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ABSTRACT

Methods from shape analysis are used for morphometry, which the quantitative
analysis of macroscopic anatomical features.

We assume that anatomy is exible, and this brings us to the st problem of
resolving how \shape" should be represented if it is allowed bend. We are motivated
to use representations of intrinsic geometry, which, for ample, does not distinguish
a at sheet of paper from a rolled sheet. In particular, the spctral embedding
(\neat kernel representation”) as a representation of ininsic geometry has many
desirable features for computational anatomy and other ams of shape and data
analysis. Several breakthroughs are made toward understhing and applying this
representation. A novel shape representation inspired byé spectral invariance of
the heat kernel is also considered and used for classi catiof control and a ected
groups.

One goal of morphometry is to make statistically objectiveamparisons. Hence,
once a suitable representation of shape is chosen, the secproblem is to compare
shapes. Shape comparison may occur at many levels of scalhe Bimplest com-
parisons are made with global features: volume, length, etEiner comparisons may
occur at regional levels. The nest level of comparison carebmade after matching
all homologous points, that is, after nding a one-one corgpondence between points
of shapes. A point correspondence is found by a registratiagorithm. A method
for unsupervised shape registration is presented and amgali to localize di erences
between control and a ected groups.

We focus on the 3D case, where imaging has made anatomicaface data readily

available, yet the analysis challenging. Structural MRI ofiving persons is currently
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used to study macroscopic e ects on anatomy by neurodegeagve disease (e.g.
Alzheimer's). In the earliest stages of Alzheimer's diseasegrtain brain structures
have been observed to have reduced volume, in autopsy and imoy including the

hippocampus, putamen, and thalamus. Our methods will be aped to these surfaces.
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CHAPTER 1

INTRODUCTION

Morphometry is the measurement of the physical shape of orgams and their anatom-
ical structure, and it is of interest in biology and medicine This particular study is
motivated by the potential of morphometry to improve our uncrstanding of human
development, genetic expression, and disease. Herein weusoon computational
methods that draw from spectral geometry, the reasons for wdh are enumerated be-
low. In order to demonstrate and compare our methods, we chsmfor our theme the
goal of pro ling neurodegeneration along a timeline of synipms and their severity.
Such pro les are sought to better understand illnesses ana tincrease precision in

diagnosis and intervention.

1.1 Goals and challenges

We rst introduce some speci ¢ brain structures to which mophology has been
applied in the study of neurodegenerative disease. Strucés whose morphometry
has been observed to correlate with some stage of diseasecaitled \markers". First,
the hippocampus, in shape and volume, has frequently beensebved as a sensitive
marker of Alzheimer's disease [25, 26, 57, 64, 65, 79] and asoondary progressive
multiple sclerosis [77]. Next, the basal ganglia system hasdn studied as a marker of
Parkinson's disease [37]. Structures in the basal gangligsgem such as the caudate
nucleus, putamen, and thalamus have also been studied as keas of Alzheimer's

disease [26]. Additionally, the putamen and caudate nucledsave been studied in
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schizophrenia [59]. The thalamus has been studied in Huntitwg's disease [47]. Some
functional roles of these brain structures will be descrillein the next chapter along
with further details on their role as markers.

Each of these anatomical markers can be computationally negsented as a closed
surface. In this work we study methods that can be used to aryale such markers at
both coarse and ne scales, which immediately leads to quests regarding represen-
tation and comparison of surfaces. One very coarse measigdhe volume enclosed
by the surface. Volume is a standard measurement in such staes, as we discuss in
the next chapter. We now consider the problem of detecting drences at the nest
level.

The practical goal of this work is to study and contribute mettods that can be
used to draw a statistical picture of anatomical data, whoseal purpose is to assist
researchers and clinicians. For instance, these methodbai us to generate a surface
model that is color-coded by statistically signi cant di erences in shape between
sets of putamen data input by a user. At the nest level, theseshape di erences
are identi ed through a point correspondence, which is edblished by a registration
algorithm. See Figure 1.1.

There is no consensus in computational anatomy as to what thregistration algo-
rithm is, however. ldeally, a registration algorithm shou match points between any
given pair of surfaces in a natural, biologically meaningfway. In practice, we will
be satis ed with an e ective registration algorithm. With an e ective registration
algorithm, a point correspondence between a diseased su€aand average healthy
surface might reveal localized di erences that are specito some stage of disease.
First, however, the average healthy surface must itself be mstructed through regis-
tration across a sample of the healthy population. Producgan e ective registration
algorithm is a fundamental goal of this work.

The registration problem is complicated by the realistic asimption that anatomy
is elastic. That is, registration algorithms based on Eualean distance alone are seen

to misrepresent anatomy, suggesting that we consider intisic geometry. See Fig-
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ure 1.1. Intrinsic geometry, however, is high-dimensionalata, whose analysis often
relies on dimensionality reduction techniques to make it cgputationally tractable.
Spectral methods have been useful for this purpose, as dédsed below.

Although some registration methods call for manual input, auaim is an unsu-
pervised registration algorithm. An unsupervised algoritin is desired to increase

repeatability of results and to allow for large data sets to & timely processed.

-—————
- ~ o~

|

— Euclidean
---intrinsic

Figure 1.1: Shape registration matches homologous point&f(), and Eu-
clidean and intrinsic distance between homologous pointaght).

Of course, registration is not the only way to measure di ereces. Between the
coarsest and nests levels of shape comparison, we may cdasiparticular features
captured by shape metrics and pseudometrics. These allow tascompare various
details of the geometry and topology of shapes without hawna complete point
correspondence. We will have more to say regarding incontglshape representations
and shape metrics.

A brief outline of the contributions of this dissertation pioceeds as follows. Careful
consideration of spectral embeddings is given in Chapter 3oag with a spectral
shape pseudo-metric. These embeddings are used for registn in Chapter 7 and
the spectral pseudo-metric is used for classi cation in Clpger 6. In Chapter 4, we

consider a class of spectral representations that are amguliin classi cation in Chapter
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6. Chapter 5 addresses the intial steps of these applicatgmnincluding parameter

selection in the graph Laplacian and data smoothing with théeat kernel.

1.2 What is shape?

Socrates asks this very question in Plato'8leno, there answering that shape
is the limit of an object. Centuries of mathematics since, atimes motivated by
problems of navigation and geodesy (cf. [17]), have proddamore analytic de nitions,
and we provide a working de nition in the next chapter. As alrady explained, we
assume that a good model of anatomy should only see intringgeometry. Spectral
geometry provides a way to do this. The purpose of this seatias to o er a colloquial
introduction to the objects of spectral geometry of a giverhgpe, which, by de nition,
derive from its intrinsic geometry. A couple more questionsill help to motivate these
objects.

Can onehear shape? This question was popularized by Kac in a lecture oneth
geometry and topology captured by the fundamental harmorscof a \drum", i.e. the
spectrum of a planar domain [46, 67]. Although Kac's questionas later answered
negatively, the utility of the spectrum as a simple shape repsentation has been
established [71]. In the generality of Riemannian manifadd the spectrum holds the
dimension, volume, and average scalar curvature. For sucks in particular, this
implies that the Euler characteristic can be read from the sxtrum, and it follows
that the spectrum of an oriented surface determines its topagy. If the manifold has
multiple connected components, the number of these compaoteis also contained in
the spectrum. Moreover, some manifolds, such as the disk,veabeen shown to be
uniquely identi able by their spectrum (cf. [12]).

An even more fanciful question: Can a shape be identi ed witlugt a thermometer
and torch? For example, could two technologically advanceahts living on a large
uniformly-conducting structure determine the shape of tls structure, one recording
temperature at various locations while the other applies adat source? The answer

to this question is, astonishinglyyes! which is explicitly written out in a formula by
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Varadhan (Section 2.4). This is one of the strongest resultge will use in our study
of shape representation. Indeed, a ruler and compass are tiw¢ only way to practice
geometry!

Behind these two fanciful questions are the wave and heat exdions, both of
which sense geometry through the Laplacian . The Laplaciancarries a shape's
intrinsic geometry, and it is the fundamental operator in spctral methods. This
alternative approach to intrinsic geometry comes from therpctical necessity of having
computable tools. As already mentioned, intrinsic geometrig highly complex data.
Spectral objects, which at rst may appear unnatural, o er ameans to organize this
geometry into di erent resolutions, thereby allowing us towvork with computationally
tractable representations of intrinsic geometry. In partular, they allow us to choose
the resolution of intrinsic geometry according to the apptiation.

The use of spectral methods in data analysis has acceleratdce a 2001 paper
in which Belkin-Niyogi use eigenfunctions of the discretidemanifold Laplacian for
dimensionality reduction and parametrization of data [6].These methods have found
many applications, including dimensionality reduction ad parametrization of data
[54, 23], shape classi cation and retrieval [71], generdiape registration [63, 69], and
registration in computational anatomy [5, 78, 77]. In Seatn 2.6.5, we follow these
methods to their theoretical forebears in geometric analigsin hopes of tracing a fair

history of these big ideas.

1.3 Data
We demonstrate and validate our methods using data providday several research
centers:
1. MGH data:

Subcortical surfaces from normal individuals provided byhie Center for Morphome-
tric Analysis at Massachusetts General Hospital. See below fdetails.
2. ADNI data:

Several subcortical surfaces segmented by the FSU Imagindolfaom 102 MR scans
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provided by the Alzheimer's Disease Neuroimaging InitiativeSee below for details.
3. Synthetic data:
Surfaces (triangle meshes) provided by the McGill 3D ShapeeBchmark. These are

available at http://www.cim.mcgill.ca/%7eshape/benchMark/.

1.3.1 MGH data

The MGH surfacescome from MR scans of six normal subjects. These are pro-
vided by the Center for Morphometric Analysis at Massachuset General Hospital
(http://lwvww.cma.mgh.harvard.edu/ibsr/). Each subject c ontributes four right-brain
structures: a caudate nucleus, hippocampus, putamen, andalamus. Each of the
24 surfaces is represented by a triangle mesh on the order 6% ¢ertices. Figure 1.2

shows four samples of each structure.

4 o
"l "&
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Caudate nucleus Hippocampus Putamen Thalamus

Figure 1.2: MGH surfaces. Examples of each structure are ohzd.

1.3.2 ADNI data

The ADNI surfaces come from baseline MR scans of 102 ADNI subjects. In
particular, these comprise 51 normal controls and 51 clagsl as having mild cognitive
impairment at the time of the scan but who later progressed t&\D (labeled MCI-
AD). Hippocampus, putamen, and thalamus surfaces were segrieghfrom these MR
scans by the FSU Imaging Lab using the softwarereeSurfer [34, 33]. Our thanks to
Xiuwen Liu, Dominic Pafundi, and Prabesh Kanel in segmentinthis data.

Figure 1.3 shows a hippocampus and putamen from each group. Bltiie atrophy

visible in the MCI-AD cases.
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Figure 1.3: ADNI surfaces. A right hippocampus and right putame from
the MCI-AD group (top) and Control group (bottom).

The ADNI data used in this dissertation come from the Alzheimers Disease Neu
roimaging Initiative (ADNI) database (adni.loni.ucla.edu). The ADNI was launched
in 2003 by the National Institute on Aging (NIA), the National Institute of Biomedical
Imaging and Bioengineering (NIBIB), the Food and Drug Adminigation (FDA), pri-
vate pharmaceutical companies and non-pro t organizatics) as a $60 million, 5-year
public-private partnership. The primary goal of ADNI has beerto test whether se-
rial magnetic resonance imaging (MRI), positron emissiorotnography (PET), other
biological markers, and clinical and neuropsychologicatsessment can be combined
to measure the progression of mild cognitive impairment (MEand early Alzheimers
disease (AD). Determination of sensitive and speci ¢ marksrof very early AD pro-
gression is intended to aid researchers and clinicians tovdep new treatments and
monitor their e ectiveness, as well as lessen the time andstoof clinical trials.

The Principal Investigator of the ADNI is Michael W. Weiner, MD, VA Medical
Center and University of California { San Francisco. ADNI is theresult of e orts
of many coinvestigators from a broad range of academic irtstiions and private
corporations, and subjects have been recruited from over Sides across the U.S. and

Canada. The initial goal of ADNI was to recruit 800 subjects butADNI has been
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followed by ADNI-GO and ADNI-2. To date these three protocols havrecruited over
1500 adults, ages 55 to 90, to participate in the research,nsisting of cognitively
normal older individuals, people with early or late MCI, andpeople with early AD.
The follow up duration of each group is speci ed in the protoals for ADNI-1, ADNI-

2 and ADNI-GO. Subjects originally recruited for ADNI-1 and ADNI-GO had the

option to be followed in ADNI-2. For up-to-date information, £e www.adni-info.org.



CHAPTER 2

BACKGROUND AND LITERATURE
REVIEW

2.1 Brain morphology, function, and disease

We now have several reasons to brie y discuss human brain aamy and function.
First, we should explain the content in the magnetic resonaecdata used and why
these structures are studied. Second, we should provide damce that the clinical
stages of some neurodegenerative diseases correlate wiltmmscopic changes, indi-
cating that the imaging modality used, in this work 3D structiral MRI, has su cient
discriminatory power. Third, we would like to provide evidace that the spatial scale
of functional di erentiation known for these structures warants a surface model with
high resolution.

We focus our discussion on the hippocampus, putamen, and taaus, which are
paired subcortical gray matter structures within the humanbrain, as depicted in
Figure 2.1. Functionally, the hippocampus is the primary coponent of the limbic
system [85], and the putamen and thalamus are components dfetbasal ganglia.
These structures have been studied for their potential as miers of neurodegenerative
disease, which is strengthened by their low anatomical vability relative to the
cortex [38]. We now briey describe the hippocampus, putanme and thalamus,
whose prominent functional roles are summarized in Table12.

In humans, a hippocampus substructure is found in each of theo medial tem-

poral lobes [83]. In terms of size, the neurons contained inehippocampus number

9
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Figure 2.1: Horizontal section of right cerebral hemisphere=rom front to
back, the putamen, thalamus, and hippocampus are marked. (Mi ed from
Fig. 742, [40])
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on the order of 1 million, out of around 85 billion neurons inhe whole brain [89].
Structurally, the hippocampus has three primary divisionsthe hippocampus proper
(CA), the dentate gyrus, and the subiculum. The CA itself is diided into di erent
neuronal zones of various functional roles [25, 83, 31, 2].

The hippocampus is active in the formation of new memoriespisodic memory,
registration of information, maintaining attention, establishing emotional aspects of
personality, and registration of spatial relationship andocation [83, 85, 10, 19]. Dur-
ing learning tests, the anterior of the hippocampus has beemwted to activate when
presented with a novel stimulus [74]. Its role in spatial awaness has been traced
back to speci c cells calledplace cells whose ring rates are modulated by spatial
location. This suggests that a spatial map is programmed irhése structures and
that location of self is programmed in speci ¢ zones of the pjppocampus [83, 31].

The basal ganglia regulate voluntary movement and are inwad in regulating pro-
cesses that control cognition, decision-making, and plaimg of behavioral strategies
[14]. They also participate in circuits connecting to frordl lobe regions known to have
a role in aspects of working memory, rule-based learning,tetion, and emotional
regulation [14].

Speci c roles of the putamen and thalamus have been identidein addition to their
general roles as components of the basal ganglia. The putame one of the input
nuclei of the basal ganglia [30]. It is active in motor functin, learning, and executive
functions, such as organization of parallel processes [3NEarby, the thalamus rests
on the brain stem and is viewed as the major relay to the ceredircortex [76]. Several
distinct nuclei comprise the thalamus, each of which transits a characteristic type
of a erent signal, such as visual, auditory, or somatosensg to speci ¢ elds of the
cerebral cortex [76]. Furthermore, the thalamus actively pdulates the transmission
of signals to the cortex according to attentive state (wakig or sleeping) and stimulus
intensity [76].

A number of dementias and mental disorders have been found $igni cantly

correlate with atrophy of the limbic or basal ganglia systes) as indicated in Table
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Table 2.1: Functional activation of hippocampus and basalpglia. Sources:

[74, 35]
hippocampus basal ganglia

Function activation activation
executive function *
motivation *
declarative memory *
non-declarative memory|

(e.g. habit learning) *
spatial learning tasks * *
categorization tasks *
novel stimulus *

2.2. For example, volume loss in limbic system structures du as the hippocampus
accompanies Alzheimer's disease (AD), epilepsy [83], posaumatic stress disorder
[18], depression [18], schizophrenia [2], and other demast(Lewy body, semantic,

etc.) [83, 2]. Volume loss in the basal ganglia accompaniearkinson's disease [29, 35],

Huntington's disease [43], and Alzheimer's [26].

Table 2.2: Some dementias that correlate with reduced volweof the limbic
system or basal ganglia.

limbic system basal ganglia
Alzheimer's * *
depression *
epilepsy *
Huntington's *
Parkinson's *
post traumatic stress disorder *
schizophrenia *

The case of Alzheimer's disease (AD) o ers a prototype of a prte of neurode-

generative disease. Symptoms of Alzheimer's disease pregr&om impairment of
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memory, to changes in personality, language impairment, fdetive recognition of ob-
jects, and ultimately to motor dysfunction [1]. These symmims re ect the progression
of atrophy which initiates in limbic areas and then di uses aross the hippocampus,
neocortex, and various subcortical nuclei. Braak and Bragl 9] identi ed six stages

of AD according to neuro brillary changes. The transentorhmal stages (I-1l) are

characterized by the accumulation of tau protein and amyldibeta peptide, but do

not produce clinical symptoms [1]. In the limbic stages (IHlV), the hippocampus

degenerates and lesions disrupt limbic circuits, howevene cerebral cortex and most
of the neocortex is not signi cantly a ected. Impairment of cognitive functions and

subtle personality changes appear in these stages. The nadocortical stages (V-VI)

are characterized by severe atrophy in the neocortex. Onlyhé neocortical stages
concur with the diagnosis of AD [1].

The need to improve early diagnosis of Alzheimer's diseaseshaeen universally
recognized, and MRI morphological imaging is seen as havitigg potential to help
accomplish this even at the clinical level [1, 25, 49]. Cumty, a de nitive diagnosis
of AD requires a histological sample [1]. Most a ected indiduals do not go through
this invasive test, but are labeled as havingrobable AD (pAD), which is diagnosed
on the basis of a patient's mental history and a psychometriest score [1]. The mini
mental state exam (MMSE) and clinical dementia rating test CDR) are examples of
such tests. As described above, pAD status is preceded by yeafsognitive decline
corresponding to the Braak limbic stages. Individuals in thse stages are designated
as having mild cognitive impairment (MCI). Imaging studiesin AD typically pro le

control, MCI, and AD groups.

