the nodal set is a curve or set of curves. Intuitively, the nodal set is

the set of stationary points for the pure tone vibration corresponding to� n . See Fig-

ure 2.3. As for property (3), a Morse function is one that has nondegenerate critical

points. This means that the second derivatives will determine the critical point type.

More properties of the eigenfunctions and eigenvalues willbe considered as we go

along.

2.3.2 The graph Laplacian

Here, we present a graph Laplacian [86], which is a matrix constructed from

pairwise distances on a given point set. Points are thought of as being sampled from

some shapeM and the graph Laplacian � M̂ approximates the di�erential Laplacian
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� 1 � 2 � 3 � 4 � 5 � 6 � 7 � 8

Figure 2.3: Level curves of eigenfunctions� 1; : : : ; � 8 of a hippocampus (top)
and putamen (bottom) are color-coded. Dark blue correspondsto the small-
est values of� n and dark red to its largest. Keep in mind, though, that each
eigenfunction has underdetermined sign (� n and � � n are indistinguishable).

� M . The advantage of this approach over, for example, FEM, is that only point data

is used, and no triangulation is needed. Convergence results for this approximation

are discussed in the next section.

Constructing the weights. Let M k � RN . Given a sample ofn points M̂ =

f x1; : : : ; xng � M , we construct a weighted graph by takingx1; : : : ; xn for vertices

and de�ning edge weights as follows. Given constants� > 0, � > 0, and the kernel

function

k(r ) :=

(
e� r 2=4� 2

if 0 < r < � ;

0 otherwise,
(2.11)

the edge weightwij for x i and x j is given by wij := k(kx i � x j k), 1 � i; j � n.

If wij = 0, then x i and x j are not connected by an edge. Note that this graph is

undirected sincewij = wji , henceW = ( wij ) is a symmetric matrix. We denote this

graph by (M̂; W ). The actual choice of� and � is discussed in Section 5.1.

Constructing the graph Laplacian. The construction of the graph Laplacian

on (M̂; W ) easily follows. Let ai :=
P

j wij , A := diag (a1; : : : ; an ). The matrix
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L := A � W is the corresponding unnormalized graph Laplacian. The number ai can

be thought of as a vertex degree or neighborhood density about x i . If the support

parameter� is not too small2, then A is invertible, and we de�ne the graph Laplacian

to be � M̂ := A � 1L. Applied to f : M̂ ! R,

� M̂ f (x i ) =
nX

j =1

wij

ai
(f (x i ) � f (x j )) : (2.12)

This graph Laplacian is often called the normalized graph Laplacian and, sometimes,

the random walk Laplacian.

Connection to random walks. The idea of a random walk on the graph

(M̂; W ) gives some intuition towij and ai , and some authors call �M̂ = I � A � 1W

the \random walk" Laplacian [42]. Imagine walking through the graph at random

where the probability of stepping fromx i to x j is pij = wij =ai for all time. Then the

stationary distribution of this random walk is proportional to A; that is, the average

time spent at vertex x i is proportional to ai [86].

Eigenvalues and eigenfunctions. After constructing the Laplacian matrix,

we solve for some subset of eigenvalues and eigenfunctions (i.e. eigenvectors). For the

normalized graph Laplacian, we solve the generalized eigenvalue problem

L� = �A� (2.13)

for the smallestm, 1 � m � n, eigenvalues and their associated eigenfunctions. We

sort the eigenvalues� 0; � 1; : : : ; � m� 1 in ascending order and denote the associated

eigenfunctions� 0; � 1; : : : ; � m� 1, where� T
i A� j = � i

j .

2.3.3 Convergence of the graph Laplacian

In 2005, Belkin and Niyogi [8] demonstrated the pointwise convergence of the

unnormalized graph LaplacianL on points uniformly sampled from (M; g) to the

di�erential Laplacian � M when M is a closed submanifold of Euclidean space and

2Speci�cally, if � � maxi min j d(x i ; x j ).
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support � = 1 . In the same year, Hein demonstrated a similar result [42]. Since

then, convergence results have been extended to more general graph Laplacians, from

pointwise to uniform convergence, and to more arbitrary sampling [9, 42]. We use

the normalized graph Laplacian because it is more robust to non-uniform sampling

(cf. [42]).

To compare � M̂ and � M , the convergence proofs [9, 42] �rst extend �̂M to func-

tions on M . Equation (2.12) suggests a way to do this as follows. Forf : M � RN !

R, put

� M̂ f (x) :=
nX

j =1

wxj

ax
(f (x) � f (x j )) ; (2.14)

wherewxj = ks(kx � x j k=� ) and ax =
P

j wxj .

In the following theorem on pointwise convergence �̂M ! � M , we encounter the

weighted, or anisotropic, Laplacian

� r :=
1
� r

div( � r grad) ; (2.15)

wherer 2 R and � is any density measure on (M; g).

Theorem 3 (Hein, Audibert, von Luxburg [42]). Let (M k ; g) be without boundary

and isometrically embedded inRN , and let f x i gn
i =1 be a sample of points drawn i.i.d.

from a probability measureP on M with density � . Let x 2 M , f 2 C1 (M ). Then

if � ! 0+ and n� k+2 =logn ! 1 as n ! 1 , then

lim
n!1

� �;n
M̂

f (x) � � 2f (x) almost surely, (2.16)

where �̀ ' means equality up to a constant depending onk. (\almost surely" means

that the probability of convergence is 1.)

Note that if the samples are drawn uniformly (i.e.� is constant), then � 2 = � M .

The intuition behind the coupling in convergence rates of� and n is that while the

neighborhood shrinks with� , the sample size must increase much faster, converging

to an integral before the neighborhood can vanish into a point.

24



Stronger convergence results have been shown for a uniform measure and the

unnormalized graph Laplacian. In particular, Gin�e and Koltchinskii have demon-

strated uniform converge on compactM for any class ofC1 functions with uniformly

bounded 3rd derivatives [39]. It appears likely that these stronger results can be

extended to the normalized case.

2.3.4 The combinatorial Laplacian

The combinatorial Laplacian is a discrete analogue of the smooth Laplacian de-

�ned on a simplicial approximation of the manifold [27]. Here, we consider a triangle

mesh representing a closed, oriented surface in Euclidean spaceR3. A triangle mesh

comprises a list of vertices and triangles. Each vertex is given by its coordinates and

an index, and each triangle is given by the ordered triple of indices of its vertices and

an index. The ordered triples giving the triangles are assumed to be consistent with

the orientation of the surface.

v1

v2

v3

v4 e�
13

T �
1

Figure 2.4: The 1-celle�
13 connects the centroids of triangles (v1; v2; v3) and

(v1; v3; v4) across the midpoint of edgee13. The 2-cellT �
1 is shaded.

Before de�ning the combinatorial Laplacian we �x some terminology. Figure 2.4

should help with these ideas. LetV = f v1; : : : ; vng be the vertex set of a triangle

mesh M . The 1-ring R1(i ) is the index set of vertices adjacent tovi . That is, if

j 2 R1(i ), then vi and vj are joined by an edgeeij . The length of eij = ( vi ; vj ) is

denoted` ij .
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This triangle mesh has a dual as follows. Each edgeeij has a unique dual object

e�
ij called a 1-cell, which is the pair of line segments that connect the centroids of the

two triangles with eij in common to the midpoint ofeij . The length of e�
ij is denoted

` �
ij . Each vertex vi has a unique dual objectT �

i called a 2-cell. The 2-cellT �
i is the

region including vi and enclosed by the 1-cells dual to the edges incident tovi . It

may also be thought of as the (Voronoi) region of the mesh whose closest vertex isvi .

The area ofT �
i is denotedbi . Both the triangle set and 2-cell set partition the mesh.

For a set of verticesU � V, the corresponding set of 2-cells will be denotedU� .

We now build up to a discrete analogue of the divergence theorem. In the discrete

setting, a function is de�ned on the vertex setV, e.g. f : V ! R, and is represented

by a vector f = [ f 1 � � � f n ]T , where f i := f (vi ). The discrete exterior derivative of

f along the directed edgeeij = ( vi ; vj ) is given by (f j � f i )=`ij . Hence, the outward

ux of f from vi is
Z

@T�i

@f
@n

:=
X

j 2 R1 (i )

f j � f i

` ij
` �

ij ; (2.17)

where @T�i is taken to mean the union of thee�
ij for j 2 R1(i ). This contour is the

shortest simple closed curve enclosingvi , where the family of all curves de�ned on the

mesh is expressed as all possible combinations of 1-cells. The discrete volume integral

is
Z

T �
i

f := f i bi : (2.18)

For a set of verticesU � V, these extend linearly to

Z

@U�

@f
@n

=
X

vi 2 U

X

j 2 R1 (i )

f j � f i

` ij
` �

ij and
Z

U �
f =

X

vi 2 U

f i bi : (2.19)

Finally, considering the \discrete divergence theorem"

Z

T �
i

� f = �
Z

@T�i

@f
@n

=) (� f ) i bi = �
X

j 2 R1 (i )

f j � f i

` ij
` �

ij ; (2.20)

uniquely de�ning � f (vi ).
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It can be seen from (2.20) that the combinatorial Laplacian is a linear operator,

and hence can be written in matrix form. De�ne

wij =

(
` �

ij =`ij if j 2 R1(i )

0 otherwise
(2.21)

and ai =
P

j wij . Then (2.20) becomes

(� f ) i bi = �
X

j

wij (f j � f i ) (2.22)

= ai f i �
X

j

wij f j : (2.23)

De�ne the diagonal matricesA := diag(a1; : : : ; an ) and B := diag(b1; : : : ; bn ), and

L := A � W. Then

B (� f ) = ( Af � Wf ) = Lf : (2.24)

It can be easily shown that

Lemma 2. L is symmetric, positive semi-de�nite andB is symmetric, positive de�-

nite.

Eigenvalues and eigenfunctions. We now wish to obtain solutions (�; � ) to

the eigenproblem � � = �� . An analogue of the Hodge theorem will be shown.

Assuming a solution exists, (2.24) becomesL� = B (� � ) = �B� . This is the gener-

alized symmetric eigenproblem [70, 73]. It can be shown thateigenvalues� i � 0 and

eigenvectors� i exist such that

� T L� = � and � T B� = I; (2.25)

where � = diag( � 1; : : : ; � n ) is the diagonal matrix of the eigenvalues, and � =

[� 1 � � � � n ] is the matrix of the eigenvectors. The equality �T B� = I , equivalently

� T
i B� j = � i

j , shows that the eigenvectors� i are orthonormal with respect to the

discreteL2 inner product

hf; g i :=
nX

i =1

(f i gi )bi : (2.26)
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We also have eigenvalues 0 =� 0 < � 1 � : : : � � n , hence the discrete equivalent of the

Hodge Theorem (1). SinceL is sparse, the eigenvalues� 1; : : : ; � m and corresponding

orthonormal eigenfunctions� 1; : : : ; � m of � with respect to L2 can be computed

e�ciently for small m.

Convergence and the combinatorial Laplacian. The combinatorial Lapla-

cian is a fundamentally discrete operator, in contrast to a discretization or approxi-

mation. Hence, it is to be understood in the context of discrete graph theory. Nev-

ertheless, its similarity to the graph Laplacian suggests that it should converge to

the smooth Laplacian, perhaps with some mild assumptions. We are not aware of

convergence results for this combinatorial Laplacian. However, empirical evidence is

given in Figure 2.2, where the spectrum of the unit sphere has been calculated.

2.4 The heat equation and heat kernel

Here we state facts regarding the heat equation and heat kernel. These and further

details may be pursued in [41, 72, 12, 20].

Heat ow on a closed Riemannian manifold (M; g) is modeled by the heat equation

(@t + � M )u(t; x ) = 0 : (2.27)

This equation characterizes how temperature will stream radially outward from each

point with time, and how the rate of this ow is controlled locally by geometry, as

indicated by the presence of the Laplacian.

Any initial distribution f 2 L2(M ) determines a unique smooth solutionu(t; x ),

t > 0, to (2.27) such thatut ! L 2 f as t ! 0+ . This solution is given by

u(t; x ) =
Z

M
K (t; x; y )f (y) dV(y); (2.28)

where K 2 C1 (R+ � M � M ) is the called theheat kernel of M . In Rk , the heat

kernel is the familiar Gaussian kernel

K Rk (t; x; y ) =
1

(4�t )k=2
exp

�
�

kx � yk2

4t

�
: (2.29)
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The maximum principle asserts thatK > 0 on its domain. Intuitively, K t;x (y) :=

K (t; x; y ) describes the e�ect felt aty t seconds after a pulse of heat is applied atx.

The geometric power of the heat kernel is concisely stated in

Theorem 4 (Varadhan's formula). Let (M; g) be closed, connected. Then

lim
t ! 0+

� 4t logK (t; x; y ) = d2(x; y) (2.30)

uniformly in (x; y) 2 M � M . (cf. [58])

Varadhan's formula also evidences the geometric nature of the Laplacian, via the

heat equation (2.27).

In practice, we express the heat kernel in terms of eigenvalues-functions as

K (t; x; y ) =
1X

i =0

e� � i t � i (x)� i (y): (2.31)

This Hilbert-Schmidt expansion of the heat kernel will be invoked repeatedly. From

the point of view of analytic and computational stability, the following property will

become pertinent.

Theorem 5. For any t0 > 0, the sum in (2.31) converges in theC j -topology on

[t0; + 1 ) � M � M for all j 2 N. (cf. Theorem V.3 in [12])

Gaussian estimates for the heat kernel. Uniform (global) estimates for the

heat kernel will be necessary in our embedding proof. The following uniform upper

and lower bounds are from Sturm [80], speci�cally Corollaries 2.3b and 4.7b.

Let (M k ; g) be a complete Riemannian manifold whose Ricci curvature isbounded

from below by r0 � 0:

Ric(�; � ) � � (k � 1)r0 g(�; � ) (8 � 2 TM ): (2.32)

Here Vx (
p

t) will denote the volume of the geodesic ball of radius
p

t centered atx

and � r 0 ;k := ( k � 1)2r0=4.
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Proposition 1 (Sturm [80]). For any � > 0 and � > 0 satisfying � � > � r 0 ;k there

exists a constantC1 = C1(r0; k; �; � ) such that for all t > 0 and x; y 2 M

K (t; x; y ) � C1 � inf
�

Vx (
p

t)� 1; Vy(
p

t)� 1
	

� exp
n

� (1 � � )
r 2

4t
+ 2( � � � 0)t

o
:

Here� 0 may not be 0 since the manifold is not assumed to be compact, hence the

Hodge theorem is not in play.

Proposition 2 (Sturm [80]). Under the same hypotheses there existsC2 = C2(r0; k; �; � )

such that for all t > 0 and x; y 2 M

K (t; x; y ) � C2 � sup
�

Vx (
p

t)� 1; Vy(
p

t)� 1
	

� exp
n

� (1 + � )
r 2

4t
� 2(� + � r 0 ;k )t

o
:

Having M compact allows us to re�ne the estimates as follows, and we compare

K with the Gaussian estimateG(t; r ) := (4 �t )� k=2e� r 2=4t . First, compactness implies

there are constantsa; b; T > 0 such that atk=2 � Vx (
p

t) � btk=2 for all 0 � t �

T; x 2 M . We then see that there are constantsCU = CU (C1; a; b; T) and CL =

CL (C2; a; b; T), CU � CL , such that

CL G(t; 2r ) � K (t; x; y ) � CU G(t; 1
2r ) (2.33)

on (0; T] � M � M . For notational convenience, we have chosen a di�erent� for each

bound.

2.5 A de�nition of shape and a shape metric

Two Riemannian manifoldsM and N are isometric if there is a di�eomorphism

f : M ! N such that dM (p; q) = dN (f (p); f (q)) for all p; q2 M . This f is then called

an isometry betweenM and N . Herein, M , for example, should be understood as an

abbreviation for (M; g).

Isometry gives a natural equivalence relation� on Riemannian manifolds. We

consider the collection of closed, connected Riemannian manifolds M . M is parti-

tioned into isometric equivalence classesM =� , which are sometimes calledgeometric
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structures. The intrinsic geometry of (M; g) refers to all properties of its equivalence

class inM =� .

De�nition 2 (Shape). A shapeis an equivalence class inS := M = � . Note that

every element ofS has a �xed underlying di�erentiable manifold.

In this work we encounter cases where all surfaces are spherical, that is, di�eo-

morphic to S2. In such cases, each shape may be viewed as an observation of ametric

on S2. Therefore, we could likely restrict our notion of shape to be a Riemannian

metric g on S2, modulo isometries. We may refer to these asspherical shapes. The

usual sphere inR3 will be denoted (S2; can).

