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ABSTRACT

The subject of this doctoral dissertation is to study the equations of state of nuclear and
neutron-star matter. We tackle this problem by employing several models of the relativistic
effective interactions. The relativistic effective interactions and their applications to the
ground-state properties of medium to heavy nuclei have enjoyed enormous success for the
past three decades. With just a few model parameters calibrated to the ground state prop-
erties of the closed-shell nuclei, these models exhibit and encode a great amount of physics.
However, theses models are untested far away from their narrow window of applicability.
In particular, while these models tend to agree on the saturation properties of symmetric
nuclear matter, they largely disagree on its density and isospin dependence, especially in the
region of high densities and large proton-neutron asymmetries. In order to better under-
stand the properties of nuclear matter at these extreme regions of isospin asymmetry and
high-densities, we will apply these models to predict several neutron star properties. Since
the matter in the neutron stars are very neutron-rich, while the density of matter in neutron
stars spans over a wide range of magnitudes, these compact objects remain unique laborato-
ries for probing the equation of state of neutron-rich matter under conditions unattainable
by terrestrial experiments. Thus it is expected that at least the following neutron star prop-
erties must be sensitive to the underlying equation of state: maximum mass, typical radii,
moments of inertia (both total and crustal), redshifts, and cooling mechanism. We present
numerical solutions and in some cases also analytical solutions to each of the properties
above.

In particular, the sensitivity of the stellar moment of inertia to the neutron-star matter
equation of state is examined using accurately-calibrated relativistic mean-field models. We
probe this sensitivity by tuning both the density dependence of the symmetry energy and

the high density component of the equation of state, properties that are at present poorly
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constrained by existing laboratory data. Particularly attractive is the study of the fraction of
the moment of inertia contained in the solid crust. Analytic treatments of the crustal moment
of inertia reveal a high sensitivity to the transition pressure at the core-crust interface.

Motivated by a recent astrophysical measurement of the pressure of cold matter above
nuclear-matter saturation density, we compute the equation of state of neutron-star matter
using various accurately calibrated relativistic models. We found the predictions of these
models to be in fairly good agreement with the measured equation of state. In the effort to
explain the observational data we introduce a new relativistic effective interaction that is
simultaneously constrained by the properties of finite nuclei, their collective excitations, and
neutron-star properties. By adjusting two of the empirical parameters of the theory, one can
efficiently tune the neutron skin thickness of 2*Pb and the maximum neutron star mass.
The new effective interaction is moderately soft at intermediate densities and relatively stiff
at high densities. It is fitted to a neutron skin thickness in 2Pb of only R, — R, = 0.16 fm
and a moderately large maximum neutron star mass of 1.94 Mgy, consistent with the latest
observation.

Last, theoretical uncertainties in the predictions of relativistic mean-field models are
estimated using a chi-square minimization procedure that is implemented by studying the
small oscillations around the chi-square minimum. It is shown that such statistical analysis
provides access to a wealth of information that would normally remain hidden. The power
of covariance analysis is illustrated in two relativistic mean field models. By performing this
analysis one obtains meaningful theoretical uncertainties for both model parameters and
predicted observables. Moreover, it is shown, how covariance analysis is able to establish

robust correlations between physical observables.
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CHAPTER 1

INTRODUCTION

The quest for the Holy Grail of Nuclear Physics, the equation of state of hadronic matter,
remains an area of intense activity that cuts across a variety of disciplines. Indeed, the limits
of nuclear existence, the dynamics of heavy-ion collisions, the structure of neutron stars, and
the collapse of massive stellar cores all depend sensitively on the equation of state. With the
advent and commissioning of sophisticated new radioactive beam facilities (HIE-ISOLDE
at CERN, SPIRAL-2 at GANIL, TRIUMF in Canada, RIKEN in Japan, FAIR at GSI,
and FRIB at MSU), powerful heavy-ion colliders (RHIC at Brookhaven National Lab, LHC
at CERN), telescopes operating at a variety of wavelengths (Hubble, Spitzer and Chandra
space telescopes at NASA, Subaru telescope in Japan), and more sensitive gravitational wave
detectors (LIGO, Virgo, Advanced LIGO), one will be able to probe the nuclear dynamics
over a wide range of nucleon asymmetries, temperatures, and densities. In this dissertation
work, we focus on the dynamics of cold matter at extreme densities and isospin asymmetries
(both small and large), and for this case neutron stars remain the tool of choice [1, 2, 3].
The densities inside neutron stars span orders of magnitudes ranging from a few g cm™3
at the surface to more than 10 g cm™3 at their deep interior [{]. The pressure at the
center of neutron stars is about 1036 dyn cm ™2, which is 30 orders of magnitude larger than
the atmospheric pressure on the surface of the Earth. Being very compact (with a typical
radius of ~ 10 km and mass of ~ 1.4 solar masses) and extremely dense, neutron stars are
unique laboratories for probing the equation of state of neutron-rich matter under conditions
unattainable by terrestrial experiments.

The structure of neutron stars sensitively depends on the equation of state. The physics

used to calculate the equation of state changes as one moves from the surface of the neutron



star towards its center. At low densities atomic and plasma physics play an important role,
while at the deep interior the nuclear many-body physics becomes essential. The physics
at the very center of the neutron stars is still not well known and remains one of the main
mysteries even today. We mainly concentrate on the study of the equations of state that
describe the core of the neutron stars. At present, the existing realistic equations of state
for neutron-star matter can be categorized into three classes: (1) non-relativistic many
body calculations based on two or three nucleon interactions; (2) relativistic mean-field
approximations; (3) the equations of state of strange quark matter. The equations of state
from the first and second class can be used to calculate the structure of neutron stars—stars
that are bound by the gravitational pull. It has been suggested that the strange quark matter
could be the ultimate ground state of matter [5, 6], i.e. the binding energy for such matter
is lower than that of ®*Fe at zero temperature. If this is the case, at high densities the whole
star would be virtually converted into strange quark matter through a phase transition.
The strange stars formed this way would be self-bound as opposed to the gravitationally
bound neutron stars. However in most cases, based on their observational characteristics like
their masses, radii, moment of inertia, etc., strange stars are indistinguishable from neutron
stars. The third class of the equations of state are motivated based on these assumptions.
Moreover, there are several unrealistic polytropic equations of state that are widely used
to study the effect of the gravitational field on the electrodynamic processes and on the
structure of the neutron stars. Although there are numerous equations of state in the
literature underlying each of the classes mentioned above, our main focus will be on the
relativistic mean field approximations [7, &, 9, 10]. Our equations of state are based on
realistic nucleon-nucleon interactions mediated through meson fields. We do not employ
any exotic degrees of freedom such as hyperons, kaon condensates, or quark matter, whose
presence in dense matter is currently unknown.

The two most important properties of neutron stars—their typical radiz and mazimum
masses—are still not well known [3, 11, 12, 13]. The neutron star radius is sensitive to the
equation of state near the saturation density. In particular, the radius is very sensitive to the
density dependence of the symmetry energy, a property of the nuclear matter that will be one

of the central points of the discussions in this dissertation. Despite this sensitivity, the radius



is the least constrained property of the neutron star. Current observational precision for the
typical neutron star radii lies in the range of 10 to 12 km [11, 12|. On the other hand, the
maximumn mass of the neutron star is sensitive to the high density domain of the equation of
state. The notion of the maximum mass comes from the application of general relativity and
has no counterpart in Newtonian gravity. At the moment of this writing, the most precise
measurement for the maximum mass of a neutron star is 1.9740.04 solar masses [13]. Current
accurately-calibrated relativistic mean-field models |14, 15] describe well the binding energies
and charge radii of medium to heavy nuclei, however their predictions for the maximum
neutron star mass differ by up to one solar mass [16]. The large difference in the prediction
is a manifestation of the stiffness of the equations of state at high densities. As we will
show in this work, the maximum mass of the neutron star is controlled by the stiffness
of the equation of state. In Fig. 1.1, we provide the representative set of neutron stars
whose masses have been measured with high accuracy. However, for the same neutron stars
the radii are not well known. One of the other most important prediction of the equation
of state is the mass-radius relation of neutron stars. A set of the equations of state used
to generate such a relation is shown in Fig. 1.2. As it is evident from this figure, an
accurate, simultaneous mass and radius measurement from even a single neutron star would
significantly constrain the equation of state [17].

In addition to the masses and radii, computing the stellar moment of inertia of the
neutron stars is also very interesting. This is due to the fact that the moment of inertia
scales as the mass of the neutron star times the square of its radius. A full general relativistic
expression for the moment of inertia is complicated and it is discussed in detail in Chapter
4. This feature makes it particularly sensitive to the density dependence of the symmetry
energy. While the ground state masses and charge radii constrain the symmetry energy near
the saturation density, its density dependence is very poorly constrained. Understanding
the density dependence of the symmetry energy is of topical interest in both nuclear physics
and nuclear astrophysics. The symmetry energy determines the increase in the energy of
nuclear matter as one moves away from equal number of protons and neutrons. From the
nuclear context, the symmetry energy should play an important role in the properties of

nuclei far from the valley of stability. From the astrophysical context, it is the equation of
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Figure 1.1: The list of most precise neutron star masses measured by different
sources. The dashed line corresponds to the average mass for this population of
neutron stars.

state of neutron-rich matter that describes the dynamics of core collapse supernovae and
the structure of neutron stars. For example, the density slope of the symmetry energy at
saturation determines the pressure of pure neutron matter. And it is precisely this pressure
that provides the necessary support against gravitational collapse of the neutron star. The
moment of inertia is therefore expected to be very sensitive to the symmetry energy. The
discovery of binary pulsars in tight orbits, such as the recently discovered pulsars PSR
J0737-3039 |18, 19], provides an opportunity to measure the moment of inertia with a good
accuracy through timing measurements of the spin-orbit coupling.

Although the geometry of spacetime is strongly curved in the interior of neutron stars,
due to the equivalence principle we are guaranteed to have a Lorentz invariant frame at
any given spacetime point [20]. Moreover, a relative change of the metric tensor through
the entire region of a typical neutron star is in the order of ¢g11(r = R)/g11(r = 0) ~ 1.7.

However the star is 18 orders of magnitude larger than the dimension of its constituent
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Figure 1.2: The mass-radius relations from a representative set of the equations
of state taken from [3]. The black curves correspond to neutron stars, while the
green curves correspond to self-bound quark stars. For a detailed description of
the equations of state, refer to [3].

particles. Therefore the relative change in the metric over the average spacing of baryons is
very small (~ 10719) [20]. Thus, the nuclear matter at any given density in the star may be
treated as infinite nuclear matter. The approximate Lorentz frame established this way is
known as the bulk approximation, where the energy associated with boundaries is neglected.

Using the equation of state of degenerate Fermi gas for neutrons, Tolman, Oppenheimer
and Volkoff (TOV) |21, 22| were the first to compute the structure of neutron stars in 1939.
They obtained a limiting maximum neutron star mass of ~ 0.70 solar mass, which is far
smaller than the current measured maximum neutron star mass. Of course, the equation of
state used by TOV was unrealistic. The correct equation of state should involve all hadronic
degrees of freedom. Moreover, a Lorentz covariant theory of nuclear matter is needed to
compute the structure of neutron stars. Historically, such Lorentz covariant field theories
were first proposed by Johnson and Teller [23], and improved by Duerr [24] in the 1950s,
while further developed in a seminal paper by Walecka [7] in the 1970s. In these original
field theories the interaction between nucleons were mediated by two isoscalar mesons: the

scalar sigma meson and the vector omega meson. Although the original relativistic nuclear



matter theory of Walecka could not describe the properties of nuclear matter as well as
non-relativistic nuclear matter in early 1970s, during the past several decades relativistic
theories have been vastly improved [3, 10, 14, 15, 16]. In addition to being automatically
causal at high densities (which is not always the case in non-relativistic nuclear equations
of state), these theories also describe the saturation properties of nuclear matter. Moreover,
the spin-orbit interaction arises as a pure relativistic phenomenon. The motivation of the

relativistic field theories are further discussed in Chapter 2.

This dissertation is organized as follows. It consists of 7 chapters, 2 appendices and a

list of 138 references. It is laid out on 137 pages with 28 figures and 19 tables.

Chapter 2 is devoted to the discussion of relativistic mean-field theories. In Section 2.1,
we discuss the motivations for the importance of the relativistic mean-field models in nuclear
physics. By introducing a particular form of the Lagrangian density that is widely used at
the present time, we discuss the mean-field approximation in detail. In Section 2.2, the
nuclear equations of state will be derived and the properties of infinite nuclear matter will
be discussed. In particular, we will derive an analytic expression for the incompressibility
coeflicient of the symmetric nuclear matter at saturation. Applications of relativistic mean-

field models to symmetric and asymmetric nuclear matter are presented in Section 2.3.

In Chapter 3, we outline the current knowledge of the structure of neutron stars. Then
we present the equations of stellar structure, including the famous Tolman-Oppenheimer-
Volkoff (TOV) equation. Following the TOV equation, we introduce the general relativistic
expression for the moment of inertia of uniformly rotating, axially symmetric neutron stars
in the slow-rotation approximation. In Section 3.3, we give an overview of the current
observational status of neutron star properties in detail. In Section 3.4 we obtain the analytic
expression for the crustal moment of inertia. The state of matter in a neutron star is
determined by the condition of hydrostatic beta equilibrium. This condition is discussed in
detail in Section 3.5. Another important section of this chapter is the discussion of the direct
Urca process that is responsible for the cooling of neutron stars. We derive the expression for
the threshold proton fraction necessary for this process. The chapter is closed by introducing

the equation of state of neutron-star matter in relativistic-mean field models.



In Chapter 4, we study the sensitivity of the moment of inertia to the underlying equation
of state. Using relativistic mean-field models we generate several families of the equations
of state and show that the moment of inertia is sensitive only to the equation of state. We
show that the knowledge of the moment of inertia with a 10% percent accuracy discriminates
between equations of state that are stiff or soft at high densities. Its sensitivity to the
symmetry energy is also discussed in detail. An important section of this chapter is the
calculation of the crustal moment of inertia. By obtaining analytic expression for the crustal
moment of inertia we will show that it is sensitive to a fundamental nuclear observable—
the transition pressure. The correlation between the transition pressure and other nuclear
observables, such as the transition density and neutron skin of lead are discussed in detail.

In Chapter 5, we introduce a new relativistic effective interaction that is simultaneously
constrained by the nuclear binding energies, charge radii, giant resonances, and neutron
star properties. With a detailed overview of state of art relativistic mean-field models, and
most updated measurements of neutron star properties, we discuss the motivation for the
development of the new interaction. Dubbed as IU-FSU, this relativistic effective interaction
reproduces the maximum mass of neutron stars consistent with the latest observation. This
new interaction is soft at intermediate densities and is stiff at high densities. We devote a
full section to the discussion of giant resonances and the incompressibility of neutron-rich
matter. In particular, we discuss why some relativistic-mean field models are not able to
reproduce the centroid energies of giant monopole resonances. Further, the equations of
state from several relativistic mean-field models will be compared with different theoretical
studies.

Chapter 6 explores a new area in the calculations of theoretical uncertainties in the model
predictions by implementing a y2-minimization procedure. Models fitted to experimental or
observational data are often used to extrapolate to the extremes regions of density and isospin
asymmetry, therefore it is very important to quantify model uncertainties in theoretical
nuclear physics and astrophysics. In Section 6.2.1, we introduce a general class of relativistic
mean-field models that are rooted in effective-field-theory concepts. In Section 6.2.2, we
present a self-contained derivation of the ideas and formulas required to implement the

covariance and correlation analysis. Although the idea of covariance analysis discussed in



this chapter is very general, we concentrate on the relativistic mean-field models and estimate
the meaningful theoretical uncertainties. To illustrate the ideas of covariance analysis we
use two examples of relativistic mean-field models.

Finally, in Chapter 7 we summarize the main findings of this dissertation work. Through-
out the dissertation, we use the system of units in which A = 1 = ¢, Greek indices run from

0 to 3, and isovector fields are denoted using boldface letters.



CHAPTER 2

RELATIVISTIC MEAN-FIELD THEORY

2.1 General Formalism

2.1.1 Lagrangian Density

Relativistic mean field (RMF) models and their applications to the ground-state proper-
ties of medium to heavy nuclei have enjoyed enormous success during the past three decades
[7,8,9,10, 14,15, 16, 25, 26, 27, 28, 29, 30|. Having only a handful of model parameters that
are calibrated to a few ground state properties of a representative set of closed-shell nuclei,
these highly economical descriptions encode a great amount of physics. Historically, tradi-
tional nuclear physics is based on non-relativistic quantum mechanics, in which the dynamics
is determined by the nucleon-nucleon potential. Despite the success of the nonrelativistic
many-body theories, this approach is inadequate in fully understanding many nuclear phe-
nomena. Since the nuclear strong force is mediated by mesons, a more consistent theory of
nuclear structure should therefore involve an explicit description of the baryon and meson
degrees of freedom in the nuclear system. To maintain the Lorentz transformation properties
of the interaction it is also necessary to study the nuclear systems in a relativistic framework.
For example, this approach automatically preserves the causality in the propagation of sig-
nals in the nuclear medium, which may not be the case in the non-relativistic models. This
consideration is very important in the astrophysical applications, where one works at the
extreme region of high densities. Since the nuclear binding energy is very small compared
to the mass of nucleons, ey/M = 0.02 it is argued that the relativistic effects are not very
important and can be considered only as corrections to the nuclear structure calculations.

However, it turns out that the small value of the binding energy arises from the cancelation



of the large Lorentz scalar and four-vector potentials, which are of the order of the mass of
nucleon even at the regular nuclear densities. Moreover, the addition of the the spin-orbit
interaction term in the non-relativistic frameworks is also artificial, since it is known to be
a purely relativistic phenomena. The strong nuclear spin-orbit interaction arises from the
addition of these Lorentz scalar and vector potentials |10, 31|. Thus, it is necessary and very
important to study the nuclear systems in the relativistic frame. The consistent framework
to describe the relativistic many-body problem is therefore the relativistic quantum field

theory that is based on local, Lorentz invariant Lagrangian density
L=Lo+ Lint , (2.1)

Throughout this work, we will employ the Lagrangian of [15]. That is,

_ 1 1
Lo= Y (iy"0, — M)y + 3 (0,00" ¢ — mZ¢?) + §m3VMV“ —
1 , 1 1 , 1 .
— B + imf,bu~b“ =V V" = b B (2.2)
P _ 9p_ . € wl o
E'mt 7/1 |:gs¢ (gvvu + 2 T b“ + 2(1 + TS)AH) Y :| ¢

A
—% (950)” — 7 (9:0)" + % (g2V. Vi) +

+Ay (VuVH) (goby - b*) (2.3)

The Lagrangian above includes an isodoublet nucleon field

b= ( i ) (2.4

interacting via the exchange of a scalar-isoscalar meson field (¢ for the o-meson), a vector-
isoscalar meson field (V# for the w-meson), a vector-isovector meson field (b* for the p-

meson), and a photon field (A#). The various tensor fields are defined as follows:

Fo = 0,A,— 0,4, (2.5)
Ve = 0,V — 0,V , (2.6)
b, = O,b,—d,b, . (2.7)

Each of these meson exchange Yukawa couplings (gs, gv, gp) are responsible for the particular
type of interaction: scalar-isoscalar ¢ meson field is responsible for the intermediate attrac-

tive interaction among nucleons, vector-isoscalar V# field is responsible for the short range
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repulsive interaction, and vector-isovector b* field parameterizes the isospin dependence.
In addition to the meson-nucleon interactions, this Lagrangian is supplemented with higher
order non-linear meson self interactions. The inclusion of isoscalar meson self-interactions
(through k, A, and () are used to soften the equation of state of symmetric nuclear matter,
while the mixed isoscalar-isovector coupling (A,) modifies the density dependence of the
symmetry energy [15, 32]. While power counting suggests that other meson coupling terms
could be equally important, their phenomenological impact has been shown to be small [16],
so they have not been considered in this work. A detailed analysis of the role of each term

in this Lagrangian will be discussed in next sections.

2.1.2 Mean-Field Approximation

Using Lagrange’s equations of motion
0 oL oL
_ =0 2.8
o ) .

where ¢; are the generalized coordinates, one can obtain the equations of motion for the

meson fields,

_ K by .
(0u0" +m) & = gt — S gl6” — Zglo” (29)
VM +m2VY = g hy"y — ggé (V,VH) VY =2, (g2b, - b*) g2V¥ , (2.10)
v v (T v v
9, D" +m2bY = g, (57 )w —2A, (2V, V") g2b" . (2.11)

Similarly, one can obtain the equation of motion for baryon fields, which is known as the
Dirac equation:
[7“ (i@u — gV — %r - bﬂ) — (M - gs¢)} b=0. (2.12)
The equations of motion described above are non-linear quantum field equations. Un-
like other quantum field theories, such as QCD, the coupling constants for the effective
Lagrangian are not small, hence perturbative approach is not relevant. Therefore, the exact
solution of the equations of motion is very complicated. However, at medium and high
baryon densities the scalar and vector meson field operators can be replaced by their expec-
tation values [10, 20, 31, 33]. Then one can regard meson fields as the classical condensed

fields in which the baryons move. Note that the baryon fields, however, remain as operators.
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The sole remnant of quantum behavior is therefore in the treatment of the nucleon field
which emerges from a solution to the Dirac equation in the presence of appropriate scalar
and vector potentials [10, 29].

For a static, spherically symmetric system this implies

o(x
VE(z Vi (z)) = ¢"Vo(r) |
bl (z)) = g"8isbo(r) |

Al (z)) = "0 Ao(r)

bo
—
e

n
b; (

(
(

b
—
ot

AH

T

) {
) {
) {
) {

where we used x = r. Thus, we consider only the ground state expectation values of the
meson field operators. Similarly, the baryon sources that are coupled to meson fields are

also replaced by their normal ordered expectation values in the mean-field ground state

Y1 — (1Y :) = pg (2.17)
Pytap — (s pytap 2y = 6*0pp (2.18)
Py Tath — ( pyirat ) = 6M00a3p3 (2.19)

where ps is the scalar number density, pg = pp + pn, is the baryon number density, and
p3 = pp — pn- Within this context of the mean-field approzimation, the field equations may
now be solved exactly.

Note that we will mostly be considering uniform systems of infinite nuclear matter, in
this work. This type of hypothetical nuclear matter is an idealization that however has very
definite properties related to finite nuclei. Moreover, the infinite nuclear matter is applicable
to the study of neutron stars, which is the main purpose of this work. For such uniform
infinite systems the meson field operators are constants independent of z,. In addition, we
will also neglect the contribution from the photon field A,. In general, it is very important
to consider all these in studying the properties of finite nuclei. However, since the Coulomb
forces are much stronger than the gravitational field, neutron stars are considered to be
charge neutral objects [20]. Therefore, in this treatment of infinite nuclear matter, the

contribution from the photon fields will be also ignored.
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The relativistic mean-field Lagrangian density then simplifies to

- /. T "
L = 9 (170 = 9:1°Vo = 90" b — M*) ¥ =

1 1 1 K
- §m§¢3 + 57713‘/02 + §m,2;b(2) — 3 (gs%0)° —
A ¢
T (gs¢00)* + o (9vVo)* + Ay (gpbo)* (9vV0)” (2.20)

where, M* = M — gs¢y, is known as the effective nucleon mass.

The equations of motion (2.9-2.11) in the RMF then takes the following form:

1 K A

Py + -P2 + ZP3 = 2.21
Cg 0 + 2 0 + 6 0 pS bl ( )
1 ¢

EWO + 2A RAW, + gwg’ =B, (2.22)
1 1

— Ry + 20, Wi Ry = ~ps , (2.23)
c 2

where the following definitions have been introduced: ®¢ = gs¢o, Wo = g,Vo, Ro = g,bo,
and ¢; = ?%1
Performing standard calculations in the Dirac theory |10, 20] we can derive the expres-

sions for the scalar density,

1 [ke M* 1 [he M*
s = — k2dk+/ k2 dk , 2.24
P = 72 /o k2 + M*2 ™ Jo  VEZ+ M2 (2.24)
and for the baryon density,
W+ kg

PB=Pp =g (2.25)

2.2 The Nuclear Equation of State

2.2.1 The Energy-Momentum Tensor

The energy-momentum tensor is defined by

oy oL
Ty,l/ = _gﬂljc + @aal 9 (226)
Oxy,
The Euler-Lagrange’s equations (2.9-2.12) ensure that this tensor is conserved:
0", =0. (2.27)
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Substituting the (2.20) into (2.26) we find

- 1 1 1
(Tuu)RMF = Z?[)’y#@,ﬂ/) - {2m\2/VO2 + imzbg - §m§¢% -

K

I (geb0)® — 3 (asd0) 4 (V)" + A (90V0)° (g5h0)? }g,w @)

4!

For a uniform system of perfect fluid the energy-momentum tensor is given by |

, 3]
Ty = (€ + P)uyu, — Py (2.29)

where £ is the energy density, P is the pressure, and u, is the four-velocity of the fluid. In
the local rest frame of the fluid, v* = (1,0,0,0), and the energy-momentum tensor can be

written as

(2.30)

oo O M
oo hNyo

0
0
0
P

oy oo

Following standard mean-field (MF) practices, the energy density of the system can be

derived as:

™

& 2 1 i 2 9p
E=— ; kEkdk—FP ; kEkdk+gVVopB+5b0p3+U(¢0,V0,b0), (2.31)

where Ef = Vk? + M*2, kR(k}) is the proton (neutron) Fermi momentum, pg(ps) is the

isoscalar (isovector) baryon density, and U(¢g, Vb, by) is given by the following expression:

1 K A
U(o, Vo,b0) = 5m3d5 + 3;(9560)" + 75 (950)" (2.32)
1 1
oI = S~ SRR~ (e Vo) (gpbo)?

The contribution from each baryon and meson fields can be expressed as following:

E=Ep+En+ErtEutE+Eup, (2.33)
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where

Lok, 9
& = 7r2/0 KB dk + (g Vo bo) (2.34)
1 HE 2 ok
=3[ KB dk+ (.Y = b0 ) pu (2.35)
1 K A
Er = ymid] + ¢ (9s%0)” + o7 (gs0)" (2:36)
1 ¢
Ew = _§m\2/VO - 2 (gv‘/()) ) (237)
1
&= —§m§b§ , (2.38)
Eup = =My (9.V0)” (gpbo)* - (2.39)

The expression for the energy density may be “simplified” by using the classical equations
of motion for the vector fields to express the isoscalar and isovector densities pg and ps in

terms of Vj and bg. One obtains,
1 [ 2 ok I 2

1 A
+ *m ¢0 + = (gs¢0) !(gs¢0)4

C

1
+oomVe + (o) + §mibg + 3 (9v V) (gpb0)? - (2.40)

2

Finally, as the MF approximation is thermodynamically consistent, the pressure of the

system (at zero temperature) may be obtained either from the energy-momentum tensor or

from the energy density and its first derivative with respect to the density [10, 29]. That is,
1 R g I k4
= — dk + — — dk b 2.41
372 0 E* + 372 0 U(¢07Vb7 O) ( )

The relation between the expressions for the energy density (2.40), and the pressure (2.41)
gives us the equation of state of nuclear matter at zero temperature, which is applicable for

neutron stars.