2.1.1 Examples of imaging studies of AD

One of our aims is to classify surface data. That s, given aréace model from a 3D
scan, can a classi er determine whether the scanned indivdl has a dementia? Here

we consider several studies that use 3D structural magnetiesonance (MR) data.
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We remark that features of right brain structures seem to hagreater discriminatory
power in these AD studies.

In [50], Kieppel et al. classify 57 control and 33 pAD individials using SVM on a
feature space of local volume measurements. With whole bramages, 81.1% classi -
cation accuracy is attained. Focusing around the hippocamp, accuracy increases to
85.6%. The combination of features from both cases improv® accuracy to 88.9%.

In [32], Fan et al. classify 66 control and 88 MCI individualsLeave-one-out clas-
si cation accuracy is 76.0% with SVM applied to normalized ppocampal volumes.
With whole brain images and local volume data, 81.8% classation accuracy is
attained.

Longitudinal data is used to measure individual change. Fanstance, in a study
of hippocampus volume loss, Thompson et al. [82] nd in the ADrgup that the rate
of volume loss of the right hippocampus exceeds the left hippampus.

Longitudinal data is also used to benchmark preclinical dettion of AD. In one
such study, Csernansky et al. monitor the hippocampus shamed volume in 49
nondemented elders [25], some of whom later converted to ADhdy nd that the
pattern of structural deterioration precedes AD symptoms, rad that they are able to
predict conversion to very mild dementia. In another studyKlein et al. [49] consider
29 subjects who decline cognitively and 29 who remain stalieethe end of a speci ed
period. With SVM on a feature space that includes local volume @asurements, they
attain 81% classi cation accuracy with whole brain images.Focusing on the right

hippocampus, 78%, and with the left hippocampus, 74%, acaaies are attained.

2.2 Riemannian manifolds

The fundamental objects we need to compare shapes are therimsic distance
between points on a manifold and the ability to measure voluen(i.e. surface area for
a 2-manifold). The Hilbert function spacelL? associated with a Riemannian mani-

fold and its corresponding Laplacian must also be discussebefore the theory of

1SVM is a standard classi er which stands for support vector machine
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spectral methods. We discuss the Laplacian below, includints eigenvalues, eigen-
functions, and computation. We now assume the basics of drentiable manifolds and
brie y introduce the fundamental objects of Riemannian gemetry essential to this
dissertation. More details can be found in any standard intrduction to Riemannian
geometry, for example, Lee [52].

For most every purpose in this work, \Riemannian manifold" wl refer to a surface
bounding a solid in Euclidean space. That is, the Riemanniamanifold (M;g) is
usually a closed, oriented surface iRN, and the length of any tangent vector can
be measured as usual with the inner product dRN. Nevertheless, we must come
to terms with results stated in the more general and abstractetting of Riemannian
manifolds, which we shortly de ne.

At each point p2 M of a smooth manifoldM ¥ is a tangent spacel,M. M ¥ will

for T,M called the coordinate frame afp. The coordinate frame slides anywhere in
the neighborhood ofp on which the coordinates< are de ned, giving a basis fofT{M
for all points g in the neighborhood ofp.

A Riemannian metricg: T,M T,M ! R is an inner product on each tangent
space. More formally,g is a C! symmetric 2-tensor eld that is positive de nite
at each point in M. In local coordinates,g is the quadratic form corresponding to
the k  k matrix gj (X) .= o(@ @), wherek = dim M. By de nition, the g; are
smooth inx. The inverse and determinant ofy commonly appear, such as in the local

expression for the Laplacian. We use the conventions
(@) =(g)*
jgj :=det(g;):
De nition 1 (Riemannian manifold) A Riemannian manifold (M ; g) is a di eren-

tiable manifold M with a Riemannian metricg. As explained below, a Riemannian

manifold is a metric measure space. That igg endowsM with a cannonical distance
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metric dy; and Borel measuralV. A closed Riemannian manifoldis a compact Rie-
mannian manifold without boundary. A closed Riemannian mafold is a complete

metric space.

2.2.1 The Riemannian manifold as a metric measure space

A Riemannian metric g allows one to take natural measurements ox , including
lengths of curves and volumes of open sets. The nojkj, := P % (X;X), X 2 T,M,
associated withg allows us to calculate arclength in the usual way. That is, thlength
of a smooth curve :1! M is de ned by

Z
)= 1§ Wi g (2.1)

For any p;q2 M, the intrinsic, or geodesic, distancealy (p; 9 between them is
de ned to be the in mum of the lengths of all paths joiningp and g.

The volume measure associated with a given Riemannian metmwill now be
de ned. Any oriented Riemannian manifold M¥;g) has a uniquek-form dV on
M called the Riemannian volume form In oriented local coordinatesx, we have
dVv(x) = P jgi(x) dx;* ~ dxy. Then, for a Borel setU M in this neighborhood,

its volume is given by .

volUy=  dV : (2.2)
U

Because local coordinate charts are orientabldV extends to a Borel measure on
(M; g) without any assumption on the orientability of M . Henceforth,dV will denote
this Borel measure, which is the canonical volume measure fp

Now we can calculate the volume oM. Moreover, we may now consider the
Hilbert spaceL ?(M; g) of real-valued square-integrable functions orM; g) with inner

product
z

H.gi = f(pa(p)dVv(p): (2.3)

M
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2.2.2 Scaling the metric

To scale M ¥; g) by a factor a > 0 means that all lengths are multiplied bya. We
now want to know how the objects of intrinsic geometry changender scaling, since
both scale and size are fundamental in morphometry. Consiileg the length function
I( ) above,aj § = P a2g( ¢ 9 implies that scaling bya is equivalent to substituting
the Riemannian metrica?g. When g is understood,aM will refer to (M; a2g).

As for integration, the volume form ofaM is

| O
dVam (X) = ja2gj(x) dxg "~ dx

p
a

jgi(x) dxg* " dxi

a“dViy (x):

For example, volaM) = akvol(M). For another example, which we will refer to

again, iff 2 L2(M) is normalized, that iskf k 2, = 1, then
z
Kf K72y = T2(p) @ dViy (p) = &“ (2.4)
M

Thus, a ¥?f is normalized inL2(aM) i f is normalized inL?(M). Moreover, we

see thatV,\fzf , WwhereVy =vol( M), is invariant to scaling since

vol(aM)*ka *=2f ky 2(av) = a“2vol(M )*2a *%kf ki 2w
(2.5)

vol( M ) 2kf kzqm):
2.2.3 Derivatives of the metric

First and second derivatives of the Riemannian metrig often arise. The rst

derivatives are written in Christo el symbols

‘= 2d'@ + Qe @),

where the index! is understood to be summed over according to the conventiofi o
Einstein summation notation.
Curvature arises in Riemannian geometry as a measure of how-Huclidean the

geometry of the space is. The various curvatures are writtein terms of rst and
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second derivatives ofj, which vanish for constantg, for example, in Euclidean space.
Expressions for the various curvatures can be found in any éhannian geometry
book, see especially [12]. We will not write their lengthy foulas here, but, as we
have particular interest in surfaces, we observe (cf. [122]} that Gaussian curvature

2 Ct (M), dimM =2, is related to scalar curvature as
Sg=2

and Ricci curvature as

Ricg = g:

2.3 The Laplacian

The Laplacian is a fundamental di erential operator and arses in both the heat-
di usion and wave equations. It has a sibling on every Riemanian manifold. That
is, given a Riemannian manifold j1; g), there is a unique linear operator that
suitably generalizes the Laplacian of Euclidean space. lact, it will be seen to be
an essentially geometric operator.

In Euclidean space, it is easy to overlook how the geometrytbe domain is slipped
into the heat and wave equations. However, on manifolds we gbe Laplacian's ge-
ometric nature. In particular, the Riemannian metric and Lalacian are completely
interdependent, and the metric can be read back from the Lagtian. Most signi -
cantly, the Laplacian of a shape is invariant under any rigidransformation or more
general isometry.

The Laplacian encodes the fundamental resonance structuséa shape in terms
of frequencies - square roots of the eigenvalues - and viloat - the eigenfunctions.
Ultimately, the eigenvalues and eigenfunctions will be used represent a shape. Note
that because they are determined by the Laplacian, they oiitate in its intrinsic
geometry.

In the computational setting, a manifold must be processedtored, and visual-

ized as a data structure. This entails either a discretizain of di erentiable objects
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or a discrete theory analogous to it. Both a discretized (gph) Laplacian and a

combinatorial Laplacian are discussed below.

2.3.1 The Laplacian on Riemannian manifolds

Let (M;g) be a Riemannian manifold. Di erentiable functions ofM will be de-
notedC! (M). The Laplacian on (M; g) is the linear operator : Ct (M)! C! (M)

given in local coordinates by

. g (2@ X @, (2.6)
j @x@x |, 'O
This Laplacian generalizes the standard Laplacian on Eudéan domains
X @
Rk = @—?9(; (2.7)

i=1
where the leading minus is \geometer convention”. For exan® accounting for the
minus, the Laplacian of a function at a local maximum has a piise value. We will

occasionally use the Einstein summation convention in wiicase
= J@@ [@: (2.8)

The Laplacian also has the coordinate-free de nition := div grad, where div
and grad are the Riemannian divergence and gradient, respieely.

As mentioned already, the Laplacian encodes geometry:

Lemmal. Letp2 M andx = (X;) coordinates centered ap. Then can be applied

to recover theg; (0) (metric at p) in these coordinates.

Proof. Choosef 2 C! (M) such that f(x) = XiX; in a neighborhood ofx = 0 (this

can be constructed via a bump function). Then

f(p= ¢ 0)(@@ 0@ i (2.9)
= 2¢'(0) (2.10)
Sinceg is invertible, the result follows. ]
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As already mentioned, we are interested in the eigenvaluesdaeigenfunctions of

the Laplacian. They do exist:

Theorem 1 (Hodge Theorem for functions (cf. [72])) Let (M;g) be a compact con-

nected oriented Riemannian manifold. There exists a complete orthonormal set of
L2(M;g) consisting of eigenfunctions of the Laplacian. All the eigenvalues are pos-
itive, except that zero is an eigenvalue with multiplicity one. Each eigenvalue has

nite multiplicity, and the eigenvalues accumulate only at in nity.

We now have eigenfunctions ;g o and eigenvalue$ ;g o, and we assume eigen-
values are ordered as;.1 i. The setf ;gis called thespectrumof the Laplacian.
According to the Hodge Theorem, o = 0, and it follows that  is constant. Also,

i > 0fori 1. It can be shown that the image of ;, i 1, is a closed interval with

O in its interior.

Remark 1. By de nition, i = i i. Note, however, ; also satises ( )=
i( i). Hence, the eigenfunctions making up the complete orthonual set of L2

carry a sign ambiguity, which becomes quite signi cant for s, as explained below.

200

= analytic
— 642 vertices
150 2562 vertices
— 10242 vertices
(]
>
<
£ 100
(4]
2
(]
50
0
0 50 100 150 200

n

Figure 2.2: Spectrum of the unit sphere (analytic) and sevdranit sphere
meshes as computed from the combinatorial Laplacian.
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Eigenvalues of certain nice shapes have been explicitlyaahted (cf. [24]). These
shapes are nice in the sense that they exhibit a high degreesygimmetry. One also
notices that their nonzero eigenvalues tend to arise with riiplicity. For example,
S? has eigenvalue = n(n + 1) with multiplicity 2 n+ 1, n 0. The rst part
of the spectrum ofS? is shown in Figure 2.2. Notwithstanding, a deep theorem by
Uhlenbeck shows that these are exceptional and that eigernwat are distinct for most

shapes.

Theorem 2 (Generic properties of eigenfunctions, Uhlenbeck [84])et M be a closed
manifold. For a generic metricg on M, the corresponding Laplacian 4 has the
following properties:

1.) the eigenspaces are one-dimensional,

2.) Ois not a critical value of the eigenfunctions,

3.) the eigenfunctions are Morse functions.

(The reader may consult the more technical statement of this theorem in [84].)

By property (1), we see that a generic shape has distinct elgalues. Conse-
guently, each normalized eigenfunction is unique up to signProperty (2) implies
that the nodal set , 1(0) generically has codimension 1, which in the case of a sur-
face means that the nodal set is a curve or set of curves. Iriuely, the nodal set is
the set of stationary points for the pure tone vibration coresponding to ,,. See Fig-
ure 2.3. As for property (3), a Morse function is one that has maegenerate critical
points. This means that the second derivatives will determe the critical point type.

More properties of the eigenfunctions and eigenvalues wiké considered as we go

along.

2.3.2 The graph Laplacian

Here, we present a graph Laplacian [86], which is a matrix cdnscted from
pairwise distances on a given point set. Points are thought as being sampled from

some shapévl and the graph Laplacian ; approximates the di erential Laplacian
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and putamen (bottom) are color-coded. Dark blue corresponds the small-
est values of , and dark red to its largest. Keep in mind, though, that each
eigenfunction has underdetermined sign { and |, are indistinguishable).

v - The advantage of this approach over, for example, FEM, is thanly point data
is used, and no triangulation is needed. Convergence resulor this approximation

are discussed in the next section.

Constructing the weights. Let M¥ RN, Given a sample of points M =

and de ning edge weights as follows. Given constants> 0, > 0, and the kernel

function
e ”#? ifo<r<

k(r) := .
0 otherwise,

(2.11)

the edge weightw; for x; and x; is given by w; = k(kx; XjKk), 1  ij n.
If wj =0, then x; and x; are not connected by an edge. Note that this graph is
undirected sincew;; = w;;, henceW = (w; ) is a symmetric matrix. We denote this

graph by (M; W). The actual choice of and is discussed in Section 5.1.

Constructing the graph Laplacian. The construction of the graph Laplacian

P
on (I\’/];W) easily follows. Leta := i Wi, A = diag(a;;:::;a,). The matrix
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L := A W is the corresponding unnormalized graph Laplacian. The nler g can
be thought of as a vertex degree or neighborhood density aliay. If the support
parameter is not too smalf, then A is invertible, and we de ne the graph Laplacian

tobe :=A L. Appliedtof :M ! R,

wf(xi) = E-J(f (xi)  f(x)): (2.12)
j=1

This graph Laplacian is often called the normalized graph lpacian and, sometimes,

the random walk Laplacian.

Connection to random walks. The idea of a random walk on the graph
(M: W) gives some intuition tow; and a, and some authors call 3 =1 A W
the \random walk" Laplacian [42]. Imagine walking through he graph at random
where the probability of stepping fromx; to x; is p; = w; =a for all time. Then the
stationary distribution of this random walk is proportiond to A; that is, the average

time spent at vertexx; is proportional to a [86].

Eigenvalues and eigenfunctions. After constructing the Laplacian matrix,
we solve for some subset of eigenvalues and eigenfunctiors €igenvectors). For the

normalized graph Laplacian, we solve the generalized eigelue problem
L =A (2.13)

for the smallestm, 1 m n, eigenvalues and their associated eigenfunctions. We

eigenfunctions o; 1;:::; m 1, where A j = |.

2.3.3 Convergence of the graph Laplacian

In 2005, Belkin and Niyogi [8] demonstrated the pointwise ceargence of the
unnormalized graph LaplacianL on points uniformly sampled from M;g) to the

di erential Laplacian \; when M is a closed submanifold of Euclidean space and

2Speci cally, if max; min; d(xi; x; ).
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support = 1 . In the same year, Hein demonstrated a similar result [42]. rigie
then, convergence results have been extended to more gehgraph Laplacians, from
pointwise to uniform convergence, and to more arbitrary sapting [9, 42]. We use
the normalized graph Laplacian because it is more robust taon-uniform sampling
(cf. [42]).

To compare  and y, the convergence proofs [9, 42] rst extend y; to func-

tions onM . Equation (2.12) suggests a way to do this as follows. For: M RN !

R, put
2wy .
OB (TORRICNE (2.14)
=L
wherew,; = ks(kx x;k=) and a; = | Wy -
In the following theorem on pointwise convergence ; ! M, We encounter the
weighted, or anisotropic, Laplacian
1.
r = —div( "grad); (2.15)

wherer 2 R and is any density measure onNi; g).

Theorem 3 (Hein, Audibert, von Luxburg [42]). Let (M¥;g) be without boundary
and isometrically embedded RN, and letfx;g", be a sample of points drawn i.i.d.

from a probability measureP on M with density . Let x 2 M, f 2 C! (M). Then

if ! 0" andn *2=logn!1 asn!1 ,then
nIlilm g T (x) of (x) almost surely, (2.16)

where ~ ' means equality up to a constant depending dan (\almost surely" means

that the probability of convergence is 1.)

Note that if the samples are drawn uniformly (i.e. is constant), then ,= .
The intuition behind the coupling in convergence rates of and n is that while the
neighborhood shrinks with , the sample size must increase much faster, converging

to an integral before the neighborhood can vanish into a pdin
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Stronger convergence results have been shown for a uniforneasure and the
unnormalized graph Laplacian. In particular, Gire and Kotchinskii have demon-
strated uniform converge on compad¥l for any class ofC! functions with uniformly
bounded 3rd derivatives [39]. It appears likely that thesetr®nger results can be

extended to the normalized case.

2.3.4 The combinatorial Laplacian

The combinatorial Laplacian is a discrete analogue of the sroth Laplacian de-
ned on a simplicial approximation of the manifold [27]. Hergewe consider a triangle
mesh representing a closed, oriented surface in EuclidegraseR3. A triangle mesh
comprises a list of vertices and triangles. Each vertex isvgn by its coordinates and
an index, and each triangle is given by the ordered triple ohdices of its vertices and
an index. The ordered triples giving the triangles are asswad to be consistent with

the orientation of the surface.

V3
Vg

Vo

Figure 2.4: The 1-celle;; connects the centroids of trianglesw; v,; v3) and
(v1;Vs;v4) across the midpoint of edges;;. The 2-cell T, is shaded.

Before de ning the combinatorial Laplacian we x some termology. Figure 2.4

meshM. The 1-ring R(i) is the index set of vertices adjacent tos;. That is, if
j 2 RY(i), then v; and v; are joined by an edgeg; . The length of g = (vi;V;) is

denoted j; .
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This triangle mesh has a dual as follows. Each edgg has a unique dual object
g; called a 1-cell, which is the pair of line segments that conctethe centroids of the
two triangles with g; in common to the midpoint ofe; . The length ofeg; is denoted
" - Each vertexv; has a unique dual objecfl; called a 2-cell. The 2-celll; is the
region including v; and enclosed by the 1-cells dual to the edges incident #. It
may also be thought of as the (Voronoi) region of the mesh wheslosest vertex is;.
The area ofT; is denotedhy. Both the triangle set and 2-cell set partition the mesh.
For a set of verticesU V, the corresponding set of 2-cells will be denotdd .