Ideas from morphometry have motivated this de�nition of shape, and it should not

be taken to be universal. For instance, a shape and its mirrorimage are equivalent

from the point of view of intrinsic geometry. However, other studies may need to

consider chirality, for example, and in such instances isometry is too weak a relation.

A shape metric. We ultimately compare di�erences between shapes, such as

healthy and diseased structures. These di�erences may be quanti�ed with a shape

metric. The �rst shape metric we consider is the Gromov-Hausdor� distance dGH (cf.

[62]), which we now de�ne. Here, keep in mind that each shape inS is a special type

of compact metric space.

Let (Z; dZ ) be a metric space andM; N compact subsets ofZ . The Hausdor�

distance betweenM and N is de�ned as
dZ

H (M; N ) := max f sup
p2 M

dZ (p; N) ;

sup
q2 N

dZ (M; q) g;
(2.34)

where dZ (p; N) := inf q2 N dZ (p; q). Intuitively, dH measures the overhang ofM and

N . For example, supp2 M d(p; N) is realized by the pointp farthest outside ofN . The

full expression (2.34) simply imposes symmetry for this notion.

The Gromov-Hausdor� distance between any two compact metricspaces (M; dM )

and (N; dN ) is then de�ned as

dGH(M; N ) := inf
Z;i M ;i N

dZ
H ( iM (M ); iN (N ) ) (2.35)
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where iM : M ! Z; i N : N ! Z are any isometric embeddings ofM; N into any

common metric space (Z; dZ ).

Although it makes the notion of a distance between shapes precise, computing

dGH between�nite metric spaces is unfortunately NP-hard (cf. [62]). In practice, we

must resort to other means.

2.6 Spectral representations

In this section, we mostly focus on spectral representations from the shape analysis

literature, although the �nal Section 2.6.5 looks at a more \pure" example. Spectral

representations divide into two kinds: complete and incomplete. A complete repre-

sentation retains all information about the shape, and, in theory, allows the distance

metric to be recovered. Subsection 2.6.2 will consider complete representations.

By contrast, an incomplete representation does not allow for such reverse-engineering

of the metric. Representations, especially incomplete ones, are often called signatures

in the shape analysis literature. Examples of global signatures onM include the vol-

ume, histogram of pairwise distances [66], and spectrum (Section 2.6.3). A point

signature summarizes information about points ofM . Basic examples include the

scalar curvature, histogram of distances to a reference point [79], and auto-di�usion

x 7! (t 7! K (t; x; x )) (Section 2.6.4).

2.6.1 Motivations from shape analysis

Considerations from morphometry have led us to �nd representations of intrinsic

geometry. We look at the registration problem for shapesM and N , which are

assumed to be �nite point sets. A natural intrinsic representation of M = f x i g is the

intrinsic distance matrix (dM (x i ; x j )). To �nd a point correspondence, we consider

embedding the representation (dM (x i ; x j )) isometrically into Rm for somem � j M j.

Let M 0 � Rm denote this embedding. Here,Rm is to be used as the reference space for

comparing shapes. For example, we might want to compute the Hausdor� distance

dZ
H ; Z = Rm ; between shape embeddings. From distance geometry, we know that an
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isometric embeddingM 0 exists for somem � j M j � 1 by taking coordinates from the

eigenvectors of the gram matrix of (dM (x i ; x j )) associated with nonzero eigenvalues

[68]. Now we consider the usefulness of having such embeddings.

SupposeM; N have isometrically embedded representationsM 0; N 0 2 Rm . If

z1; z2 2 M 0 \ N 0, wherezi is the image ofx i 2 M and yi 2 N , then

dM (x1; x2) = dRm (z1; z2) = dN (y1; y2): (2.36)

This suggests matchesx i � yi for a correspondence' : M ! N . Very importantly,

the representations should be constructed in such a way thatEuclidean distance

becomes meaningful both for within-shape and across-shapemeasurements.

Because the correspondence' will be determined by a search over distances in

Rm , the computational complexity of the registration increases with m. Furthermore,

a high dimensional embedding is expected to be sensitive to irrelevant changes in

geometry such as noise or articulation (cf. [45]). Therefore, it is not unnatural to look

for a way to compress the representation (dM (x i ; x j )) into a lower dimension where

calculations are faster and e�ects of changes in local geometry are reduced. The

low-dimensional representation should also be stable if additional samples are taken.

These considerations lead us to spectral embeddings.

2.6.2 Spectral embeddings

Belkin-Niyogi's spectral embedding. Belkin and Niyogi [6] considered the

problem of optimally �tting a submanifold M of a high-dimensional space into a lower-

dimensional space in such a way that local neighborhood information is preserved.

Their objective function was optimized by eigenfunctions of � M , speci�cally

x 7�! (� 1(x); : : : ; � m (x)); (2.37)

which they call the eigenmap. This is the �rst of several spectral embeddings that

we consider. Figure 3.3 shows a toy example of this spectral embedding. Recall that

eigenfunctions respect the intrinsic geometry of a shape, and for this reason they are
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blind to isometric changes. For instance, di�erent poses ofthe shape are spectrally

equivalent. Furthermore, spectral data naturally organizes into nested geometric

scales. This property allows one to sift out the large-scale, overall shape, combing

out noise and superuous details.

Belkin-Niyogi �rst sought a continuous mapf : M ! R that would take neighbor-

ing points onM to neighboring points on the real line. Ideally,f would satisfy some-

thing approximating an isometrydR(f (x); f (y)) = dM (x; y), although basic topology

forces a weaker condition forM � R . Their approach was to ignore how distant

points are mapped, allowing distant points to map to close points, but not permiting

close points to map to distant points. Thus local geometry isto be preserved, ac-

cepting some global distortion. These considerations brought them to determine the

attest, nonconstant f : M ! R.

original spectral embedding

Figure 2.5: A few human model surfaces and their 3D spectral embeddings.
The spectral embedding derives from small-scale intrinsicdistances. Vertical
and horizontal (in box) sections of the spectral embedding are shown.

Belkin-Niyogi suggested that
R

M jr f j2 dV be minimized over all nonconstantf

with kf k2 = 1:

inf
Z

M
jr f j2 dV subject to kf k2 = 1 and f ? 1M : (2.38)
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Writing out the Rayleigh quotient, one has for a solution theeigenfunction� 1 corre-

sponding to the lowest nonzero eigenvalue� 1. Therefore,� 1 : M ! R is the \optimal

embedding" into R.

Remark 2. In [6], the eigenmap (2.37) is referred to as an embedding. Technically,

an embedding is injective, but this will be overlooked in thesmooth setting until our

work. In the computational setting, Coifman-Lafon note in [23] that their closely

related embedding is injective as discussed below in Section 2.6.2.

For an optimal embeddingM ! Rm , Belkin-Niyogi propose

� m := ( � 1; : : : ; � m ): (2.39)

In what sense is this map optimal? They suggest the followingargument in [7], but

forego a proof or formulation of an objective function.

Among all smooth mapsM ! Rm , m 2 N, one can show that �m is in a way

the attest and most informative for each m as follows. Intuitively, atness (i.e. not

oscillatory) is desired to capture the global structure ofM , so that extrema imposed

by topology are guided to points with interesting geometricfeatures. Flatness is also

expected to �lter out geometric minutiae. Moreover, atness is expected to impose

local injectivity of the map. An \informative" map should distinguish many or all

points of M . Optimality of � m is now demonstrated using the method of Langrange

multipliers. An objective function F : C1 (M; Rm ) ! R that penalizes oscillations of

u and also penalizesu if its components do not settle into an orthonormal subset of

C1 (M ) is given by

F (u; �) =
1
2

Z

M

X

i

jr ui j2 �
1
2

X

ij

� ij
� Z

M
ui uj � � ij

�
(2.40)

for any symmetric � = ( � ij ) 2 Mm (R).

Proposition 3 (Optimality of the eigenmap). If no coordinate is permitted to be

constant, thenF (u; �) is minimized byu = � m . Moreover, this minimum is unique

if � m < � m+1 , which is generically the case (Theorem 2).
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Proof. Start with

F (u + hv; �) =
1
2

X

i

Z

M
jr ui + hr vi j2

�
1
2

X

ij

� ij
� Z

M
(ui + hvi )(uj + hvj ) � � ij

� (2.41)

The derivative of F at u in the direction v is given by

DF u(v) =
d

dh

�
�
�
h=0

F (u + hv; �) (2.42)

=
X

i

Z

M



r ui ; r vi

�
�

1
2

X

ij

� ij
� Z

M
ui vj + uj vi

�
(2.43)

=
X

i

Z

M
(� ui )vi �

X

ij

� ij

Z

M
uj vi (2.44)

=
X

i

Z

M

�
� ui �

X

j

� ij uj
�
vi (2.45)

Setting DF u = 0 yields

� ui �
X

j

� ij uj = 0 (2.46)

for i = 1; : : : ; m. At a critical point u,

2F (u; �) =
X

i

Z

M

�
� ui �

X

j

� ij uj

| {z }
=0

�
ui +

X

ij

� ij � ij (2.47)

= tr(�) : (2.48)

Since � u = � u and � diagonalizes asV� V T for some orthogonalV , one has � w =

� w, where w = V T u. Therefore, � wi = � i wi for i = 1; : : : ; m. Necessarily, the

(� i ; wi ) are eigenvalue-eigenfunction pairs. With the requirementthat the components

of u, and by implication w, be orthogonal and nonconstant, the smallest acceptable

value of tr(�) = tr(�) corresponds to � i = � i . We see that F (u; �) obtains this

minimum when u lies in the orbit of (� 1; : : : ; � m ) by orthogonal transformations and

� has eigenvalues� 1; : : : ; � m .
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Eigenmaps in the discrete setting. How do we interpret this dimension re-

duction in the discrete setting? Because small distancesdij = dM (x i ; x j ) are empha-

sized in this approach, many apply a kernel function to the entries of D to �lter out

larger distances in a controlled fashion [86, 45, 6]. Speci�cally, replacedij by

wij :=

(
exp(� d2

ij =4� 2) if 0 < d ij < � ;

0 otherwise.
(2.49)

This kernel mapping inverts the meaning of the entries: now larger values signify

points in close proximity and the entries decrease with distance. Small scale distances

are magni�ed by the nonlinearity of the �lter and larger distances are compressed

according to the bandwidth� . Finally, at some threshold distance� , matrix entries

are small enough to be replaced with 0. Geometrically, this has the e�ect of replacing

dM by a topologically equivalent bounded metric.

This thresholding has a computational appeal, as a sparse matrix is desirable. As

one focuses on the small scale in this approach,dM (x i ; x j ) is often approximated to the

second order3 by the Euclidean distancedRN (x i ; x j ). Lastly, W = ( wij ) is normalized

by A for sample density, which yields the normalized graph Laplacian � M̂ = I �

A � 1W. � M̂ is in this sense a groomed representation of the intrinsic distancesD.

The low energy eigenvectors of �M̂ , corresponding to the eigenfunctions of Belkin-

Niyogi's eigenmap, provide a compressed representation of the original shape.

Coifman-Lafon's spectral embedding. The problems of data parametriza-

tion and dimensionality reduction motivated Coifman and Lafon [23] to consider the

spectral distances

D t (x; y) := kK t;x � K t;y kL 2 (2.50)

on a data setM , where K t;x = K (t; x; �) is the heat kernel ofM . In their paper,

D t is the \di�usion distance". Here, we think of M as a shape and the spectral

distanceD t as measuring inter-shape distances. The random walk interpretation of

the Laplacian discussed in Section 2.3.2 is used in their work to build intuition for
3That this is a second order approximation holds at least for when one point lies in a normal

neighborhood of the other [9].
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D t . Coifman-Lafon point out that representing data byD t has the advantage over

geodesic distancesdM of being more robust to perturbations sinceD t (x; y) sums over

all paths of length t connectingx and y.

The spectral distanceD t can be realized (approximately) as a Euclidean distance

through

 t (x) := f e� � i t � i (x) g1� i � m ; (2.51)

which Coifman-Lafon call \di�usion maps". That is, D t (x; y) � k  t (x) �  t (y)kRm

for large m 2 N. For convenience, we putD m
t (x; y) := k t (x) �  t (y)kRm . To make

their observation more precise, Coifman-Lafon choose a preset accuracy� > 0 for

the approximation. The embedding dimensionm = m(� ) is then determined as

m := max f n 2 N j e(� 1 � � n )t > � g. When we return to these maps, the following

claim will be relevant.

Proposition 4 (Coifman-Lafon [23]). The spectral map t embeds the data into the

Euclidean spaceRm so that

D t (x; y) = D m
t (x; y) (2.52)

up to relative accuracy� .

Remark 3. This proposition is more of a numerical statement than a topological

one. Coifman-Lafon mention that using the full eigenvectorexpansion proves that

D m
t (x; y) is a metric distance onM . However, is it possible thatm � j M j might

produce an embedding? That is, an injective representationof the data? What

happens in the di�erentiable setting whenM is uncountable and eigenfunctions rather

than eigenvectors are used? We address these questions in Chapter 3.

The maps t are used in [5, 75] for shape registration. To register shapes, Sharma-

Horaud [75] use the covariance of the embeddings to choose thetime parameter

relative to the other. They also note

Proposition 5 (Proposition 1 in [75]). The axes of the spectral embedding t=2 of

the combinatorial heat kernel have maximum variance. The embedded representation
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is strictly bounded by an ellipsoid whose center coincides with the origin of the axes

and with eccentricitiese� � 1 t ; : : : ; e� � k t .

Rustamov's spectral embedding. Rustamov [73] considered the \global point

signature embedding"M ! `2 given by

GPS(x) := f
1

p
� i

� i (x) gi � 1 (2.53)

and its associated inter-shape distanceskGPS(x) � GPS(y)k`2 . In this fairly inu-

ential paper, GPS is applied to the classi�cation problem, although other possible

applications are discussed. These are easily seen to be related to di�usion distances

from

kGPS(x) � GPS(y)k2
`2 =

X

i

1
� i

(� i (x) � � i (y))2 (2.54)

=
Z 1

0

X

i

e� � i t (� i (x) � � i (y))2 dt (2.55)

=
Z 1

0
k t=2(x) �  t=2(y)k2

`2 dt : (2.56)

Justifying the above interchange of sum and integral is not relevant here.

2.6.3 Shape-DNA

Perhaps the simplest spectral representation of a shape is its spectrum (eigenval-

ues). This global signature was nicknamed \shape-DNA" in [71]. Although it does

not distinguish points, the spectrum has many desirable properties for classi�cation

and retrieval tasks. For example, a shape's dimension and volume can be read from

its spectrum. Moreover,

Theorem 6. Two compact surfaces with the same spectrum are di�eomorphic. (cf. [72])

With each spectral representation, we ask whether it dependscontinuously on the

Riemannian metric. The spectrum does.
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Theorem 7 (Continuity of shape-DNA). Let g; h be Riemannian metrics on a dif-

ferentiable manifoldM . If e� tg � h � etg for somet > 0, then

e� (k+1) t � � k(h)=� k(g) � e(k+1) t

for all k 2 N. (cf. Corollary 3.1 in [24])

In particular, if a sequencegj of Riemannian metrics onM converges tog in the

C0-topology, then� k(gj ) converges to� k(g) for eachk 2 N. Even stronger statements

can be found in [24].

To compare shapesM and N having spectraf � i g and f � i g, respectively, Reuter

et al. consider the`2-norm

DDNA (M; N ) = (
P

i (� i � � i )2 )1=2 : (2.57)

It is known that DDNA does not de�ne a distance on the space of shapes. For one,

the existence of isospectral manifolds impliesDDNA (M; N ) = 0 is not su�cient for

M = N . To obtain a scale-invariant representation, they suggestthe normalization

� i 7! � i =� 1.

Note that DDNA gives higher eigenvalues more weight, yet these are expected to

capture the least relevant information. M�emoli [63] has pointed out that a more

robust representation of the spectrum would be the heat trace

Z(t) =
P

i e� � i t ; (2.58)

which has the same geometric content as shape-DNA [12], but whose higher frequen-

cies contribute less, for example, for theL2(R+ ) norm.

2.6.4 The heat kernel signature

In [81], Sun-Ovsjanikov-Guibas studied the \Heat Kernel Signature"

K (t; x; x ) =
1X

i =0

e� � i t � 2
i (x) (HKS)
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for a number of tasks including shape classi�cation and registration. This signature

may be interpreted as the temperature atx, t > 0 seconds after a bolt from Zeus

strikes x. The heat kernel signature is interpreted as a one-parameter family of point

signatures indexed byt. In [4], we considered generalizations of HKS as a class of

point signatures containing spectral information, but free from the sign ambiguity of

spectral embeddings. Here we note the merits ofK (t; x; x ).