2.2.2 The Properties of Infinite Nuclear Matter

Consider an infinite uniform system of nucleons, where the Coulomb forces are switched
off. This is an idealized system, whose properties are very essential in the study of the

nuclear equations of state. Historically, the notion goes back to Bethe-Weizséicker mass
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formula and the liquid drop model, according to which the energy of a nucleus is related to

its atomic mass number, A, and the proton number, Z:

z: L (N=2)P
A1/3 asym A cee

E(Z,N) = —ayA + asA*® + ac (2.42)

where a, is the volume term, as is the surface term, ac is the Coulomb term, and aasym is
the asymmetry term. In this study we will not go into the details of the liquid drop model,
rather we concentrate on the infinite nuclear matter. The infinite nuclear matter is then
the thermodynamic limit of this model, where Z, N, and V go to infinity. We also turn off
the Coulomb term, ac = 0, and neglect the surface contribution (as there is no surface for
the infinite matter). Introducing the baryon density, proton fraction, and the asymmetry

parameter as following:

A Z N—-Z _ pn—1pp
= =, Y = —, o= = 5 243
PB % D A A Pn + Py ( )
we obtain the following expression for the Bethe-Weizsidcker mass formula:
E(Z,N)/A = —ay + Gaggm@® + . .., (2.44)

The infinite nuclear matter introduced above is incompressible. In general, for a compressible

nuclear matter the total energy per nucleon, E(p, a)/A, can be expanded around o = 0:

(6% 2 (6
E(p,a)/A = Egm1:0VA+(8E%g”%>_ﬂa+;<alﬁg2VA>_Jf+”

= Esnm(p) +S(p)a®+... . (2.45)

The linear term in « vanishes, because of the charge symmetry of nuclear forces. Substituting
a = 0 in the above equation, one can see that Esnwm(p) corresponds to symmetric nuclear
matter. While, the case o = 1 (look at the definition) corresponds to pure neutron matter.

The simplest approximation of the bulk nuclear matter for the heavy nuclei is the sym-
metric nuclear matter, where the number of protons and neutrons are equal. Considering
the mass of nucleons to be the same, M = 939 MeV, one can view neutrons and protons as
one kind of particles with the same Fermi momentum [!]. Then the total baryon density is
just the sum of nucleon (proton and neutron) densities:

2k3

PB
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where kr is the nucleon Fermi momentum. In general, the effect of o # 0 is very small. For
example, in the case of the nucleus of lead 208Pb, this effect is about 4% only: o2 ~ 0.0447.
Therefore, in dealing with the terrestrial nuclei, the symmetric nuclear matter (SNM) is
a very reasonable approximation. On the other hand, the extreme case of pure neutron
matter (aw = 1) is a good approximation of the nuclear matter in the core of neutron stars.
Nevertheless, in the full study of finite nuclei and neutron-star matter, one should treat both
neutrons and protons separately.

One characteristic of symmetric nuclear matter is that it saturates. This means that
there exists a minimum of the total energy per nucleon, where the pressure of the system is
zero. The baryon density at which this minimum occurs is called the saturation density, and
is denoted by pg. The value of the total energy per nucleon at saturation density is called
the binding energy at saturation and is denoted by ¢y. Let us expand the total energy per

nucleon of SNM around the saturation density:

1 1

Esnm(r) = €0 + §K0372 + 6@0933 +..., (2.47)

where z = (p — po)/3po,

0? Esnu 0% (& o (P
Ko =905 (ag = 905 222\ 5 =95 95 \ 52 ; (2.48)
P p=po P=X\P/ L p=po PNP") L p=pg
and
OPE;
Qo = 27p} <353NM> . (2.49)
P p=po

Note that at saturation the first derivative of the total energy per nucleon (i.e., its pressure)
vanishes. The quantity Ky is known as the compression modulus or the incompressibilsty
coefficient of symmetric nuclear matter. It characterizes the curvature of Egny at pg, and is
very important in the study of equations of state. The high values of K correspond to the
stiff equations of state, while the small values correspond to the so called soft equation of
state. In the next sections, we will discuss each of these cases in details. Current estimation

of the values of these bulk observables are known to be

po =~ 0.16 fm 3 (2.50)
€0 ~ —16 MeV | (2.51)
Ky ~ 230 MeV . (2.52)
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The values of pg and €y can be found, for example, by fitting the masses of large number
of nuclear isotopes to the liquid drop model [35, 36]. The value of the incompressibility
coefficient can be obtained from measuring the giant monopole resonance in nuclei (it is a
collective excitation that corresponds to the radial mode) [37, 38]. The uncertainties in its
extraction from the experiments however are not free from ambiguities [39].

The quantity S(p) in the equation (2.45) is known as the symmetry energy. The sym-
metry energy describes how the energy of nuclear matter rises as one moves away from the
equal number of neutrons and protons. This quantity is very important in the study of
neutron-rich nuclei. To a good approximation, the symmetry energy can be expressed as

the difference between the energies of PNM and SNM:

S(p) = Epnm(p) — Esnm(p) - (2.53)

At present the density dependence of the symmetry energy is largely unknown [40, 41, 42, 13].
In this study we will be mostly concentrating on this quantity. Let us expand the symmetry

energy around the saturation density:
1 2
S(z)=J+ Lz + iKsymm +..., (2.54)

where J is the value of the symmetry energy at saturation,

2 2
=1 <a§> _ 1 <5i> , (2.55)
2 apS p=fixed p3=0 2p da p=fixed

a=0
L is the density slope of the symmetry energy,
oS
L=3 (pﬁ(p)> , (2.56)
P/ p=po
and Ky defines the curvature of the symmetry energy:

2825(0)] .
9p? p=po

Keym =9 |:p (2.57)

The coefficients L and Ky characterize the density dependence of the nuclear symmetry
energy around normal nuclear density pg, and thus carry important information on the
properties of nuclear symmetry energy at both high and low densities [14].

Another important property of the nuclear matter is the nucleon effective mass, M* =

M — gs¢p. Its value at saturation is one of the least unknown bulk parameters. The RMF
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models predict M*(pg) ~ 0.6M for the value of the nucleon effective mass at saturation,
where M is the nucleon mass. Rewriting the equation of motion (2.21) in terms of M™*, we
obtain a transcendental self-consistency equation for the nucleon effective mass:

M* = M + 2 [’; (M—M*)2+2(M—M*)3—ps} , (2.58)
where the expression for the scalar density is provided in the equation (2.24). The integral

in the scalar density can be calculated analytically:

pS - 27T2

A2 (2.59)

kp EP* kn En*
k§E§*+kgEg*—M*21n<[F+ [k + ﬂ)

2.2.3 Constraining the RMF parameters

There are seven unknown free parameters (coupling constants) in the Lagrangian density
(2.20):
Cs Cy , Cp ’ )\ i K, C ) AV . (260>

Five of these coupling constants can be determined using the five properties of infinite
nuclear matter: the equilibrium binding energy, €g, the equilibrium density, pg, the nucleon
effective mass at equilibrium, M{, the compression modulus, Ko, and the symmetry energy,
J. To fully determine the model we need, at least, two additional constraints.

The enormously successful NL3 parametrization of the relativistic mean-field [14] has
indeed only five parameters, where { = 0, and A, = 0. This suggests that existing laboratory
data is fairly insensitive to the physics encoded in these two parameters. Indeed, it was found
possible [16] that one can build different RMF models by varying the value of (. Models
tuned this way predict the same observed nuclear matter parameters, yet produce maximum
mass of neutron stars that differ by almost one solar mass. These results indicate that the
only meaningful constraints to the equation of state comes from the observational data on
neutron stars, rather than from existing laboratory data. We will see in the next several
sections that the empirical parameter ¢ provides an efficient tool to control the high-density
component of the equation of state. As we noted above, the density dependence of the
symmetry energy at present is largely unconstrained. The isoscalar-isovector mixing term,
Ay, was introduced to modify the poorly known density dependence of symmetry energy

[30]. The inclusion of Ay does not affect the well-known ground state properties.
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Fixing ¢ and A, at some particular values (usually between 0 < ¢ < 0.06, and 0 < A, <
0.06), one can find algebraic expressions for the coupling constants. Note that to do this we
would first need algebraic expressions for the saturation density and the saturation values
of the binding energy, the effective nucleon mass, and the incompressibility coefficient for
the symmetric nuclear matter. We also need the expression for the symmetry energy at
saturation. Since for symmetric nuclear matter protons and neutrons are indistinguishable
(they have the same mass and Fermi momentum), one can treat them as one component

nucleons. Then the saturation density is

_ 2K

ol (2.61)

Po

where k‘% is the Fermi momentum of the nucleons at saturation. The binding energy at
saturation is simply the total energy per nucleon minus its mass:

Ey &
— 200 gy, 2.62
0T 4, Po (2.62)

The self-consistent expression for the nucleon effective mass, M* was already derived in

(2.58). At saturation it is simply found from the following expression:
A 5 kp + E}
M =M + ¢ [’; (M — M) + o (1~ g — [k:FE{;F — M*In <F]"\ZOF>”
7r
(2.63)
The derivation of the expression for incompressibility coefficient, Ky, requires some tedious,

but straightforward algebra. Here we will provide only some steps. From the definition

(2.48),
Ko=9 <ap> sty <8P> : (2.64)
9P / ppy Po 9P/ p=py

since at saturation the pressure is zero. We use the fact that for the SNM the isovector field

Ry vanishes. Then the expression for pressure (2.41) takes much simpler form:

_ 1 * 2 2 *2 *4 M
P o= [k:FEF <3kF M ) M ln<kF+E;ﬁ +
1 ¢ 1 . K . A N
+ @WOQJrZWé—@(M—M)Q—E(M—M)3—ﬂ(M—M)4. (2.65)

Note that at this point the expressions for M* and meson field Wy still depend on the baryon

density pp (or correspondingly Fermi momentum, kp):

P =P (M* Wy kr) . (2.66)

20



Then the derivative of the pressure with respect to the baryon density can be written as the

sum of three components:

orP  w* [OP oP OM*  OP OWy

— = — 2.67
9p  2kZ |Okp | OM" Okp | OWo Okp (2.67)
Each term in this derivative then can be calculated:
OP _ 2 ks (2.68)
Okp 32 Ef '

In calculating % we use the self-consistency equation (2.63). Straightforward manipulation
gives
oP  2M*k}
OM* — 3m?Er

(2.69)

Taking the derivative of the equation of motion (2.63) with respect to kg, and after some

manipulation we obtain:

oM* _ 2M*k} (2.70)
Okp ~ mEi(A+B)’ '
where
1 A ¥
A:—2+/<;(M—M)+§(M—M)2, (2.71)
B= 1 IM*? + k2 . 2.72
2 n<kF+E1’§>+7r2El’§( + k) (2.72)

Next, it is easy to check that 68—‘;0 = pp. Performing the derivative of the equation of motion
(2.22) with respect to kr one obtains:

oWy 4k2c2
Okp w2 (2+ 2CWE)

(2.73)

Combining all these expressions, and setting pp = po, we finally obtain the expression for

the incompressibility coefficient:

3k2 M:\?  9pp 9p0
Ky = =% _ 0 + ==, 2.74
T By (EOF) Ao+ By G (2.74)
where
L (o

while the index “0” in these expressions stands for the values calculated at saturation density.
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Using the equation of motion for scalar field (2.21) it can be shown that the derivative

of the energy density at saturation will be equal to the Fermi energy, pu:

o€

Since at saturation £/p has a minimum:
aE&/p) 1 (85 5)
0= — (= _Z) . 2.77
dp p\9p p (2.77)

Combining these expressions we obtain a simple formula for the meson field at saturation:
Wo=¢€ — Egp + M . (2.78)

Given the bulk parameters, and employing the equations (2.61), (2.62), and (2.74) we can
now invert them to obtain the values of 2, k, and \. Similarly, using the equation of motion

(2.22) and the expression for the meson field at saturation, (2.78), we can find ¢

= % : (2.79)
po = Ws
Note the value of ¢? will vary as one tunes the empirical parameter (.

In the previous section we have provided with an expression for the bulk symmetry
energy, J. This coefficient can be easily calculated, using the equation of motion (2.23) in
the expression for the energy density:

e

k2 >
J= 4 13 : (2.80)
6 Egp % + 2A, (W)

Given the value of parameter A, and the bulk symmetry energy, now we are able to calculate

the parameter C%'

2.3 Applications

2.3.1 Symmetric Nuclear Matter

In this work we will be using several relativistic mean-field models that have been accu-
rately calibrated to the properties of infinite-nuclear matter (MS) [16], to the ground-state
properties of finite nuclei (NL3) [14], or to both (FSUGold) [15]. Parameter sets for these
three models are listed in Table 2.1 and Table 2.2.
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Table 2.1: Parameter sets for the mean-field models used in the text. The param-
eter k is given in MeV.

Model H 932 93 gﬁ K A ‘ ¢ ‘ Ay ‘
NL3 104.3871 | 165.5854 | 79.6000 | 3.8599 | —0.01591 | 0.00 | 0.00
MS 111.0428 | 216.8998 | 70.5941 | 0.5083 | +0.02772 | 0.06 | 0.00
FSUGoId || 112.1996 | 204.5469 | 138.4701 | 1.4203 | +0.02376 | 0.06 | 0.03

Table 2.2: The o, w, and p meson masses (ms, my, and m,) for each three mean-
field models are given in MeV. The nucleon mass has been fixed at M =939 MeV
in all the models.

‘ Model H Mg ‘ My ‘ m, ‘
NL3 508.194 | 782.501 | 763.000
MS 485.000 | 782.500 | 763.000
FSUGold || 491.500 | 782.500 | 763.000

As an illustration, we use the FSUGold model to calculate the energy per nucleon in
symmetric nuclear matter. The result is given in Fig. 2.1. From the figure one can see that
at high densities the system is unbound, i.e. E/N > M. This is due to the vector repulsion
which is dominated at high densities. At intermediate densities, the attraction force from the
scalar field will dominate and the system saturates. For the FSUGold model this corresponds
to the Fermi momentum of kp = 1.30 fm !, and binding energy of ¢y = —16.30 MeV. The
coupling constants are chosen to reproduce the bulk nuclear parameters: Ko = 230.0 MeV,

M* =0.61 M, and J = 32.59 MeV.

As illustrated in Fig. 2.2, the solution of the self-consistency equation (2.63) for M*
yields a nucleon effective mass that is a decreasing function of density. At low densities it is
close to the value of the nucleon mass, while at ordinary nuclear densities the value of the
effective mass significantly reduces. This is the consequence of large condensed scalar field
®g, which is equal to 366.2 MeV for the FSUGold model at saturation density. This results in
a large attractive contribution to the energy per nucleon. Correspondingly, there is a large
repulsive contribution to E/N from the vector field (Wy = 295.1 MeV for the FSUGold

model). The small nuclear binding energy of ¢g = —16.3 MeV therefore arises from the
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Figure 2.1: Saturation curve for symmetric nuclear matter. The energy per nucleon
is calculated in the FSUGold model discussed in the text [15].

cancelation between the large scalar attraction and vector repulsion. This is a particular

property of the Lorentz structure that is not present in the non-relativistic calculations.

2.3.2 Asymmetric and Pure Neutron Matter

Decreasing the proton fraction Y, we obtain the energy per nucleon which is less bound
at normal nuclear densities (Fig. 2.3). For the FSUGold model the system is unbound at
about Y}, < 0.085. In particular, the energy per nucleon for the pure neutron matter is totally
unbound. This result is due to the symmetry energy that increases as the neutron-proton
asymmetry parameter becomes large.

In Fig. 2.4 we plot the equation of state—the relation between the pressure and the energy
density—of the pure neutron matter within the FSUGold model. At very high densities the
system approaches the causality limit, P = £, which is the stiffest possible equation of state.
A similar equation of state is used in the core of neutron stars that will be discussed in details

in next chapter. The neutron-star matter equation of state, however, is not composed of
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Figure 2.2: The nucleon effective mass as a function of Fermi momentum (or
density) for symmetric nuclear matter. The result is calculated using the FSUGold

model.

neutrons alone, rather includes other degrees of freedom, such as protons, electrons, and

muons.
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Figure 2.3: Saturation curve for different values of the proton fraction Y. For
Y, < 0.085, the system is unbound for all densities in the FSUGold model [15].
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Figure 2.4: Equation of state for pure neutron matter in the FSUGold model [15].
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CHAPTER 3

NEUTRON STARS AND THEIR PROPERTIES

3.1 Structure of Neutron Stars

Neutron stars are compact stellar objects that result from the gravitational collapse of
massive stars during the supernovae event of type I1, type Ib, and type Ic. They have typical
masses of ~ 1.4 My and radii of ~ 10 km. The density inside neutron stars spans many
orders of magnitude and may reach values up to 10 times normal nuclear densities (pg =
2.4-10* g/cm?) in the core. Neutron stars were originally discovered as pulsars (1967) [15],
the fast spinning stellar objects that are observed by their electromagnetic dipole radiation.
The rotation periods of such compact stars are in the range of milliseconds to few seconds.
In addition, neutron stars are the sources of very strong magnetic fields with typical values
of ~ 102 Gauss. Highly magnetized neutron stars, magnetars, have also been observed with
magnetic field of B ~ 10'® Gauss. Depending on their observable characteristics neutron
stars are classified into pulsars, magnetars, X-ray bursters, soft gamma repeaters, etc.

Current theories of neutron stars suggest that one can subdivide the neutron star into
the atmosphere, the outer crust, the inner crust, the outer core and the inner core |1, 20, 51].
A tomographic picture of a neutron star is shown in figure 3.1. The atmosphere of the star
is a thin plasma layer of thickness ~ 10 ¢m, and its dynamics is fully governed by the strong
magnetic field. The knowledge of the radiation physics in the atmosphere is very important
as it contains valuable information on the surface layer compositions and on the masses and
radii of neutron stars.

The outer crust is the region of the star, where the density ranges from p ~ 10* g/cm?

to p ~ 4x 10 g/em3 [16]. The thickness of this region is about ~ 100 meters. The matter in
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Figure 3.1: A schematic picture of a neutron star. While theoretical models predict
the physics of the atmosphere, the crust, and the outer core, the physics of the inner
core still remains a mystery as of today (Image credit: Dany Page)

the outer crust consists of ions, electrons, and nuclei. At these densities, the electrons have
been pressure ionized and move freely throughout the envelope [17]. This pressure is mainly
provided by the degenerate electron gas, which is an ultra-relativistic gas. On the other
hand, at these low nuclear densities the uniform matter is unstable against cluster formation.
Therefore, the nucleons form clusters of %Fe nuclei, which in turn arrange themselves in a
crystalline face-centered-cubic lattice in order to minimize their overall Coulomb repulsion
[18]. This large part of the envelope is solidified, and therefore is known as crust. As density
increases, the electrons’ Fermi energy also increases, and they are captured by the protons
through an inverse beta reaction. The excess energy will be carried out by neutrinos, while
the nuclei become more neutron-rich. In Chapter 2 we have discussed the nuclear symmetry
energy, a quantity that imposes penalty on the system as it departs from the symmetric

nuclear matter. At present, the symmetry energy, hence the nuclear masses with large
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neutron excess in the outer crust, is poorly understood. The outer crust ends when the
neutron-rich nuclei reach the critical density of the neutron drip line, p ~ 4 x 10! g/cm?3.

At this point the nuclei cannot hold any more neutrons: they drip out.

The density of inner crust starts from the neutron drip-line and may reach up to
~ 0.5p9. This region is about one kilometer thick depending on the models of the nuclear
equations of state. As the density keeps increasing, the nuclei experience several phase
transitions due to the competition between long-range Coulomb potential and short-range
nuclear attraction. These phases are known as nuclear pasta phases [19, 50]. At present,
the transition from a highly ordered crystalline phase to a uniform matter remains one of

the main mysteries.

Most of the mass of the neutron star is located in the more dense region known as the
core. Indeed, making up almost 10 % of the size of neutron stars, the crust has only about
2 % of the total mass. On the other hand, the total mass of the neutron star is intimately
related to the equation of state that is governed the core of the star. The cleanest constraint
on the high density equation of state (from 0.5pg to several nuclear saturation density), will
therefore come from the astrophysical measurement of the maximum mass of the neutron
star (or the minimum mass of a black hole as a supernovae remnant). The outer core
is the theoretically known region of the star that is several kilometers thick and occupies
the region of 0.5p9 < p < 2pp. It mainly consists of neutrons, protons, and electrons.
Muons are created when the energy of electrons reach the muon mass threshold. The whole
system in the outer core is in the state of beta equilibrium with electrons and muons. The
deepest region of the star is known as the inner core with p > 2py, and it spans over
several kilometers. The equation of state for this region is very model dependent. Several
hypotheses of the existence of exotic states of new fermion and boson condensates have been
put forward, such as, hyperonization of matter, pion condensation, kaon condensation, and

quark matter.
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3.2 [Equations of Stellar Structure
3.2.1 Tolman-Oppenheimer-Volkoff Equation

One of the characteristic properties of neutron stars is their compactness. The Schwarzschild
gravitational radius for such stars is very close to their own radius. Therefore, the structure
of neutron stars must be studied in a general relativistic framework. The importance of
general relativistic effects are usually characterized by the so-called compactness parameter

that is defined as

R 2R

where vese 18 the escape velocity. For most neutron stars the compactness parameter is of

Ry, 2GM _ (vesc)2 ’ (3.1)

Cc

the order of 0.2 < R;/R < 0.4, while for regular stars, Ry/R < 1. For example, for white
dwarf stars, R;/R ~ 1074, and for the Sun, R,;/R ~ 4.25-107%. On the other extreme, stars
whose radius is smaller or equal to R, are known as black holes, and the region R, is known
as an event horizon. Therefore, neutron stars are the most compact known objects without
the event horizon, which serve as extraordinary laboratories for general relativity, and dense
matter physics. Moreover, neutron stars provide a natural meeting place for nuclear physics
and astrophysics.

In order to maintain stability against gravitational collapse the star should be in hy-
drostatic equilibrium. The hydrostatic configuration of a neutron star is obtained by the
compensation of the strong gravitational pressure (inward from the surface of the neutron
star) and the outward pressure of the nuclear matter. Once the nuclear equation of state is
obtained, one can compute the stellar properties using the framework of general relativity.
For a qualitative analysis one could, in principle, use the Newtonian equation for gravity.
However, quantitatively, Newtonian gravity is insufficient to fully describe the nature of
neutron stars. Indeed, the maximum mass calculated using the Newtonian gravity and the
simplest equation of state (the ideal Fermi gas of neutrons), will give a maximum mass of
a neutron star, which is equal to about 5.6 M. The first general relativistic consideration
by Oppenheimer, Volkoff [22], and Tolman [21] showed that this value could be as low as
0.7Mg. In addition, we will consider several approximate models of neutron-star structure.
For example, the star could be approximated by a stationary, spherically-symmetric configu-

ration. However, most neutron stars are spinning objects (pulsars) and therefore a rotating,
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axially symmetric spacetime metric may be more realistic. In this study, however we will
mostly study slowly rotating neutron stars, where the effect of rotation can be considered
only to the first order [52].

The relation between the spacetime geometry and the properties of matter is given by
the Einstein field equations,

1
R, — ingR =811 , (3-2)

where R, is the Ricci tensor and R = RV, is the Ricci scalar. We treat the neutron star
matter as a perfect fluid (the viscous terms and shear stresses are negligibly small compared
to the pressure).

The cornerstone of our approach is the slow-rotation approximation pioneered by Hartle
and Thorne [52, 53]. We assume that the neutron star is rotating uniformly with a stellar
frequency €2 that is far smaller than the Kepler frequency at the equator. That is,

GM

Q < Qax & =5 (3.3)

The space-time metric for such a uniformly rotating axially symmetric compact object is
given by Boyer-Lindquist coordinate system (¢, r, 6, ¢) which in the slow-rotation approxi-

mation (first order in the angular velocity) [52, 53, 51] can be cast into
ds? = =M dr? + 2 dr? 4 12d0% + 2 sin? 0d¢? — 2w(r)r? sin? Odtde (3.4)

where v(r) and A(r) are the radially varying metric functions governed by

o~ _q _ 2GM(r)

. ) (3.5)
dv(r) _ GM(T) + 473 P(r) ’ (3.6)
dr 742 (1 _ %)
with the boundary condition at the surface of the star, r = R,
v(R) = =A\(R) , (3.7)

and M (r) is the total mass within radius r

M(r) = /0 " urE(r? (3.8)
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In this approximation the pressure gradient inside the spherically symmetric configuration

is then governed by the so-called Tolman-Oppenheimer-Volkoff equation

P, (£0)+ P) (M(r) + 47rP(r)

dr 72 (1 - QGM(T)/T)

: (3.9)

where £(r) is the energy density at r. These equations should be supplemented by an
equation of state, namely, a relation between the pressure P and the energy density &,
P = P(£)). The above equations then form a closed system of equations, that has to be
integrated from the center of the star to the surface with the boundary conditions M (0) = 0
and P(0) = P. . Given boundary conditions the TOV equations may be solved once an
equation of state is supplied. In particular, the stellar radius R and mass M are determined

from the following two conditions: P(R)=0 and M =M (R).

3.2.2 Moment of Inertia

The general relativistic formalism—even in the slow-rotation approximation—is subtle,
primarily due to the dragging of local inertial frames. The expression for the moment
of inertia of an axisymmetric star in hydrostatic equilibrium is derived in great detail in
Refs. |51, 52|, so we only summarize here some of the most important results. For a more
pedagogical discussion one may consult the text by Glendenning [20].

In the slow-rotation (first order in the angular velocity) approximation the moment of
inertia of a uniformly rotating, axially symmetric neutron star is given by the following

expression:

81 i 4 71/(7')“_)(T> <8<T)+P(T‘)) d
3)o O T J1o2GMi)r

where J is the angular momentum,

I

é = r, (3.10)

J = /ng@)\ﬁ—gd?’x , (3.11)

f(”¢) is the Killing vector in the azimuthal direction reflecting axisymmetry, g is the determi-
nant of the metric tensor, v(r) and w(r) are radially-dependent metric functions, and M (r),
E(r), and P(r) are the stellar mass, energy density, and pressure profiles, respectively. Per-
haps the greatest advantage of the slow-rotation approximation is that all the quantities

appearing in Eq. (3.10) may be assumed to remain spherically symmetric.
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As alluded earlier, in the slow-rotation approximation the spherically symmetric metric
functions v(r) and A\(r) remain unchanged from their values obtained in the limit of a non-
rotating, static, and spherically symmetric neutron star. In particular, A(r) was simply

related to the mass profile M(r) by
2) !
gn(r) =20 = (1-26M(r)/r) . (3.12)

Further, v(r) can be determined from solving a first-order differential equation (3.6) or,

equivalently, from evaluating the following integral:

a R (M(z) + 4nz3P(x)
v(r) = %ln (1 — 2R]\4> - G/r 532 (1 - 2GM(x)/;p)> dx . (3.13)

Finally, one must determine the metric function w(r)—the one new ingredient that emerges
from the slow rotation and which has no counterpart in Newtonian gravity. The frequency
w(r) appears as a consequence of the dragging of local inertial frames by the rotating star;
the so-called Lense-Thirring effect. The effective (or relative) frequency w(r) = Q—w(r)
appearing in Eq. (3.10) represents the angular velocity of the fluid as measured in a local
inertial reference frame. In particular, the dimensionless relative frequency w(r)=w(r)/Q

satisfies the following second-order differential equation:

where
J(r) = e~ N Z {i_”(” 1—2GM(r)/r i: i g (3.15)
Note that w(r) is subject to the following two boundary conditions:
J'(0)=0, (3.16a)
B(R) + ?&’(R) _1. (3.16b)

Also note that in the slow-rotation approximation the moment of inertia does not depend on
the stellar frequency €). In practice, one chooses an arbitrary value for the central frequency

we=w(0) and numerically integrates Eq. (3.14) up to the edge of the star. In general, the

boundary condition at the surface [Eq. (3.16b)] will not be satisfied for an arbitrary choice of
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We, 80 one must rescale the function and its derivative by an appropriate constant to correct
for the mismatch.