We now build up to a discrete analogue of the divergence theon. In the discrete
setting, a function is de ned on the vertex setv, e.g.f : V! R, and is represented
by a vectorf =[f; f.]", wheref; := f(v;). The discrete exterior derivative of
f along the directed edges; = (vi;Vj) is given by (f; f;)="; . Hence, the outward

ux of f fromv; is

Z4 X
@f__ fj fi N 2 17
@n'_ ij (2.17)
e7 j2ri()

where @T is taken to mean the union of theg; for j 2 R(i). This contour is the
shortest simple closed curve enclosing, where the family of all curves de ned on the
mesh is expressed as all possible combinations of 1-cellee Wiscrete volume integral
is

f:=fh: (2.18)

For a set of verticesU V, these extend linearly to
z Z
£ X X f, X
er_ 4 and f = fib: (2.19)

- 1]
eu @n vi2Uuj2RrGi) ! U vi2U

Finally, considering the \discrete divergence theorem"

z Z

f = —_—
T, @T @n

X . .
@ 5 (fyn-= hfi (2.20)

j2riG)

uniquely de ning f (v;).
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It can be seen from (2.20) that the combinatorial Laplaciansia linear operator,

and hence can be written in matrix form. De ne

NN 1
wy= 370 2R (2.21)
0 otherwise
P
and g = i Wi - Then (2.20) becomes
X
( f)ib= wi (f; ) (2.22)
box
= af; w; fj (2.23)

L:=A W. Then
B( f)=(Af Wf)= Lf: (2.24)

It can be easily shown that

Lemma 2. L is symmetric, positive semi-de nite andB is symmetric, positive de -

nite.

Eigenvalues and eigenfunctions. We now wish to obtain solutions (; ) to
the eigenproblem = . An analogue of the Hodge theorem will be shown.
Assuming a solution exists, (2.24) becomés = B( )= B . This is the gener-
alized symmetric eigenproblem [70, 73]. It can be shown thaigenvalues ; 0 and

eigenvectors ; exist such that
L = and B = I (2.25)

where = diag( i;:::; n) is the diagonal matrix of the eigenvalues, and =
[ 1 n] is the matrix of the eigenvectors. The equality TB = 1|, equivalently

B | = J' shows that the eigenvectors ; are orthonormal with respect to the

discreteL 2 inner product
X
h;gi = (fig)h: (2.26)

i=1
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We also have eigenvalues 0 =g < ; ::: n, hence the discrete equivalent of the

e ciently for small m.

Convergence and the combinatorial Laplacian. The combinatorial Lapla-
cian is a fundamentally discrete operator, in contrast to aidcretization or approxi-
mation. Hence, it is to be understood in the context of discretgraph theory. Nev-
ertheless, its similarity to the graph Laplacian suggestshat it should converge to
the smooth Laplacian, perhaps with some mild assumptions. @\are not aware of
convergence results for this combinatorial Laplacian. Hower, empirical evidence is

given in Figure 2.2, where the spectrum of the unit sphere hagén calculated.

2.4 The heat equation and heat kernel

Here we state facts regarding the heat equation and heat ketn@hese and further
details may be pursued in [41, 72, 12, 20].

Heat ow on a closed Riemannian manifold¥; g) is modeled by the heat equation
(@+ wm)u(t;x)=0: (2.27)

This equation characterizes how temperature will stream dially outward from each
point with time, and how the rate of this ow is controlled locally by geometry, as
indicated by the presence of the Laplacian.

Any initial distribution f 2 L2(M) determines a unique smooth solutiom(t; x),

t> 0, to (2.27) such thatu; ! - f as t! 0". This solution is given by
z

u(t;x) = y K (t;x;y)f (y) dV(y); (2.28)

whereK 2 C1 (R* M M) is the called theheat kernelof M. In R¥, the heat
kernel is the familiar Gaussian kernel

1 kx  yk?

Kre(t; x;y) = W exp at

(2.29)
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The maximum principle asserts thatKk > 0 on its domain. Intuitively, K (y) :=
K (t; x;y) describes the e ect felt aty t seconds after a pulse of heat is applied at

The geometric power of the heat kernel is concisely stated in
Theorem 4 (Varadhan's formula). Let (M;g) be closed, connected. Then

lim  4tlogK (t;x;y) = d(x;y) (2.30)

t! o*

uniformly in (x;y) 2 M M. (cf. [58])

Varadhan's formula also evidences the geometric nature dfet Laplacian, via the
heat equation (2.27).

In practice, we express the heat kernel in terms of eigenvakifunctions as

X
K(txy)= e "' i(x) i(y): (2.31)
i=0

This Hilbert-Schmidt expansion of the heat kernel will be ingked repeatedly. From
the point of view of analytic and computational stability, the following property will

become pertinent.

Theorem 5. For any to > 0, the sum in (2.31) converges in theC!-topology on

[to;+1) M M forall j 2 N. (cf. Theorem V.3 in [12])

Gaussian estimates for the heat kernel. Uniform (global) estimates for the
heat kernel will be necessary in our embedding proof. The lfmving uniform upper
and lower bounds are from Sturm [80], speci cally Corollaes 2.3b and 4.7b.

Let (M¥; g) be a complete Riemannian manifold whose Ricci curvaturelimunded

from below byry O:
Ric(; ) (k Drog(; ) (8 2TM): (2.32)

Here VX(p t) will denote the volume of the geodesic ball of radiugf centered atx
and "ok:=(k 1)%ry=4.
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Proposition 1  (Sturm [80]). For any > O and > O satisfying > "ok there
exists a constantC; = Cy(ro; k; ; ) such that for allt> Oandx;y 2 M

Ktxy) Coint V("D 2w D 2
n r2 0}
exp (1 )4_t+2( o)t

Here o may not be 0 since the manifold is not assumed to be compactnce the

Hodge theorem is not in play.

Proposition 2 (Sturm [80]). Under the same hypotheses there exi€ls = C,(ro; k; ; )
such that for allt> O and x;y 2 M

Ktxy) Cosup (D Hv("D
n I’2 ’ (0]

- ro;
exp a+ )4t 2( + )it

Having M compact allows us to re ne the estimates as follows, and weropare
K with the Gaussian estimateG(t;r) ;= (4 t ) *2e "*=*_ First, compactness implies
there are constantsa;b; T > 0 such that at*? VX(Io t) bt2foral 0 t
T;x 2 M. We then see that there are constant€, = Cy(Cy;a;b;T) and C. =
CL(Cs;a;b;T), Cy C_, such that

CLG(t;2r) K(txy) CuG(t; ir) (2.33)

on (0;T] M M. For notational convenience, we have chosen a di erentfor each

bound.

2.5 A de nition of shape and a shape metric

Two Riemannian manifoldsM and N are isometric if there is a di eomorphism
f :M ! N suchthatdy (p;0 = dn(f (p);f () forall p;q2 M. This f is then called
an isometry betweenM and N. Herein, M, for example, should be understood as an
abbreviation for (M; g).

Isometry gives a natural equivalence relation on Riemannian manifolds. We
consider the collection of closed, connected Riemannian mifalds M . M is parti-

tioned into isometric equivalence classéd = , which are sometimes calledeometric
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structures The intrinsic geometry of (M; g) refers to all properties of its equivalence

class inM =

De nition 2 (Shape) A shapeis an equivalence class i® := M = . Note that

every element ofS has a xed underlying di erentiable manifold.

In this work we encounter cases where all surfaces are spbali that is, di eo-
morphic to S2. In such cases, each shape may be viewed as an observationroétic
on S?. Therefore, we could likely restrict our notion of shape to é a Riemannian
metric g on S?, modulo isometries. We may refer to these aspherical shapesThe
usual sphere inR® will be denoted G?; can).

Ideas from morphometry have motivated this de nition of shae, and it should not
be taken to be universal. For instance, a shape and its mirramage are equivalent
from the point of view of intrinsic geometry. However, other tsdies may need to

consider chirality, for example, and in such instances is@atny is too weak a relation.

A shape metric.  We ultimately compare di erences between shapes, such as
healthy and diseased structures. These di erences may beamnti ed with a shape
metric. The rst shape metric we consider is the Gromov-Hausut distance dgy (cf.
[62]), which we now de ne. Here, keep in mind that each shape #$is a special type
of compact metric space.

Let (Z;dz) be a metric space andV;N compact subsets oZ. The Hausdor

distance betweerM and N is de ned as

di(M;N):=maxf supdz(p;N);
p2M

supdz (M;q) g;

g2N

wheredz (p; N) := inf ion dz(p; 0). Intuitively, dy measures the overhang d¥1 and

(2.34)

N. For example, sup, d(p;N) is realized by the pointp farthest outside ofN. The
full expression (2.34) simply imposes symmetry for this nioin.
The Gromov-Hausdor distance between any two compact metrispaces i; dy, )

and (N;dy) is then de ned as
dou(M;N) := Zi_nf_ d4 (im (M); in(N)) (2.35)
ImiIN
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whereiy : M ! Z; iy : NI Z are any isometric embeddings d#1; N into any
common metric space4; dz).

Although it makes the notion of a distance between shapes prgg, computing
deH between nite metric spaces is unfortunately NP-hard (cf. [62]). In practe, we

must resort to other means.

2.6 Spectral representations

In this section, we mostly focus on spectral representatisfirom the shape analysis
literature, although the nal Section 2.6.5 looks at a more pure" example. Spectral
representations divide into two kinds: complete and inconigte. A complete repre-
sentation retains all information about the shape, and, inteory, allows the distance
metric to be recovered. Subsection 2.6.2 will consider coleie representations.

By contrast, an incomplete representation does not allowifguch reverse-engineering
of the metric. Representations, especially incomplete aeare often called signatures
in the shape analysis literature. Examples of global signats onM include the vol-
ume, histogram of pairwise distances [66], and spectrum (8en 2.6.3). A point
signature summarizes information about points oM. Basic examples include the
scalar curvature, histogram of distances to a reference pb{79], and auto-di usion
X 7V (t 7" K (t;x;x)) (Section 2.6.4).

2.6.1 Motivations from shape analysis

Considerations from morphometry have led us to nd represéations of intrinsic
geometry. We look at the registration problem for shapeM and N, which are
assumed to be nite point sets. A natural intrinsic represetation of M = fx;g is the
intrinsic distance matrix (dyv (Xi;%;)). To nd a point correspondence, we consider
embedding the representationdy (x;; X;)) isometrically into R™ for somem j Mj.
Let M® R™ denote this embedding. HereR™ is to be used as the reference space for
comparing shapes. For example, we might want to compute the Hisdor distance

d4; Z = R™; between shape embeddings. From distance geometry, we kndattan
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isometric embeddingV °exists for somem j Mj 1 by taking coordinates from the
eigenvectors of the gram matrix of dv (Xi; Xj)) associated with nonzero eigenvalues
[68]. Now we consider the usefulness of having such embedsding

SupposeM; N have isometrically embedded representation®l 2 N° 2 R™. |If

71,2, 2 M% N° wherez is the image ofx; 2 M andy; 2 N, then

dM (X]_; X2) = dRm (Zl; 22) = dN (y]_, yz): (236)

This suggests matchesg; y; for a correspondenceé : M ! N. Very importantly,
the representations should be constructed in such a way th&uclidean distance
becomes meaningful both for within-shape and across-shapeasurements.
Because the correspondence will be determined by a search over distances in

R™, the computational complexity of the registration increass with m. Furthermore,

a high dimensional embedding is expected to be sensitive toelevant changes in
geometry such as noise or articulation (cf. [45]). Thereferit is not unnatural to look
for a way to compress the representationdf, (x;; X;)) into a lower dimension where
calculations are faster and e ects of changes in local gedamyeare reduced. The
low-dimensional representation should also be stable ifdittonal samples are taken.

These considerations lead us to spectral embeddings.

2.6.2 Spectral embeddings

Belkin-Niyogi's spectral embedding. Belkin and Niyogi [6] considered the
problem of optimally tting a submanifold M of a high-dimensional space into a lower-
dimensional space in such a way that local neighborhood infieation is preserved.

Their objective function was optimized by eigenfunctionsfo \,, speci cally
7t (a(x);iin m(X)); (2.37)

which they call the eigenmap. This is the rst of several spé@l embeddings that
we consider. Figure 3.3 shows a toy example of this spectralldding. Recall that

eigenfunctions respect the intrinsic geometry of a shapenafor this reason they are
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blind to isometric changes. For instance, di erent poses dhe shape are spectrally
equivalent. Furthermore, spectral data naturally organies into nested geometric
scales. This property allows one to sift out the large-scaleverall shape, combing
out noise and super uous detalils.

Belkin-Niyogi rst sought a continuous mapf : M | R that would take neighbor-
ing points onM to neighboring points on the real line. Ideallyf would satisfy some-
thing approximating an isometry dr(f (x); f (y)) = du (X;y), although basic topology
forces a weaker condition foM R . Their approach was to ignore how distant
points are mapped, allowing distant points to map to close s, but not permiting
close points to map to distant points. Thus local geometry ito be preserved, ac-
cepting some global distortion. These considerations brghit them to determine the

attest, nonconstant f : M ! R.

original spectral embedding

Figure 2.5: A few human model surfaces and their 3D spectral beddings.
The spectral embedding derives from small-scale intringiistances. Vertical
and horizontal (in box) sections of the spectral embedding@ shown.

R
Belkin-Niyogi suggested that , jr fj2dV be minimized over all nonconstant
with kf k, = 1:

z

inf jr fj2dV subjectto kfk,=1 and f ? 1y: (2.38)
M
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Writing out the Rayleigh quotient, one has for a solution thesigenfunction ; corre-
sponding to the lowest nonzero eigenvalug. Therefore, ; : M ! R is the \optimal

embedding” into R.

Remark 2. In [6], the eigenmap (2.37) is referred to as an embedding. chaically,
an embedding is injective, but this will be overlooked in themooth setting until our
work. In the computational setting, Coifman-Lafon note in 23] that their closely

related embedding is injective as discussed below in Sent@.6.2.
For an optimal embeddingM ! R™, Belkin-Niyogi propose
Mo=( 40 m) (2.39)

In what sense is this map optimal? They suggest the followireygument in [7], but
forego a proof or formulation of an objective function.

Among all smooth mapsM ! R™, m 2 N, one can show that ™ is in a way
the attest and most informative for eachm as follows. Intuitively, atness (i.e. not
oscillatory) is desired to capture the global structure oM, so that extrema imposed
by topology are guided to points with interesting geometriéeatures. Flatness is also
expected to Iter out geometric minutiae. Moreover, atnes is expected to impose
local injectivity of the map. An \informative" map should distinguish many or all
points of M. Optimality of ™ is now demonstrated using the method of Langrange
multipliers. An objective function F : C! (M; R™) ! R that penalizes oscillations of
u and also penalizes if its components do not settle into an orthonormal subset of

C! (M) is given by
Z x , 1 X z o

rupEo Sy Ul (2.40)
i i

F(u;)=

NI =

M
for any symmetric =( ) 2 Mn(R).
Proposition 3 (Optimality of the eigenmap). If no coordinate is permitted to be

constant, thenF (u; ) is minimized byu = ™. Moreover, this minimum is unique

if m < m+, which is generically the case (Theorem 2).

35



Proof. Start with

F(u+ hv; )= jr u'+ hr Vj?

M
X Z (2.41)

5 i (u'+ hv)(d + )
ij M

The derivative of F at u in the direction v is given by

d
DF (V)= —  F(u+ hv; 2.42
W= g Pt v , (2.42)
X _ _ 1 X o .
= rurv = ’ u'v + uv (2.43)
2
X £ X .
= ( u)v 7 uv' (2.44)
i M i M
X Z X .
= u' ju v (2.45)
i M j
Setting DF, = 0 yields
- X .
u' i U =0 (2.46)
]
fori=1;:::;m. At a critical point u,
x £ XX
2F (U; ) = u' i u u+ i i (247)
o e——
=0
=tr() : (2.48)

Since u= uand diagonalizes asV VT for some orthogonaV, one has w =
w, wherew = VTu. Therefore, w' = 'w fori = 1;:::;m. Necessarily, the
( ";w') are eigenvalue-eigenfunction pairs. With the requiremetiat the components

of u, and by implication w, be orthogonal and nonconstant, the smallest acceptable

value of tr() = tr() corresponds to i = . We see thatF(u; ) obtains this
minimum whenu lies in the orbit of ( 1;:::; ) by orthogonal transformations and
has eigenvalues 1;:::; . O
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Eigenmaps in the discrete setting. How do we interpret this dimension re-
duction in the discrete setting? Because small distances = dy (X;; Xj) are empha-
sized in this approach, many apply a kernel function to the énes of D to Iter out

larger distances in a controlled fashion [86, 45, 6]. Spezally, replaced; by

— exp( dF=4 ?) ifo<dy < ; (2.49)
o 0 otherwise. '

This kernel mapping inverts the meaning of the entries: nowatger values signify
points in close proximity and the entries decrease with dighce. Small scale distances
are magni ed by the nonlinearity of the Iter and larger distances are compressed
according to the bandwidth . Finally, at some threshold distance , matrix entries
are small enough to be replaced with 0. Geometrically, thisas the e ect of replacing
dv by a topologically equivalent bounded metric.

This thresholding has a computational appeal, as a sparse mais desirable. As
one focuses on the small scale in this approady, (x;; X;) is often approximated to the
second ordet by the Euclidean distancedgn (Xi; Xj). Lastly, W = (w; ) is normalized
by A for sample density, which yields the normalized graph Lapt&an 4 = |
A 'W. 4 isin this sense a groomed representation of the intrinsicstiincesD.
The low energy eigenvectors of ,, corresponding to the eigenfunctions of Belkin-

Niyogi's eigenmap, provide a compressed representation b&toriginal shape.

Coifman-Lafon's spectral embedding. The problems of data parametriza-
tion and dimensionality reduction motivated Coifman and L#&on [23] to consider the
spectral distances

Di(x;y) = kKix  Kiyk2 (2.50)

on a data setM, whereK, = K (t;X; ) is the heat kernel ofM. In their paper,
D, is the \di usion distance". Here, we think of M as a shape and the spectral
distance D; as measuring inter-shape distances. The random walk integbation of

the Laplacian discussed in Section 2.3.2 is used in their Wwaio build intuition for

3That this is a second order approximation holds at least for when one pointies in a normal
neighborhood of the other [9].
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D.. Coifman-Lafon point out that representing data byD, has the advantage over
geodesic distancedy, of being more robust to perturbations sinc®(x;y) sums over
all paths of lengtht connectingx andy.
The spectral distanceD; can be realized (approximately) as a Euclidean distance
through
():=fe " ()0 i m; (2.51)

which Coifman-Lafon call \di usion maps". That is, D{(x;y) Kk ¢(x) t(Y)Krm
for largem 2 N. For convenience, we puD{"(x;y) := k ¢(X) t(Y)krm . TO make
their observation more precise, Coifman-Lafon choose a pe¢ accuracy > 0 for
the approximation. The embedding dimensiorm = m( ) is then determined as
m:=maxfn2 Nje 1 nt> g When we return to these maps, the following

claim will be relevant.