Although it is not as informative as the full heat kernel,K (t; x; x ) does encode

information about each point. As such, HKS has found a place asa spectral signature

that is signi�cantly more informative than shape-DNA (the spectrum) but combina-

torially simpler than spectral embeddings. HKS inherits many properties of the heat

kernel that are desirable in shape analysis, including (1) it derives from intrinsic ge-

ometry, (2) it can be e�ciently constructed, and (3) it is stable under perturbations

of the shape (see Section 3.2.1).

Arguably, most geometric information is contained inK (t; x; x ):

Theorem 8 (Sun-Ovsjanikov-Guibas [81]). Let M; N be closed Riemannian mani-

folds, neither having repeated eigenvalues, andT : M ! N a homeomorphism. Then

T is an isometry if and only if K M (t; x; x ) = K N (t; T (x); T(x)) for all x 2 M and

for all t > 0.

The heat kernel signature has the small-time asymptotic expansion (cf. [72])

K (t; x; x ) =
1

(4�t )k=2
(1 +

s(x)
6

t + O(t2)) ; (2.59)

revealing the dominant inuence of scalar curvatures : M ! R for small t. We may

discover in this expression that temperature moves slower across positively curved

regionss > 0 and faster across negatively curved regionss < 0, all relative to di�usion

in at space s � 0. Alternatively, s(x) > 0 means that an arbitrary path starting at

x is more likely to pass throughx soon afterward, than would a path starting at a

point of negative curvature.4 The interpretation of K in terms of Brownian motion

supports this intuition. See Section 3.2.2 for the Brownianmotion point of view.
4This begs a question related to the discrete Laplacian: Iss(x) < 0 when ax is large?
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We have experimented with the heat kernel signature for shape registration, how-

ever, the resulting correspondences were very irregular.

2.6.5 The historical spectral embedding

The eigenmap proposed by Belkin-Niyogi in 2001 has deep theoretical properties,

and a slightly modi�ed form was studied at least several decades before [12]. Most

of these properties seem to have been overlooked in shape analysis until [63]. Even

then, we are not aware of any shape analysis papers in which all consequences of these

results have been clearly stated.

Let (M k ; g) be a closed Riemannian manifold andf � a
i g an orthonormal basis of

real eigenfunctions of the Laplacian ofM . Here, � a
i denotes an eigenfunction with

eigenvalue� i . Recall that `2 denotes the space of real sequencesf ai gi � 1 such that
P

a2
i < 1 . In [11], B�erard-Besson-Gallot (BBG) investigate properties of the family

of maps a
t : M ! `2, t > 0, given by

x 7�! c(t) f e� � i t=2� a
i (x) gi � 1 ; (2.60)

wherec(t) =
p

2(4� )k=2t (k+2) =4. They show

Theorem 9 (BBG) . Let can denote the Euclidean scalar product oǹ2, and let sg

and Ricg denote the scalar and Ricci curvatures, respectively, of the metricg. Then

1.) For all t > 0, the map a
t is an embedding ofM into `2;

2.) The pulled-back metric has the asymptotic expansion

( a
t )� can = g + 1

6 t (sg g � 2Ricg) + O(t2) as t ! 0+ :

Together, these imply that the (in�nite-dimensional) spectral embedding  a
t pre-

serves the topology ofM for all t > 0 and gives better approximations of its geometry

as t ! 0+ .

Now BBG scale the embedding a
t , de�ning the spectral embeddingof (M; g) with

respect to the orthonormal basisa to be

I a
t (x) = V 1=2

M f e� � i t=2� a
i (x) gi � 1 ; (2.61)
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whereVM is the volume ofM . The factor V 1=2
M is used to makeI a

t invariant to scaling.

Here B(M ) will denote the collection of orthonormal bases of eigenfunctions.

One aim of BBG is to de�ne a distance between Riemannian structures as a par-

ticular distance between spectral embeddings. LetdH denote the Hausdor� distance

between compact subsets of`2. Given two Riemannian manifoldsM; N , their spectral

distance is de�ned to be

dS(M; N ; t) := max f sup
a2B (M )

inf
b2B (N )

dH (I a
t (M ); I b

t (N )) ;

sup
b2B (N )

inf
a2B (M )

dH (I a
t (M ); I b

t (N )) g:
(2.62)

Remark 4. Unlike the Gromov-Hausdor� distance dGH, the spectral distancedS

�xes the metric space into which the spaces (M; g) and (N; h) are embedded and

explicitly gives all possible embeddings to be considered.We �nd their next theorem

remarkable.

Theorem 10 (BBG) . For any �xed t > 0, dS is a distance between isometry classes

of Riemannian manifolds. In particular, dS(M; N ; t) = 0 if and only if M and N are

isometric.

Theorem 11 (BBG) . Let (M k ; g) be a closed Riemannian manifold,� 0 > 0, and n0

a positive integer. Leth be any metric onM such that (1 � � )g � h � (1 + � )g,

� < � 0. It is furthermore assumed that the metrics under consideration have their

Ricci curvatures bounded from below by� (k � 1)K 2 for some constantK . There exist

constants � g;i;K (� ); 1 � i � n0, which go to 0 with� , such that to any orthonormal

basis f  i g of eigenfunctions of� h one can associate an orthonormal basisf � i g of

eigenfunctions of� g satisfying k i � � i k1 � � g;i;K (� ) for i � n0. Here, k�k1 is the

sup-norm.

Theorem 12 (BBG) . The eigenvalues of the Laplacian are continuous with respect

to the spectral distances.

Remark 5. These theorems are very signi�cant for spectral methods. First, Theo-

rem 9 indicates how well the embedding resembles the original manifold. Theorem
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10 indicates that the spectral embedding approach in shape analysis rests on solid

theory and that this map provides a rigorous representationof shape. Theorem 11

indicates that the �nite-dimensional embedding is continuous with respect to geomet-

ric structure. Finally, Theorem 12 indicates that the spectrum makes for a robust

shape representation. We will bring these theorems up againwhen their signi�cance

for our work is obvious.

2.7 The basics of shape classi�cation

A classi�er is an algorithm that makes a prediction about input data. Its predic-

tion is based on internal parameters learned from labeled data L = f (M i ; L i )g, where

M i is an observation from groupL i . This is the \training step". Once its internal

parameters are learned, the classi�er can take a novel inputM 0 and predict the group

amongf L i g to which M 0 belongs.

To evaluate the strength of a classi�er, one may use the leave-one-out (LOO)

method to determine itsclassi�cation accuracy. All labeled data are used as follows.

Each sample is once withheld as the lone test sample and the classi�er is trained

on the remaining samples. Because the test sample is labeled, we can compare the

classi�er's prediction to the ground truth label. The fraction of samples which are

accurately classi�ed when left out is the LOO classi�cationaccuracy.

In shape classi�cation we begin with shapesM 1; : : : ; Mn and a shape metric (or

pseudo-metric)d. The pairwise distance matrixD ij := d(M i ; M j ) is studied to �nd

the intrinsic clusters formed by the shapes. This distance data can be used to visualize

the clusters or to train a classi�er. For visualization, we often use multi-dimensional

scaling (MDS), which is a nonlinear projection of distancesonto the Euclidean plane.

For classi�cation, each shape is represented as a feature vector M i 7! (D ij ).

Our standard classi�er is the support vector machine (SVM). Given labeled train-

ing samples from two groups, SVM learns a hyperplane ofRN that best divides the

groups, which we call the separating plane. Thus, the half-space into which a test

sample falls determines its predicted label.
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When the groups are not expected to be separated linearly, SVM can be applied

after feature vectors are transformed by a kernel function.We begin with an n � n

distance matrix (D ij ) of training data f (M i ; L i )gn
i =1 , where the labelL i 2 f 0; 1g gives

the group to which the sample belongs. For example,M i is the hippocampus surface

of a control individual if L i = 0 and a MCI-AD individual if L i = 1. For a given

weight � > 0, we form E ij := exp(� D 2
ij =4� ). The vector (E ij )n

j =1 now represents

samplei from group L i .

For each test sampleM 0, we may calculate the signed distance to the separating

plane, whose sign gives the predicted label for the sample and whose magnitude

indicates the certainty of the prediction. This signed distance is called thedecision

value.

2.8 Shape registration

Shape registration allows us to localize any features that distinguish between ex-

perimental and control groups. The registration of a sourceshapeM to a target shape

N produces a point correspondence' : M ! N . For now, we do not distinguish a

shapeM from its sample. As mentioned before, challenges presented by registration

in morphometry include the elastic nature of anatomical shapes and the number of

shapes to be registered.

We begin this section with the inuential Iterative ClosestPoint algorithm from

[13], along with some of its modi�cations. Spectral methodsin registration will then

be discussed.

2.8.1 The Iterative Closest Point algorithm

The Iterative Closest Point algorithm (ICP) produces a registration by iterating

two steps. The �rst step estimates the point correspondence' : M ! N , and the

second step transformsM to reduce the net distance between corresponding points

relative to this estimate. In more detail, ICP runs as follows.
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First, the shapes are normalized. The centroids of submanifolds M; N � Rm

are translated to the origin ofRm and thereafter translations are disregarded. The

following two steps are then iterated.

Step 1. Each point in M is assigned to its closest point inN ; that is, the

correspondence' : M ! N is �rst estimated as

'̂ (x) := arg min
y2 N

ky � xk2 : (2.63)

The cost of the estimate ^' is de�ned to be

cost( ^' ) :=
X

x2 M

k'̂ (x) � xk2 (2.64)

Step 2. A rigid transformation T : Rm ! Rm that optimizes the net proximity

of matched points is determined:

min
T 2 SO(m)

cost( ^' j T); (2.65)

where

cost( ^' j T) =
X

x2 M

k'̂ (x) � T(x)k2: (2.66)

This minimization problem has a closed-form solution. In the next iteration, M is

replaced byT(M ).

Each iteration positionsM so as to decrease cost(�). When the di�erence between

consecutive shape distances falls below a preset threshold, the ICP algorithm termi-

nates. At termination, the �nal estimated correspondence ^' is a local minimum of

cost(�) over rigid motions of M . Said another way, �xing M and N determines a

map cost :SO(m) ! R+ ; ICP converges monotonically to a local minimum of cost(�)

which is determined by the initial positions ofM; N .

Besl and McKay remark that ICP tends to be e�ective when points that are

expected to match are initially close enough and sampling isnearly uniform. Other-

wise, the algorithm may not produce a meaningful shape correspondence since cost(�)

generally induces multiple local minima.
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2.8.2 Non-rigid transformations and soft assignment

To address certain limitations of the rigid ICP algorithm, Chui and Rangarajan

[21] implement a more exible transformation and operate ona \soft assignment"

rather than a rigid binary correspondence. The particular transformation used is the

thin-plate spline (TPS) [15, 87], which bends points inM toward their corresponding

points in N . The thin-plate spline T : Rm ! Rm minimizes second derivatives, or,

bending energy, while guided by control points determined by the estimatedcorre-

spondence ^' : M ! N . Speci�cally, TPS(� 1) minimizes

cost( ^' j T) + � 1J m (T) ; (2.67)

whereJ m is a functional that measures sharp bends and� 1 > 0 is some constant. If

we denote thei th component ofT by T i , then

J m (T) :=
X

� 1+ ��� + � m =2
1� i � m

2
� 1! � � � � m !

Z

Rn

� @2T i

@x� 1
1 � � � @x� m

m

� 2
: (2.68)

The smoothness parameter� 1 in (2.67) is chosen to balance between rigidity and

smoothness ofT. If � 1 is too small, then T may fail to be a di�eomorphism, as

singularities may be created in bringing points together [15]. At the other extreme,

if � 1 is too large, thenT reduces to a rigid motion. The dimensionm determines

the associated TPS basis function, henceT. Here, partial derivatives of order 2 are

considered. However, ifm is large enough, it may be necessary to implement higher

orders to achieve a well-behaved spline [87].

In soft assignment, each point inM is assigned to a weighted average of nearby

points in N . Details are provided in Section 7.1.3.

2.8.3 Spectral representations in registration

In morphometry we anticipate homologous shapes to have nonlinear di�erences

(cf. Bookstein [15]). Thus, point correspondences like those above, which are based

solely on proximities in Euclidean space, are fundamentally limited in applications to
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morphometry. To overcome these limitations, spectral representations are input into

classical registration algorithms [44, 56, 60, 5, 69]. Recall that such representations

are naturally robust to nonlinear di�erences, as they come from the intrinsic geometry

of the surfaces. Given a spectral representation, the ICP approach is more likely to

produce correct matches since points expected to correspond map to close points in

the spectral domain (once eigenfunction signs are matched). Hence, estimating the

correspondence' in the spectral domain is expected to produce a more natural result

than in Euclidean space.

For representing intrinsic geometry, spectral representations rather than geodesic

distances are prefered for several reasons: (1) the sparsity of the Laplacian matrix

is desirable for computational e�ciency, (2) the multiscale nature of the spectral

representations is seen as a great advantage, and (3) topological perturbations result-

ing from noise can greatly inuence intrinsic distances whereas spectral geometry is

relatively robust (cf. [20]).

Spectral embeddings are used for surface registration in [5, 77, 51, 45, 61, 75, 69]

and elsewhere. The di�erences in these methods lie in what registration algorithm

is applied to the embeddings and in how the sign and order indeterminacies of the

eigenfunctions are handled. In comparing spectral embeddings, the sign indetermi-

nacy must at some stage be addressed, usually in preprocessing. As for the order

ambiguity, some approaches simply assume that the eigenfunctions are ordered con-

sistently across shapes, for example, that� 4 of shapeM captures the same geometrical

feaures as� 4 of shapeN . Recall that in spectral embeddings eigenfunctions are pro-

jected onto Euclidean space in their induced order, and although this may be the

most natural embedding, it does not always map similar shapes to similar images as

we will see. By making a compensating switch in the order of the eigenfunctions of

one of the shapes, their spectral embeddings may sometimes be brought into a more

natural alignment, but automating this compensating switch can be tricky and adds

combinatorial complexity.
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One interesting alternative to optimizing the correspondence cost function over

sign choices is studied by Reuter in [69], where sign matching is done by optimiz-

ing the persistence of the Morse-Smale complex of each eigenfunction. That is, the

eigenfunctions are matched according to topological similarity.

Some side-step the problem, using only the �rst eigenfunction or some a priori

knowledge to guide a more classical approach. For example, Shi et al. [77] use level

sets of� 1 as landmarks to guide unsupervised parametrization ofM to the sphereS2.

They apply this method to register hippocampi in studying morphometric di�erences

in subjects with secondary progressive multiple sclerosis.

The most similar to our registration algorithm (Section 7.1) is Jain-Zhang-van

Kaick (JZK) [45], which we now discuss in more detail.

Jain-Zhang-van Kaick's algorithm. The registration algorithm in [45] is de-

signed to �nd a meaningful vertex-vertex correspondence between two triangle meshes.

JZK apply TPS in the spectral domain to align the \embeddings". The eigenfunc-

tions are computed from an unnormalized Laplacian, and the embedding coordinates

are weighted as in Coifman-Lafon (Section 2.6.2). They use the eigenvalue normal-

ization to reduce e�ects of larger eigenfunctions, which are known to be less reliable

across shapes. Additionally, the normalization reduces thee�ect of truncation, that

is, the choice of embedding dimension. They take bandwidth� = half the maximum

intrinsic distance between vertices.

JZK give serious attention to eigenfunction matching, and they demonstrate that

stretching can cause eigenfunctions to switch places. Afterderiving the complexity

of an exhaustive search that would permute the order and signof the eigenfunctions,

JZK consider the following greedy heuristic. They start witha 2-dimensional embed-

ding (something small) and �nd the optimum over permutations and signs. Then,

after determining its optimal position and sign, the next eigenfunction is added. Each

iteration adds the next eigenfunction in this way until the desired embedding dimen-

sion k is reached. In this approach,O(k2) possible embeddings are considered. In
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their experiments,k = 6 is taken. JZK remark that their greedy heuristic is successful

for 7/10 surface pairs.

