
Florida State University Libraries
Electronic Theses, Treatises and Dissertations  The Graduate School

2012

Computational Studies of Lattice Gas
Models
Tjipto Juwono

Follow this and additional works at the FSU Digital Library. For more information, please contact lib-ir@fsu.edu

http://fsu.digital.flvc.org/
mailto:lib-ir@fsu.edu


THE FLORIDA STATE UNIVERSITY

COLLEGE OF ARTS AND SCIENCES

COMPUTATIONAL STUDIES OF

LATTICE GAS MODELS

By

TJIPTO JUWONO

A Dissertation submitted to the
Department of Physics

in partial ful�llment of the
requirements for the degree of

Doctor of Philosophy

Degree Awarded:
Spring Semester, 2012



Tjipto Juwono defended this dissertation on March 29, 2012.

The members of the supervisory committee were:

Per Arne Rikvold
Professor Directing Thesis

Oliver Steinbock
University Representative

Simon Capstick
Committee Member

David Van Winkle
Committee Member

Gregory Brown
Committee Member

The Graduate School has veri�ed and approved the above-named committee members,
and certi�es that the dissertation has been approved in accordance with the university
requirements.

ii



To my wife, without her I would not get this far.

iii



ACKNOWLEDGMENTS

I would like to say that I am grateful to my advisor, Dr. Per Arn e Rikvold, for being
my mentor, teacher, role model, and friend. He has shown me the meaning of scienti�c
integrity, and pulled me out from the dark ages. Special thanks goes to Dr. Ibrahim
Abou-Hamad who taught me everything I know about VASP and also for many helpful
comments and discussion. A special thanks also goes to Dr. Gregory Brown for his help
and contributions. I would like also to thank the very helpfu l sta� of physics department
of Florida State University.

I would like also to thank the support from Florida State thro ugh Physics Depart-
ment of Florida State University and the Center for Material s Research and Technology
And last but not least I thank my parents and my wife for their s upport and prayer.

iv



TABLE OF CONTENTS

List of Tables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vii

List of Figures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . viii

Abstract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xi ii

1 Introduction 1
1.1 Monte Carlo Simulations and Density Functional Theory . . . . . . . . . 2
1.2 Organization of Dissertation . . . . . . . . . . . . . . . . . . . . . . . . . 2

2 Lattice Gas Model 5
2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
2.2 Random Con�gurations . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
2.3 Adsorption with a Simple Rule . . . . . . . . . . . . . . . . . . . . . . . 8
2.4 Measurements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2.4.1 Correlation Function and Correlation Length . . . . . . . . . . . 10
2.4.2 Cluster Labeling . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
2.4.3 Mean Cluster Size . . . . . . . . . . . . . . . . . . . . . . . . . . 15
2.4.4 Number Density Histogram Plot . . . . . . . . . . . . . . . . . . 17
2.4.5 Diversity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
2.4.6 Percolation Threshold . . . . . . . . . . . . . . . . . . . . . . . . 18

3 Kinetic Monte Carlo 22
3.1 Ising Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

3.1.1 Single Spin-Flip Ising Model . . . . . . . . . . . . . . . . . . . . 22
3.1.2 Equilibrium Ising Model . . . . . . . . . . . . . . . . . . . . . . . 23
3.1.3 Spin-exchange Ising Model . . . . . . . . . . . . . . . . . . . . . 26

3.2 N -fold way . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
3.2.1 Lattice-Gas Model . . . . . . . . . . . . . . . . . . . . . . . . . . 33
3.2.2 Energy Barrier . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
3.2.3 N -foldway Simulations . . . . . . . . . . . . . . . . . . . . . . . . 35

v



4 Desorption From Initial Con�gurations Prepared By Adsorption 37
4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
4.2 E�ect of Di�usion on Cluster Dynamics in Desorption Proc esses . . . . 39
4.3 Simulation Preparation and Data Analysis Procedures . .. . . . . . . . 39
4.4 Adsorption and Initial Con�gurations . . . . . . . . . . . . . . . . . . . 40
4.5 Simulation Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
4.6 Analysis and Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

5 Desorption From Arti�cially Prepared Initial Con�gurations 51
5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
5.2 Simulation Preparation . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
5.3 Simulation Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
5.4 Analysis and Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

6 Parameter Estimation by Density Functional Theory for a Lattic e-gas
Model of Br and Cl Chemisorption on Ag(100) 59
6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
6.2 Density Functional Theory . . . . . . . . . . . . . . . . . . . . . . . . . 60
6.3 Dipole-dipole Interaction . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
6.4 Lattice-gas Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
6.5 Lattice-gas Fitting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70
6.6 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

7 Conclusion 77

A Correlation Length 79

B Convergence Checks 83

C The Factor 2 in Eq. (6.6) 86

BIOGRAPHICAL SKETCH 92

vi



LIST OF TABLES

4.1 Parameters for the four simulations. Mean cluster sizesS and correlation
lengths � are averages over 100 runs at coverage of� init = 0 :35. . . . . . . 42

4.2 Simulation sampling points. Mean cluster sizesS, Largest cluster sizes
Smax and correlation lengths � are averages over 100 runs . . . . . . . . . 46

6.1 Lateral interaction energy calculation extrapolated to L ! 1 . � � is the
full lateral interaction energy in units of � nnn , the lateral energy between
a pair of next-nearest neighbors. . . . . . . . . . . . . . . . . . . . . . .. 70

B.1 Convergence check for the Bromine adsorption energy (inunits of eV) with
respect to the number of metal layers. . . . . . . . . . . . . . . . . . . . . 84

B.2 Convergence check for the Chlorine adsorption energy (in units of eV) with
respect to the number of metal layers. . . . . . . . . . . . . . . . . . . . . 84

B.3 Convergence check for the Bromine surface dipole moment(in units of e�A)
with respect to the number of metal layers. . . . . . . . . . . . . . . . . . 85

B.4 Convergence check for the Chlorine surface dipole moment (in units of e �A)
with respect to the number of metal layers . . . . . . . . . . . . . . . . . 85

vii



LIST OF FIGURES

1.1 Connections between Monte Carlo simulations, DFT, and Experiments . 3

2.1 Coverage,� (t) for random adsorption. The adsorption is faster at the be-
ginning and becomes slower as the number of empty sites decreases, hence
making the attempt to adsorb more di�cult. The theoretical f unction
� (t) = 1 � exp (� t) �ts well to the result of the simulation. . . . . . . . . 7

2.2 Some snapshots of random distributions, taken at: (A)� = 0 :58, (B)
� = 0 :59, (C) � = 0 :60, (D) � = 0 :61. . . . . . . . . . . . . . . . . . . . . . 8

2.3 Coverage� (t) for adsorption with a simple rule with 1 � cor = 0 :005.
r = 1 :0 gives a random distribution. Smaller r gives less randomness and
stronger correlation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.4 Some snapshots for adsorptions with simple rule, taken at � = 0 :55 for (A)
r = 0 :001, (B) r = 0 :01,(C) r = 0 :1, (D) r = 1 :0. The simulations were
done at 1� cor = 0 :005. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2.5 (A) Correlation Function for several coverages� =0.16, 0.45, 0.55, and 0.84.
(B) Comparison of correlation lengths � from Eq. 2.11 and Eq. 2.12. . . . 12

2.6 (A) a single cluster that has more than one label. (B) a portion of the
cluster in (A), where we show examples of how the multilabeling starts. . 14

2.7 An example of (A) mean cluster sizeS, (B) percolation susceptibility � p

from a simulation with the simple rule with r = 0 :001 and 1� cor = 0 :005,
the lattice size is L � L = 256 � 256 . . . . . . . . . . . . . . . . . . . . . 16

2.8 An example of � s from a simulation with the simple rule, with r =0.001,
0.006, 0.1, and 1.0 and 1� cor = 0 :005. The simulation with r = 1 :0
results in a random con�guration. . . . . . . . . . . . . . . . . . . . . . . 18

viii



2.9 An example of D (� ) from a simulation with the simple rule, with r =
0:001; 0:006; 0:1; and 1:0 and 1� cor = 0 :005. The simulation with
r = 1 :0 results in a random con�guration. . . . . . . . . . . . . . . . . . 19

2.10 Intersection of normalized diversity and spanning probability for random
distribution. The theoretical percolation threshold � c = 0 :59274621 is
quite close the intersection. . . . . . . . . . . . . . . . . . . . . . . . . . 20

2.11 Spanning probability from a simulation with the simple rule, with r =0.001,
0.001, 0.1, and 1.0 and 1� cor = 0 :005. The simulation with r = 1 :0
results in a random con�guration. (A) L=64, (B) L=128, (C) L=192, (D)
L=256. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

3.1 Spin-ip and spin-exchange dynamics at (A) h = 0 :5, (B) h = 1 :2, (C)
h = 1 :8, and (D) h = 2 :5. R = 0 corresponds to pure spin-ip dynamics. . 24

3.2 Average magnetization per spin as a function of temperature for L =
64; 128; and 256 for Ising model simulations using the Metropolis algo-
rithm. Here, Tc = 2=ln(1 +

p
2) is the critical temperature of the Ising

model [39]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

3.3 Typical snapshots from Kawasaki Dynamics (A)T=1.0, (B) T=1.815, (C)
T=2.5, and (D) T=3.5 The snapshots are taken att=3000, 7100, 13200,
and 17300 MCSS respectively. . . . . . . . . . . . . . . . . . . . . . . . . 28

3.4 � (t1=3) plots from simulations of Kawasaki dynamics with temperatures
(A) T=1.0, (B) T=1.815 (C) T=2.5 (D) T=3.5. The simulations run for
20,000 MCSS. The initial con�gurations were prepared at a high temper-
ature of T=10.0 and then quenched to the simulation temperatures. Sim-
ulations (A) and (B) show signi�cant cluster growth, while i n simulations
(C) and (D) the correlation lengths approach relatively small constant
values compared to simulations (A) and (B). . . . . . . . . . . . . . . . . 29

3.5 Number density histogram plots from simulations of Kawasaki dynamics
with temperatures (A) T=1.0, (B) T=1.815 (C) T=2.5 (D) T=3.5. At
temperatures T=1.0 and T=1.815 (below Tc) we see that the the smaller
clusters shrink and large the clusters grow. At the other twotemperatures
we see no signi�cant changes in the cluster size distribution. . . . . . . . . 30

ix



3.6 (A) The nearest neighbors 1,2,3,4 have to also be updatedwhen we ip the
central spin c. (B) The spin exchange of the central (c,c') pair a�ects 10
nearest-neighbor pairs. Each pair consists of a numbered box and another
box to the right. For a spin-exchange to the nearest-neighbor below we
have a similar picture as (B), obtained by rotating it 900 clockwise. . . . 32

3.7 Energy Barrier . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

3.8 (A) Nfoldway simulation for � � � 0=0.7 with di�usion and without dif-
fusion. In this case R is de�ned as R = exp � (�� G) where �� G =
� d � � ads=des so that R = 0 without di�usion (� d = 150) and R = 100
with di�usion (� d = 6 :64). Here, � ads=des = 15 for all simulations. (B)
� � � 0=10.0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

4.1 (i) Typical initial snapshots prepared by adsorption, (ii) initial size distri-
bution for the simulations. . . . . . . . . . . . . . . . . . . . . . . . . . . 41

4.2 Desorption with � initial = 0 :35. Note the di�erent time scales. . . . . . . . 43

4.3 Desorption without di�usion for � init = 0 :35. . . . . . . . . . . . . . . . . 44

4.4 Size distributions for runs A and D with and without di�us ion. . . . . . . 47

4.5 Coverage fraction for runs A and D with and without di�usi on. . . . . . . 48

4.6 Mean cluster size and Correlation Length with and without di�usion. . . 49

5.1 Avrami's circle distribution. . . . . . . . . . . . . . . . . . . . . . . . . . . 52

5.2 (i) Typical initial snapshots, (ii) initial size distri bution for the simulations. 53

5.3 Desorption with � (t) initial = 0 :35: . . . . . . . . . . . . . . . . . . . . . . . 54

5.4 Cluster size distribution for desorptions for � init = 0 :35 without di�usion. 55

5.5 Size distributions for runs A and D with and without di�us ion. . . . . . . 56

5.6 Mean cluster sizes and correlation length vs coverage� . Note that � de-
creasesfrom left to right. . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

x



6.1 (A) The cross section of the supercell, (B) a three-dimensional represen-
tation of the supercell, and (C) surface distributions of the adsorbates for
various coverages. Adsorbate atoms: gray. Surface Ag atoms: white. Bulk
Ag atoms: black. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

6.2 Adsorption energy vs coverage. Despite the appearance on this scale, the
lines are, in fact, slightly convex due to the repulsive lateral interactions.
The \error bars" in this and subsequent �gures do not represent statistical
errors, but rather estimates of the accuracy of the results,based on the
convergence studies discussed in Appendix B. . . . . . . . . . . . .. . . . 64

6.3 Dipole moment vs coverage. . . . . . . . . . . . . . . . . . . . . . . . . .. 65

6.4 The charge transfer function � � (z) for Br/Ag(100) with � = 1=9. The
vertical short-dashed lines indicate thez-positions of the Ag layers, and
the long-dashed ones indicate those of the adsorbate ions. .. . . . . . . . 66

6.5 Charge transfer functions � � (z) for all coverages. Only half of the supercell
is shown, from z = 0 �A to z = 12:235�A. Panel (a) is for Br/Ag(100) and
(b) for Cl/Ag(100). The dotted lines correspond to the z-position of the
topmost layer of metal and the dashed lines correspond to thez-position
of the adsorbates. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

6.6 Comparison of charge transfer functions �� (z) for Br and Cl at two dif-
ferent coverages. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

6.7 Extending the supercell to in�nity . . . . . . . . . . . . . . . . . . . . . . 73

6.8 (a)The lateral energy per supercell as a function of the number of adsorp-
tion sites (Nsite = L 2) for � = 1=9. As L 2 is increased, the lateral energy
approaches an asymptotic value that can be found by plottingthe energy
per supercell as a function of 1=L and extrapolating the graph to 1=L = 0
as shown in (b). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

6.9 The contributions of the lateral interactions to Eads, shown vs� . . . . . . 75

6.10 Comparison of the estimates of� nnn from lattice-gas �t to the adsorption
energies (diamonds) and from the dipole-dipole interactions (circles). Also
shown are the results of �tting room-temperature Monte Carlo simulations
to electrochemical adsorption isotherms from Refs. [16, 18] (squares). (a):
Bromine. (b): Chlorine. . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

xi



A.1 Calculation of probability of dissimilar ends. . . . . . . . . . . . . . . . . 80

A.2 Discrete representation of broken bonds. . . . . . . . . . . . .. . . . . . . 82

xii



ABSTRACT

We have studied the e�ect of di�usion on the dynamics of desorption on a lattice-gas
model

The chemical potential during the adsorption phase was varied in order to vary
the initial size distribution for the desorption phase. The e�ect of di�usion on the
size distribution dynamics during the desorption process was observed by turning the
di�usion on and o� while keeping the chemical potential duri ng desorption constant.

We study the e�ect of di�usion on correlation length during t he desorption process.
We also compare size distribution dynamics without and withthe application of di�usion
and study the e�ect of di�usion on the size distributions at g iven coverages.

During the desorption process, the correlation length increased up to a maximum
and then decreased. We found that di�usion tends to increasecorrelation length at any
given coverage. However di�usion increase correlation length by very small percentage
in the regime where correlation length is decreasing, and increase it more signi�cantly
when the correlation length is increasing.

When the correlation length of the initial con�guration is l arge, the correlation
length during the desorption only increase slightly at initial coverages and decrease for
the most part. As a result, di�usion only increase correlation length insigni�cantly
during the whole process.

When the correlation length of the initial con�guration is s mall, the correlation
length increase during a signi�cant part of the process. As aresult, di�usion increase
correlation length signi�cantly during the process.

By studying the size distributions at some coverages duringthe process -before and
after di�usion- we found that di�usion tends to shrink large clusters and grow or create
small clusters. When the clusters growth or creating of new clusters by di�usion is
small, the increase of correlation length by di�usion is small and large otherwise.