The procedure described above provides all the necessary steps to compute the integrand
in Eq. (3.10). The moment of inertia is then obtained by performing the one remaining
integral using standard numerical techniques. Having solved for both w(r) and I, one could

check the consistency of the formalism by ensuring that the following equation is satisfied:

(3.17)

3.3 Measurement of the Neutron Star Observables

Presently, the density slope of the symmetry energy at saturation is known with very
large error-bars, L ~ 60 + 30 MeV. Various nuclear models predict different values of the
density slope at high densities that are even more diverse from its saturation value. This
results in the density dependence of the symmetry energy that is totally unconstrained in
the intermediate and high densities. It is shown that the density slope is highly correlated
with the neutron radius of heavy nuclei (See Ref. [55] and references therein). Thus the
measurement of the neutron radius of 2%Pb in PREx, for example, could significantly con-
strain the density dependence of the symmetry energy, on terrestrial grounds. On the other
hand, the radius of a neutron star is highly correlated with the neutron radius of heavy
nuclei. Although they differ by 18 orders of magnitude, it is not surprising that they should
be well correlated, since both depend on the same microphysics: the equation of state of
neutron-rich matter.

The observational measurement of neutron star radii is therefore very important, not only
from the astrophysical point of view, but also in the understanding of nuclear systems with
large isospin asymmetry. Observationally, there are only few ways to determine the radius
of a neutron star. Let us start with the gravitational redshift, which in the slow-rotation
approximation can be written as

z R _ — 1. (3.18)
2
=%

Here the Doppler effect due to the rotation of the equator has been neglected. It is an

extremely difficult task to measure the gravitational redshift of signals emitted from the
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surface of neutron stars, mainly due to the strong surface magnetic field. However, there
have been some claims of identification of spectral lines. In particular, for the low-mass X-
ray binary EXO 0748-676, the gravitational redshift is found to be z ~ 0.345 [63]. However,
the identification of the spectral lines is not universally accepted [64]. While the mass of
the neutron star can be measured fairly accurately in binary systems, the measurement of
its radius is quite complicated. Another reliable way to measure the radius [3] is from the
observations of thermal emissions from neutron star surfaces, which yield values for the
so-called “radiation radius”, Ro, = R/+/1 —2GM/R. This results from a combination of
flux and temperature measurements from the neutron star’s surface both redshifted at the
Earth. The simultaneous measurement of z and R, would therefore determine the radius

and the mass of the neutron star:

R
R= 2 (3.19)
Re 1

However, there are some major uncertainties involved in the determination of R, such as the
distance, interstellar absorption, and details concerning the composition of the atmosphere
and its magnetic field strength [3]. In the description above, even though the redshift can
be determined, R, would still depend on the interstellar distance, d, which may not be well
measured in the near future. Therefore, one will need an additional relation involving M,
R and d.

Recently, there have been a great deal of attention to the the X-ray binary sources
being as potential sources to the simultaneous determination of the mass and radius of
neutron stars |11, 12]. Although these methods of measurement are not free of uncertainties
(discussed below), it is a very intriguing possibility, since the simultaneous measurement of
mass and radius will pin down the correct equation of state of nuclear matter.

When a neutron star in a binary system accretes matter from its companion star, the
temperature of the infalling gas reaches the critical point for thermonuclear fusion. This
results in a rapid hydrogen burning with a very high energy release in the X-ray spectra,
which is known as the X-ray bursts. There are three important observables whose knowledge,

if combined, gives tight, uncorrelated constraints on the masses and the radii of neutron stars.
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The first observable is the apparent angular surface area, A, which during the subsequent

cooling phase of the bursts can be written as

R? 2GM\

where f. = (T /Test) is a color factor, T is the observed color (spectral) temperature, Tog
is the effective blackbody temperature, and d is the distance to the source. For some subsets
of X-ray bursters the flux becomes so high that it exceeds the local Eddington limit (the
limit at which the gravitational force equals the continuum radiation force outwards). This
further lifts the photosphere of the neutron star to a larger radius. During the subsequent
cooling the photosphere returns to the neutron star’s surface. The Eddington flux at this
“touchdown” point is:

GM 2GM
Foqy = 1— 22
Edd = 7 (3.22)

where k = 0.2(1+ X) cm? g~ is the electron scattering opacity in the stellar atmosphere, X
is the hydrogen mass function. Combining the measurements of the Eddington flux, Fgqq,
the apparent angular surface area, A, and the distance to the binary sources, d, one can

finally obtain both M and R.

With these assumptions, recently Ozel et. al. [I1] have performed measurements of
masses and radii of three X-ray bursters 4U 1608-52, EXO 1745-248, and 4U 1820-30. The
results are summarized in Fig. 3.2. Note that even though the high resolution of X-ray
spectroscopy with the Chandra X-ray observatory and XMM-Newton has lead to a detailed
measurement of the X-ray spectra, the uncertainties are still too large to be ignored. On
the other hand, the interstellar distances has still to be known. Steiner et. al. [12| have
shown that the photospheric radius at touchdown may, in fact, be a little larger than then
the neutron star radius (See Fig. 3.2). This analysis is further confirmed by the independent
studies of [65]. Thus different analysis so far give different radii for typical 1.4Mg neutron
stars: ~ 10 km in [I1], ~ 12 km in [12], and ~ 14 km in [65]. Further refinements from the

observational front is thus very important.
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Figure 3.2: 1o confidence contours for the masses and radii of three neutron stars
in binaries 4U 1608-52 (green), EXO 1745-248 (magenta), and 4U 1820-30 (blue)
[L1]. The lo (dashed grey region), and 20 (the dashed cyan region) confidence
contours from the mass-vs-radius analysis of [12]. The solid black line corresponds
to the Schwarzschild limit of an event horizon.

3.4 The crustal moment of inertia

It has been suggested that pulsar glitches, namely, the sudden increase in the spin rate
of pulsars, may place important constraints on the equation of state [, 56]. In particular,
an analysis based on a long time observation of glitches of the Vela pulsar suggests that
at least 1.4% of the total moment of inertia must reside in the non-uniform crust |1, 56].
This is interesting as the crustal moment of inertia is particularly sensitive to the transition
pressure at the core-crust interface and this observable is believed to be correlated to the
density-dependence of the symmetry energy [57, 58, 59, 60]. Thus, it is both interesting and

enlightening to obtain analytic expressions for the crustal moment of inertia.

The crustal moment of inertia is defined in terms of the general expression provided in

Eq. (3.10) but with the range of the integral now limited from the transition (or core) radius
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R; to the stellar radius R. That is,

_8m /R <5(T) +P(T)> (3.23)

I, = e MG(r) dr .
3 Jr, 1—-2GM(r)/r

However, given that the crust is thin and the density within it is low, several approximation
have been proposed that help render the integral tractable [1, 3, 56, 61, 62]. The various
approximations and details on how to evaluate the integral are left to the appendix. In
particular, we show that under those approximations the TOV equation may be solved
exactly. Here, however, we simply quote our final result:

Iy ~ ?Rgt [1 - @;) (MIR2)] [1 + %(Rt/Rs —~D)(P/E)+...| , (3.24)

where Rs=2GM is the Schwarzschild radius of the star, and P,=P(R;) and & =E(R;) are
the pressure and energy density at the core-crust interface. The ellipsis in the above equation
indicates that the derivation was carried out to first order in the small quantity P;/& <0.01.
A few comments are in order. First, the above expression for the crustal moment of inertia
is extremely accurate (of the order of a few percent; see Tables 4.1 and 4.2). Second, the
two terms in brackets in Eq. (3.24) provide each a moderate ~10% correction to the leading
term, with the corrections being of opposite sign. Third, although the crustal moment of
inertia still depends on the total moment of inertia I, one may preserve the accuracy of our
result without having to rely on a highly accurate estimate of I. In particular, by using the

simple relationship proposed in Ref. [62], namely,

I 0.21

p— .2
MR? 1-R4/R’ (3.25)
one obtains
16w RSP, 0.21 48
I,~—"1t 11— 14+ — s — (P, ] 3.26

This expression remains extremely accurate, yet has the added appeal that for a neutron
star with a given mass M (or Rs) and radius R, the crustal moment of inertia depends
exclusively on Ry, P;, and &—all quantities that are expected to be sensitive to the density
dependence of the symmetry energy. Note that the approximation for the total moment of

inertia given in Eq. (3.25) has been put into question in Ref. [1]. However, for our purposes
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such an approximation is adequate as I enters into the expression for the crustal moment
of inertia as a small correction. No such approximation will be made for I when reporting
the fractional moment of inertia I.,/I. Indeed, no approximation for I will be made at all.

For completeness, we include an expression for the crustal mass that was derived in the

appendix following similar steps. We obtain,

32
Aﬁrw&dﬁBUﬁﬂ%—l)1+EﬂRMRde®Gy&)+”.. (3.27)

3.5 Beta Equilibrium with Electrons and Muons

At high densities (inside the neutron stars) the equation of state must be modified.
The most important correction to the equation of state comes from the inverse beta decay:
e~ 4+ p — n+ .. Given that neutron-star matter is fully catalyzed, chemical equilibrium

must be imposed:
n=p+e +0. (3.28)

If the Fermi momentum of electrons is high enough, then the contribution from muons also
must be included in the equation of state: e~ = u~ + ¥, + .. Namely, the composition
of the star is determined from the equality of the chemical potential of the various species.

That is,

fin = Hp + He = fip + iy - (3.29)

Here

1

pn = \JRE? + M2 4+ Wo — SRy (3.30)
1

Mp:\/%?+ﬂiﬁ+ﬁMy+§Ro. (3.31)

Note that electrons and muons are assumed to behave as relativistic free Fermi gases (with

me=0):

fu = \JKEZ +m2 (3.32)
e = \/ kg2 +m2 = ki . (3.33)
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Of course, muons appear in the system only after the electronic Fermi momentum becomes
equal to the muon rest mass. Neutron stars are also believed to be charge neutral objects,

therefore the condition of charge neutrality must be imposed:

Pp = Pe + Pu - (3.34)

Then the total energy density and the pressure of a star are simply obtained by adding
up the nucleonic and the leptonic contributions. The nucleonic contributions are given as

in chapter 2, while the leptonic contributions are:

g, — K&

4n2’
1 [k
£, — 7T2/0 K2\ k2 + m2 dk (3.36)

Numerically, one can achieve the chemical equilibrium condition through the following

(3.35)

steps:

1. Provide the baryon density as an input, pp;
2. Make an initial guess for the proton fraction, Y;

3. Using the following relations,

find the corresponding proton and neutron Fermi momentums. Here kp is defined such

that: \
P I L (3.3
4. Solve the system of equations for charge neutrality and chemical equilibrium,
kS = kg3 4k (3.40)
k2 +m2 = kg (3.41)

to obtain the electron and the muon Fermi momentums;

5. Having kJ%, kb, kg, and ki obtained, use them to calculate the total energy density, &;
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6. Now, using the Newton-Raphson or some other numerical technique, find the proton
fraction, Y}, that minimizes the total energy density, £ (the condition for the chemical

equilibrium):
o€

== _0: 42

7. Having found the correct proton fraction, we can now compute the total energy density

and the total pressure, i.e. the equation of state for stellar matter.

3.6 The Scaling of the Parameters

An important step in the numerical calculations of the neutron star structure equations
is the scaling of the parameters. Indeed, we are dealing with two systems that differ 57
order of magnitude in mass scale (mass of the neutron is m,, = 1.68 - 10727 kg, while mass
of a typical neutron star is M7 4 = 2.78 - 103 kg), and 18 order of magnitude in the length
scale (the ~ 5.7 fm of the neutron radius of lead versus the ~ 12 km radius of the neutron
star). Without properly scaling the equations, there is almost no hope of dealing with the
problem of the neutron star structure, numerically [66].

Recall that we had the following term in the pressure of the infinite nuclear matter (2.41):

1 kg k4
P, = — —dk
" 32 )y Ef
1 kR + E* 2
= 53 [M*‘* In <F;\}”F> + <3kg2 - M*2> K ;;F} . (3.43)

Observing this expression, the natural scale for the pressure, therefore would be

(1)’

M!_ 1 _
8% (hc)®

h=35m

1281.48445 MeV fm ™3 = 2.05316422 - 103 Pa .  (3.44)

Note that a typical pressure at the center of neutron stars is about ~ 100 MeV fm ™3, which
is of the similar order as the natural scale. Therefore the total pressure can be recast as
P = PyP, where P is a dimensionless pressure used in numerical calculations. Similarly, for
the energy density one can use £ = & = PRy& (the central energy density in the neutron

stars is about ~ 1000 MeV fm~3). The natural scale for the mass density is

P ‘
po = 75 — 228445328 - 10" kg/m? . (3.45)
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Denoting M = MyM and R = RgR, we can rewrite the Tolman-Oppenheimer-Volkoff

equations as:

—3— —_— —1

dpP M~ P RP 2M

iR == [1 + 5:| 1+ A |:1 - R:| ) (3.46)
Cg‘; _TE . (3.47)

where M, P, and £ are functions of R. With this definition, then we have the following

natural scales for the radius and the mass:

62

Ro— ——— —6848.9217 m — 6.8489217 km , 3.48
0= irGh, m m (3.48)

Ro 62

My = 0.22271416 - 10°° kg = 4.63704632 M, . (3.49)

3.7 The Direct Urca process

Neutron stars are created as very hot objects at the moment of their birth in supernova
explosions, with temperatures as large as 20 MeV [67, (8]. However, within one or two
minutes the temperature falls below 1 MeV, and neutron stars become transparent for neu-
trinos generated in their interiors. Subsequently, neutron stars cool through the neutrino
emission process from their volume. In the standard scenario of the neutron star cooling,
the neutrinos emission from the interior of the star is dominated by the so-called modified

Urca process:

n+n—n+pt+e +7r,

n+pt+e —n+n+rv. (3.50)

This process of cooling is relatively slow, and requires a typical time of ~ 10% years for a

star to cool down below 10% K temperatures [69]. The direct Urca process,

n—p+e +0U,

e +p—n-+re (3.51)

is usually not considered because it requires a large proton fraction. However, this process
of cooling is faster, and the typical cooling time is about ~ 100 years. Recent X-ray ob-

servations by Chandra and XMM-Newton suggest that neutron stars may cool very rapidly
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([70] and references therein). For example, it was observed that the surface temperatures of
pulsars in 3C58 [71], Vela [72], and Geminga [73] are very low. Such low temperatures can-
not be explained by the modified Urca process. One needs an enhanced cooling mechanism
to explain the observed low surface temperatures. This enhanced cooling may occur via
the weak decay of additional hadrons such as pion or kaon condensates, hyperons, or quark
matter [70]. However, the direct Urca process is perhaps the most conservative enhanced-
cooling mechanism as it does not involve exotic constituent of matters in the interior of
neutron stars. Of course, for stars that do not have massive cores (hence with no large
proton fraction) the modified Urca process will remain the dominant process for the cooling
mechanism.

Consider the direct electron Urca process described in the Eqn. (3.51). This process can
proceed when the conditions for momentum and energy conservation can be simultaneously
satisfied. That is, the momentum conservation, p, = p, + Pe, should be satisfied at the

Fermi surface:

kR < KP4 kG (3.52)

Recalling that kf = [2(1 — Yp)]1/3 kp, kb = [21/},]1/3 kp, and using the charge neutrality

condition, k? = k§, we arrive at the following Urca threshold condition:
kp = 2k% | (3.53)

which is satisfied for Y, = 1/9 ~ 0.111.
Consider now the realistic case when muons are present in the star. Now in addition we

have the following expression for the direct Urca process:

n—>p—|—,u_+l7u,

wo+p—mn+uy,. (3.54)

From the equation of chemical equilibrium (3.41), one can find the Fermi momentum of the

electron, and substitute the result into the equation for the charge neutrality (3.40),

2Y, (1 = )] kg = (2aY,)** kg +m?, (3.55)
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where the muon charge fraction a = Z,,/Z has been introduced. Obviously, the muon charge
fraction is a dynamic function of density, & = a(kr). Rearranging the Urca condition, (3.52),
we obtain an equation for the proton fraction at the Urca threshold:

1-Y 1/3
< Yp> =1+(1-a)/®. (3.56)
p

The maximum value of Y, can be found if one takes the limit k% > m,,, which simply occurs
at a = 0.5, or equivalently, at Y, ~ 0.1477. Thus, the threshold proton fraction must be
contained within 0.111 <Y}, < 0.1477 for all baryon densities.

3.8 The Neutron-Star Matter Equation of State

As alluded earlier, the structure of neutron stars is sensitive to the equation of state of
cold, fully catalyzed, neutron-rich matter. Spanning many orders of magnitude in density,
neutron stars display rich and exotic phases that await a detailed theoretical understanding.
For example, at densities that are about one third of nuclear matter saturation density and
below, the uniform ground state becomes unstable against clustering correlations. This non-
uniform region constitutes the stellar crust, which itself is divided into an inner and an outer
region. In the outer crust the system is organized into a Coulomb lattice of neutron-rich
nuclei embedded in a degenerate electron gas [16, 17]. For this region we employ the equation
of state of Baym, Pethick, and Sutherland [16]. With increasing density the nuclei become
progressively more neutron rich until the neutron drip region is reached; this region defines
the boundary between the outer and the inner crust. It has been speculated that the bottom
layers of the inner crust consist of complex and exotic structures that are collectively known
as nuclear pasta [19, 50, 61]. Whereas significant progress has been made in simulating this
exotic region |74, 75, 76|, a detailed equation of state is still missing. Hence, we resort to a
fairly accurate polytropic EOS to interpolate between the outer solid crust and the uniform
liquid interior [56, 77]:

PE)=A+ K& = A+ KE&Y3 | (3.57)

where the constants A and K are chosen such that the equation of state is continuous
throughout the star. For the uniform liquid core—with densities as low as one-third and as

high as ten times nuclear-matter saturation density—we generate the equation of state using
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various refinements to the relativistic mean-field model of Serot and Walecka |7, 10, 29]. For
consistency, the same models are used to compute the transition density from the liquid core
to the solid crust. This is done by searching for the critical density at which the uniform
system becomes unstable to small amplitude density oscillations. The stability analysis of
the uniform ground state is based on a relativistic random-phase-approximation (RPA) as
detailed in Ref. [77].

The equation of state for the uniform liquid core is based on an interacting Lagrangian
that has been accurately calibrated to a variety of ground-state properties of both finite
nuclei and infinite nuclear matter. The model includes a nucleon field (1), two isoscalar
mesons (a scalar ¢ and a vector V#), and one isovector meson (b*) [10, 29] (the photon field
plays no role in the present discussion of infinite nuclear matter at the mean-field level).

The free Lagrangian density for this model is given by

1 1
Lo =9 (" Ou—M) Y + 50,40"¢ — §m§¢2
1. 1 . 1. ., 1

= V"V + 5m%Vl Vi = 70" + §m?)b“b# : (3.58a)

as discussed in Chapter 2, where V,,, and by, are the isoscalar and isovector field tensors,

respectively. That is,

V:tu/ = auvu - auvu ) (359&)

b, = d,b, — ,b,, . (3.59D)

Further, the parameters M, mg, m,, and m, represent the nucleon and meson masses and
may be treated (if wished) as empirical constants. The interacting Lagrangian density is

given by the following expression (For details, look at the Chapter 2 and references [10, 16,

D:

Lin = ¥ 96— (9uVit Z7 b ) 1] ¥ = U0, V7, b7) (3.60)

The model includes Yukawa couplings (gs, gv, and g,) between the nucleon and the three
meson fields. However, to improve the phenomenological standing of the model—for ex-
ample, to soften the compressibility of symmetric nuclear matter—the Lagrangian density

must be supplemented by nonlinear meson interactions. These are given by

U(g,VH, bH) = %(9@)3—1—%(9@)4—%(g%V#V“Y—AV (gz b, b“) (gzvVVV) . (3.61)
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Table 3.1: The central energy densities and central pressures for a 1.4 solar mass
neutron star are given in the units of MeV fm~3. The neutron star radius and

corresponding thicknesses of each region are given in kilometers.

’ Model H Ee ‘ P ‘ Ri4 Reore ‘ Rpasta ‘ Rpps ‘
NL3 269.7 | 29.68 | 15.068 | 13.379 | 0.957 | 0.732
MS 431.3 | 51.40 | 13.779 | 12.436 | 0.750 | 0.593

FSUGold || 537.3 | 72.97 | 12.657 | 11.340 | 0.832 | 0.485

Details on the calibration procedure may be found in Refs. [10, 29, 30, 33] and references
therein. Note that additional local terms of the same order in a power-counting scheme
could have been included. However, their phenomenological impact has been shown to
be small [16], so they have not been included in the calibration procedure. Of particular
interest and of critical important to the present study is the isoscalar-isovector coupling
term Ay [30, 33]. Such a term has been added to the Lagrangian density to modify the
poorly known density dependence of the symmetry energy—a property that is predicted
to be stiff (i.e., to increase rapidly with density) in most relativistic mean-field models.
The addition of A, provides a simple—yet efficient and reliable—method of tuning the
density dependence of the symmetry energy without sacrificing the success of the model in
reproducing experimentally constrained ground-state observables. Because of the sensitivity

of the stellar radius to the density dependence of the symmetry energy 78], we also expect

a strong correlation between A, and the stellar moment of inertia.

Whereas the full complexity of the quantum system can not be tackled, the ground-
state properties of the system may be computed in the relativistic mean-field approximation
discussed in Chapter 2. In the RMF approximation all the meson fields are replaced by
their classical expectation values and their solution can be readily obtained by solving the
clagsical FEuler-Lagrange equations of motion. The sole remnant of quantum behavior is in
the treatment of the nucleon field which emerges from a solution to the Dirac equation in
the presence of appropriate scalar and vector potentials [10, 29]. Following standard mean-
field practices, one can then find the energy density and the pressure, which make up the

equation of state for the core of the neutron star.
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Figure 3.3: The stellar matter equations of state are given for three models dis-
], MS [16], and FSUGold |
state is used [16] for the outer crust, while for the intermediate region between
the inner crust the the outer core we use the fairly accurate polytropic equation of

cussed in the text: NL3 |

state.

In Fig. 3.3 we present three different stellar matter equations of state used to calculate
the mass and radius of a 1.4 solar mass neutron star. Corresponding central energy density,
central pressure, and the thicknesses of each region are given in Table 3.1. Note that the
central density of this star in the NL3 model is twice larger then the nuclear matter density
(po = 2.4 - 107 kg m~3), while this ratio equals to 3.2 in the MS model, and to 3.99 in the
FSUGold model. Similarly, the central pressure is very different in each model. Moreover,
these models predict different radii for the 1.4 solar mass neutron star that differ by almost

2.5 km. Thus the properties of the neutron star are very sensitive to the choice of the

equation of state.

£[MeV fm?]
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CHAPTER 4

MOMENT OF INERTIA AS A SENSITIVE PROBE
TO THE EOS OF NEUTRON-RICH MATTER

4.1 Introduction

In this chapter we study the sensitivity of the stellar moment of inertia to the underlying
equation of state [32]. Although the formalism is general—at least within the slow-rotation
approximation—we focus on the recently discovered binary pulsar PSR J0737-3039 [18, 19].
Located ten times closer than the celebrated Hulse-Taylor binary system [79] and with the
shortest orbital period of its kind (almost three times smaller than the Hulse-Taylor binary),
PSR J0737-3039 is the first ever discovered double pulsar. This discovery has resulted in
some of the most precise tests of Einstein’s general theory of relativity to date. Moreover, it
has also enabled the accurate determination of several pulsar properties, such as the orbital
period of the binary, both pulsar masses, and both spin periods. However, their individual
radii, moments of inertia, gravitational redshifts, or any other property that would allow
a simultaneous mass-radius determination—and therefore place important constraints on
the equation of state—are still unavailable. Yet the prospects for measuring the moment
of inertia of the fastest spinning pulsar in the binary (PSR J0737-3039A) have never been
better. Doing so with even a 10% accuracy may provide stringent constraints on the nuclear
equations of state [30, 81, 82, 83]. Note, however, that the proposed 10% accuracy has been
recently put into question [24]. Yet we trust that the various observational challenges will
be met successfully in the near future. With such a view in mind, we focus on a particular
feature of the equation of state (EOS) that has a strong impact on the moment of inertia:

the nuclear symmetry energy.
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The nuclear symmetry energy represents the increase in the energy of the system as pro-
tons are converted into neutrons (or neutrons into protons). Whereas ground-state masses
constrain the symmetry energy near saturation deusity, they leave its density dependence
(slope, curvature, etc.) largely undetermined. This is important as the slope of the sym-
metry energy at saturation density determines the pressure of pure neutron matter (PNM).
And it is precisely the pressure of PNM that provides the necessary stellar support against
gravitational collapse. Thus, the larger the pressure of PNM the larger the radius of the
neutron star (see Table 3.1). Note that it is also the pressure of PNM that accounts for the
size of the neutron skin thickness—the difference between the neutron radius and the proton
radius—in medium to heavy nuclei. As a result, a strong correlation was uncovered between
the neutron skin thickness of 2°*Pb and the neutron radius of a neutron star [75]. Given that
the moment of inertia scales as the square of the stellar radius, the aim of this work is to
study the expected correlation between the neutron skin thickness of 2°°Pb and the stellar
moment of inertia. The Parity Radius Experiment (“PREx") at the Jefferson Laboratory
aims to measure the neutron radius of 2°®Pb accurately and model independently via parity-
violating electron scattering [25, 86]. At the time of this writing the first experimental effort
to measure the neutron radius of 2°®Pb at the Jefferson Laboratory has been performed.
The result demonstrated successful control of systematic errors and overcame many techni-
cal challenges, but unfortunately ran into difficulties with radiation and the vacuum system
that reduced the running efficiency [36]. A follow-up measurement (second run) to PREx-1
is proposed that should provide a unique experimental constraint on the neutron skin thick-
ness of a heavy nucleus and correspondingly on the pressure of pure neutron matter. We
should also mention that considerable progress has been achieved on the theoretical front.
By building on the universal behavior of dilute Fermi gases with an infinite scattering length,
significant theoretical progress has been made in constraining the equation of state of pure
neutron matter [82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96].

While the overall moment of inertia of the neutron star is of great interest, the fraction
of the moment of inertia contained in the stellar crust may be as useful in constraining the
equation of state |3, 56]. Indeed, by studying the sudden and fairly regular spin jumps (“pul-

sar glitches”) in the Vela pulsar, it was determined that at least 1.4% of the total moment
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of inertia of the star must reside in the solid crust [56]. Pulsar glitches are believed to be
the result of angular momentum transfer between the star’s solid crust and a more rapidly
rotating superfluid component residing in the stellar interior. As the crustal moment of iner-
tia is sensitive to the transition pressure at the core-crust interface [56], the above (2 1.4%)
limit may place a significant constraint on the EOS of dilute, neutron-rich matter. In this
way, the crustal moment of inertia may provide an attractive astrophysical complement to
PREx and to the dynamics of dilute Fermi gases in constraining the density dependence of
the symmetry energy.

The background material necessary to compute the moment of inertia of a neutron star
in the slow-rotation approximation [52, 53| is given in Chapter 3. We introduce the families
of various accurately-calibrated relativistic mean-field models that will be used to compute
the equation of state of the stellar matter [I1, 15, 16, 97]. We note that whereas all the
models reproduce various experimentally measured properties of finite nuclei, they differ

significantly in their predictions for the equation of state at both low and high densities.

4.2 The RMF Equations of State

To study the sensitivity of the stellar moment of inertia to the equation of state we will
use relativistic mean-field models that have been accurately calibrated to the properties of
infinite-nuclear matter (MS) [16], to the ground-state properties of finite nuclei (NL3) [14,

|, or to both (FSUGold) [15]. Parameter sets for these three models are listed in Table 2.1
and 2.2. The predicted equations of state—pressure vs energy density—for the three models
are displayed in Fig. 4.1. Given that the equation of state for the solid crust is identical in
all three models (as discussed in Chapter 3, and shown in Fig. 3.3), we only present the
contribution from the uniform liquid core. The lowest energy density and pressure depicted
in the figure—which are different in all three models— signal the transition from the uniform
liquid core to the non-uniform solid crust. Note that the uniform core is assumed to consist
of nucleons and leptons (electrons and muons) in chemical equilibrium; no exotic degrees of
freedom are considered.