50



CHAPTER 3

THE FINITE SPECTRAL EMBEDDING

The goal of representing anatomy under the assumption that anatomy is elastic has

brought us to consider intrinsic geometry. The intrinsic geometry of a shape (M k ; g)

is encoded in its Laplacian eigenfunctions� i and eigenvalues� i . This observation has

led many to represent intrinsic geometry in the form of spectral embeddings. Here

we consider the story of the shape representationH t : M ! Rm given by

H t (x) = ( e� � 1 t=2� 1(x); : : : ; e� � m t=2� m (x) ): (3.1)

We �rst used this map for shape registration in [5], where it was called the \heat kernel

representation". Up to scaling, this map has the same form as those in [23, 11]. We

now have much more to say about this map.

In this chapter, we show thatH t gives an embedding ofM in the sense of di�er-

entiable manifolds, which is fundamental in its application to shape registration. We

next discuss properties ofH t , including (1) stability of H t under metric perturbations;

(2) an interpretation of t as a attening parameter and in terms of Brownian motion;

(3) aspects of the shape of the embedding that may possibly lead to more e�ective

use of the embeddings in registration. Thereafter, a shape metric based onH t is

discussed.

A mug and its 3D spectral embedding are shown in Figure 3.1. Theembedding is

transparent to show the origin and axes of spectral space, and the surface color on both

surfaces is given by an approximation of the mug's Gaussian curvature. Note that the

torus-equivalent topology of the mug is preserved in the embedding. Approximation of
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Figure 3.1: A mug and its 3D spectral embedding.

the Gaussian curvature is given by� (x) � (12�K (t; x; x ) � 3=t), wheret has be chosen

according to the Gauss-Bonnett formula
R

M (12�K (t; x; x ) � 3=t) = 2 �� (M ) = 0.

3.1 Is the \spectral embedding" an embedding?

Before saying more aboutH t , we consider general spectral \embeddings". In

particular, we consider �nite-dimensional maps (M; g) ! (Rm ; `2) of the form

x 7�! f ai � i (x)g1� i � m (ai 6= 0) (3.2)

where theai do not depend onx 2 M . Recall, for instance, that Belkin and Niyogi

sought a representation that would reduce the embedding dimension of an intrinsically

low-dimensional manifold in such a way that local geometricfeatures are preserved.

Their proposed functional led to the choicesai � 1. Having a result for maps of this

form strengthens the theory underlying the work of Belkin-Niyogi, Coifman-Lafon,

Rustamov, and others in the shape analysis community, who studied and used such

maps for various choices of theai as discussed in Section 2.6. In particular, we

show that such maps are true embeddings. Recall that for a compact manifold M a

di�erentiable map f : M ! N is an embedding ofM into N if f is injective and an

immersion, that is, rankdf x = dim M for every x 2 M .

Theorem 9, which we quoted above from BBG [11], implies that in�nite-dimensional

maps of the form (3.2) embed closed Riemannian manifolds into the Hilbert space`2.
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However, whether these maps remain embeddings, or even injective, when projected

into �nite-dimensional Euclidean space has not been addressed by the applied com-

munity. Despite this, these authors refer to them as \embeddings" as pointed out in

Section 2.6.

This is not a mere clash of terminology. Although Coifman-Lafon noted their maps

are embeddings in the discrete case, their argument does notaddress the case in which

new points are added to the data. Speci�cally, their embedding dimension is taken to

be the size of the full point sample. This obviously poses a combinatorial challenge,

which is often handled by truncating the representations. With truncation, however,

the spectral distance is no longer guaranteed to be a metric.Under the assumption

that the shape or data is a sample drawn from some Riemannian manifold, we should

expect the embedding dimension to depend on the dimension and geometry of the

manifold, and not the sample size.

Not knowing a priori whether these maps are injective is a fundamental problem for

these methods. It is even more signi�cant when these spectral representations are used

for registration, where image points should be unique. For example, the 3D spectral

embedding of an ADNI hippocampus is shown in Figure 3.2. This case is typical for

our particular set of ADNI hippocampus data. Note that the representation does not

e�ectively separate points in 3D spectral space, as opposite sides of the hippocampus

nearly intersect. Because our registration algorithm depends on distances in spectral

space, points on opposite sides of the hippocampus will be taken for neighbors with

the 3D embedding, sometimes resulting in an erroneous correspondence.

We address this problem and show that all maps of the form (3.2) are smooth

embeddings into any �nite-dimensional Euclidean space of su�ciently high dimension.

Theorem 13. Any map of the form (3.2) is a smooth embedding for large enough

m 2 N.

Proof. We examine the map

� N (x) = ( � 1(x); : : : ; � N (x))
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Figure 3.2: A hippocampus from two angles (left) and its 3D spectral em-
bedding (right). Surface color is given by distance in spectral space from the
point indicated by the red ball. (The hippocampus belongs to the ADNI control

group and has been smoothed.)

and note that all other maps (3.2), includingH t , are equivalent up to an invertible

linear transformation (as we assumedai 6= 0).

Our proof is divided into several steps. In Section 3.1.1 below, we show that � N

is an immersion for someN 2 N. It then follows that H N
t = f e� � i t=2� i g1� i � N is an

immersion for all t 2 R. We show that H m
t is injective for some �nite m � N as

follows.

Noting that H N
t is an immersion andM is compact, we apply the inverse function

theorem to obtain a �nite open coverf Uj g1� j � l of M such that H N
t jUj is an embedding

of Uj into RN for each 1� j � l . We will need the Lebesgue number� > 0 for this

cover (taken with respect to intrinsic distanced).

We now call for the heat kernelK . For eacht > 0, put

g(t) := inf
d(x;y )� �

K (t; x; x ) � K (t; x; y ): (3.3)

That g is continuous int follows from compactness ofM � M and continuity of d; K .

Gaussian estimates forK imply lim t ! 0 g(t) = + 1 . ChooseT > 0 to satisfy g(t) � 3

for all t � T. We now recall the Hilbert-Schmidt expansion

K (t; x; y ) =
1X

i =0

e� � i t � i (x)� i (y)
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holds absolutely and uniformly on [T;1 ) � M � M . Put

K n
T (x; y) :=

nX

i =0

e� � i T � i (x)� i (y)

and choosem = m(T) � N satisfying jK T � K m
T j � 1 on M � M . Now, for any

x; y 2 M , d(x; y) � � ,

3 � K (t; x; x ) � K (t; x; y ) (3.4)

� K m
T (x; x) � K m

T (x; y) + 2 : (3.5)

HenceK m
T (x; x) � K m

T (x; y) > 0.

Finally, observe that the equalityH m
T (x) = H m

T (y) implies K m
T (x; x) = K m

T (x; y).

By our choice ofm and T, equality cannot occur ford(x; y) � � . For d(x; y) < � ,

equality cannot occur becauseH m
T jUj is an embedding for someUj containing x and

y. Finally, it is obvious that H m
T will remain an embedding if we take largerm.

3.1.1 Eigenfunction immersions

Our immediate goal is to show:

Lemma 3 (Pointwise convergence of derivatives). Let (M k ; g) be closed, connected.

Let x 2 M , X 2 TxM be arbitrary. Then there exists a sequencef ai g for which

X =
P 1

i =1 ai r � i (x) (converges atx). Here, r denotes the Riemannian gradient.

A proof of this lemma relies on more than compactness, regularity, and uniform

convergence. For example, consider

Remark 6. Let M = S1 as a di�erentiable manifold with coordinate � in a neigh-

borhood of 0, and letf n (� ) := sin( n� )=
p

n. Put f := lim f n . Observe that M is

compact, f = 0 2 C1 (M ), f n 2 C1 (M ), and f n ! f uniformly. Nevertheless,

df n =
p

n cos(n� ) d� does not converge at 0, for instance.

Lemma 3 relies on properties of the eigenfunctions of an elliptic operator. The

elliptic regularity theorem and Sobolev lemma, stated in Appendex A, are crucial

here. In proving the lemma, we observe the following.
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Lemma 4. The Laplace-Beltrami operator� on (M k ; g) is locally elliptic of order 2.

Proof. Let (U; ' ) be a chart onM . Then � = � gab(@a@b � � c
ab@c) on ' (U) � Rk ; the

coe�cients are C1 and gab is symmetric, positive de�nite at each point. Hence � is

elliptic on ' (U).

Proof of Lemma 3. Let f 2 C1 (M ), and put ai := h� i ; f i 2. We consider the conver-

gencef =
P

i ai � i at an arbitrary point x 2 M . Let (U; ' ) be a chart containingx.

We considerf̂ :=
P

i ai � i as a distribution on 
 := ' (U). Above we showed that �

is elliptic of order 2 on 
. � f 2 C1 since f 2 C1 . As f̂ and f are equal as dis-

tributions on 
, the Elliptic Regularity Theorem (17) impli es that f̂ = f 2 H loc
q+2 (
)

for all q 2 N. Now let 
 0 be any neighborhood ofx, 
 0 � 
. Then f̂ 2 Hq+2 (
 0)

for all q 2 N. From the Sobolev lemma (18), we see thatD � f = D � f̂ =
P

i ai D � � i

holds pointwise on 
0 for any multi-index � . Finally, to get convergence of gradients

to X 2 TxM , choose af 2 C1 (M ) with f (x) = x i gij (0)X j on a neighborhood ofx.

Then X = r f =
P 1

i =0 ai r � i .

Remark 7. Alternatively, Lemma 3 can be shown after extending the Sobolev lemma

and elliptic estimate to Riemannian manifolds (cf. [72]). However, we never need such

machinery. The following lemma is invoked in [11], who knew it well enough to forego

a proof.

Lemma 5. For eachx 2 M k , there exist i 1; : : : ; ik such thatBx := fr � i 1 ; : : : ; r � i k g

spansTxM .

Proof. Let V := [ r � i (x)] � TxM , that is, V denotes the subspace spanned by the

gradients of all eigenfunctions. If dimV < dim M , chooseY 2 TxM , Y 2 V ? . Get

(previous lemma) Y =
P

ai r � i at x, and kYk2
x =

P
ai hY;r � i i = 0. Conclude

V = TxM , and we may choose a basisV = [ r � i 1 ; : : : ; r � i k ].

With notation as in the lemma, put � x (y) := ( � i 1 (y); : : : ; � i k (y)). From the

preceding lemma and inverse function theorem, there is a neighborhoodUx of x on
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which � x is a di�eomorphism. SinceM is compact, we can choose �nitely many

local di�eomorphismsf � x j g1� j � l coveringM . Letting N be the largest eigenfunction

index found in f � x j g1� j � l , we see that �N is an immersion. We now have

Proposition 6. � N is an immersion for someN 2 N.

3.1.2 The embedding dimension

Now we would like to know the smallestm for which H m
t is an embedding. A lower

bound for the embedding dimensionm will be valuable for knowing where to begin

in the registration algorithm and also for knowing the computational complexity in

using the embeddings.

Before invoking properties of the heat kernel, we make some preliminary observa-

tions. First, for a compact di�erentiable manifold M k any smooth mapF : M ! Rm ,

m � 2k + 1, is � -close to an embedding~F : M ! Rm . That is, for any � > 0, there

is an embedding~F : M ! Rm such that supM jF � ~F j < � . (cf. Whitney embedding

theorem on p246, Lee [53].) Second, ifM k is spherical, then we must havem > k in

H m
T (the Borsuk-Ulam theorem). For (S2; can), in particular, H 3

0 gives anisometric

embedding (� 1 = x; � 2 = y; � 3 = z).

The proof of Theorem (13) hints that having a lower bound for the embedding

dimension likely requires an upper bound for the remainder term

Rm (t) := sup
(x;y )2 M � M

1X

i = m+1

e� t� i j� i (x)� i (y)j : (3.6)

By the Cauchy-Schwarz inequality it is enough to consider the diagonal.

Put � i =
p

� i . Note that a uniform bound onk� i k1 allows us to write Rm (t) �

C
P 1

m+1 e� t� 2
i � k� 1

i . One may check that the terms in the sequencee� t� 2
i � k� 1

i are

decreasing for 2t� i � k � 1, which itself suggests a requirement form. We observe

that
P 1

m+1 e� t� 2
i � k� 1

i may be compared with the Gamma function using the known

upper and lower bounds on the eigenvalues� i . This may not be necessary, however,

given the following result:
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Theorem 14. Let (M k ; g) be closed. De�ner0 to be the in�mum of Ricci curvature

over unit tangent vectors onM , and let d(M ) denote the diameter of(M; g). If (M; g)

satis�es r0d(M )2 � � (k � 1)� 2, � 2 R+ , there exists a positive numbera(k; � ) such

that

VM K M (t; x; x ) � Z (Sk ; can;t=R2) (3.7)

whereR := d(M )=a(k; � ). (cf. [12, 11])

The right bound in equation (3.7) is the heat trace of the sphere and has an

explicit formula. Moreover, it is possible to calculatea(k; � ) explicitly [12].

Suppose we know, or have a good estimate of, a lower bound for the Ricci curva-

ture (i.e. Gaussian curvature fork = 2) and diameter of (M; g). We then calculateR

as above andZ(t=R2) = Z (Sk ; can;t=R2). Furthermore, suppose we have computed

eigenfunction-values (� 0; � 0); : : : ; (� m ; � m ). Then we can boundRm from above ac-

cording to

Rm (t) � � 2
0 Z(t=R2) � min

x2 M

mX

i =0

e� t� i � 2
i (x): (3.8)

This admits a recursive approach to �ndingm; t for which Rm (t) may be bounded

below any preset value.

In practice, surfaces are often reconstructed from tangentplane projections of

k-nearest neighbors. Thus, we conjecture thatH m
t is an embedding if it preserves

a certain number of nearest neighbors. To be precise, let us call H m
t a k-neighbor

embeddingif all k-nearest neighbors are preserved with respect to the norm ofthe

embedding space.

3.2 Properties of the spectral embedding

Henceforth,spectral embeddingwill refer to the heat kernel representation

H m
t = ( e� � 1 t=2� 1; : : : ; e� � m t=2� m ) = exp( � 1

2 t� m ) � m : (3.9)

We �rst consider a scale-invariant form of this representation, then look at some

properties ofH t .
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A scale-invariant form. As it stands, the spectral embedding (3.9) is sensitive

to scale. As both scale-invariant and scale-sensitive shapemodels are of interest in

practice, we now present a way to normalize scale.1 First note that if we scale a shape

(c.f. Section 2.2.2) bya > 0, the eigenvalues of the Laplacian divide bya2. This is

easily seen in normal coordinates where the Laplacian takesthe standard form of the

Euclidean Laplacian � aM � = a� 2� M � = a� 2�� . As noted before, the eigenfunctions

must be renormalized byak=2, k = dim M . HenceH aM
t = a� k=2H M

t=a2 . We see that

H 0
t = f � � k=4

1 e� � i t=� 1 � i g (3.10)

gives a scale-invariant representation. Alternatively, [11] considers the form

f V 1=2
M e� � i t � i g; (3.11)

which is invariant up to scaling the time parameter.

3.2.1 Stability under metric perturbations

It was pointed out in [81] that the heat kernel is stable underperturbations of the

underlying manifold. The implication for H t follows from

kH t (x) � H t (y)k2 = K (t; x; x ) + K (t; y; y) � 2K (t; x; y ) ; (3.12)

which we will return to below. Note that this equality holds for full and truncated

cases. For now, we observe thatH t will inherit certain properties of K (t; x; y ) by

virtue of this identity. In particular, stability of K implies stability of H t under

perturbations M .

A more precise statement can be given from

Theorem 15 (BBG [11]). Let (M k ; g) be a closed Riemannian manifold,� > 0, and

m 2 N. Let h be any metric onM such that(1 � s)g � h � (1 + s)g, s < � . Let the

Ricci curvatures of all metrics be bounded from below by� (k � 1)r 2
0 for some constant

r0. There exist constants� g;i;r 0 (s); 1 � i � m, which go to 0 withs, such that to any

1In the case of the graph Laplacian, we instead adjust the parameters to impose scale invariance.
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orthonormal basisf  i g of eigenfunctions of� h one can associate an orthonormal

basisf � i g of eigenfunctions of� g satisfying k i � � i k1 � � g;i;r 0 (s) for i � m.

Noting that the exponential terms are bounded by 1, the theorem also applies to

the coordinates of the spectral embeddingH m
t . In other words, the �nite spectral

embedding is well-behaved under perturbations of the metric.

3.2.2 The time parameter

Figure 3.3: A 3D spectral embedding of a human �gure at multiple times.