We study Bromine and Chlorine chemisorption on a Ag(100) surface, using a lattice-
gas model and the quantum-mechanical Density Functional Theory (DFT) method.
In this model the Br and Cl ions adsorb at the fourfold hollow sites of the Ag(100)
surface, which can be represented by a square lattice of adsorption sites. Five di�erent
coverages were used for each kind of adsorbate. For each adsorbate and coverage,

xiii



we obtained the minimum-energy con�guration, its energy, and its charge distribution.
From these data we calculated dipole moments, lateral interaction energies, and binding
energies. Our results show that for Br the lateral interactions obtained by �tting to
the adsorption energies obtained from the DFT calculation are consistent with long-
range dipole-dipole lateral interactions obtained using the dipole moments calculated
from the DFT charge distribution. For Cl we found that, while the long-range dipole-
dipole lateral interactions are important, short-range attractive interactions are also
present. Our results are overall consistent with parameterestimates previously obtained
by �tting room-temperature Monte Carlo simulations to elec trochemical adsorption
isotherms [I. Abou Hamad et al., J. Electroanal. Chem. 554 (2003), 211; Electrochim.
Acta 50 (2005), 5518].
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CHAPTER 1

INTRODUCTION

Adsorption, desorption, and di�usion of adsorbate particles on lattices has been exten-
sively studied [1{21]. One of the early theoretical studiesby Honig [1] is based on
a model in which adsorption occurs on a �xed number of de�nite sites in which the
coverage is limited to one monolayer and the gas above the lattice consists of a single
species. Using a statistical mechanics approach, he addressed the problem of calculat-
ing adsorption isotherms, i.e. specifying the coverage at agiven temperature and gas
pressure taking lateral interactions into account. On the computational side, Abraham
and White [2] applied the Honig model to vapor deposition on two-dimensional lattices
where the fundamental atomic processes arecondensation, evaporation, and migration
of adsorbed atoms (adatoms). to neighboring sites. Gilmeret.al. [3, 4] developed a
computational method that takes advantage of the fact that some of the atoms on
the surface have a higher probability to evaporate, condense, or migrate, than others.
Bartelt et.al. [5] made an island-by-islandin situ observation of the coarsening pro-
cess by Ostwald ripening1. They wanted to understand how each island behaves in
response to its surroundings. Here, atoms detach from smallislands, di�use through
the two-dimensional gas surrounding the islands, and eventually attach to larger is-
lands. Frank et.al. [19, 20] studied the e�ect of nearest-neighbor di�usion on the
kinetics of phase transformations. By varying the lateral di�usion rate while keeping
the chemical potential at a constant value, they studied the e�ect of di�usion on the
dynamics with the help of simulations and the Kolmogorov-Johnson-Mehl-Avrami the-
ory [23{25]. Rikvold et.al. [6] applied the lattice-gas model approach to obtain e�ective
lateral adsorbate-adsorbate interactions by comparing model results on underpoten-
tial deposition of copper on gold with experiments performed at or near equilibrium.
Hamad et.al. [18] applied an equilibrium lattice-gas model for the electrosorption of Cl
on single-crystal silver (100) surfaces Ag(100). By �tting the Monte Carlo simulations

1The growth of larger clusters at the expense of smaller clusters [22].
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to experiments, they extracted parameters such as the next-nearest-neighbor lateral
interaction energy � nnn .

1.1 Monte Carlo Simulations and Density Functional
Theory

In Monte Carlo simulations, we start with an initial con�gur ation and propose the
next con�guration, which is accepted with a given probability. The probability can be
determined by any arbitrary rules, or by a relevant Hamilton ian corresponding to the
physical system under consideration

To accept a proposal with a probability, or to pick a con�gura tion we are going
to propose, requires that we draw pseudo random numbers using a random number
generator. Hence the term \Monte Carlo" [26]. We propose a single move of a particle
or a group of particles away from the current con�guration. (A single move of a particle
is su�cient to create a new con�guration). Because each new con�guration that we
propose has a strong correlation with the previous one, we donot have to record every
step. We can record everyL 2 step, for example. (Here,L 2 is the size of the system). It is
important to note that the next con�guration is always count ed as a new con�guration
regardless of whether the proposed move is accepted or not. So if we propose a new
con�guration, and it is rejected, then the next con�guratio n would be the same as the
current one.

In Density Functional Theory (DFT) calculations we calculate the total ground-state
energy of a system by minimizing it with respect to the electron density. Two important
quantities that can be obtained from DFT calculations, therefore, are the total energy
and the electron density distribution.

In DFT we calculate total energies and electron densities ofspeci�c con�gurations.
By calculating some important representative con�gurations, we can �t our model to
the results and obtain estimates of parameters necessary for MC simulations.

1.2 Organization of Dissertation

Our work consists of two di�erent projects: (1) Kinetic Mont e Carlo studies of a
lattice-gas model, and (2) parameter estimation by DFT calculations for a lattice-gas
model. In the �rst project we study the e�ect of di�usion on th e cluster size dynamics,

2



Figure 1.1: Connections between Monte Carlo simulations, DFT, and Experiments

while in the second project we calculate the lateral interaction energy constants and
binding energies of Cl or Br on Ag(100) by �tting a lattice-ga s model to DFT calculation
results. The �rst project is described in Chapters 2 - 5, and the second is described in
Chapter 6.

In Chapter 2 we discuss the general description of a lattice-gas model. Here, we
concentrate on how we analyze the con�gurations generated by applying a lattice-gas
model. The dynamics involves adsorption, desorption, and di�usion on a square lattice.
The simulation produces a chain of con�gurations, each of which characterized by a
cluster distribution. We establish methods to measure the average properties of the
con�gurations, such as correlation length and mean clustersize, and the details of the
cluster size distribution in the form of number density histogram plot. We discuss the
appearance of percolation and focus our attention on the dynamics at coverages below
the percolation-threshold 2.

In Chapter 3 we discuss the method to generate the chain of con�gurations. We
discuss the Ising model, which can be mapped to a lattice-gasmodel. For convenience
we maintain the Ising language throughout this chapter. In Ising language, adsorption
and desorption corresponds to spin-ip, and di�usion corresponds to spin-exchange. To
illustrate the dynamics of a single spin-ip model, we discuss Glauber Dynamics, and we
discuss the Kawasaki Dynamics for a spin-exchange model obtaining the �rst indications
of the e�ects of di�usion on the dynamics. We �nd that there ar e two di�erent e�ects of
di�usion on the Glauber adsorption dynamics. The di�usion c an speed up adsorption
or slow it down. In the Kawasaki dynamics, we learned the e�ects of di�usion on the

2Here a cluster is de�ned as a contagious collection of sites. A percolating cluster is de�ned as a
cluster that spans from edge to edge either horizontally or v ertically
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cluster size distribution. To obtain a simulation that is cl oser to a real system, we
introduce energy barriers in the system. The use of rejection-free Monte Carlo methods
is discussed in the last part of the chapter.

In Chapter 4, we concentrate on the e�ect of di�usion on the dynamics of the cluster
size distribution during desorption from an initial con�gu ration generated by adsorption.
The di�erent e�ects of di�usion seen in the adsorption dynam ics are included by varying
the initial con�gurations. The dynamics of the cluster size distribution is generated
by the desorption process, and we keep all simulations at thesame (relatively weak)
chemical potential, the same di�usion rate (for simulations with di�usion), and also the
same low temperature.

In Chapter 5, we discuss the e�ects of di�usion on the dynamics of the cluster size
distribution during desorption when the initial con�gurat ions are generated arti�cially.
Here, we apply the same methods developed in Chapter 4, but with arti�cially prepared
initial con�gurations in which the size distributions can b e changed to emphasize the
e�ects of di�usion on certain size distributions.

In chapter 6 we discuss the application of Density FunctionalTheory for a lattice-
gas model of Br and Cl chemisorption on Ag(100). We �t the latt ice-gas model to
the adsorption energies obtained from the DFT calculationsto obtain the next-nearest-
neighbor lateral interaction energy � nnn and the single-site binding energyEb. We
compare the� nnn from the �tting with the calculation based on charge transfer function
also obtained from the DFT calculation.

In Chapter 7 we summarize and discuss the conclusions.
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CHAPTER 2

LATTICE GAS MODEL

2.1 Introduction

The focus of our research is the e�ect of di�usion on the dynamics of distributions of
particles adsorbed on a surface. The dynamics of particle distributions can be viewed as
the change of con�gurations with time. The con�gurations ar e created by adsorption,
desorption, or di�usion.

The simplest kind of model for adsorption, desorption, and di�usion on a surface is
a lattice-gas model. The term \lattice gas" was �rst introdu ced by Yang and Lee [27]
to describe a collection of atoms, which can occupy only discrete positions in space that
constitute a lattice structure. We limit our study to system s in which each site can be
occupied by at most one atom. In this model, we de�ne the occupancy number cij ,

cij =
�

1 when site (i; j ) is occupied;
0 otherwise:

(2.1)

The surface is then modeled by a lattice where each site is marked as either occupied
or unoccupied. Therefore, adsorption is the process of occupying an empty lattice site
by a particle, while desorption is the opposite. Di�usion can be viewed as desorption
from an occupied site followed by adsorption on a neighboring site. In our study, we
work with square lattices with a total number of sites N = L � L with periodic boundary
conditions.

The total number of adsorbed particles is given by

Np =
LX

i =1

LX

j =1

cij : (2.2)

The coverage (or particle concentration) is de�ned as
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� =
Np

N
: (2.3)

2.2 Random Con�gurations

In the simplest approach, the particles are not mutually interacting. The only limitation
is that each lattice site can be occupied by at most one particle at a time. In this case, the
way to adsorb, desorb, or di�use particles on the surface is through random adsorption,
desorption, or di�usion. Any application of additional rul es for the particle distribution
requires some sort of interaction.

The objective is to create a series of random con�gurations,starting from an empty
lattice up to a coverage cut-o� close to � = 1 :0. To achieve this, we use the simplest
way of creating random con�gurations, which is random adsorption. The algorithm for
random adsorption is as follows:

1. Start from an empty lattice.

2. Choose a lattice site randomly.

3. If the site is unoccupied, place a particle. If not, do nothing.

4. For each attempt, increase time with one unit regardless whether the attempt is
successful or not.

We set up a square lattice, with L = 256. We run 100 simulations in which we
record the time interval for every �xed interval of � and average the results1. Figure 2.1
shows a plot of coverage versus time for random distributionafter averaging over 100
runs. Here the unit of time is one Monte Carlo Steps per Site (MCSS), where one
MCSS means that each site is visited one time on average. For alattice of size N = L 2,
one MCSS is equal toL 2 attempts. The �gure shows that the time to increase the
coverage by a given amount increases with increasing coverage, as the attempt to �nd
an empty site is becoming more di�cult. The function � (t) = 1 � exp (� t) �ts well
to the simulation result. This is veri�ed theoretically as f ollows. We assume that the
change of the number of occupied sitesdN=dt is proportional to available empty sites
at time t,

dN
dt

= k(L 2 � N ); (2.4)

1Alternatively we can record the coverage � for every �xed interval of time and average the results.
We obtain identical results either way.
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multiply both sides with 1 =L2,

d�
dt

= k(1 � � ); (2.5)

and integrate to obtain

� (t) = 1 � exp(� kt ): (2.6)

Figure 2.1: Coverage,� (t) for random adsorption. The adsorption is faster
at the beginning and becomes slower as the number of empty sites decreases,
hence making the attempt to adsorb more di�cult. The theoret ical function
� (t) = 1 � exp (� t) �ts well to the result of the simulation.

As shown in Fig. 2.1, �tting the function to the data gives k = 1 as expected. Fig. 2.2
gives a few snapshots of surface con�gurations at several coverages. As a visual aid,
we colored the largest cluster dark, which gives us a rough idea about the sizes of
the clusters. The size of the largest cluster increases slowly until the system reaches
a coverage window where a spanning cluster suddenly appears. After that, the whole
lattice is dominated by the largest cluster.
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A B

C D

Figure 2.2: Some snapshots of random distributions, taken at: (A) � = 0 :58,
(B) � = 0 :59, (C) � = 0 :60, (D) � = 0 :61.

2.3 Adsorption with a Simple Rule

Our goal is to study physical systems in which there are interactions between the par-
ticles. The interaction can be attractive or repulsive, short-range or long-range. In
our lattice-gas model, particles are being adsorbed, desorbed or di�used with a certain
probability. The interactions, therefore, are manifested through these probabilities.

Here we model attractive nearest-neighbor interactions using a simple rule. We ad-
sorb a particle on an empty site with probability p = 1 :0 when there is at least one
particle at a nearest-neighbor site, andp = 1 � cor (which is a number less than one)
otherwise. We call this method of distribution correlated distribution. Furthermore, to
study the e�ects of randomness on the distribution, we modelthe system as a competi-
tion between random distribution and correlated distribut ion. The competition is done
by distributing the particle randomly with a probability r and with a correlation with
a probability 1 � r . The algorithm is as follows.

1. Start from an empty lattice.
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2. Choose a lattice site randomly.

3. Generate a random numberq1.

4. If q1 is less thanr , and the site is unoccupied, place a particle and go to (8).

5. If q1 is equal to or larger than r and the site is unoccupied, check the nearest
neighbors. If there is at least one site occupied among the nearest neighbors, set
p = 1 :0, otherwise setp = 1 :0 � cor.

6. Generate another random numberq2

7. If q2 is less thanp, place a particle. Otherwise do nothing.

8. For each attempt, increase the time by one unit regardlesswhether the attempt
is successful or not.

Figure 2.3: Coverage� (t) for adsorption with a simple rule with 1 � cor = 0 :005.
r = 1 :0 gives a random distribution. Smaller r gives less randomness and
stronger correlation.

Figure 2.3 shows� (t) for various values of r with �xed 1 � cor = 0 :001. We include
r = 1 :0, which gives a random distribution (no correlation), and r = 0 :1; 0:01, and
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A B

C D

Figure 2.4: Some snapshots for adsorptions with simple rule, taken at � = 0 :55
for (A) r = 0 :001, (B) r = 0 :01,(C) r = 0 :1, (D) r = 1 :0. The simulations were
done at 1� cor = 0 :005.

r = 0 :001 for stronger correlation. From this �gure we see that increasing the correlation
(by decreasingr ), changes the shapes and the time scales of the graphs. Figures 2.4
shows some snapshots from the simulations. As before, the largest clusters are colored
in a darker shade as a visual aid. The snapshots show that lessrandomness and more
correlation result in more compact clusters

2.4 Measurements

2.4.1 Correlation Function and Correlation Length

In our lattice-gas model, two sites are correlated if they have the same state, or
anti-correlated if the have opposite states. Two occupied sites or two unoccupied sites
are correlated, while an occupied site and an unoccupied site are anti-correlated. To
accommodate these possibilities, we de�ne a quantity analogous to the Ising spin
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s(i; j ) =
�

1 when site (i; j ) is occupied;
� 1 otherwise:

(2.7)

The correlation between two sites (i; j ) and (i 0; j 0) is s1(i; j )s2(i 0; j 0). With this expres-
sion, we de�ne the correlation function �( k),

�( k) =
1

L 2

0

@

0

@1
2

LX

i =1

LX

j =1

s(i; j )(s(i + k; j ) + s(i; j + k))

1

A �

0

@
LX

i =1

LX

j =1

s(i; j )

1

A

21

A ;

(2.8)
where 0 � k � L=2. For k = 0 Eq. 2.8 reduces to

�(0) = � (1 � � ); (2.9)

where � is the coverage. The range of �(0) is 0< �(0) < 0:25.
The normalized correlation function is

 (k) =
�( k)
�(0)

; (2.10)

The correlation length is estimated from the inverse of the initial slope of the normalized
correlation function  (k), which for the discrete case in our lattice-gas model is written
as

� =
1

1 �  (1)
: (2.11)

In our study of the di�usion e�ects, we know that di�usion ess entially works on the
interfaces of clusters. In a lattice-gas model, the interface of a cluster is measured by
the number of broken bonds on that cluster. The larger the number of broken bonds on
a cluster, the greater the number of possible di�usion events. Equation 2.12 [28], used
to estimate correlation length, gives a relation between the correlation length and the
number of broken bonds, which is an indication that correlation length is important in
our study on the e�ects of di�usion.

� =
4� (1 � � )

s=N
: (2.12)

Here, s is the total number of broken bonds at a given coverage� , and N = L �
L is the size of the lattice. The detailed derivation of the formula can be found in
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Appendix A. Figure 2.5 shows an example of correlation-function and correlation-
length measurements. Here we run simulations with a simple rule with r = 0 :0001 and
1 � cor = 0 :0001.

A B

Figure 2.5: (A) Correlation Function for several coverages� =0.16, 0.45, 0.55,
and 0.84. (B) Comparison of correlation lengths� from Eq. 2.11 and Eq. 2.12.