Proposition 4 (Coifman-Lafon [23]) The spectral map ; embeds the data into the
Euclidean spaceR™ so that
Di(x;y) = D{"(xy) (2.52)

up to relative accuracy .

Remark 3. This proposition is more of a numerical statement than a togogical
one. Coifman-Lafon mention that using the full eigenvectoexpansion proves that
D{™(x;y) is a metric distance onM. However, is it possible thatm j Mj might
produce an embedding? That is, an injective representatioof the data? What
happens in the di erentiable setting wherM is uncountable and eigenfunctions rather

than eigenvectors are used? We address these questions imér 3.

The maps  are used in [5, 75] for shape registration. To register shap&harma-
Horaud [75] use the covariance of the embeddings to choose timee parameter

relative to the other. They also note

Proposition 5 (Proposition 1 in [75]) The axes of the spectral embedding-, of

the combinatorial heat kernel have maximum variance. The embedded representation
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is strictly bounded by an ellipsoid whose center coincides with the origin of the axes

and with eccentricitiese *';:::;e k.
Rustamov's spectral embedding. Rustamov [73] considered the \global point
signature embedding"™ ! 2 given by
1
GPS() = f pP= ()0 1 (2.53)
|

and its associated inter-shape distancdsGPS(x) GPS(y)k-2. In this fairly in u-
ential paper, GPS is applied to the classi cation problem, lthough other possible

applications are discussed. These are easily seen to beteglao di usion distances

from
X 1
KGPS(x) GPS(y)k% = =i iy)? (2.54)
Z, «
= e "(i(x) i(y)?dt (2.55)
Z,
= K =2(X)  =2(Y)k% dt: (2.56)

0

Justifying the above interchange of sum and integral is not levant here.

2.6.3 Shape-DNA

Perhaps the simplest spectral representation of a shape s spectrum (eigenval-
ues). This global signature was nicknamed \shape-DNA" in [71]Although it does
not distinguish points, the spectrum has many desirable pperties for classi cation
and retrieval tasks. For example, a shape's dimension andlyme can be read from

its spectrum. Moreover,
Theorem 6. Two compact surfaces with the same spectrum are di eomorphic. (cf.[72])

With each spectral representation, we ask whether it dependsntinuously on the

Riemannian metric. The spectrum does.
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Theorem 7 (Continuity of shape-DNA). Let g;h be Riemannian metrics on a dif-

ferentiable manifoldM . If e 'g h €'g for somet> 0, then
e K ()= (g V!
for all k 2 N. (cf.Corollary 3.1 in [24])

In particular, if a sequenceg; of Riemannian metrics onM converges tog in the
CO-topology, then (g;) converges to «(g) for eachk 2 N. Even stronger statements
can be found in [24].

To compare shaped! and N having spectraf ;g andf ;g, respectively, Reuter

et al. consider the 2-norm
P 2\1=2
Dona (MGN)=( (i i) ) (2.57)

It is known that Dpya does not de ne a distance on the space of shapes. For one,
the existence of isospectral manifolds implieSpya (M;N) = 0 is not su cient for
M = N. To obtain a scale-invariant representation, they suggeshe normalization
AR
Note that Dpna gives higher eigenvalues more weight, yet these are expdcte
capture the least relevant information. Memoli [63] has pimted out that a more

robust representation of the spectrum would be the heat trac

Z(t) = P e it (2.58)

which has the same geometric content as shape-DNA [12], butege higher frequen-

cies contribute less, for example, for the2(R*) norm.

2.6.4 The heat kernel signature

In [81], Sun-Ovsjanikov-Guibas studied the \Heat Kernel Sigature"

A
K (t;x;x) = e ' 2(x) (HKS)

i=0
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for a number of tasks including shape classi cation and regration. This signature
may be interpreted as the temperature ak, t > 0 seconds after a bolt from Zeus
strikes x. The heat kernel signature is interpreted as a one-parametiamily of point
signatures indexed byt. In [4], we considered generalizations of HKS as a class of
point signatures containing spectral information, but fre from the sign ambiguity of
spectral embeddings. Here we note the merits Kf(t; x; x).

Although it is not as informative as the full heat kernel,K (t; x; x) does encode
information about each point. As such, HKS has found a place asspectral signature
that is signi cantly more informative than shape-DNA (the spectrum) but combina-
torially simpler than spectral embeddings. HKS inherits manproperties of the heat
kernel that are desirable in shape analysis, including (1) derives from intrinsic ge-
ometry, (2) it can be e ciently constructed, and (3) it is stable under perturbations
of the shape (see Section 3.2.1).

Arguably, most geometric information is contained irK (t; x; X):

Theorem 8 (Sun-Ovsjanikov-Guibas [81]) Let M; N be closed Riemannian mani-
folds, neither having repeated eigenvalues, aifd: M ! N a homeomorphism. Then
T is an isometry if and only if KM (t;x;x) = KN (t; T(x); T(x)) for all x 2 M and

for all t> O.

The heat kernel signature has the small-time asymptotic eqmsion (cf. [72])

1 s(x)
@yt e

revealing the dominant in uence of scalar curvatures : M ! R for smallt. We may

K (t;x;x) = t+ O(t?) ; (2.59)

discover in this expression that temperature moves slowecrass positively curved
regionss > 0 and faster across negatively curved regioss< 0, all relative to di usion

in at space s 0. Alternatively, s(x) > 0 means that an arbitrary path starting at
x is more likely to pass throughx soon afterward, than would a path starting at a
point of negative curvature* The interpretation of K in terms of Brownian motion

supports this intuition. See Section 3.2.2 for the Browniamotion point of view.

4This begs a question related to the discrete Laplacian: Is(x) < 0 whena, is large?
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We have experimented with the heat kernel signature for shagegistration, how-

ever, the resulting correspondences were very irregular.

2.6.5 The historical spectral embedding

The eigenmap proposed by Belkin-Niyogi in 2001 has deep thetical properties,
and a slightly modi ed form was studied at least several dedas before [12]. Most
of these properties seem to have been overlooked in shapelysia until [63]. Even
then, we are not aware of any shape analysis papers in whichalnsequences of these
results have been clearly stated.

Let (M¥; g) be a closed Riemannian manifold anfl g an orthonormal basis of
real eigenfunctions of the Laplacian oM. Here, ? denotes an eigenfunction with
eigenvalue ;. Recall that 2 denotes the space of real sequendesg , such that
P a? < 1 . In [11], Berard-Besson-Gallot (BBG) investigate propeties of the family

of maps 2:M ! 2 t> 0, given by

x70 ot)yfe "2 Rx)g 1; (2.60)
wherec(t) = P 2(4 )*?t(k+2 =4 They show
Theorem 9 (BBG). Let can denote the Euclidean scalar product oi?, and let s,
and Ricy denote the scalar and Ricci curvatures, respectively, of the metgc Then
1.) For all t> 0O, the map & is an embedding oM into “?;
2.) The pulled-back metric has the asymptotic expansion

( ) can=g+ Lt(syg 2Ricy)+ O(t?) ast! 0:

Together, these imply that the (in nite-dimensional) spetral embedding & pre-
serves the topology oM for all t > 0 and gives better approximations of its geometry
ast! 0.

Now BBG scale the embedding 2, de ning the spectral embeddingf (M; g) with

respect to the orthonormal basis to be
1700 =V fe ™ 3(x)g 1 (2.61)
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whereVy, is the volume ofM . The factor V,; > is used to make 2 invariant to scaling.
Here B(M) will denote the collection of orthonormal bases of eigeniations.

One aim of BBG is to de ne a distance between Riemannian strtwres as a par-
ticular distance between spectral embeddings. Lel; denote the Hausdor distance
between compact subsets 6f. Given two Riemannian manifoldsM; N , their spectral
distanceis de ned to be

ds(M;N;t):=maxf su inf  dq(13(M); 12(N)) ;
s( ) aZB(B) L H(IE (M) 1P(N))

su inf  dy(13(M): 12N :
bZB(LJ) ot H(IE(M)TP(N)) ¢

(2.62)

Remark 4. Unlike the Gromov-Hausdor distance dgy, the spectral distanceds
xes the metric space into which the spacesM;g) and (N;h) are embedded and
explicitly gives all possible embeddings to be consideredle nd their next theorem

remarkable.

Theorem 10 (BBG). For any xed t> 0, ds is a distance between isometry classes
of Riemannian manifolds. In particular, ds(M;N ;t) =0 if and only if M and N are

isometric.

Theorem 11 (BBG). Let (M¥;g) be a closed Riemannian manifold,, > 0, and ng
a positive integer. Leth be any metric onM such that(1 )g h (1+ )g,

< . Itis furthermore assumed that the metrics under consideration have their
Ricci curvatures bounded from below by(k 1)K ? for some constantK . There exist
constants gix ( );1 i Ng, which go to 0 with , such that to any orthonormal
basisf ;g of eigenfunctions of |, one can associate an orthonormal basis g of
eigenfunctions of 4 satisfyingk ; ikq gik () fori  no. Here, kk; is the

sup-norm.

Theorem 12 (BBG). The eigenvalues of the Laplacian are continuous with respect

to the spectral distances.

Remark 5. These theorems are very signi cant for spectral methods. t, Theo-

rem 9 indicates how well the embedding resembles the origimaanifold. Theorem
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10 indicates that the spectral embedding approach in shap@&aysis rests on solid
theory and that this map provides a rigorous representationf shape. Theorem 11
indicates that the nite-dimensional embedding is continuas with respect to geomet-
ric structure. Finally, Theorem 12 indicates that the spectnm makes for a robust
shape representation. We will bring these theorems up agawhen their signi cance

for our work is obvious.

2.7 The basics of shape classi cation

A classi er is an algorithm that makes a prediction about inpit data. Its predic-
tion is based on internal parameters learned from labeledtdal = f(M;;L;)g, where
M; is an observation from groupL;. This is the \training step". Once its internal
parameters are learned, the classi er can take a novel inpit °and predict the group
amongf L;g to which M ° belongs.

To evaluate the strength of a classi er, one may use the leaame-out (LOO)
method to determine itsclassi cation accuracy. All labeled data are used as follows.
Each sample is once withheld as the lone test sample and theasdi er is trained
on the remaining samples. Because the test sample is labelag can compare the
classi er's prediction to the ground truth label. The fracion of samples which are

accurately classi ed when left out is the LOO classi cationaccuracy.

pseudo-metric)d. The pairwise distance matrixD; := d(M;; M;) is studied to nd
the intrinsic clusters formed by the shapes. This distanceath can be used to visualize
the clusters or to train a classi er. For visualization, we @ien use multi-dimensional
scaling (MDS), which is a nonlinear projection of distancesnto the Euclidean plane.
For classi cation, each shape is represented as a featureta M; 7! (Dj; ).

Our standard classi er is the support vector machine (SVM). @&en labeled train-
ing samples from two groups, SVM learns a hyperplane Bf that best divides the
groups, which we call the separating plane. Thus, the halpace into which a test

sample falls determines its predicted label.
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When the groups are not expected to be separated linearly, SVMrcbe applied
after feature vectors are transformed by a kernel functionWe begin with ann n
distance matrix (D ) of training data f (M;; Li)gl, , where the labelL; 2 f 0; 1g gives
the group to which the sample belongs. For exampl®}; is the hippocampus surface
of a control individual if L; = 0 and a MCI-AD individual if L; = 1. For a given
weight > 0, we formE; := exp( D"?:4 )- The vector (Ej){.; now represents
samplei from groupL;.

For each test sampleM © we may calculate the signed distance to the separating
plane, whose sign gives the predicted label for the sampledawhose magnitude
indicates the certainty of the prediction. This signed disince is called thedecision

value

2.8 Shape registration

Shape registration allows us to localize any features thaistinguish between ex-
perimental and control groups. The registration of a sourcghapeM to a target shape
N produces a point correspondence : M ! N. For now, we do not distinguish a
shapeM from its sample. As mentioned before, challenges presentedrbgistration
in morphometry include the elastic nature of anatomical shpes and the number of
shapes to be registered.

We begin this section with the in uential Iterative ClosestPoint algorithm from
[13], along with some of its modi cations. Spectral methodms registration will then

be discussed.

2.8.1 The lterative Closest Point algorithm

The Iterative Closest Point algorithm (ICP) produces a regtration by iterating
two steps. The rst step estimates the point correspondence : M ! N, and the
second step transform$/ to reduce the net distance between corresponding points

relative to this estimate. In more detail, ICP runs as follow.
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First, the shapes are normalized. The centroids of submarids M; N R™
are translated to the origin ofR™ and thereafter translations are disregarded. The

following two steps are then iterated.
Step 1. Each point in M is assigned to its closest point i\ ; that is, the
correspondencé : M ! N is rst estimated as
"“(x) ;= argmin ky xk?: (2.63)
y2N

The cost of the estimate' ~is de ned to be

X
cost() = KA(X)  xk2 (2.64)
x2M

Step 2. Arrigid transformation T : R™ ! R™ that optimizes the net proximity

of matched points is determined:

. P
Tzrg(l)rgm) cost(Nj T); (2.65)
where X
cost(~jT) = KMx)  T(x)k?: (2.66)
x2M

This minimization problem has a closed-form solution. In t@ next iteration, M is
replaced byT(M).

Each iteration positionsM so as to decrease cos)( When the di erence between
consecutive shape distances falls below a preset threshalee ICP algorithm termi-
nates. At termination, the nal estimated correspondence “s a local minimum of
cost() over rigid motions of M. Said another way, xing M and N determines a
map cost :SO(m) ! R*; ICP converges monotonically to a local minimum of cosi(
which is determined by the initial positions ofM; N .

Besl and McKay remark that ICP tends to be e ective when poirg that are
expected to match are initially close enough and sampling mearly uniform. Other-
wise, the algorithm may not produce a meaningful shape cosgondence since cosj(

generally induces multiple local minima.
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2.8.2 Non-rigid transformations and soft assignment

To address certain limitations of the rigid ICP algorithm, Chui and Rangarajan
[21] implement a more exible transformation and operate om \soft assignment"
rather than a rigid binary correspondence. The particularransformation used is the
thin-plate spline (TPS) [15, 87], which bends points itM toward their corresponding
points in N. The thin-plate splineT : R™ I R™ minimizes second derivatives, or,
bending energywhile guided by control points determined by the estimateaorre-

spondence *M ! N. Specically, TPS( 1) minimizes
cost(AjT)+ YI™(T); (2.67)

whereJ™ is a functional that measures sharp bends and* > 0 is some constant. If
we denote theith component of T by T', then

Z .
X 2 a@T! 2

Jm(T):: N " N —@Xl @%m

(2.68)
The smoothness parameter?! in (2.67) is chosen to balance between rigidity and
smoothness off. If ! is too small, then T may fail to be a di eomorphism, as
singularities may be created in bringing points together g§]. At the other extreme,
if !is too large, thenT reduces to a rigid motion. The dimensiorm determines
the associated TPS basis function, hence. Here, partial derivatives of order 2 are
considered. However, im is large enough, it may be necessary to implement higher
orders to achieve a well-behaved spline [87].

In soft assignment, each point inVl is assigned to a weighted average of nearby

points in N. Details are provided in Section 7.1.3.

2.8.3 Spectral representations in registration

In morphometry we anticipate homologous shapes to have nordar di erences
(cf. Bookstein [15]). Thus, point correspondences like tee above, which are based

solely on proximities in Euclidean space, are fundamentallimited in applications to
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morphometry. To overcome these limitations, spectral repsentations are input into
classical registration algorithms [44, 56, 60, 5, 69]. Rdicthat such representations
are naturally robust to nonlinear di erences, as they comadm the intrinsic geometry
of the surfaces. Given a spectral representation, the ICP pgach is more likely to
produce correct matches since points expected to corresdamap to close points in
the spectral domain (once eigenfunction signs are matchedjlence, estimating the
correspondenceé in the spectral domain is expected to produce a more naturasult

than in Euclidean space.

For representing intrinsic geometry, spectral represertians rather than geodesic
distances are prefered for several reasons: (1) the sparsf the Laplacian matrix
is desirable for computational e ciency, (2) the multiscaé nature of the spectral
representations is seen as a great advantage, and (3) togptal perturbations result-
ing from noise can greatly in uence intrinsic distances wheas spectral geometry is

relatively robust (cf. [20]).

Spectral embeddings are used for surface registration in [&, 51, 45, 61, 75, 69]
and elsewhere. The di erences in these methods lie in whatgistration algorithm
is applied to the embeddings and in how the sign and order ingeminacies of the
eigenfunctions are handled. In comparing spectral embedds, the sign indetermi-
nacy must at some stage be addressed, usually in preprocegsiAs for the order
ambiguity, some approaches simply assume that the eigenftions are ordered con-
sistently across shapes, for example, that, of shapeM captures the same geometrical
feaures as 4 of shapeN. Recall that in spectral embeddings eigenfunctions are pro
jected onto Euclidean space in their induced order, and allugh this may be the
most natural embedding, it does not always map similar shapéo similar images as
we will see. By making a compensating switch in the order of ¢heigenfunctions of
one of the shapes, their spectral embeddings may sometimeskyought into a more
natural alignment, but automating this compensating swith can be tricky and adds

combinatorial complexity.
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One interesting alternative to optimizing the correspondge cost function over
sign choices is studied by Reuter in [69], where sign matchims done by optimiz-
ing the persistence of the Morse-Smale complex of each efgention. That is, the
eigenfunctions are matched according to topological siraity.

Some side-step the problem, using only the rst eigenfuncin or some a priori
knowledge to guide a more classical approach. For exampléj 8t al. [77] use level
sets of ; as landmarks to guide unsupervised parametrization M to the sphereS2.
They apply this method to register hippocampi in studying mgohometric di erences
in subjects with secondary progressive multiple sclerosis

The most similar to our registration algorithm (Section 7.} is Jain-Zhang-van

Kaick (JZK) [45], which we now discuss in more detail.

Jain-Zhang-van Kaick's algorithm. The registration algorithm in [45] is de-
signed to nd a meaningful vertex-vertex correspondence tveen two triangle meshes.
JZK apply TPS in the spectral domain to align the \embeddings.' The eigenfunc-
tions are computed from an unnormalized Laplacian, and therdedding coordinates
are weighted as in Coifman-Lafon (Section 2.6.2). They usbke eigenvalue normal-
ization to reduce e ects of larger eigenfunctions, which arknown to be less reliable
across shapes. Additionally, the normalization reduces theeect of truncation, that
is, the choice of embedding dimension. They take bandwidth= half the maximum
intrinsic distance between vertices.