Time as a attening parameter. To build some intuition for the time param-

eter t, we consider how we might atten a given functionf 2 C1 (M ) over time. That

is, starting from f , what does gradient descent onC1 (M ) with respect to atness

look like? This question will lead to the heat equation onM . We begin with the

Rayleigh quotient

F (u) =
1
2

R
M kr uk2

R
M u2

; (3.13)

which we have already seen in Belkin-Niyogi's arguments. Foru; v 2 C1 (M ),
R

M uv =

0, we have

DF u(v) =
d

dh

�
�
�
h=0

F (u + hv) (3.14)

=

R
M hr u; r vi

R
M u2

(3.15)

=

R
M (� u)v
R

M u2
: (3.16)
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The L2-gradient of F at u is thus � u=
R

M u2. Restricting our domain to the unit

sphereS1 := f u 2 C1 (M ) j
R

M u2 = 1g, the gradient of F at u 2 S1 is seen to be

� u. The gradient descent trajectoryu : I ! S1 with initial condition u(0) = f thus

satis�es

_u(t) = � � u(t)

u(0) = f :
(3.17)

Because its coordinates, up to scaling, satisfy this equation, increasingt has the e�ect

of attening the embedding.

Thus the gradient descent curve starting from� i is given by t 7! e� � i t � i . Con-

catenating the gradient curves together, we getH m
t .

Time as a multi-scale parameter. It is pointed out in [23, 5] and elsewhere

that H t has a \multi-scale" property, which is desirable for shape representation as we

now explain. The kernel sum
P

e� � i t � i (x)� i (y) shows that the contribution of � i to

K t;x decays exponentially with the magnitude of� i t, so that raisingt acts to suppress

higher order eigenfunctions. Any dissimilarity between shapes should be reected in

their eigenfunctions, and the spatial scale at which the dissimilarity appears might

be expected to show in the rate at which their eigenfunctionsdiverge. For instance,

to emphasize the surface at the global level, a large value oft might be chosen. As

t is decreased to 0, the representation obtains more resolution. In this sense, the

representation ismulti-scale.

The multi-scale property of the heat kernelK is described in [81], and the rela-

tionship betweenH t and K noted in (3.12) implies that their arguments are pertinent

here. To begin, the multi-scale property may be understood in terms of Brownian

motion and di�usion processes. For example, for any Borel set U � M , the proba-

bility that a Brownian motion initiating at x 2 M is in U at time t > 0 is given by
R

U K t;x (y) dV(y) (cf. [81]).

Some very precise observations can be made:

Remark 8 (Multi-scale properties [81]).

(i) For any smooth, relatively compactD � M , K D
t;x (y) � K t;x (y) as t ! 0.
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(ii) For any t > 0, x; y 2 D, if D � E, then K D
t (x; y) � K E

t (x; y) for Dirichlet

boundary conditions.

(iii) If [ 1
j =1 D j = M and D j � 1 � D j , then limj K D j

t (x; y) = K t (x; y) for all t > 0.

Intuitively, (i) can be understood as saying thatK t;x gives information local to

x for small t > 0, yet global information ast ! 1 . Properties (ii), (iii) can be

understood in terms of increasing the number of paths between x and y, hence in-

creasing the probabilityK (t; x; y ) of being connected by Brownian motion. Although

the heat equation acts with in�nite speed, these remarks imply that the intuition of

a propogating \heat front" is justi�ed in measure.

3.2.3 A Euclidean view of spectral space

Small-time asymptotics and Gaussian estimates for the heatkernel allow us to

piece together a picture of spectral embeddings from the point of view of Euclidean

measurements in spectral space. In fact, since the spectralembeddingsf H tgt> 0 are

all related by invertible linear transformations, the picture we give ofH t (M ) as t ! 0

will hold for all t > 0 up to scaling of axes. Properties that hold through projection

will give us a picture ofH m
t (M ) � Rm .

We will appeal to the identity

hH t (x); H t (y)i `2 = K (t; x; y ) � � 2
0 ; (3.18)

where we recall that� 2
0 = V � 1

M .

Embeddings are centered. We begin by noting that H t (M ) is centered (with

respect todV) according to

Z

M
H t (x) dV(x) = 0 2 R! : (3.19)

This follows simply by orthogonality of the eigenfunction coordinates ofH t to the

constant � 0.
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The radial coordinate is related to curvature. We consider the radial co-

ordinate in spectral space given by� t (x) = kH t (x)k`2 . First, � relates to curvature

through the asymptotic expansion

� t (x)2 + � 2
0 = K (t; x; x ) =

1
(4�t )k=2

(1 +
s(x)

6
t + O(t2)) ( t ! 0+ ); (3.20)

wherek = dim M and s(x) is the scalar curvature atx [72]. See below for the case

dim M = 2. The expansion implies that� t (x) goes to in�nity as t vanishes. Positively

curved regions protrude outward relative to negatively curved regions. We imagine

the embedding to resemble a wave on a sphere centered at the origin of R! (per the

previous note) which blows up ast ! 0. More precise interpretations are di�cult as

the higher terms in the expansion ofK (t; x; x ) become unwieldy in general (cf. [72]).

Within-shape distances. To interpret kH t (x) � H t (y)k`2 , several have pointed

out that

kH t (x) � H t (y)k2
`2 = K (t; x; x ) + K (t; y; y) � 2K (t; x; y ) (3.21)

easily follows from the inner-product formula (3.18) [23, 11]. However, we have not

seen Gaussian estimates used to study this formula. We use these to get an upper

bound for kH t (x) � H t (y)k`2 that decreases monotonically withr = d(x; y) for any

�xed t > 0. We recall from Section 2.4 that on (0; T] � M � M there exist constants

CU � CL > 0 such that

CL G(t; 2r ) � 2K (t; x; y ) � CU G(t; 1
2r ) ; (3.22)

whereG(t; r ) = G(t; d(x; y)) is the Euclidean Gaussian kernel. This permits an upper

bound

kH t (x) � H t (y)k2
`2 � CU G(t; 0) � CL G(t; 2r ) : (3.23)

An analogous lower bound can be stated, although it will obtain negative values in

general for certaint; r .
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The case of surfaces. Stronger statements can be made for a surface (k = 2).

The only intrinsic curvature of a surface is its Gaussian curvature � 2 C1 (M ), which

simpli�es many more general formulas. We �rst recall (Section 2.2.3) that for surfaces

the scalar curvature issg = 2� and Ricci curvature isRicg = �g , where� is Gaussian

curvature. The asymptotic formula

( a
t )� can = g + 1

6 t (sg g � 2Ricg) + O(t2) as t ! 0+

in [11] then reduces to

( a
t )� can = g + O(t2) as t ! 0+ ;

showing that surfaces embed easier than other manifolds, asone might expect.

Furthermore, the asymptotic formula becomes

K (t; x; x ) =
1

4�t
(1 +

1
3

�t + O(t2)) ; (3.24)

yielding

kH t (x) � H t (y)k2
`2 =

1
2�t

+
� (x) + � (y)

12�
� 2K (t; x; y ) + O(t) : (3.25)

Hence, for smallt > 0 the distance between pointsx0; y0 2 H t (M ) is larger when

they lie on a positively curved region ofM . Intuitively, positively curved regions

are stretched out while negatively curved regions are compressed. This becomes the

most stable feature overt. Note that � 2K (t; x; y ) has upper and lower bounds that

decrease inr = d(x; y) per the Gaussian estimates.

Finally, we consider variations of the radial coordinate
R

M � t (x)2dV(x). From

(3.20), we have Z

M
� t (x)2 dV(x) + 1 =

VM

4�t
+

� (M )
6

+ O(t) ; (3.26)

where � (M ) is the Euler characteristic ofM . This suggests that spherical surfaces

have an energetic radial coordinate (relative to holed surfaces). The expression on

the right is the heat traceZ(t) of M .
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3.2.4 The star-like property

We show that the imageH m
t (M ) bounds a region inRm that is approximately

star-shaped with respect to the origin. Speci�cally, the angle between vectorsx0; y0 2

H m
t (M ) can be bounded from below on a time interval [S; T] provided d(x; y) is

bounded from below. This implies that a �nite sample retracts to a sphere (without

self-intersections).

Proposition 7 (Star-likeness). Given � min 2 [0; �= 2] and dmin > 0, there is a T > 0

such that for anyS 2 (0; T] there is a positive integerN such that if t 2 [S; T] and

d(x; y) � dmin , then the angle� (x; y; t; N ) between vectorsx0; y0 2 RN in the spectral

embedding is greater than� min .

The proof has a similar avor to the proof of injectivity. In fact, it can be used

to prove injectivity for distances greater than the Lebesgue number.

Proof. Angles are given by the dot product formula

cos� (x; y; t; N ) =
K N

t (x; y) � � 2
0

(K N
t (x; x) � � 2

0)1=2(K N
t (y; y) � � 2

0)1=2
(3.27)

We bound K N
t (x; y), for d(x; y) � dmin , from above andK N

t (x; x) from below. Put

a := 3 vol( M ); then, since� 2
0 = 1=vol(M ),

cos� (x; y; t; N ) =
aK N

t (x; y) � 3
(aK N

t (x; x) � 3)1=2(aK N
t (y; y) � 3)1=2

: (3.28)

From uniform Gaussian estimates for the heat kernel, there is a T > 0 such that

sup
d(x;y )� dmin

aK (t; x; y ) � 2 + cos� min and inf
x2 M

aK (t; x; x ) � 5 (3.29)

for t � T. Choose 0< S � T. ChooseN to satisfy jK � K N j � 1=aon M � M � [S;1 ).

Then d(x; y) � dmin and t 2 [S; T] yield aK N
t (x; y) � 3 � aK (t; x; y ) � 2 � cos� min

and aK N
t (x; x) � 3 � aK (t; x; x ) � 4 � 1. Hence

cos� (x; y; t; N ) � cos� min : (3.30)
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3.3 A spectral pseudo-metric for shape
comparison

We now consider a pair of shapesM; N , and how they may be compared through

their spectral representationsH M
t ; H N

t . To begin, we use the Hausdor� distancedH

to quantify how much the representations intersect in the embedding space (Rm ; `2).

Recall that dH was de�ned in (2.34) of Section 2.5.

Recall that H M
t is constructed from a choice of eigenfunction basis forL2(M ).

Hence, we should consider

dH (H M
t ; H N

t ) := dH (H M
t (M ); H N

t (N )) (3.31)

for various bases in order to �nd the best �t. In general, there are two kinds of choices

made whenH M
t is constructed. First, signs of the eigenfunctions are chosen. Second,

eigenspaces with dimension> 1 require a choice of basis. However, in the generic

case (Theorem 2), eigenvalues have multiplicity 1. We expect real-world data to be

generic, and we now make this simplifying assumption. Henceforth, we presume the

choice of� i is unique up to sign. Therefore, 2m spectral representations ofM are

possible inRm .

We de�ne the spectral pseudo-metric

DS(M; N ; t) := inf dH (H M
t ; H N

t ) ; (3.32)

the in�mum being taken over all sign choices, which we formalize below. We �rst

studied DS in [3].

We recall the following result from BBG [11]. Given two Riemannian manifolds

M; N , their spectral distance is de�ned to be

dS(M; N ; t) := max f sup
a2B (M )

inf
b2B (N )

dH (I a
t (M ); I b

t (N )) ;

sup
b2B (N )

inf
a2B (M )

dH (I a
t (M ); I b

t (N )) g;
(3.33)

whereI a
t and H M

t are equal up to a constant anda 2 B(M ) is a choice of basis. They

prove
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Theorem 16 (BBG) . For any �xed t > 0, dS is a distance between isometry classes

of Riemannian manifolds. In particular, dS(M; N ; t) = 0 if and only if M and N are

isometric.

Hence,DS is a generic shapemetric on the in�nite-dimensional embeddings.

3.3.1 Computing spectral distances

The sign indeterminacies inH M
t may be formalized as follows. LetZm

2 be the mod

2 additive group of all bit strings of lengthm. Consider the following action ofZm
2

on mappingsf : M ! Rm . For b= ( b1; : : : ; bm ) 2 Zm
2 , de�ne b� f : M ! Rm to be

(b� f )(x) = (( � 1)b1 f 1(x); : : : ; (� 1)bm f m (x)) : (3.34)

That is, the sign of the i th coordinate of f ips for bi = 1. The orbit of H M
t under

this action, O(H M
t ) =

�
b� H M

t j b2 Zm
2

	
, collects together allm-dimensional spectral

embeddings ofM .

Here we optimize the e�ectiveness of the Hausdor� distance forcomparing shapes

by minimizing the distance over all choices in the orbitO(H M
t ). For each �xed t > 0,

we have

DS(M; N ; t) := min
a;b2 Zm

2

dH (a � H M
t ; b� H N

t )

= min
b2 Zm

2

dH (H M
t ; b� H N

t ) ;
(3.35)

which measures the distance between the orbits ofH M
t and H N

t . (The second equality

follows from the fact that the action ofZm
2 preserves the Hausdor� distance.)

The main computational challenge in calculatingDS is the minimization overZm
2 .

Absolute minimization involves 2m Hausdor� distance computations inRm . The time

complexity of a single Hausdor� distance computation is logged for some examples

in Table 3.1. Unless the embedding dimensionm is small, the optimization becomes

non-trivial, in which case we use the Markov chain Monte Carlo (MCMC) algorithm

(cf. [28]).
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Table 3.1: Time (secs.) to compute the Hausdor� distancedH between
n-point sets in Rm .

m
4 6 8 10

1k 0.2 0.2 0.2 0.2
2k 0.6 0.7 0.8 0.9

n 5k 3.2 4.1 4.9 6.3
8k 9.7 12.4 14.7 19.3

10k 14.0 21.1 25.3 35.3

3.3.2 Markov chain Monte Carlo matching

We now use MCMC to estimate the spectral pseudo-metric

DS(M; N ; t) = min
b2 Zm

2

dH (H M
t ; b� H N

t ) : (3.36)

We de�ne the plausibility of a bit string b2 Zm
2 to be

P l(b) := exp
n

�
d2

H (H M
t ; b� H N

t )
2� 2

o
; (3.37)

where � > 0 is a con�dence parameter. The associated probability distribution on

Zm
2 is � (b) = P l(b)=

P
c2 Zm

2
P l(c), but the normalizing constant typically is unknown

because it involves a computation of exponential cost. The goal is to �nd b that

maximizesP l(b).

To describe the MCMC algorithm, let � i 2 Zm
2 be the m-bit string with i th

coordinate 1 and other coordinates 0. Note thata; b2 Zm
2 di�er on a single coordinate

if and only if a = b+ � i for somei .

MCMC Algorithm

Input. H M
t ; H N

t ; parameter �

Output. Sign-matched spectral representations.

1. Initialize the search with an arbitrary bit string, say, b= (0 ; : : : ; 0).
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2. Calculate the plausibility P l(b).

3. Randomly choose an integeri 2 f 1; : : : ; mg with uniform probability 1 =m and

set b� = b+ � i . Calculate P l(b� ).

4. Put q = min f 1; P l(b� )=P l(b)g. Replaceb with b� with probability q.

5. Repeat 3, 4, 5.

Figure 3.4 shows results for the �rst 7 eigenfunctions of two human surfaces. We

used 6 runs of the chain witht = 0:01 and selected the most plausible bit string

visited. The top two rows show the initial choice of eigenfunctions, and the bottom

row shows the choices determined by the MCMC algorithm. Note that all but the

third eigenfunction align correctly. This happens because� 3 captures a sagittal plane

(near) symmetry of the shape. However, this does not have a noticeable e�ect in the

calculation of shape distance because it is robust to ambiguities associated with near

self-isometries of a shape.

(target)

(source, initial)

(source, �nal)

MCMC

� 1 � 2 � 3 � 4 � 5 � 6 � 7

Figure 3.4: Matching eigenfunctions: The initial choice of eigenfunctions
(top rows) and the �nal choice for the source shape calculated with MCMC
(bottom).
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Figure 3.5: Matching eigenfunctions: The sign plausibilityP l over 140 iter-
ations and six runs of MCMC in matching the two human �gures.

3.4 Discretization

Functions onM are discretized over a set of pointŝM . Let � be the m�j M̂ j matrix

whosei th row is the (i + 1)th normalized eigenvector of � X = D � 1L. Then, the dis-

crete spectral embedding coordinates of thej th vertex is
�
e� � 1 t � 1j � � � e� � m t � mj

� T
.

These vectors are the columns of them � j M̂ j matrix Ĥ M
t = e� � t �, where � is the

diagonal matrix having � i as the i th diagonal entry. The columns ofĤ M
t may be

viewed as the point cloudf yi (t)g � Rm . It is simple to check that the action of a bit

string b= ( b1; : : : ; bm ) 2 Zm
2 on Ĥ M

t can be expressed as

b� Ĥ M
t = ( � 1)B Ĥ M

t = ( � 1)B e� � t � ; (3.38)

where (� 1)B is the diagonal matrix with i th diagonal entry (� 1)bi . For 1 � i � m,

this action simply ips the signs of the entries on thei th row of Ĥ M
t if bi = 1.