2.4.2 Cluster Labeling

One important measurement on a con�guration is cluster counting in which we count
the number of clusters and list the size of each cluster. Fromthis list, we extract mean
cluster size, cluster size distribution, diversity, and many other quantities. To generate
this list, we employ the Hoshen-Kopelman algorithm of cluster labeling [29]. To execute
the algorithm we need three main arrays: (1) site-label array l( i; j ) (Eq. 2.13), (2) cluster
label array u(i; j ) (Eq. 2.14), and (3) proper label array p(l) (Eq. 2.15).

l( i; j ) =
�

� 1 when site (i; j ) is occupied;
0 otherwise:

(2.13)

u(i; j ) =
�

cluster label, when site (i; j ) is occupied;
0 otherwise:

(2.14)

p(l) =

8
<

:

next lower cluster label when the label
l belong to a multilabeled cluster;

0 when the label l is the lowest label of the cluster:
(2.15)
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The algorithm is as follows

1. Start by labeling the bottom left corner of the lattice by z ero if it is unoccupied
and 1 if it is occupied with the help of the site-label array l(i; j ). Scan the �rst
row to the right. If an occupied site is connected to the previous occupied site,
assign the same label as the previous site. If not, assign a new label. Store the
label in the cluster label array u.

2. Scan the �rst column of the lattice the same way, starting from the second row
going up to the last. Store the label in the cluster label array u.

3. Scan the remainder of the lattice row by row starting from the second row. But
this time we compare each site with the site to the left and below. Use m =
l(i � 1; j ) � l (i; j � 1) to check if both sites are occupied. Ifm = 0, we continue
the scan, and ifm = 1 we proceed to check the labels of the two sites. If they are
di�erent, choose the lowest label, and store it in the cluster label array u.

4. Scan the lattice for the second time, this time identifying clusters that have more
than one label, and relabel the cluster by the lowest label with the help of the
proper label array p. Also identify and correct the label of clusters separated
by the edges, thus taking care of the periodic boundary conditions. Store the
corrected labels in the cluster label arrayu.

Figure 2.6 shows a cluster that has more than one label (in this case, the lowest
label is 2). The dark colored part of the cluster shows the part where multiple labels
start to appear. Because we are labeling this cluster row by row (in this case we start
from the bottom) and check the site to the left and below, the disconnected site to the
right will be assigned a new label. Because of this new label,there is a chance that
we will encounter a site where the left and below sites have di�erent labels. Here, we
choose the lowest of the two, and proceed with the labeling procedure until the whole
cluster is labeled. The end result is a cluster that has more than one label.

To correct the multilabel, we create an array of proper labels (Eq. 2.15). The initial
value of the elements of this array is zero. And if all clusters have been labeled properly,
the value of all the elements should be zero or stay zero. At the second scan, when we
encounter a cluster with multilabels, the element of the proper label array corresponding
to the site with the lowest label is set to zero. The element for the site corresponding
to the next label is assigned with the lowest label, and the next with the second lowest,
and so forth. For example, if a cluster has three labels, 2; 3 and 4, the corresponding
proper label array elements would be: p(4) = 3, p(3) = 2, and p(2) = 0.

By means of this proper label array, the lowest label for eachmultilabeled cluster can
be found and the cluster can immediately be relabeled properly. During the relabeling
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(A)

(B)

Figure 2.6: (A) a single cluster that has more than one label.(B) a portion of
the cluster in (A), where we show examples of how the multilabeling starts.

process, the cluster size corresponding to each proper label is counted, and after the
counting the corresponding labels in the cluster label array u are labeled properly, and
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the corresponding elements in the proper label arrayp are set to zero. Now the cluster
label array (Eq. 2.14) contains the proper labels and we can generate the cluster size
list, and since the indices of this array are the coordinatesof each site, this array is also
useful for many cluster calculations (e.g. �nding the spanning cluster).

2.4.3 Mean Cluster Size

Now that we already have the cluster size list, we can do some useful cluster mea-
surements. One important average property of the con�guration is the Mean Cluster
Size S. The explanation of the meaning of the mean cluster size is asfollows [30]. For
Ns clusters containing s occupied sites each,

ns =
Ns

L 2 (2.16)

is the number of suchs-clusters per lattice site. Hence,nss is the probability that a
randomly chosen site belongs to ans-cluster, and the coverage

� =
X

s

nss; (2.17)

is the probability that it belongs to any cluster, i.e., that it is occupied. Thus, the
probability that the cluster to which an arbitrary occupiedsite belongs contains exactly
s sites is:

ws =
nss

P

s
nss

: (2.18)

The mean cluster sizeS which we measure in this process of randomly hitting some
cluster size is therefore

S =
X

s

wss

=

P

s
nss2

P

s
nss

: (2.19)

Another way of calculating an average cluster size is

~S =
P

s nss
P

s ns
: (2.20)
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Figure 2.7: An example of (A) mean cluster sizeS, (B) percolation sus-
ceptibility � p from a simulation with the simple rule with r = 0 :001 and
1 � cor = 0 :005, the lattice size isL � L = 256 � 256

The average cluster size de�ned in Eq. (2.20) is the average cluster size when every
cluster, and not every site as in Eq. (2.19) is selected randomly. To avoid confusion,
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from here on we apply the termmean cluster sizefor S in Eq.(2.19) and average cluster
size for ~S in Eq.(2.20). From the above explanations it is understood that the mean
cluster size is a better representation of a con�guration because it has the element of
choosing anysite at random.

Another useful quantity is percolation susceptibility � p, which is the mean cluster
size obtained by excluding the largest cluster and/or the spanning cluster.

� p =

P

s0
nss02

P

s0
nss0 : (2.21)

Here the prime indicates exclusion of largest and/or spanning cluster. Fig. 2.7 gives an
example of mean cluster sizeS and percolation susceptibility � p measurements from a
simulation with the simple rule, with r = 0 :001 and 1� cor = 0 :005.

2.4.4 Number Density Histogram Plot

The details of the con�gurations at the beginning and during the desorption are elab-
orated further from number density (� s) histogram plots [19]. To get the distribution
we measure �rst the number density ns

where ns is the number of the clusters with sizes per site. We average each result
over 100 runs, thereforens becomes the probability of �nding on a randomly chosen
site the center of a cluster of a sizes. We then create the histogram for the number
density distribution. The number density for larger clusters is very low compared to
that of the small clusters. For that reason we use exponentially growing bins for the
histograms. The growing bins are set up such that the next binis always twice as
large as the previous one. This results in an equal distribution of data points on a
logarithmic scale. Fig. 2.8 is an example ofns from a simulation with the simple rule,
with r = 0 :001; 0:006; 0:1; and 1:0 and 1� cor = 0 :005. The simulation with r = 1 :0
results in a random con�guration. Here we can see that reducing the randomness
increases the size and the number of the larger cluster and decreases the number of the
smaller clusters, including the number of monomers.

2.4.5 Diversity

We de�ne N (s; � ) as the total number of clusters with sizes for a con�guration with
coverage� . The total number of clusters, averaged over the number of experiments,
where each experiment results in a con�guration with coverage � , is then [31],

n(� ) =

*
X

s

N (s; � )

+

: (2.22)
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Figure 2.8: An example of � s from a simulation with the simple rule, with
r =0.001, 0.006, 0.1, and 1.0 and 1� cor = 0 :005. The simulation with r = 1 :0
results in a random con�guration.

From Eq. 2.22, we de�ne the diversity as [31]:

D (� ) = h
X

s

�[ N (s; � )]i : (2.23)

In the above equation, the Heaviside function is de�ned as �(x) = 1 if x > 0 and
�( x) = 0 otherwise. Thus, D (� ) is the number of di�erent cluster sizes for a given
� . Fig. 2.9 gives an example ofD (� ) from a simulation with simple rule, with r =
0:001; 0:006; 0:1; and 1:0 and 1� cor = 0 :005. The simulation with r = 1 :0 results
in a random con�guration. The peak of the diversity D(� ) for a random con�guration
gives us the maximum diversity that can be achieved for a particular square lattice size
(in our caseL = 256). As we introduce correlations into the simulation, the maximum
diversity is reduced, and the maximum is reached for lower� .

2.4.6 Percolation Threshold

For an in�nitely large lattice, the spanning cluster appears at a de�nite coverage,
which is called the percolation threshold. For a �nite lattice, the spanning cluster ap-
pears within a �nite window of coverage. The appearance of the spanning cluster is a
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Figure 2.9: An example ofD (� ) from a simulation with the simple rule, with
r = 0 :001; 0:006; 0:1; and 1:0 and 1� cor = 0 :005. The simulation with
r = 1 :0 results in a random con�guration.

universal phenomenon that happens regardless of the natureof the method of the cre-
ation of con�gurations, random or otherwise, as it basically arises from the geometrical
properties of the cluster distribution. Initially most clu sters appear and grow with-
out coalescence. This continues until the system reaches the maximum diversity (the
maximum number of di�erent sizes). After that, the clusters start to coalesce and at
some point form a spanning cluster. After the appearance of the spanning cluster, the
dynamics on the surface is severely limited by the largest cluster.

The percolation window for �nite lattice can be estimated by the regime where the
spanning probability (the probability that any randomly ch osen site belongs to a span-
ning cluster) is start to increase from a very small value to asigni�cant value close to 1.
The clusters start to coalesce after the system pass the maximum diversity. To illustrate
the connection between diversity and spanning probability, we normalize the diversity
of random distribution for L = 256 and plot it together with spanning probability. For
random distribution the intersection between the spanningprobability and normalized
diversity is rather close to the theoretical percolation threshold � c = 0 :59274621 [32{
34]as shown in Fig. 2.10. At this point we are not sure if this is a method to locate� c

from a small �nite-size lattice.

19



Figure 2.10: Intersection of normalized diversity and spanning probability for
random distribution. The theoretical percolation threshold � c = 0 :59274621 is
quite close the intersection.

Figures 2.11 shows the spanning probabilities for various lattice size, and also for
various level of correlations. Here, we see that percolation windows are becoming smaller
as we increaseL sizes. This gives us a good method to estimate the percolation threshold
for correlated percolation.
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Figure 2.11: Spanning probability from a simulation with th e simple rule, with
r =0.001, 0.001, 0.1, and 1.0 and 1� cor = 0 :005. The simulation with r = 1 :0
results in a random con�guration. (A) L=64, (B) L=128, (C) L=192, (D)
L=256.
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CHAPTER 3

KINETIC MONTE CARLO

In this chapter I give a brief introduction to kinetic (dynam ic) Monte Carlo Simula-
tions. The adsorption, desorption, and nearest-neighbor di�usion are discussed in Ising
language of single spin-ip and spin-exchange model. We introduce the rejection-free
n-foldway Monte Carlo method to accomodate the inclusion of energy barriers and
simulations at low temperatures.

3.1 Ising Model

3.1.1 Single Spin-Flip Ising Model

We consider a 2D square lattice where each site is occupied bya spin. The spins
have one of two values +1 and� 1. The energy of a spin with spin valuesi is the
total interaction energy of the spin with its nearest neighbors (Sj ; j = 1 ; 2; 3; 4) plus its
interaction energy with the magnetic �eld. The energy of spin i in a �xed environment
for a ferromagnetic material (in the reduced form where the nearest neighbor interaction
constant equals unity) is

E i = � si

4X

j =1

sj � hsi (3.1)

where h is the reduced magnetic �eld. The total energy of the whole lattice is then

H = �
X

i<j

si sj � h
X

i

si : (3.2)

At each attempted move in a Monte Carlo simulation we try to i p a single spin.
We calculate the change of energy that would occur if we ip the spin
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� E(single spin) = E(after ip) � E(before ip) (3.3)

We then accept the spin-ip with the probability [35]

P = min (1 ; exp(� � E=T)) (3.4)

where

� E = 2si

0

@
4X

j =1

sj + h

1

A (3.5)

Computationally it is more convenient to pre-calculate all possible values ofP. In
our model � E(single spin) has 5 possible values

� E(single spin) =

2

6
6
6
6
4

8
4
0

� 4
� 8

3

7
7
7
7
5

+ 2h: (3.6)

We then calculate P using Eq. 3.4 for all possible values of �E at a given T and create
a list. At each attempt, we obtain the value of si and all its nearest neighborssj and
look up the list to get P. We then draw a random number 0< r < 1, and ip the spin
if r < P.

3.1.2 Equilibrium Ising Model

In the equilibrium Ising model, we are particularly interested in the properties of
the system in its equilibrium state as a function of temperature. In principle we could
sample the con�gurations randomly and calculate the averages with appropriate weight.
This procedure is very ine�cient because most con�gurations do not contribute or
contribute very little to the averages. The more e�cient way is to use importance
sampling to sample only the con�gurations that contribute signi�can tly to the averages.
The importance sampling is realized by the principle ofdetailed balance.

Equation 3.4 (often refereed to as theMetropolis function ) was constructed so that
the next con�guration x i +1 is generated from the current con�guration x i while obeying
detailed balance [36].

There are other choices that also satisfy detailed balance,such as theGlauber func-
tion [37]
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P(glauber) =
exp(� � E=T)

1 + exp( � � E=T)
(3.7)

Both functions give exactly the same equilibrium results. With the Metropolis function,
however, the system can reach equilibrium faster, by assigning P = 1 when � E < 0.
The Glauber function, on the other hand, is more appropriateif we want to study dy-
namic properties of the system since we want to assign appropriate probabilities when
� E < 0 in order to get the correct time measurement [38]. Fig. 3.1 shows some typical
examples of kinetic simulations using the Glauber function.

A B

C D

Figure 3.1: Spin-ip and spin-exchange dynamics at (A)h = 0 :5, (B) h = 1 :2,
(C) h = 1 :8, and (D) h = 2 :5. R = 0 corresponds to pure spin-ip dynamics.
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Figure 3.2: Average magnetization per spin as a function of temperature for
L = 64; 128; and 256 for Ising model simulations using the Metropolis al-
gorithm. Here, Tc = 2=ln(1 +

p
2) is the critical temperature of the Ising

model [39].

Suppose now that we want to realize the equilibrium con�gurations at a given range
of temperatures. We take a square lattice of sizeL � L and periodic boundary conditions.
We determine the initial spin con�guration, e. g. all spins are initially pointing up. Now,
for a given temperature we repeat again and again the following eight steps.

1. Choose a lattice site randomly.

2. Calculate � E .

3. Calculate P.

4. Draw a uniform random number 0< r < 1.

5. If r < P ip the spin, otherwise do nothing.

6. For each attempt, increase the time by one unit regardlesswhether we ip the
spin or not.
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7. Analyze the resulting con�guration (including the case where we did not ip the
spin).

8. Store the properties to calculate the necessary averages.

It should be noted that if we chooseP(metropolis) , steps (4,5) need not be carried out
when step (2) results in � E < 0 since we always ip the spin in this case.

Figure 3.2 shows the result for average magnetization per spin for equilibrium con-
�gurations, at h =0 as a function of temperature. We bring the system from its initial
con�guration to an equilibrium con�guration by repeatedly applying step (1-8) in the
above algorithm. Once we arrive at the equilibrium state, wecontinue the algorithm to
obtain magnetization M (Eq. 3.8) every L � L attempts for Nsample � L � L attempts,
accumulate the results, and get the average magnetization per spin (Eq. 3.9).

M k =
X

i

si (3.8)

hjmji =
1

NsampleL 2

N sampleX

k=1

jM k j: (3.9)

In Eq. 3.9 we accumulate the absolute value ofM , instead of its proper value. We need
to do this to take into account the ergodic behavior close to the transition point for
�nite systems, which results in the system crossing over between the two equilibrium
magnetization branches [36].

3.1.3 Spin-exchange Ising Model

In the spin-exchange Ising model, we consider a pair of adjacent sites where one site
is occupied with a spin up and the other is occupied with a spindown. We attempt to
exchange the spins keeping the total spin conserved (kawasaki dynamics [40]).

To do the exchange, we attempt to ip the pair simultaneously. Assume that we
have a pair of spins wheresi sj = � 1. The energy change after the spin-exchange is [20]

� E = 2

 

si

4X

k=1

sk + sj

4X

l=1

sl

!

+ 4 : (3.10)

Here sk denotes the nearest neighbors ofsi and sl denotes the nearest neighbors ofsj .
Note that the sums in Eq. 3.10 are calculated in theinitial con�guration.

Figure 3.1 gives some typical examples of spin-ip and spin-exchange dynamics.
The simulations are done on aN = 256 � 256 square lattice with periodic boundary
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conditions, at temperature T = 0 :8Tc. The spin ips are done at the rate of Rspin� ip =
1=(1 + R) and the spin exchanges are done at the rate ofRspin� exchange = R=(1 + R).
The pictures show di�erent e�ects of spin exchange, from speeding up to slowing down
the adsorption rate. The simulations are started from the all spin-down state. Here,
the coverage� is de�ned as:

� =
1
2

(hmi + 1) (3.11)

Figures 3.3 gives some typical snapshot examples of spin-exchange only dynamics.
As before, the simulations are done on anN = 256 � 256 square lattice with periodic
boundary conditions. We start the simulation by increasing the temperature to
T = 10:0 >> T c which quickly brings the system to a desired equilibrium state
with hM i = 0. Next we quenched the system to the simulation temperatures (T =
1:0; 1:815; 2:5; 3:5) and let the simulations run for 100 MCSS before starting totake
the data. We run the simulations for 20000 MCSS.