JZK give serious attention to eigenfunction matching, and tey demonstrate that
stretching can cause eigenfunctions to switch places. Aftderiving the complexity
of an exhaustive search that would permute the order and sigi the eigenfunctions,
JZK consider the following greedy heuristic. They start witha 2-dimensional embed-
ding (something small) and nd the optimum over permutatiors and signs. Then,
after determining its optimal position and sign, the next edenfunction is added. Each
iteration adds the next eigenfunction in this way until the esired embedding dimen-

sion k is reached. In this approachQO(k?) possible embeddings are considered. In
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their experiments,k = 6 is taken. JZK remark that their greedy heuristic is successl

for 7/10 surface pairs.
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CHAPTER 3

THE FINITE SPECTRAL EMBEDDING

The goal of representing anatomy under the assumption thatnatomy is elastic has
brought us to consider intrinsic geometry. The intrinsic gemetry of a shape K %; g)

is encoded in its Laplacian eigenfunctions; and eigenvalues ;. This observation has
led many to represent intrinsic geometry in the form of sperl embeddings. Here

we consider the story of the shape representatidth, : M ! R™ given by
Hi(xX)=(e ™2 (x); ;i1 ;e "2 (x)): (3.1)

We rst used this map for shape registration in [5], where it @&s called the \heat kernel
representation”. Up to scaling, this map has the same form akdse in [23, 11]. We
now have much more to say about this map.

In this chapter, we show thatH; gives an embedding oM in the sense of di er-
entiable manifolds, which is fundamental in its applicatio to shape registration. We
next discuss properties o, including (1) stability of H; under metric perturbations;
(2) an interpretation of t as a attening parameter and in terms of Brownian motion;
(3) aspects of the shape of the embedding that may possiblyateto more e ective
use of the embeddings in registration. Thereafter, a shapeetrnic based onH; is
discussed.

A mug and its 3D spectral embedding are shown in Figure 3.1. Tlenbedding is
transparent to show the origin and axes of spectral space,dthe surface color on both
surfaces is given by an approximation of the mug's Gaussiauareature. Note that the

torus-equivalent topology of the mug is preserved in the eraldding. Approximation of
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Figure 3.1: A mug and its 3D spectral embedding.

the Gaussian curvature is given by (x) (12K (t;x;x) 3=t), wheret has be chosen

according to the Gauss-Bonnett formula, (12K (t;x;x) 3=t)=2 (M)=0.

3.1 Is the \spectral embedding” an embedding?

Before saying more aboutH;, we consider general spectral \embeddings". In

particular, we consider nite-dimensional mapsM;g) ! (R™; 2) of the form
x7'f & (X)) im (8 60) (3.2)

where thea do not depend onx 2 M. Recall, for instance, that Belkin and Niyogi
sought a representation that would reduce the embedding dension of an intrinsically
low-dimensional manifold in such a way that local geometrifeatures are preserved.
Their proposed functional led to the choices; 1. Having a result for maps of this
form strengthens the theory underlying the work of Belkin-Niogi, Coifman-Lafon,
Rustamov, and others in the shape analysis community, whoustied and used such
maps for various choices of the, as discussed in Section 2.6. In particular, we
show that such maps are true embeddings. Recall that for a cpact manifold M a
di erentiable map f : M ! N is anembedding oM into N if f is injective and an
immersion, that is, rankdfy = dim M for everyx 2 M.

Theorem 9, which we quoted above from BBG [11], implies that hite-dimensional

maps of the form (3.2) embed closed Riemannian manifoldsanthe Hilbert space™2.
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However, whether these maps remain embeddings, or even injeet when projected
into nite-dimensional Euclidean space has not been addre=d by the applied com-
munity. Despite this, these authors refer to them as \embeddgs" as pointed out in
Section 2.6.

This is not a mere clash of terminology. Although Coifman-Lain noted their maps
are embeddings in the discrete case, their argument does adtress the case in which
new points are added to the data. Speci cally, their embeddg dimension is taken to
be the size of the full point sample. This obviously poses arobinatorial challenge,
which is often handled by truncating the representations. Wh truncation, however,
the spectral distance is no longer guaranteed to be a metritinder the assumption
that the shape or data is a sample drawn from some Riemanniaramifold, we should
expect the embedding dimension to depend on the dimensiondageometry of the
manifold, and not the sample size.

Not knowing a priori whether these maps are injective is a furagnental problem for
these methods. Itis even more signi cant when these spedtrapresentations are used
for registration, where image points should be unique. Foxample, the 3D spectral
embedding of an ADNI hippocampus is shown in Figure 3.2. This @ss typical for
our particular set of ADNI hippocampus data. Note that the repreentation does not
e ectively separate points in 3D spectral space, as opposisides of the hippocampus
nearly intersect. Because our registration algorithm depes on distances in spectral
space, points on opposite sides of the hippocampus will béke¢a for neighbors with
the 3D embedding, sometimes resulting in an erroneous capendence.

We address this problem and show that all maps of the form (3.2re smooth

embeddings into any nite-dimensional Euclidean space afi €iently high dimension.

Theorem 13. Any map of the form (3.2) is a smooth embedding for large enough
m 2 N.

Proof. We examine the map
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Figure 3.2: A hippocampus from two angles (left) and its 3D sp#&al em-
bedding (right). Surface color is given by distance in speetl space from the
point indicated by the red ball. (The hippocampus belongs to the ADNI control
group and has been smoothed.)

and note that all other maps (3.2), includingH;, are equivalent up to an invertible
linear transformation (as we assumed; 6 0).

Our proof is divided into several steps. In Section 3.1.1 lws¥, we show that N
is an immersion for soméN 2 N. It then follows that HY = f e %2 g1 i N IS an
immersion for allt 2 R. We show that H™ is injective for some nitem N as
follows.

Noting that HN is an immersion andM is compact, we apply the inverse function
theorem to obtain a nite open coverf U;g; ; | of M such that HthUJ. is an embedding
of U, into RN foreach 1 j |. We will need the Lebesgue number> 0 for this
cover (taken with respect to intrinsic distanced).

We now call for the heat kerneK . For eacht > 0, put
git):= inf  K(t;x;x) K(txy): (3.3)
d(xy)

That g is continuous int follows from compactness df M and continuity of d; K.
Gaussian estimates foK imply limy, og(t) =+ 1 . ChooseT > 0 to satisfyg(t) 3

forallt T. We now recall the Hilbert-Schmidt expansion

s
K(t;xy)= e " i(x) i(y)

i=0
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holds absolutely and uniformly onT;1) M M. Put
X .
Krixy):= e " i(x) i(y)
i=0
and choosem = m(T) N satisfying jKy K{j 1onM M. Now, for any
X;y2M,dxy)

3 K(txx) K(txy) (3.4)
KT(xx) Kixy)+2: (3.5)

HenceK{'(x;x) K{(x;y)> 0.

Finally, observe that the equality HT"(x) = H'(y) implies K{'(x;x) = K{(X;y).
By our choice ofm and T, equality cannot occur ford(x;y) . For d(x;y) < ,
equality cannot occur becausélf'jy, is an embedding for soméJ; containing x and

y. Finally, it is obvious that H{' will remain an embedding if we take largem. [

3.1.1 Eigenfunction immersions
Our immediate goal is to show:

Lemma 3 (Pointwise convergence of derivatives)Let (M *: g) be closed, connected.
Let x 2 M, X 2 TyM be arbitrary. Then there exists a sequendes;g for which

P
X = ilzl ar i(x) (converges atx). Here, r denotes the Riemannian gradient.

A proof of this lemma relies on more than compactness, regrtitg, and uniform

convergence. For example, consider

Remark 6. Let M = S! as a di erentiable manifold with coordinate in a neigh-
borhood of 0, and letf,( ) := sin(n ):IO n. Put f :=lim f,. Observe thatM is
compact,f =0 2 C* (M), f, 2 Ct (M), and f, ! f uniformly. Nevertheless,

d, = P ncosf )d does not converge at 0, for instance.

Lemma 3 relies on properties of the eigenfunctions of an ptic operator. The
elliptic regularity theorem and Sobolev lemma, stated in Appndex A, are crucial

here. In proving the lemma, we observe the following.
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Lemma 4. The Laplace-Beltrami operator on (M¥; g) is locally elliptic of order 2.

Proof. Let (U;') be achartonM. Then = ¢*(@@ S@ on' (U) R the
coe cients are C! and g2 is symmetric, positive de nite at each point. Hence is

elliptic on * (V). O

Proof of Lemma 3. Let f 2 C! (M), and put & := h j;fi,. We consider the conver-
gencef = P & ; at an arbitrary point x 2 M. Let (U;") be a chart containingx.
We considerf’ := P @ ; as a distribution on := ' (U). Above we showed that

is elliptic of order 2 on . f 2 C! sincef 2 C!. As f*and f are equal as dis-
tributions on , the Elliptic Regularity Theorem (17) impli es thatf = f 2 Hé‘i‘;()
for all g2 N. Now let o be any neighborhood ok, | . Then f' 2 Hg2 (o)
for all g2 N. From the Sobolev lemma (18), we see thd f = D f'= P aD
holds pointwise on  for any multi-index . Finally, to get convergence of gradients
to X 2 TyM, choose & 2 C! (M) with f(x) = x'g; (0)X! on a neighborhood ok.
ThenX:rf:Pil:Oair i O

Remark 7. Alternatively, Lemma 3 can be shown after extending the Sob®l lemma
and elliptic estimate to Riemannian manifolds (cf.[72]). Heever, we never need such
machinery. The following lemma is invoked in [11], who knewvell enough to forego

a proof.

spansT,M .

Proof. Let V :=[r i(x)] TxM, thatis, V denotes the subspace spanned by the
gradients of all eigenfunctions. If diiV < dimM, chooseY 2 T,M, Y 2 V?. Get

P P

(previous lemma)yY = ar ; atx, and kyk? = a hy;r ;i = 0. Conclude
V = TyM, and we may choose a basé¥ =[r ;:::;r ] O
With notation as in the lemma, put «(y) = ( i,(y);:::; i (y)). From the

preceding lemma and inverse function theorem, there is a ghborhoodU, of x on
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which , is a di eomorphism. SinceM is compact, we can choose nitely many
local di eomorphismsf  g; j | coveringM . Letting N be the largest eigenfunction

index found inf g1 ; |, we see that N js an immersion. We now have

Proposition 6. N'is an immersion for someN 2 N.

3.1.2 The embedding dimension

Now we would like to know the smallesi for which H™ is an embedding. A lower
bound for the embedding dimensiom will be valuable for knowing where to begin
in the registration algorithm and also for knowing the comptational complexity in
using the embeddings.

Before invoking properties of the heat kernel, we make someeppminary observa-
tions. First, for a compact di erentiable manifold M X any smooth mapF : M | R™,
m 2k+1,is -close to an embedding®: M ! R™. That is, for any > 0, there
is an embeddingF : M ! R™ such that sup,jF Fj < . (cf. Whitney embedding
theorem on p246, Lee [53].) Second,M K is spherical, then we must haven >k in
HM™ (the Borsuk-Ulam theorem). For §?;can), in particular, H3 gives anisometric
embedding (1= X; 2=vYy; 3= 2).

The proof of Theorem (13) hints that having a lower bound forhe embedding

dimension likely requires an upper bound for the remaindeetm
X P .
Rm(t):= sup e (X)) i (3.6)

0Y)ZM M oy

By the Cauchy-Schwarz inequality it is enough to consider thdiagonal.

Put ; = P ;. Note that a uniform bound onk ;k; allows us to write R, (t)

P
c L.et? k! One may check that the terms in the sequence ' 7 ¥ ! are
decreasing for 2 ; k 1, which itself suggests a requirement fan. We observe

P
that ', e'’ X1 maybe compared with the Gamma function using the known
upper and lower bounds on the eigenvalues. This may not be necessary, however,

given the following result:
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Theorem 14. Let (MX;g) be closed. De ner, to be the in mum of Ricci curvature
over unit tangent vectors orM , and letd(M ) denote the diameter ofM; g). If (M;g)
satis es rod(M)? (k 1) 2, 2 R*, there exists a positive numbea(k; ) such
that

Vu Kw (tx;x)  Z(S¥; can;t=R?) (3.7)

whereR := d(M)=ak; ). (cf. [12, 11])

The right bound in equation (3.7) is the heat trace of the sphhe and has an
explicit formula. Moreover, it is possible to calculatea(k; ) explicitly [12].

Suppose we know, or have a good estimate of, a lower bound floe Ricci curva-
ture (i.e. Gaussian curvature fork = 2) and diameter of (M; g). We then calculateR

as above andZ (t=R?) = Z(SX; can;t=R?). Furthermore, suppose we have computed

cording to
xn
Rm(t)  §Z(=R») min e’ 2(x): (3.8)
X
i=0
This admits a recursive approach to ndingm;t for which R, (t) may be bounded

below any preset value.

In practice, surfaces are often reconstructed from tangemtiane projections of
k-nearest neighbors. Thus, we conjecture that" is an embedding if it preserves
a certain number of nearest neighbors. To be precise, let uallcH™ a k-neighbor
embeddingif all k-nearest neighbors are preserved with respect to the norm thie

embedding space.
3.2 Properties of the spectral embedding
Henceforth, spectral embeddingvill refer to the heat kernel representation
H" =(e *% ;e 2 ) =exp( 5t m) ™ (3.9)

We rst consider a scale-invariant form of this representabn, then look at some

properties ofH;.
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A scale-invariant form. As it stands, the spectral embedding (3.9) is sensitive
to scale. As both scale-invariant and scale-sensitive shapmwdels are of interest in
practice, we now present a way to normalize scalefirst note that if we scale a shape
(c.f. Section 2.2.2) bya > 0, the eigenvalues of the Laplacian divide bg?. This is
easily seen in normal coordinates where the Laplacian takibe standard form of the
Euclidean Laplacian v =a 2 y = a ? . Asnoted before, the eigenfunctions

must be renormalized bya*=?, k = dim M. HenceH = a *2HM ,. We see that
H=f e ®1 g (3.10)
gives a scale-invariant representation. Alternatively, [l considers the form
fV e g (3.11)
which is invariant up to scaling the time parameter.

3.2.1 Stability under metric perturbations

It was pointed out in [81] that the heat kernel is stable undeperturbations of the

underlying manifold. The implication for H, follows from
kHi(x) Hi(y)k*= K(txx)+ K(ty;y)  2K(EXy); (3.12)

which we will return to below. Note that this equality holds fa full and truncated
cases. For now, we observe thatl; will inherit certain properties of K (t; x;y) by
virtue of this identity. In particular, stability of K implies stability of H; under
perturbations M .

A more precise statement can be given from

Theorem 15 (BBG [11]). Let (M;g) be a closed Riemannian manifold,> 0, and
m 2 N. Let h be any metric onM such that(1 s)g h (1+ s)g, s< . Letthe
Ricci curvatures of all metrics be bounded from below byk 1)r2 for some constant

ro. There exist constants gi,,(s);1 i m, which go to O withs, such that to any

LIn the case of the graph Laplacian, we instead adjust the parameters to imp@sscale invariance.
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orthonormal basisf ;g of eigenfunctions of ,, one can associate an orthonormal

basisf ;g of eigenfunctions of ¢ satisfyingk ; iKq giro(S) for i m.

Noting that the exponential terms are bounded by 1, the theore also applies to
the coordinates of the spectral embeddingl{". In other words, the nite spectral

embedding is well-behaved under perturbations of the metri

3.2.2 The time parameter

Figure 3.3: A 3D spectral embedding of a human gure at multi@ times.

Time as a attening parameter. To build some intuition for the time param-
etert, we consider how we might atten a given functiorf 2 C (M) over time. That
is, starting from f, what does gradient descent o€ (M) with respect to atness

look like? This question will lead to the heat equation oM. We begin with the

Rayleigh quotient R
Fuy= S U<, (3.13)
2 o, u '

R
which we have already seen in Belkin-Niyogi's arguments. Forv 2 C! (M), v Uv =
0, we have

DF,(v) = i F(u+ hv) (3.14)
urvta gh h=o '
u;r vi
R M
u)v
= 2) : (3.16)
v U



The L2-gradient of F at u is thus u= ,, u?. Restricting our domain to the unit

M

R
sphereS' := fu2 C* (M)j ,, u*=1g, the gradient of F at u2 S* is seen to be
u. The gradient descent trajectoryu : | ! S with initial condition u(0) = f thus
satis es
u(t) = u(t)
(3.17)
u(0) = f:

Because its coordinates, up to scaling, satisfy this equatti, increasingt has the e ect
of attening the embedding.
Thus the gradient descent curve starting from ; is given byt 7! e it ;. Con-

catenating the gradient curves together, we get".

Time as a multi-scale parameter. It is pointed out in [23, 5] and elsewhere
that H, has a \multi-scale" property, which is desirable for shapeepresentation as we
now explain. The kernel sumP e ' {(X) i(y) shows that the contribution of ; to
Kix decays exponentially with the magnitude of ;t, so that raisingt acts to suppress
higher order eigenfunctions. Any dissimilarity between slpes should be re ected in
their eigenfunctions, and the spatial scale at which the dgnilarity appears might
be expected to show in the rate at which their eigenfunctiondiverge. For instance,
to emphasize the surface at the global level, a large valuetomight be chosen. As
t is decreased to O, the representation obtains more resobrti In this sense, the
representation ismulti-scale

The multi-scale property of the heat kerneK is described in [81], and the rela-
tionship betweenH; and K noted in (3.12) implies that their arguments are pertinent
here. To begin, the multi-scale property may be understoodh iterms of Brownian
motion and di usion processes. For example, for any Boreltsé) M, the proba-
bility that a Brownian motion initiating at x 2 M is in U at time t > 0 is given by
R Ko () dV(y) (e 81,

Some very precise observations can be made:

Remark 8 (Multi-scale properties [81])
(i) For any smooth, relatively compactD M, K5 (y) Kix(y) ast! 0.
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(i) Forany t > 0, x;y 2 D, if D E, then KP(x;y) KE(x;y) for Dirichlet
boundary conditions.

(i) If [jl=l D; =M andD; ; Dj, then lim; KtDj (x;y) = Ki(x;y) for all t > O.

Intuitively, (i) can be understood as saying thatK ., gives information local to
x for smallt > 0, yet global information ast ! 1 . Properties (ii), (iii) can be
understood in terms of increasing the number of paths betwee and y, hence in-
creasing the probabilityK (t; x; y) of being connected by Brownian motion. Although
the heat equation acts with in nite speed, these remarks imp that the intuition of

a propogating \heat front" is justi ed in measure.