70



CHAPTER 4

SPECTRAL INVARIANT SIGNATURES

The eigenfunctions of two shapes occasionally appear to be out of order. For an

example, we include Figure 4.1. Level curves of the eigenfunctions for the terrier

and husky are color coded. Note that� 1 captures the longitudinal behavior of both

dogs, so it is in the correct place in the order of eigenfunctions. However, before

comparison, the sign of one of the� 1's should be ipped. The third eigenfunction� 3

captures essentially the same geometry for both dogs, and soit is matched in both

order and sign. Lastly, note that� 2 of the terrier more naturally corresponds to� 4 of

the husky: it is relatively at over the body, but distinguishes between the left and

right rear legs. To compare these dogs, it appears that a morenatural correspondence

would follow if we permuted the eigenfunctions and changed the sign of one of the

� 1's. Eigenfunctions have been noted to switch places from stretching [45, 60, 69].

Notice that the heat kernel

K (t; x; y ) =
X

i

e� � i t � i (x)� i (y) (4.1)

depends neither on the choice of sign nor eigenfunction order, since � i (x)� i (y) =

(� � i (x))( � � i (y)) and simple associativity of the sum. As such, we call the heat

kernel a spectral invariant. We consider the simpler heat kernel signature (Section

2.6.4)

HKS : K (t; x; x ) =
X

i

e� � i t � 2
i (x) ; (4.2)

and note that it inherits the spectral invariance of the heatkernel. We now ask what

other spectral invariants might there be.
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� 1 � 2 � 3 � 4

Figure 4.1: Level curves of the eigenfunctions for the terrier and husky are
color coded. The order of eigenfunctions does not appear optimal.

To side-step the di�culties of eigenfunction matching, we look at a class of spectral

invariants based on symmetric functions of the �rstm eigenfunctions. Our prelimi-

nary work on these invariants was published in [4]. Each of these spectral invariants is

a symmetric function ofm terms, each of which is a squared eigenfunction weighted

as suggested by the heat kernel. We thereby skirt the assumption that the �rst

m eigenfunctions correspond as ordered by the magnitudes of the eigenvalues, and,

furthermore, we skirt the sign indeterminacy in each eigenfunction.

4.1 Construction of the signatures

We begin with a shapeM and its Laplacian eigenfunctions� 0; : : : ; � m� 1. For

each pointx 2 M , we feedf e� � i t � 2
i (x)g0� i � m� 1 into various symmetric functions. The

factor e� � i t is motivated by the heat kernel, and it allows us to modulate the inuence

of di�erent scales and suppress noise. Notee� � i t � 2
i (x) is precisely the contribution of

the i th eigenmode toK (t; x; x ).

Symmetric polynomials. By a symmetric function we mean a function that is

invariant under permutations of its arguments. For example, consider the symmetric

polynomials f (r; s) = r + s and g(r; s) = rs of two variables. An alternative way of
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constructing these is to �x r and s and consider the quadratic polynomial

(z � r )(z � s) = z2 � (r + s)z + rs

= z2 � f (r; s)z + g(r; s) :
(4.3)

in the variable z. Up to sign, f (r; s) and g(r; s) are the coe�cients of this quadratic

polynomial in z with roots r and s. More generally, for any setf r0; : : : ; rm� 1g of

scalars we consider the polynomial

m� 1Y

i =0

(z � r i ) =
mX

i =0

bi zm� i (4.4)

whose roots arer0; : : : ; rm� 1 and whose coe�cientsb0; : : : ; bm are symmetric polyno-

mial functions of the r i .

Writing r i (t; x ) = e� � i t � 2
i (x) and using (4.4), we obtain coe�cientsbi (t; x ) implic-

itly de�ned by
m� 1Y

i =0

(z � r i (t; x )) =
mX

i =0

bi (t; x )zm� i : (4.5)

The coe�cients bi (t; x ); 1 � i � m; provide m spectral signatures of the shape, and,

by construction, bi (t; x ) depends neither on the sign of the eigenfunctions nor on their

particular ordering.

The signatureb1(t; x ), which is the coe�cient of zm� 1, is given by

b1(t; x ) = �
m� 1X

i =0

r i (t; x ) = �
m� 1X

i =0

e� � i t � 2
i (x) : (4.6)

Thus, � b1(t; x ) is the truncated heat kernelK (t; x; x ), which is precisely HKS. Of

course, we could setr i (t; x; y ) = e� � i t � i (x)� i (y) in equation (4.4) and have� b1 equal

to the truncated heat kernel. However, we restrict our discussion to the simpler

r i (t; x ) = e� � i t � 2
i (x).

We normalize the coe�cient bk(t; x ) by its uniform expected value

� k(t) :=
1

vol(M )

Z

M
bk(t; x ) (4.7)

to obtain the spectral invariant signature

gk(t; x ) :=
bk(t; x )
� k(t)

: (4.8)
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Figure 4.2: A hippocampus with seven sample points and itsg1 signature
at these points graphed with respect to timet.
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Figure 4.3: Theg2; g3; g4 invariants for the same seven points as above are
graphed with respect to timet.
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What properties do these signatures have? It is easy to show that all gk(t; x ) are

nonnegative. Also, we have an explicit formula for limt !1 gk(t; x ).

Remark 9. If � k� 1 < � k , then

lim
t !1

gk(t; x ) =
vol(M )

Q k� 1
� =0 � 2

� (x)
R

M

Q k� 1
� =0 � 2

� (y)
: (4.9)

In particular,

lim
t !1

g1(t; x ) = 1 (if � 0 < � 1) (4.10)

lim
t !1

g2(t; x ) = � 2
1(x) vol(M ) (if � 1 < � 2) (4.11)

etc. (4.12)

The proof of these is given in the Appendix.

4.2 Uniqueness of the heat kernel signature

The coe�cient b1 corresponding to the heat kernel signature HKS is seen to be

the most robust of the signatures in the case of repeated eigenvalues. For example,

suppose� = � 2 = � 3 has a 2-dimensional eigenspace and� 2; � 3 are orthonormal

eigenfunctions for� . Then for any U 2 O(2) (rotations and reections), [ 2  3]T :=

U[� 2 � 3]T could just as well be our basis, and since the action ofO(d) preserves

Euclidean distances,e� �t � 2
2 + e� �t � 2

3 = e� �t  2
2 + e� �t  2

3.

Which of the spectral signaturesbi are invariant under actions ofO(d) for all d

on the roots r i ? Because each coe�cientbi is a polynomial function on the roots,

we may consider an arbitrary polynomial functionf on m variables x1; : : : ; xm . In

general, the only polynomial functionsf that are invariant under rotations in Rm

can be seen to be functions of the formf = g(r ), where r =
p P m

i =1 x2
i is the radial

coordinate. Observe thatb1 is the only coe�cient of this form, hence it is the only

spectral signaturebi that is robust to repeated eigenvalues.
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4.3 Statistical measurements and shape distance

Now we use the spectral signatures to compare shapes. Our approach is to compare

probability distributions of the gk using the Jensen-Shannon divergenceJ [55], which

measures the similarity between distributions. We now consider the details.

We �rst construct the probability density functions as follows. Fix t � 0 and let

gt : M ! R be any of the shape signaturesgk(t; �). Given a probability measure� on

M and any interval I � R, we have

P(gt (X ) 2 I ) =
� (g� 1

t (I ))
� (M )

; (4.13)

whereX is a random point drawn according to� . We denote the associated proba-

bility density function by pM
t : [0; 1 ) ! [0; 1 ), implicitly de�ned by

Z

I
pM

t (s) ds = P(gt (X ) 2 I ) (8I � R) : (4.14)

Here, we use the fact that the support ofpM
t lies in [0; 1 ), since all signatures are

nonnegative.

The Jensen-Shannon divergenceJ is de�ned in terms of the Shannon entropyH

of a distribution p on a setX . Shannon entropy is given by

H (p) := �
X

x2 X

p(x) log2 p(x) : (4.15)

The Jensen-Shannon divergence between distributionspa and pb on X is then

J (pa; pb; � a; � b) := H (� apa + � bpb) � � aH (pa) � � bH (pb) ; (4.16)

where � a; � b � 0 are arbitrary weights satisfying� a + � b = 1. Clearly, J (pa; pb) = 0

if pa = pb. Moreover, it can be shown that 0� J � 1. As for the weights, we take

� a = � b = 1=2.

Finally, let M; N be the shapes to be compared. We �nd the similarity between

probability distributions pM
t and pN

t using the Jensen-Shannon divergenceJ , de�ned

below. We de�ne thegk-divergence betweenM and N to be

Div k(M; N ; t) := J (pM
t ; pN

t ) ; (4.17)
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which we expect to be large for similar shapes and small for dissimilar shapes.

We tested the Jensen-Shannon divergence on 100 normal distributions with means

in [� 3; 3] and standard deviations in [0:1; 3]. Figure 4.4 shows the MDS plot (cf.

Chapter 6) of all pairwise Jensen-Shannon divergences. Colors indicate the particular

mean.

-2 -1 0 1 2
-2

-1

0

1

2

Figure 4.4: MDS plot of Jensen-Shannon divergences of 100 normal distributions.

4.4 Discretization

How do we compute the signaturesgk(t; x )? To begin, we note that thekth

coe�cient bk equals the sum of products of the rootsr0; : : : ; rm� 1 taken k at a time.

That is, the sum overr j 1 � � � r j k for all 0 � j 1 < � � � < j k � m � 1. Hence, to compute

the polynomial coe�cients, we pre-compute the list ofCm
k increasingk-indices form

elements. To computegk , we initially tried summing over the products

expf� t (� j 1 + � � � + � j k ) g � 2
j 1

(x) � � � � 2
j k

(x) : (4.18)

However, for larget, this sum becomes very small which leads to numerical instability

in the normalization step. Instead, we sum over

expf t (� 0 + � � � + � k� 1 � � j 1 � � � � � � j k ) g � 2
j 1

(x) � � � � 2
j k

(x) ; (4.19)

which yields et (� 0+ ��� + � k � 1 )bk(t; x ). This calculation is much more robust, and the

normalization step cancels the factoret (� 0+ ��� + � k � 1 ) to yield exactly gk .
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With this procedure, the computational cost of computinggk has orderO(mk).

Hence, in practice we can only computegk for small k.

To compute the gk-divergenceDiv k , we need to determine the density function

associated withgk . To do this, we �rst need to �x our measure on M . We use

the distribution � induced by a(x) for the �nite sample drawn from M : � (U) =
P

x2 U a(x). Thus, the normalizing constant becomes

� k(t) =

P
x2 P bk(t; x ) a(x)
P

x2 P a(x)
: (4.20)

The expected value ofgk is then 1, since normalization of signatures includesa(x).

Next, we divide the range ofgt = gk(t; �), which is [0; 1 ), into intervals I 1 =

[0; `); : : : ; I s = [( s � 1)`; s` ); : : : of uniform length ` to obtain the histogram. Because

E[gk(t; X )] = 1, we choosè < 1.

The histogram for g1j t=10 � 1:6 of Figure 4.5 above is shown in Figure 4.5. Once

these histograms have been constructed logarithmically over time, measuring thegk-

divergence between shapes is a straightforward computation.

0 0.5 1 1.5 2 2.5 3
0

0.02

0.04
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Figure 4.5: The distribution of g1 at time t = 10� 1:6 for the normal right
hippocampus above.
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CHAPTER 5

DATA PREPROCESSING

The goal of this chapter is to apply spectral methods to data preprocessing in mor-

phometry. As our applications rely on the eigenvalues and eigenfunctions of the

Laplacian, we provide details of the construction of the underlying graph and choice

of parameters in Section 5.1. Following this, we discuss ourexperiments with surface

smoothing in Section 5.2. Figure 6.1 shows the ADNI right putamen surfaces after

smoothing.

5.1 Graph Laplacian parameters

Recall the construction of the unnormalized graph Laplacian L on points M̂ =

f x1; : : : ; xng sampled from (M k ; g). First, a weighted graph (M̂; W ) is de�ned, the

edge weights being determined by support� and bandwidth � parameters. We denote

the column sums ofW by ai and put A := diag (a1; : : : ; an ). The matrix L := A � W

is the corresponding unnormalized graph Laplacian. For convenience we putdij :=

d(x i ; x j ). Recall the entries of the edge weight matrixW

wij =

(
exp(� d2

ij =4� 2) if 0 < d ij < � ;

0 otherwise.
(5.1)

If the support � is not too small, then A is invertible, and the normalized graph

Laplacian is � M̂ := A � 1L.

In this section, we consider the choice of parameters� and � . First, we consider

the e�ect � has on the graph. Second, we note a choice of parameters that will yield
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a scale-invariant Laplacian � M̂ . Third, we consider the complete graph (� � 1) and

derive the asymptotic behavior of eigendata with respect to� . This analysis allows

us to box in the parameter space in search of a \good" choice of� .

Note that if � is large enough, then we get the complete graph. However, computa-

tions on the complete graph require much time and memory, as all o�-diagonal entries

of � M̂ are then nonzero. Another possible disadvantage of the complete graph is that

it may impose unnecessary rigidity in the representation, as can be seen in Figure 5.1.

This rigidity is most apparent in the right column of the parameter matrix and in the

yellow spectral embedding. On the other hand, as we decrease� below some small

threshold, points begin to lose their neighborhoods, and the graph ceases to faithfully

capture the dimension ofM . Additionally, below some threshold, the graph sepa-

rates into multiple components. We always assume that� is large enough to give a

connected graph, which we enforce in practice by checking that the 0 eigenvalue of

� M̂ has a 1-dimensional eigenspace.

Let d̂ denote the average distance between pairs of points in̂M :

d̂ =
1

Cn
2

X

i<j

d(x i ; x j ) : (5.2)

We may construct a scale-invariant Laplacian by choosing

� = C� d̂ and � = C� d̂=2 (5.3)

for �xed universal constantsC� and C� .

Figure 5.1 shows the e�ects ofC� andC� on the spectral embedding computed with

the normalized graph Laplacian. A matrix of spectral embeddings over the param-

eter space (C� ; C� ) for C� 2 f 0:125; 0:25; 0:5; 2; 1g and C� 2 f 0:125; 0:5; 3; 100; 1g

is shown left. In the top right, a normal right putamen with spheres of radius cor-

responding toC� = 0:5 (yellow), 0:25 (green), 0:125 (red). At the bottom right, 3D

spectral embeddings of the normal right putamen using the correspondingC� values

with C� = 3. (Technical note: In the left spectral embedding matrix,all surfaces are

scaled to a common size. In the three bottom right embeddings, a bead of uniform
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Figure 5.1: E�ect of parameters on the normalized graph Laplacian spec-
tral embedding. Matrix of spectral embeddings (left) over the parameter
space (C� ; C� ). A normal right putamen (top right) with spheres of radius
corresponding toC� = 0:5 (yellow), 0:25 (green), 0:125 (red). 3D spectral
embeddings (bottom right) of the normal right putamen usingthe corre-
spondingC� values with C� = 3.

size marks the origin in spectral space, and thex, y, z-axes are color coded red, green,

blue, respectively.)

Now we focus on the� parameter and consider the limits of ��
M̂

= I � A � 1W(� )

for extreme values of� . For x i 2 M̂ , we usex � ( i ) to denote its nearest neighbor.

A genericity assumption guarantees it is unique. However, weacknowledge that in

practice MRI voxel data will produce up to 6 nearest neighbors.

Proposition 8 (Asymptotic properties of � �
M̂

). Suppose that� is large enough to

give the complete graph(M̂; W ) and assume that each point has a unique nearest

neighbor. Then

(a) The eigenvalues of� 0+

M̂
have the form1 and 1+ z, wherejzj = 1; z 2 C. If � � 1(k)

is empty, thenek is an eigenvector with eigenvalue 1.

(b) � 1
M̂

has 0 as an eigenvalue with multiplicity 1; the other eigenvalue is� = n=(n �
1) � 1, with multiplicity n � 1.

81



The proof may be found in Appendix B.

5.2 Smoothing data with the heat kernel

Convolution with a smoothing kernel is an established technique used to �lter

distortion and noise out of various kinds of data [88]. The heat kernel has been

applied to smooth surface features [22]. For example, suppose data pointsf yi g come

from the surface of a brain structure corresponding to actual points f x i g. That

is, yi = x i + " i , where" i represents noise in the data (from segmentation, etc.). We

obtain an estimatex̂ i of the actual point x i by applying heat-kernel smoothing to each

spatial coordinate independently. For illustration, we apply heat-kernel smoothing to

the surface coordinates of an ADNI surface (Figure 5.2). This smoothed data is used

in registration, which we discuss in Chapter 7.