The snapshots (Fig. 3.3) are taken att=3000, 7100, 13200, and 17300 MCSS respec-
tively. From snapshots taken at T = 1 :0 and T = 1 :815, it is evident that the clusters
are growing. The domains form out of the initially disordered state and coarsen as time
proceeds [41]. At higher temperaturesT > T c we cannot see from the snapshots if there
are cluster growth or not.

To have a better indication of cluster growths, we monitor the cluster growths by
plotting correlation length � against t1=3. (It is known that the cluster growth in Ost-
wald ripening is characterized by this 1=3 power law [22].) A constant increase of
correlation length indicates that the spins are regroupinginto larger and more compact
clusters. At higher temperatures (T > T c), the correlation lengths are approaching a
horizontal asymptote at large t, indicating a balance between thermal uctuation and
spin-exchange. A further details of the process is shown in Fig. 3.5. Here we see that
for simulations at T < T c the smaller clusters are shrinking and the larger clusters are
growing, which is an indication that the larger clusters grow at the expense of smaller
ones. With T > T c simulations we cannot see that because the thermal uctuations
dominate the process. From here on, we should limit our simulations to T < T c since it
is the di�usion process that we we want to study.

3.2 N -fold way

The goal of Kinetic Monte Carlo is to study how the con�gurati on evolves with
time. In our Ising model simulations, we havenA accepted attempts andnR rejected
attempts, where ntotal = nA + nR is the total number of attempts. Both accepted and
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A

B

C

D

Figure 3.3: Typical snapshots from Kawasaki Dynamics (A) T=1.0, (B)
T=1.815, (C) T=2.5, and (D) T=3.5 The snapshots are taken at t=3000,
7100, 13200, and 17300 MCSS respectively.

rejected attempts have to be taken into account in order to have the correct simulation
time.

In low-temperature simulations (T < T c), the number of rejected attempts nR is far
higher than accepted attempts nA . Not only does the computation time become very
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Figure 3.4: � (t1=3) plots from simulations of Kawasaki dynamics with tempera-
tures (A) T=1.0, (B) T=1.815 (C) T=2.5 (D) T=3.5. The simulations run for
20,000 MCSS. The initial con�gurations were prepared at a high temperature
of T=10.0 and then quenched to the simulation temperatures. Simulations
(A) and (B) show signi�cant cluster growth, while in simulat ions (C) and (D)
the correlation lengths approach relatively small constant values compared to
simulations (A) and (B).

long, but most of the time is spent doing nothing.
In a rejection-free algorithm, we only do the successful attempts and calculate the

number of rejected attempts that would have occurred between the current accepted
attempt and the previous one so that we can get the correct simulation time without
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Figure 3.5: Number density histogram plots from simulations of Kawasaki
dynamics with temperatures (A) T=1.0, (B) T=1.815 (C) T=2.5 (D) T=3.5.
At temperatures T=1.0 and T=1.815 (below Tc) we see that the the smaller
clusters shrink and large the clusters grow. At the other twotemperatures we
see no signi�cant changes in the cluster size distribution.

actually performing the rejected attempts.
The time needed to arrive at the current successful attempt from the previous one

is the total number or rejected attempts between the two successful attempts. If we
normalize it with the lattice size, we get the time interval i n units of MCSS (Monte
Carlo Steps per Site).

Now the problem is to decide which event that we are going to realize at any moment,
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and how to calculate the time interval that would have occurred to arrive at that event.
From the previous subsections, we have learned that the probability that an event will
happen depends on the con�gurations of the nearest neighbors of the particular site
that has been picked. We also know that the possible number ofnearest neighbors
con�gurations is limited. In other words, any site on the lat tice is surrounded by one
of a �nite number of nearest-neighbor con�gurations. A class is de�ned as a unique
combination of a site (or a pair of sites) state and its nearest neighbors.

In the case of spin-ip, a spin up could belong to any of 5 possible classes corre-
sponding to the sums of its nearest-neighbor spins

4X

j =1

sj = � 4; � 2; 0; 2; 4; (3.12)

and similarly for a spin down. Therefore, for a spin-ip move, we have 10 classes in
total.

For a spin-exchange move, we a have a pair of spins where we require that si sj = � 1.
A pair where the �rst spin is up and the second spin is down can have 16 possible nearest-
neighbor arrangements, and similarly for a pair of spin downand spin up, so that we
have 32 classes in total.

Each time we perform a move, the classes of the nearest neighbors of the spin (or
the pair of spins) are a�ected and must be updated along with the class of the spin(s)
that we work on. Figure 3.6(A) shows that there are 4 nearest neighbor spins that have
to be updated together with the central spin. Fig. 3.6(B) shows the pairs that have to
be updated each time we perform a spin-exchange.

The transition rate of a class is

Ri = ni wi (3.13)

where i is the class index,wi is the transition probability of that class, and ni is the
number of sites that belong to that class.

We de�ne a cumulative function Qi as follows

Qi =
iX

j =1

Rj ; i = 1 ; 2; : : : ; N: (3.14)

If we are simulating more than one elementary move (e.g. spin-ip and spin-
exchange) we choose an elementary move with a probability proportional to QN .
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(A)

(B)

Figure 3.6: (A) The nearest neighbors 1,2,3,4 have to also beupdated when we
ip the central spin c. (B) The spin exchange of the central (c,c') pair a�ects
10 nearest-neighbor pairs. Each pair consists of a numberedbox and another
box to the right. For a spin-exchange to the nearest-neighbor below we have
a similar picture as (B), obtained by rotating it 90 0 clockwise.

Here N is the total number of classes. Next we decide which class to pick, by drawing
a random number 0 < r < 1 and pick classi if

Qi � 1 < rQ N � Qi (3.15)

Once a class is picked, we randomly pick a member of that class, perform the move, and
update all sites that are a�ected by the move. Next we draw another random number
r 0 and calculate the time interval

� t = �
1

QN
ln( r 0): (3.16)
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As mentioned before, the classes are determined by unique combinations of a central
spin (or a central pair in case of spin exchange) and its nearest neighbors (or the nearest
neighbors of each member of the pair). The class tables are pre-calculated and stored
in an array. Another array is created that would store the class change when we ip
a spin or exchange a pair (alternatively, we can use a formulathat calculate the class
change).

The algorithm is

1. Before we enter a single run cycle, we scan the whole lattice and use the class
table to assign a class to each spin. If we initialize the lattice with the same state
(all spins up) then we assign the same class to all spins.

2. Enter a single run cycle.

3. Draw a random number and determine the elementary move.

4. Draw a second random number and choose a class.

5. Choose a member of the chosen class and perform the elementary move.

6. Draw a third random number and update the clock.

7. Update the classes of all a�ected spins.

8. Analyze the resulting con�guration.

9. Store the properties to calculate the necessary averages.

10. Repeat steps (3-9) until we reach a stopping point determined by our stopping
criteria (usually until we reach a certain coverage or a certain time).

11. Restart a new run and repeat the above steps. Do as many runs as necessary.

12. Calculate the averages

3.2.1 Lattice-Gas Model

The grand-canonical e�ective Hamiltonian of the lattice-gas model is

H = � �
X

hi;j i

ci (t)cj (t) � �
X

i

ci (t) (3.17)

where � is the interaction constant and � is the electrochemical potential. The ci is
occupation variable at site i with ci = 0 if empty and ci = 1 if occupied.
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Here the �rst sum in Eq. (3.17) runs over all nearest-neighbor pairs. In other words,
the interaction energy between two occupied sites is nonzero only if the sites involved
constitute a nearest-neighbor pair. The second sum runs over all sites. This Hamiltonian
is equivalent to a nearest-neighbor Ising spin model [20]. Equation 3.17 is linked to
Eq. 3.2 by the transformations [42].

c(t) i =
1
2

[1 + s(t) i ] ; (3.18)

� = 4 ; (3.19)

� = 2h + � 0 (3.20)

Here, � 0 = � 8J . The simulations are performed for a 256� 256 square lattice with
periodic boundary conditions. The temperatureT equals 0:8Tc with Tc the exact critical
temperature of the Ising lattice-gas model [43]. Energy andtemperature units are chosen
such that Boltzmann's constant kB = 1.

The total number of particles is given by

Np =
VX

i

ci ; (3.21)

where V is the total number of sites on the lattice. For our square two-dimensional
lattice, V = L � L . The surface coverage (particle concentration or fractionof the
occupied sites on the lattice) is given by

� =
Np

V
: (3.22)

3.2.2 Energy Barrier

In our previous simulations, the transition probability de pends only on the temper-
atures and the energy di�erence � E = EB � EA . To have simulations that are closer
to a real physical system, we need to take into account the fact that when the system
goes fromEA to EB it generally has to overcome an energy barrierEbar . We de�ne the
height of the energy barrier � [20]

� = EH � Eav

= EH �
1
2

(EA + EB ): (3.23)
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Figure 3.7: Energy Barrier

The energy di�erence betweenEH and EA is

� ~E = EH � EA

=
1
2

(EB � EA ) + � : (3.24)

A commonly used transition rate corresponding to Eq. 3.24 above is [20],

RA! H = exp ( � (� =T)) exp (� (EB � EA ) =2T) (3.25)

The above rate obeys detailed balance as the ratioRA! B =RB ! A cancels the �
prefactor.

At this point, we emphasize that our simulations cannot predict the transition rates.
The parameter values needed to calculate the rates are givenas input. To study the
e�ect of di�usion, for example, we vary the di�erence between di�usion barrier and ad-
sorption/desorption barrier

�
� d � � ads=des

�
. By keeping � ads=des constant, and varying

� d < � ads=des, we vary the ratio of di�usion rate and ads/des rate thus studying the
e�ect of di�usion on the process.

3.2.3 N -foldway Simulations

The classi�cation of the elementary moves can be done most transparently in Ising
language. We can represent an occupied site with a spin up,s = +1, and an unoccupied
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site with a spin down, s = � 1. Adsorption is then a spin ip from � 1 to +1, while des-
orption is the opposite. We only consider nearest neighborsinteractions. For di�usion
we use the Ising language ofspin exchange. To avoid double counting, we only consider
spin exchange with the right and below nearest neighbors.

The study is performed at a temperature belowTc, the critical temperature of the
Ising lattice-gas model. We consider two kinds of elementary steps: (1) an adsorp-
tion/desorption step, and (2) a di�usion step to a nearest-neighbor site. We apply a
rejection-free (n-fold way) algorithm in which we update the clock after every step.
During the simulation, we sample the time development of thecoverage� . At certain
coverages or times we calculate the cluster-size distribution using the Hoshen-Kopelman
algorithm [29].

Figure 3.8 shows a typical simulation results for � d=150 (no di�usion corresponds
to R=0) and � d=6.64 (corresponds to R=100). Apart from the di�erence in ti me
scale, we see a similar qualitative e�ect of di�usion as in Fig. 3.1. At a weaker chemical
potential, di�usion speed up adsorption, while at a stronger chemical potential, di�usion
slow down adsorption.

(A) (B)

Figure 3.8: (A) Nfoldway simulation for � � � 0=0.7 with di�usion and without
di�usion. In this case R is de�ned as R = exp � (�� G) where �� G = � d �
� ads=des so that R = 0 without di�usion (� d = 150) and R = 100 with
di�usion (� d = 6 :64). Here, � ads=des = 15 for all simulations. (B) � � � 0=10.0
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CHAPTER 4

DESORPTION FROM INITIAL
CONFIGURATIONS PREPARED BY

ADSORPTION

4.1 Introduction

Island growth and dissolution on surfaces are important problems, both from fun-
damental and technological points of view. Studying the interplay of adsorption, des-
orption, and di�usion is essential in understanding island dynamics. He et al. exper-
imentally studied gold cluster formation and dissolution on Au(111) surfaces [11]. In
these experiments, during a short positive potential pulse, gold atoms were released
onto a Au(111) substrate, where they quickly nucleated and formed islands. After the
pulse, the dynamics continued in such a way that small islands tended to decay quickly
and large islands initially continued to grow before they also eventually decayed. Island
stability in this experiment was studied by monitoring the i sland dissolution dynamics.
The overall dissolution dynamics of the islands was described by plotting the island
coverage, i.e., the fraction of the surface covered by islands, as a function of time [11].

Also quite important is the experimental study of the underpotential deposition
of metal on electrodes. One example is the experimental study of the underpotential
deposition (UPD) of Cu on Au(111) [44]. In UPD, a monolayer of one metal is elec-
trochemically adsorbed onto another in a range of electrodepotentials more positive
than those where bulk deposition occurs [6]. Computationalstudies have also been
performed to reproduce aspects of the phase transition observed in this system [6, 8].

One important goal of the above type of studies is understanding the underlying
kinetic processes. Typically, the processes involve adsorption, desorption, and di�usion
on the surface. Many processes, especially UPD, result in formation of a monolayer.
The nucleation, growth, and dissolution of clusters on a monolayer are important tech-
nologically as well as theoretically and can be studied by simple models.
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In this study, we focus on a general kinetic study of the e�ect of di�usion on the
adparticle cluster dynamics on the surface. We believe thatthis will be an important
step toward understanding the kinetic processes in real systems. Using Kinetic Monte
Carlo (KMC) simulation of lattice-gas models we can study adsorption, desorption, and
di�usion kinetics. Speci�cally, we are employing the n-fold way rejection-free KMC
algorithm [3, 4, 38, 45]

In a previous study by Lehner et al. [9, 12], KMC simulations were used to re-
produce thermal desorption data. Here, the details of cluster size distributions were
ignored. Frank et al. [19] used the Glauber acceptance probability [37] to perform
KMC simulations of a lattice-gas model of pulsed electrodeposition. In that study, the
e�ect of di�usion on the evolution of cluster-size distribu tion was considered, during
the adsorption stage as well as during the desorption stage.In a study by Frank and
Rikvold [20] Arrhenius-type dynamics were used for the transition probabilities to per-
form n-fold way KMC simulations under �xed chemical potential. He re the e�ects of
di�usion on the cluster-size distributions were also studied.

The e�ect of di�usion on the desorption of large clusters is di�erent from that on
small clusters or monomers. Also, the surrounding con�guration of clusters determines
how the di�usion a�ects the desorption. Budinski-Petkovic and Tosic [15] have employed
KMC to study adsorption, desorption, and di�usion of extend ed objects on a square
lattice. However, to understand the underlying kinetic mechanism of di�usion in real
systems, we need to understand how the e�ects of di�usion depends on the entire cluster-
size distribution. It is not su�cient to study the e�ect of di �usion on the dynamics
of isolated objects. In a large real system, clusters of random shapes and sizes are
distributed randomly on the surface. In general we can expect that the behavior of
each cluster depends on the detailed con�guration of the surrounding clusters [5].

Here we study a lattice-gas model of a two-dimensional adlayer on a square-lattice
substrate, in which the interactions between nearest-neighbor adsorbates are attractive
and direct long-range interactions are ignored. The study is performed at a temperature
of T = 0 :8Tc where Tc is the critical temperature of the Ising lattice-gas model.

This temperature is low enough to avoid complication from �nite size e�ects due to
small droplets and high enough to obtain multidroplet con�gurations [20, 46].

We consider two kinds of elementary steps: (1) an adsorption/desorption step, and
(2) a di�usion step to a nearest-neighbor site. We apply a rejection-free (n-fold way)
algorithm in which we update the clock after every step. During the simulation, we
sample the time development of the coverage� . At certain coverages or times we
calculate the cluster-size distribution using the Hoshen-Kopelman algorithm [29].
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4.2 E�ect of Di�usion on Cluster Dynamics in
Desorption Processes

Adsorption, desorption, and di�usion result in cluster dyn amics by which clusters
are formed, disappear, grow, shrink, split, or coalesce. This dynamics is manifested
among other things through the cluster size distribution dynamics. Our goal is to study
the e�ect of di�usion on the dynamics. One aspect of the e�ect of di�usion on the
dynamics is its e�ect on desorption processes. Desorption is useful in studying the
e�ect of di�usion on cluster dynamics for a number of reasons:

1. The initial con�gurations can be controlled so that we can examine the dynamics
as a function of the initial con�guration.