The resulting equations of state show a significant model dependence. As the models

have been accurately calibrated, this is a clear indication that the existing database of
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Figure 4.1: Equation of state (pressure vs energy density) of neutron-star matter
predicted by the three relativistic mean-field models discussed in the text. The
solid black line (P = ¢&) denotes the stiffest possible equation of state consistent
with causality.

nuclear observables is insensitive to both the low- and high-density behavior of the EOS
(the energy density at saturation is about 140 MeV/fm?®). In this contribution we are
particularly interested in the sensitivity of the stellar moment of inertia to the two empirical
parameters ¢ and Ay—with the former controlling the high-density behavior of the EOS and
the latter the density dependence of the symmetry energy.

The NL3 parameter set [14, 97] provides an excellent description of the ground-state
properties of finite nuclei (such as masses and charge radii) without invoking either ¢ or A,
(see Table 2.1 and Table 2.2). As a consequence of having set ( = A, =0, NL3 generates
a fairly stiff equation of state. At sub-saturation density, this behavior is reflected in the
relatively small value of the energy density at the core-crust interface. At the high-density
extreme, NL3 approaches the stiffest possible equation of state that is consistent with causal-
ity (i.e., P=¢&). As we shall see below, such a stiff EOS generates neutron stars that are

both massive and large (see Fig. 4.2 and Table 4.1).
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Table 4.1: Predictions for the maximum neutron star mass and for the radius and
central energy density of a 1.4 Mg neutron star in the three relativistic mean-field
models discussed in the text. The last three quantities represent the transition
density, energy density, and pressure at the core-crust interface. The units of the
energy density and pressure are given in MeV fm™3.

Model [ Miyax(Mg) | Ria (km) | &4 [ ppo(fm™®) [ & | B |

NL3 2.774 15.07 269.7 0.052 48.96 | 0.212
MS 1.807 13.78 431.3 0.055 51.91 | 0.216
FSUGold 1.722 12.66 237.3 0.076 71.53 | 0.402

As far as the MS equation of state is concerned, Miiller and Serot were able to build
models with a wide range of values for ¢ that while reproducing the same observed properties
at normal nuclear densities, they produce maximum neutron star masses that differ by almost
one solar mass [16]. By selecting a value of ¢ =0.06, the MS model adopted here predicts
a softer EOS and consequently a limiting neutron-star mass that is significantly smaller
than NL3. Such a softening at high density is clearly evident in Fig. 4.1. Note that the
¢ =0.06 choice appears consistent with the dense-matter equation of state extracted from an
analysis of energetic heavy-ion collisions [98, 99|. However, extracting the zero-temperature
EOS from energetic heavy-ion collisions may be model dependent. Thus, observational data
on neutron-star masses may provide the cleanest constraint on the high-density component
of the equation of state. Note, however, that since A, remains equal to zero in this model,
the energy density and pressure at the core-crust interface remain largely unchanged from
their NL3 values (see Table 4.1).

The FSUGold parameter set is characterized by having both ¢ and A, different from
zero [15]. By adding Ay to the model one can soften the EOS—particularly the symmetry
energy—at low to intermediate densities. This produces a shift of the core-crust transition
energy density and pressure to higher values relative to both NL3 and MS. Moreover, such a
softening generates neutron stars of relative small radii (see Fig. 4.2 and Table 4.1). We note
that the softening of the symmetry energy is required to describe the isoscalar monopole
and isovector dipole modes in medium to heavy nuclei [39]. Further, this softening appears
consistent with microscopic descriptions of the equation of state of low-density neutron

matter (see Ref. [96] and references therein). On the other hand, the value of ¢ = 0.06
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Figure 4.2: Neutron-star mass as a function of the central density (a) and the
stellar radius (b) for the three relativistic mean-field models discussed in the text.

adopted here is solely constrained by the dynamics of heavy ions. Yet, the reported errors
are large enough to accommodate slightly stiffer equations of state (although not as stiff as

NL3) [0%, 09].

4.3 Mass-Radius Relation

Having generated an equation of state, one can now proceed to solve the TOV equations
[see Egs. (3.9)]. Once a value for the central energy density & (or pressure P.) is specified,
solutions to the TOV equations are obtained in the form of mass M(r), pressure P(r), and
energy density £(r) profiles. From these, the stellar radius R is extracted from the pressure

profile as the point at which the pressure vanishes, namely, P(R)=0. Similarly, the total
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stellar mass is obtained from the mass profile as M =M (R). Note that for a given value of
the central energy density &, a unique point in the M-R diagram is generated.

In Fig. 4.2 we display neutron-star masses as a function of the central energy density
(left panel) and the stellar radius (right panel). The imprint of the underlying equation of
state is clearly evident on these curves. For example, the stiff behavior of the NL3 equation
of state is reflected on its very large limiting mass (of close to 3 solar masses). Also evident is
the significant reduction in the maximum stellar mass as one softens the EOS by shifting the
value of ¢ from 0 to 0.06. Finally, we observe a significant variation in the value of the central
energy density required to produce a “canonical” 1.4 Mg neutron star. The NL3 equation of
state is so stiff (i.e., the pressure gradient is so large) that a central energy density of only
twice its value at saturation is sufficient to support the star against gravitational collapse.
In contrast, the softer FSUGold equation of state requires a central energy density that is
twice as large as NL3 or about 4 times its value at saturation.

Whereas ¢ controls the maximum stellar mass, Ay controls the stellar radius. This is
illustrated on the right-hand panel of Fig. 4.2. Although the MS and FSUGold equations of
state display similar behavior at high density (see Fig. 4.1) the former generates stellar radii
that are significantly larger than the latter. For example, for a 1.4 Mg neutron star the
difference exceeds one kilometer. Note that the stellar radius—although primarily sensitive
to the EOS at intermediate densities—is also sensitive to the high-density component of
the EOS. Hence, although both NL3 and MS have A, =0, MS (with ¢ #0) produces more

compact stars.

4.4 Families of the RMF Models and the Moment of Inertia

Having established the critical role of the two empirical parameters ¢ and A, on the
mass-vs-radius relationship of neutron stars, we now return to the central goal of the present
chapter: to assess the sensitivity of the stellar moment of inertia—both total and crustal—
to the equation of state. To properly address this topic we must build models that, while
accurately calibrated, can generate a wide range of values for poorly constrained nuclear
observables. To do so, we modify the density dependence of the symmetry energy by resort-

ing to a simple—yet highly robust—procedure first introduced in Ref. [30]. The procedure
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Table 4.2: The NL3 and FSUGold “families” of mean-field interactions. The isovec-
tor parameters A, and g, were adjusted so that all models have a symmetry energy
of ~ 26 MeV at a density of ~ 0.1 fm~3. The tuning of the isovector interaction
modifies the slope of the symmetry energy L at saturation density. The impact of
such a change on the neutron skin thickness of 2®Pb and on the transition density,
energy density, and pressure at the core-crust interface are displayed in the last
four columns. The units of the energy density and pressure are given in MeV fm 3.

[ Model | Ay | g5 [LMeV) | Ry-R, (fm) [pr (fm™®) | & | B |
NL3 [ 0.00 [ 79.6000 | 118.187 0.280 0.052 [ 48.960 [ 0.212
0.01 | 90.9000 | 87.737 0.251 0.061 | 57.574 | 0.338
0.02 | 106.0000 | 68.217 0.223 0.746 | 70.630 | 0.508
0.03 | 127.1000 | 55.310 0.195 0.085 | 81.012 | 0.535
0.04 | 158.6000 | 46.606 0.166 0.090 | 85.618 | 0.376
MS  [[0.00 | 70.5941 | 102.382 0.281 0.055 | 51.911 [ 0.216
FSU [/ 0.00 | 80.2618 | 108.764 0.286 0.051 [ 48.458 | 0.207
0.01 | 93.3409 | 87.276 0.260 0.060 | 56.330 | 0.317
0.02 | 1115126 | 71.833 0.235 0.069 | 65.387 | 0.415
0.03 | 138.4701 | 60.515 0.207 0.076 | 71.534 | 0.402
0.04 | 182.6162 | 52.091 0.176 0.078 | 73.924 | 0.268
0.05 | 268.0859 | 45.742 0.137 0.077 | 73.206 | 0.036

consists on modifying the isovector mean-field interaction by simultaneously changing A,
and g, (the NNp coupling constant) in such a way that the value of the symmetry energy
remains fixed at a specific value of the baryon density. Given that nuclei have a low-density
surface, the symmetry energy is best constrained not at nuclear matter saturation density,
but at a slightly lower value [100]. In this contribution—as in Ref. [30]—we fixed the sym-
metry energy at ~ 26 MeV at a density of ~ 0.1 fm~> (or exactly at a Fermi momentum
of kp = 1.15 fm™1). This ensures that well constrained observables (such as masses and
charge radii) remain consistent with their experimental values. Moreover, as this procedure
involves the tuning of only the isovector interaction, all properties of symmetric nuclear
matter remain intact. Yet poorly constrained observables—such as the neutron skin thick-
ness of heavy nuclei and neutron-star radii—can be made to vary over a wide range of
values [30, 78]. In Table 4.2 we display the appropriate isovector parameters for the NL3
and FSUGold “families” of mean-field interactions. Particularly sensitive to this change is

the slope of the symmetry energy L at saturation density. The table illustrates the impact
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Figure 4.3: Stellar radius (a) and moment of inertia (b) of a 1.337 My neutron
star (J0737-3039 A) as a function of the neutron skin thickness of 2°*Pb.

of L on the neutron skin thickness of 2°®Pb and on the transition density, energy density,
and pressure at the core-crust interface. Note that there is no need to generate an MS family

given that it shares the same value of ¢ with FSUGold.

In Fig. 4.3 we display the radius and moment of inertia of a M = 1.337 Mg neutron
star (such as J0737-3039 A) as a function of the neutron skin thickness in 2°Pb. Although
many other observables (such as L) may be used to characterize the density dependence of
the symmetry energy, we have selected the neutron-skin of 2°®Pb because it represents a
fundamental nuclear observable that will soon be directly determined from laboratory data.
The left-hand panel in the figure is reminiscent of the linear correlation between the neutron
skin in 2°8Pb and the stellar radius uncovered in Ref. [78]. Given that neutron stars and

the neutron skin of heavy nuclei are both made of neutron-rich material, the emergence
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of such a correlation should not come as a surprise. However, knowledge of the neutron
skin is not sufficient to determine the stellar radius. Whereas the neutron skin of heavy
nuclei is sensitive to the EOS around saturation density, the stellar radius is also sensitive
to its high-density component. Hence, to eliminate the model dependence one must rely on
observational data rather than on laboratory experiments. The right-hand panel in Fig. 4.3
displays the corresponding moment of inertia. There is a significant drop in the moment of
inertia as the neutron skin departs from its largest value (at Ay =0) but then the sensitivity
weakens. The same kind of behavior is displayed when [ is plotted as a function of the
stellar radius (not shown). As in the case of the stellar radius, the total moment of inertia is
sensitive to the high-density component of the EOS, so a strong model dependence remains.
Note that since both MS and the stiffest member of the FSUGold family have A, =0 and

¢=0.06, their predictions are very close to each other.

4.5 Crustal Properties, the Transition Pressure, and the
Neutron Skin

Given the sensitivity of the moment of inertia to the high density component of the
EOS, we now shift our attention to its crustal component. Our expectation—based on its
high sensitivity to the transition pressure [see Eq. (3.26)]—is that a strong correlation will
emerge between the crustal moment of inertia (I.,) and the neutron skin thickness of 2°8Pb.
To our surprise, no such correlation exists. We attempt to elucidate this finding in what
follows.

The core-crust boundary is determined by identifying the highest baryon density at
which the uniform ground state becomes unstable against small amplitude density fluctua-
tions. The stability analysis of the uniform ground state is based on a relativistic random-
phase approximation (RPA) that is described in detail in Refs. [30, 77]. As first proposed in
Ref. [30]—and confirmed since using various equivalent approaches [57, 58, 59, 93, |—a
strong correlations emerges between the core-crust transition density (p;) and the neutron
skin thickness of 2%%Pb. The left-hand panel in Fig. 4.4 provides evidence for such a cor-
relation. The figure displays the energy per nucleon as a function of baryon density for

uniform, neutron-rich matter in chemical equilibrium. Results are displayed for the various

o7



15 l ) ) ) ) l )
- FSUGold (@) 1

E/A - M [MeV]
P [MeV fm?]

[¢;]

0.286 fm ]
v 0.260fm A
[ 0.235fm
B 0.207 fm
0.176 fm
i b 0.137fm ]

l 1
0.05 0.10

p [fm?] p [fm”]

Figure 4.4: Equation of state for uniform, neutron-rich matter in beta equilibrium
for the FSUGold family of mean-field interactions (labeled by the value of the
neutron skin thickness in 2°*Pb). The binding energy per nucleon (a) and the
pressure (b) are displayed in parametric form in terms of the baryon density. The
various symbols indicate the transition density, energy per nucleon, and pressure
at which the uniform state becomes unstable against small density fluctuations.

members of the FSUGold family of mean-field interactions. The symbols in the figure are
used to denote the transition point and are labeled according to the value of the neutron
skin thickness in 2°®Pb. The behavior displayed in Fig. 4.4(a) is simple to understand given
the following facts: (a) all models predict identical properties for symmetric nuclear matter,
(b) all models share the same value of the symmetry energy at ~0.1 fm >, and (c) the softer
the symmetry energy the smaller the neutron skin thickness in 2°*Pb. Based on these fairly
general assertions, one concludes that it is energetically expensive for the system to remain
uniform if the equation of state is soft. Thus, models with thin neutron skins predict higher

transition densities.
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However, whereas a clear correlation emerges between the transition density and the
neutron skin, no such correlations is observed in the case of the transition pressure. The
right-hand panel in Fig. 4.4 displays the pressure of neutron-rich matter as a function of
the baryon density. As expected, the larger the neutron skin thickness in 2°®Pb the larger
the pressure. That is, at a fixed given density, the pressure is larger for models that predict
larger neutron skins. However, different models predict different transition densities and
this mere fact destroys the correlation between the transition pressure and the neutron
skin. For example, for the three stiffest models displayed in the figure, there is a direct
correlation between the transition density and the transition pressure (F;). In this region
these three models exhibit relatively little scatter so that an increase in p; is accompanied
by a corresponding increase in P;. However, as the models continue to soften, an inverse
correlation develops: models with a soft symmetry energy have large transition densities
but small transition pressures. As a result, no correlation between the transition pressure
and the neutron skin thickness in 2°8Pb develops. Note that this result is consistent with
the very recent analysis presented in Ref. [101].

We now proceed to examine the correlation between the neutron skin thickness of 2°Pb
and various quantities defined at the transition region. Before doing so, however, we display
in Fig. 4.5 the energy density and pressure at the core-crust boundary as a function of the
transition density. As suggested earlier, whereas the energy density is strongly correlated
to the density at the interface, the pressure is not. In Fig. 4.6 we plot the value of various
observables in the transition region as a function of the neutron skin thickness in 2“8Pb.
In addition to the transition density, energy density, and pressure, the proton fraction is
also displayed. Excluding the softest model—which as we shall see below appears in conflict
with an observational constraint—there is a clear (inverse) correlation between the transition
density p; and R,-R,, as originally proposed in Ref. [30]. Not surprisingly [see Fig. 4.5(a)] the
transition energy density displays an inverse correlation that is just as strong. In contrast,
there is no correlation between the transition pressure and R,-R,. Indeed, one can find
models that have neutron skins that vary by more than 0.1 fm yet predict identical transition
pressures. Finally, the proton fraction at the core-crust interface displays a tight inverse

correlation. As mentioned earlier [see Fig 4.4(a)] it is energetically expensive for models
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Figure 4.5: Properties of neutron-rich matter at the core-crust interface for the
various models discussed in the text. Whereas the transition energy density is
strongly correlated to the transition density (a), the transition pressure is not (b).

with a soft-symmetry energy to support a large neutron-proton asymmetry. Thus, the
thinner the neutron skin of 2°8Pb, the larger the proton fraction.

Having explored the correlations (or lack-thereof) between the neutron skin thickness in
208Ph and various properties of the EOS in the transition region, we now proceed to study
the sensitivity of several crustal properties to R,-R,. In particular, predictions for the
crustal mass, thickness, and moment of inertia for a 1.337 Mg neutron star (such as JO737-
3039 A) are displayed in Fig. 4.7. Note that approximate analytic expressions for the crustal
moment of inertia (I.,) and mass (M,,) have been derived in the appendix A and have been
collected in Egs. (3.26) and (3.27). Both of these expressions indicate a high sensitivity to
the transition pressure P;. Indeed, the imprint of the transition pressure is clearly evident

in all crustal observables. For example, given that for models with a soft symmetry energy
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Figure 4.6: Baryon density (a), energy density (b), pressure (c¢), and proton fraction
(d) at the core-crust interface as a function of the neutron skin thickness in 2°Ph
for the various mean-field interactions discussed in the text.

the transition pressure increases with R,,-R,, an initial (i.e., for small neutron skins) direct
correlation develops between R,-R, and all crustal properties. Eventually, however, the
transition pressure reaches a maximum and then an inverse correlation ensues. Hence, we
conclude that a measurement of the neutron skin thickness in 2°®Pb will place no significant
constraint on the crustal mass, thickness, or moment of inertia. Note that the crustal
thickness R, also follows such a trend due to its dependence on the crustal mass; if a small

crustal mass remains, then the crustal thickness will be small.

As mentioned in the section 4.1, the study of pulsar glitches in the Vela pulsar suggests
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that at least 1.4% of the total moment of inertia must reside in the solid crust [3, 56]. The
results displayed in Fig. 4.8 show how such a constrain may be used to rule out certain
equations of state. The figure shows predictions for the fractional moment of inertia (I.,)
of the binary pulsar J0737-3039 as a function of the neutron skin thickness in 2°*Pb. We
observe that the softest member of the FSUGold family predicts a fractional moment of
inertia of only 0.35%—significantly lower than the 1.4% bound. This suggests that models
with such a soft symmetry energy may be in conflict with observation. Ultimately, such a
low value for I can be traced back to the very small transition pressure predicted by the
model. We close this section by mentioning that many of the results presented and discussed

in graphical form have been collected in Tables 4.3 and 4.4.

Table 4.3: Predictions for the properties of the J0737-3039 A pulsar with a mass of
M = 1.337TMg and spin period of P = 22.7 ms (or stellar frequency of Q = 276.8
s71 [19]). The central densities are in units of 10'* g/cm?® the radii in km, the
core mass in solar masses and the moments of inertia in 10% gcm?. The quantities
in parenthesis are the analytic results for the fraction of the mass and moment of
inertia contained in the solid crust (see text for details).

Model H Av ‘ Pc ‘ R ‘Rcore ‘ Mcore ‘ Mcr/M(%)‘ I ‘ Icore ‘ Icr/I(%) ‘
NL3 || 0.00 | 4.675 | 15.08 | 13.29 | 1.308 | 2.18(2.13) | 1.899 | 1.810 | 4.67(4.70)
0.01 | 4.980 | 14.70 | 12.71 | 1.298 | 2.91(2.83) | 1.788 | 1.678 | 6.17(6.21)
0.02 | 5.032 | 14.53 | 12.33 | 1.285 | 3.91(3.78) | 1.749 | 1.608 | 8.10(8.10)
0.03 | 5.032 | 14.16 | 12.17 | 1.286 | 3.84(3.72) | 1.732 | 1.597 | 7.77(7.82)
0.04 | 5.019 | 13.64 | 12.18 | 1.302 | 2.59(2.54) | 1.724 | 1.634 | 5.19(5.27)
MS 0.00 | 7.135 | 13.91 | 12.45 | 1.315 | 1.63(1.61) | 1.619 | 1.560 | 3.66(3.71)
FSU || 0.00 | 7.329 | 13.96 | 12.47 | 1.316 | 1.58(1.56) | 1.605 | 1.547 | 3.61(3.65)
(1.92) (4.52)
(2.22) (5.15)
(1.99) (4.57)
(1.27) (2.87)
(016) (0-36)

0.01 | 8.314 | 13.45 | 11.85 | 1.311 | 1.96(1.92 1.482 | 1.416 | 4.46(4.52
0.02 | 8.700 | 13.13 | 11.50 | 1.307 | 2.26(2.22 1.431 | 1.358 | 5.08(5.15
0.03 | 8.856 | 12.77 | 11.34 | 1.310 | 2.02(1.99 1.406 | 1.343 | 4.49(4.57
0.04 | 8918 | 12.35 | 11.30 | 1.320 | 1.28(1.27 1.393 | 1.354 | 2.82(2.87
0.05 | 8936 | 11.84 | 11.33 | 1.335 | 0.16(0.16 1.387 | 1.382 | 0.36(0.36

4.6 Conclusion

In this chapter we have studied the sensitivity of the stellar moment of inertia to the
underlying equation of state. In the slow-rotation approximation employed here, the stellar

moment of inertia is only sensitive to the equation of state. Several equations of state were
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Table 4.4: Predictions for the properties of the J0737-3039 B pulsar with a mass of
M = 1.250Mg, and spin period of P = 2.77 ms (or stellar frequency of Q = 2.268
571 [19]). The central densities are in units of 10'* g/cm?®, the radii in km, the
core mass in solar masses and the moments of inertia in 10%® gcm?. The quantities
in parenthesis are the analytic results for the fraction of the mass and moment of
inertia contained in the solid crust (see text for details).

| Model | Ay | pc | R | Reore | Meore | Mee/M(%) | I | Toore | Ia/1(%) |
NL3 ][ 0.00 [ 4491 [ 15.11 [ 13.16 | 1.219 | 2.47(2.41) | 1.730 | 1.639 | 5.28(5.29)
0.01 | 4.808 | 14.72 | 12.56 | 1.209 | 3.28(3.19) | 1.622 | 1.509 | 6.94(6.95)
0.02 | 4.869 | 14.54 | 12.16 | 1.195 | 4.39(4.21) | 1.582 | 1.439 | 9.03(8.97)
0.03 | 4.874 | 14.13 | 11.99 | 1.197 | 4.28(4.12) | 1.563 | 1.428 | 8.62(8.61)
0.04 | 4.864 | 13.56 | 11.99 | 1.214 | 2.88(2.82) | 1.554 | 1.465 | 5.73(5.79)
MS 0.00 | 6.474 | 14.07 | 12.44 | 1.226 | 1.93(1.90) | 1.507 | 1.443 | 4.28(4.33)
FSU || 0.00 [ 6.631 | 14.14 | 12.48 | 1.226 | 1.89(1.85) | 1.498 | 1.434 | 4.25(4.28)
(2.29) (5.31)
(2.63) (6.02)
(2.35) (5.31)
(1.50) (3.33)
(0.19) (0.42)

0.01 | 7.507 | 13.65 | 11.86 | 1.221 | 2.34(2.29 1.381 | 1.308 | 5.27(5.31
0.02 | 7.869 | 13.32 | 11.49 | 1.216 | 2.69(2.63 1.329 | 1.249 | 5.97(6.02
0.03 | 8.023 | 12.91 | 11.32 | 1.220 | 2.39(2.35 1.303 | 1.234 | 5.24(5.31
0.04 | 8.090 | 12.43 | 11.27 | 1.231 | 1.51(1.50 1.288 | 1.246 | 3.27(3.33
0.05 | 8113 | 11.87 | 11.31 | 1.248 | 0.19(0.19 1.281 | 1.275 | 0.41(0.42

generated using relativistic mean-field models that have been accurately calibrated to the
bulk properties of infinite nuclear matter and finite nuclei. As nuclear observables probe
the EOS around nuclear matter saturation density, two aspects of the EOS remain poorly
constrained even after the calibration procedure: (a) the density dependence of the symmetry
energy and (b) the high-density component of the EOS. The relativistic mean-field models
employed here include two empirical parameters—A, and (—that provide an efficient and
economical way to modify the EOS. Whereas the former controls the density dependence
of the symmetry energy, the latter controls the high density component of the EOS. As
such, Ay can be used to tune the pressure of pure neutron matter at saturation density,
thereby controlling the neutron radius of objects as diverse as finite nuclei and neutron stars.
In contrast (—by modifying the high-density component of the EOS—strongly affects the
maximurn stellar mass that can be supported against gravitational collapse. By tuning these
two parameters, one can generate limiting stellar masses that differ by more than one solar
mass and radii (for a fixed stellar mass) that may differ by more than 2 km. Note that one

can generate these wide range of values without compromising the success of the models in
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reproducing a host of well determined nuclear observables.

With several equations of state in hand, we proceeded to compute the moment of inertia
of the recently discovered binary pulsar PSR J0737-3039 (with individual masses of M4 =
1.337 Mg and Mp = 1.250 Mg). It has been suggested—due to the high sensitivity of
the binary to general relativistic effects—that the moment of inertia of the fastest spinning
pulsar in the binary (PSR J0737-3039A) may be measured with a 10% accuracy. Our results
indicate that knowledge of the pulsar moment of inertia (even with a 10% accuracy) could
help discriminate among various equations of state. We note, however, that whereas our
results suggests that a measurement of the moment of inertia could discriminate between
equations of state that are either stiff or soft at high density, the sensitivity to the density
dependence of the symmetry energy appears to be weak—especially for models with a soft
symmetry energy.

Although we find the total moment of inertia interesting, the main focus of this study was
its crustal component I... Several reasons prompted this choice. First, an analysis of pulsar
glitches in the Vela pulsar suggests that at least 1.4% of the total moment of inertia must
reside in the solid crust. This places significant constrains on the EOS. Second, the crust
is thin and the density within it is low, so simple—yet fairly accurate—analytic expressions
for I.. exist. These indicate that the crustal moment of inertia depends sensitively on a
fundamental observable: the transition pressure at the core-crust interface (P;). Third,
given the strong correlation between the core-crust transition density and the neutron skin
thickness of 298Pb, one expects a similar correlation to emerge in the case of P, and I,.
Finally, given that at the time of this writing the proposal of the second run for the Parity
Radius Experiment (PREx) is underway, the prospects of constraining crustal properties
with laboratory data appears imminent.

However, we found no correlation between the transition pressure P; and the neutron
skin thickness in 208Pb. Whereas a robust correlation exists between R,-R, and various bulk
properties of the EOS at the transition region—such as the baryon density, energy density,
and proton fraction—no such correlation develops in the case of the transition pressure. And
because of its sensitivity to the transition pressure, we conclude that the crustal moment of

inertia will not be significantly constrained by a measurement of the neutron skin thickness
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in 208Pb. This represents the main conclusion of our work. We found the explanation for
this behavior subtle and rooted on the observed correlation between the transition density
pt and R,-R,. As expected, the larger the value of R,-R, the stiffer the symmetry energy.
That is, given a fixed value of the baryon density the resulting pressure increases with R,-
R,. However, the transition pressure is obtained by evaluating the EOS—mnot at a fixed
value of the density, but rather—at the transition density, which is inversely correlated to
R,-R,. It is precisely the fact that p; changes with R,-R, that destroys any correlation
between P, and R,-R, [see Fig. 4.4(b)]. Although at odds with some studies that support
the existence of such a correlation |57, 58, 59, 60], our result appears consistent with a very

recent analysis by Ducoin, Margueron, and Providencia [101].
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Figure 4.7: Crustal mass (a), crustal thickness (b), and crustal moment of inertia
(c) as a function of the neutron skin thickness in 2%8Pb for a 1.337 M, neutron
star (JO737-3039 A). The various mean-field interactions are described in the text.
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Figure 4.8: Fraction of the crustal moment of inertia as a function of the neutron
skin thickness in 28Pb for the binary pulsar J0737-3039 with masses of 1.337 M,
(JO737-3039 A) and 1.25 My (J0737-3039 B). The various mean-field interactions
are described in the text.
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CHAPTER 5

NEW RELATIVISTIC EFFECTIVE
INTERACTION FOR NUCLEI, GIANT
RESONANCES, AND NEUTRON STARS

5.1 Introduction

Recently Ozel et. al. [11] reported a combined mass-radius measurement of three neu-
tron stars, and subsequently determined the equation of state governing these neutron stars.
The mass versus radius relationship of neutron stars is intimately connected to the equation
of state of cold, neutron-rich matter. Indeed, an EOS is the sole ingredient that must be
supplied to solve the equations of stellar structure (i.e., the Tolman-Oppenheimer-Volkoff
equations). Conversely, knowledge of the M — R relation is sufficient to uniquely deter-
mine the equation of state of neutron-star matter [17]. As argued by Lindblom almost 20
years ago, the availability of such information—even from a single neutron star—will pro-
vide interesting information about the equation of state [17]. In particular, the equation
of state determined by Ref. [11] is softer than those containing only nucleonic degrees of
freedom. This conclusion is both very interesting and provocative. Viewed in this light,
we compute the equation of state of neutron-star matter and the resulting M — R rela-
tion using accurately-calibrated relativistic mean-field models. These models have been
calibrated to the properties of infinite nuclear matter at saturation density [16], to the
ground-state properties of finite nuclei [14, 97], or to both [15]. Unlike the former two, the
latter parametrization predicts a significantly soft symmetry energy, a feature that appears
consistent with the behavior of dilute neutron matter (see Ref. [96] and references therein).