3.2.3 A Euclidean view of spectral space

Small-time asymptotics and Gaussian estimates for the heéernel allow us to
piece together a picture of spectral embeddings from the poiof view of Euclidean
measurements in spectral space. In fact, since the spectemhbeddingsf H.g. o are
all related by invertible linear transformations, the picure we give oH{(M ) ast! 0
will hold for all t > O up to scaling of axes. Properties that hold through projen
will give us a picture ofH™(M) R™.

We will appeal to the identity
hH(X); Hi(y)i. = K(txy)  §; (3.18)

where we recall that 3 = V,,*.

Embeddings are centered. We begin by noting thatH{(M) is centered (with

respect todV) according to

4

H(x)dV(x)=0 2 R': (3.19)
M

This follows simply by orthogonality of the eigenfunction cordinates ofH; to the

constant o.
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The radial coordinate is related to curvature. We consider the radial co-
ordinate in spectral space given by(x) = kH{(x)k-2. First, relates to curvature
through the asymptotic expansion

1 s(x)
@yt 6

(X)2+ 2= K(t;x;x) = t+ O(t?) (t! 0%); (3.20)

wherek = dim M and s(x) is the scalar curvature atx [72]. See below for the case
dimM = 2. The expansion implies that (x) goes to in nity as t vanishes. Positively
curved regions protrude outward relative to negatively cwed regions. We imagine
the embedding to resemble a wave on a sphere centered at thigjiorof R' (per the
previous note) which blows up as! 0. More precise interpretations are di cult as

the higher terms in the expansion oK (t; X; x) become unwieldy in general (cf.[72]).

Within-shape distances. To interpret kH{(x) H¢(y)k-2, several have pointed

out that

kH((x) Hi(y)k% = K(Exx) + K(Gyy) 2K (Ex;y) (3.21)

easily follows from the inner-product formula (3.18) [23,1]. However, we have not
seen Gaussian estimates used to study this formula. We use=$le to get an upper
bound for kH{(x) H(y)k that decreases monotonically withr = d(x;y) for any

xed t> 0. We recall from Section 2.4 that on (0T] M M there exist constants

Cy C_ > 0 such that
CLG(2r) 2K(txy) CyG(tir); (3.22)

whereG(t;r) = G(t;d(x;y)) is the Euclidean Gaussian kernel. This permits an upper

bound

kH{(x) H{(y)k% CyG(t;0) C_G(t;2r): (3.23)
An analogous lower bound can be stated, although it will obtainegative values in
general for certaint;r .
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The case of surfaces. Stronger statements can be made for a surfack £ 2).
The only intrinsic curvature of a surface is its Gaussian cuature 2 C! (M), which
simpli es many more general formulas. We rst recall (Sectin 2.2.3) that for surfaces
the scalar curvature iss; =2 and Ricci curvature isRicg = g, where is Gaussian

curvature. The asymptotic formula
() can=g+ It(sgg 2Ricy) + O(t?) ast! 0
in [11] then reduces to
( can=g+ O(t>) ast! 0O;

showing that surfaces embed easier than other manifolds, @se might expect.

Furthermore, the asymptotic formula becomes

K (t;x;x) = %(1+ %t + O(t?) ; (3.24)
yielding
kH(x) Hi(y)k% = % + w 2K (t;x;y) + O(t): (3.25)

Hence, for smallt > 0 the distance between pointx%y® 2 H((M) is larger when
they lie on a positively curved region oM. Intuitively, positively curved regions
are stretched out while negatively curved regions are congssed. This becomes the
most stable feature ovet. Note that 2K (t;x;y) has upper and lower bounds that
decrease i = d(x;y) per the Gaussian estimates.

Finally, we consider variations of the radial coordinateRNI {(x)?dV(x). From

(3.20), we have V4

_ W (M)
y (x)?dV(x)+ 1= 2t T 6

where (M) is the Euler characteristic ofM . This suggests that spherical surfaces

+O(t); (3.26)

have an energetic radial coordinate (relative to holed sades). The expression on

the right is the heat traceZ(t) of M.
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3.2.4 The star-like property

We show that the imageH{" (M) bounds a region inR™ that is approximately
star-shaped with respect to the origin. Speci cally, the agle between vectorx® y°2
HM™(M) can be bounded from below on a time intervalS; T] provided d(x;y) is
bounded from below. This implies that a nite sample retrac$ to a sphere (without

self-intersections).

Proposition 7 (Star-likeness) Given i, 2 [0; =2] and dmin > O, thereisa T > 0
such that for anyS 2 (0; T] there is a positive integeN such that ift 2 [S; T] and
d(x;y)  dmin, then the angle (x;y;t;N) between vectorx®y®2 RN in the spectral

embedding is greater thanp,.

The proof has a similar avor to the proof of injectivity. In fact, it can be used

to prove injectivity for distances greater than the Lebesgainumber.

Proof. Angles are given by the dot product formula

KtN (x;y) 2
(KtN (X; X) (2))1=2(KtN (;; y) (2))1:2 (3.27)

We bound KN (x;y), for d(x;y)  dmin, from above andK N (x;x) from below. Put

cos (X y;tN) =

a:= 3vol(M); then, since 3 =1=vol(M),

aKM(x;y) 3 )
(@K{ (x;x)  3)2(aKM (y;y)  3)¥2

cos (X;y;t;N) = (3.28)

From uniform Gaussian estimates for the heat kernel, there & T > 0 such that

sup aK(t;x;y) 2+cC0S min and inf aK(t;x;x) 5 (3.29)
d(x;y)  dmin x2M

fort T.Choose(<S T. ChooseN tosatisfyjk KNj 1=aonM M [S;1).
Then d(x;y) dmin andt 2 [S;T] yield aKN(x;y) 3  aK(;x;y) 2  COS min
and akK]N(x;x) 3 aK(tx;x) 4 1. Hence

cos (X;y;t;N)  €OS min: (3.30)

]
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3.3 A spectral pseudo-metric for shape
comparison

We now consider a pair of shapdél; N, and how they may be compared through
their spectral representationsH ;HN. To begin, we use the Hausdor distancel,
to quantify how much the representations intersect in the ebedding space R™; “?).
Recall that d4 was de ned in (2.34) of Section 2.5.

Recall that HM is constructed from a choice of eigenfunction basis far?(M).

Hence, we should consider
du (HM' HY) o= dy (HY (M) HY (N) (3.31)

for various bases in order to nd the best t. In general, thee are two kinds of choices
made whenHM is constructed. First, signs of the eigenfunctions are chaseSecond,
eigenspaces with dimensior 1 require a choice of basis. However, in the generic
case (Theorem 2), eigenvalues have multiplicity 1. We expgeeal-world data to be
generic, and we now make this simplifying assumption. Henoeth, we presume the
choice of ; is unique up to sign. Therefore, 2 spectral representations oM are
possible inR™.

We de ne the spectral pseudo-metric
Ds(M;N ;t) :=inf dy(HM;HY); (3.32)

the in mum being taken over all sign choices, which we formiake below. We rst
studied Ds in [3].
We recall the following result from BBG [11]. Given two Riemanian manifolds

M; N , their spectral distance is de ned to be
ds(M;N;t):=maxf su inf  dq(13(M); 12(N)) ;
S(MiN ;1) SUp ot du(1E(M); 1N)

su inf  dy(13(M): 12N ;
bZB(g) ot H(IE(M)TP(N)) ¢

(3.33)

wherel 2 and HM are equal up to a constant anc 2 B (M) is a choice of basis. They

prove
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Theorem 16 (BBG). For any xed t> 0, ds is a distance between isometry classes
of Riemannian manifolds. In particular,ds(M;N ;t) =0 if and only if M and N are

isometric.
Hence,Ds is a generic shapenetric on the in nite-dimensional embeddings.

3.3.1 Computing spectral distances

The sign indeterminacies irH™ may be formalized as follows. LeZ]' be the mod
2 additive group of all bit strings of lengthm. Consider the following action ofZ}'

on mappingsf : M ! R™. For b=(lby;:::;h,) 2 2%, deneb f: M ! R™to be
(b £)(x)=(( D*F2(x);:::5( D™ Fm(x): (3.34)

That is, the sign of theith coordinate off ips for b = 1. The orbit of HM under
this action, O(HM)= b HM jb2 ZJ , collects together alim-dimensional spectral
embeddings oM .

Here we optimize the e ectiveness of the Hausdor distance fmomparing shapes
by minimizing the distance over all choices in the orbiO(H). For each xedt> 0,
we have

Ds(M;N ;t) := rg2|r21 dq(@a HY;b HN)
a;b2z7
(3.35)

= gzlizg dy(HM ;b HNY;
which measures the distance between the orbitsdf" andHN. (The second equality
follows from the fact that the action of Z} preserves the Hausdor distance.)

The main computational challenge in calculatind® s is the minimization overZ?%'.
Absolute minimization involves 2" Hausdor distance computations inR™. The time
complexity of a single Hausdor distance computation is loggfd for some examples
in Table 3.1. Unless the embedding dimensian is small, the optimization becomes
non-trivial, in which case we use the Markov chain Monte Casl(MCMC) algorithm
(cf.[28]).
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Table 3.1: Time (secs.) to compute the Hausdor distancel, between
n-point sets inR™.

m
4 6 8| 10
k| 0.2| 0.2 0.2| 0.2
2k| 06| 0.7 0.8] 0.9
n 5k| 32| 41| 49| 6.3
8k | 9.7]|12.4| 14.7| 19.3
10k | 14.0| 21.1| 25.3| 35.3

3.3.2 Markov chain Monte Carlo matching
We now use MCMC to estimate the spectral pseudo-metric
Ds(M;N ;t) = rbrzliznm dy(HM ;b HY): (3.36)
2

We de ne the plausibility of a bit string b2 Z3' to be

O dHM b HYO
272 ’

PI(b) := exp (3.37)

where > 0 is a con dence parameter. The associated probability digbution on
ZD0is (b= Pl(b):P 271 P1(c), but the normalizing constant typically is unknown
because it involves a computation of exponential cost. Theogl is to nd b that
maximizesP I(b).

To describe the MCMC algorithm, let ; 2 ZJ' be the m-bit string with ith
coordinate 1 and other coordinates 0. Note thai; b2 Z3' di er on a single coordinate

if and only if a= b+ ; for somei.

MCMC Algorithm
Input. HM;HN; parameter

Output. Sign-matched spectral representations.
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2. Calculate the plausibility P1(b).

setb = b+ ;. CalculatePI(b).
4. Putg=min f1;PI(b )=PI(b)g. Replacebwith b with probability g.

5. Repeat 3, 4, 5.

Figure 3.4 shows results for the rst 7 eigenfunctions of twouman surfaces. We
used 6 runs of the chain witht = 0:01 and selected the most plausible bit string
visited. The top two rows show the initial choice of eigenfuwtions, and the bottom
row shows the choices determined by the MCMC algorithm. Notehat all but the
third eigenfunction align correctly. This happens because captures a sagittal plane
(near) symmetry of the shape. However, this does not have a re#able e ect in the
calculation of shape distance because it is robust to ambitas associated with near

self-isometries of a shape.

(target)

(source, initial)

MCMC

(source, nal)

Figure 3.4: Matching eigenfunctions: The initial choice ofigenfunctions
(top rows) and the nal choice for the source shape calculadenith MCMC
(bottom).
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Figure 3.5: Matching eigenfunctions: The sign plausibility? | over 140 iter-
ations and six runs of MCMC in matching the two human gures.

3.4 Discretization

Functions onM are discretized over a set of pointst . Let bethe m|j M| matrix
whoseith row is the (i + 1)th normalized eigenvector of x = D L. Then, the dis-
crete spectral embedding coordinates of thjeh vertex is e ' e "' o T
These vectors are the columns of then j M| matrix Iqt“" = e ', where isthe
diagonal matrix having ; as theith diagonal entry. The columns oﬂqt’\" may be

viewed as the point cloudfy;(t)g R™. Itis simple to check that the action of a bit

b AM =( 1AM =( 1)Be ! ; (3.38)

where ( 1)B is the diagonal matrix with ith diagonal entry ( 1)® . For1 i m,

this action simply ips the signs of the entries on thath row of Iflt"" if b =1.
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CHAPTER 4

SPECTRAL INVARIANT SIGNATURES

The eigenfunctions of two shapes occasionally appear to bet @f order. For an
example, we include Figure 4.1. Level curves of the eigenftions for the terrier
and husky are color coded. Note that ; captures the longitudinal behavior of both
dogs, so it is in the correct place in the order of eigenfunotis. However, before
comparison, the sign of one of the;'s should be ipped. The third eigenfunction ;
captures essentially the same geometry for both dogs, andis@s matched in both
order and sign. Lastly, note that , of the terrier more naturally corresponds to 4 of
the husky: it is relatively at over the body, but distinguishes between the left and
right rear legs. To compare these dogs, it appears that a manatural correspondence
would follow if we permuted the eigenfunctions and changedhé sign of one of the
1'S. Eigenfunctions have been noted to switch places from stching [45, 60, 69].

Notice that the heat kernel

X
Ktxy)= e " i(x) iy (4.1)

i
depends neither on the choice of sign nor eigenfunction ordsince ;(x) i(y) =
(i) i(y)) and simple associativity of the sum. As such, we call the hea
kernel a spectral invariant We consider the simpler heat kernel signature (Section

2.6.4)
X

HKS : K(tx;x)= e ' (x); (4.2)
i
and note that it inherits the spectral invariance of the heakernel. We now ask what

other spectral invariants might there be.
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1 2 3 4

Figure 4.1: Level curves of the eigenfunctions for the terriand husky are
color coded. The order of eigenfunctions does not appear iopal.

To side-step the di culties of eigenfunction matching, we bok at a class of spectral
invariants based on symmetric functions of the rstm eigenfunctions. Our prelimi-
nary work on these invariants was published in [4]. Each of #se spectral invariants is
a symmetric function ofm terms, each of which is a squared eigenfunction weighted
as suggested by the heat kernel. We thereby skirt the assungt that the rst
m eigenfunctions correspond as ordered by the magnitudes bkteigenvalues, and,

furthermore, we skirt the sign indeterminacy in each eigemfction.

4.1 Construction of the signatures

We begin with a shapeM and its Laplacian eigenfunctions ¢;:::; n 1. For
each pointx 2 M, we feedfe ' 2(x)go i m 1 into various symmetric functions. The
factor e ' is motivated by the heat kernel, and it allows us to modulatete in uence
of di erent scales and suppress noise. Note it 2(x) is precisely the contribution of

the ith eigenmode toK (t;x; x).

Symmetric polynomials. By a symmetric function we mean a function that is
invariant under permutations of its arguments. For exampleconsider the symmetric

polynomialsf (r;s) = r + s and g(r; s) = rs of two variables. An alternative way of
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constructing these is to xr and s and consider the quadratic polynomial

(z r(z s)=2z> (r+s)z+rs
i (4.3)

=z° f(rs)z+ g(r;s):

in the variable z. Up to sign, f (r;s) and g(r; s) are the coe cients of this quadratic

ny 1 xXn _
(z )= hz™ ! (4.4)
i=0 i=0
whose roots arey;:::;rm 1 and whose coe cientshy;:::;k, are symmetric polyno-

mial functions of ther;.
Writing r;i(t;x) = e it 2(x) and using (4.4), we obtain coe cientsh (t; x) implic-
itly de ned by
ny 1 xXn _
(z ritx)) = h(t;x)z™ ': (4.5)
i=0 i=0
The coe cients b(t;x);1 i m; provide m spectral signatures of the shape, and,
by construction, b (t; x) depends neither on the sign of the eigenfunctions nor on the
particular ordering.
The signatureby(t; x), which is the coe cient of z™ 1, is given by
X 1 X 1
by(t; x) = ri(tx) = e ' (x): (4.6)
i=0 i=0
Thus, by(t; x) is the truncated heat kernelK (t; x; x), which is precisely HKS. Of
course, we could seti(t;x;y) = e i ;(x) i(y) in equation (4.4) and have b, equal
to the truncated heat kernel. However, we restrict our discsgn to the simpler
ri(tx)=e it 2(x).

We normalize the coe cient b (t; x) by its uniform expected value

z
1
k() == VoV o, b (t; x) 4.7)
to obtain the spectral invariant signature
t; X
au(tix) = X 4.8)
k(t)
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Figure 4.2: A hippocampus with seven sample points and itg signature
at these points graphed with respect to time.
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Figure 4.3: Theg,; &; g4 invariants for the same seven points as above are
graphed with respect to timet.
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What properties do these signatures have? It is easy to showathall g(t; x) are

nonnegative. Also, we have an explicit formula for ligy  gk(t; x).

Remark 9. If ¢ 1< , then

lim g(tx) = VO.'ESMM b?_;—gz (;gx) : (4.9)
In particular,
tl!ilm au(t;x) =1 (if o< 1) (4.10)
lim go(t;x) = 2(x)vol(M) (if 1< ) (4.11)
etc. (4.12)

The proof of these is given in the Appendix.

4.2 Uniqueness of the heat kernel signature

The coe cient by corresponding to the heat kernel signature HKS is seen to be
the most robust of the signatures in the case of repeated emgalues. For example,
suppose = , = 3 has a 2-dimensional eigenspace and; 3 are orthonormal
eigenfunctions for . Then for any U 2 O(2) (rotations and re ections), [ » 3]" :=
U[ » 3]" could just as well be our basis, and since the action @f(d) preserves
Euclidean distancesg ' 3+e ! 3=e ! 2+e ! 2

Which of the spectral signaturedy are invariant under actions ofO(d) for all d
on the rootsr;? Because each coe cienty is a polynomial function on the roots,
we may consider an arbitrary polynomial functionf on m variablesxy;:::;Xy. In
general, the only polynomial functionsf that are invariant under rotations in R™

PPWm—

can be seen to be functions of the formh = g(r), wherer = ., X7 is the radial
coordinate. Observe thath, is the only coe cient of this form, hence it is the only

spectral signaturely that is robust to repeated eigenvalues.
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4.3 Statistical measurements and shape distance

Now we use the spectral signatures to compare shapes. Our aggwh is to compare
probability distributions of the gx using the Jensen-Shannon divergende[55], which
measures the similarity between distributions. We now coitker the details.

We rst construct the probability density functions as follows. Fixt 0 and let
& :M ! R be any of the shape signaturegq(t; ). Given a probability measure on
M and any intervall R, we have

(g X(1)).