2. Simulation runs without and with di�usion can be arranged to have exactly the
same initial con�guration.

3. The chemical potential in all simulations without and wit h di�usion can be set at
a constant value.

The above three points signi�cantly simplify the process of observing the e�ect of
di�usion on the cluster dynamics. In this chapter we are concentrating on desorption
in which the initial con�gurations are prepared by an adsorption process. We are
particularly interested in those con�gurations since they are similar to con�gurations
seen in real systems.

4.3 Simulation Preparation and Data Analysis
Procedures

We start from an empty lattice with the �xed size of L � L = 256 � 256. We equilibrate
with negative chemical potential to achieve a very low coverage before switching on a
positive potential until a coverage cuto� � cuto� is reached. The con�guration at � cuto�

then becomes the initial con�gurations for the desorption processes with� init = � cuto� .
We prepare a set of four classes initial con�gurations by applying four di�erent chemical
potentials � � � 0 = 0 :4; 1:0; 2:0; and 10:0. The coverage cutto� is chosen to be
� init = 0 :35 well below the percolation threshold.

For each run of the simulation, we performed adsorption until � cuto� immediately
followed by desorption until equilibrium was reached. During the adsorption stage, we
�xed the adsorption/desorption barriers at � ads=des = 15 and turned o� the di�usion
by setting � d = 150.
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As mentioned above, we vary the chemical potential for the adsorption stage. For the
desorption stage we �xed the chemical potential at� � � 0 = � 0:4, and we also �xed the
adsorption/desorption barriers at � ads=des = 15. To study the e�ects of di�usion , we
performed two di�erent runs for the desorption stage; one without di�usion (� d = 150)
and the other with relatively fast di�usion (� d = 8).

During each run we measuredS, � , and � s for the initial con�gurations as well as
during the desorption stage, and also� (t) during the desorption stage. We did 100 runs
for each simulation setup and averaged the results. We performed both time samplings
and coverage samplings.

The results of the desorption simulations are plotted, showing together the results
without and with di�usion. We have four sets of results corresponding to four di�erent
initial con�gurations resulting from the four di�erent che mical potentials used during
the adsorption stage. By comparing the results for the simulations without and with
di�usion, we deduce how di�usion a�ects the dynamics of the size distributions.

4.4 Adsorption and Initial Con�gurations

Figure 4.1(i) shows typical snapshots for each of the four initial con�gurations. For
convenience, we label each of the initial con�gurations andeach of the corresponding
desorption simulations as (A), (B), (C), and (D). Visual ins pections of the snapshots
immediately shows us that con�guration (A) is dominated by l arge clusters, while (B),
(C), and (D) are dominated by smaller and smaller clusters, respectively. This is con-
�rmed by measurement of S for each of the con�gurations. The mean cluster size gives
the average properties of the size distribution. Table 4.1 summarizes the parameters of
the four initial con�gurations. The size distributions of e ach of the initial con�gurations
are shown in Fig. 4.1(ii). From table 4.1, it is evident that r educing the mean cluster
size results in reducing the correlation length as well. In our case, the four initial size
distributions (A), (B), (C), and (D) show some similarity in terms of the shape of the
plot. The number density vs cluster size is always monotonically decreasing, showing
a broad hierarchy of sizes. In con�guration (A), the numbers of medium and small
clusters are smaller, compared to the other con�gurations.The same can be said when
we compare (B) to (C) and (C) to (D). However, the number density of larger clusters
are always smaller than the number density of smaller clusters in all of these four cases.

The four con�gurations are all produced from adsorption without di�usion. Apply-
ing di�usion to the adsorption process does not change the resulting size distributions
signi�cantly. Di�usion generally only speeds up the adsorption process. For our study
of the desorption it is su�cient to include only the initial c on�gurations resulting from
adsorption without di�usion, since the desorption process from initial con�gurations
resulting from adsorption with di�usion would not be qualit atively di�erent.
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(i) Init : con�g : snapshots � d(ads) = 150

(ii)� d(ads) = 150

Figure 4.1: (i) Typical initial snapshots prepared by adsorption, (ii) initial size
distribution for the simulations.

The size of a particular cluster at any given coverage is determined by whether the
cluster was nucleated early or later. When we apply a weak chemical potential during

41



Table 4.1: Parameters for the four simulations. Mean cluster sizes S and
correlation lengths � are averages over 100 runs at coverage of� init = 0 :35.

Init. Conf. � � � 0(Ads) S �
(A) 0.4 1663.73 4.99
(B) 1.0 343.09 2.92
(C) 2.0 132.17 2.15
(D) 10.0 45.91 1.55

adsorption, clusters appear over a longer time intervals than with a strong potential.
The �rst clusters to appear therefore have enough time to keep on growing to very large
sizes by the time we arrive at the cut-o� coverage . Large clusters are formed, while
the number density of smaller clusters is limited. The largeclusters have the ability to
reduce the number of new nucleations as they form capture zones around them [19].

As we apply higher chemical potentials during the adsorption process, the time in-
tervals between nucleation events becomes shorter on average. The next droplet appears
early, thus preventing the previous droplet to grow to a very large size. Since the nu-
cleation process is still the same (but with a shorter time interval between nucleation
events), the resulting size distributions still show a hierarchy of sizes as before, albeit
with smaller mean cluster size. The result, therefore, is size distributions with smaller
maximum cluster size and larger numbers of clusters of medium and small sizes as shown
in Fig. 4.1(ii).

4.5 Simulation Results

The dynamics during desorption as a function of the initial con�guration results in
di�erent time evolutions of � (t) as shown in Fig. 4.2. The �gures show the coverage
as a function of time corresponding to the four simulations (A), (B), (C), and (D),
with initial con�guration shown in Fig. 4.1. For simulation A, in which the initial
con�guration is dominated by large clusters, the time scaleof desorption is longer than
those dominated by smaller clusters (simulations B, C, and D). Basically, the smaller the
sizes dominating the initial con�gurations, the shorter th e time scale of the desorption
process.

In simulation A, the e�ect of di�usion is to speed up the desorption process. The
same e�ect is shown in simulation B, but on a smaller scale. Insimulation C, the
e�ect of di�usion starts to cross over, and �nally we see that di�usion slows down the
desorption process in simulation D.
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Figure 4.2: Desorption with � initial = 0 :35. Note the di�erent time scales.

Figures 4.3 shows the cluster size distribution for simulations A through D without
di�usion. For simulation A without di�usion, we see a signi� cant depletion of small
size clusters (s . 100) during the early stages of desorption. During the laterstages,
the size distributions for s . 100 essentially remains constant, while the process now
consists of the shrinking of larger clusters. The depletionof small clusters in run (D)
without di�usion during the early stages also occurs, but it is mostly limited to clusters
with s . 10. This is to be expected since run (D) started out from a sizedistribution
with a much smaller mean cluster size. During the later stages, the process consists
of shrinking and depletion of almost all sizes except for thevery small clusters and
monomers (s . 5). The manner in which the size distribution changes for runD is
quite di�erent from run A. Here, the size distribution chang es are more hierarchical, as
the largest size shrink to smaller sizes, the smaller sizes shrink to the next smaller sizes,
and so on.

Next we turn our attention to the e�ects of di�usion. Figures . 4.4 shows number
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Figure 4.3: Desorption without di�usion for � init = 0 :35.

density size distribution for simulations A and D, while Figs. 4.5 shows the corresponding
coverage fraction also for simulations A and D. In simulation D we see that di�usion
changes the size distributions at a given� quite signi�cantly for small sizes, in contrast
to the simulations A, on which di�usion changes the size distribution only slightly. In
both cases, di�usion depletes the number density of clusters at any given sizes. In
runs (A), di�usion depletes slightly the number density for clusters nears � 10. It is
interesting to note that the depletion by di�usion of small c lusters at those two early
coverages is not compensated by an increase of the number density of monomers or the
smallest clusters. Since the e�ect of di�usion is measured at the same coverages, the
depletion of the small clusters in this case has to be compensated by increases of sizes
or number densities of larger clusters.

Run-B and C basically show the same tendencies, but with di�erent magnitudes.
In all simulations we conclude that di�usion always grows or forms small clusters, or
shrink large clusters. The di�erence between run A through D is basically a di�erence
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as to which e�ect is more dominant.

Figure 4.6 shows the mean cluster sizes and correlation length as functions of the
coverage corresponding to the four simulations (A), (B), (C), and (D), with initial con-
�gurations as shown in Fig. 4.1. A common feature of all thesecorrelation length plots
is that they always increases during the early stages of desorption and then decreases
later. As the initial size distributions become more and more dominated by smaller
clusters, � starts to decrease at later time. Another common feature is that di�usion
increases� in all four cases. For the initial distribution dominated by smaller clusters,
the e�ect of di�usion is much more pronounced than in the casewhere the initial dis-
tribution is dominated by large clusters. In the latter case, � increases only slightly. In
general, when the initial distributions are more heavily dominated by smaller clusters,
di�usion has a stronger e�ect of increasing � .

By placing the mean cluster size graphs and correlation length graphs side by side,
we immediately see the connections between the two quantities. Both show increase of
magnitudes by di�usion, increase at early times and decrease later. Both quantities also
show that the e�ects of di�usion are more pronounced when theinitial con�guration is
dominated by smaller cluster sizes.

To further study the connections between mean cluster size and correlation length,
we measures� , S, and largest cluster sizesSmax without and with di�usion for seven
sampling points. The �rst sampling point is at the initial co n�guration. The 2 nd � 4th

are taken before, close to, and at the maximum of� (� ), and the rest of the sampling
points are taken after the maximum. The results are tabulated in Table 4.2.

Several interesting facts emerge from this table. Without di�usion, S is generally
decreasing except for run D, in which we see an increase during the early stage. With
di�usion, S is always increasing during the early stage of desorption. Also, at any
given coverage during desorption,S for the desorption with di�usion are always larger
than without di�usion. Smax is always decreasing in simulations without di�usion. For
simulations with di�usion, Smax increase at the early stage of desorption for simulation
B,C, and D. In all simulations, Smax for desorption with di�usion is always larger than
without di�usion.

4.6 Analysis and Discussion

We have performed desorption with and without di�usion on four initial con�gurations
prepared by adsorption. Each simulation - A, B, C, and D - was performed by keeping
the chemical potential at relatively weak constant value of � m u0. Simulation A is
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Table 4.2: Simulation sampling points. Mean cluster sizesS, Largest cluster
sizesSmax and correlation lengths � are averages over 100 runs

Run � � � S S Smax Smax t=105 t=105

(MCSS) (MCSS)
� d = 150 � d = 8 � d = 150 � d = 8 � d = 150 � d = 8 � d = 150 � d = 8

A 0.35 4.99 4.99 1663.73 1661.40 3901.05 3894.01 0.00 0.00
0.32 5.42 5.47 1655.59 1683.84 3746.68 3802.21 0.04 0.03
0.30 5.49 5.56 1582.53 1612.50 3551.45 3599.42 0.09 0.06
0.27 5.47 5.55 1422.20 1489.57 3190.66 3306.61 0.16 0.12
0.19 5.06 5.14 982.03 1025.73 2199.47 2290.13 0.41 0.30
0.10 3.91 3.95 511.08 529.01 1179.07 1226.78 0.81 0.58
0.02 1.45 1.45 43.58 39.19 191.17 180.17 1.74 1.24

B 0.35 2.92 2.92 343.09 343.11 1284.37 1284.45 0.00 0.00
0.30 3.30 3.43 330.31 372.16 1181.93 1291.11 0.03 0.03
0.25 3.45 3.58 274.13 304.27 953.23 1036.53 0.09 0.07
0.20 3.47 3.59 223.12 236.08 772.63 773.07 0.15 0.12
0.15 3.35 3.47 173.63 180.84 584.28 581.99 0.23 0.19
0.08 2.83 2.88 108.70 108.83 356.96 348.35 0.39 0.31
0.02 1.41 1.40 21.12 19.51 113.54 107.72 0.82 0.63

C 0.35 2.15 2.15 132.47 132.49 601.61 601.62 0.00 0.00
0.29 2.54 2.78 129.88 152.03 547.12 610.86 0.03 0.03
0.23 2.74 2.99 107.29 123.43 445.48 471.13 0.07 0.07
0.17 2.81 3.01 86.02 97.06 345.90 349.19 0.12 0.11
0.12 2.73 2.88 69.79 77.35 269.82 270.23 0.18 0.17
0.07 2.42 2.49 51.49 56.41 192.77 200.54 0.27 0.24
0.02 1.38 1.38 11.96 13.20 72.27 76.81 0.55 0.46

D 0.35 1.55 1.55 45.91 45.93 258.80 258.85 0.00 0.00
0.28 1.97 2.42 52.23 74.12 255.80 312.89 0.02 0.03
0.21 2.25 2.64 47.39 63.96 221.27 254.72 0.05 0.06
0.14 2.38 2.64 40.35 52.73 172.93 203.87 0.09 0.11
0.10 2.34 2.52 35.36 44.99 146.91 171.71 0.13 0.15
0.06 2.12 2.21 28.39 35.34 118.03 137.31 0.19 0.20
0.02 1.36 1.36 9.19 10.00 56.85 62.10 0.39 0.36
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Figure 4.4: Size distributions for runs A and D with and without di�usion.

dominated by large clusters, while simulations B, C, and D are dominated by smaller
and smaller sizes.
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Figure 4.5: Coverage fraction for runs A and D with and without di�usion.

By looking at the time scales for the� (t) results, it is clear that larger clusters decay
more slow. The e�ect of di�usion in simulation A is to speed up the desorption, while
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Figure 4.6: Mean cluster size and Correlation Length with and without di�usion.

in simulation D it is to slow down desorption. Simulations B and C show the process
of crossing over from A to D. This results is an indication that di�usion acts di�erently
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on larger clusters, as compared to smaller clusters.
One of the general characteristics of the cluster size distribution resulting from

adsorption is that they are generally monotonically decreasing functions of cluster size.
Larger clusters are smaller in number, while smaller clusters are more abundant. Also,
the probability for any cluster to have a speci�c size is smaller for larger clusters.

In simulation A, we see that at any given coverage the change caused by di�usion is
relatively small. However, we know that di�usion speeds up desorption. We conclude
that di�usion increase the rate of decay of large clusters. With di�usion the system
shows almost the same size distributions at any given coverage, but it arrives faster at
that size distribution.

In simulation D, di�usion grows larger clusters at the expense of the smaller clus-
ters. Because larger clusters decay more slowly, this has the e�ect of slowing down the
desorption.

All of the initial con�gurations prepared by adsorption con tain monomers and small
sizes clusters. The di�erence is that some con�gurations have larger clusters than the
other one. Later we shall show that the e�ect of di�usion on th e dynamics of the
small clusters varies with the details of initial con�gurat ions. In other word, the e�ect
of di�usion does not only depends on the sizes of the clusters, but also on their size
distributions, i.e. on the total environment surrounding each cluster.

The correlation length plots � (� ) are generally initially increasing to a maximum,
and then are decreasing. At any given� di�usion increases � (� ) with varying degree.
Much smaller for simulation A, and greater for other simulations with the greatest e�ect
on simulation D.

Now, we already know that di�usion only speed up the shrinking of large clusters
in simulation A. The small increase of correlation length by di�usion means that there
is a small increase of medium clusters sizes at the expense ofsmall clusters. At the
initial stage of desorption, monomers and very small clusters disappear faster than the
shrinking rate of large clusters, this has the e�ect of increasing of correlation length.
This is con�rmed by the larger increase of coverage fractionof small clusters compared
to that of the larger clusters.

In simulation D, di�usion grows medium clusters at the expense of small clusters.
The overall e�ect is to slow down the desorption which shows that at the early stage
the growth of medium clusters is quite signi�cant.

Interestingly, Tables 4.2 shows that for simulation D, di�u sion has the e�ect of
increasing the size of the largest clusters at initial stage. This shows that the largest
clusters are actually growing as the result of di�usion during the initial stage. This is
quite apparent on the Fig. 4.5 for simulation D.
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CHAPTER 5

DESORPTION FROM ARTIFICIALLY
PREPARED INITIAL CONFIGURATIONS

5.1 Introduction

In the previous chapter, we started the desorption from initial con�gurations that
were characterized by a monotonically decreasing cluster distributions. For all practical
purposes, clusters of all sizes below the the largest cluster size are present. Here we
want to check the e�ects of di�usion when a certain range of cluster sizes is signi�cantly
reduced and another range of cluster size is increased signi�cantly. To examine this
condition, we proceed to do a set of simulations similar to those reported in Ch. 4, but
with initial con�gurations that are prepared arti�cially s o that we can freely alter the
cluster size distributions.