A detailed explanation of the role of the model parameters on the equation of state is given
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in Chapters 4 and 6. We note, however, that none of the models considered in this work
include exotic degrees of freedom, such as hyperons, meson (condensates), or quarks. Thus,
we shall see that relative to the conclusions of Ref. [11] our results are mixed. On the one
hand, the stellar radii predicted by the relativistic models are larger than observed, seem-
ingly confirming that such equations of state are too stiff. On the other hand, the agreement
between the predicted and observational EOS suggests the contrary.

Note that the simultaneous determination of both the mass and radius of a neutron
star is very difficult. However, tremendous advances in X-ray astronomy have produced
large amounts of high quality data that have allowed the simultaneous determination of
both masses, radii, and the underlying equation of state [11, 12]. Unfortunately, neutron
star radii inferred from X-ray observations of the luminosity and temperature are sensitive
to models of the stellar atmosphere (see Ref. [65, 102] and references therein). Moreover,
mass and radius determination from X-ray burst (as in Ref. [l1]) may be hindered by
systematic uncertainties [12]. For example Ozel et. al. inferred very small stellar radii from
their recent analysis of three X-ray bursts |1 1], while Steiner et. al. extracted neutron star
radii significantly larger (of the order of 12 km) [12]. Still, we believe that such studies
will eventually become instrumental in constraining the dense matter equation of state. In
particular, the recent interpretation of X-ray observations by Steiner et. al. suggests that
the FSUGold equation of state is slightly stiff at intermediate densities and soft at high
densities. This in turn suggests that the FSUGold model predicts neutron star radii that
are too large and a maximum neutron-star mass that is too small. This analysis is further
confirmed—at least for the high density domain—by a recent two solar mass neutron-star
measurement by Demorest et. al [13] using Shapiro time delay.

In response to the references above, in this chapter we will also introduce a new relativis-
tic effective interaction that is simultaneously constrained by the properties of finite nuclei,
their collective excitations, and neutron-star properties. By adjusting two of the empirical
parameters of the theory, one can efficiently tune the neutron skin thickness of 2°Pb and
the maximum neutron star mass. The new effective interaction is fitted to a neutron skin
thickness in 2°®Pb of only R,, — » = 0.16 fm and a moderately large maximum neutron

star mass of 1.94 M. The maximum mass prediction of this new model is consistent with
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the recent mass measurement by Ref. [13] (M = 1.97+0.04 M), which was not yet known

at the time of this research.

5.2 Current Uncertainties in the Relativistic Models of the
Neutron-Star Matter Equation of State

The structure of neutron stars is sensitive to the equation of state of cold, fully catalyzed,
neutron-rich matter over an enormous range of densities. As discussed in section 3.8, for the
low-density outer crust we employ the equation of state of Baym, Pethick, and Sutherland
[16]. At densities of about a third to a half of nuclear-matter saturation density, uniformity
in the system is restored and for this (liquid-core) region we use an EOS derived from a
representative set of accurately calibrated relativistic mean-field models [14, 15, 16, 61]. For
the intermediate complex and exotic nuclear pasta regions we use a fairly accurate polytropic
equations of state.

Accounting for most of the stellar radius and practically all of its mass, the liquid core
of the neutron star is structurally the most important component of the star. Matter in the
liquid core is assumed to be composed of neutrons, protons, electrons, and muons in chemical
equilibrium. We reiterate that no exotic degrees of freedom are included in the models
discussed. Both electrons and muons are treated as non-interacting relativistic Fermi gases.
For the hadronic component, the equation of state is generated using accurately-calibrated
relativistic models [14, 15, 16, 61]. These models include a nucleon field (1) interacting via
standard Yukawa couplings to two isoscalar mesons (a scalar ¢ and a vector V},) and one
vector-isovector meson (by): gs, gv, and g,. In addition to Yukawa couplings, the model is
supplemented by non-linear meson interactions: x for cubic, and A for quartic scalar-isoscalar
self-interactions, ¢ for quartic vector-isoscalar self interaction, and A, for the quartic mixed
isoscalar-isovector interaction. The inclusion of scalar cubic and quartic self-interactions
dates back to the late seventies [8] and is instrumental for softening the incompressibility
coefficient of symmetric nuclear matter, as required to explain the excitation of the the
nuclear breathing mode. Of particular interest and of critical importance to the present

study are the vector self-interaction (¢) and the isoscalar-isovector mixing term (Ay).
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Table 5.1: Parameter sets for a representative “extra-soft” RMF model discussed
in the text. The units of parameter k is given in MeV. The meson masses are the
same as in the FSUGold model.

(Model | oe [ o | g | s | A [ [A]
| XS ][ 131.0059 | 258.1044 | 213.9596 | 0.0079 | 40.04339 | 0.09 | 0.04 |

In the Fig. 4.2, using the three RMF models discussed in the text, the mass of the neutron
star was given as a function of the central density (a), and as a function of its radius (b).
This figure illustrates that the empirical parameter ¢ provides an efficient tool to control the
high-density component of the equation of state. While the RMF models with ¢ = 0 (such
as NL3) predict the same observed properties at normal nuclear densities, yet they produce
maximum neutron star masses that differ by almost one solar mass. The higher the value
of ¢ one gets the softer equation of state at high densities. The particular case of { = 0
corresponds to the stiffest equation of state at high densities (Look at Fig. 4.1).

The isoscalar-isovector coupling constant A, was introduced to modify the poorly known
density dependence of the symmetry energy. We remind that the symmetry energy repre-
sents the energy cost involved in changing protons into neutrons (and vice-versa). To a
good approximation, it is given by the difference in energy between pure neutron matter
and symmetric nuclear matter. With only one isovector parameter (g,) to adjust, relativis-
tic mean-field models have traditionally predicted a stiff symmetry energy. The addition of
A, provides a simple—yet efficient and reliable—method of softening the symmetry energy
without compromising the success of the model in reproducing well determined ground-state
observables [15]. Indeed, whereas models with different values of A, reproduce the same ex-
act properties of symmetric nuclear matter, they yield vastly different predictions for both
the neutron radii of heavy nuclei and for the radius of neutron stars [30, 78]. Given that the
neutron-star radius is believed to be primarily controlled by the symmetry pressure at in-
termediate densities [3], the Parity Radius Experiment (PREx) at the Jefferson Laboratory
will provide a unique laboratory constraint on a fundamental neutron-star property [$5, 86].

In summary, the two empirical parameters ¢ and A, provide a highly economical and

efficient control of the softness of the high-density component of equation of state and of
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the symmetry pressure at intermediate densities, respectively—with the former primarily
controlling the maximum neutron star mass (panel (a) of Fig. 4.2), and the latter the stellar
radius (panel (b) of Fig. 4.2). Parameter sets for all the models employed in this work are
listed in Table 2.1 and 2.2. In addition, as a representative set we have constructed an “Extra
Soft” (XS) relativistic mean-field model constrained by the properties of symmetric nuclear
matter at saturation density (i.e., equilibrium density, binding energy per nucleon, and
incompressibility coefficient). In regards to these properties, the model is indistinguishable
from FSUGold (see Table 5.1). The only additional constraint imposed on the model is that
its limiting mass be no smaller than 1.6 solar masses. We feel that lowering this limiting value
any further may start conflicting with the observational data [3]. Although no exhaustive
parameter search was conducted, we trust that the resulting extra-soft equation of state (as
given in Table 5.1) is representative of the softness that may be achieved with present-day
relativistic mean-field models. With such a soft model, neutron-star radii get significantly
reduced indeed (see Fig. 5.1). For example, the neutron radius of a 1.4 Mg neutron star is
reduced by almost one kilometer relative to the FSUGold prediction (see Table 5.2) and by
more than 1.5 km at its limiting mass of 1.6 My. Yet the minimum neutron-star radius of
R=10.41 km predicted by the model remains outside the observational error bars.

In Fig. 5.1 we compare observational results for neutron star masses and radii against
the model predictions. The very stiff behavior of the NL3 equation of state is immediately
evident. With both empirical parameters ¢ and A, set equal to zero, it is not surprising
that the NL3 model predicts neutron-star masses as large as 2.8 Mg with very large radii.
As compared to the observational data, the NL3 model suggests a radius for a 1.7 solar-
mass neutron star that is about 6 km too large. Moreover, the NL3 equation of state is so
stiff that gravity in a 2.8 Mg neutron star can compress matter to only about four times
normal nuclear density (see Table 5.2). All these, even when the model provides an excellent
description of many laboratory observables.

As first suggested by Miiller and Serot [16], adding a vector self-interaction (with (=0.06)
dramatically reduces the repulsion at high densities and ultimately the limiting neutron-star
mass. As compared to the NL3 parameter set, the maximum neutron star mass predicted

by Miiller and Serot (MS) is reduced by almost one solar mass (see Fig. 5.1 and Table 5.2).
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Figure 5.1: Mass-vs-Radius relation predicted by the four relativistic mean-field
models discussed in the text. The observational data is for the three neutron
stars reported in Ref. [11]. These neutron stars are in the binaries 4U 1608-
52[103] (green), EXO 1745-248 [104] (magenta), and 4U 1820-30 [105] (blue).

Consistent with this softening is a significant increase in the compactness of the star. For
example, for a neutron-star mass of about 1.8 Mg, NL3 predicts a stellar radius that is
more than 3 kilometers larger than MS. Note, however, that the density dependence of the
symmetry energy predicted by NL3 and MS is practically identical (see inset in Fig. 5.2). In
particular, this is reflected in the identical prediction of 0.28 fm for the neutron-skin thickness
of 2%8Pb. This suggests that tuning the density dependence of the symmetry energy—via
the addition of the isoscalar-isovector mixing term A,—may yield a further reduction in
neutron-star radii [78], as suggested by observation.

Incorporating information on nuclear collective modes in the calibration procedure of
the FSUGold model favors a non-zero value for Ay [I5]. Further, it now seems that the
resulting softening of the symmetry energy is consistent with the EOS of dilute neutron
matter predicted by various microscopic approaches (see Refs. [90, 94, 99] and references

therein). That the addition of A, produces the intended effect can be appreciated in Fig. 5.1
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Table 5.2: Predictions for the central baryon density, central pressure, mass, and
radius of the limiting neutron star for the four models employed in the text. The
last column lists predictions for the radius of a 1.4 solar-mass neutron star. The
baryon density is given in fm™3, the pressure in MeV fm™3, the mass in solar
masses, and the radii in kilometers.

| Model | p. | P [ M [ R [ R4 |
NL3 [ 0.668 | 441.87 [ 2.77 [ 13.39 | 15.07
MS | 1.040 | 311.73 | 1.81 | 11.64 | 13.78
FSU | 1.155 | 347.20 | 1.72 | 10.97 | 12.66
XS | 1.259 | 348.64 | 1.60 | 10.39 | 11.73

and Table 5.2. That is, although one has adopted the same value of ¢ for both MS and
FSUGold, their predictions for the radius of a “canonical” 1.4 solar-mass neutron star differ
by more than one kilometer. Related to this fact is the significant smaller neutron-skin
thickness of 208Pb predicted by FSUGold (0.21 fm vs 0.28 fm). However, it appears that the
combined softening of the EOS at high densities (through ¢) and of the symmetry pressure
(through Ay) is insufficient to explain the observational data; the minimum stellar radius
predicted by the FSUGold model is about 11 km, significantly larger than suggested by

observation.

In an effort to describe the observational data, we have constructed an “Extra Soft” (XS)
relativistic mean-field model constrained by the properties of symmetric nuclear matter at
saturation density (i.e., equilibrium density, binding energy per nucleon, and incompressibil-
ity coefficient). In regards to these properties, the model is indistinguishable from FSUGold.
The only additional constraint imposed on the model is that its limiting mass be no smaller
than 1.6 solar masses [106]. We feel that lowering this limiting value any further may start
conflicting with the observational data [3]. Although no exhaustive parameter search was
conducted, we trust that the resulting extra-soft equation of state (as given in Table 5.1) is
representative of the softness that may be achieved with present-day relativistic mean-field
models. With such a soft model, neutron-star radii get significantly reduced indeed (see
Fig. 5.1). For example, the neutron radius of a 1.4 Mg neutron star is reduced by almost

one kilometer relative to the FSUGold prediction (see Table 5.2) and by more than 1.5 km
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Figure 5.2: Equation of state (Pressure vs baryon density of neutron-star mat-
ter predicted by the four relativistic mean-field models discussed in the text as
compared to the observational extraction [11]. The symbols (stars) indicate the
central density and pressure of the maximum-mass neutron star. The inset shows
the symmetry pressure, given as the pressure of pure neutron matter minus that
of symmetric nuclear matter.

at its limiting mass of 1.6 M. Yet the minimum neutron-star radius of R = 10.39 km
predicted by the model remains outside the observational error bars.

Do we then conclude that the results presented in Fig. 5.1 are indicative of relativistic
equations of state that are too stiff? Do the observational results unambiguously called for
a softer equation of state, as would be produced by exotic states of matter, such as meson
condensates and/or quark matter? To answer this question we compare in Fig. 5.2 the
various equations of state used to generate Fig. 5.1 against the values extracted from the
observational data. The inset in the figure displays the symmetry pressure for the models
under consideration. To a good approximation, the symmetry pressure can be taken as the
difference of the pressure of pure neutron matter and that of the symmetric nuclear matter,
Piymm ~ Ppnm — Psnwv- The observed softening of the symmetry pressure between models

is entirely due to Ay. Note, however, that unlike the neutron-skin thickness of neutron-rich
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nuclei, the radius of the neutron star is not uniquely constrained by the symmetry pressure
at low to intermediate densities [78]. Thus models with similar symmetry pressures, may—
and do—predict significantly different stellar radii. Contrary to the expectations generated
by Fig. 5.1, most of the equations of state are not too stiff. Indeed, with the exception of
NL3, the remaining equations of state appear, if anything, slightly too soft at the highest
density. Based on these results—and these results alone—nucleonic equations of state do
not seem to be in conflict with the observational data.

In summary, the Mass-vs-Radius relation of neutron stars was computed using equations
of state derived from relativistic mean-field models. Although the models are calibrated in
the vicinity of nuclear-matter saturation density, it is possible to tune their high-density
behavior in a highly efficient and economical manner. In this study we have used two pa-
rameters to control the maximum neutron star mass and the stellar radius. As we compared
our predictions to the observational data a conflict emerged. Whereas one could generate
equations of state that are in agreement with observation, the predicted stellar radii are
too large. This result is particularly intriguing given that “inversion” methods exist for ex-
tracting the equation of state of stellar matter directly from masses and radii of neutron
stars [17]. Thus, one would expect that if the M-R predictions do not match observation,
neither would the equations of state. Clearly, to reconcile these facts much work remains to
be done in both the observational and theoretical fronts. And while the existence of exotic
stars is very appealing, suggesting the downfall of the purely nucleonic equations of state

may be premature.

5.3 The New Effective Interaction: IU-FSU

In this section we develop an effective interaction suitable for the calculation of the
ground-state properties of finite nuclei, their collective response, and the structure of neu-
tron stars [107]. Astrophysical predictions are notoriously difficult as they involve two large
extrapolations away from the familiar landscape of stable nuclei. Whereas one involves
isospin extrapolations from the domain of stable nuclei to the very neutron-rich systems
present in neutron stars, the other one involves an extrapolation from the density of nor-

mal nuclei to the very high (and very low) densities that are encountered in neutron stars.
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To reduce the uncertainties associated with these extrapolations we impose two additional
constraints—one experimental and one observational—on the effective interaction. Specifi-
cally, we extend the standard protocol of fitting to the binding energies and charge radii of
finite nuclei by demanding that the new effective interaction also reproduces: (a) the neu-
tron radius of 2%Pb and (b) the maximum mass of a neutron star. We have selected these
two quantities over other possible choices because they can be determined in a model inde-
pendent manner from experiment and observation. In particular, fixing the neutron radius
in 298Pb reduces significantly the uncertainties associated with extrapolations in isospin.
The proposed second run of the Lead Radius experiment (PREx) aims to determine the
neutron radius of 2*Pb in a model independent fashion by using parity violating electron
scattering [25, 86]. To reduce the uncertainty associated with extrapolations to high densi-
ties, we have selected to fix the maximum neutron star mass. At the time of this research,
the maximum neutron star mass selected for the fit was at least equal to the largest—well
measured—mass determined from observation [108]. A recent neutron-star mass measure-
ment of 1.97+0.04 Mg by Demorest et. al [13] has confirmed that the new proposed model
indeed agrees with the latest observation.

In principle, other choices are possible to guide these extrapolations. For example,
laboratory experiments with heavy ions have played a critical role in probing the nuclear
equation of state. By tuning the energy of the colliding beams and the neutron-proton
asymmetry, heavy-ion collisions probe vast regions of the phase diagram. In particular,
isospin diffusion data may be used to constrain the density dependence of the symmetry
energy [11, , |. This could be used instead of the neutron radius in 2°*Pb. Moreover,
experiments with very energetic heavy ions have compressed nuclear matter to densities
in excess of four times nuclear matter saturation density [98]. The determination of the
pressure of symmetric nuclear matter at these high densities may be used instead of the
maximum neutron star mass. However, not only is the interpretation of heavy-ion data
model dependent, but heavy-ion systems are much less neutron rich and often much hotter
than neutron stars. This introduces large and uncontrolled uncertainties.

In the past, the correlation between the neutron skin of 2*Pb and the non-uniform solid

crust of a neutron star has been studied [30]. For models with a stiff equation of state,
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namely, one where the pressure increases rapidly with density, it is energetically unfavorable
to separate uniform nuclear matter into regions of high and low densities. Thus, models
with a stiff equation of state predict low transition densities from non-uniform to uniform
neutron-rich matter. The neutron skin thickness in 2°*Pb also depends on the equation of
state of neutron-rich matter: the stiffer the equation of state the thicker the neutron skin.
Thus, an inverse relationship was established: the thicker the neutron skin of a heavy nu-
cleus, the lower the transition from non-uniform to uniform neutron-rich matter (Look at
Fig. 4.6). This represents one of the many examples that show the utility of constrain-
ing the neutron skin thickness in 2“®Pb—and consequently the effective interaction—for

astrophysical applications.

We have already discussed the existence of many relativistic effective interactions. For
example, the NL3 interaction |14, 97] provides an excellent description of the binding energy
and charge radii of many nuclei throughout the periodic table. When extrapolated to the
neutron-star domain, the NL3 effective interaction predicts a very stiff equation of state
that generates both large stellar radii and a large maximum neutron star mass. On the
other hand, the FSUGold interaction [15] also provides a good description of closed shell
nuclei, but predicts a significantly softer equation of state. Indeed, whereas NL3 predicts
a maximum neutron star mass of 2.77 Mg, the FSU interaction predicts a limiting mass
almost one full solar mass smaller (of 1.72 Mg)). The softer equation of state emerges as one
incorporates constraints from giant resonances and heavy-ion collisions. At present, we are
not aware of any nuclear effective interaction that also incorporates astrophysical constraints
in the calibration procedure. The aim of this study is therefore to obtain a new effective
interaction that improves on both NL3 and FSUGold by incorporating some of the recent
constraints suggested by Steiner, Lattimer, and Brown [12]. In particular, we will show that
the EOS predicted by the new model generates a limiting neutron star mass intermediate

between NL3 and FSUGold but stellar radii smaller than both.

Our starting point will be the relativistic effective-field theory of Ref. [16] supplemented

with an isoscalar-isovector coupling as introduced in Ref. [30]. The interacting Lagrangian
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density for this model is given by [16, 30)]

L = ¥ |gd—(0Vu+ L byt S(14m)Au) 7]

K A y
(0P~ (00) S VI + A DY ()

The model contains an isodoublet nucleon field (v) interacting via the exchange of two
isoscalar mesons, the scalar sigma (¢) and the vector omega (V*), one isovector meson, the
rho (b*), and the photon (A#). In addition to meson-nucleon interactions, the Lagrangian
density includes scalar and vector self-interactions. (Note that while the original model al-
lows for p-meson self-interactions [16], their phenomenological impact has been documented
to be small so they will not be considered in this study). The scalar self-interaction is re-
sponsible for reducing the compression modulus of nuclear matter from the unrealistically
large value of K =545 MeV [7, 10] all the way down to about K =230 MeV. This latter
value appears to be consistent with measurements of the isoscalar giant monopole resonance
(GMR) in 29%8Pb [38, ) , |.

Omega-meson self-interactions, as described by the parameter (, soften the equation
of state at high density and can be tuned to reproduce the maximum mass of a neutron
star. Indeed, Miiller and Serot found it was possible to build models with different values
of ¢ that reproduce the same observed properties at normal nuclear densities, yet produced
maximum neutron star masses that differ by almost one solar mass [16]. In particular,
models with ¢ = 0 predict large limiting masses of about 2.8 Mg—even for models with
a soft symmetry energy. In contrast, the nonlinear coupling constant A, was included to
modify the density-dependence of the symmetry energy. Tuning A, provides a simple and
efficient method of softening the symmetry energy without compromising the success of the
model in reproducing well determined ground-state observables [15]. Here we will adjust
A, by assuming a relatively small value for the neutron skin thickness of 2°Pb. Many
properties of finite nuclei, such as the binding energies and charge radii of closed shell nuclei,
are ingensitive to the values of ( and Ay. Indeed, the NL3 effective interaction reproduces
these observables without ever introducing these two empirical parameters. Our approach
here is to accommodate newly proposed astrophysical constraints that suggest that, relative
to the FSUGold interaction, the equation of state of stellar matter must be slightly softer

at intermediate densities and stiffer at high densities [12].

79



The new effective interaction is generated by adopting the following procedure. We start
from the FSUGold parameter set [15] as listed in Table 2.1 and Table 2.2. This parameter set
reproduces ground-state properties and collective excitations of closed shell nuclei. However,
this interaction has a relatively large value of ( = 0.06. This reduces the pressure at high
densities and generates a relatively small neutron star maximum mass of 1.72 Mg. Note
that, to date, the only terrestrial constraint on the high-density component of the EOS
comes from energetic heavy-ion collisions [98]. The FSUGold equation of state fits these data
comfortable within the errors. Yet, the reported errors are large enough to accommodate
slightly stiffer equations of state. As we aim for an interaction with a somewhat larger
maximum mass of about 2.0 My, we reduce the value of ¢ from 0.06 to 0.03. Next, we
refit the isoscalar parameters (gs, gv, %, and A) to maintain the saturation properties of
symmetric nuclear matter at their FSUGold values, namely, a saturation density of 0.148
-3

fm =3 (or a Fermi momentum of kp = 1.30 fm~!), an energy per nucleon of E/A = —16.30

MeV, and an incompressibility coefficient of K =230 MeV.

Table 5.3: Parameter set for the IU-FSU models discussed in the text. The pa-
rameter s is given in the units of MeV. The meson masses mg, my, and m, are

chosen to have the same values as in the FSUGold model. The nucleon mass has
been fixed at M =939 MeV.

(Model | o8 | o [ g [ « [ * [¢[A ]
| TU-FSU || 99.4266 | 169.8349 | 184.6877 | 3.3808 | +0.000296 | 0.03 | 0.046 |

We then increase the isoscalar-isovector coupling constant Ay from its FSUGold value
of 0.03 to 0.046. This change softens the density dependence of the symmetry energy and
reduces the neutron radius in 2°Pb. We aim for a modest value of the neutron skin thickness
in 298Pb of about R,—R,=0.16 fm. This value, although smaller as compared to other rela-
tivistic mean field models, is close to those predicted by many non-relativistic models. Note
that when we change Ay, we also change g, in order to maintain the symmetry energy fixed
at ~26 MeV at a Fermi momentum of kg =1.15 fm~!. This procedure and the justification
for it are described in detail in Ref. [30]. Increasing Ay in this fashion reduces the density
dependence of the symmetry energy. This generates a symmetry energy at low densities

that is larger than the one for FSUGold. As a result, protons near the surface of 2°Pb are
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Table 5.4: Bulk parameters characterizing the behavior of infinite nuclear matter
at saturation density p,. The quantities €, and K represent the binding energy
per nucleon and incompressibility coefficient of symmetric nuclear matter, whereas
J, L, and Ky represent the energy, slope, and the curvature of the symmetry
energy at saturation density.

Model || po (fm™%) | g0 (MeV) | Ko (MeV) [ J (MeV) | L (MeV) | Kgym (MeV) |

NL3 0.1482 —16.24 271.5 37.28 118.2 +100.9
MS 0.1484 —15.75 250.0 35.00 102.4 —0.2

FSU 0.1484 —16.30 230.0 32.59 60.5 —ol1.3
IU-FSU 0.1546 —16.40 231.3 31.30 47.2 +28.5

pulled closer to the neutrons in an effort to minimize the neutron-proton asymmetry. This
leads to an increase in the charge radius of 2°®Pb. In order to maintain the charge radius in
208Ph at its experimental value we must slightly increase the Fermi momentum of symmetric
nuclear matter from 1.30 to 1.318 fm~'. We then refit the parameters of the model to keep
the other saturation properties of nuclear matter intact. Finally, the scalar coupling gs is
slightly tuned to improve the fit to the binding energies of closed shell nuclei. Note that we

have not changed the scalar mass ms from its FSUGold value.

The resulting parameter set—henceforth referred to as the Indiana University-Florida
State University (IU-FSU) interaction—is listed in Table 5.3. The resulting bulk properties
of infinite nuclear matter have been collected in Table 5.4. In addition, predictions for several
ground-state properties of closed shell nuclei are listed in Table 5.5 and compared against
other theoretical models and experiment (when available). Finally, using the Hartree code
provided by Professor Piekarewicz, predictions for the charge and neutron densities of 2°*Pb
are displayed in Fig. 5.3. Whereas significant differences can be observed in the prediction of
the neutron densities, the difference among the models is small for the charge density. Note
that although the parameters of the model will eventually be determined from an accurate
calibration procedure, the new model reproduces rather well the charge radii and binding
energies of closed shell nuclei. However, the IU-FSU interaction predicts the rather modest

value of R, —R,=0.16 fm for the, as yet unknown, neutron skin thickness in 208Pb.
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Table 5.5: Experimental data for the binding energy per nucleon and charge radii
for several doubly magic nuclei. Results are presented for the four models employed
in the text alongside their predictions for the neutron skin thickness of these nuclei.
Note that the MS model is not accurately-calibrated, while it predicts the correct
charge radii, it underestimates the binding energy per nucleon.

