Some of the material in is restricted to members of the community. By logging in, you may be able to gain additional access to certain collections or items. If you have questions about access or logging in, please use the form on the Contact Page.
Extreme climate events may be defined as atmospheric or oceanic phenomena that occupy the tails of a dataset's probability density function (PDF), where the magnitude of the event is large, but the probability of occurrence is rare. Though these types of events are statistically sparse, it is necessary to understand the distribution of events in the tails, as quantifying the likelihood of climate extremes is an important step in predicting overall climate variability. It has been known for some time that the PDFs of atmospheric phenomena are decidedly non-Gaussian, though the shape of PDF has not been specified explicitly. More recently, it has been shown from observations that many atmospheric variables follow a power law distribution in the tails. This is in agreement with stochastic theory, which asserts that power law distributions should exist in the tails. However, a statistically rigorous study of the resulting power law distributions has not yet been performed. To show the relationship systematically, we examine the PDF tails of dynamically significant atmospheric variables (such as geopotential height and relative vorticity) for evidence of power law behavior. This is achieved by using statistical algorithms that test PDFs for the bounds and magnitude of power law distributions, while estimating the statistical significance of the distribution compared with Gaussianity. Examples of power law distributions in the atmosphere are presented using local time series of atmospheric data.
Climate Dynamics, Climate Variability, Extreme Events, Non-Gaussian, Power Law, Stochastic
Date of Defense
February 28, 2012.
Submitted Note
A Thesis submitted to the Department of Earth, Ocean and Atmospheric Science in partial fulfillment of the requirements for the degree of Master of Science.
Bibliography Note
Includes bibliographical references.
Advisory Committee
Philip Sura, Professor Directing Thesis; Robert Ellingson, Committee Member; Zhaohua Wu, Committee Member.
Publisher
Florida State University
Identifier
FSU_migr_etd-5272
Use and Reproduction
This Item is protected by copyright and/or related rights. You are free to use this Item in any way that is permitted by the copyright and related rights legislation that applies to your use. For other uses you need to obtain permission from the rights-holder(s). The copyright in theses and dissertations completed at Florida State University is held by the students who author them.