Instead of preparing the initial con�gurations by means of adsorption, we prepare
them by distributing circles with radii randomly drawn from a uniform distribution
with a de�nite maximum size, up to a coverage cut o�. We then di stribute additional
monomers randomly on the remaining empty sites up to a constant maximum coverage.
We thus produce a set of initial con�gurations with a constant coverage, but with
various controlled size distributions. What we actually have now is a set of cluster
size distributions with less diversity compared to those prepared by adsorption. This
distribution is generated according to the Avrami's model of crystal growth [23] in
which he calculated the growth rate by assuming the distribution of overlapping circles
as shown in Fig. 5.1.

Here, we de�ne diversity as the total number of di�erent cluster sizes at a given
coverage. We use these initial con�gurations for desorption with exactly the same
parameters as before, and use the same measurements. What wewant to accomplish is
to have a better understanding of the e�ects of di�usion on th e dynamics of the cluster
size distribution.
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Figure 5.1: Avrami's circle distribution.

5.2 Simulation Preparation

To prepare the initial con�gurations, we start with an empty lattice and distribute circles
and particles randomly up to � init = 0.35. Fig.5.2(ii) shows the cluster number density
distribution. for the four initial con�gurations, A, B, C, a nd D, that we use. From
this �gures we can see that the cluster sizes distributions are no longer monotonically
decreasing.

For initial con�gurations A, we distribute random size circ les with maximum r =10
and an insigni�cant number of monomers to the empty lattice up to � =0.35. The
circles were allowed to overlap so that in we achieve a wide diversity of cluster sizes.
For con�guration B we distribute the circles up to � c =0.30 and distribute particles
randomly to unoccupied sites up to� =0.35. Con�gurations C and D are prepared with
the same manner with � c =0.1 and � c =0.01.

We performed 100 runs for each simulation. Initial con�gurations for each run were
prepared using a di�erent random seed number. Fig. 5.2(ii) show the number density
histogram plot averaged over 100 runs. Fig. 5.2(i) shows typical snapshots for each of
the initial con�gurations.

5.3 Simulation Results

Fig. 5.3 shows the coverage as a function of time corresponding to the four simu-
lations (A), (B), (C), and (D), with initial con�guration sh own in Fig. 5.2. Here, the
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(i) Init : con�g : snapshots

(ii) Init : Con�g � s(s)

Figure 5.2: (i) Typical initial snapshots, (ii) initial siz e distribution for the
simulations.

e�ects of di�usion are much more pronounced, compared to Fig. 4.1. Also in Fig. 5.3(C),
the slowing-down e�ect of di�usion on desorption of small clusters is clearly separated
from speeding-up e�ect of di�usion on desorption of large clusters.

Figures 5.4 shows the cluster size distribution for simulations A through D with-
out di�usion. For simulation A without di�usion, instead of a signi�cant depletion of
small size droplets (s . 100) during the early stage of desorption, we see an increase
in the number density of small clusters. Essentially, the process quickly changes the
distribution into a monotonically decreasing one. Examining Fig 5.4(A-D) we see that
desorption without di�usion indeed transforms the initial distribution into a more \nat-
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Figure 5.3: Desorption with � (t) initial = 0 :35:

ural" monotonically decreasing size distributions. During the later stages, the changes
in the size distributions are qualitatively similar to what we have seen before with
desorption on initial con�gurations prepared by adsorption.

Figures. 5.5 are number density size distribution for simulations A and D. Some
features that we saw in desorption on initial con�gurations prepared by adsorptions
are present here such as in simulation D where we see that di�usion change the size
distributions at the given � quite signi�cantly at small sizes, in contrast to the runs A
where di�usion change the size distribution only slightly.

On the other hand, there are also some di�erences. Aside fromthe more pronounced
e�ect of di�usion in simulation D, we also can clearly see at what range of sizes, the
number density is reduced and at what range of sizes the number density is increased.
In other word, we can clearly identify which range of sizes has growth at the expense of
which range of sizes.
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Figure 5.4: Cluster size distribution for desorptions for � init = 0 :35 without di�usion.

In desorption from initial con�gurations prepared by adsorption we see that di�u-
sion depletes the number density of small clusters and deduce that since the e�ect of
di�usion is measured at the same coverages, the depletion ofthe small cluster has to be
compensated by the size increases or increases of number density of larger clusters. It
is slightly apparent visually, but it is di�cult to describe it in details.

Figure 5.6 shows the mean cluster sizeS and correlation length � as a functions
of coverage corresponding to the four simulations (A), (B), (C), and (D), with initial
con�guration shown in Fig. 5.2. Here the dynamics of the correlation lengths are not
quite the same as seen in the previous chapter. In simulationA, correlation length is
always decreasing, while in simulation B, it is decreasing most of the time, following
a brief period of increase. In simulation C and D, however, the correlation lengths
increase most of the time, only to decrease for very small coverages

The other feature of the correlation lengths here is that thee�ect of di�usion is very
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Figure 5.5: Size distributions for runs A and D with and without di�usion.

small on the part where the correlation length is decreasing, and larger otherwise. In
simulation C and D, the e�ect of di�usion on the increasing part of correlation length
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is immensely larger.
We also see a quite close correlation between the mean cluster size dynamics and

correlation length dynamics, where the range of coverage ofwhich the mean cluster size
is increasing is almost identical to that of the correlation length. Clearly we are seeing
a close connection between mean cluster size and correlation length.

5.4 Analysis and Discussion

We have done desorption without and with di�usion on 4 (four) initial con�gurations
prepared arti�cially. Each simulation - simulations A, B, C , and D - were run by exactly
the same setup as the desorption on the initial con�gurations prepared by adsorption.

The advantage of doing these simulations is that since the size distribution is simple
we can identify more easily which part of the dynamics that corresponds to the dynamics
of particular sizes. The similarities of these simulationsto the previous ones can be used
to clarify some part of the previous simulations that were not very clear.

Looking at the desorption without di�usion, we learned that desorption quickly
transforms the initial distribution to a monotonically dec reasing form. However, the
arti�cial initial condition a�ects the transformation in s uch a way that the e�ects of
di�usion become very pronounced in simulation C and D. Sincewe know, by design,
that initial con�gurations C and D are dominated by small clu sters and monomers, we
know that the intensity and the behavior of the e�ect of di�us ion depended on how
large the contribution of either very small clusters or large clusters.

The correlation length plots are mostly decreasing in simulation A and B, and mostly
increasing in simulation C and D. In simulation A, it is total ly decreasing and in simula-
tion B it is slightly increasing at the beginning. Since we know that initial con�guration
A is basically �lled by large clusters, we can attribute the decreasing correlation length
to the shrinking of large clusters. The fact that we see only asmall e�ect of di�usion
con�rm our previous conclusion that di�usion only speed up t he decay of large clusters
which is manifest in speeding up of the desorption.

The e�ect of di�usion on increasing correlation length con� rm our analysis that
di�usion enhanced the coarsening of small cluster distribution that already happen by
virtue of desorption.

The close correlation of mean cluster size and correlation length is a very clear
indication that the change of correlation length in this case is direct results the change
in mean cluster size.
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Figure 5.6: Mean cluster sizes and correlation length vs coverage� . Note that
� decreasesfrom left to right.
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CHAPTER 6

PARAMETER ESTIMATION BY DENSITY
FUNCTIONAL THEORY FOR A

LATTICE-GAS MODEL OF BR AND CL
CHEMISORPTION ON AG(100) 1

6.1 Introduction

The adsorption of halides on noble metals provides important model systems for study-
ing adsorption on metal surfaces, particularly when there are ordered adsorbate struc-
tures. For this reason, these adsorption processes have been extensively studied [48, 49].
Adsorption of Bromine and Chlorine on metal has been the subject of many studies
over the years. The systems we study here are Br and Cl chemisorbed on single-crystal
Ag(100). Experimentally, Kleinherbers et al: [50] have found that the adsorption of
Br, Cl, and I on Ag(100) surfaces in vacuum all resulted in theformation of a c(2 � 2)
overlayer with the adsorbates in the fourfold hollow sites. This implies a very strong,
short-range repulsion, which we model as a nearest-neighbor exclusion [7].

The bonding of the adsorbates to the substrate and the surface electronic struc-
tures have been studied by Density Functional Theory (DFT) calculations. It is found
that the bond between Br or Cl and the substrate is covalent, but with a polarization
due to electron transfer from the substrate to the adsorbate[13, 14, 51]. The polar-
ization results in dipole moments on the surface, which cause long-range dipole-dipole
interactions between the adatoms.

Long-range dipole-dipole interactions have previously been incorporated in a lattice-
gas model employed in room-temperature Monte Carlo simulation studies of the ad-
sorbed system [16, 18]. In these works, the lateral interactions were extracted by �tting
the results of the simulations to electrochemical adsorption isotherms. In the present

1This chapter is based on results published in Refs. [21, 47].
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study we instead estimate the lateral interactions by �ttin g the lattice-gas model to our
DFT results.

We extract the next-nearest-neighbor lateral energy and the binding energy by �tting
the lattice-gas model to the adsorption energies obtained from the DFT calculation.
The same DFT calculation also yields charge distributions from which dipole-dipole
interactions can be directly calculated. By comparing the two results, we examine the
signi�cance of the long-range dipole-dipole interactionswithin the lattice-gas model.
The lattice-gas assumption of strongly located adsorbatesis consistent with previous
DFT calculations and dynamic Langevin-equation simulations for a continuum model
[14].

Estimates of short-range lattice-gas interactions from DFT calculations of adsorption
energies have also recently been performed for homo-epitaxy [52{54] and hetero-epitaxy
[54] systems. However, these studies do not consider chargetransfer and long-range
interactions.

6.2 Density Functional Theory

Density Functional Theory (DFT) is the most widely used meth od to calculate
ground-state properties of many-electron systems. The core of DFT is the Hohenberg-
Kohn theorem [55]. This theorem basically states that theground-state wave function
	 0(r 1; r 2; : : : ; r N) is a functional of the electron ground-state density n(r ). Conse-
quently, all ground-state observables are functional ofn too. The DFT calculations,
then, is done by minimizing the energy functional in terms ofn, as follows

0 =
�E s[n(r )]

�n (r )
(6.1)

=
�T s[n(r )]

�n (r )
+

�V [n(r )]
� [n(r )]

+
�U H [n(r )]

� [n(r )]
+

�E xc[n(r )]
� [n(r )]

(6.2)

=
�T s[n(r )]

�n (r )
+ v(r ) + vH (r ) + vxc(r ): (6.3)

Here, Ts[n(r )] is the non-interacting kinetic energy term, v(r ) is potential due to the
ions, vH (r ) is a Coulomb Hartree potential, and vxc(r ) is the exchange-correlation term.
Using the following equations [56], the density functional is calculated and the total
energy and the electron density are obtained.

vs(r ) = v(r ) + vH (r ) + vxc(r ) (6.4)
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� i (r ) = " (r )� (r ) (6.5)

ns(r ) =
NX

i

f i j� (r )j2 (6.6)

The Schr•odinger equation (Eq. 6.5) yields single-particle orbitals � (r ) that reproduce
the density functional ns(r ) (Eq. 6.6) where f i is the occupation of the i 'th orbital.
Eqs. (6.4, 6.5, and 6.6) are the celebrated Kohn-Sham (KS) equations. They replace
the problem of minimizing E[n] by solving a non-interacting Schr•odinger equation.

We applied DFT to obtain the ground-state energies and electron density functions
for the adsorption of Br or Cl on a slab representing a Ag(100)surface. We prepared
slabs with seven metal layers. Convergence checks with respect to the number of layers
are discussed in Appendix B. The slab was placed inside a supercell with periodic
boundary conditions. Two di�erent sizes of supercells wereexamined. A 2� 2 supercell
with the size of 2a� 2a� 37:53�A , and a 3� 3 supercell with the size of 3a� 3a� 37:53�A.
Here, a = �=

p
2 where� = 4 :17�A is the lattice constant of bulk Ag, which we obtained

from DFT calculations by minimization of an Ag fcc structure . The 2 � 2 supercell
contained four surface Ag atoms on each side of the slab (28 Agatoms in total), while
the 3� 3 supercell contained nine surface Ag atoms on each side (63 Ag atoms in total).

The orientation of the surface normal de�nes the z direction. To maximize the
symmetry, we distributed the adsorbates on both sides of theslab. One, two, and three
Bromine or Chlorine atoms were placed on each 3� 3 surface to represent coverages
� = 1=9, 2=9, and 1=3, respectively. Two Bromine or Chlorine atoms were placed on
each 2� 2 surface to represent� = 1=2 and one to represent� = 1=4. Here the coverage
� is de�ned as

� =
1

Nsite

X

i

ci ; (6.7)

where ci = 1 when the site is occupied by the adsorbate, andci = 0 otherwise. In
other words, the coverage is the number of adsorbates divided by the total number of
all possible adsorption sites,Nsite. Figure 6.1 shows the cross section of a supercell and
surface distributions of the adsorbate for various coverages. Due to the nearest-neighbor
exclusion and the periodic boundary conditions the adsorbates can only be placed in
diagonal positions, limiting � to less than or equal to 1=2.

The calculations were performed by the DFT method using the Vienna Ab Initio
Simulation Package (VASP) [57{59]. The basis set was plane-wave, with the general-
ized gradient-corrected exchange-correlation functional [60, 61], Vanderbilt pseudopo-
tentials [62, 63], and a cut-o� energy of 400 eV. Thek-point mesh was generated using
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Figure 6.1: (A) The cross section of the supercell, (B) a three-dimensional
representation of the supercell, and (C) surface distributions of the adsorbates
for various coverages. Adsorbate atoms: gray. Surface Ag atoms: white. Bulk
Ag atoms: black.
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the Monkhorst method [64] with a 7� 7 � 1 grid for the 2 � 2 supercells and a 5� 5 � 1
grid for the 3 � 3 supercells. To get to the con�guration with minimum energy, we
used a selective dynamics method, by which the ions in the topand bottom layers were
allowed to relax in the z direction only, as opposed to the full dynamics in which the
atoms would be allowed to move in all directions. This is the �rst step to avoid surface
reconstruction, which is not expected to occur in this system under electrochemical con-
ditions. The second step is to average thez coordinates of the top and bottom layers.
The DFT results yield total energies and electron densities, � e(~x).

We next ran static minimization on the resulting averaged minimum-energy struc-
ture. Here, `static' means running energy minimization on the electron distribution
without changing the positions of the nuclei. From this run, we obtained the total
energy of the system,Esyst. We then took the same structure and removed the adsor-
bate to obtain the clean-slab structure. Again, we ran selective dynamics on this slab
structure to obtain Eslab. To get the energy of an isolated halide atom, we also ran
static minimization on an isolated halide atom to obtain Ehal . We de�ne the adsorption
energy per supercell per site as

Eads =
Esyst � Eslab � 2NE hal

2Nsite
: (6.8)

Here, Nsite is the number of sites on one surface of the metal slab, andN is the number
of halides on each side of the slab. In Fig. 6.2 we showEads as a function of � for both
systems. We emphasize thatEads contains the lateral interaction energy and is di�erent
from the single-particle binding energy Eb. The relation between these two quantities
is given explicitly in Eq. (6.19) below.

To understand the surface polarization we need to study the charge-transfer behav-
ior. We de�ne the negative of the electron densities from theDFT output as the charge
density distributions � (~x), and we introduce the charge transfer function per adsorbed
atom, which is de�ned as follows [17]

� � (~x) =

"

� (~x)halide� Ag(100) �
NX

i =1

� (~x)halide � � (~x)Ag(100)

#

=N; (6.9)

where� (~x)halide� Ag(100) is the full charge density of the adlayer system withN adsorbed
Br or Cl on each side of the slab, and� (~x)halide is the full charge density of the pair
of isolated halide atoms at the same positions as in the halide-Ag bonded system, and
� (~x)Ag(100) is the charge density of the Ag(100) slab with all atoms at the same positions
as in the halide-Ag bonded system [65]. After integrating over x and y, this yields the
charge transfer function per pair of adsorbed atoms,
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Figure 6.2: Adsorption energy vs coverage. Despite the appearance on this
scale, the lines are, in fact, slightly convex due to the repulsive lateral in-
teractions. The \error bars" in this and subsequent �gures do not represent
statistical errors, but rather estimates of the accuracy ofthe results, based on
the convergence studies discussed in Appendix B.