Nucleus‘ Observable ‘Experiment‘ NL3 ‘ MS ‘ FSU ‘IU—FSU

0Ca | B/A (MeV) 8.55 854 | 7.61| 854 8.53
R, (fm) 3.45 3.46 | 3.44 | 3.42 3.41

R,—R, (fm) — —0.05 | —0.05 | —0.05 | —0.05

BCa | B/A (MeV) 8.67 8.64 | 7.714| 858 8.55
R, (fm) 3.45 3.46 | 3.45 | 3.45 3.44

R,—R, (fm) — 023 | 024 0.20 0.17

07y B/A (MeV) 8.71 8.68 | 7.86| 8.67 8.67
Ra, (fm) 4.26 4.26 | 425 | 4.25 4.23

R,—R, (fm) — 0.11 | 0.11 | 0.09 0.07

1326n | B/A (MeV) 8.36 837 | 7.62| 834 8.33
Rep (fm) — 4.70 | 469 | 4.71 4.68

R,—R, (fm) — 035 | 0.35| 0.27 0.22

28pyL | B/A (MeV) 7.87 788 | 717 | 7.89 7.89
Rep (fm) 5.50 551 | 5.50 | 5.52 5.48

R,—R, (fm) — 028 | 0.28| 0.21 0.16

5.4 Giant Resonances

At the time that the FSUGold effective interaction was calibrated, the only evidence
in favor of a symmetry energy softer than NL3 came from nuclear collective excitations,
particularly the mass dependence of the isoscalar giant monopole resonance (GMR). Whereas
NL3—with an incompressibility coefficient of K = 271 MeV—was able to reproduce the
centroid energy of the GMR in 2%Pb, it overestimated the GMR in °Zr. It was later
confirmed that the success of the NL3 interaction in reproducing the breathing mode in
208P} was accidental, as it resulted from a combination of both a stiff EOS for symmetric
nuclear matter (Panel (a) of Fig. 5.4) and a stiff symmetry energy [L15] (Panel (b) of Fig.
5.4). Indeed, with a relatively large neutron-proton asymmetry of a=(N — Z)/A = 0.212,
the GMR in 2%®Pb probes the incompressibility of neutron-rich matter, rather than that
of symmetric matter. Given that the incompressibility of neutron-rich matter softens with

a [116], NL3 could reproduce the GMR in 2%¥Pb by cancelling its stiff incompressibility
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Figure 5.3: Model predictions for the charge and neutron densities of 2°Pb (The
code was provided by Professor Piekarewicz). The experimental charge density is
from Ref. [114].

coefficient K with a correspondingly stiff symmetry energy:

Ko(a) = Ko + K,a* + O(a*) = Ko + (Ksym — 6L — %L) o® +0(at) (5.2)
0

where the expressions for Ko, Qo, L, and Kgym were introduced in equations (2.48), (2.49),
(2.56), and (2.57), respectively. This cancellation, however, is incomplete in ?°Zr because
its nucleon asymmetry is almost twice as small as that of 2°Pb (See Table 5.6). Thus,
to develop the FSU effective interaction Ref. [15] used the GMR in ?°Zr, rather than in
208PY, to fix the incompressibility coefficient of symmetric nuclear matter. Having fixed
K, Ref. [15] used the GMR—and the isovector giant dipole resonance (IVGDR)—in 2%*Ph
to constrain the density dependence of the symmetry energy [15]. As we shall see below
(see Table 5.7), the newly proposed TU-FSU effective interaction continues to reproduce the
centroid energy of these three modes.

The distribution of both isoscalar monopole and isovector dipole strength were com-
puted in a relativistic random-phase approximation (RPA). The first step in calculating

the RPA response is the computation of the mean-field ground state in a self-consistent
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Figure 5.4: Equations of state for symmetric nuclear matter (a), and the symmetry
energy as a function of baryon Fermi momentum (b) is given for the three models
discussed in the text.

mean-field approximation (This part of the research requires a heavy numerical compu-
tations, and was performed by Professor Piekarewicz). Once self-consistency is achieved,
three important pieces of information become available: (i) the single-particle energies of
the occupied orbitals, (ii) their single-particle wave functions, and (iii) the self-consistent
mean-field potential. This mean-field potential—without any modification—must then be
used to generate the nucleon propagator; only then can one ensure the conservation of the
vector current. The nucleon propagator, which is an essential building block of the un-
correlated polarization tensor, is computed non-spectrally to avoid any dependence on the
artificial cutoffs and truncations that plague most spectral approaches. Moreover, a great
merit of the non-spectral approach is that the continuum is treated exactly. Once the uncor-
related polarization insertion is computed, the correlated RPA polarization is obtained by
iterating it to all orders with the consistent residual interaction. The distribution of strength

is then obtained directly from the imaginary part of the polarization tensor. A detailed de-
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Table 5.6: Incompressibility coefficients of the neutron-rich matter are given for
the models discussed in the text. The asymmetry parameter o = 0 corresponds to
the SNM, o = 0.111 to the nuclei of ?°Zr, and a = 0.212 to the nuclei of 2%*Pb.

| Models | K(a=0) (MeV) | K(a=0.111) (MeV) | K(or = 0.212) (MeV) |

NL3 271.5 262.9 240.2

FSUGold 230.0 226.6 217.6

IU-FSU 231.3 228.9 222.6
scription of the relativistic RPA approach may be found in Ref. [111, |. Results for the

centroid energies of the giant monopole and dipole resonances are presented in Table 5.7 for
the three effective interactions considered in the text. Unlike the NL3 model, the results
obtained with both the FSUGold and the TU-FSU effective interactions are consistent with

experiment.

Table 5.7: Centroid energies for the GMR in 2°®Pb and ?°Zr, and the peak energy
for the IVGDR in 2°®Pb. Experimental data are extracted from Refs. [38] and [118].

| Nucleus | Observable | Experiment | NL3 | FSUGold | IU-FSU |

28ph | GMR (MeV) | 14.1740.28 | 14.32 | 14.04 14.17
N7y GMR (MeV) | 17.894+0.20 | 18.62 | 17.98 17.87
208ph | IVGDR (MeV) | 13.304+0.10 | 12.70 | 13.07 13.24

5.5 Equation of State and Neutron Star Structure in the
IU-FSU Model

5.5.1 Symmetric Nuclear and Pure Neutron Matter

Following standard mean-field practices, the energy density of asymmetric nuclear matter
may be computed over all values of the asymmetry parameter, a = (p,—pp)/p- The equation
of state (pressure as a function of baryon density) for symmetric nuclear matter (kj =k} and
Ry = g,bp =0) is displayed in Fig 5.5. By design, the FSUGold and IU-FSU interactions
have (almost) the same incompressibility coefficient so they predict similar pressures at
low to intermediate densities. However, at higher densities the TU-FSU interaction is stiffer

because it has a smaller value of { as compared to the FSUGold interaction. To date, the only
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terrestrial constraint on the high-density component of the EOS comes from energetic heavy-
ion collisions. Both of these models predict equations of state that are consistent with the
phenomenological flow analysis by Danielewicz, Lacey, and Lynch [98]. In contrast, the NL3
interaction, although enormously successful in reproducing ground-state properties of finite
nuclei, predicts an equation of state that is significantly stiffer than the phenomenological

extraction.

Symmetric Nuclear Matter

P [MeV fm?]

o
T

Danielewicz et al.
NL3
——FSUGold

—-— IU-FSU

PI B A RS S S RS S

1 2 3 4 5
PP,

Figure 5.5: The equation of state—pressure P vs baryon density—of symmetric
nuclear matter. Here pg is the density of nuclear matter at saturation and the
shaded area represents the EOS extracted from the analysis of Ref. [95].

The equation of state of pure neutron matter (PNM) provides a powerful theoretical
constraint on models of the effective interaction. By building on the universal behavior of
dilute Fermi gases with an infinite scattering length, significant progress has been made in
constraining the equation of state of pure neutron matter [90]. To date, a variety of models
using different neutron-neutron interactions and a variety of many-body techniques have
been employed to compute the EOS of dilute neutron matter (see Ref. [94] and references
therein). In Fig. 5.6 we display the energy per particle of pure neutron matter for a variety of

microscopic approaches [94] and for the three relativistic effective interaction discussed in the
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text. In most relativistic descriptions the isovector interaction is modelled by the exchange
of a single vector-isovector (“rho”) meson with its (Yukawa) coupling to the nucleon tuned to
reproduce the symmetry energy at saturation density. Invariably, such a simple prescription
generates a stiff symmetry energy. In turn, this yields an EOS for dilute neutron matter
that is inconsistent with the model-independent results of Schwenk and Pethick (denoted by
the shaded area in Fig. 5.6). The FSUGold isovector interaction improves on NL3 by adding
an isoscalar-isovector mixing term (Ay) that softens the symmetry energy. Recall that such
a softening is required to reproduce the centroid energies of various collective modes (see
Table 5.7). Without any further adjustment, the FSUGolf interaction is also consistent with
the theoretical constraints (see solid blue line). Finally, the TU-FSU interaction—with an

additional softening relative to FSUGold—remains within the theoretical “error bars”.
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Figure 5.6: Energy per nucleon as a function of the Fermi momentum for pure
neutron matter.

5.5.2 Neutron Star Matter

We conclude this section by computing the mass-vs-radius (M-R) relationship of neutron

stars. Given that the structure of neutron stars is sensitive to the EOS over an enormous
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range of densities, we must resort to various descriptions as discussed in Sections 3.8 and
5.2. For the non-uniform outer crust we employ the equation of state of Baym, Pethick,
and Sutherland [16]. At densities of about a third of nuclear-matter saturation density,
uniformity in the system is restored. For this (liquid-core) region we use an EOS generated
from the relativistic models discussed in the text. Although significant progress has been
made in simulating the exotic structure of the inner crust (i.e., the region between the outer
crust and the liquid core) a detailed equation of state is still missing in this region. Hence,
we resort to a fairly accurate polytropic EOS to interpolate between the solid crust and the
uniform liquid core |56, 74, 75, 76, 77]. The transition from the uniform liquid core to the
solid crust is sensitive to the density dependence of the symmetry energy. The crust-to-core
transition density p; is obtained from an RPA stability analysis to determine the onset of
the instability to small amplitude density oscillations [77]. With such an equation of state
in hand, we can now proceed to integrate the Tolman-Oppenheimer-Volkoff equations to
determine the structure of neutron stars.

In Fig. 5.7 we display predictions for the equation of state of stellar matter (i.e., neutron-
rich matter in beta equilibrium) for the three models discussed in the text, alongside the
constraint extracted from Ref. [12]. For reference, also shown is the stiffest (P = &) pos-
sible equation of state consistent with causality. As suggested in Ref. [12]|, the FSUGold
interaction appears slightly stiff at intermediate densities and too soft at high densities.
The TU-FSU interaction successfully corrects both of these problems. Note, however, that
the observational EOS can accommodate even stiffer equations of state. We stress that, if
required, this can be implemented rather easily by reducing even further the value of (.

In Fig. 5.8 we display predictions for the M-R relation and compare them against ob-
servational constraints extracted from the analyses of Refs. [I1] and [12]. The very stiff
behavior of the EOS predicted by NL3 is immediately ruled out by both observational con-
straints, although it comfortably predicts the recent maximum stellar mass measurement by
[13]. In the case of the FSUGold effective interaction, we recently identified a conflict when
compared with the analysis by Ozel and collaborators (See Ref. [106] and Section 5.2).
Whereas the FSUGold model seems to generate an EOS that is consistent with observation,

the predicted stellar radii were simply too large. Relative to the analysis by Steiner Lattimer,
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Figure 5.7: Equation of state—pressure vs energy density—of neutron-rich matter
in beta equilibrium. The shaded region displays the observational constraint ex-
tracted from Ref. [12]. The solid black line (P = &) denotes the stiffest possible
equation of state consistent with causality.

and Brown [12], the FSU predictions overestimate the stellar radius—although not as much
as suggested by [l I]—but underestimates the maximum neutron star mass. The TU-FSU
interaction, with a softer EOS at intermediate densities and a stiffer one at high densities,
is motivated in response to these findings. Indeed, the TU-FSU interaction predicts a maxi-
mum stellar mass of 1.94 M, and a stellar radius of R = 12.49 km for a 1.4 My neutron star
(see Table 5.8). These predictions are consistent with the 20 values extracted from X-ray
observations by Steiner, Lattimer, and Brown [12]. However, they are well outside the limits
extracted by Ozel and collaborators [11]. Given that such extractions depend critically on
the models used to simulate X-ray bursts, much work remains to be done to reconcile these
two analyses. We close this section by listing in Table 5.8 predictions for several important
neutron-star properties. In addition to the properties already discussed (such as masses and
radii), the table includes the minimum proton fraction and the minimum density required

for the onset of the direct Urca process and the minimum stellar mass that may cool down
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by the direct Urca process. Note that small neutron star radii and enhanced cooling are

generally regarded as good indicators of a possible phase transition in the stellar core.
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Figure 5.8: Mass-vs-Radius relation predicted by the three relativistic mean-field
models discussed in the text. The observational data that suggest very small stel-
lar radii represent 1o confidence contours for the three neutron stars reported in
Ref. [11]. The two shaded areas that suggest larger radii are 1o and 20 contours
extracted from the analysis of Ref. [12]. The recent maximum stellar mass mea-
surement of Ref. [13] without radius constraint is also supplemented.

5.6 Conclusions

The structure of neutron stars depends sensitively on the equation of state of neutron-
rich matter in beta equilibrium. As such, nuclear effective interactions play a critical role
in astrophysical applications. Given the large extrapolations in isospin and density that are
required to compute the EOS, it is imperative to constrain the effective interaction. Moti-
vated by two recent analyses that have provided simultaneous mass and radius information
on neutron stars [11, 12], we have introduced a new effective interaction constrained by the

ground state properties of finite nuclei, their collective excitations, the properties of both
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Table 5.8: Predictions for several neutron-star observables. The various quantities
are as follows: p; is the transition density from non-uniform to uniform neutron-
rich matter, R is the radius of a 1.4 solar-mass neutron star, M,ax is the maximum
mass, Rmax is the corresponding radius for the maximum mass, p,,., is the thresh-
old density for the direct Urca process, and Muy;c, 18 the minimum mass neutron
star that may cool down by the direct Urca process.

| Observable [ NL3 | FSUGold | IU-FSU |

pt (fm=3) | 0.052 [ 0.076 0.087
R (km) 15.07 | 12.66 12.50
Mmpax(Mg) | 2.774 | 1.722 1.939
Rpax (km) | 13.39 | 10.97 11.19
Pire (fM™3) | 0.205 |  0.467 0.613
pUrca 0.130 | 0.137 0.138
Murea(Mg) | 0.839 | 1.301 1.772

dilute and dense matter, and the structure of neutron stars. Thus, experimental, theoretical,
and observational constraints have all been incorporated into the calibration procedure.

Following the conclusions of Ref. [12]—that suggest that the accurately calibrated FSUG-
old effective interaction is slightly stiff at intermediate densities but soft at high densities—
we have used two empirical parameters to correct these shortcomings. The new effective
interaction—dubbed “IU-FSU”—softens the EOS at intermediate densities by reducing the
neutron skin thickness of 2°Pb and stiffens the EOS at high density by increasing the
maximum neutron star mass relative to the FSUGold predictions.

Existing relativistic mean-field interactions are flexible enough to reproduce, not only the
charge density and binding energy of closed shell nuclei, but also the neutron skin thickness of
208Pb and the maximum neutron star mass [32, 106]. In particular, the density dependence
of the symmetry energy is highly sensitive to the empirical parameter A,. Thus, an increase
in the value of Ay softens the EOS at intermediate densities and generates a neutron skin
thickness in 2°8Pb of only R,,— »=0.16 fm. For comparison, the NL3 and FSUGold effective
interactions predict significantly larger neutron skins: 0.28 fm and 0.21 fm, respectively. To
stiffen the EOS at high densities we rely on the empirical parameter ¢ [16, 32, 106]. Including
¢ may be used to change the maximum neutron star mass by almost one solar mass without

adversely affecting the bulk properties of nuclear matter around saturation density. Relative
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to the FSUGold model, the new IU-FSU interaction increases the maximum neutron star
mass from 1.72 Mg to 1.94 Mg.

As more accurate data become available, the coupling constants of the theory may need
to be re-adjusted. The calibration procedure outlined here can accomplish this task rapidly
and efficiently. Ultimately, however, one would rely on an accurate calibration procedure
to determine the best-fit parameters of the theory and to obtain correlations among the
various observables. Nevertheless, as it stands now the new IU-FSU relativistic effective
interaction reproduces: (a) the binding energies and charge radii of closed-shell nuclei, (b)
various nuclear giant (monopole and dipole) resonances, (c¢) the low-density behavior of
pure neutron matter, (d) the high-density behavior of symmetric nuclear matter, and (e)

the mass-radius relation of neutron stars.

92



CHAPTER 6

ON THE ACCURATE CALIBRATION OF RMF
MODELS: CORRELATING OBSERVABLES AND
PROVIDING MEANINGFUL THEORETICAL
UNCERTAINTIES

6.1 Introduction

The need to provide meaningful uncertainties in theoretical predictions of physical ob-
servables is a theme that is gaining significant momentum among the scientific community.
Indeed, the search for a microscopic theory that both predicts and provides well-quantified
theoretical uncertainties is one the founding pillars of the successful UNEDF collabora-
tion [119]. Moreover, as recently articulated in an editorial published in the Physical Review
A [120], theoretical predictions submitted for publication are now expected to be accom-
panied by meaningful uncertainty estimates. The need for “theoretical error bars” becomes
particularly critical whenever models calibrated in certain domain are used to extrapolate
into uncharted regions.

Although firmly rooted in QCD, computing both the nucleon-nucleon (NN) interaction
and the properties of nuclei in terms of the underlying quark and gluon constituents remains
a daunting task. Hence, rather than relying strictly on QCD, one uses the properties of QCD
(such as chiral symmetry and relevant energy scales) as a guide to construct phenomenologi-
cal interactions using nucleons and mesons as the fundamental degrees of freedom. However,
QCD has little to say about the strength of the underlying model parameters which must
then be constrained from experimental data. For example, deuteron properties along with

two-body scattering data are used to build a nucleon-nucleon interaction that may then be
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used (supplemented with a phenomenological three-body force) to compute ab-initio the
properties of light nuclei. Attempting ab-initio calculations of the properties of medium-to-
heavy nuclei remains well beyond the scope of the most powerful computers to date. In this
case one must bring to bear the full power of density functional theory (DFT). Following the
seminal work by Kohn and collaborators [121], DFT shifts the focus from the complicated
many-body wave-function to the much simple one-body density. Moreover, Kohn and Sham
have shown how the one-body density may be obtained from a variational problem that
reduces to the solution of a set of mean-field-like (“Kohn-Sham”) equations [122]. The form
of the Kohn-Sham potential is in general reminiscent of the underlying (bare) NN poten-
tial. However, the constants that parametrize the Kohn-Sham potential are directly fitted
to many-body observables (such as masses and charge radii) rather than two-body data.
In this manner the complicated dynamics originating from exchange and correlation effects
get implicitly encoded in the empirical constants. Yet regardless of whether the effective
interaction is fitted to two-nucleon or to many-body data—the determination of the model
parameters often relies on the optimization of a quality measure.

In this contribution we focus on density functional theory and follow the standard pro-
tocol of determining the model parameters through a x2-minimization procedure. This
procedure is implemented by: (a) selecting a set of accurately measured ground-state ob-
servables and (b) demanding that the differences between these observables and the pre-
dictions of the model be minimized. Note that in the present framework a model consists
of both a set of parameters and a x2-measure. In general, modifying the y2-measure (e.g.,
by adding observables) results in a change in the model parameters. Traditionally, once
the x?-minimum has been found one proceeds to validate the model against observables
not included in the quality fit. Nuclear collective excitations are a potentially “safe” testing
arena for the model as they represent the small oscillations around the variational ground
state. But what happens when the model must be extrapolated to regions of large isospin
imbalance and high density as in the interior of neutron stars? Clearly, without reliable
theoretical uncertainties it is difficult to assess the predictions of the model. To remedy this
situation we propose to study the small oscillations around the y?-minimum-—rather than

the minimum itself. As we shall see, such a statistical analysis—inspired by the recent study
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reported in Ref. [123]—provides access to a wealth of information that remains hidden if
one gets trapped in the y2-minimum. Among the critical questions that we will be able to
answer is how fast does the x?-measure deteriorate as one moves away from the minimum.
Should additional observables be added to the y?-measure to better constrain the model?
And if such observables are hard to determine are there others that may be more readily
accessible and provide similar constraints? A particularly topical example that illustrates
such a synergy is the correlation between the neutron-skin thickness and electric dipole po-
larizability of neutron-rich nuclei [123, 124]. A detailed analysis of such correlation—which
involves a systematic study of the isovector dipole response—is beyond the scope of this
initial study and will become the subject of a forthcoming publication. Yet the study of
correlations among observables sensitive to the poorly-determined density dependence of the
symmetry energy will become a recurring theme throughout this contribution.

This chapter has been organized as follows. In Sec. 6.2 we develop the necessary for-
malism to implement the correlation analysis. This section is divided in two parts: (a) a
discussion on the structure of a class of relativistic mean-field models and (b) a complete
derivation of the statistical formalism required to perform the covariance analysis. In Sec. 6.3
two simple examples are used to illustrate the power of the formalism. This exercise culmi-
nates with the estimation of meaningful theoretical error bars and correlation coefficients.

Our conclusions and outlook are presented in Sec. 6.4.

6.2 Formalism

In this section we develop the formalism required to implement the correlation analysis.
First, in Sec. 6.2.1 we introduce a fairly general class of relativistic mean-field models that are
rooted in effective-field-theory concepts, such as naturalness and power counting. Second,
in Sec. 6.2.2 we present a self-contained derivation of the ideas and formulas required to

implement the covariance analysis.

6.2.1 Relativistic Mean-Field Models

Relativistic mean-field models traditionally include an isodoublet nucleon field (¢)) in-

teracting via the exchange of two isoscalar mesons (a scalar ¢ and a vector V#), one vector-
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isovector meson (b*), and the photon (A#) [10, 16, 29]. The non-interacting Lagrangian

density for such a model may be written as follows:

1 1
Lo = (v 0u=M) ) + 50,6 0"¢ — 5m "

1
3

1

1 1 1
= V" Vi + GmiVIV, = 2B by §m§ b by — S " E (6.1)

where V,,, b,,, and F}, are the isoscalar, isovector, and electromagnetic field tensors,

respectively. That is,

Vi = 9,V — 0,V , (6.2a)
by, = dub, — 8,by, (6.2b)
Fuy = 0,4, — 0,4, . (6.2¢)

The four constants M, mg, my, and m, represent the nucleon and meson masses and may
be treated (if wished) as empirical parameters. Often, however, mg is determined from an
accurate calibration procedure. The interacting Lagrangian density has evolved significantly
over the years and now incorporates a variety of meson self-interacting terms that are de-
signed to improve the quality of the model. Following ideas developed in Ref. [16] we write

the interacting Lagrangian density in the following form:
_ g e
Line =D [9:0— (9 Vit 27 b+ S(1+7)4,) ] ¥ = U@V by) . (6.3)

In addition to the standard Yukawa interactions, the Lagrangian is supplemented with an
effective potential U(¢, V), b,) consisting of non-linear meson interactions that serve to
simulate the complicated dynamics that lies beyond the realm of the mean-field theory.
Indeed, by fitting the various coupling constants directly to nuclear properties—rather than
to two-nucleon data—the complicated dynamics originating from nucleon exchange, short-
range effects, and many-body correlations gets implicitly encoded in a small number of
parameters. For the purpose of the present discussion we introduce explicitly all non-linear

terms up to fourth-order in the meson fields. That is,

_ K 23 A 4 C 2 v E 2
U V" b!) = 507+ 20 —I(W#W“) —AV(WZ,W )(B#-B")—I(BH-B“)
+Kk0®W, WH+ k1 @B, - B¥+\g®*W, W+ )\, $’B,, - BV (6.4)

—AL(Ww,) (BB )+
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where the following definitions have been introduced: ® = gs¢, W, = ¢,V},, and B, =
gpby. Given that the present analysis will be restricted to the study of uniform nuclear
matter, terms proportional to the derivatives of the meson fields have not been included.
As it stands, the relativistic model contains 14 undetermined parameters (1 meson mass, 3
Yukawa couplings, and 10 meson self-interaction terms). Note that if one incorporates the
occasionally-used scalar-isovector d-meson [125, |, then 9 additional parameters must be

included to this order (1 Yukawa coupling, and 8 meson self-interaction terms). That is,

_ 11 /
Liws = w[T-D}w—/@f)D'B“WH—/@’ICI)D-D— (D-D)?-),®? (D - D) (6.5)

2 41
— A1 (D-D)W,Wt-X;(D-D)B,-B*-\;(D-B,) (D-B*)+A/® (D -B*)W, ,
where D = gs0 have been introduced.

A model with 14—or 23—parameters goes significantly beyond the early relativistic
models that were able to reproduce the saturation point of symmetric nuclear matter as
well as various ground-state observables with only a handful of parameters (a single meson
mass and three Yukawa couplings) [7, 10, 127]. Although fairly successful, those early models
suffered from a major drawback: an unrealistically large incompressibility coefficient. Such
a problem was successfully solved by Boguta and Bodmer with the introduction of cubic
and quartic scalar meson self-interactions [%]. Remarkably, using only these six parameters
(Mms, gss Gv, Gp, K, A) it is possible to reproduce a host of ground-state properties of finite nuclei
(both spherical and deformed) throughout the periodic table [I1, 97]. And by adding two
additional parameters (¢ and Ay) the success of the model can be extended to the realm of
nuclear collective excitations and neutron-star properties |15, 30, 99, .

Given that the existent database of both laboratory and observational data appears to
be accurately described by an 8-parameter model, is there any compelling reason to include
6—or 15—additional parameters? And if so, what criteria does one use to constrain these
remaining parameters? A meaningful criterion used to construct an effective Lagrangian
for nuclear-physics calculations has been proposed by Furnstahl, Serot, and Tang based
on the concept of “naive dimensional analysis” and “naturalness” [128, |. The basic
idea behind naturalness is that once the dimensionful meson fields (having units of mass)

have been properly scaled using strong-interaction mass scales, the remaining dimensionless
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coefficients of the effective Lagrangian should all be “natural”; that is, neither too small
nor too large [128, |. Such an approach is both useful and powerful as it allows an
organizational scheme based on an expansion in powers of the meson fields. Terms in the
effective Lagrangian with a large number of meson fields will then be suppressed by a large
strong-interaction mass scale. In this regard the assumption of naturalness is essential as the
suppression from the large mass scale should not be compensated by large, i.e., unnatural,
coefficients. It was by invoking the concept of naturalness that we were able to truncate the
effective potential U(¢, V#, b*) beyond quartic terms in the meson fields.

Although we have justified the truncation of the effective Lagrangian invoking natural-
ness, we are not aware of an additional organizational principle that may be used a-priori
to limit further the form of U(¢, V# b#). This implies that all model parameters must be
retained, as it is unnatural to set some coefficients arbitrarily to zero without a compelling
symmetry argument [131]. In principle then, all model parameters must be retained and
subsequently determined from a fit to empirical data. In practice, however, many successful
theoretical models—such as NL3 [11, 97] and FSUGold [l5]—arbitrarily set some of these
parameters to zero. The “justification” behind these fairly ad-hoc procedure is that whereas
the neglected terms are of the same order in a power-counting scheme, the full set of pa-
rameters is poorly determined by existing data, so ignoring a subset model parameters does
not compromise the quality of the fit [16, 125].

An important goal of this chapter is to investigate correlations among the parameters of
the model and whether additional physical observables could remove such correlations. To
do so we follow the standard protocol of determining the model parameters through a y?
minimization procedure. Traditionally, this procedure is implemented by selecting a set of
accurately measured ground-state observables for a variety of nuclei and then demanding
that the differences between the observables and the predictions of the model be minimized.
Once this is done, the success of the model may be gauged by computing observables not
included in the fit. However, it is often difficult to assess the uncertainty in the predictions of
the model. To address this deficiency we propose to study the small oscillations around the
minimum—rather than the minimum itself. Such a study—inspired by the recent statistical

analysis presented in Ref. [123]—provides access to a wealth of information that, in turn,
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enables one to specify meaningful theoretical error bars as well as to explore correlations
among model parameters and calculated observables.