(M)

where X is a random point drawn according to . We denote the associated proba-

bility density function by pM :[0;1 ) ! [0;1 ), implicitly de ned by
Z
pM(s)ds= P(g(X)21) (81 R): (4.14)
|

P(a(X)21)= (4.13)

Here, we use the fact that the support opM lies in [0, 1 ), since all signatures are
nonnegative.
The Jensen-Shannon divergenck is de ned in terms of the Shannon entropyH

of a distribution p on a setX . Shannon entropy is given by

X
H(p) := p(x) log, p(x) : (4.15)

x2X

The Jensen-Shannon divergence between distributiops and p, on X is then

J(PaiPo; ar b):= H( aPat b))  aH(pPa)  oH(pp); (4.16)

where ,; p 0 are arbitrary weights satisfying o+ = 1. Clearly, J(pa;pp) =0
if p. = pp. Moreover, it can be shownthat 0 J 1. As for the weights, we take
a= p=1=2.
Finally, let M;N be the shapes to be compared. We nd the similarity between
probability distributions pM and p) using the Jensen-Shannon divergende de ned

below. We de ne theg-divergence betweeM and N to be
Divi (M; N ;t) == J(p' ;p) ; (4.17)
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which we expect to be large for similar shapes and small forsdimilar shapes.
We tested the Jensen-Shannon divergence on 100 normal daitions with means
in [ 3;3] and standard deviations in [@L;3]. Figure 4.4 shows the MDS plot (cf.

Chapter 6) of all pairwise Jensen-Shannon divergences. Gslomdicate the particular

mean.

2
°
1 °
° °
o,
0
'Y .,
o ® °
11 ¢ °
2 ® L]
-2 1 n 1 2

Figure 4.4: MDS plot of Jensen-Shannon divergences of 100 nafmistributions.

4.4 Discretization

How do we compute the signaturegi(t;x)? To begin, we note that thekth

That is, the sum overr;, r;, forallO j;< <jkx m 1. Hence, to compute
the polynomial coe cients, we pre-compute the list ofC;” increasingk-indices form

elements. To computey, we initially tried summing over the products

However, for larget, this sum becomes very small which leads to numerical instaty

in the normalization step. Instead, we sum over
expft( o+ + 1, g LX) R (4.19)

which vyields €( o* * x Up (t;x). This calculation is much more robust, and the

normalization step cancels the factog'( °* * « 1) to yield exactly g.
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With this procedure, the computational cost of computingg, has orderO(mk).
Hence, in practice we can only computgy for small k.

To compute the g¢-divergenceDivy, we need to determine the density function
associated withgc. To do this, we rst need to x our measure onM. We use
the distribution  induced by a(x) for the nite sample drawn from M: (U) =

«2u &(X). Thus, the normalizing constant becomes

i X3P be(t; x) a(x)
x2p &(X) .

() = (4.20)

The expected value ofy is then 1, since normalization of signatures includexx).

Next, we divide the range ofg, = gk(t; ), which is [G 1 ), into intervals I, =

E[ok(t; X)] =1, we choose < 1.
The histogram for gyji=19 16 Of Figure 4.5 above is shown in Figure 4.5. Once
these histograms have been constructed logarithmically evtime, measuring thegy-

divergence between shapes is a straightforward computatio

0.12

0.1}

0.08¢

0.06¢

0.04¢

0.02¢

O0 0.5 1 15 2 25 3

Figure 4.5: The distribution of g, at time t = 10 *® for the normal right
hippocampus above.
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CHAPTER 5

DATA PREPROCESSING

The goal of this chapter is to apply spectral methods to datarpprocessing in mor-
phometry. As our applications rely on the eigenvalues and egfunctions of the
Laplacian, we provide details of the construction of the uratlying graph and choice
of parameters in Section 5.1. Following this, we discuss oexperiments with surface
smoothing in Section 5.2. Figure 6.1 shows the ADNI right putanmesurfaces after

smoothing.

5.1 Graph Laplacian parameters

Recall the construction of the unnormalized graph LaplaciaL on points M =

the column sums oW by a and put A :=diag(a;;:::;a,). Thematrix L .= A W
is the corresponding unnormalized graph Laplacian. For ceenience we putd; :=
d(xi; xj). Recall the entries of the edge weight matrixV

exp( d§=42) if0<dj < ;

= 5.1
! 0 otherwise. (1)

If the support is not too small, then A is invertible, and the normalized graph
Laplacianis 4 = A L.
In this section, we consider the choice of parametersand . First, we consider

the e ect has on the graph. Second, we note a choice of parameters thail yield
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a scale-invariant Laplacian ;. Third, we consider the complete graph (1) and
derive the asymptotic behavior of eigendata with respect to. This analysis allows
us to box in the parameter space in search of a \good" choice of

Note that if is large enough, then we get the complete graph. However, cang
tions on the complete graph require much time and memory, a#i a -diagonal entries
of 4 are then nonzero. Another possible disadvantage of the corefa graph is that
it may impose unnecessary rigidity in the representation,sacan be seen in Figure 5.1.
This rigidity is most apparent in the right column of the paraneter matrix and in the
yellow spectral embedding. On the other hand, as we decreasbelow some small
threshold, points begin to lose their neighborhoods, and ¢hgraph ceases to faithfully
capture the dimension ofM. Additionally, below some threshold, the graph sepa-
rates into multiple components. We always assume thatis large enough to give a
connected graph, which we enforce in practice by checkingaththe 0 eigenvalue of

v has a 1-dimensional eigenspace.
Let 4 denote the average distance between pairs of points ih:

X
4= Ci d(xi; ;) : (5.2)

n
2 i<j

We may construct a scale-invariant Laplacian by choosing
=Cd and =cC §= (5.3)

for xed universal constantsC and C .

Figure 5.1 shows the e ects o€ andC on the spectral embedding computed with
the normalized graph Laplacian. A matrix of spectral embeddgs over the param-
eter space C;C ) for C 2 f0:1250:250:5;2;1g and C 2 f 0:1250:5;3;100 19
is shown left. In the top right, a normal right putamen with sgheres of radius cor-
responding toC = 0:5 (yellow), 0:25 (green), 0125 (red). At the bottom right, 3D
spectral embeddings of the normal right putamen using the mespondingC values
with C = 3. (Technical note: In the left spectral embedding matrix,all surfaces are

scaled to a common size. In the three bottom right embeddinga bead of uniform

80



Figure 5.1: E ect of parameters on the normalized graph Laptaan spec-
tral embedding. Matrix of spectral embeddings (left) overhe parameter
space C ;C ). A normal right putamen (top right) with spheres of radius
corresponding toC = 0:5 (yellow), (:25 (green), 0125 (red). 3D spectral
embeddings (bottom right) of the normal right putamen usingthe corre-
spondingC values withC = 3.

size marks the origin in spectral space, and the y, z-axes are color coded red, green,
blue, respectively.)

Now we focus on the parameter and consider the limits of =1 A W)
for extreme values of . For x; 2 M, we usex () to denote its nearest neighbor.
A genericity assumption guarantees it is unique. However, vaeknowledge that in

practice MRI voxel data will produce up to 6 nearest neighbsr

Proposition 8 (Asymptotic properties of m)' Suppose that is large enough to
give the complete graplfM; W) and assume that each point has a unique nearest
neighbor. Then

(a) The eigenvalues of f\’ﬁ have the forml and 1+ z, wherejzj=1;z2 C. If (k)

is empty, thene, is an eigenvector with eigenvalue 1.

(b) ﬁﬁ has 0 as an eigenvalue with multiplicity 1; the other eigenvalue iss n=(n
1) 1, with multiplicity n 1.
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The proof may be found in Appendix B.

5.2 Smoothing data with the heat kernel

Convolution with a smoothing kernel is an established tecloue used to lter
distortion and noise out of various kinds of data [88]. The la¢ kernel has been
applied to smooth surface features [22]. For example, sugeodata pointsf y;g come
from the surface of a brain structure corresponding to actligpoints fx;g. That
is,yi = X; + "i, where"; represents noise in the data (from segmentation, etc.). We
obtain an estimatex} of the actual point x; by applying heat-kernel smoothing to each
spatial coordinate independently. For illustration, we aply heat-kernel smoothing to
the surface coordinates of an ADNI surface (Figure 5.2). This srathed data is used

in registration, which we discuss in Chapter 7.

We recall the heat kernel expansion

b3
Kix(0)= e (%) i(y): (5.4)

i=0

Given an initial distribution f 2 L?(M), the map x 7! hf;K i supplies a rounded
out copy of f, as any irregularities smear away at the start. More precibg if we
dene f; : M I R by fi(x) := H;Ki fort > 0, then ffigso is a family of
smooth approximations off . Moreover, iff is continuous, then lim, o+ f{(x) = f (X)
uniformly in x [20]. Hence, the approximations, are in a sense optimal, and we
think of shorter durations oft as giving closer approximations of . Explicitly, we
have

X- it

fi(x) = ae " i(x); (5.5)

i=0
with g = H; ;i. In computation, we truncate this sum at indexm. We expect
that choosing a larger value of has a similar e ect as truncating at a smallem. In

practice, we simply putt = 0 and consider the result of varyingm.
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original m = 80 m =50 m =20

Figure 5.2: Two sides of an ADNI putamen surface smoothed for = 20,
50, 80 ¢ = 0). (Control individual. Graph Laplacian parameters used areC = 0:25,
C =3)

Discretization. Functions on M are discretized over a seM of n vertices
(in a simplicial approximation, points drawn uniformly from M, etc.). Suppose we
want to apply smoothing tof : M | R. Let be the (m+1) n matrix whose
(i + 1)th row is the ith normalized eigenvector of , = A L, and let denote the
diagonal matrix having ; as the ( + 1)th diagonal entry. Representingf by the
column vector f; fn T, we havef, = Te ' Af fort> 0. More generally, a
vector function F : M | Rk can be smoothed with the (essentially same) operation

F,= Te ' AF, whereF is represented as am k matrix.
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CHAPTER 6

CLASSIFICATION

We now consider the potential of our shape representationsrfshape classi cation.
Recall that the basics of classi cation methods were discsesd in Section 2.7. Our
most basic classi cation task is to test whether di erent stuctures can be e ectively
separated. We do this with the MGH data. Recall that MGH data omprises the

caudate nucleus, hippocampus, putamen, and thalamus.

A more interesting classi cation task is to test separatiorbetween Control and
MCI-AD groups on a given structure. This is done with ADNI data. Recall that ADNI
surfaces include the hippocampus, putamen, and thalamus.h@se three structures
are of interest to us because, as noted above, their volumeavé been noted to
have signi cant sensitivity to the neurodegeneration assiated with AD. We also
noted that the studies considered suggested discriminayopower of the right-side
structures. Figure 6.1 shows the ADNI right putamen surfaces taf smoothing.
The number of surfaces from the Normal and MCI-AD groups shownrea 22 and
48, respectively, which was determined by the quality of dat Graph Laplacian
parameters used ar€ =0:25,C =3.

Below, two representations are used to cluster substruceisurfaces: (1) the Haus-
dor distance between heat kernel representations, and (2)atistical features of the
spectral signatures. We used the shape pseudo-metbg (Section 3.3) to cluster

di erent subcortical structures in [3].
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Figure 6.1: ADNI right putamen surfaces after smoothing (leftmiddle).
The nodal set ,(0) is indicated on each surface. Their eigenvalues (top
right) and normalized eigenvalues, i.e.,= ; (bottom right).

6.1 Classi cation with spectral distances
6.1.1 MGH data

The MGH data consists of four substructures. For this data sewe use the
scale-invariant 12-dimensional spectral representationith t = 1 obtained from the
combinatorial Laplacian. We calculateDs between each structure, using Markov
chain Monte Carlo optimization to determine eigenfunctiorsigns according to the
plausibility parameter =0:1.

Figure 6.2 shows a MDS plot of the distance data. We remind theeader that
MDS is a nonlinear tting of distances into 2D (cf. Section 2). It is apparent that
the 2D projection of pairwise distances cleanly separatdsst four substructure groups.
Moreover, the putamen and thalamus clusters lie closest teiper with respect toDs,

re ecting their similarity in shape.
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Figure 6.2: MDS plot of generic shape distances between therfstructures
in the MGH data.

6.1.2 ADNI right putamen data

We useDg to cluster 22 normal and 36 MCI-AD right putamen. For this data
set, we use the scale-invariant 4-dimensional spectral eedaling with t = 0, obtained
from the (normalized) graph Laplacian withC = 0:25,C = 3. Eigenfunction signs
are chosen by hand. Figure 6.3 shows the MDS plot of the distandata, along with
the results of using the ?-distances on the spectrum and normalized spectrum. The 2-
dimensional projection of pairwise distances appears topseate the two groups more
e ectively than the spectra alone. Figure 6.4 shows the dews values (the signed
distances to the separating plane) for SVM applied to th®s distances. The LOO
classi cation accuracy for SVM with Dg is 86.2%. For the spectrum and normalized

spectrum, the accuracy is 62.1% and 67.2%, respectively.

6.2 Classi cation with spectral signatures

Here, each surface is represented by statistics of its spattsignatures (Chapter
4). A support vector machine (SVM) is trained on these statistal features, then

leave-one-out (LOO) is used to evaluate classi cation acracy.
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Figure 6.3: MDS plot of distance data in ADNI right putamen set fn = 4,

C =0:25,C =3, t=0). For spectrum distances, the'>-norm on R*® is
used. Twenty-two members of the normal group and thirty-sixnembers of
the MCI-AD group are represented.
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Figure 6.4: Histogram of SVM decision values for the Hausdor siance
data in the ADNI right putamen set, corresponding to a classi ation accu-

racy of 86.2%.
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6.2.1 Maximum, minimum, and standard deviation features

We rst compare the g; signature' across the ADNI population using the maxi-
mum, minimum, and standard deviation ofg, (t; x) over the space variable per value
of t > 0. In this way, each surface is identi ed with three functios in t: gi"®(t),
gin(t), and g§'(t). These three functions are sampled logarithmically at times,
which are then concatenated to form feature vectors of ledgt3T associated with
0:- In these experiments, we sampl& = 32 times for each subcortical structure. A
linear SVM classi er is trained on these features, and we comie the classi cation
accuracy. These steps are repeated fgi(t; x). Classi cation accuracy is recorded in
Table 6.1 for experiments with the right hippocampus, rightoutamen, right thala-
mus, and their combination. The results suggest that the losv eigenfunctions play a
major role in di erentiating the two groups through the proposed signatures, as the
improvement from increasing the number of eigenfunctionsoin k = 32 to k = 512

is less than 10% with all three substructures taken into acuaat.

6.2.2 Jensen-Shannon divergence features

Classi cation accuracy pergc-divergenceDiv (t) and SVM is shown for the right
putamen in Figure 6.5, thalamus in Figure 6.6, and hippocampus Figure 6.7. In the
legend (right) we use the conventiong : m', wherem is the number of eigenfunctions
used and degree of the polynomiaDiv (t) was constructed by sampling the interval
ok(t; M) for 100 bins. Here, surface smoothing is not used. Instead lwfear SVM,
a radial basis function is used for the SVM kernel. The paramets of the radial
basis function were chosen (by an exhaustive search) to maze the classi cation
accuracy. For the hippocampus data, we plot the SVM decisiorales corresponding
to the best Div1(t) and Div ,(t) accuracies, which are both seen to 80%. Note that
01, computed with 100 eigenfunctions leads to the best classation accuracy over
the largest time interval. Morover, hippocampus classi cdon accuracies are highest
fort< 1fork=1;2;3;4.

1From the graph Laplacian with parameters C =0:5, C = 0:45.
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Table 6.1: Classi cation accuracy (LOO) of linear SVM on maxnum, min-
imum, and standard deviation features of the spectral invant signatures.
Feature g is the concatenation ofg™*(t), g™ (t), and g(t) over 32 time
values and withk eigenfunctions. Featurey;; g, is the concatenation of the
0; and g, features.

Structure Feature k Accuracy
r. hippocampus O, 32 71.6%
r. hippocampus o 128 72.5%
r. hippocampus 0 128 70.6%
r. hippocampus O;0 128 69.6%
r. hippocampus 0 512 76.5%
r. hippocampus g 512 75.5%
r. hippocampus O, 512 75.5%
r. putamen O, 32 64.7%
r. putamen o, 128 56.9%
r. putamen O, 512 60.8%
r. thalamus O, 32 64.7%
r. thalamus O;0 128 60.8%
r. thalamus O, 512 56.9%
all three O, 32 71.6%
all three O, 512 77.5%
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Figure 6.5: Classi cation accuracy (LOO) of SVM ong,-divergencesDiv
for the right putamen.
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Figure 6.7: Classi cation accuracy (LOO) of SVM ong,-divergenceDiv
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of the bestDiv; SVM decision values are shown for the 102 ADNI right
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CHAPTER 7

REGISTRATION AND LOCAL SHAPE
DIFFERENCES

We are ready to present a registration algorithm based on thgpectral embedding
H. This algorithm will be applied to ADNI putamen surfaces. With the output cor-
respondences, we construct a average surface model of thatrob putamen surfaces.
Registration is again applied to produce a correspondencettyeen all putamen sur-
faces and the average model. This permits us to derive staits for local di erences

in shape between the populations.

7.1 A registration algorithm

We rst present an outline of the registration method used tgroduce results in
this dissertation. Subsections following provide detailsf each stage. Among existing
registration methods, this one is closest to that in Jain et a[45], which uses spectral
representations and TPS transformations.

Given shapes, or point samples of shapes, denotdand N in R", the registration
of M (source) to N (target) is produced in three stages: preprocessing, registration
of heat kernel representations (spectral representationsnd extrapolation to a reg-
istration of the original shapes. It will occasionally be reessary to distinguish the
underlying manifold N from the corresponding samplé&l. The original sampleN will
be extended (by interpolation) to include the points oN corresponding toM . This

interpolated sample is denotedd. The nal output is a registration * : M | N,
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where' (x) is the point of N corresponding tox 2 M. To aid the reader, Table 7.1.1

summarizes the notations used.

7.1.1 Outline of the algorithm
Preprocessing
Input. M; N ; parameters:m;t; (C;C )
Output. Sign-matched, normalized, centered spectral representats My ; Ny,
(1) Compute the rst m nontrivial eigenvalues and eigenfunctions d#l and N .
(2) Match the eigenfunction signs ofN to those ofM .
(3) Construct the m-dimensional spectral representation®ly,ji; Npj;.

(4) Center, then scale,My; N, to have centroid at the origin and unit Frobenius
norm?.

Register My, to Ny

Input. My, Np; parameters: ; !

Output. Weight matrix W

Iterate the following three steps as desired.

(1) [Mp! Nf  estimate_correspondence (Mp; Np; )

Estimate a correspondencé, ! NQ from closest points inR™, where N? is
interpolated from Ny, modulated by a \con dence" parameter > 0.

(2) M? transform (M, ! NP2 1)

Use the correspondence from Step 1 to defofdh, into M2, via TPS( 1). Each
X 2 My is moved toward its corresponding point.