� � (z) = [ � (z)halide� Ag(100) � N� (z)halide � � (z)Ag(100) ]=N: (6.10)

From the charge transfer function integrated over thex and y directions, � � (z), we
can calculate the surface dipole moment as

p =
1
2

Z + h

� h
jzj � � (z)dz: (6.11)

Here h = 1
2H where H is the height of the supercell. The zero point of the coordinate

is placed at the middle of the supercell. Figure 6.3 shows theresults of the dipole
moment calculation for Bromine and Chlorine. Here we observe that the magnitude of
the dipole moment decreases approximately linearly with� . The surface dipole moment
of the energy-minimized clean slab was also calculated and veri�ed to be the same as
the surface dipole moment of the slab with all atoms at the same positions as in the
halide-Ag bonded system, thus justifying our procedure.

Figure 6.4 shows the charge transfer function �� (z) for Br/Ag(100) with � = 1=9.
In this �gure positive values indicate electrons being removed, while negative values

64



0 0.1 0.2 0.3 0.4 0.5
q

-0.25

-0.2

-0.15
p 

(e
Å

)

Br/Ag(100)
Cl/Ag(100)

Figure 6.3: Dipole moment vs coverage.

indicate electrons being added. From the �gure we see that charge is mostly transferred
from the surface silver atoms to the adsorbates. Inside the bulk, the charge transfer
function indicates only minor charge redistribution above and below each of the silver
layers. Since the charge transfer function is calculated bysubtracting the charge distri-
butions of the clean slab and isolated adsorbate from that ofthe adsorbed system, we
conclude that this small charge redistribution is caused bythe adsorption processes.

Figure 6.5 shows the charge transfer function per adsorbed atom � � (z) for Br/Ag(100)
and Cl/Ag(100) for all coverages. Here we only show half of the supercell since the
charge transfer function is symmetric in thez direction. Both systems show a similarity
in that the magnitude and distribution of the charge transfer from the Ag surface are
independent of the coverage. However, Fig. 6.5 also shows that while the magnitude of
the charge transfer from the surface to the adsorbate is independent of the coverage,
the resulting charge distribution around the adsorbate is not. Indeed, higher coverage
results in a more asymmetrical charge distribution around the adsorbate. This asym-
metry is more pronounced in the Br/Ag(100) case, suggestingan important di�erence
between Br/Ag(100) and Cl/Ag(100). Figure 6.6, which shows the charge transfer func-
tion for low and high coverages, illustrates the di�erence more clearly. Here we see that
there is no signi�cant di�erence between Br/Ag(100) and Cl/ Ag(100) for � = 1=9, while
for � = 1=2 we see a quite signi�cant di�erence.
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Figure 6.4: The charge transfer function � � (z) for Br/Ag(100) with � = 1=9.
The vertical short-dashed lines indicate thez-positions of the Ag layers, and
the long-dashed ones indicate those of the adsorbate ions.

6.3 Dipole-dipole Interaction

In the previous section we have shown that once we have obtained the charge transfer
function, we can calculate the dipole momentp from Eq. (6.11). Kohn and Lau [66]
showed that the non-oscillatory part of the dipole-dipole interaction energy between the
adatoms behaves as

� dip � dip =
2pA pB

4�� 0R3 : (6.12)

The novel aspect of this expression is the factor of 2. A qualitative explanation for this
factor is given in Appendix B. For a more detailed and generaltreatment we refer the
reader to Ref. [66]. With Eq. (6.12), we can calculate� dip � dip from the surface dipole
moment results from the DFT as described in Eq. (6.11) as

� dip � dip nnn =
2p2

4�� 0R3
nnn

; (6.13)
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Figure 6.5: Charge transfer functions � � (z) for all coverages. Only half of the
supercell is shown, fromz = 0 �A to z = 12:235�A. Panel (a) is for Br/Ag(100)
and (b) for Cl/Ag(100). The dotted lines correspond to the z-position of the
topmost layer of metal and the dashed lines correspond to thez-position of
the adsorbates.

for large R (in our case larger than the nearest-neighbor distance). Here p is the surface
dipole moment calculated from the charge transfer function(Eq. (6.11)), and Rnnn is
the lateral distance between a pair of next-nearest neighbor adatoms.

6.4 Lattice-gas Model

We use anL � L square array ofNsite = L 2 adsorption sites. Each site corresponds to
a four-fold hollow site on the Ag(100) surface. The energy ofthis lattice-gas model is
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Figure 6.6: Comparison of charge transfer functions �� (z) for Br and Cl at
two di�erent coverages.

E = �
X

i<j

� ij ci cj � Eb

N siteX

i

ci : (6.14)

Here i and j denote adsorption sites,� ij is the lateral interaction energy of the pair
(ij ), and Eb is the single-particle binding energy. The sign conventionis that � ij < 0
signi�es repulsive interaction and Eb > 0 favors adsorption [10]. � i<j is a sum over all
pairs of sites, andNsite is the number of four-fold hollow sites on each side of the slab.
For simplicity we ignore multiparticle interactions [52, 53].

Koper [7] has shown that the e�ects of screening and �nite nearest-neighbor repulsion
are very small. Following his results, we use a lattice-gas model with nearest-neighbor
exclusion and unscreened dipole-dipole interactions. Thedistances used in the lattice-
gas model areRij = r ij a and Rnnn =

p
2a, where Rij is the distance between a pair of
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adsorbatesij , and a is the Ag(100) lattice spacing. We can then write

� ij =
R3

nnn

R3
ij

� nnn =
(
p

2)3

r 3
ij

� nnn : (6.15)

Thus we have

1
Nsite

X

i<j

� ij ci cj = � nnn � � ; (6.16)

where

� � =
(
p

2)3

Nsite

X

i<j

ci cj

r 3
ij

: (6.17)

The adsorption energy de�ned in Eq. (6.8) is related to the lattice-gas energy of Eq. (6.14)
as

Eads =
E

Nsite
: (6.18)

This enables us to break downEads into its lateral-interaction and single-atom binding
parts as follows,

Eads = � � nnn � � � Eb�; (6.19)

where � is the coverage (Eq. (6.7)) as before. The subscript� in � � signi�es that the
lateral interaction energy is coverage dependent.

Using the supercell set-up of the DFT, the lateral part of Eq. (6.14) will be the lateral
interaction energy per supercell surface. We can calculatethis energy by extending the
supercell to in�nity in the x and y directions by means of periodic boundary conditions.
The central supercell is the original supercell, and the image supercells are the supercell
extensions in the x and y directions, as shown in Fig. 6.7. The lateral energy per
supercell is the sum of the interaction energies of pairs in the central supercell and the
lateral energies of pairs of adsorbates in the central supercell and adsorbates in the
image supercells. Figure 6.8(a) shows an example of the lateral energy calculation for
� = 1=9 for �nite Nsite.

The lateral energy per supercell can be written as

� � =
N siteX C

r 3 ; (6.20)

where C is an arbitrary constant. The above sum can be approximated by the integral

� � (L ) �
Z 2�

0

Z L

L 0

C
r 3 rdrd�; (6.21)
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Table 6.1: Lateral interaction energy calculation extrapolated to L ! 1 . � �

is the full lateral interaction energy in units of � nnn , the lateral energy between
a pair of next-nearest neighbors.

� � � (L ! 1 )
1/9 0.10512
2/9 0.58591
1/4 0.79822
1/3 1.53990
1/2 4.26730

which gives us

� � (L ) �
C1

L
+ C2 : (6.22)

We therefore plot � � versus 1=L. It is shown in Fig. 6.8(b) that the plot is linear
in accordance with Eq. (6.22). The correct lateral energy per supercell can then be
obtained by �tting Eq. (6.22) to the � � versus 1=L plot and extrapolating to 1=L = 0.
The results of this calculations for the di�erent coveragesare presented in Table 6.1.

6.5 Lattice-gas Fitting

According to our assumption, � ij is quadratic in p and � 1=r3. The � 1=r3 part has
already been calculated in � � as described in Eqs. (6.17) and (6.20-6.22). We also know
from the DFT results that the dipole moment p is approximately linear in � as shown
in Fig. 6.3. Hence, based on Eq. (6.13) it is reasonable to assume that we can write
� nnn as [18]

� nnn = A(1 + B� )2 (6.23)

From Eqs. (6.23) and (6.19), we have three parameters to be extracted: A, B , and
Eb. In Fig. 6.2 it is shown that Eads vs � is predominantly linear. The linear part
is proportional to Eb. The lateral energies contribute to the nonlinear parts which
are much weaker, and therefore di�cult to estimate accurately from a direct three-
parameter �t. We therefore used the following two-step procedure. As can be seen in
Fig. 6.2, the graphs extrapolate to Eads(� = 0) = 0, consistent with the fact that at a
very low coverage the lateral energy approaches zero. To obtain the dominant linear
coe�cient Eb, we �rst �t a quadratic equation to Eads(� ),

Eads(� ) = a0 + a1� + a2� 2: (6.24)
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We extracted the linear part a0+ a1� and useda1 as our estimate for the linear coe�cient
Eb, �nding Eb = 3 :059� 0:058 eV for Bromine andEb = 3 :371� 0:058 eV for Chlorine.
We then �xed Eb in Eq. (6.19) and applied a two-parameter �t to extract A and B , which
enabled us to calculate� nnn . (The parameters a0 and a2 are complicated functions of
A and B and were discarded in favor of the direct two-parameter �t of the latter.)

Using Eb from above, we calculate the contribution of the lateral interactions to
Eads as

C(� ) = Eads(� ) + Eb�: (6.25)

In Fig. 6.9 we plot Eq. (6.25). From this �gure it is obvious th at the lateral energy terms
are important. Figure 6.10 shows the �tting results for � nnn . It is shown in the �gure
that for Br the lattice-gas model obtained by �tting to the ad sorption energies from the
DFT calculation is consistent with long-range dipole-dipole lateral interactions using
the dipole moments calculated from the DFT charge distribution. This indicates that
long-range dipole-dipole interactions are dominant in this system. For Cl the �gures
show that the long-range dipole-dipole interactions are important but not dominant.

We further note that for low coverages our estimates of� nnn for Br are in excellent
agreement with those obtained by �tting Monte Carlo simulat ion results for the lattice-
gas model to electrochemical adsorption isotherms in Ref. [16]. However, the DFT
results show a stronger coverage dependence than obtained from the experimental Monte
Carlo �ts. The experimental �tting results for Cl from Ref. [ 18] lie between the two DFT
estimates, and all three results show approximately the same coverage dependence.

6.6 Discussion

The lattice-gas model in our study consists of two terms, thelateral interaction term
and the single-atom binding-energy term. By �tting the latt ice-gas model to adsorption
energies obtained from DFT calculations, we have calculated the total lateral energy of
the systems. From the charge distribution results from DFT, we have calculated the
long-range dipole-dipole interaction contribution to the lateral energy terms that falls
o� as � 1=r3. With this assumption, we calculated dipole-dipole lateral interactions by
Eq. (6.12).

Apart from the di�erence of magnitude of the dipole moments between Br/Ag(100)
and Cl/Ag(100), we �nd that there are di�erences in the charg e distribution around
the adsorbates between Bromine and Chlorine. This is an indication that there are
important di�erences between Br/Ag(100) and Cl/Ag(100).

For Bromine, we showed that the lateral energy calculationsfrom the DFT charge
distributions are consistent with the results from �tting t he lattice-gas model to the
DFT adsorption energies. This shows that in the case of Bromine the lateral energy
terms are dominated by long range dipole-dipole interactions. In the case of Chlorine,
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the lateral energy results from the charge distributions are greater in magnitude than
those of Bromine, showing that the long-range dipole-dipole interaction in Cl/Ag(100)
is important. However, in the case of Chlorine, we see less consistency between the
two methods of calculations. This indicates the presence ofsigni�cant short-range
interactions.

Our calculations were done in vacuum. We note, however, the overall consistency
of the vacuum DFT calculations presented here with previous�ts of lattice-gas Monte
Carlo simulations to electrochemical adsorption isotherms. This suggests that our cal-
culations might be useful to understand these experimentalresults, in which water is
present, as well.
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Figure 6.7: Extending the supercell to in�nity
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Figure 6.8: (a)The lateral energy per supercell as a function of the number of
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CHAPTER 7

CONCLUSION

In the �rst part of this study, we focus on a general kinetic study of the e�ect of di�usion
on the adparticle cluster dynamics on the surface. Using a lattice-gas model hamilto-
nian we generate Markovian chains of con�gurations by adsorption, desorption, and
di�usion which correspond to single-spin and spin-exchange dynamics in Ising model
language. Our objective is to study the e�ect of di�usion on t he clusters size distribu-
tion dynamics generated by adsorption and desorption. The strategy to measure the
e�ect of di�usion is by observing it during desorption proce sses. In this process we vary
the initial con�gurations either by adsorptions or by arti� cial preparations. In all of the
desorption process that we observed we �xed the initial coverage, the initial coverage,
and the (relatively weak) chemical potential. We then measure the chain of con�gura-
tions generated during the desorption process with and without di�usion. By doing it,
we measure the e�ect of di�usion on the dynamics as a functionof initial con�gurations.

In Chapter 2 we establish the methods to measure the parameters such as coverage
� , correlation length � and mean cluster sizeS on a speci�c con�guration. By measuring
the chain of con�guration as a function of time and coverage we obtain the measurement
of above parameters as a function of time and coverage. By measuring the parameters
as functions of time, we measure the evolution of the system with time. We also need to
measure the parameters as functions of coverage in order to study the e�ect of di�usion
at any given coverage. Further details of the cluster size distributions at a given coverage
is also studied by measuring the size distributions and obtain histogram plots from them

In Chapter 3, we discussed the simulation algorithm to generate the con�guration
dynamics which involve adsorption, desorption, and di�usion. To accomodate the in-
troduction of energy barrier and the fact that we run the simulations at T = 0 :8Tc we
employ the rejection-freen-fold way algorithm.

In Chapter 4, we focus on the e�ect of di�usion on the dynamics of cluster size distri-
butions during desorption processes with initial con�gurations prepared by adsorption.
All of the initial con�gurations prepared by adsorption con tain monomers and small
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sizes clusters. The di�erence is that some con�gurations have larger clusters than the
other one. we �nd that the e�ect of di�usion does not only depe nds on the sizes of the
clusters, but also on their size distributions, i.e. on the total environment surrounding
each cluster.

In Chapter 5, we observe the e�ects of di�usion on the dynamics of cluster size
distribution during desorption when the initial con�gurat ions are generated arti�cially,
we emphasize the �nding that the intensity and the behavior of the e�ect of di�usion
depended on how large the contribution of either very small clusters or large clusters.

In the second part of this study, we discuss the application of Density Functional
Theory (DFT) for a lattice-gas model of Br and Cl chemisorption on Ag(100). This
study is discussed in Chapter 6.

As oppose to studying the kinetics of cluster dynamics in the�rst part, here we
study the properties of ground-state static con�gurations. Using DFT, we calculate
the adsorption energies and charge transfer function of theadsorption of Br and Cl
on Ag(100). We study �ve coverages (� = 1/9, 2/9, 1/3, 1/4 and 1/2). By �tting a
lattice-gas model to the adsorption energies from those �vecoverages we were able to
extract lateral energy interaction constant � nnn (� ). Using the charge transfer function
we also calculated� nnn (� ). Thus we have two methods to calculate the same number
and we can compare the two results.

We �nd that there are di�erences in the charge distribution a round the adsorbates
between Bromine and Chlorine. This is an indication that there are important di�er-
ences between Br/Ag(100) and Cl/Ag(100).

For Bromine, we showed that the lateral energy calculationsfrom the DFT charge
distributions are consistent with the results from �tting t he lattice-gas model to the
DFT adsorption energies. This shows that in the case of Bromine the lateral energy
terms are dominated by long range dipole-dipole interactions. In the case of Chlorine,
the lateral energy results from the charge distributions are greater in magnitude than
those of Bromine, showing that the long-range dipole-dipole interaction in Cl/Ag(100)
is important. However, in the case of Chlorine, we see less consistency between the
two methods of calculations. This indicates the presence ofsigni�cant short-range
interactions.
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APPENDIX A

CORRELATION LENGTH

The correlation length formula (Eq. 2.12) contains the number of broken bonds, which
is essentially what di�usion is working on. In some cases, correlation length is also an
average property that indicates the length scale of the system.

In their classic paper, Debyeet. al. [28] explain a way to estimate the correlation
length without explicitly calculating a correlation funct ion. Here we calculate the cor-
relation length for a cluster distribution on a discrete two-dimensional lattice with the
help of Debye et. al.'s explanation. (Their paper discusses the correlation length for
three-dimensional clusters in a continuous space.)

Suppose we have a cluster (among other clusters) on a latticeof sizeV . What we
want to calculate is a relation between the correlation length of that cluster and the
size of the surface (hence the count of the broken bonds) of that cluster.