We recall the heat kernel expansion

K t;x (y) =
1X

i =0

e� � i t � i (x)� i (y): (5.4)

Given an initial distribution f 2 L2(M ), the map x 7! hf; K t;x i supplies a rounded

out copy of f , as any irregularities smear away at the start. More precisely, if we

de�ne f t : M ! R by f t (x) := hf; K t;x i for t > 0, then f f tgt> 0 is a family of

smooth approximations off . Moreover, if f is continuous, then limt ! 0+ f t (x) = f (x)

uniformly in x [20]. Hence, the approximationsf t are in a sense optimal, and we

think of shorter durations of t as giving closer approximations off . Explicitly, we

have

f t (x) =
1X

i =0

ai e� � i t � i (x) ; (5.5)

with ai := hf; � i i . In computation, we truncate this sum at indexm. We expect

that choosing a larger value oft has a similar e�ect as truncating at a smallerm. In

practice, we simply putt = 0 and consider the result of varyingm.
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original m = 80 m = 50 m = 20

Figure 5.2: Two sides of an ADNI putamen surface smoothed form = 20,
50, 80 (t = 0). (Control individual. Graph Laplacian parameters used areC� = 0 :25,
C� = 3.)

Discretization. Functions on M are discretized over a setM̂ of n vertices

(in a simplicial approximation, points drawn uniformly from M , etc.). Suppose we

want to apply smoothing to f : M̂ ! R. Let � be the ( m + 1) � n matrix whose

(i + 1)th row is the i th normalized eigenvector of �M̂ = A � 1L, and let � denote the

diagonal matrix having � i as the (i + 1)th diagonal entry. Representingf by the

column vector
�
f 1 � � � f n

� T
, we havef t = � T e� � t � Af for t > 0. More generally, a

vector function F : M̂ ! Rk can be smoothed with the (essentially same) operation

Ft = � T e� � t � AF , whereF is represented as ann � k matrix.
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CHAPTER 6

CLASSIFICATION

We now consider the potential of our shape representations for shape classi�cation.

Recall that the basics of classi�cation methods were discussed in Section 2.7. Our

most basic classi�cation task is to test whether di�erent structures can be e�ectively

separated. We do this with the MGH data. Recall that MGH data comprises the

caudate nucleus, hippocampus, putamen, and thalamus.

A more interesting classi�cation task is to test separationbetween Control and

MCI-AD groups on a given structure. This is done with ADNI data. Recall that ADNI

surfaces include the hippocampus, putamen, and thalamus. These three structures

are of interest to us because, as noted above, their volumes have been noted to

have signi�cant sensitivity to the neurodegeneration associated with AD. We also

noted that the studies considered suggested discriminatory power of the right-side

structures. Figure 6.1 shows the ADNI right putamen surfaces after smoothing.

The number of surfaces from the Normal and MCI-AD groups shown are 22 and

48, respectively, which was determined by the quality of data. Graph Laplacian

parameters used areC� = 0:25, C� = 3.

Below, two representations are used to cluster substructure surfaces: (1) the Haus-

dor� distance between heat kernel representations, and (2)statistical features of the

spectral signatures. We used the shape pseudo-metricDS (Section 3.3) to cluster

di�erent subcortical structures in [3].
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Figure 6.1: ADNI right putamen surfaces after smoothing (left,middle).
The nodal set � � 1

1 (0) is indicated on each surface. Their eigenvalues (top
right) and normalized eigenvalues, i.e.� n=� 1 (bottom right).

6.1 Classi�cation with spectral distances

6.1.1 MGH data

The MGH data consists of four substructures. For this data set, we use the

scale-invariant 12-dimensional spectral representationwith t = 1 obtained from the

combinatorial Laplacian. We calculateDS between each structure, using Markov

chain Monte Carlo optimization to determine eigenfunctionsigns according to the

plausibility parameter � = 0:1.

Figure 6.2 shows a MDS plot of the distance data. We remind the reader that

MDS is a nonlinear �tting of distances into 2D (cf. Section 2.7). It is apparent that

the 2D projection of pairwise distances cleanly separates the four substructure groups.

Moreover, the putamen and thalamus clusters lie closest together with respect toDS,

reecting their similarity in shape.
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Figure 6.2: MDS plot of generic shape distances between the four structures
in the MGH data.

6.1.2 ADNI right putamen data

We useDS to cluster 22 normal and 36 MCI-AD right putamen. For this data

set, we use the scale-invariant 4-dimensional spectral embedding with t = 0, obtained

from the (normalized) graph Laplacian withC� = 0:25, C� = 3. Eigenfunction signs

are chosen by hand. Figure 6.3 shows the MDS plot of the distance data, along with

the results of using thè 2-distances on the spectrum and normalized spectrum. The 2-

dimensional projection of pairwise distances appears to separate the two groups more

e�ectively than the spectra alone. Figure 6.4 shows the decision values (the signed

distances to the separating plane) for SVM applied to theDS distances. The LOO

classi�cation accuracy for SVM with DS is 86.2%. For the spectrum and normalized

spectrum, the accuracy is 62.1% and 67.2%, respectively.

6.2 Classi�cation with spectral signatures

Here, each surface is represented by statistics of its spectral signatures (Chapter

4). A support vector machine (SVM) is trained on these statistical features, then

leave-one-out (LOO) is used to evaluate classi�cation accuracy.

86



-2 -1 0 1 2
-2

-1

0

1

2

DS

-2 -1 0 1 2
-2

-1

0

1

2

f � n=� 1g50
n=1

-2 -1 0 1 2
-2

-1

0

1

2

f � ng50
n=1

Normal

MCI-AD

Figure 6.3: MDS plot of distance data in ADNI right putamen set (m = 4,
C� = 0:25, C� = 3, t = 0). For spectrum distances, the`2-norm on R50 is
used. Twenty-two members of the normal group and thirty-sixmembers of
the MCI-AD group are represented.
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Figure 6.4: Histogram of SVM decision values for the Hausdor� distance
data in the ADNI right putamen set, corresponding to a classi�cation accu-
racy of 86.2%.
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6.2.1 Maximum, minimum, and standard deviation features

We �rst compare the g1 signature1 across the ADNI population using the maxi-

mum, minimum, and standard deviation ofg1(t; x ) over the space variablex per value

of t > 0. In this way, each surface is identi�ed with three functions in t: gmax
1 (t),

gmin
1 (t), and gstd

1 (t). These three functions are sampled logarithmically atT times,

which are then concatenated to form feature vectors of length 3T associated with

g1. In these experiments, we sampleT = 32 times for each subcortical structure. A

linear SVM classi�er is trained on these features, and we compute the classi�cation

accuracy. These steps are repeated forg2(t; x ). Classi�cation accuracy is recorded in

Table 6.1 for experiments with the right hippocampus, rightputamen, right thala-

mus, and their combination. The results suggest that the lower eigenfunctions play a

major role in di�erentiating the two groups through the proposed signatures, as the

improvement from increasing the number of eigenfunctions from k = 32 to k = 512

is less than 10% with all three substructures taken into account.

6.2.2 Jensen-Shannon divergence features

Classi�cation accuracy pergk-divergenceDiv k(t) and SVM is shown for the right

putamen in Figure 6.5, thalamus in Figure 6.6, and hippocampusin Figure 6.7. In the

legend (right) we use the conventiong̀k : m', wherem is the number of eigenfunctions

used and degree of the polynomial.Div k(t) was constructed by sampling the interval

gk(t; M ) for 100 bins. Here, surface smoothing is not used. Instead oflinear SVM,

a radial basis function is used for the SVM kernel. The parameters of the radial

basis function were chosen (by an exhaustive search) to maximize the classi�cation

accuracy. For the hippocampus data, we plot the SVM decision values corresponding

to the best Div 1(t) and Div 2(t) accuracies, which are both seen to 80%. Note that

g1, computed with 100 eigenfunctions leads to the best classi�cation accuracy over

the largest time interval. Morover, hippocampus classi�cation accuracies are highest

for t < 1 for k = 1; 2; 3; 4.

1From the graph Laplacian with parameters C� = 0 :5, C� = 0 :45.
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Table 6.1: Classi�cation accuracy (LOO) of linear SVM on maximum, min-
imum, and standard deviation features of the spectral invariant signatures.
Feature gi is the concatenation ofgmax

i (t), gmin
i (t), and gstd

i (t) over 32 time
values and withk eigenfunctions. Featureg1; g2 is the concatenation of the
g1 and g2 features.

Structure Feature k Accuracy

r. hippocampus g1; g2 32 71.6%

r. hippocampus g1 128 72.5%

r. hippocampus g2 128 70.6%

r. hippocampus g1; g2 128 69.6%

r. hippocampus g1 512 76.5%

r. hippocampus g2 512 75.5%

r. hippocampus g1; g2 512 75.5%

r. putamen g1; g2 32 64.7%

r. putamen g1; g2 128 56.9%

r. putamen g1; g2 512 60.8%

r. thalamus g1; g2 32 64.7%

r. thalamus g1; g2 128 60.8%

r. thalamus g1; g2 512 56.9%

all three g1; g2 32 71.6%

all three g1; g2 512 77.5%
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Figure 6.5: Classi�cation accuracy (LOO) of SVM ongk-divergencesDiv k

for the right putamen.
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Figure 6.6: Classi�cation accuracy (LOO) of SVM ongk-divergencesDiv k

for the right thalamus.
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Figure 6.7: Classi�cation accuracy (LOO) of SVM ongk-divergencesDiv k

for the right hippocampus (top). The best single-time accuracy for Div 1

and Div 2 are indicated by the vertical purple dashed lines. A histogram
of the best Div 1 SVM decision values are shown for the 102 ADNI right
hippocampi (bottom left). The same is shown forDiv 2 (bottom right).
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CHAPTER 7

REGISTRATION AND LOCAL SHAPE
DIFFERENCES

We are ready to present a registration algorithm based on thespectral embedding

H t . This algorithm will be applied to ADNI putamen surfaces. With the output cor-

respondences, we construct a average surface model of the control putamen surfaces.

Registration is again applied to produce a correspondence between all putamen sur-

faces and the average model. This permits us to derive statistics for local di�erences

in shape between the populations.

7.1 A registration algorithm

We �rst present an outline of the registration method used toproduce results in

this dissertation. Subsections following provide detailsof each stage. Among existing

registration methods, this one is closest to that in Jain et al. [45], which uses spectral

representations and TPS transformations.

Given shapes, or point samples of shapes, denotedM and N in Rn , the registration

of M (source) to N (target) is produced in three stages: preprocessing, registration

of heat kernel representations (spectral representations), and extrapolation to a reg-

istration of the original shapes. It will occasionally be necessary to distinguish the

underlying manifoldN from the corresponding sampleN . The original sampleN will

be extended (by interpolation) to include the points ofN corresponding toM . This

interpolated sample is denotedN̂ . The �nal output is a registration ' : M ! N ,

92



where' (x) is the point of N corresponding tox 2 M . To aid the reader, Table 7.1.1

summarizes the notations used.

7.1.1 Outline of the algorithm

Preprocessing

Input. M; N ; parameters:m; t; (C� ; C� )

Output. Sign-matched, normalized, centered spectral representations M h; Nh

(1) Compute the �rst m nontrivial eigenvalues and eigenfunctions ofM and N .

(2) Match the eigenfunction signs ofN to those ofM .

(3) Construct the m-dimensional spectral representationsM h j t ; Nh j t .

(4) Center, then scale,M h; Nh to have centroid at the origin and unit Frobenius

norm1.

Register M h to Nh

Input. M h, Nh; parameters: �; � 1

Output. Weight matrix W

Iterate the following three steps as desired.

(1) [M h ! N 0
h]  estimate_correspondence (M h; Nh; � )

Estimate a correspondenceM h ! N 0
h from closest points inRm , where N 0

h is

interpolated from Nh, modulated by a \con�dence" parameter� > 0.

(2) M 0
h  transform (M h ! N 0

h; � 1)

Use the correspondence from Step 1 to deformM h into M 0
h, via TPS(� 1). Each

x 2 M h is moved toward its corresponding point.

(3) Rede�ne M h  M 0
h for the next iteration.

Return the weighted correspondence matrixW from the �nal call to estimate_correspondence .

Extrapolation

1Square root of the sum of squares of all entries.
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Table 7.1: Registration algorithm notations.

source target

M N point samples from shapesM and N

N 0 interpolated sample fromN

M h Nh spectral representations ofM; N

N̂h interpolated sample fromNh

Input. M; N , weight matrix W

Output. Registration ' : M ! N̂ ; ' (x) estimates the point of �N corresponding to

x 2 M .

(1) Center M and N to have centroid at the origin; store the Frobenius norm� N

of N ; scaleM and N to have unit Frobenius norm.

(2) Use the correspondence given byW to rotate N into best �t with M .

(3) UseW to interpolate M ! N̂ as

x 7!
X

y

wxy y; (7.1)

where the obvious identi�cationsM $ M h and N $ Nh are made.

(4) RescaleN̂ : N̂  � N N̂

(5) Return the registration ' : M ! N̂ (the composition of Steps 3, 4).

7.1.2 Stage I: Preprocessing

After computing the �rst m + 1 eigenvalues and eigenfunctions of the Laplacian

(graph or combinatorial), we check that only one of the eigenvalues is 0, which guar-

antees that the graph is connected for our choice ofC� . The �rst m nontrivial pairs

are then stored. Next, the eigenfunction signs are matched and saved prior to con-

struction of the heat kernel representations so that the matching does not need to be

repeated should a di�erent value oft be used in the future. The step of matching the
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eigenvector signs can be done by hand, brute force, or stochastically, depending on

the total number of registrations to be done and onm.

For a large sample of shapes andm > 5, we use MCMC to match eigenvector signs

(see Section 3.3.1). For consistency with the metric used inthe registration step, we

minimize distance between the orbits of eigenvectors �X and � Y as

min
b2 Zm

2

dH (� X ; b� � Y ) : (7.2)

7.1.3 Stage II: Registration of heat kernel representations

(1) Estimate correspondence (soft assignment). This step is based on Chui

and Rangarajan's modi�cation of ICP [21], where the corresponding point in the

target shapeNh is interpolated. As we may viewM h and Nh as being sampled from

the smooth spectral embeddings ofM and N , a point q 2 H N
t ideally corresponding

to p 2 M h � H M
t may not be present in the sampleNh. Thus, one estimatesq from

its neighbors inNh.

This procedure,

[M h ! N 0
h]  estimate_correspondence (M h; Nh; � ); (7.3)

proceeds as follows.

To begin, construct R1 : Nh ! } (Nh), where R1(q), q 2 Nh, lists the vertices

of Nh which are 1 or fewer edges fromq. In the case of a mesh representation, the

edges are initially de�ned. In the case of a point cloud representation, two points

are considered to be joined by an edge if the Euclidean distance between them in

the original embedding is less than� , which we control through C� . Distances are

measured with respect to the Euclidean metric onRm .

Next,

1. Compute the nearest neighbor map� : M h ! Nh:

� (p) = arg min
q2 Nh

kp � qk2 : (7.4)
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2. Compute the matrix W = ( wpq) as

wpq :=

(
exp(� d(p; q)2=4� ) if q 2 R1(� (p));

0 otherwise:
(7.5)

3. Normalize W to have unit column sums: wpq  wpq=
P

q wpq. (In the �nal

iteration, W is the weight matrix returned).

4. ComputeM h ! Rm as

p 7!
X

q

wpqq: (7.6)

Let N 0
h denote the image ofM h by this map. N 0

h are the interpolated matches to

M h.

5. Return M h ! N 0
h.

(2) Transform. The transform step applies a thin-plate spline transformation.

The thin-plate spline is a standard interpolating functionin the shape analysis com-

munity [15, 16], which has been used for registration in [21,44]. The thin-plate spline

is described in detail by Wahba [87]. Here, a splineT : Rm ! Rm is constructed

from the estimated correspondenceM h ! N 0
h, to bend points ofM h closer to their

estimated corresponding points inNh. The transformed image ofM h is denotedM 0
h.

7.1.4 Stage III: Extrapolation to original shapes

The rotation of Y into best �t with X is a standard procedure [48], which we

call \Procrustes alignment", that returns a rotation R 2 SO(n) which minimizes

kX � RY k2.

7.1.5 Possible modi�cations

We make a few remarks on possible modi�cations to speed up thediscussed

method. These address the choice ofm; t and subsampling.