(3) Rede ne M, M for the next iteration.

Return the weighted correspondence matri¥v from the nal call to estimate correspondence .

Extrapolation

1Square root of the sum of squares of all entries.
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Table 7.1: Registration algorithm notations.

source target

M N point samples from shapeM and N
N© interpolated sample fromN

My Np, spectral representations oM; N
N\h interpolated sample fromNy,

Input. M; N, weight matrix W

Output. Registration' : M ! K: ' (x) estimates the point ofN corresponding to
X2 M.

(1) Center M and N to have centroid at the origin; store the Frobenius norm y
of N; scaleM and N to have unit Frobenius norm.

(2) Use the correspondence given By to rotate N into best t with M.

(3) UseW to interpolate M ! N as

X
X7 Wyy; (7.1)
y

where the obvious identi cationsM $ M, and N $ Ny are made.
(4) Rescalelt: N o N

(5) Return the registration' : M ! K (the composition of Steps 3, 4).

7.1.2 Stage |: Preprocessing

After computing the rst m + 1 eigenvalues and eigenfunctions of the Laplacian
(graph or combinatorial), we check that only one of the eigealues is 0, which guar-
antees that the graph is connected for our choice @f. The rst m nontrivial pairs
are then stored. Next, the eigenfunction signs are matched ésaved prior to con-
struction of the heat kernel representations so that the mahing does not need to be

repeated should a di erent value ot be used in the future. The step of matching the
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eigenvector signs can be done by hand, brute force, or stosheally, depending on
the total number of registrations to be done and om.

For a large sample of shapes and > 5, we use MCMC to match eigenvector signs
(see Section 3.3.1). For consistency with the metric used tine registration step, we
minimize distance between the orbits of eigenvectorsy, and v as

QZIEJ du( x;b  v): (7.2)

7.1.3 Stage Il: Registration of heat kernel representations

(1) Estimate correspondence (soft assignment). This step is based on Chui
and Rangarajan's modi cation of ICP [21], where the corregmding point in the
target shapeNy, is interpolated. As we may viewMy and Ny, as being sampled from
the smooth spectral embeddings d#l and N, a point g2 HN ideally corresponding
top2 My HM may not be present in the sampléN,. Thus, one estimategy from
its neighbors inNjy,.

This procedure,
[Mp! N estimate_correspondence (Mp;Np; ); (7.3)

proceeds as follows.

To begin, constructR! : N, !} (Ny), where RY(g), q 2 Ny, lists the vertices
of Ny, which are 1 or fewer edges frorg. In the case of a mesh representation, the
edges are initially de ned. In the case of a point cloud repsentation, two points
are considered to be joined by an edge if the Euclidean distanbetween them in
the original embedding is less than, which we control throughC . Distances are
measured with respect to the Euclidean metric oR™.

Next,

1. Compute the nearest neighbor map : My ! Np:
(p)=argmin kp ok?: (7.4)
g2Np
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2. Compute the matrix W = (wp) as

exp( d(p;9*=4 ) if g2 R*( (p));

Wpq = 7.5
- 0 otherwise (73)
. . P
3. Normalize W to have unit column sums: wpyq Wpg=  qWpg- (IN the nal
iteration, W is the weight matrix returned).
4. ComputeM,! R™ as X
p7! Wpqd: (7.6)

q

Let N2 denote the image oM}, by this map. N? are the interpolated matches to
My.

5. Return Mp ! NP

(2) Transform. The transform step applies a thin-plate spline transformation.
The thin-plate spline is a standard interpolating functionin the shape analysis com-
munity [15, 16], which has been used for registration in [244]. The thin-plate spline
is described in detail by Wahba [87]. Here, a splin€ : R™ ! R™ is constructed
from the estimated correspondenchl, ! NP, to bend points of My, closer to their

estimated corresponding points ilNy,. The transformed image oM, is denotedM ©.

7.1.4 Stage llI: Extrapolation to original shapes

The rotation of Y into best t with X is a standard procedure [48], which we
call \Procrustes alignment”, that returns a rotation R 2 SO(n) which minimizes
kX RYK2.

7.1.5 Possible modi cations

We make a few remarks on possible modi cations to speed up thlikscussed
method. These address the choice of;t and subsampling.
One modi cation of the preceding method, which we used in [5increases the

shape resolution with each iteration. This is achieved by aneasing the number of
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(control group average)

/ \

Figure 7.1: Control group average constructed from registtian. Five con-
trol ADNI right putamen and the Procrustes mean shape (top) fothe con-
trol group are shown. Several corresponding points are celmded.

eigenvectorsm in the spectral representation or by decreasing the time pametert
at each iteration.

Using every point in the correspondence to determine the spéi can be time-
consuming and may also produce a spline with high energy. Acdmgly, the spline
may be di cult to interpret. For a dense sample, it seems reamable that a relatively
small fraction of points in the correspondence could be takdor control points to

determine the spline.

7.2 Local shape dierences

We use scaling factors to measure local shape di erences @ding to stretch-
ing and compression of the boundary surface. Givdamanifolds M; N 2 R" and
a smooth correspondenée’ : M ! N, local shape dierences are indicated by
jdj: M1 R, whered , : M ! T 3N is the usual dierential and jj is the

determinant. That is, the local shape change from 2 M to x%:= ' (x) is given by

() := jd' i:

2We assume the correspondence is an immersion.

97



If " :M ! N is an approximate isometry atx 2 M, then we expect (x) 1. If M
and N bound volumes inR3, such as putamen surfaces, for example, theiix) > 1
suggests relatively more volume about’than about x, whereas (x) < 1 suggests less
volume. For another example, iM and N are the right putamen surfaces of a single
subject, M from an initial scan andN from a follow-up scan, then < 1 indicates
locations of volume loss (e.g. neurodegeneration) and> 1 indicates increase in

volume (e.g. swelling).

Calculating the di erence map. We now consider how the di erence map
may be calculated. Suppos®! is represented by a triangle meshM; T ) and N is
represented by a point sample. First, an estimatd' : T ! Mj,(R) is constructed
as follows. Let 2 T be a triangle with vertices @;b;9. We isometrically embed
(a;b;9 and (2% P ¥ in R?, a%:= ' (&), with positive orientation, and let d' ( ) be the
linear mapR? ! R? associated with the a ne transformation carrying a; b; cto their
corresponding points. So long as no triangle @f is degenerated' is well-de ned

and unique onT .

Using the di erence map to study populations. We now describe how the

di erences allow us to study the statistics of local shape dirences. Given a mean

shapeM and labeled (e.g. \control", \MCI-AD", etc.) shapesN;,i =1;:::;K, we
rst acquire registrations ' ; : M ! N; and then calculated' ; for eachi. We put
i = jd' .

Again, we suppose thatM is represented by the meshM; T ). Fixing a triangle

2 T , a two-sidedt-test with unequal variance is used to evaluate the statistal

is used in [90, 49], for example, to assess statistical sigance of volume di erentials.

These use the logarithm of the Jacobian in order to transforncaling factors to an
arithmetic scale and to remove skew and bias from the distuition [90].

The t-test yields a map ofp-values onM, p: T ! [0;1], which we study to

identify regions of contrast between groups. As in [90, 82],ewuse a permutation
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Figure 7.2: Signi cance values of local shape di erences fADNI putamen.

test to estimate the statistical signi cance of the Jacobias as follows. First, note

that if the labels of each covariate vector are randomly pemmed, say, according to

of p-values,pj : T ! [0;1].
Suppose that random permutations ;g have been generated and the correspond-
ing p-valuesfp, := pj ;g calculated. For a permutation test, the statistical signi-

cance of the volume distortion at is given by

_ i) p()g.
= - . : 1.7
() if i (7.7

That is, the statistical signi cance at is the fraction of permutations that give a
p-value more signi cant than the true p-value at . Values of nearest O indicate the

most signi cant shape di erences.

7.2.1 Putamen shape di erences

For the ADNI right putamen set, 1(° permutations of the labels were used to
calculate local signicance : T ! [0;1]. The Procrustes average [48] for the normal
ADNI right putamen is shown in Figure 7.2. Color on the putamen aoesponds
to . For example, values near O are red and indicate signi cantgints. Regions

without signi cant di erences are white.
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CHAPTER 8

SUMMARY AND FUTURE
DIRECTIONS

We considered the nature of problems in morphometry of rementing shape in-
trinsically. This motivated us to study the potential of spetral representations for
morphometric analysis. The goal of designing, implementin and applying a shape
registration algorithm was met. Moreover, several shape gasdo-metrics were con-
structed from spectral representations and applied to traia classi er on several data
sets. This included distinguishing MCI-AD vs. Control groupsubcortical structures.
High points of this work include:

(1) achieving a MCI-AD vs. Control group class cation accuray no less than com-
parable to existing methods (see below for the numbers);

(2) providing a registration algorithm;

(3) constructing an average right putamen from the Control gup using our regis-
tration algorithm;

(4) measuring local shape di erences of the right putamen tveeen MCI-AD and
Control groups using our registration algorithm;

(5) improving the theory underlying spectral methods (seediow);

(6) exploring a novel point signature designed to avoid thedeterminacies of spectral
embeddings;

(7) analyzing the e ects of parameter choices on spectral &®addings derived from
the graph Laplacian.

We now elaborate on points (1) and (5).
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Comparison of classi cation accuracies. Using the pseudo-metricDs on
spectral embeddings applied to MCI-AD vs. control groups, wattained a classi ca-
tion accuracy of 86.2% for the right putamen. Using they-divergenceDiv applied
to MCI-AD vs. control groups, we attained classi cation acctacies of 71% (right
putamen), 74% (right thalamus), and 80% (right hippocampus

In Section 2.1.1, we considered several studies in whichsdecation is used to
distinguish a ected group from normal controls. Note that alclassi cation accuracies
here are determined by the leave-one-out method. Kleppet al. use local volume
measurements to classify 57 control and 33 pAD individualsdp They attain leave-
one-out classi cation accuracies of 81.1% (whole brain)5&% (hippocampal region),
and 88.9% (whole brain and hippocampal region). Fan et al.adsify 66 control and
88 MCI individuals, attaining 81.8% classi cation accurag with whole brain images
and local volume data [32]. Klein et al. consider 29 subjectgho decline cognitively
and 29 who remain stable to the end of a specied period [49]. &h attain 81%
classi cation accuracy with whole brain images. Focusinghahe right hippocampus,
78%, and with the left hippocampus, 74%, accuracies are aittad.

Although we cannot make an exact comparison with these studiewe can make
the following observations. If our methods are equal, Kiegel et al. should achieve
better classi cation accuracy than us because their classehippocampus of pAD vs.
controls, are expected to be easier to distinguish than oyrputamen of MCI-AD
vs. controls. However, their accuracy is is 85.6% and ours i6.8%. This suggests
the representational strength of the spectral embeddingsd their associated pseudo-
metric Ds. Fan et al. attain 81.8% accuracy for groups similar to ourdut including
more features. Notwithstanding, their 81.8% accuracy is lethan our 86.2% accu-
racy. Klein et al. max out at 81% accuracy, including localing to the hippocampus.
We therefore consider our method comparable to, if not strger than, the existing

methods of which we are aware.

Improving the theory underlying spectral methods. Among the spectral

representations we have considered, the spectral embedyiis the only complete
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shape representation. As such, it has become standard for amher of shape analysis
tasks, including registration. Nevertheless, a rigorous derstanding of the spectral
embedding is wanting in the applied community. We have helpday the theoretical
foundation for its application along with bringing to light what has been known in
the geometric analysis community.

Our contributions include a proof that the spectral embeddig is actually an
embedding for large enough dimension. This result is not grd \compactness result",
but our proof is semi-constructive with respect to the embedding dimension. This
is fully relevant to our understanding whether spectral eméddings can even be used
for shape registration.

Additionally, we have located references showing that the ite embeddings are
stable under perturbations of the Riemannian metric. Thiss also of great importance
in their practical use.

Our contributions also include derivations of a handful of perties that we be-
lieve will lead to a more e cient use of the embeddings, inclding their use in regis-

tration and computation of spectral distances.

Point signature shape-DNA. For fun, we consider a point signature that does
not appear to have been studied. Consider: M ! R' by sendingp 2 M to the
Laplacian spectrum ofM f pg for the Dirichlet boundary condition. We will call

the xed point spectra of M. Intuitively, we think of holding the drum membrane
(i.,e. M) in place at a single point and then hitting the drum. How doeshe sound
of the drum change from point to point? Of course, this idea cabe extended to
holding any subset ofM xed, yielding a function from the power set ofM to R'.

This might be useful for narrowing down point correspondees.
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APPENDIX A

SOBOLEV SPACES AND THE
ELLIPTIC ESTIMATE

A signi cant result in this dissertation relies on the elligic regularity theorem and
the Sobolev lemma, and it is the purpose of this section to séathese. This material
is standard in the theory of PDEs (cf. Folland [36]).

De nition 3  (Sobolev space)Foranym 2 N, the Sobolev spackl, (R¥) = W™2(RK)
of order m is de ned to be the set of all distributionsf whose derivativedD f belong

to L?(R¥) forall j j m. We then de ne a norm on this space:
x Z
Kf Km = (

jjom

jiD fj2dx)¥2: (A.1)
Rk

De nition 4  (Local Sobolev space)lf m 2 N and R¥ is open,H °¢()) denotes

the set of all distributionsf on such that for every bounded open o with

f agrees with an element oH,, on .

P
Let R be open and. = a(x)D ,a 2C! (), forsome p2 Z*. The

iiop
P
characteristic form of L at xo 2 is the homogeneous polynomial ; ;. a (Xo)

De nition 5  (Elliptic operator). L is said to be anelliptic operator of order p at

P
Xo 2 if its characteristic form satis es [ j=p@ (Xxo) 60 for all nonzero 2 RX.

Theorem 17 (Elliptic regularity theorem). Let R* be open andL an elliptic
operator of orderp on . Let u andf be distributions on satisfyingLu = f. If
f 2 H°°() for somem 2 N, thenu2 H/°¢ () .

m+p
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Theorem 18 (The Sobolev lemma) If m > p + k=2, then H,(R¥) CP(RX).
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APPENDIX B

ASYMPTOTICS OF THE
NORMALIZED GRAPH LAPLACIAN

We here prove the asymptotics of the normalized graph Laplan " for extreme

values of the bandwidth .

Proposition 9 (Asymptotic properties of m)' Suppose that is large enough to
give the complete grapifM; W) and assume that each point has a unique nearest

neighbor. Then

(&) The eigenvalues of (n)ﬁ have the forml and 1+ z, wherejzj=1;z2 C. If (k)
is empty, thene, is an eigenvector with eigenvalue 1.

(b) ﬁﬁ has 0 as an eigenvalue with multiplicity 1; the other eigenvalue is n=(n
1) 1, with multiplicity n 1.

Proof. (a) In general,d(xi;x y) < implies limw; i ( Jw;( )= j(i) as ! 0.
Hence
- . wi ()
I!|n3+ (A *W( )y = Il!rrg)+ FW (B.1)
_ i pW o )wi ()
ll!nzﬁ oW wa( ) (8.2)
()
=P (B.3)
k K
=0 (B.4)

We consider the eigenvalues and eigenfunctionsXf:= ( (i)). In the characteristic

equation detX | ) =0, choose a column for whichX has only zeros to factor rst.
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Repeat this factorization for each minor (factoring alongaws if necessary) until the
characteristic equation reduces tokdet(B |1 ) =0, whereBisan(n k) (n k)
matrix which has at least one 1 in each column and at least onerleach row. Because
A has exactly one 1 in each row, howeveB has exactly one 1 in each row. Hence,
B has exactly one 1 in each column, and 9 is orthogonal. All eigenvalues of an
orthogonal matrix are of the forme . Therefore, the eigenvalues ok must lie in

0;€ . Noting that is an eigenvalue oX implies 1 is an eigenvalue of X,
we see that any eigenvalue ok L(0*) must be either 1 or 1+€ . As A 1L is not
typically symmetric, we do not rule out the possibility of conplex eigenvalues. In the
case that (k) is empty, we see thate, is an eigenvector with eigenvalue 1.

(b) For the other extreme, as ! 1 , we have limw;( ) = 1 J' Then
A(l)=(n 21I,givingL(1)=nl U. LetU denote then n matrix of 1s. AsU
obviously has rank 1, its nullity isn  1; henceU has eigenvalue 0 with multiplicity
n 1. The eigenvalue probleml{ A )v=0 (for !1 ) may then be written
(nl U (n Lhv= (U (n (n 1))I)v =0, whose characteristic equation
has rootn (n 1) = 0 with multiplicity n 1. Therefore, = n=(n 1) is an
eigenvalue with multiplicity n 1. One can check that 0 is the remaining eigenvalue

for any constant eigenvector. m

106



APPENDIX C

PROPERTIES OF THE SPECTRAL
INVARIANTS

Remark 10. g(t;x) Oforallk,1 k m,t> 0,andx 2 P.

Proof. In the normalization, the negative signs of the coe cients wh odd indices

cancel out, and each; is nonnegative. O
We now determine the asymptotic behavior of (t; X).

Lemma6. Fixk,1 k m.If ¢ 1< , then

P
P yzp A0Y)

lim ge(t;x) = —P S (C.2)
i yor e A AY)
Proof. For k-indexJ =(j1;:::;jk), 0 ji m 1, dene
YK P, YK
MI(tx)= e it 2(x)=e' = i Z(x): (C.2)
i=1 i=1
Let be the setof ' increasingk-indices. Then
X
atx)=( 1 MJ(tx): (C.3)
J2
P k
Denote = o+ 1+ + iand ;= i1 ji- Then
tngd vy — tJY( 2 .
e Mi(t;x)=¢€ | (x): (C.4)
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Clam ;=0i J=(0;:::;k 1). Otherwise, ; < 0. Justication: ( j, o)+ +

(jk k1= s=0andJ =(jy;:i5jk)2 =) 0 j1<j2<  <jx m 1
=) [ 1 ji :) 0 i i 1. Hence i i 1=0. If ik = k1< ki then
jk k 1= ji=1i 1 (pigeonhole argument). Hence,
( Qu s
2 (0" .
lim et MJ (t;x) = ) 1 =(05: b (C.5)
t1 0 otherW|se.
Therefore,
X
lim ela(t;x)=( 1) lim e' M (t;x) (C.6)
! 5,
PY 1
=( D¢ (C.7)
i=0
It follows that
(t; X) 2p A(Y)
t; X B Y C.8
0= Aty 9
_ !%t a(t;x)  yop d(y) (C.9)
y2p €' a(ty) d(y)
approaches o
- k 1 2(x) y2p d(y) (©.10)
) yzp“’k b 2(y) d(y) |
ast!l . 0
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