We have a very short stick of length r that we can throw at the cluster. What we
want to calculate �rst is the probability that the stick woul d have one end inside the
cluster and the other end outside the cluster (the probability of penetration). To do
that we have to allow the stick to take on all possible possible spatial orientation while
the two ends remain in the di�erent environments, r must cut and follow the surface
between the cluster and the void. The probability of penetration, then, consist of two
parts, (a) the probability p1 that one end remains in the cluster and (b) the probability
p2 that once the one end is inside the cluster, the stick will point to a range of directions
such that the other end is outside the cluster. The probability of penetration then is
Pp = p1 � p2. Integration of Pp over all possible orientation of r gives us the total
probability of dissimilar ends which then can be related to the correlation length.

For r positioned such that one end (say A) is inside the cluster andthe other end
(say B) is outside the cluster, A must be within some distanceh < r from the surface
of the cluster S. For a range of valuesh to h + dh the area covered byr is Sdh. (See
Fig. A.1) Thus:
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Figure A.1: Calculation of probability of dissimilar ends.

p1 =
Sdh
V

(A.1)

The fraction of the angle swept by the stick as we move the B endof the stick while
keeping the A end �xed and the two ends remain in the di�erent environment is:

p2 =
2r cos� 1(h=r)

2�r
(A.2)

The probability of penetration is:

Pp = p1 � p2 =
Sdh
V

2r cos� 1(h=r)
2�r

=
Sdh
V

cos� 1(h=r) (A.3)

The probability of dissimilar ends is then found by integrating Pp over all possible
orientation of the stick:

Pd =
2Sr
�V

Z 1

0
cos� 1(x)dx

=
2Sr
�V

(A.4)

where x = h=R
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The probability of dissimilar ends Pd is related to correlation function  (r ) as

Pd = 2 � (1 � � )(1 �  (r ))

The correlation function then becomes

 (r ) = 1 �
2Sr

�V 2� (1 � � )
(A.5)

Taking the derivative of  (r ),

 0(r ) = �
S

�V � (1 � � )
; (A.6)

and setting r = 0, we have

S
V

= � �� (1 � � ) 0(0): (A.7)

Now we have to deal with the fact that the cluster is on discrete square lattice.
What this means is that the surface of the cluster consists oflattice cell with four sides
each (see Fig. A.2). If the diameter of the cluster isD lattice units, and assuming that
the cluster is a circle, the total number of broken bonds on the surfaceS is

Sdiscrete = 4D:

In the case of continuous 2D cluster, we have

Scontinuous = �D:

Therefore:

Scontinuous =
�
4

Sdiscrete ; (A.8)

and

Sdiscrete

V
= � 4� (1 � � ) 0(0): (A.9)

This leads us to the correlation length formula:

� =
4� (1 � � )

Sdiscrete =V
(A.10)
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Figure A.2: Discrete representation of broken bonds.
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APPENDIX B

CONVERGENCE CHECKS

The number of metal layers in our DFT simulation was determined by convergence
checks. We calculatedEads for � = 1=9 and 1=2, for 5, 7, and 9 layers with exactly the
same simulation parameter set-up (energy cuto�,k-points, the thickness of the vacuum
regions, etc.). From Table B.1 we see that increasing the number of metal layers from
5 to 7 changedEads for Bromine by less than 1 meV for � = 1=9 and less than 10 meV
for � = 1=2. Similar observations are also shown in Table B.2 for Chlorine. Increasing
the number of metal layers from 5 to 7, changedEads for Chlorine by less than 2 meV
for � = 1=9 and less than 10 meV for� = 1=2.

We also calculated the surface dipole moments for� = 1=9, and 1=2, for 5, 7, and 9
layers from the above simulations. The convergence check for dipole moments as shown
in Table B.3 and B.4 shows that increasing the number of layers from 7 to 9 did not
change the dipole moment signi�cantly.

We calculated the percent errors, de�ned as follows

PEE =

�
�
�
�
Eads(i ) � Eads(j )

Eads(j )

�
�
�
� � 100%; (B.1)

PEp =

�
�
�
�
p(i ) � p(j )

p(j )

�
�
�
� � 100%: (B.2)

Here, PEE is the percent error for adsorption energiesEads and PEP is the percent
error for surface dipole moments. In our calculationj = 5 represents the slab with 5
layers, and i = 7 ; 9 represent the slabs with 7 and 9 layers, respectively. These percent
errors are also shown in Tables B.1-B.4

From these two convergence checks (Eads and p) we concluded that we need at the
very least 5 layers of metal, and we decided to use 7 layers. Taking the highest value of
Eads(i ) � Eads(i � 2) from 5 to 7 layers, which is 7 meV, we estimate the error barsfor
Eads to be � Eads = � 10 meV and for p to be � p = � 0:01e�A. Error-bar estimates for
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Table B.1: Convergence check for the Bromine adsorption energy (in units of
eV) with respect to the number of metal layers.

BROMINE
Metal Layers Coverage Eads Eads(i ) � Eads(i � 2) PEE

5 1/9 � 0.334187984 |
7 1/9 � 0.333754808 0.0004331 0.13
9 1/9 � 0.339772195 � 0.00601 1.67
5 1/2 � 1.475041628 |
7 1/2 � 1.479772329 0.00473 0.32
9 1/2 � 1.489228380 � 0.00946 0.96

Table B.2: Convergence check for the Chlorine adsorption energy (in units of
eV) with respect to the number of metal layers.

CHLORINE
Layers Coverage Eads Eads(i ) � Eads(i � 2) PEE

5 1/9 � 0.371225625 | |
7 1/9 � 0.370121449 0.001104 0.29
9 1/9 � 0.376717001 � 0.005491 1.48
5 1/2 � 1.642027259 | |
7 1/2 � 1.649943352 � 0.007916 0.48
9 1/2 � 1.730707884 � 0.080765 5.40

� nnn based on � p were then calculated by direct error propagation. Error-bar estimates
for Eads were obtained as those leading to a 10% increase in the� 2 of the two-parameter
�t.
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Table B.3: Convergence check for the Bromine surface dipolemoment (in units
of e�A) with respect to the number of metal layers.

BROMINE
Layers Coverage p p(i ) � p(i � 2) PEp

5 1/9 � 0.241532 | |
7 1/9 � 0.166162 0.075369 31.20
9 1/9 � 0.178799 � 0.012637 25.97
5 1/2 � 0.124252 | |
7 1/2 � 0.118376 0.005876 4.72
9 1/2 � 0.120788 � 0.002412 2.78

Table B.4: Convergence check for the Chlorine surface dipole moment (in units
of e�A) with respect to the number of metal layers

CHLORINE
Layers Coverage p p(i ) � p(i � 2) PEp

5 1/9 � 0.267334 | |
7 1/9 � 0.199436 0.067898 25.39
9 1/9 � 0.209752 � 0.010316 21.54
5 1/2 � 0.148922 |
7 1/2 � 0.155043 � 0.006121 4.11
9 1/2 � 0.151803 0.003239 1.93
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APPENDIX C

THE FACTOR 2 IN EQ. (6.6)

Following Ref. [66], a qualitative explanation for the factor 2 in Eq. (6.12) can be
obtained as follows. Consider an adatom A with induced charge qA , at a distance zA

above the plane surface of a semi-in�nite conducting medium, located at z = 0. The
charge-transfer function, integrated overx and y, is

� � A (z) = � qA � (z) + qA � (z � zA ); (C.1)

where � (z) is the Dirac delta function. This yields the dipole moment,

pA =
Z 1

�1
z� � (z)dz = � qA � 0 + qA zA = qA zA (C.2)

This is the physical dipole created by adatom A. However, theelectrostatic potential
at a point zB , a lateral distance R >> z A from A, is that of the dipole formed by qA

and its image charge� qA at z = � zA ,

UA (zB ; R) = 2 zA qA
zB

4�� 0R3 ; (C.3)

for zB � 0. This is equivalent to the potential of a �ctitious dipole o f magnitude
2zA qA = 2pA , twice the magnitude of the physical dipole in Eq. (C.2).

An adatom B with induced charge qB at zB corresponds to the charge transfer
function

� � B (z) = � qB � (z) + qB � (z � zB ); (C.4)

which gives pB = qB zB .
The potential energy of the pair of adatoms is then
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UAB =
Z + 1

�1
UA (z; R)� � B (z)dz

= � qB UA (0; R) + qB UA (zB ; R)

= 0 +
2zA qA zB qB

4�� 0R3

=
2pA pB

4�� 0R3 ; (C.5)

which is Eq. (6.12). In Ref. [66] it is shown that this result holds in more general
situations as well, such as jellium and crystalline metals.

87



REFERENCES

[1] J. M. Honig. The Solid Gas Interface. Edited by E.A. Flood (Marcel Dekker), New
York, 1967.

[2] F. F. Abraham and G. M. White. J. Appl. Phys., 41:1841, 1970.

[3] G. H. Gilmer and P. Bennema. J. Appl. Phys., 43:1347, 1972.

[4] G. H. Gilmer. J. Crystal Growth, 35:15, 1976.

[5] N. C. Bartelt, W. Theis, and R. M. Tromp. Phys. Rev. B, 54:11741, 1996.

[6] P. A. Rikvold, G. Brown, M. A. Novotny, and A. Wieckowski. Colloids Surf. A,
134:3, 1998.

[7] M. T. M. Koper. J. Electroanal. Chem., 450:189, 1998.

[8] G. Brown, P. A. Rikvold, M. A. Novotny, and A. Wieckowski. J. Electrochem. Soc.,
146:1035, 1999.

[9] B. Lehner, M. Hohage, and P. Zeppenfeld.Surf. Sci., 454:251{255, 2000.

[10] S. J. Mitchell, G. Brown, and P. A. Rikvold. J. Electroanal. Chem., 493:68{74,
2000.

[11] Y. He and E. Borguet. J. Phys. Chem. B, 105:3981, 2001.

[12] B. Lehner, M. Hohage, and P. Zeppenfeld.Chem. Phys. Lett., 336(1-2):123{128,
2001.

[13] S. Wang and P. A. Rikvold. Phys. Rev. B, 65:155406, 2002.

[14] S. J. Mitchell, S. W. Wang, and P. A. Rikvold. Faraday Disc., 121:53{69, 2002.

[15] Lj. Budinski-Petkovic and T. Tosic. Physica A, 329:350{356, 2003.

88



[16] I. Abou Hamad, T. Wandlowski, G. Brown, and P. A. Rikvold . J. Electroanal.
Chem., 554:211{219, 2003.

[17] S. J. Mitchell and M. T. M. Koper. Surf. Sci., 563:169{182, 2004.

[18] I. Abou Hamad, S. J. Mitchell, Th. Wandlowski, P. A. Rikv old, and G. Brown.
Electrochim. Acta, 50:5518, June 2005.

[19] S. Frank, D. E. Roberts, and P. A. Rikvold. J. Chem. Phys, 122:064705, 2005.

[20] S. Frank and P. A. Rikvold. Surf. Sci., 600:2470, 2006.

[21] T. Juwono, I. Abou Hamad, P. A. Rikvold, and S. Wang. J. Electroanal. Chem.,
662:130{136, 2011.

[22] M. Lifshitz and V. V. Slyozov. J. Phys. Chem. Solids, 19:35, 1961.

[23] M. Avrami. J. Chem. Phys, 7:1103, 1939.

[24] M. Avrami. J. Chem. Phys, 8:212, 1940.

[25] M. Avrami. J. Chem. Phys, 9:177, 1941.

[26] D. P. Landau and K. Binder. Monte Carlo Simulation in Statistical Physics. Cam-
bridge University Press, New York, 2005.

[27] C. N. Yang and T. D. Lee. Phys. Rev., 87:404, 1952.

[28] P. Debye, H. R. Anderson, and H. Brumberger.J. Appl. Phys., 28:679{683, 1957.

[29] J. Hoshen and R. Kopelman.Phys. Rev. B, 14:3438, 1976.

[30] D. Stau�er and A. Aharony. Introduction to Percolation Theory . Taylor Francis,
Philadelphia, 1991.

[31] I. R. Tsang and I. J. Tsang. Phys. Rev. E, 60:2684{2698, 1999.

[32] M. E. J. Newman and R. M. Zi�. Phys. Rev. Lett., 85:4104, 2000.

[33] M. J. Lee. Phys. Rev. E, 76:027702, 2007.

[34] M. J. Lee. Phys. Rev. E, 78:031131, 2008.

[35] N. Metropolis, A. W. Rosenbluth, M. N. Rosenbluth, A. H. Teller, and E. Teller.
J. Chem. Phys, 21:1087, 1953.

89



[36] K. Binder and D. W. Heerman. Monte Carlo Simulation in Statistical Physics.
Springer-Verlag, New York, 1992.

[37] R. J. Glauber. J. Math. Phys., 4:294, 1963.

[38] A. B. Bortz, M. H. Kalos, and J. L. Lebowitz. J. Comp. Phys., 17(1):10{18, 1975.

[39] H. A. Kramers and G. H. Wannier. Phys. Rev., 60:252, 1941.

[40] K. Kawasaki. Phys. Rev., 145:224, 1966.

[41] D. W. Heerman. Computational Physics. Edited by R.D. Kenway and G. . Pawley
(Edinburg University Press), Edinburg, 1987.

[42] R. A. Ramos, P. A. Rikvold, and M. A. Novotny. Phys. Rev. B, 59:9053, 1999.

[43] L. Onsager.Phys. Rev., 65(3/4):117{149, 1944.

[44] K. Ataka, G. Nishina, W. Cai, S. Sun, and M Osawa. Electrochim. Commun.,
2:417, 2000.

[45] M. A. Novotny. In D. Stau�er, editor, Annual Reviews of Computational Physics
IX , page 153. World Scienti�c, 2001.

[46] P. A. Rikvold, H. Tomita, S. Miyashita, and S. W. Sides. Phys. Rev. E, 49:5080,
1994.

[47] P. A. Rikvold, I. Abou Hamad, T. Juwono, D. T. Robb, and M. A. Novotny.
Modern Aspects of Electrochemistry. Edited by M. Schlesinger (Springer-Verlag),
Berlin Heidelberg, 2009.

[48] B. M. Ocko, J. X. Wang, and Th. Wandlowski. Phys. Rev. Lett., 79(8):1511, August
1997.

[49] Th. Wandlowski, J .X. Wang, and B .M. Ocko. J. Electroanal. Chem., 500:418,
2001.

[50] K. K. Kleinherbers, E. Janssen, A. Goldmann, and H. Saalfeld. Surf. Sci., 215:394,
1989.

[51] T. Kramar, D. Vogtenhuber, R. Podloucky, and A. Neckel. Electrochim. Acta,
40:43, 1995.

[52] T. J. Stasevich, T. L. Einstein, and S. Stolbov. Phys. Rev. B, 73:115426, 2006.

[53] Y. Tiwary and K. A. Fichthorn. Phys. Rev. B, 75:235451, 2002.

90



[54] D. J. Liu. Phys. Rev. B, 81:035415, 2010.

[55] P. Hohenberg and W. Kohn. Phys. Rev., 136:864, 1964.

[56] W. Kohn and L. J. Sham. Phys. Rev., 140:A1133, 1965.

[57] G. Kresse and J. Furthm•uller. Comp. Mat. Sci, 6:15, 1996.

[58] G. Kresse and J. Furthm•uller. Phys. Rev. B, 54:11169, 1996.

[59] G. Kresse and J. Hafner.Phys. Rev. B, 47:558, 1993.

[60] J. P. Perdew and Y. Wang. Phys. Rev. B, 45:13244, 1992.

[61] J. P. Perdew, J. A. Chevary, S. H. Vosko, K. A. Jackson, M.R. Pederson, D. J.
Singh, and C. Fiolhais. Phys. Rev. B, 46:6671, 1992.

[62] D. Vanderbilt. Phys. Rev. B, 41:7892, 1990.

[63] G. Kresse and J. Hafner.J. Phys.: Condens. Matter, 6:8245, 1994.

[64] H.J. Monkhorst and J.D. Pack. Phys. Rev. B, 13:5188, 1976.

[65] T. C. Leung, C. L. Kao, W. S. Su, Y. J. Feng, and C. T. Chan. Phys. Rev. B,
68:195408, 2003.

[66] W. Kohn and K.H. Lau. Sol. State Commun., 18:553, 1976.

91



BIOGRAPHICAL SKETCH

Tjipto Juwono

Tjipto Juwono completed his Masters degree in Theoretical Nuclear Physics in 2000 at
University of Indonesia. He completed his Graduate Study in2012 at Departement of
Physics, Florida State University.

His professional career includes: teaching math and physics, writing math and
physics textbooks, and science editor.

92


	The Florida State University
	DigiNole Commons
	4-8-2012