Although the following discussion is framed in the context of an underlying x2-measure,
our arguments are general as they merely rely on the existence of a (local) minimum (or
an extremum). As in any small-oscillations problem, deviations of the x?-measure from its
minimum value are controlled by a symmetric F'x F' matrix, where F' represents the total
number of model parameters. Being symmetric, such a matrix may be brought into a diago-
nal form by means of an orthogonal transformation. The outcome of such a diagonalization
procedure is a set of F' eigenvalues and F' eigenvectors. When a point in parameter space is
expanded in terms of these eigenvectors, the deviations of the y2-measure from its minimum
value take the form of a system of F' uncoupled harmonic oscillators—with the eigenvalues
playing the role of the F' spring constants. The spring constants may be ‘“stiff” or “soft”
depending on whether the curvature around the minimum is steep or shallow, respectively.
As one explores the parameter landscape along a stiff direction—and thus along a particu-
lar linear combination of model parameters—a rapid worsening of the y?-measure ensues,
suggesting that the fitting protocol is robust enough to constrain this particular linear com-
bination. Conversely, no significant deterioration in the quality of the fit is observed as one
moves along a soft direction. In this case the x?-minimum is of little significance as scores
of parameter sets (i.e., models) of nearly equal quality may be generated. This situation
derives from the lack of certain critical observables in the x?-measure. As we shall see, the
particular linear combination of model parameters defining the soft direction often provides
enough hints to identify the missing observable(s). Moreover, through this sort of analysis
one may establish correlations among observables that are particularly sensitive to such soft
directions. This is important as certain observables may be easier to measure than others. A
particular topical case is that of the neutron-skin thickness in 2°8Pb and the electric dipole

polarizability [123, , |.

6.2.2 Linear Regression and Covariance Analysis

As discussed earlier, relativistic models of nuclear structure are characterized by a num-
ber of model parameters, such as masses, Yukawa couplings, and non-linear meson coupling

constants. Following the notation of Ref. [123], we denote a point in such a parameter space
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by p= (p1,...,pr), where F' is the total number of model parameters. In principle, each
value of p represents a model. In practice, of course, one is ordinarily interested in the “best
model” as defined by a quality measure. To do so, the model parameters are often calibrated
to a well-determined set of ground-state properties of finite nuclei (such as masses and charge
radii) that is supplemented by a few bulk properties of infinite nuclear matter (such as the
binding energy, incompressibility coefficient, and symmetry energy at saturation density).
Once the model parameters and the group of observables have been selected, the optimal

parameter set is determined via a least-squares fit to the following x? quality measure:

N (th) (exp) \ 2
Xp) = (O"h () ~ On > . (6.6)
1

AOy,

n—=
Here N (often much larger than F') denotes the total number of selected observables whereas
“th” and “exp” stand for the theoretical prediction and experimental measurement, respec-
tively. Further, every observable is weighted by a factor of (A, )~! that is (customarily)
associated with the accuracy of the measurement.

We assume that—through a numerical procedure that is not of particular relevance to
this work—an accurately-calibrated model pg has been found. This implies that all first
derivatives of x? vanish at pg. That is,

Ix*(p)
Opi  Ip=po

=0;x*(po) =0 (fori=1,...,F). (6.7)

The existence of the minimum (as opposed to a maximum or saddle point) also implies that a
particular set of F' second derivatives (to be defined shortly) must all be positive. Approaches
based on a least-squares fit to a y?-measure often culminate with the identification of the
optimal parametrization pg. The predictive power of the model may then be appraised by
computing observables that were not included in the fitting protocol. Less often, however,
least-squares-fit approaches are used to evaluate the “uniqueness” of the model. In other
words, how fast does the y?-measure deteriorate as one moves away from po? Clearly, if
the minimum is relatively flat (at least along one direction), then there will be little (or
no) deterioration in the quality of the fit. Through a statistical analysis, we will be able
to obtain a physically reasonable domain of parameters. We implement such analysis by

studying the small oscillations around the y?-minimum. As a bonus, we will be able to

100



uncover correlations among observables and attach meaningful theoretical error bars to the
theoretical predictions [123]. To start, we expand the x?-measure around the optimal pg
model. That is,
F
V() = X(0) + = 3 (B — Po)i(p — o) 00 (Po) + - (6.9)

2 &
,j=1

For convenience, we quantify the departure from the minimum by defining scaled, dimen-

sionless variables
(P - Po)z'
(Po)i

In terms of these scaled variable, the quadratic deviations of the y2-measure from its mini-

Tr; =

(6.9)

mum value take the following compact form:
X*(p) = x*(po) = Ax*(x) = x" Mx, (6.10)

where x is a column vector of dimension F, x' is the corresponding transpose (row) vector,

and M is the symmetric F'x F matrix of second derivatives defined by

_ 1 o I VNN
Mij = 2 <axi3xj>xzo - §(p0)1(p0)Jalan (Po) - (6.11)

Being symmetric, the matrix M can be brought to a diagonal form by means of an orthogonal
(change-of-basis) transformation. Denoting by A the orthogonal matrix whose columns are
composed of the normalized eigenvectors and by D =diag(\1,...,Ar) the diagonal matrix
of eigenvalues, the following relation holds true: M = ADAT. By inserting this relation

into Eq. (6.10), we obtain the following simple and illuminating expression:
- ) F
A3 (x) = xT (ADAT )x = €7DE = \ig? . (6.12)
i=1

Here the vector & =ATx represents a point in parameter space expressed, not in terms of the
original model parameters (gs, gy, ...) but rather, in terms of the new (‘rotated”) basis. As
previously advertised, the deviations of the y>-measure from its minimum value have been
parametrized in terms of F' uncoupled harmonic oscillators—with the eigenvalues playing
the role of the spring constants. In this way, each eigenvalue controls the deterioration in

the quality of the fit as one moves along a direction defined by its corresponding eigenvector.
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A “soft” direction—characterized by a small eigenvalue and thus little deterioration in the
x? measure—involves a particular linear combination of model parameters that is poorly
constrained by the choice of observables included in the least-squares fit. By isolating such
linear combination(s) one can identify what kind of observables (e.g., isovector observables)
should be added to the y?-measure to better constrain the theoretical model. Moreover, one
may also explore correlations among various observables (e.g., neutron-skin thickness and
dipole polarizability) thereby facilitating the experimental extraction of some of these critical
observables. This could be done by either refining existing experimental measurements or
by designing brand new ones.

A concept of fundamental importance to the correlation analysis is the covariance be-
tween two observables A and B, denoted by cov(A, B) [133]. Assuming that (x(), ..., x(*))
represent M points (or models) in the neighborhood of the optimal model x(0 =0, the co-

variance between A and B is defined as:
cov(4, B) = - Z [( >)(B<m> - <B>)} — (AB) — (AY(B), (6.13)

where AU = A(x(™) and “()” denotes a statistical average. From the above definition the
correlation coefficient—often called the Pearson product-moment correlation coefficient—

now follows:
cov(A, B)

A,B) = ,
L ) var(A)var(B)

(6.14)

where the variance of A is simply given by var(A) =cov(A4, A). Note that two observables
are said to be fully correlated if p(A, B) = 1, fully anti-correlated if p(A, B) = —1, and
uncorrelated if p(A, B) = 0. If one expands the deviation of both observables from their

average value, then cov(A, B) may be written as

A1 N ) m)
A, B) = — " C; 1
cov(4, B) Z,jzzl Ox; | M mZ:lx’ j 833] JZ_ (91'1 J 8393 (6.15)

where both derivatives are evaluated at the minimum (x(°) =0) and the covariance matrix
C;; has been introduced [133]. In order to continue, it is critical to decide how should the
M points be generated. A particularly convenient choice is to assume that these M points

(or models) are distributed according to the quality measure x2(x). That is, we assume a
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probability distribution ¢(x) given by
1., 1 -
¢(x) = exp | —SAX"(x) | =exp [ —5x Mx ] . (6.16)

The covariance matrix may then be written as follows:

fxixjgzﬁ(x)dx: 1 [82Z(J)]
[ o(x)dx Z(0) [0J:0J; | 5_¢

where we have defined the “partition” function Z(J) as

= /qb(x)e']'xdx = /exp <—;XTMX+J : x) dx . (6.18)

Cij =

(6.17)

The above gaussian integrals may be readily evaluated by completing the square. That is,

let us shift the variable x to y + M‘l, so that the integration measure is not altered:
dx =d(y + M71J) = dy . (6.19)
Then the exponential factor can be rearranged as

1 ~ 1 - .
—§XTMX+J-X = -3 (yT/\/ly+2J-y+JT/\/l_1J)+ (6.20)

~ 1 N 1 “
+ Jy+JTM1I= —in./\/lyqt 5JTM—lJ .
Finally, one obtains
1.
Z(J) = Z(0) exp <2JTM1 J) = Z(0)eVD) (6.21)

Hence, under the assumption that the model parameters are generated according to the
x2-measure, the covariance matrix becomes equal to the inverse of the matrix of second

derivatives of x?. That is,

Cy = {32Z(J)L - oW (J)

7(0) | 0J:0J; | y_y  0Ji0J;

Finally then, we arrive at a form for the covariance of two observables that is both simple

= (M) (6.22)

and easy to compute:

B DA o) _,0B
cov(A,B)—Zaxi( ”a Zagz 7 - (6.23)

,j=1
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The last term in the previous expression is particularly illuminating. Consider, for example,
the case of a very soft direction in the y2-measure, namely, an eigenvector of M (say &;) with
a very small eigenvalue (say A; 1> 1). Such a situation routinely emerges in RMF models
whenever two or more isovector parameters are included in the Lagrangian density but only
masses and charge—not neutron—radii are used to define the y?-measure. Having identified
a soft direction, one could then search for an observable A (e.g., the neutron-skin thickness
in 208Pb) that is particularly sensitive to such a soft direction (as indicated by 0A/9¢;>1).
Adding such an observable to the x2-measure will stiffen the formerly soft direction, thereby
improving the predictive power of the model. Moreover, if A is difficult to measure, one
could search for alternative observables that are strongly correlated to A. Although some
of these notions have been heuristically implemented for some time, the statistical analysis

discussed here provides a quantitative measure of the correlation between observables [123].

6.3 Results

In this section we provide two simple examples that illustrate the ideas presented in the
previous sections. Here terms such as “unique” and “predictive” will be used to characterize
a model. We regard a model as being unique if all the eigenvalues of M are large (i.e., \j>1
for all 7). A model is predictive if it can successfully account for physical observables not
included in the y2-measure. Note that a model has been defined here as consisting of both
an underlying Lagrangian density (or effective interaction) and a set of physical observables

defining the y2-measure.

6.3.1 Example 1: Linear Walecka Model

We start this section by discussing the linear Walecka model as an example of a model
that is unique but not predictive. The Lagrangian density for this case is simple as it only

contains two coupling constants |7, 10]. That is,
Ling = 951/;1/’¢ - gv&’)/uwvu . (6'24)

The Walecka model is perhaps the simplest model that can account—at the mean-field

level—for the saturation of symmetric nuclear matter. Indeed, it is the saturation density
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and the energy per nucleon at saturation that are typically used to calibrate the two pa-
rameters of the model. To make this simple model slightly less trivial we determine the
two parameters of the model by minimizing a quality measure x? defined in terms of three
“observables”: (i) the saturation density pg, (ii) the energy per nucleon at saturation ¢, and
(iii) the effective Dirac mass M. Central values and uncertainties for these three quantities

are given as follows:

po = (0.155 £ 0.01) fm—3 (6.25a)
o= (—16+1) MeV , (6.25b)
M = (0.6+0.1) M . (6.25¢)

Using standard numerical techniques, a minimum value for the y?-measure of y3=0.34145

is obtained at

g2 = 93.62647 , (6.26a)

g% = 180.48347 . (6.26h)

Having computed the minimum value of the quality measure, we now examine its behavior
around the minimum. This is implemented by diagonalizing the symmetric matrix of second
derivatives M [see Eq. (6.11)]. The outcome of such a diagonalization procedure is the
diagonal matrix of eigenvalues D and the orthogonal matrix of normalized eigenvectors A.

That is,

D = diag(A1, o) = diag(7.4399x 10%,8.3195x 10") , (6.27a)

A < cosf sinéb > B ( 0.74691 0.66492 >

—sinf cos® ) \ —0.66492 0.74691 (6.27b)

It is evident that both eigenvalues are very large. This indicates that both directions in
parameter space are stiff and consequently the quality measure (Ax? = \1&3 +)\2€%) will
deteriorate rapidly as one moves away from the x?-minimum. Note that \; is significantly
larger than Ag; this is to be expected. When probing the parameter landscape along the
first direction (i.e., & =0) the scalar and vector coupling constants move “out-of-phase” (see
the first column of the matrix fl) For example, the scalar attraction would get larger at

the same time that the vector repulsion would get smaller. This would yield a significant
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increase in the binding energy per particle and consequently a drastic deterioration in the
x%-measure. Recall that large and cancelling scalar and vector potentials are the hallmark
of relativistic mean-field models.

To quantify the extent by which the linear Walecka model is unique, we now proceed to

compute the variance in the coupling constants using Eq. (6.23). We obtain

S

0% = (M—l)n = A\ 'cos?0 + Ay sin? 0 = 5.3217x 1073 , (6.28a)

o2 = (/\?1—1>22 = A 1sin20 4+ Ayt cos?0 = 6.7116x 1073 . (6.28h)

v

In turn, this translates into the following uncertainties in the optimal values of the coupling

constants:

gg = 93.62647 (1 £ 05) = 93.62647 £ 6.83008 , (6.29a)

g2 = 180.48347 (1 £ 0,) = 180.48347 + 14.78596 . (6.29b)

We conclude that the uncertainties in the model parameters—and thus in most of the
predictions of the model—are of the order of 5-to-10 percent. In principle, the model uncer-
tainties could be reduced by refining the experimental database [see Eq. (6.25)]. The great
merit of the present statistical approach is that one may systematically explore the extent
by which the experimental measurement must be refined in order to achieve the desired
theoretical accuracy. Note that the theoretical uncertainties are dominated by the smallest
eigenvalue of M [see Eq.(6.28)]. Thus, assessing the uniqueness of the model by varying
each model-parameter individually (e.g, first g2 and then g2) is misleading and ill advised.
It is misleading because in doing so the quality measure will in general be dominated by
the largest eigenvalue [see Eq.(6.12)]. Yet it is the lowest eigenvalue that determines the
uniqueness of the model.

Carrying out the covariance analysis further, we now proceed to compute correlation
coefficients between model parameters and observables [see Egs. (6.14) and (6.23)]. In es-
timating uncertainties in the model parameters one concentrates on the diagonal elements
of the (inverse) matrix of second derivatives [see Eq. (6.28)]. Information on the correlation

between model parameters is, however, stored in the off-diagonal elements. For example,
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the correlation coefficient between g2 and g2 is given by

(MA)H = 0.9977 . (6.30)
S, (),

The strong (positive) correlation between g2 and g2 is easily understood. Given that config-

p(g2,92) =

urations in parameter space are distributed according to the y?-measure, model parameters
in which g2 and g2 move out-of-phase are strongly suppressed, as they are controlled by the
largest eigenvalue A\;. As a result, an overwhelming number of configurations are generated
with g2 and g2 moving in phase, thereby leading to a large positive correlation. Correlation
coefficients between various isoscalar observables have been tabulated in Table 6.1. Given
that the correlation coefficients are sensitive to the first derivatives of the observables along
all (eigen)directions [see Eq. (6.23)], we have listed them for completeness in Table 6.2. We
observe that all observables display a much larger sensitivity to the stiff direction than to
the soft one. This could (and does) lead to sensitive cancellations since the large deriva-
tives compensate for the small value of )\1_1. Indeed, the correlation between the saturation
density and the binding energy at saturation is very small. On the other hand, the incom-
pressibility coefficient appears to be strongly correlated to the binding energy. This behavior
is also displayed in graphical form in Fig. 6.1 where predictions for the various observables
were generated with model parameters distributed according to ¢(x) [see Eq. (6.16)]. Note
that the covariance ellipsoids in Fig. 6.1 were generated by selecting those model parameters

that satisfy Ax?<1.

Table 6.1: Correlation coefficients between isoscalar observables in the linear
Walecka model.

€0 £o Ky Mgy

o | +1.0000 | —0.0036 | —0.9998 | +0.8867
po | —0.0036 | +1.0000 | —0.0174 | 40.4591
Ko | —0.9998 | —0.0174 | +1.0000 | +0.8962
My | +0.8867 | +0.4591 | +0.8962 | +1.0000

Based on the previous statistical analysis it appears that the linear Walecka model is

unique (at least at the 5—10% level). But is the linear Walecka model predictive? To test
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Figure 6.1: Predictions from the linear Walecka models for the saturation density,
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binding energy, and incompressibility coefficient at saturation. Model parameters
were generated according to the distribution exp(—Ax?2/2). Both of the covariance

ellipsoids were generated by limiting the models to the region Ayx?<1.

Table 6.2: First derivatives of the scaled observables (i.e., observable scaled to its
value at the x?-minimum) as a function of & and & evaluated at the x?-minimum;

see Eq. (6.23).

the predictability of the model we focus on two physical observables that were not included
in the y2-measure, namely, the incompressibility coefficient Ky and the symmetry energy .J.

We obtain—with properly computed theoretical errors—the following results:

Both predictions, even after theoretical errors have been incorporated, differ significantly
from the presently acceptable values of Ky~ (240 £ 20) MeV and J = (32 £+ 2) MeV. This

conclusion should hardly come as a surprise. After all, the predominant role played by the

| | 961 \ 98
Oeg || —1.6698x10" | —1.1716x 10!
9po 3.6619 —5.7333x 10!
0Ky 1.4261x10' | 1.1055x107 !
oM || —3.2349 —8.8817x1072

Ky = (552.537 £+ 29.655) MeV ,
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J = (19.775 £ 0.683) MeV .
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model parameters £ and A in softening the incompressibility coefficient and g, in stiffening
the symmetry energy have been known for a long time. What is relevant from the present
statistical analysis is that we have established quantitatively that the linear Walecka model
fails because its prediction for Ky differs from the experimental value by more than 10
standard deviations. We must then conclude that whereas the linear Walecka is (fairly)
unique, it is not predictive. We now proceed to discuss a particular extension of the Walecka

model that is highly predictive but not unique: the non-linear FSUGold model.

6.3.2 Example 2: Non-linear FSUGold Model

Modern relativistic models of nuclear structure have evolved significantly since the early
days of the linear Walecka model. In the present example we focus on the FSUGold param-

eter set [15] that is defined by an interacting Lagrangian density of the following form:

(&

S (+m)Au) ] v (6.32)

(T/I/,LW")Q—i—AV (wow)(B.-B).

L = b [gs0—(9Vit B bt

Ko3 A4 ¢
TR TR

Modifications to the linear Walecka model are motivated by the availability of an ever in-
creasing database of high-quality data. For example, the two non-linear scalar terms x and
A induce a significant softening of the compression modulus of nuclear matter relative to the
original Walecka model |7, 8, 10]. This is demanded by measurement of the giant monopole
resonance in medium to heavy nuclei [38]. Further, omega-meson self-interactions, as de-
scribed by the parameter ¢, also serve to soften the equation of state of symmetric nuclear
matter but at much higher densities. Indeed, by tuning the value of ( it is possible to pro-
duce maximum neutron star masses that differ by almost one solar mass while maintaining
the saturation properties of nuclear matter intact [16]. Such a softening appears consistent
with the dynamics of high-density matter as probed by energetic heavy-ion collisions [98].
Finally, Ay induces isoscalar-isovector mixing and is responsible for modifying the poorly-
constrained density dependence of the symmetry energy [30, 78]. In particular, a softening
of the symmetry energy induced by A, appears consistent with the distribution of both
isoscalar monopole and isovector dipole strength in medium to heavy nuclei [15, 39, |-

In summary, FSUGold is a fairly successful RMF model that has been validated against
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theoretical, experimental, and observational constraints [99]. Note that as additional labo-
ratory and observational data become available (notably the recent report of a 2-solar mass
neutron star [13]) refinements to the model my be required [107]. For now, however, we
will be content with using the FSUGold model to study the small oscillations around the
minimum.

As mentioned earlier, a model should be understood as a combination of an interact-
ing Lagrangian density and a quality measure. We define the y?-measure in terms of the

following set of observables generated directly from the FSUGold parameter set:

po = 0.1484 fm ™3 | (6.33a)
g0 = —16.30 MeV | (6.33b)
£(2p0) = —5.887 MeV (6.33c)
Ko = 230.0 MeV , (6.33d)
Mg = 0.6100 M , (6.33¢)
J = 26.00 MeV , (6.33f)
L = 60.52 MeV , (6.33g)
Moy = 1.722 My, . (6.33h)

Note that in all cases a 2% uncertainty is attached to all observables—except in the case
of the slope of the symmetry energy L where the significant larger value of 20% is assumed.
This reflects our poor understanding of the density dependence of the symmetry energy.
Also note that J represents the value of the symmetry energy at a sub-saturation density of
p~0.1fm~3—a density at which the theoretical uncertainties are minimized [100]. Finally,
notwithstanding the Demorest et al. result [13], the maximum neutron star mass is fixed at
Minax =1.722 M. Given that a theoretical model is used to generate the various observables,
a much larger database could be used to define the y2-measure, if desired. By construction,
a very small value for the y2-measure is obtained at the FSUGold minimum. We now
proceed to explore the wealth of information available as one studies deviations around this

minimum value. As in the previous section, the symmetric matrix of second derivatives M
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(now a 7x7 matrix) may be diagonalized by means of an orthogonal transformation. The

diagonal matrix of eigenvalues D and the matrix of eigenvectors A are given by

D = diag(1.2826 x 10%,1.5305 x 10%,4.2472 x 10%, 3.2113 x 102, 1.2692 x 102, 6.9619, 3.7690) , (6.34a)
—7.4967x1071  —2.3685x107! 3.0853x 10! 1.2031x 10~ 1  —5.1254x 10~ —8.5089x 102 6.8417x 1073
6.5682x10" 1  —1.5751x10" ! 3.6654 x 10~ 1 1.6504x 10~ 1 —6.0281x10~1 —1.3685x10"! 8.5353x 1073
—1.5331x10~% 3.1315x 1073  —7.0050x 10~ ! 6.8701x1072  —3.9206x 10~ ' —3.3843x 102 5.9137x 107!

A= 3.8535x1072  —2.8770x10" 1 —2.4254x 102 4.7416x 10"t 4.3796 x 102 8.2968x 10~  —5.7643x 1073
3.9417x1072 —6.8525x 10~ 1 —1.3772x 10"} 3.8776 x 107! 3.5428x 10”1  —4.8376x 10! 2.6431x1073
—5.9458x 102 6.0558 x 10~ 1 5.4897 x 102 7.5689 x 107! 6.8021x1072 —2.2175x 10"} 6.2795x 1073
1.2995x10~%  —3.1465x 103 5.0714x10~1  —5.7010x 102 2.9691x 1071 3.6238 x 1072 8.0628 x 10~ !

(6.34b)

Note that the scaled parameters of the model are associated to the original coupling con-

stants as follows:
{xla T2,X3,T4,T5,TE, 377} - {9527 9\2/7 gzv R, >\a Ca AV} . (635)

We observe that the stiffest direction is dominated by two isoscalar parameters and represents—
as in the case of the linear Walecka model—an out-of-phase oscillation between the scalar
attraction and the vector repulsion. Given that in RMF models the cancellation between
the scalar attraction and the vector repulsion is so delicate, any out-of-phase motion yields
a significant change in the binding energy per nucleon and a correspondingly dramatic in-
crease in the quality measure. The second stiffest direction also involves exclusively isoscalar
parameters and is dominated by the quartic scalar (A) and vector (¢) couplings—and to a
lesser extent by the cubic term (k). This linear combination of parameters is largely con-
strained by the incompressibility coefficient Ky and the maximum neutron-star mass My ax.
Although the determination of the maximum neutron-star mass to a 2% accuracy presents a
significant observational challenge, our statistical analysis suggests that such a determination
would strongly constrain the equation of state from saturation density up to neutron-star
densities. The third stiffest direction (with still a fairly large eigenvalue of A3 &~ 425) is
dominated by the two isovector parameters gﬁ and Ay. For this particular “mode” both
parameters oscillate out of phase. This behavior can be readily understood by recalling the

expression for the symmetry energy [78]:

2
Eypm(p) = AF 1 9P (2 = m2 + 28,203 (6.36)
sym\pP) = GE; szQ ) p — My v, Wo | - .

In order for the symmetry energy J to remain fixed, then both 9;23 and Ay must move in

phase. If they move out of phase, then the symmetry energy can not be kept at this value
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and the quality measure deteriorates. By the same token, the in-phase motion of 9% and
Ay is very poorly constrained—as evinced by the last and softest direction. And it is only
because the slope of the symmetry energy L was assumed to be somehow constrained (at
the 20% level) that a positive eigenvalue was even obtained. Note that one of the main
goals of the successfully commissioned Lead Radius experiment (PREx) at the Jefferson
Laboratory is to constrain the density dependence of the symmetry energy (i.e., L) by
accurately measuring the neutron radius of 2°8Pb [85, 86]. The next to last eigenvalue
(A = T7) is also relatively small. This suggest that the out-of-phase motion of the two non-
linear scalar couplings (k and \) is poorly constrained by the nuclear-matter observables
defining the quality measure. Perhaps supplementing the quality measure with finite-nuclei
observables will help ameliorate this problem. Work along these lines is currently in progress.

We now proceed to estimate theoretical uncertainties as well as to compute correlation
coefficients for both the model parameters and the physical observables. We start by com-
puting theoretical uncertainties (i.e., variances) for the model parameters. These are given

by [see Eq. (6.23)]

1

- (M*l)“ - (ATT%T)% - iAfjAj—l : (6.37)
j=1

and result in the following theoretical uncertainties for the model parameters:

g2 = 112.19955 + 6.54468 [5.833%) , (6.38a)
g2 = 204.54694 + 15.81183 [7.730%] , (6.38b)
g, = 138.47011 + 42.75427 [30.876%] , (6.38¢)
K = 1.42033 + 0.44827 [31.561%] , (6.38d)
A = 0.02376 £ 0.00445 [18.748%] , (6.38¢)
¢ = 0.06000 4 0.0057 [9.447%] , (6.38f)
A, = 0.03000 £ 0.01251 [41.711%) . (6.38g)

We observe that three out of the five isoscalar parameters, namely, g2, g2, and ¢, are rel-
atively well constrained (at the < 10% level). Whereas g2 and g2 are well determined by

the saturation properties of symmetric nuclear matter, it is the maximum neutron-star mass
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that constrains (. Yet the remaining two isoscalar parameters (k and \) are poorly deter-
mined. This is particularly true in the case of £ which displays a large (~=30%) uncertainty.
As alluded earlier, these large uncertainties develop because the out-of-phase motion of x
and A—as controlled by the relatively soft sixth eigenvector—is poorly constrained. Given
that the in-phase motion of the two isovector parameters (gg and Ay) is controlled by the
softest of eigenvectors, the theoretical uncertainties in these parameters is also fairly large
(~30% and =~ 40%, respectively). However, whereas the reason for the latter is associated
with the large error bars assigned to L, we are unaware at this time on how to better con-
strain k£ and A. Perhaps supplementing the quality measure with information on various
nuclear compressional modes may help resolve this issue. Plans to do so in the near future
are under consideration.

A N> N >
o O O ¢ LK o<

T T T T T T — 1
2
¢ = s
2 =
g F - 0.6
> | I 0.4
9% 0.2
e
-0.2
- i
H o
T F 1K -0.6
B 4dH -0.8
AV 1 1 1 1 1 1 1 i -1

Figure 6.2: Color-coded plot of the 21 independent correlation coefficients between
the 7 model parameters of the FSUGold effective interaction.