One modi�cation of the preceding method, which we used in [5], increases the

shape resolution with each iteration. This is achieved by increasing the number of
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(control group average)

Figure 7.1: Control group average constructed from registration. Five con-
trol ADNI right putamen and the Procrustes mean shape (top) forthe con-
trol group are shown. Several corresponding points are color-coded.

eigenvectorsm in the spectral representation or by decreasing the time parameter t

at each iteration.

Using every point in the correspondence to determine the spline can be time-

consuming and may also produce a spline with high energy. Accordingly, the spline

may be di�cult to interpret. For a dense sample, it seems reasonable that a relatively

small fraction of points in the correspondence could be taken for control points to

determine the spline.

7.2 Local shape di�erences

We use scaling factors to measure local shape di�erences according to stretch-

ing and compression of the boundary surface. Givenk-manifolds M; N 2 Rn and

a smooth correspondence2 ' : M ! N , local shape di�erences are indicated by

jd' j : M ! R, where d' x : TxM ! T' (x)N is the usual di�erential and j�j is the

determinant. That is, the local shape change fromx 2 M to x0 := ' (x) is given by

� (x) := jd' x j:

2We assume the correspondence is an immersion.
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If ' : M ! N is an approximate isometry atx 2 M , then we expect� (x) � 1. If M

and N bound volumes inR3, such as putamen surfaces, for example, then� (x) > 1

suggests relatively more volume aboutx0 than about x, whereas� (x) < 1 suggests less

volume. For another example, ifM and N are the right putamen surfaces of a single

subject, M from an initial scan and N from a follow-up scan, then� < 1 indicates

locations of volume loss (e.g. neurodegeneration) and� > 1 indicates increase in

volume (e.g. swelling).

Calculating the di�erence map. We now consider how the di�erence map�

may be calculated. SupposeM is represented by a triangle mesh (M; T ) and N is

represented by a point sample. First, an estimated' : T ! M2(R) is constructed

as follows. Let� 2 T be a triangle with vertices (a; b; c). We isometrically embed

(a; b; c) and (a0; b0; c0) in R2, a0 := ' (a), with positive orientation, and let d' (� ) be the

linear map R2 ! R2 associated with the a�ne transformation carrying a; b; cto their

corresponding points. So long as no triangle ofT is degenerate,d' is well-de�ned

and unique onT .

Using the di�erence map to study populations. We now describe how the

di�erences allow us to study the statistics of local shape di�erences. Given a mean

shapeM and labeled (e.g. \control", \MCI-AD", etc.) shapes N i , i = 1; : : : ; K , we

�rst acquire registrations ' i : M ! N i and then calculated' i for each i . We put

� i := jd' i j.

Again, we suppose thatM is represented by the mesh (M; T ). Fixing a triangle

� 2 T , a two-sided t-test with unequal variance is used to evaluate the statistical

signi�cance, sayp < 0:05, of the covariate vector ( log(� i (� )) ) i =1 ;:::;K . This approach

is used in [90, 49], for example, to assess statistical signi�cance of volume di�erentials.

These use the logarithm of the Jacobian in order to transform scaling factors to an

arithmetic scale and to remove skew and bias from the distribution [90].

The t-test yields a map ofp-values onM , p : T ! [0; 1], which we study to

identify regions of contrast between groups. As in [90, 82], we use a permutation
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Figure 7.2: Signi�cance values of local shape di�erences forADNI putamen.

test to estimate the statistical signi�cance of the Jacobians as follows. First, note

that if the labels of each covariate vector are randomly permuted, say, according to

� 2 SK = permutations of f 1; : : : ; K g, we may then calculate the corresponding set

of p-values,pj� : T ! [0; 1].

Suppose that random permutationsf � j g have been generated and the correspond-

ing p-values f pj := pj� j g calculated. For a permutation test, the statistical signi�-

cance of the volume distortion at� is given by

� (� ) :=
jf � j : pj (� ) � p(� )gj

jf � j gj
: (7.7)

That is, the statistical signi�cance at � is the fraction of permutations that give a

p-value more signi�cant than the true p-value at � . Values of� nearest 0 indicate the

most signi�cant shape di�erences.

7.2.1 Putamen shape di�erences

For the ADNI right putamen set, 105 permutations of the labels were used to

calculate local signi�cance� : T ! [0; 1]. The Procrustes average [48] for the normal

ADNI right putamen is shown in Figure 7.2. Color on the putamen corresponds

to � � . For example, values near 0 are red and indicate signi�cant points. Regions

without signi�cant di�erences are white.
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CHAPTER 8

SUMMARY AND FUTURE
DIRECTIONS

We considered the nature of problems in morphometry of representing shape in-

trinsically. This motivated us to study the potential of spectral representations for

morphometric analysis. The goal of designing, implementing, and applying a shape

registration algorithm was met. Moreover, several shape pseudo-metrics were con-

structed from spectral representations and applied to train a classi�er on several data

sets. This included distinguishing MCI-AD vs. Control groupsubcortical structures.

High points of this work include:

(1) achieving a MCI-AD vs. Control group class�cation accuracy no less than com-

parable to existing methods (see below for the numbers);

(2) providing a registration algorithm;

(3) constructing an average right putamen from the Control group using our regis-

tration algorithm;

(4) measuring local shape di�erences of the right putamen between MCI-AD and

Control groups using our registration algorithm;

(5) improving the theory underlying spectral methods (see below);

(6) exploring a novel point signature designed to avoid the indeterminacies of spectral

embeddings;

(7) analyzing the e�ects of parameter choices on spectral embeddings derived from

the graph Laplacian.

We now elaborate on points (1) and (5).

100



Comparison of classi�cation accuracies. Using the pseudo-metricDS on

spectral embeddings applied to MCI-AD vs. control groups, weattained a classi�ca-

tion accuracy of 86.2% for the right putamen. Using thegk-divergenceDiv k applied

to MCI-AD vs. control groups, we attained classi�cation accuracies of 71% (right

putamen), 74% (right thalamus), and 80% (right hippocampus).

In Section 2.1.1, we considered several studies in which classi�cation is used to

distinguish a�ected group from normal controls. Note that all classi�cation accuracies

here are determined by the leave-one-out method. Kl•oppel et al. use local volume

measurements to classify 57 control and 33 pAD individuals [50]. They attain leave-

one-out classi�cation accuracies of 81.1% (whole brain), 85.6% (hippocampal region),

and 88.9% (whole brain and hippocampal region). Fan et al. classify 66 control and

88 MCI individuals, attaining 81.8% classi�cation accuracy with whole brain images

and local volume data [32]. Klein et al. consider 29 subjectswho decline cognitively

and 29 who remain stable to the end of a speci�ed period [49]. They attain 81%

classi�cation accuracy with whole brain images. Focusing on the right hippocampus,

78%, and with the left hippocampus, 74%, accuracies are attained.

Although we cannot make an exact comparison with these studies, we can make

the following observations. If our methods are equal, Kl•oppel et al. should achieve

better classi�cation accuracy than us because their classes, hippocampus of pAD vs.

controls, are expected to be easier to distinguish than ours, putamen of MCI-AD

vs. controls. However, their accuracy is is 85.6% and ours is 86.2%. This suggests

the representational strength of the spectral embeddings and their associated pseudo-

metric DS. Fan et al. attain 81.8% accuracy for groups similar to ours,but including

more features. Notwithstanding, their 81.8% accuracy is less than our 86.2% accu-

racy. Klein et al. max out at 81% accuracy, including localizing to the hippocampus.

We therefore consider our method comparable to, if not stronger than, the existing

methods of which we are aware.

Improving the theory underlying spectral methods. Among the spectral

representations we have considered, the spectral embedding is the only complete
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shape representation. As such, it has become standard for a number of shape analysis

tasks, including registration. Nevertheless, a rigorous understanding of the spectral

embedding is wanting in the applied community. We have helped lay the theoretical

foundation for its application along with bringing to light what has been known in

the geometric analysis community.

Our contributions include a proof that the spectral embedding is actually an

embedding for large enough dimension. This result is not only a \compactness result",

but our proof is semi-constructivewith respect to the embedding dimension. This

is fully relevant to our understanding whether spectral embeddings can even be used

for shape registration.

Additionally, we have located references showing that the �nite embeddings are

stable under perturbations of the Riemannian metric. This is also of great importance

in their practical use.

Our contributions also include derivations of a handful of properties that we be-

lieve will lead to a more e�cient use of the embeddings, including their use in regis-

tration and computation of spectral distances.

Point signature shape-DNA. For fun, we consider a point signature that does

not appear to have been studied. Consider� : M ! R! by sendingp 2 M to the

Laplacian spectrum ofM � f pg for the Dirichlet boundary condition. We will call

� the �xed point spectra of M . Intuitively, we think of holding the drum membrane

(i.e. M ) in place at a single point and then hitting the drum. How does the sound

of the drum change from point to point? Of course, this idea can be extended to

holding any subset ofM �xed, yielding a function from the power set ofM to R! .

This might be useful for narrowing down point correspondences.
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APPENDIX A

SOBOLEV SPACES AND THE
ELLIPTIC ESTIMATE

A signi�cant result in this dissertation relies on the elliptic regularity theorem and

the Sobolev lemma, and it is the purpose of this section to state these. This material

is standard in the theory of PDEs (cf. Folland [36]).

De�nition 3 (Sobolev space). For any m 2 N, the Sobolev spaceHm (Rk) = W m;2(Rk)

of order m is de�ned to be the set of all distributionsf whose derivativesD � f belong

to L2(Rk) for all j� j � m. We then de�ne a norm on this space:

kf km := (
X

j � j� m

Z

Rk
jD � f j2 dx )1=2 : (A.1)

De�nition 4 (Local Sobolev space). If m 2 N and 
 � Rk is open,H loc
m (
) denotes

the set of all distributions f on 
 such that for every bounded open 
 0 with 
 0 � 
,

f agrees with an element ofHm on 
 0.

Let 
 � Rk be open andL =
P

j � j� p a� (x)D � , a� 2 C1 (
), for some p 2 Z+ . The

characteristic form of L at x0 2 
 is the homogeneous polynomial
P

j � j= p a� (x0)� � .

De�nition 5 (Elliptic operator) . L is said to be anelliptic operator of order p at

x0 2 
 if its characteristic form satis�es
P

j � j= p a� (x0)� � 6= 0 for all nonzero � 2 Rk .

Theorem 17 (Elliptic regularity theorem) . Let 
 � Rk be open andL an elliptic

operator of order p on 
 . Let u and f be distributions on
 satisfying Lu = f . If

f 2 H loc
m (
) for somem 2 N, then u 2 H loc

m+ p(
) .
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Theorem 18 (The Sobolev lemma). If m > p + k=2, then Hm (Rk) � Cp(Rk).
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APPENDIX B

ASYMPTOTICS OF THE
NORMALIZED GRAPH LAPLACIAN

We here prove the asymptotics of the normalized graph Laplacian � �
M̂

for extreme

values of the bandwidth� .

Proposition 9 (Asymptotic properties of � �
M̂

). Suppose that� is large enough to

give the complete graph(M̂; W ) and assume that each point has a unique nearest

neighbor. Then

(a) The eigenvalues of� 0+

M̂
have the form1 and 1+ z, wherejzj = 1; z 2 C. If � � 1(k)

is empty, thenek is an eigenvector with eigenvalue 1.

(b) � 1
M̂

has 0 as an eigenvalue with multiplicity 1; the other eigenvalue is� = n=(n �
1) � 1, with multiplicity n � 1.

Proof. (a) In general,d(x i ; x� ( i )) < � implies lim wi� ( i )(� � )wij (� ) = � � ( i )
j as � ! 0+ .

Hence

lim
� ! 0+

(A � 1W(� )) ij = lim
� ! 0+

wij (� )
P

k wik (� )
(B.1)

= lim
� ! 0+

wi� ( i )(� � )wij (� )
P

k wi� ( i )(� � )wik (� )
(B.2)

=
� � ( i )

j
P

k � � ( i )
k

(B.3)

= � � ( i )
j (B.4)

We consider the eigenvalues and eigenfunctions ofX := ( � � ( i )
j ). In the characteristic

equation det(X � �I ) = 0, choose a column for whichX has only zeros to factor �rst.
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Repeat this factorization for each minor (factoring along rows if necessary) until the

characteristic equation reduces to� k det(B � �I ) = 0, where B is an (n � k) � (n � k)

matrix which has at least one 1 in each column and at least one 1in each row. Because

A has exactly one 1 in each row, however,B has exactly one 1 in each row. Hence,

B has exactly one 1 in each column, and soB is orthogonal. All eigenvalues of an

orthogonal matrix are of the formei� . Therefore, the eigenvalues ofX must lie in
�

0; ei�
	

. Noting that � is an eigenvalue ofX implies 1� � is an eigenvalue ofI � X ,

we see that any eigenvalue ofA � 1L(0+ ) must be either 1 or 1 +ei� . As A � 1L is not

typically symmetric, we do not rule out the possibility of complex eigenvalues. In the

case that� � 1(k) is empty, we see thatek is an eigenvector with eigenvalue 1.

(b) For the other extreme, as� ! 1 , we have limwij (� ) = 1 � � i
j . Then

A(1 ) = ( n � 1)I , giving L(1 ) = nI � U. Let U denote then � n matrix of 1s. As U

obviously has rank 1, its nullity isn � 1; henceU has eigenvalue 0 with multiplicity

n � 1. The eigenvalue problem (L � �A )v = 0 (for � ! 1 ) may then be written

(nI � U � � (n � 1)I )v = � (U � (n � � (n � 1))I )v = 0, whose characteristic equation

has root n � � (n � 1) = 0 with multiplicity n � 1. Therefore,� = n=(n � 1) is an

eigenvalue with multiplicity n � 1. One can check that 0 is the remaining eigenvalue

for any constant eigenvector.
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APPENDIX C

PROPERTIES OF THE SPECTRAL
INVARIANTS

Remark 10. gk(t; x ) � 0 for all k, 1 � k � m, t > 0, and x 2 P.

Proof. In the normalization, the negative signs of the coe�cients with odd indices

cancel out, and eachr i is nonnegative.

We now determine the asymptotic behavior ofgk(t; x ).

Lemma 6. Fix k, 1 � k � m. If � k� 1 < � k , then

lim
t !1

gk(t; x ) =

� Q k� 1
i =0 � 2

i (x)
� P

y2 P d(y)
P

y2 P

Q k� 1
i =0 � 2

i (y) d(y)
: (C.1)

Proof. For k-index J = ( j 1; : : : ; j k), 0 � j i � m � 1, de�ne

M J
k (t; x ) =

kY

i =1

e� � j i t � 2
j i

(x) = e� t
P k

i =1 � j i

kY

i =1

� 2
j i

(x) : (C.2)

Let � be the set of
� m

k

�
increasingk-indices. Then

ak(t; x ) = ( � 1)k
X

J 2 �

M J
k (t; x ): (C.3)

Denote � = � 0 + � 1 + � � � + � k� 1 and � J = � �
P k

i =1 � j i . Then

e�t M J
k (t; x ) = et � J

kY

i =1

� 2
j i

(x) : (C.4)
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Claim � J = 0 i� J = (0 ; : : : ; k� 1). Otherwise, � J < 0. Justi�cation: ( � j 1 � � 0)+ � � �+

(� j k � � k� 1) = � � J = 0 and J = ( j 1; : : : ; j k) 2 � = ) 0 � j 1 < j 2 < � � � < j k � m � 1

=) i � 1 � j i =) 0 � � j i � � i � 1. Hence� j i � � i � 1 = 0. If � j k = � k� 1 < � k , then

j k � k � 1 =) j i = i � 1 (pigeonhole argument). Hence,

lim
t !1

e�t M J
k (t; x ) =

( Q k� 1
i =0 � 2

i (x) if J = (0 ; : : : ; k � 1) ;

0 otherwise.
(C.5)

Therefore,

lim
t !1

e�t ak(t; x ) = ( � 1)k
X

J 2 �

lim
t !1

e�t M J
k (t; x ) (C.6)

= ( � 1)k
k� 1Y

i =0

� 2
i (x) (C.7)

It follows that

gk(t; x ) =
ak(t; x )

P
y2 P d(y)

P
y2 P ak(t; y) d(y)

(C.8)

=
e�t ak(t; x )

P
y2 P d(y)

P
y2 P e�t ak(t; y) d(y)

(C.9)

approaches � Q k� 1
i =0 � 2

i (x)
� P

y2 P d(y)
P

y2 P

Q k� 1
i =0 � 2

i (y) d(y)
(C.10)

as t ! 1 .
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