We have computed correlation coefficients between all 21 distinct pairs of model parame-
ters and have displayed them in graphical (color-coded) form in Fig. 6.2. As depicted in the
figure, the strongest correlations are between g2 and g2 (0.988), g% and A, (0.967), and &
and A (-0.962). As alluded in the case of the simpler linear Walecka model, the correlations
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are dominated by the softest directions; in this case the sixth and seventh eigenvectors.
Given that for these two eigenvectors gf and g2 as well as gg and A, move in phase whereas
k and A move out of phase, the observed correlations ensue. In other words, the three
largest eigenvalues strongly suppress the generation of model parameters with g2 and g2
moving out of phase, k and A in phase, and g§ and A, out of phase, respectively. Note then,
that the distribution of isovector parameters gg and Ay is generated in such a way that the
symmetry energy at sub-saturation density J remains fixed at 26 MeV (at least within a
2% uncertainty). This quantitative fact validates our heuristic approach—already employed
numerous times—to correlate isovector observables (see Refs. [90, ) | and references
therein).

We now extend the covariance analysis to the case of physical observables. To do so, we
must supply the relevant “matrix” of first derivatives [see Eq. (6.23)]. For completeness we
list the first derivatives in tabular form in Tables 6.3 and 6.4. Note that in the case of the
model parameters the corresponding matrix of first derivatives is the matrix of eigenvectors
A. The derivatives encapsulate the sensitivity of the various observables to changes along
the different eigenvectors. For example, whereas isoscalar observables (such as &g, pg, Ko)
are insensitive to changes along the mostly isovector seventh eigenvector, both L and the

neutron-skin thickness of 2°8Pb, R, —R,, display a fairly large sensitivity.

Table 6.3: First derivatives of the scaled observables (i.e., observable scaled to its
value at the y?-minimum) as a function of §; at the x?-minimum; see Eq. (6.23).

| | 23! \ 9&: \ 0&3 \ 9¢4 \
Jeo 1.0551x 10t | —7.1882x 10~ | —2.9433x1072 | 4.9029x 10?2
dpo —2.2472 1.3904 —9.8868x107% | 2.2220x 107!
0Ky —7.4792 1.3890 —3.6799x 1072 | —1.8808x 10!
oOM* 1.1505 —5.5581x 1071 [ —1.0614x10~! | —8.3170x 102
0J —2.7862x 10! 6.5586x 1072 | —3.9136x 107! 2.5698 x 102
0J —1.6811 9.4897x10~1 | —3.2446x 1071 1.7826 x 1071
oL —1.8759 1.1812 1.5849x 1072 | 2.6611x 10"
O(R,—R,) 7.0224 9.6188x 1072 | —2.3362x10~1 | 1.9804x10~!
OR1 0 9.9947x 1071 | —3.1989x 107! | —1.6534x1072 | —6.5939 x 102
OR14 5.0300x 1071 | —3.0884x 1071 [ 9.3778x1072 | —1.1119x107!
O M ax —2.7675x1071 | —1.4882x 107! 3.1173x 1072 | —1.6394x 107!
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Table 6.4: First derivatives of the scaled observables (i.e., observable scaled to its
value at the y?-minimum) as a function of & at the x?-minimum; see Eq. (6.23).

| | &5 \ &6 \ &7 |
deo 5.1626x 1072 | —1.7025x1072 | —7.7009x 10~
dpo 5.3440x 1072 | 1.8998x1072 | 1.5875x107?
0Ky 4.8215%1072 | —2.1691x 1072 | —3.0813x 10~ *
OM* 1.6492x 1071 1.2614x 1072 | —2.7701x 1073
0J —6.8299x1072 | 6.0862x107* | 6.2323x10~*
0J —3.6792x1072 | 6.2151x1073 | —8.4827x 10?2
oL —1.0180x 107" | —2.2526x107% | —3.8593 x 10!
O(R,—R,) || —2.5651x107% | —1.9368x1072 | —3.4167x 10!
OR1 0 —4.5197x 1072 | —4.5964x1073 | —3.9800x 102
OR1 4 —6.3792x1072 | 3.1016x 1073 | —2.6571x 1072
OM max —6.8790x 1072 | 3.4817x107? | —2.4367x1073

Given the enormous interest in constraining the density dependence of the symmetry en-
ergy, we estimate theoretical uncertainties on three—mostly isovector—observables. These
are the symmetry energy at saturation density J, the neutron-skin thickness of 2°°Pb, and
the radius (Ry4) of a M = 1.4Mg neutron star. Recall that it was J (not J) that was

included in the definition of the quality measure. We obtain,

J = (32.593 + 1.574) MeV [4.830%] , (6.39a)
R,—R, = (0.207 + 0.037) fm [17.698%] , (6.39D)
Ry = (11.890 & 0.194) km [1.631%] . (6.39¢)

We now comment on each of these cases individually. Before we do so, however, note that
correlation coefficients for 11 observables (i.e., 55 independent pairs) are depicted in a color-
coded format in Fig. 6.3. First, the central value of J along with its theoretical uncertainty

may be easily understood by invoking a first-order expansion for the symmetry energy J at

sub-saturation density (pp~0.103 fm™>) in terms of J and L [116]. That is,
- 1 7
J=Jtalt ...~ (32208 1.346) MeV | @ =g (1 - ZO> ~0.103 (6.40)
0

where the errors were added in quadrature. So although J is strongly correlated to L (with

a correlation coefficient of 0.922) the error in the former is significantly smaller than the
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Figure 6.3: Color-coded plot of the 55 independent correlation coefficients between
11 physical observables as computed with the FSUGold effective interaction.

latter because of the small value of z. Second, for the neutron-skin thickness of 2°Pb we
find a theoretical error comparable to the one assumed for L and a correlation coefficient
between the two observables of almost one (0.995). Such a strong correlation is consistent
with two recent studies that employ a large number of accurately-calibrated relativistic
and non-relativistic interactions to uncover the correlation [55, 135]. Also consistent with
these studies, specifically with Ref. [55], is the fact that the proposed 1% measurement
of the neutron radius of 2%Pb by the PREx collaboration [35, %6] may not be able to
place a significant constrain on L. For example, our covariance analysis suggests that the
20% uncertainty assumed for L translates into a theoretical error in the neutron skin of
0.037 fm—or about a 0.7% uncertainty in the neutron radius of 2°®Pb. Conversely, if L
is to be determined to within 10% (i.e., L ~ 60 + 6 MeV) then the neutron skin must be
constrained to about 0.018 fm so the neutron radius must be measured with close to a 0.3%
accuracy—a fairly daunting task. Finally, we obtain a very small theoretical uncertainty for
the radius of a 1.4 solar-mass neutron star and a correlation coeflicient between L and R4

(or R,— Ry, and Ry 4) of 0.811. Although the radius of the neutron star is sensitive to the
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density dependence of the symmetry energy [136], R1.4 can not be uniquely constrained by
a measurement of I?,, — R, because whereas the latter depends on the symmetry energy at
(or below) saturation density, the former is also sensitive to the equation of state at higher
densities [78]. Note that a far better correlation coefficient of 0.942 is obtained between L
and the radius of a 1.0 solar-mass neutron star. Regardless (with all things being equal)
knowledge of the slope of the symmetry energy to a 20% accuracy significantly constrains

the stellar radius.

6.4 Conclusions

The demand for theoretical predictions that include meaningful and reliable uncertain-
ties is increasing. Such a sentiment has been articulated in a recent publication by the
editors of the Physical Review A [120]. The need to quantify model uncertainties in an area
such as theoretical nuclear physics is particularly urgent as models that are fitted to exper-
imental data are then used to extrapolate to the extremes of temperature, density, isospin
asymmetry, and angular momentum. Inspired by some of the central ideas developed in
Ref. [123], a systematic statistical approach was applied to a class of relativistic mean-field
models. The aim of this statistical analysis was twofold. First, to attach meaningful and
reliable theoretical uncertainties to both the model parameters as well as to the predicted
observables. Second, to quantify the degree of correlation between physical observables.

Modern relativistic mean-field models have evolved considerably since the early days
of the linear Walecka model. Based on certain shortcoming of the Walecka model—most
notably the inability to reproduce the incompressibility coefficient of symmetric nuclear
matter—the Lagrangian density was augmented by non-linear cubic and quartic scalar-
meson terms. However, based on modern effective-field-theory tenets, such as naturalness
and power counting, a consistent Lagrangian density should include all terms up to fourth
order in the meson fields. But in doing so, how should one constrain the large number of
model parameters? In principle, one should follow the standard protocol of determining
all model parameters through a x?-minimization procedure. In practice, however, many
successful theoretical approaches arbitrarily set some of the model parameters to zero. The

argument behind this fairly ad-hoc procedure is that the full set of parameters is poorly
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determined by existing data, so ignoring a subset model parameters does not compromise
the quality of the fit.

A covariance analysis such as the one implemented here should be able to clarify in a
quantitative fashion the precise meaning of a “poorly determined set of parameters”. To do
so, one should focus—mnot on the minimum of the x?-measure but rather—on its behavior
around the minimum. As in any small-oscillations problem, the deviations around the mini-
mum are controlled by a symmetric matrix of second derivatives that may be used to extract
theoretical error bars and to compute correlation coefficients among physical observables.
However, to access the wealth of information available in the covariance analysis we took it
a step further and diagonalized the matrix of second derivatives. Upon diagonalization, the
deviations of the y?-measure from the minimum are parametrized in terms of a collection of
“uncoupled harmonic oscillators”. By doing so, one could readily identify stiff and soft modes
in parameter space, namely, eigenvectors characterized by either large or small eigenvalues,
respectively.

We now sumimarize some of the most important lessons learned. First, a stiff direction
represents a particular linear combination of model parameters that is well constrained by the
set of physical observables included in the y2-measure. By the same token, a soft direction
suggests that additional physical observables are required to further constrain the model.
Second, given that model parameters around the minimum are distributed according to the
x2-measure, the soft directions dominate the correlation analysis. Finally, testing whether
a model is well constrained by individually varying its parameters—rather than by varying
them coherently as suggested by the structure of the eigenvectors—may be misleading. To
illustrate these findings we used two relatively simple, yet illuminating, examples: (a) the
linear Walecka model and (b) the FSUGold parametrization. Note that ultimately we aim
to implement the covariance analysis with a y?-measure defined by a consistent Lagrangian
density.

A particularly clear example of a stiff direction was represented by the out-of-phase mo-
tion of the scalar g5 and vector g, coupling constants in the linear Walecka model. Indeed,
increasing the scalar attraction while at the same time reducing the vector repulsion leads

to a significant increase in the binding energy per nucleon and, thus, in a significant de-
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terioration of the y2-measure. The in-phase motion of gs and gy, however, is not as well
constrained (the ratio of the two eigenvalues is about 1000). Therefore, configurations in
parameter space generated by the y?-measure were dominated by pairs of coupling constants
that were in phase, thereby resulting in a correlation coefficient between g5 and g, that was,
as expected, large and positive. Note, however, that if g; and g, were varied individually,
one would erroneously conclude that the model is much better constrained than it really
is—since changes in the y2-measure would be dominated by the largest eigenvalue.

In our second example we considered the accurately-calibrated FSUGold interaction with
an isovector interaction determined by two parameters (g, and Ay). We found the out-of-
phase motion of g, and A, to be strongly constrained by the value of the symmetry energy
at a density of about 0.1 fm. However, our poor knowledge of the density dependence of the
symmetry energy left the in-phase motion of g, and Ay largely unconstrained. Effectively
then, correlations in the isovector sector were induced by the in-phase motion of g, and
A,—subject to the constraint that the symmetry energy at p~0.1 fm remains intact. This
procedure validates the heuristic approach that we have used for some time to estimate
correlations among isovector observables. Yet a benefit of the present analysis is that one
can precisely quantify the theoretical errors as well as the correlation among observables.
For example, we concluded that if the slope of the symmetry energy is to be determined
with a 10% uncertainty, then the neutron-skin thickness of 2°*Pb should be measured with
a 0.3% accuracy. This more stringent limit seems to agree with the conclusions of Ref. [55].

In the future we aim to apply the covariance analysis discussed here to the construction
of a relativistic density functional that will include all terms up to fourth order in the
meson fields. Moreover, we plan to calibrate the y?-measure using various properties of
finite nuclei and neutron stars. In addition, we reiterate a point made in Ref. [123] that the
methodology used in this work should be applicable to any problem where model parameters

are determined from optimizing a quality measure.
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CHAPTER 7

SUMMARY

In this chapter, we summarize the most important results obtained in this dissertation work.

1. An overview of the relativistic mean-field theories is given. The equation of state
and several expressions for the properties of the infinite nuclear matter are obtained
in the relativistic mean-field approximation. The results are applied to symmetric,

asymmetric and pure neutron matter.

2. A detailed survey of neutron star structure calculations is given. It has been discussed
in detail how to make strong connections between neutron-star and nuclear observables

as they share the same equation of state.

3. An algorithm for how to enforce the beta equilibrium conditions in the neutron star
equation of state is presented. Scaling of parameters is very important in numerical
calculations. An example of scaling of parameters is shown for the case of the neutron

star structure calculations.

4. The mechanism of the cooling of neutron stars through the direct Urca process has
been discussed. The analytical expression and numerical solutions for the threshold

proton fraction is presented.

5. The sensitivity of stellar moments of inertia to the neutron-star matter equation of
state is examined using accurately-calibrated relativistic mean-field models. The re-
sults are presented in the slow-rotation approximation for the case of binary pulsar
PSR J0737-3039. This sensitivity is probed by tuning both the density dependence of
the symmetry energy and the high density component of the equation of state, prop-
erties that are at present poorly constrained by existing laboratory data. Our results
indicate that knowledge of the pulsar moment of inertia with a 10% accuracy could
tightly constrain the equations of state. This suggests that a measurement of the mo-

ment of inertia could help discriminate between equations of state that are either stiff
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or soft at high density. However the sensitivity of the moment of inertia to the density
dependence of the symmetry energy appears to be weak. This is revealed especially

for models with a soft symmetry energy.

. An important component of neutron star calculations, the crustal moment of inertia, is
discussed in detail. An analytical expression for the fraction of the moment of inertia
contained in the solid crust has been obtained. Our results show that the crustal
moment of inertia reveals a high sensitivity to the transition pressure at the core-crust
interface. This may suggest the existence of a strong correlation between the density
dependence of the symmetry energy and the crustal moment of inertia. However,
no correlation was found. We concluded that constraining the density dependence of
the symmetry energy—through, for example, the measurement of the neutron skin
thickness in 2°®Pb—will place no significant bound on either the transition pressure

or the crustal moment of inertia.

. Motivated by recent astrophysical measurements of the pressure of cold matter above
nuclear-matter saturation density [11], we computed the equation of state of neutron
star matter using accurately calibrated relativistic mean-field models. We showed
that although these models are calibrated near the nuclear-matter saturation density,
it is possible to tune their high-density behavior in a highly efficient and economical
manner with just two parameters. We found the predictions of these models to be
in fairly good agreement with the measured equation of state. Yet, it is shown that
the mass-vs-radius relations predicted by these same models display radii that are

consistently larger than some of the observations.

. We have introduced a new relativistic effective interaction that is simultaneously con-
strained by the properties of finite nuclei, their collective excitations, and neutron-star
properties. By adjusting two of the empirical parameters of the theory, we have effi-
ciently tuned the neutron skin thickness of 2°Pb and the maximum mass of a neutron
star. The procedure is illustrated in response to the recent interpretation of X-ray
observations by Steiner, Lattimer, and Brown [!2]| that suggests that the FSUGold
effective interaction predicts neutron star radii that are too large and a maximum
stellar mass that is too small. The new effective interaction is fitted to a neutron
skin thickness in 2°®Pb of only R, — R, = 0.16 fm and a moderately large maximum

neutron star mass of 1.94 Mgyn,-

. The following are the achievements of the new IU-FSU interactions. In addition to

the properties of nuclear matter, this relativistic effective interaction reproduces:

a) The binding energies and charge radii of closed-shell nuclei;
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b) Various nuclear giant (monopole and dipole) resonances;

¢) The low-density behavior of pure neutron matter;

€

)
)
d) The high-density behavior of symmetric nuclear matter;
) The mass-radius relation of neutron stars;

)

g) The consistent limiting mass of a neutron star.

10. Theoretical uncertainties in the predictions of relativistic mean-field models are es-

11.

timated using a chi-square minimization procedure that is implemented by studying
small oscillations around the chi-square minimum. By diagonalizing the matrix of sec-
ond derivatives, one gains access to a wealth of information—in the form of powerful
correlations—that would normally remain hidden. The power of the covariance anal-
ysis is illustrated by using two relativistic mean-field models: (a) the original linear

Walecka model and (b) the accurately calibrated FSUGold parametrization.

In addition to providing meaningful theoretical uncertainties for both model parame-
ters and predicted observables, the covariance analysis establishes robust correlations
between physical observables. In particular, we showed that whereas the correlation
coeflicient between the slope of the symmetry energy and the neutron-skin thickness
of Lead is indeed very large, a 1% measurement of the neutron radius of Lead may

only be able to constrain the slope of the symmetry energy to about 30%.
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APPENDIX A

ANALYTICAL DERIVATION OF THE CRUSTAL
MOMENT OF INERTIA

In this appendix we describe the necessary steps used to obtain the expression for the crustal
moment of inertia given in Eq. (3.23). Given that the uniform liquid core accounts for most
of the stellar mass and that the “fluid” in the crust behave non-relativistically, the following

three approximations are assumed valid in the solid crust [3]:

M(r)y~ M(R)= M, (A.la)
P(r)y< &(r), (A.1b)
AP P(r) < M(r) = M . (A.1c)

Under these assumptions the equations for stellar structure simplify considerably. For

example, Eq. (3.13) for the metric v(r) reduces to

1 R\ 1 B de 1 R,
y(r):2ln(1—R>—2Rs/r acQ—xRS:21n<1_7’>7 (A.2)

where Ry = 2G M is the Schwarzschild radius of the star. Similarly, in the crustal region
the TOV-equation [Eq. (3.9)] becomes equal to
P M s
dP(r) _ GME(r) _ RsE(r) ' (A.3)
dr 7“2(1 —Rs/r) 2r2(1 —Rs/r>

If not for the (important) general-relativistic correction (1 — Rs/r)~!, this expression would

be identical to the equation of hydrostatic equilibrium in the purely Newtonian limit. Finally,

the effective frequency @ is approximated by its value at r=R. That is,
w(r)  w(R) R 1
o ~a | R)\MR2)|" (A.4)
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where we have made use of Egs. (3.16b) and (3.17).
Using the above simplified expressions valid in the stellar crust, one obtains the following

approximation for the crustal moment of inertia |1, 3, 56]:

=S () G| 5
“i [ () )L o -

where the last line follows from using the simplified TOV equation [see Eq. (A.3)]. To

perform the above integral we need an equation of state to compute the pressure profile
P=P(r) in the crust. As suggested in Refs. [1, 56|, a polytropic equation of state of index
~v=4/3 will be adopted for the crust. That is,

P(E)= K& = K&V, (A.6)

where K is a constant.
Using such a simple—yet fairly accurate—EOS enables one to solve the TOV equation

exactly. To do so, we first introduce the following scaling variables:
x=r/Rs; p=P/P; e=E/&, (A7)

where P, = P(R;) and & = E£(R;) are the pressure and energy density at the crust-core
interface, with R; the transition (or core) radius. In terms of these scaling variables, the

TOV-equation in the crust [Eq. (A.3)] takes the following simple form:

1/v
dp ___p77 (A.8)

f%: z(x—1)’

where the small parameter { =2P,/&; (of the order of a few percent) has been introduced.
The above equation can now be integrated subject to the boundary condition x =x; = R/ R

at p=1. We obtain

2(p) = (1 ~(L-a; ") exp [—%a - 1)])1 (A.9)
~ 1 [1+(1—xt)(pa—1)i+...] , (A.10)

where o= (v — 1)/y=1/4 and the second line provides an approximation that is correct

to first order in . Although the integral appearing in Eq. (A.5) can now be performed
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using standard numerical techniques, we prefer to provide an analytic expression for it by
expanding the integrand in powers of the small parameter £&. And although the results
presented here are correct only to first-order in £, analytic expressions can be developed to

arbitrary order. We obtain for an arbitrary power n

/le”(p)dpzm? [1+ 1ﬁa($t—l)§+...] =z} [1+4n(mt—1)g+...] (Al

5

Substituting the above expression into Eq. (A.5) we obtain the following analytic expression

for the crustal moment of inertia to first order in P,/&:

1, ~ 107 B {1_ <R> < ! )} [1+?(Rt/Rs—l)(Pt/é’t)Jr...] L (A1)

3 Ry R M R?

Taking steps closely analogous to the ones followed for the crustal moment of inertia,

the fraction of the stellar mass contained in the solid crust may be written as

R 1
M., = 47r/ r2E(r)dr ~ 871'R§Pt/ (334(p) - x?’(p)>dp . (A.13)
R, 0

The integral can now be easily performed with the aid of Eq. (A.11). We obtain

M, ~ 8TR3P;(R¢/Rs — 1) [1 + %(Rt/RS —3/4)(P/&) + .. ] : (A.14)
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APPENDIX B

THE ROLE OF THE -MESON IN THE
ASYMMETRIC NUCLEAR MATTER

B.1 Interacting Lagrangian and the Equation of State

In this Appendix we study the role of the scalar-isovector d-meson in the RMF theories
and its impact on the symmetry energy. The §-meson contribution in the effective interacting
Lagrangian is introduced in a minimal way, through the linear Yukawa coupling to nucleon

fields [137, 138]. The non-interacting Lagrangian for such a model is given by

Lo = (iy"0,— M) Y + %qub M — %mggﬁ? + %aua LOMS — %mg(; 8

1 1 1 1 1
= VI Vi + GV — b by + om b by — S P E,, (B

where mgs = 980 MeV. The interacting Lagrangian differs from the one of the FSUGold by

an additional Yukawa coupling due to scalar-isovector exchange:

Lo = 6 [(90+ 05 6) = (0¥t G- But5(4m)4,) ] (B.2)
_ % (Qs¢)3_% (98(13)44—% (9\2/‘/#‘/“)2_1_/\\, (93VUV”) (ggbu . b“) )

The equations of motion for meson fields can be easily derived:

(000" +m2) 6 = gl — b — Sgbo® (B.3a)
(0,0 +m3) 8 = g5 2 (B-30)
OV +miVY = gty = Zgi(VuaVI)VY = 20 (g5by - BY) g3V, (B.3c)
9ubM + m2b” = g, (%7“) =2, (g3Viu - V*) gob” . (B.3d)

126



In the absence of photon field, one can also derive the Dirac equation for the nucleons field:

7 (10 = 9V = 9o - bu) = (M = g6 — g5 - 8) [ = 0. (B.4)

In the mean-field ground state the baryon sources are replaced by their normal ordered

expectation values:

YL — (1Y) = ps = psp + P 5 (B.5a)
VT — (- Tt 1) = 0a3P35 = Psp — Psn » (B.5b)
DM — (o) = 0py = 8" (pup + pun) (B.5c)
DY Ty — (et o) = 6"%6a3p3v = 6"°0az (pup — pym) - (B.5d)

Introducing ® = gs¢, D = gs6, W# = g, V#, and B* = g,b" we can rewrite the equations

of motion for meson fields:

1 A

S Bo+ SB2 4+ 2D = p, (B.6a)
2 2 6

1 P35

—Dy =2 B.6b
2 0 2 ( )
1

ZWo+ 2A, RAW, + %Wé” =py, (B.6c)
v

1 1

gR() + 2AUW02R0 = 5/)37\, . (B.Gd)
p

The Dirac equation for protons and neutrons can be written separately:

. 1 1
[m“aﬂ -4 — 57030 — <M — &y — 2D0)] Yp =0, (B.7a)
1 1
[Mau — W, + 57030 — <M — Oy + 2D0>] Yy =0. (B.7b)

Note that the effective proton and neutron masses are no more the same due to the presence
of 6-meson. Following the mean-field technique we can write the energy-momentum tensor

in the RMF:

1 1

P

2¢2°°  2¢2
A

K
_7(1)3_7@4
60T 940"

1 2 1 2
EWO + TC%BO_

Wi+ AVWO?Bg} . (B.8)

D2 +

<
24

(TMV)RMF = iz;’)/uauw —Guv| —
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The energy density of the system can be easily derived following standard mean-field calcu-

lations:

1 R, 1o 1
&= 2/0 kQEp dk + 7T2/0 kQEn dk + WOPV + §BOP3,V + U((I)Ov D07 W07BO) ’ (B9)

™

where Ef = /k? + M2, M} = M — &y — 3Do, Mj; = M — ®o + 3Dy, k(k}?) is the proton

(neutron) Fermi momentum, and U(®g, Do, Wy, By) is given by the following expression:

_ Lo Kas Aly L
U((I)(), Dg, Wo, Bg) = E(I)O + 5@0 + E(I)O + EDO
~ L G- £W(;1 - iBg ~ AWEBE . (B.10)
2¢2 4 2¢2
Similarly, the pressure of the system can be obtained as:
P ! k§k4dk ! kgk4dk U(®g, Dy, Wy, B B.11
—3?OE*S+QOET,;—(U7070,0), (B.11)

B.2 Derivation of the Symmetry Energy

The symmetry energy is defined from the expansion of the energy per nucleon E(py, «)
in terms of the asymmetry parameter, & = (ppv — pnv)/(Ppv + Pnv):

g(ﬂw a)

v

E(pe,a) = — B(p,) + S(p)a? + Oa) . (B.12)

For a = € < 1, we can write the expression of the symmetry energy as:

From the definition of the asymmetry parameter one can rearrange the proton and the

neutron vector densities and Fermi momentums as

1
Ppyv = §pv(1 - CY) ) k?‘ = (1 - a)l/SkF ’ (B14)

1
b = goell+a), K= (14 )k (B.15)

Moreover, p3y = —apy. Substituting this last expression in the Eqn. (B.6d) we find that in
the lowest order in «

Bo(a) = aB) + 0(a?) , (B.16)
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where we have assumed Wy(a) = W{ + O(a). Substituting this result in the Eqn. (B.6c)
we find that to the lowest order in «

Wo(ar) = W§ + o® Wy + O(c?) . (B.17)
This result was expected as isoscalars treat protons and neutrons equally. However, isovector
fields distinguish the nucleons, and thus result in the asymmetry between them. Therefore,
in general, for small a one can expand each field as:
Dy = 9f + o’ 05 + O(a?)
Dy = agDy + O(a?)
Wo = W + a*W} + 0(at) , (B.18c
By = agBy + (’)(043) : (B.18d
Now we can calculate each term in the expression of the energy density £(py,a) for small

« using the expansions above. After some tedious but straightforward algebra we arrive at

the expression for the symmetry energy

k2 1 p 1 py M*2
S(py)= L 42—V ¢ Y : B.19
(o) 6B 8 P1+2A2WE 8 Ef2[1+ 2 A(kp, M*)) (B.19)
where
Alkp, M*) = 1/kF ML (R (B.20)
R E® 4\ M* Ep) '
M~ * *2 kF +E1>§‘

and M* = M — &g, E; = \/k%—l—M*Q.

The expression above shows that the inclusion of the §-meson reduces the value of the
symmetry energy. In order to maintain the value of the symmetry energy at its current
experimental value (for example, at J =26.0 MeV), one needs to compensate this reduction
by increasing the value of the coupling constant cﬁ. At low densities both the scalar and
vector interactions play an important role. However at high densities the scalar meson fields
saturate, while the sole behavior of the equation of state at high densities are regulated
by the vector interactions. Therefore, including §-meson interaction in a minimal way will

stiffen the equation of state at high densities, and thus result in the typical radii of neutron

stars that are larger then those that do not incorporate d-mesons.
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